1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ipfw.h" 69 #include "opt_ipsec.h" 70 #include "opt_sctp.h" 71 #include "opt_route.h" 72 #include "opt_rss.h" 73 74 #include <sys/param.h> 75 #include <sys/kernel.h> 76 #include <sys/malloc.h> 77 #include <sys/mbuf.h> 78 #include <sys/errno.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/protosw.h> 82 #include <sys/socket.h> 83 #include <sys/socketvar.h> 84 #include <sys/syslog.h> 85 #include <sys/ucred.h> 86 87 #include <machine/in_cksum.h> 88 89 #include <net/if.h> 90 #include <net/if_var.h> 91 #include <net/netisr.h> 92 #include <net/route.h> 93 #include <net/pfil.h> 94 #include <net/rss_config.h> 95 #include <net/vnet.h> 96 97 #include <netinet/in.h> 98 #include <netinet/in_var.h> 99 #include <netinet/ip_var.h> 100 #include <netinet6/in6_fib.h> 101 #include <netinet6/in6_var.h> 102 #include <netinet/ip6.h> 103 #include <netinet/icmp6.h> 104 #include <netinet6/ip6_var.h> 105 #include <netinet/in_pcb.h> 106 #include <netinet/tcp_var.h> 107 #include <netinet6/nd6.h> 108 #include <netinet6/in6_rss.h> 109 110 #ifdef IPSEC 111 #include <netipsec/ipsec.h> 112 #include <netipsec/ipsec6.h> 113 #include <netipsec/key.h> 114 #include <netinet6/ip6_ipsec.h> 115 #endif /* IPSEC */ 116 #ifdef SCTP 117 #include <netinet/sctp.h> 118 #include <netinet/sctp_crc32.h> 119 #endif 120 121 #include <netinet6/ip6protosw.h> 122 #include <netinet6/scope6_var.h> 123 124 #ifdef FLOWTABLE 125 #include <net/flowtable.h> 126 #endif 127 128 extern int in6_mcast_loop; 129 130 struct ip6_exthdrs { 131 struct mbuf *ip6e_ip6; 132 struct mbuf *ip6e_hbh; 133 struct mbuf *ip6e_dest1; 134 struct mbuf *ip6e_rthdr; 135 struct mbuf *ip6e_dest2; 136 }; 137 138 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 139 struct ucred *, int); 140 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 141 struct socket *, struct sockopt *); 142 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 143 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 144 struct ucred *, int, int, int); 145 146 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 147 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 148 struct ip6_frag **); 149 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 150 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 151 static int ip6_getpmtu(struct route_in6 *, int, 152 struct ifnet *, struct in6_addr *, u_long *, int *, u_int); 153 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 154 u_long *, int *); 155 static int ip6_getpmtu_ctl(u_int, struct in6_addr *, u_long *); 156 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 157 158 159 /* 160 * Make an extension header from option data. hp is the source, and 161 * mp is the destination. 162 */ 163 #define MAKE_EXTHDR(hp, mp) \ 164 do { \ 165 if (hp) { \ 166 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 167 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 168 ((eh)->ip6e_len + 1) << 3); \ 169 if (error) \ 170 goto freehdrs; \ 171 } \ 172 } while (/*CONSTCOND*/ 0) 173 174 /* 175 * Form a chain of extension headers. 176 * m is the extension header mbuf 177 * mp is the previous mbuf in the chain 178 * p is the next header 179 * i is the type of option. 180 */ 181 #define MAKE_CHAIN(m, mp, p, i)\ 182 do {\ 183 if (m) {\ 184 if (!hdrsplit) \ 185 panic("assumption failed: hdr not split"); \ 186 *mtod((m), u_char *) = *(p);\ 187 *(p) = (i);\ 188 p = mtod((m), u_char *);\ 189 (m)->m_next = (mp)->m_next;\ 190 (mp)->m_next = (m);\ 191 (mp) = (m);\ 192 }\ 193 } while (/*CONSTCOND*/ 0) 194 195 void 196 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 197 { 198 u_short csum; 199 200 csum = in_cksum_skip(m, offset + plen, offset); 201 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 202 csum = 0xffff; 203 offset += m->m_pkthdr.csum_data; /* checksum offset */ 204 205 if (offset + sizeof(u_short) > m->m_len) { 206 printf("%s: delayed m_pullup, m->len: %d plen %u off %u " 207 "csum_flags=%b\n", __func__, m->m_len, plen, offset, 208 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 209 /* 210 * XXX this should not happen, but if it does, the correct 211 * behavior may be to insert the checksum in the appropriate 212 * next mbuf in the chain. 213 */ 214 return; 215 } 216 *(u_short *)(m->m_data + offset) = csum; 217 } 218 219 int 220 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 221 int mtu, uint32_t id) 222 { 223 struct mbuf *m, **mnext, *m_frgpart; 224 struct ip6_hdr *ip6, *mhip6; 225 struct ip6_frag *ip6f; 226 int off; 227 int error; 228 int tlen = m0->m_pkthdr.len; 229 230 m = m0; 231 ip6 = mtod(m, struct ip6_hdr *); 232 mnext = &m->m_nextpkt; 233 234 for (off = hlen; off < tlen; off += mtu) { 235 m = m_gethdr(M_NOWAIT, MT_DATA); 236 if (!m) { 237 IP6STAT_INC(ip6s_odropped); 238 return (ENOBUFS); 239 } 240 m->m_flags = m0->m_flags & M_COPYFLAGS; 241 *mnext = m; 242 mnext = &m->m_nextpkt; 243 m->m_data += max_linkhdr; 244 mhip6 = mtod(m, struct ip6_hdr *); 245 *mhip6 = *ip6; 246 m->m_len = sizeof(*mhip6); 247 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 248 if (error) { 249 IP6STAT_INC(ip6s_odropped); 250 return (error); 251 } 252 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 253 if (off + mtu >= tlen) 254 mtu = tlen - off; 255 else 256 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 257 mhip6->ip6_plen = htons((u_short)(mtu + hlen + 258 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 259 if ((m_frgpart = m_copy(m0, off, mtu)) == NULL) { 260 IP6STAT_INC(ip6s_odropped); 261 return (ENOBUFS); 262 } 263 m_cat(m, m_frgpart); 264 m->m_pkthdr.len = mtu + hlen + sizeof(*ip6f); 265 m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; 266 m->m_pkthdr.rcvif = NULL; 267 ip6f->ip6f_reserved = 0; 268 ip6f->ip6f_ident = id; 269 ip6f->ip6f_nxt = nextproto; 270 IP6STAT_INC(ip6s_ofragments); 271 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 272 } 273 274 return (0); 275 } 276 277 /* 278 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 279 * header (with pri, len, nxt, hlim, src, dst). 280 * This function may modify ver and hlim only. 281 * The mbuf chain containing the packet will be freed. 282 * The mbuf opt, if present, will not be freed. 283 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 284 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 285 * then result of route lookup is stored in ro->ro_rt. 286 * 287 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 288 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 289 * which is rt_mtu. 290 * 291 * ifpp - XXX: just for statistics 292 */ 293 /* 294 * XXX TODO: no flowid is assigned for outbound flows? 295 */ 296 int 297 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 298 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 299 struct ifnet **ifpp, struct inpcb *inp) 300 { 301 struct ip6_hdr *ip6; 302 struct ifnet *ifp, *origifp; 303 struct mbuf *m = m0; 304 struct mbuf *mprev = NULL; 305 int hlen, tlen, len; 306 struct route_in6 ip6route; 307 struct rtentry *rt = NULL; 308 struct sockaddr_in6 *dst, src_sa, dst_sa; 309 struct in6_addr odst; 310 int error = 0; 311 struct in6_ifaddr *ia = NULL; 312 u_long mtu; 313 int alwaysfrag, dontfrag; 314 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 315 struct ip6_exthdrs exthdrs; 316 struct in6_addr finaldst, src0, dst0; 317 u_int32_t zone; 318 struct route_in6 *ro_pmtu = NULL; 319 int hdrsplit = 0; 320 int sw_csum, tso; 321 int needfiblookup; 322 uint32_t fibnum; 323 struct m_tag *fwd_tag = NULL; 324 uint32_t id; 325 326 ip6 = mtod(m, struct ip6_hdr *); 327 if (ip6 == NULL) { 328 printf ("ip6 is NULL"); 329 goto bad; 330 } 331 332 if (inp != NULL) { 333 M_SETFIB(m, inp->inp_inc.inc_fibnum); 334 if ((flags & IP_NODEFAULTFLOWID) == 0) { 335 /* unconditionally set flowid */ 336 m->m_pkthdr.flowid = inp->inp_flowid; 337 M_HASHTYPE_SET(m, inp->inp_flowtype); 338 } 339 } 340 341 finaldst = ip6->ip6_dst; 342 bzero(&exthdrs, sizeof(exthdrs)); 343 if (opt) { 344 /* Hop-by-Hop options header */ 345 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 346 /* Destination options header(1st part) */ 347 if (opt->ip6po_rthdr) { 348 /* 349 * Destination options header(1st part) 350 * This only makes sense with a routing header. 351 * See Section 9.2 of RFC 3542. 352 * Disabling this part just for MIP6 convenience is 353 * a bad idea. We need to think carefully about a 354 * way to make the advanced API coexist with MIP6 355 * options, which might automatically be inserted in 356 * the kernel. 357 */ 358 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 359 } 360 /* Routing header */ 361 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 362 /* Destination options header(2nd part) */ 363 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 364 } 365 366 #ifdef IPSEC 367 /* 368 * IPSec checking which handles several cases. 369 * FAST IPSEC: We re-injected the packet. 370 * XXX: need scope argument. 371 */ 372 switch(ip6_ipsec_output(&m, inp, &error)) 373 { 374 case 1: /* Bad packet */ 375 goto freehdrs; 376 case -1: /* IPSec done */ 377 goto done; 378 case 0: /* No IPSec */ 379 default: 380 break; 381 } 382 #endif /* IPSEC */ 383 384 /* 385 * Calculate the total length of the extension header chain. 386 * Keep the length of the unfragmentable part for fragmentation. 387 */ 388 optlen = 0; 389 if (exthdrs.ip6e_hbh) 390 optlen += exthdrs.ip6e_hbh->m_len; 391 if (exthdrs.ip6e_dest1) 392 optlen += exthdrs.ip6e_dest1->m_len; 393 if (exthdrs.ip6e_rthdr) 394 optlen += exthdrs.ip6e_rthdr->m_len; 395 unfragpartlen = optlen + sizeof(struct ip6_hdr); 396 397 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 398 if (exthdrs.ip6e_dest2) 399 optlen += exthdrs.ip6e_dest2->m_len; 400 401 /* 402 * If there is at least one extension header, 403 * separate IP6 header from the payload. 404 */ 405 if (optlen && !hdrsplit) { 406 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 407 m = NULL; 408 goto freehdrs; 409 } 410 m = exthdrs.ip6e_ip6; 411 hdrsplit++; 412 } 413 414 /* adjust pointer */ 415 ip6 = mtod(m, struct ip6_hdr *); 416 417 /* adjust mbuf packet header length */ 418 m->m_pkthdr.len += optlen; 419 plen = m->m_pkthdr.len - sizeof(*ip6); 420 421 /* If this is a jumbo payload, insert a jumbo payload option. */ 422 if (plen > IPV6_MAXPACKET) { 423 if (!hdrsplit) { 424 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 425 m = NULL; 426 goto freehdrs; 427 } 428 m = exthdrs.ip6e_ip6; 429 hdrsplit++; 430 } 431 /* adjust pointer */ 432 ip6 = mtod(m, struct ip6_hdr *); 433 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 434 goto freehdrs; 435 ip6->ip6_plen = 0; 436 } else 437 ip6->ip6_plen = htons(plen); 438 439 /* 440 * Concatenate headers and fill in next header fields. 441 * Here we have, on "m" 442 * IPv6 payload 443 * and we insert headers accordingly. Finally, we should be getting: 444 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 445 * 446 * during the header composing process, "m" points to IPv6 header. 447 * "mprev" points to an extension header prior to esp. 448 */ 449 u_char *nexthdrp = &ip6->ip6_nxt; 450 mprev = m; 451 452 /* 453 * we treat dest2 specially. this makes IPsec processing 454 * much easier. the goal here is to make mprev point the 455 * mbuf prior to dest2. 456 * 457 * result: IPv6 dest2 payload 458 * m and mprev will point to IPv6 header. 459 */ 460 if (exthdrs.ip6e_dest2) { 461 if (!hdrsplit) 462 panic("assumption failed: hdr not split"); 463 exthdrs.ip6e_dest2->m_next = m->m_next; 464 m->m_next = exthdrs.ip6e_dest2; 465 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 466 ip6->ip6_nxt = IPPROTO_DSTOPTS; 467 } 468 469 /* 470 * result: IPv6 hbh dest1 rthdr dest2 payload 471 * m will point to IPv6 header. mprev will point to the 472 * extension header prior to dest2 (rthdr in the above case). 473 */ 474 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 475 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 476 IPPROTO_DSTOPTS); 477 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 478 IPPROTO_ROUTING); 479 480 /* 481 * If there is a routing header, discard the packet. 482 */ 483 if (exthdrs.ip6e_rthdr) { 484 error = EINVAL; 485 goto bad; 486 } 487 488 /* Source address validation */ 489 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 490 (flags & IPV6_UNSPECSRC) == 0) { 491 error = EOPNOTSUPP; 492 IP6STAT_INC(ip6s_badscope); 493 goto bad; 494 } 495 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 496 error = EOPNOTSUPP; 497 IP6STAT_INC(ip6s_badscope); 498 goto bad; 499 } 500 501 IP6STAT_INC(ip6s_localout); 502 503 /* 504 * Route packet. 505 */ 506 if (ro == NULL) { 507 ro = &ip6route; 508 bzero((caddr_t)ro, sizeof(*ro)); 509 } 510 ro_pmtu = ro; 511 if (opt && opt->ip6po_rthdr) 512 ro = &opt->ip6po_route; 513 dst = (struct sockaddr_in6 *)&ro->ro_dst; 514 #ifdef FLOWTABLE 515 if (ro->ro_rt == NULL) 516 (void )flowtable_lookup(AF_INET6, m, (struct route *)ro); 517 #endif 518 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 519 again: 520 /* 521 * if specified, try to fill in the traffic class field. 522 * do not override if a non-zero value is already set. 523 * we check the diffserv field and the ecn field separately. 524 */ 525 if (opt && opt->ip6po_tclass >= 0) { 526 int mask = 0; 527 528 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 529 mask |= 0xfc; 530 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 531 mask |= 0x03; 532 if (mask != 0) 533 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 534 } 535 536 /* fill in or override the hop limit field, if necessary. */ 537 if (opt && opt->ip6po_hlim != -1) 538 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 539 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 540 if (im6o != NULL) 541 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 542 else 543 ip6->ip6_hlim = V_ip6_defmcasthlim; 544 } 545 546 /* adjust pointer */ 547 ip6 = mtod(m, struct ip6_hdr *); 548 549 /* 550 * Validate route against routing table additions; 551 * a better/more specific route might have been added. 552 * Make sure address family is set in route. 553 */ 554 if (inp) { 555 ro->ro_dst.sin6_family = AF_INET6; 556 RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, fibnum); 557 } 558 if (ro->ro_rt && fwd_tag == NULL && (ro->ro_rt->rt_flags & RTF_UP) && 559 ro->ro_dst.sin6_family == AF_INET6 && 560 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 561 rt = ro->ro_rt; 562 ifp = ro->ro_rt->rt_ifp; 563 } else { 564 if (fwd_tag == NULL) { 565 bzero(&dst_sa, sizeof(dst_sa)); 566 dst_sa.sin6_family = AF_INET6; 567 dst_sa.sin6_len = sizeof(dst_sa); 568 dst_sa.sin6_addr = ip6->ip6_dst; 569 } 570 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 571 &rt, fibnum); 572 if (error != 0) { 573 if (ifp != NULL) 574 in6_ifstat_inc(ifp, ifs6_out_discard); 575 goto bad; 576 } 577 } 578 if (rt == NULL) { 579 /* 580 * If in6_selectroute() does not return a route entry, 581 * dst may not have been updated. 582 */ 583 *dst = dst_sa; /* XXX */ 584 } 585 586 /* 587 * then rt (for unicast) and ifp must be non-NULL valid values. 588 */ 589 if ((flags & IPV6_FORWARDING) == 0) { 590 /* XXX: the FORWARDING flag can be set for mrouting. */ 591 in6_ifstat_inc(ifp, ifs6_out_request); 592 } 593 if (rt != NULL) { 594 ia = (struct in6_ifaddr *)(rt->rt_ifa); 595 counter_u64_add(rt->rt_pksent, 1); 596 } 597 598 599 /* 600 * The outgoing interface must be in the zone of source and 601 * destination addresses. 602 */ 603 origifp = ifp; 604 605 src0 = ip6->ip6_src; 606 if (in6_setscope(&src0, origifp, &zone)) 607 goto badscope; 608 bzero(&src_sa, sizeof(src_sa)); 609 src_sa.sin6_family = AF_INET6; 610 src_sa.sin6_len = sizeof(src_sa); 611 src_sa.sin6_addr = ip6->ip6_src; 612 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 613 goto badscope; 614 615 dst0 = ip6->ip6_dst; 616 if (in6_setscope(&dst0, origifp, &zone)) 617 goto badscope; 618 /* re-initialize to be sure */ 619 bzero(&dst_sa, sizeof(dst_sa)); 620 dst_sa.sin6_family = AF_INET6; 621 dst_sa.sin6_len = sizeof(dst_sa); 622 dst_sa.sin6_addr = ip6->ip6_dst; 623 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 624 goto badscope; 625 } 626 627 /* We should use ia_ifp to support the case of 628 * sending packets to an address of our own. 629 */ 630 if (ia != NULL && ia->ia_ifp) 631 ifp = ia->ia_ifp; 632 633 /* scope check is done. */ 634 goto routefound; 635 636 badscope: 637 IP6STAT_INC(ip6s_badscope); 638 in6_ifstat_inc(origifp, ifs6_out_discard); 639 if (error == 0) 640 error = EHOSTUNREACH; /* XXX */ 641 goto bad; 642 643 routefound: 644 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 645 if (opt && opt->ip6po_nextroute.ro_rt) { 646 /* 647 * The nexthop is explicitly specified by the 648 * application. We assume the next hop is an IPv6 649 * address. 650 */ 651 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 652 } 653 else if ((rt->rt_flags & RTF_GATEWAY)) 654 dst = (struct sockaddr_in6 *)rt->rt_gateway; 655 } 656 657 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 658 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 659 } else { 660 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 661 in6_ifstat_inc(ifp, ifs6_out_mcast); 662 /* 663 * Confirm that the outgoing interface supports multicast. 664 */ 665 if (!(ifp->if_flags & IFF_MULTICAST)) { 666 IP6STAT_INC(ip6s_noroute); 667 in6_ifstat_inc(ifp, ifs6_out_discard); 668 error = ENETUNREACH; 669 goto bad; 670 } 671 if ((im6o == NULL && in6_mcast_loop) || 672 (im6o && im6o->im6o_multicast_loop)) { 673 /* 674 * Loop back multicast datagram if not expressly 675 * forbidden to do so, even if we have not joined 676 * the address; protocols will filter it later, 677 * thus deferring a hash lookup and lock acquisition 678 * at the expense of an m_copym(). 679 */ 680 ip6_mloopback(ifp, m); 681 } else { 682 /* 683 * If we are acting as a multicast router, perform 684 * multicast forwarding as if the packet had just 685 * arrived on the interface to which we are about 686 * to send. The multicast forwarding function 687 * recursively calls this function, using the 688 * IPV6_FORWARDING flag to prevent infinite recursion. 689 * 690 * Multicasts that are looped back by ip6_mloopback(), 691 * above, will be forwarded by the ip6_input() routine, 692 * if necessary. 693 */ 694 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 695 /* 696 * XXX: ip6_mforward expects that rcvif is NULL 697 * when it is called from the originating path. 698 * However, it may not always be the case. 699 */ 700 m->m_pkthdr.rcvif = NULL; 701 if (ip6_mforward(ip6, ifp, m) != 0) { 702 m_freem(m); 703 goto done; 704 } 705 } 706 } 707 /* 708 * Multicasts with a hoplimit of zero may be looped back, 709 * above, but must not be transmitted on a network. 710 * Also, multicasts addressed to the loopback interface 711 * are not sent -- the above call to ip6_mloopback() will 712 * loop back a copy if this host actually belongs to the 713 * destination group on the loopback interface. 714 */ 715 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 716 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 717 m_freem(m); 718 goto done; 719 } 720 } 721 722 /* 723 * Fill the outgoing inteface to tell the upper layer 724 * to increment per-interface statistics. 725 */ 726 if (ifpp) 727 *ifpp = ifp; 728 729 /* Determine path MTU. */ 730 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &finaldst, &mtu, 731 &alwaysfrag, fibnum)) != 0) 732 goto bad; 733 734 /* 735 * The caller of this function may specify to use the minimum MTU 736 * in some cases. 737 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 738 * setting. The logic is a bit complicated; by default, unicast 739 * packets will follow path MTU while multicast packets will be sent at 740 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 741 * including unicast ones will be sent at the minimum MTU. Multicast 742 * packets will always be sent at the minimum MTU unless 743 * IP6PO_MINMTU_DISABLE is explicitly specified. 744 * See RFC 3542 for more details. 745 */ 746 if (mtu > IPV6_MMTU) { 747 if ((flags & IPV6_MINMTU)) 748 mtu = IPV6_MMTU; 749 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 750 mtu = IPV6_MMTU; 751 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 752 (opt == NULL || 753 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 754 mtu = IPV6_MMTU; 755 } 756 } 757 758 /* 759 * clear embedded scope identifiers if necessary. 760 * in6_clearscope will touch the addresses only when necessary. 761 */ 762 in6_clearscope(&ip6->ip6_src); 763 in6_clearscope(&ip6->ip6_dst); 764 765 /* 766 * If the outgoing packet contains a hop-by-hop options header, 767 * it must be examined and processed even by the source node. 768 * (RFC 2460, section 4.) 769 */ 770 if (exthdrs.ip6e_hbh) { 771 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 772 u_int32_t dummy; /* XXX unused */ 773 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 774 775 #ifdef DIAGNOSTIC 776 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 777 panic("ip6e_hbh is not contiguous"); 778 #endif 779 /* 780 * XXX: if we have to send an ICMPv6 error to the sender, 781 * we need the M_LOOP flag since icmp6_error() expects 782 * the IPv6 and the hop-by-hop options header are 783 * contiguous unless the flag is set. 784 */ 785 m->m_flags |= M_LOOP; 786 m->m_pkthdr.rcvif = ifp; 787 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 788 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 789 &dummy, &plen) < 0) { 790 /* m was already freed at this point */ 791 error = EINVAL;/* better error? */ 792 goto done; 793 } 794 m->m_flags &= ~M_LOOP; /* XXX */ 795 m->m_pkthdr.rcvif = NULL; 796 } 797 798 /* Jump over all PFIL processing if hooks are not active. */ 799 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 800 goto passout; 801 802 odst = ip6->ip6_dst; 803 /* Run through list of hooks for output packets. */ 804 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 805 if (error != 0 || m == NULL) 806 goto done; 807 ip6 = mtod(m, struct ip6_hdr *); 808 809 needfiblookup = 0; 810 /* See if destination IP address was changed by packet filter. */ 811 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 812 m->m_flags |= M_SKIP_FIREWALL; 813 /* If destination is now ourself drop to ip6_input(). */ 814 if (in6_localip(&ip6->ip6_dst)) { 815 m->m_flags |= M_FASTFWD_OURS; 816 if (m->m_pkthdr.rcvif == NULL) 817 m->m_pkthdr.rcvif = V_loif; 818 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 819 m->m_pkthdr.csum_flags |= 820 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 821 m->m_pkthdr.csum_data = 0xffff; 822 } 823 #ifdef SCTP 824 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 825 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 826 #endif 827 error = netisr_queue(NETISR_IPV6, m); 828 goto done; 829 } else 830 needfiblookup = 1; /* Redo the routing table lookup. */ 831 } 832 /* See if fib was changed by packet filter. */ 833 if (fibnum != M_GETFIB(m)) { 834 m->m_flags |= M_SKIP_FIREWALL; 835 fibnum = M_GETFIB(m); 836 RO_RTFREE(ro); 837 needfiblookup = 1; 838 } 839 if (needfiblookup) 840 goto again; 841 842 /* See if local, if yes, send it to netisr. */ 843 if (m->m_flags & M_FASTFWD_OURS) { 844 if (m->m_pkthdr.rcvif == NULL) 845 m->m_pkthdr.rcvif = V_loif; 846 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 847 m->m_pkthdr.csum_flags |= 848 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 849 m->m_pkthdr.csum_data = 0xffff; 850 } 851 #ifdef SCTP 852 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 853 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 854 #endif 855 error = netisr_queue(NETISR_IPV6, m); 856 goto done; 857 } 858 /* Or forward to some other address? */ 859 if ((m->m_flags & M_IP6_NEXTHOP) && 860 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 861 dst = (struct sockaddr_in6 *)&ro->ro_dst; 862 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 863 m->m_flags |= M_SKIP_FIREWALL; 864 m->m_flags &= ~M_IP6_NEXTHOP; 865 m_tag_delete(m, fwd_tag); 866 goto again; 867 } 868 869 passout: 870 /* 871 * Send the packet to the outgoing interface. 872 * If necessary, do IPv6 fragmentation before sending. 873 * 874 * the logic here is rather complex: 875 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 876 * 1-a: send as is if tlen <= path mtu 877 * 1-b: fragment if tlen > path mtu 878 * 879 * 2: if user asks us not to fragment (dontfrag == 1) 880 * 2-a: send as is if tlen <= interface mtu 881 * 2-b: error if tlen > interface mtu 882 * 883 * 3: if we always need to attach fragment header (alwaysfrag == 1) 884 * always fragment 885 * 886 * 4: if dontfrag == 1 && alwaysfrag == 1 887 * error, as we cannot handle this conflicting request 888 */ 889 sw_csum = m->m_pkthdr.csum_flags; 890 if (!hdrsplit) { 891 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 892 sw_csum &= ~ifp->if_hwassist; 893 } else 894 tso = 0; 895 /* 896 * If we added extension headers, we will not do TSO and calculate the 897 * checksums ourselves for now. 898 * XXX-BZ Need a framework to know when the NIC can handle it, even 899 * with ext. hdrs. 900 */ 901 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 902 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 903 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 904 } 905 #ifdef SCTP 906 if (sw_csum & CSUM_SCTP_IPV6) { 907 sw_csum &= ~CSUM_SCTP_IPV6; 908 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 909 } 910 #endif 911 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 912 tlen = m->m_pkthdr.len; 913 914 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 915 dontfrag = 1; 916 else 917 dontfrag = 0; 918 if (dontfrag && alwaysfrag) { /* case 4 */ 919 /* conflicting request - can't transmit */ 920 error = EMSGSIZE; 921 goto bad; 922 } 923 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 924 /* 925 * Even if the DONTFRAG option is specified, we cannot send the 926 * packet when the data length is larger than the MTU of the 927 * outgoing interface. 928 * Notify the error by sending IPV6_PATHMTU ancillary data if 929 * application wanted to know the MTU value. Also return an 930 * error code (this is not described in the API spec). 931 */ 932 if (inp != NULL) 933 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 934 error = EMSGSIZE; 935 goto bad; 936 } 937 938 /* 939 * transmit packet without fragmentation 940 */ 941 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 942 struct in6_ifaddr *ia6; 943 944 ip6 = mtod(m, struct ip6_hdr *); 945 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 946 if (ia6) { 947 /* Record statistics for this interface address. */ 948 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 949 counter_u64_add(ia6->ia_ifa.ifa_obytes, 950 m->m_pkthdr.len); 951 ifa_free(&ia6->ia_ifa); 952 } 953 error = nd6_output_ifp(ifp, origifp, m, dst, 954 (struct route *)ro); 955 goto done; 956 } 957 958 /* 959 * try to fragment the packet. case 1-b and 3 960 */ 961 if (mtu < IPV6_MMTU) { 962 /* path MTU cannot be less than IPV6_MMTU */ 963 error = EMSGSIZE; 964 in6_ifstat_inc(ifp, ifs6_out_fragfail); 965 goto bad; 966 } else if (ip6->ip6_plen == 0) { 967 /* jumbo payload cannot be fragmented */ 968 error = EMSGSIZE; 969 in6_ifstat_inc(ifp, ifs6_out_fragfail); 970 goto bad; 971 } else { 972 u_char nextproto; 973 974 /* 975 * Too large for the destination or interface; 976 * fragment if possible. 977 * Must be able to put at least 8 bytes per fragment. 978 */ 979 hlen = unfragpartlen; 980 if (mtu > IPV6_MAXPACKET) 981 mtu = IPV6_MAXPACKET; 982 983 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 984 if (len < 8) { 985 error = EMSGSIZE; 986 in6_ifstat_inc(ifp, ifs6_out_fragfail); 987 goto bad; 988 } 989 990 /* 991 * If the interface will not calculate checksums on 992 * fragmented packets, then do it here. 993 * XXX-BZ handle the hw offloading case. Need flags. 994 */ 995 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 996 in6_delayed_cksum(m, plen, hlen); 997 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 998 } 999 #ifdef SCTP 1000 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 1001 sctp_delayed_cksum(m, hlen); 1002 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 1003 } 1004 #endif 1005 /* 1006 * Change the next header field of the last header in the 1007 * unfragmentable part. 1008 */ 1009 if (exthdrs.ip6e_rthdr) { 1010 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1011 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1012 } else if (exthdrs.ip6e_dest1) { 1013 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1014 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1015 } else if (exthdrs.ip6e_hbh) { 1016 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1017 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1018 } else { 1019 nextproto = ip6->ip6_nxt; 1020 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1021 } 1022 1023 /* 1024 * Loop through length of segment after first fragment, 1025 * make new header and copy data of each part and link onto 1026 * chain. 1027 */ 1028 m0 = m; 1029 id = htonl(ip6_randomid()); 1030 if ((error = ip6_fragment(ifp, m, hlen, nextproto, len, id))) 1031 goto sendorfree; 1032 1033 in6_ifstat_inc(ifp, ifs6_out_fragok); 1034 } 1035 1036 /* 1037 * Remove leading garbages. 1038 */ 1039 sendorfree: 1040 m = m0->m_nextpkt; 1041 m0->m_nextpkt = 0; 1042 m_freem(m0); 1043 for (m0 = m; m; m = m0) { 1044 m0 = m->m_nextpkt; 1045 m->m_nextpkt = 0; 1046 if (error == 0) { 1047 /* Record statistics for this interface address. */ 1048 if (ia) { 1049 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1050 counter_u64_add(ia->ia_ifa.ifa_obytes, 1051 m->m_pkthdr.len); 1052 } 1053 error = nd6_output_ifp(ifp, origifp, m, dst, 1054 (struct route *)ro); 1055 } else 1056 m_freem(m); 1057 } 1058 1059 if (error == 0) 1060 IP6STAT_INC(ip6s_fragmented); 1061 1062 done: 1063 if (ro == &ip6route) 1064 RO_RTFREE(ro); 1065 return (error); 1066 1067 freehdrs: 1068 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1069 m_freem(exthdrs.ip6e_dest1); 1070 m_freem(exthdrs.ip6e_rthdr); 1071 m_freem(exthdrs.ip6e_dest2); 1072 /* FALLTHROUGH */ 1073 bad: 1074 if (m) 1075 m_freem(m); 1076 goto done; 1077 } 1078 1079 static int 1080 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1081 { 1082 struct mbuf *m; 1083 1084 if (hlen > MCLBYTES) 1085 return (ENOBUFS); /* XXX */ 1086 1087 if (hlen > MLEN) 1088 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1089 else 1090 m = m_get(M_NOWAIT, MT_DATA); 1091 if (m == NULL) 1092 return (ENOBUFS); 1093 m->m_len = hlen; 1094 if (hdr) 1095 bcopy(hdr, mtod(m, caddr_t), hlen); 1096 1097 *mp = m; 1098 return (0); 1099 } 1100 1101 /* 1102 * Insert jumbo payload option. 1103 */ 1104 static int 1105 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1106 { 1107 struct mbuf *mopt; 1108 u_char *optbuf; 1109 u_int32_t v; 1110 1111 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1112 1113 /* 1114 * If there is no hop-by-hop options header, allocate new one. 1115 * If there is one but it doesn't have enough space to store the 1116 * jumbo payload option, allocate a cluster to store the whole options. 1117 * Otherwise, use it to store the options. 1118 */ 1119 if (exthdrs->ip6e_hbh == NULL) { 1120 mopt = m_get(M_NOWAIT, MT_DATA); 1121 if (mopt == NULL) 1122 return (ENOBUFS); 1123 mopt->m_len = JUMBOOPTLEN; 1124 optbuf = mtod(mopt, u_char *); 1125 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1126 exthdrs->ip6e_hbh = mopt; 1127 } else { 1128 struct ip6_hbh *hbh; 1129 1130 mopt = exthdrs->ip6e_hbh; 1131 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1132 /* 1133 * XXX assumption: 1134 * - exthdrs->ip6e_hbh is not referenced from places 1135 * other than exthdrs. 1136 * - exthdrs->ip6e_hbh is not an mbuf chain. 1137 */ 1138 int oldoptlen = mopt->m_len; 1139 struct mbuf *n; 1140 1141 /* 1142 * XXX: give up if the whole (new) hbh header does 1143 * not fit even in an mbuf cluster. 1144 */ 1145 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1146 return (ENOBUFS); 1147 1148 /* 1149 * As a consequence, we must always prepare a cluster 1150 * at this point. 1151 */ 1152 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1153 if (n == NULL) 1154 return (ENOBUFS); 1155 n->m_len = oldoptlen + JUMBOOPTLEN; 1156 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1157 oldoptlen); 1158 optbuf = mtod(n, caddr_t) + oldoptlen; 1159 m_freem(mopt); 1160 mopt = exthdrs->ip6e_hbh = n; 1161 } else { 1162 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1163 mopt->m_len += JUMBOOPTLEN; 1164 } 1165 optbuf[0] = IP6OPT_PADN; 1166 optbuf[1] = 1; 1167 1168 /* 1169 * Adjust the header length according to the pad and 1170 * the jumbo payload option. 1171 */ 1172 hbh = mtod(mopt, struct ip6_hbh *); 1173 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1174 } 1175 1176 /* fill in the option. */ 1177 optbuf[2] = IP6OPT_JUMBO; 1178 optbuf[3] = 4; 1179 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1180 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1181 1182 /* finally, adjust the packet header length */ 1183 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1184 1185 return (0); 1186 #undef JUMBOOPTLEN 1187 } 1188 1189 /* 1190 * Insert fragment header and copy unfragmentable header portions. 1191 */ 1192 static int 1193 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1194 struct ip6_frag **frghdrp) 1195 { 1196 struct mbuf *n, *mlast; 1197 1198 if (hlen > sizeof(struct ip6_hdr)) { 1199 n = m_copym(m0, sizeof(struct ip6_hdr), 1200 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1201 if (n == NULL) 1202 return (ENOBUFS); 1203 m->m_next = n; 1204 } else 1205 n = m; 1206 1207 /* Search for the last mbuf of unfragmentable part. */ 1208 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1209 ; 1210 1211 if (M_WRITABLE(mlast) && 1212 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1213 /* use the trailing space of the last mbuf for the fragment hdr */ 1214 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1215 mlast->m_len); 1216 mlast->m_len += sizeof(struct ip6_frag); 1217 m->m_pkthdr.len += sizeof(struct ip6_frag); 1218 } else { 1219 /* allocate a new mbuf for the fragment header */ 1220 struct mbuf *mfrg; 1221 1222 mfrg = m_get(M_NOWAIT, MT_DATA); 1223 if (mfrg == NULL) 1224 return (ENOBUFS); 1225 mfrg->m_len = sizeof(struct ip6_frag); 1226 *frghdrp = mtod(mfrg, struct ip6_frag *); 1227 mlast->m_next = mfrg; 1228 } 1229 1230 return (0); 1231 } 1232 1233 /* 1234 * Calculates IPv6 path mtu for destination @dst. 1235 * Resulting MTU is stored in @mtup. 1236 * 1237 * Returns 0 on success. 1238 */ 1239 static int 1240 ip6_getpmtu_ctl(u_int fibnum, struct in6_addr *dst, u_long *mtup) 1241 { 1242 struct nhop6_extended nh6; 1243 struct in6_addr kdst; 1244 uint32_t scopeid; 1245 struct ifnet *ifp; 1246 u_long mtu; 1247 int error; 1248 1249 in6_splitscope(dst, &kdst, &scopeid); 1250 if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0) 1251 return (EHOSTUNREACH); 1252 1253 ifp = nh6.nh_ifp; 1254 mtu = nh6.nh_mtu; 1255 1256 error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL); 1257 fib6_free_nh_ext(fibnum, &nh6); 1258 1259 return (error); 1260 } 1261 1262 /* 1263 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1264 * and cached data in @ro_pmtu. 1265 * MTU from (successful) route lookup is saved (along with dst) 1266 * inside @ro_pmtu to avoid subsequent route lookups after packet 1267 * filter processing. 1268 * 1269 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1270 * Returns 0 on success. 1271 */ 1272 static int 1273 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1274 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, 1275 int *alwaysfragp, u_int fibnum) 1276 { 1277 struct nhop6_basic nh6; 1278 struct in6_addr kdst; 1279 uint32_t scopeid; 1280 struct sockaddr_in6 *sa6_dst; 1281 u_long mtu; 1282 1283 mtu = 0; 1284 if (do_lookup) { 1285 1286 /* 1287 * Here ro_pmtu has final destination address, while 1288 * ro might represent immediate destination. 1289 * Use ro_pmtu destination since mtu might differ. 1290 */ 1291 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1292 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1293 ro_pmtu->ro_mtu = 0; 1294 1295 if (ro_pmtu->ro_mtu == 0) { 1296 bzero(sa6_dst, sizeof(*sa6_dst)); 1297 sa6_dst->sin6_family = AF_INET6; 1298 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1299 sa6_dst->sin6_addr = *dst; 1300 1301 in6_splitscope(dst, &kdst, &scopeid); 1302 if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0, 1303 &nh6) == 0) 1304 ro_pmtu->ro_mtu = nh6.nh_mtu; 1305 } 1306 1307 mtu = ro_pmtu->ro_mtu; 1308 } 1309 1310 if (ro_pmtu->ro_rt) 1311 mtu = ro_pmtu->ro_rt->rt_mtu; 1312 1313 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp)); 1314 } 1315 1316 /* 1317 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1318 * hostcache data for @dst. 1319 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1320 * 1321 * Returns 0 on success. 1322 */ 1323 static int 1324 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1325 u_long *mtup, int *alwaysfragp) 1326 { 1327 u_long mtu = 0; 1328 int alwaysfrag = 0; 1329 int error = 0; 1330 1331 if (rt_mtu > 0) { 1332 u_int32_t ifmtu; 1333 struct in_conninfo inc; 1334 1335 bzero(&inc, sizeof(inc)); 1336 inc.inc_flags |= INC_ISIPV6; 1337 inc.inc6_faddr = *dst; 1338 1339 ifmtu = IN6_LINKMTU(ifp); 1340 mtu = tcp_hc_getmtu(&inc); 1341 if (mtu) 1342 mtu = min(mtu, rt_mtu); 1343 else 1344 mtu = rt_mtu; 1345 if (mtu == 0) 1346 mtu = ifmtu; 1347 else if (mtu < IPV6_MMTU) { 1348 /* 1349 * RFC2460 section 5, last paragraph: 1350 * if we record ICMPv6 too big message with 1351 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1352 * or smaller, with framgent header attached. 1353 * (fragment header is needed regardless from the 1354 * packet size, for translators to identify packets) 1355 */ 1356 alwaysfrag = 1; 1357 mtu = IPV6_MMTU; 1358 } 1359 } else if (ifp) { 1360 mtu = IN6_LINKMTU(ifp); 1361 } else 1362 error = EHOSTUNREACH; /* XXX */ 1363 1364 *mtup = mtu; 1365 if (alwaysfragp) 1366 *alwaysfragp = alwaysfrag; 1367 return (error); 1368 } 1369 1370 /* 1371 * IP6 socket option processing. 1372 */ 1373 int 1374 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1375 { 1376 int optdatalen, uproto; 1377 void *optdata; 1378 struct inpcb *in6p = sotoinpcb(so); 1379 int error, optval; 1380 int level, op, optname; 1381 int optlen; 1382 struct thread *td; 1383 #ifdef RSS 1384 uint32_t rss_bucket; 1385 int retval; 1386 #endif 1387 1388 level = sopt->sopt_level; 1389 op = sopt->sopt_dir; 1390 optname = sopt->sopt_name; 1391 optlen = sopt->sopt_valsize; 1392 td = sopt->sopt_td; 1393 error = 0; 1394 optval = 0; 1395 uproto = (int)so->so_proto->pr_protocol; 1396 1397 if (level != IPPROTO_IPV6) { 1398 error = EINVAL; 1399 1400 if (sopt->sopt_level == SOL_SOCKET && 1401 sopt->sopt_dir == SOPT_SET) { 1402 switch (sopt->sopt_name) { 1403 case SO_REUSEADDR: 1404 INP_WLOCK(in6p); 1405 if ((so->so_options & SO_REUSEADDR) != 0) 1406 in6p->inp_flags2 |= INP_REUSEADDR; 1407 else 1408 in6p->inp_flags2 &= ~INP_REUSEADDR; 1409 INP_WUNLOCK(in6p); 1410 error = 0; 1411 break; 1412 case SO_REUSEPORT: 1413 INP_WLOCK(in6p); 1414 if ((so->so_options & SO_REUSEPORT) != 0) 1415 in6p->inp_flags2 |= INP_REUSEPORT; 1416 else 1417 in6p->inp_flags2 &= ~INP_REUSEPORT; 1418 INP_WUNLOCK(in6p); 1419 error = 0; 1420 break; 1421 case SO_SETFIB: 1422 INP_WLOCK(in6p); 1423 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1424 INP_WUNLOCK(in6p); 1425 error = 0; 1426 break; 1427 default: 1428 break; 1429 } 1430 } 1431 } else { /* level == IPPROTO_IPV6 */ 1432 switch (op) { 1433 1434 case SOPT_SET: 1435 switch (optname) { 1436 case IPV6_2292PKTOPTIONS: 1437 #ifdef IPV6_PKTOPTIONS 1438 case IPV6_PKTOPTIONS: 1439 #endif 1440 { 1441 struct mbuf *m; 1442 1443 error = soopt_getm(sopt, &m); /* XXX */ 1444 if (error != 0) 1445 break; 1446 error = soopt_mcopyin(sopt, m); /* XXX */ 1447 if (error != 0) 1448 break; 1449 error = ip6_pcbopts(&in6p->in6p_outputopts, 1450 m, so, sopt); 1451 m_freem(m); /* XXX */ 1452 break; 1453 } 1454 1455 /* 1456 * Use of some Hop-by-Hop options or some 1457 * Destination options, might require special 1458 * privilege. That is, normal applications 1459 * (without special privilege) might be forbidden 1460 * from setting certain options in outgoing packets, 1461 * and might never see certain options in received 1462 * packets. [RFC 2292 Section 6] 1463 * KAME specific note: 1464 * KAME prevents non-privileged users from sending or 1465 * receiving ANY hbh/dst options in order to avoid 1466 * overhead of parsing options in the kernel. 1467 */ 1468 case IPV6_RECVHOPOPTS: 1469 case IPV6_RECVDSTOPTS: 1470 case IPV6_RECVRTHDRDSTOPTS: 1471 if (td != NULL) { 1472 error = priv_check(td, 1473 PRIV_NETINET_SETHDROPTS); 1474 if (error) 1475 break; 1476 } 1477 /* FALLTHROUGH */ 1478 case IPV6_UNICAST_HOPS: 1479 case IPV6_HOPLIMIT: 1480 1481 case IPV6_RECVPKTINFO: 1482 case IPV6_RECVHOPLIMIT: 1483 case IPV6_RECVRTHDR: 1484 case IPV6_RECVPATHMTU: 1485 case IPV6_RECVTCLASS: 1486 case IPV6_RECVFLOWID: 1487 #ifdef RSS 1488 case IPV6_RECVRSSBUCKETID: 1489 #endif 1490 case IPV6_V6ONLY: 1491 case IPV6_AUTOFLOWLABEL: 1492 case IPV6_BINDANY: 1493 case IPV6_BINDMULTI: 1494 #ifdef RSS 1495 case IPV6_RSS_LISTEN_BUCKET: 1496 #endif 1497 if (optname == IPV6_BINDANY && td != NULL) { 1498 error = priv_check(td, 1499 PRIV_NETINET_BINDANY); 1500 if (error) 1501 break; 1502 } 1503 1504 if (optlen != sizeof(int)) { 1505 error = EINVAL; 1506 break; 1507 } 1508 error = sooptcopyin(sopt, &optval, 1509 sizeof optval, sizeof optval); 1510 if (error) 1511 break; 1512 switch (optname) { 1513 1514 case IPV6_UNICAST_HOPS: 1515 if (optval < -1 || optval >= 256) 1516 error = EINVAL; 1517 else { 1518 /* -1 = kernel default */ 1519 in6p->in6p_hops = optval; 1520 if ((in6p->inp_vflag & 1521 INP_IPV4) != 0) 1522 in6p->inp_ip_ttl = optval; 1523 } 1524 break; 1525 #define OPTSET(bit) \ 1526 do { \ 1527 INP_WLOCK(in6p); \ 1528 if (optval) \ 1529 in6p->inp_flags |= (bit); \ 1530 else \ 1531 in6p->inp_flags &= ~(bit); \ 1532 INP_WUNLOCK(in6p); \ 1533 } while (/*CONSTCOND*/ 0) 1534 #define OPTSET2292(bit) \ 1535 do { \ 1536 INP_WLOCK(in6p); \ 1537 in6p->inp_flags |= IN6P_RFC2292; \ 1538 if (optval) \ 1539 in6p->inp_flags |= (bit); \ 1540 else \ 1541 in6p->inp_flags &= ~(bit); \ 1542 INP_WUNLOCK(in6p); \ 1543 } while (/*CONSTCOND*/ 0) 1544 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1545 1546 #define OPTSET2(bit, val) do { \ 1547 INP_WLOCK(in6p); \ 1548 if (val) \ 1549 in6p->inp_flags2 |= bit; \ 1550 else \ 1551 in6p->inp_flags2 &= ~bit; \ 1552 INP_WUNLOCK(in6p); \ 1553 } while (0) 1554 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) 1555 1556 case IPV6_RECVPKTINFO: 1557 /* cannot mix with RFC2292 */ 1558 if (OPTBIT(IN6P_RFC2292)) { 1559 error = EINVAL; 1560 break; 1561 } 1562 OPTSET(IN6P_PKTINFO); 1563 break; 1564 1565 case IPV6_HOPLIMIT: 1566 { 1567 struct ip6_pktopts **optp; 1568 1569 /* cannot mix with RFC2292 */ 1570 if (OPTBIT(IN6P_RFC2292)) { 1571 error = EINVAL; 1572 break; 1573 } 1574 optp = &in6p->in6p_outputopts; 1575 error = ip6_pcbopt(IPV6_HOPLIMIT, 1576 (u_char *)&optval, sizeof(optval), 1577 optp, (td != NULL) ? td->td_ucred : 1578 NULL, uproto); 1579 break; 1580 } 1581 1582 case IPV6_RECVHOPLIMIT: 1583 /* cannot mix with RFC2292 */ 1584 if (OPTBIT(IN6P_RFC2292)) { 1585 error = EINVAL; 1586 break; 1587 } 1588 OPTSET(IN6P_HOPLIMIT); 1589 break; 1590 1591 case IPV6_RECVHOPOPTS: 1592 /* cannot mix with RFC2292 */ 1593 if (OPTBIT(IN6P_RFC2292)) { 1594 error = EINVAL; 1595 break; 1596 } 1597 OPTSET(IN6P_HOPOPTS); 1598 break; 1599 1600 case IPV6_RECVDSTOPTS: 1601 /* cannot mix with RFC2292 */ 1602 if (OPTBIT(IN6P_RFC2292)) { 1603 error = EINVAL; 1604 break; 1605 } 1606 OPTSET(IN6P_DSTOPTS); 1607 break; 1608 1609 case IPV6_RECVRTHDRDSTOPTS: 1610 /* cannot mix with RFC2292 */ 1611 if (OPTBIT(IN6P_RFC2292)) { 1612 error = EINVAL; 1613 break; 1614 } 1615 OPTSET(IN6P_RTHDRDSTOPTS); 1616 break; 1617 1618 case IPV6_RECVRTHDR: 1619 /* cannot mix with RFC2292 */ 1620 if (OPTBIT(IN6P_RFC2292)) { 1621 error = EINVAL; 1622 break; 1623 } 1624 OPTSET(IN6P_RTHDR); 1625 break; 1626 1627 case IPV6_RECVPATHMTU: 1628 /* 1629 * We ignore this option for TCP 1630 * sockets. 1631 * (RFC3542 leaves this case 1632 * unspecified.) 1633 */ 1634 if (uproto != IPPROTO_TCP) 1635 OPTSET(IN6P_MTU); 1636 break; 1637 1638 case IPV6_RECVFLOWID: 1639 OPTSET2(INP_RECVFLOWID, optval); 1640 break; 1641 1642 #ifdef RSS 1643 case IPV6_RECVRSSBUCKETID: 1644 OPTSET2(INP_RECVRSSBUCKETID, optval); 1645 break; 1646 #endif 1647 1648 case IPV6_V6ONLY: 1649 /* 1650 * make setsockopt(IPV6_V6ONLY) 1651 * available only prior to bind(2). 1652 * see ipng mailing list, Jun 22 2001. 1653 */ 1654 if (in6p->inp_lport || 1655 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1656 error = EINVAL; 1657 break; 1658 } 1659 OPTSET(IN6P_IPV6_V6ONLY); 1660 if (optval) 1661 in6p->inp_vflag &= ~INP_IPV4; 1662 else 1663 in6p->inp_vflag |= INP_IPV4; 1664 break; 1665 case IPV6_RECVTCLASS: 1666 /* cannot mix with RFC2292 XXX */ 1667 if (OPTBIT(IN6P_RFC2292)) { 1668 error = EINVAL; 1669 break; 1670 } 1671 OPTSET(IN6P_TCLASS); 1672 break; 1673 case IPV6_AUTOFLOWLABEL: 1674 OPTSET(IN6P_AUTOFLOWLABEL); 1675 break; 1676 1677 case IPV6_BINDANY: 1678 OPTSET(INP_BINDANY); 1679 break; 1680 1681 case IPV6_BINDMULTI: 1682 OPTSET2(INP_BINDMULTI, optval); 1683 break; 1684 #ifdef RSS 1685 case IPV6_RSS_LISTEN_BUCKET: 1686 if ((optval >= 0) && 1687 (optval < rss_getnumbuckets())) { 1688 in6p->inp_rss_listen_bucket = optval; 1689 OPTSET2(INP_RSS_BUCKET_SET, 1); 1690 } else { 1691 error = EINVAL; 1692 } 1693 break; 1694 #endif 1695 } 1696 break; 1697 1698 case IPV6_TCLASS: 1699 case IPV6_DONTFRAG: 1700 case IPV6_USE_MIN_MTU: 1701 case IPV6_PREFER_TEMPADDR: 1702 if (optlen != sizeof(optval)) { 1703 error = EINVAL; 1704 break; 1705 } 1706 error = sooptcopyin(sopt, &optval, 1707 sizeof optval, sizeof optval); 1708 if (error) 1709 break; 1710 { 1711 struct ip6_pktopts **optp; 1712 optp = &in6p->in6p_outputopts; 1713 error = ip6_pcbopt(optname, 1714 (u_char *)&optval, sizeof(optval), 1715 optp, (td != NULL) ? td->td_ucred : 1716 NULL, uproto); 1717 break; 1718 } 1719 1720 case IPV6_2292PKTINFO: 1721 case IPV6_2292HOPLIMIT: 1722 case IPV6_2292HOPOPTS: 1723 case IPV6_2292DSTOPTS: 1724 case IPV6_2292RTHDR: 1725 /* RFC 2292 */ 1726 if (optlen != sizeof(int)) { 1727 error = EINVAL; 1728 break; 1729 } 1730 error = sooptcopyin(sopt, &optval, 1731 sizeof optval, sizeof optval); 1732 if (error) 1733 break; 1734 switch (optname) { 1735 case IPV6_2292PKTINFO: 1736 OPTSET2292(IN6P_PKTINFO); 1737 break; 1738 case IPV6_2292HOPLIMIT: 1739 OPTSET2292(IN6P_HOPLIMIT); 1740 break; 1741 case IPV6_2292HOPOPTS: 1742 /* 1743 * Check super-user privilege. 1744 * See comments for IPV6_RECVHOPOPTS. 1745 */ 1746 if (td != NULL) { 1747 error = priv_check(td, 1748 PRIV_NETINET_SETHDROPTS); 1749 if (error) 1750 return (error); 1751 } 1752 OPTSET2292(IN6P_HOPOPTS); 1753 break; 1754 case IPV6_2292DSTOPTS: 1755 if (td != NULL) { 1756 error = priv_check(td, 1757 PRIV_NETINET_SETHDROPTS); 1758 if (error) 1759 return (error); 1760 } 1761 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1762 break; 1763 case IPV6_2292RTHDR: 1764 OPTSET2292(IN6P_RTHDR); 1765 break; 1766 } 1767 break; 1768 case IPV6_PKTINFO: 1769 case IPV6_HOPOPTS: 1770 case IPV6_RTHDR: 1771 case IPV6_DSTOPTS: 1772 case IPV6_RTHDRDSTOPTS: 1773 case IPV6_NEXTHOP: 1774 { 1775 /* new advanced API (RFC3542) */ 1776 u_char *optbuf; 1777 u_char optbuf_storage[MCLBYTES]; 1778 int optlen; 1779 struct ip6_pktopts **optp; 1780 1781 /* cannot mix with RFC2292 */ 1782 if (OPTBIT(IN6P_RFC2292)) { 1783 error = EINVAL; 1784 break; 1785 } 1786 1787 /* 1788 * We only ensure valsize is not too large 1789 * here. Further validation will be done 1790 * later. 1791 */ 1792 error = sooptcopyin(sopt, optbuf_storage, 1793 sizeof(optbuf_storage), 0); 1794 if (error) 1795 break; 1796 optlen = sopt->sopt_valsize; 1797 optbuf = optbuf_storage; 1798 optp = &in6p->in6p_outputopts; 1799 error = ip6_pcbopt(optname, optbuf, optlen, 1800 optp, (td != NULL) ? td->td_ucred : NULL, 1801 uproto); 1802 break; 1803 } 1804 #undef OPTSET 1805 1806 case IPV6_MULTICAST_IF: 1807 case IPV6_MULTICAST_HOPS: 1808 case IPV6_MULTICAST_LOOP: 1809 case IPV6_JOIN_GROUP: 1810 case IPV6_LEAVE_GROUP: 1811 case IPV6_MSFILTER: 1812 case MCAST_BLOCK_SOURCE: 1813 case MCAST_UNBLOCK_SOURCE: 1814 case MCAST_JOIN_GROUP: 1815 case MCAST_LEAVE_GROUP: 1816 case MCAST_JOIN_SOURCE_GROUP: 1817 case MCAST_LEAVE_SOURCE_GROUP: 1818 error = ip6_setmoptions(in6p, sopt); 1819 break; 1820 1821 case IPV6_PORTRANGE: 1822 error = sooptcopyin(sopt, &optval, 1823 sizeof optval, sizeof optval); 1824 if (error) 1825 break; 1826 1827 INP_WLOCK(in6p); 1828 switch (optval) { 1829 case IPV6_PORTRANGE_DEFAULT: 1830 in6p->inp_flags &= ~(INP_LOWPORT); 1831 in6p->inp_flags &= ~(INP_HIGHPORT); 1832 break; 1833 1834 case IPV6_PORTRANGE_HIGH: 1835 in6p->inp_flags &= ~(INP_LOWPORT); 1836 in6p->inp_flags |= INP_HIGHPORT; 1837 break; 1838 1839 case IPV6_PORTRANGE_LOW: 1840 in6p->inp_flags &= ~(INP_HIGHPORT); 1841 in6p->inp_flags |= INP_LOWPORT; 1842 break; 1843 1844 default: 1845 error = EINVAL; 1846 break; 1847 } 1848 INP_WUNLOCK(in6p); 1849 break; 1850 1851 #ifdef IPSEC 1852 case IPV6_IPSEC_POLICY: 1853 { 1854 caddr_t req; 1855 struct mbuf *m; 1856 1857 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1858 break; 1859 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1860 break; 1861 req = mtod(m, caddr_t); 1862 error = ipsec_set_policy(in6p, optname, req, 1863 m->m_len, (sopt->sopt_td != NULL) ? 1864 sopt->sopt_td->td_ucred : NULL); 1865 m_freem(m); 1866 break; 1867 } 1868 #endif /* IPSEC */ 1869 1870 default: 1871 error = ENOPROTOOPT; 1872 break; 1873 } 1874 break; 1875 1876 case SOPT_GET: 1877 switch (optname) { 1878 1879 case IPV6_2292PKTOPTIONS: 1880 #ifdef IPV6_PKTOPTIONS 1881 case IPV6_PKTOPTIONS: 1882 #endif 1883 /* 1884 * RFC3542 (effectively) deprecated the 1885 * semantics of the 2292-style pktoptions. 1886 * Since it was not reliable in nature (i.e., 1887 * applications had to expect the lack of some 1888 * information after all), it would make sense 1889 * to simplify this part by always returning 1890 * empty data. 1891 */ 1892 sopt->sopt_valsize = 0; 1893 break; 1894 1895 case IPV6_RECVHOPOPTS: 1896 case IPV6_RECVDSTOPTS: 1897 case IPV6_RECVRTHDRDSTOPTS: 1898 case IPV6_UNICAST_HOPS: 1899 case IPV6_RECVPKTINFO: 1900 case IPV6_RECVHOPLIMIT: 1901 case IPV6_RECVRTHDR: 1902 case IPV6_RECVPATHMTU: 1903 1904 case IPV6_V6ONLY: 1905 case IPV6_PORTRANGE: 1906 case IPV6_RECVTCLASS: 1907 case IPV6_AUTOFLOWLABEL: 1908 case IPV6_BINDANY: 1909 case IPV6_FLOWID: 1910 case IPV6_FLOWTYPE: 1911 case IPV6_RECVFLOWID: 1912 #ifdef RSS 1913 case IPV6_RSSBUCKETID: 1914 case IPV6_RECVRSSBUCKETID: 1915 #endif 1916 case IPV6_BINDMULTI: 1917 switch (optname) { 1918 1919 case IPV6_RECVHOPOPTS: 1920 optval = OPTBIT(IN6P_HOPOPTS); 1921 break; 1922 1923 case IPV6_RECVDSTOPTS: 1924 optval = OPTBIT(IN6P_DSTOPTS); 1925 break; 1926 1927 case IPV6_RECVRTHDRDSTOPTS: 1928 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1929 break; 1930 1931 case IPV6_UNICAST_HOPS: 1932 optval = in6p->in6p_hops; 1933 break; 1934 1935 case IPV6_RECVPKTINFO: 1936 optval = OPTBIT(IN6P_PKTINFO); 1937 break; 1938 1939 case IPV6_RECVHOPLIMIT: 1940 optval = OPTBIT(IN6P_HOPLIMIT); 1941 break; 1942 1943 case IPV6_RECVRTHDR: 1944 optval = OPTBIT(IN6P_RTHDR); 1945 break; 1946 1947 case IPV6_RECVPATHMTU: 1948 optval = OPTBIT(IN6P_MTU); 1949 break; 1950 1951 case IPV6_V6ONLY: 1952 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1953 break; 1954 1955 case IPV6_PORTRANGE: 1956 { 1957 int flags; 1958 flags = in6p->inp_flags; 1959 if (flags & INP_HIGHPORT) 1960 optval = IPV6_PORTRANGE_HIGH; 1961 else if (flags & INP_LOWPORT) 1962 optval = IPV6_PORTRANGE_LOW; 1963 else 1964 optval = 0; 1965 break; 1966 } 1967 case IPV6_RECVTCLASS: 1968 optval = OPTBIT(IN6P_TCLASS); 1969 break; 1970 1971 case IPV6_AUTOFLOWLABEL: 1972 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1973 break; 1974 1975 case IPV6_BINDANY: 1976 optval = OPTBIT(INP_BINDANY); 1977 break; 1978 1979 case IPV6_FLOWID: 1980 optval = in6p->inp_flowid; 1981 break; 1982 1983 case IPV6_FLOWTYPE: 1984 optval = in6p->inp_flowtype; 1985 break; 1986 1987 case IPV6_RECVFLOWID: 1988 optval = OPTBIT2(INP_RECVFLOWID); 1989 break; 1990 #ifdef RSS 1991 case IPV6_RSSBUCKETID: 1992 retval = 1993 rss_hash2bucket(in6p->inp_flowid, 1994 in6p->inp_flowtype, 1995 &rss_bucket); 1996 if (retval == 0) 1997 optval = rss_bucket; 1998 else 1999 error = EINVAL; 2000 break; 2001 2002 case IPV6_RECVRSSBUCKETID: 2003 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2004 break; 2005 #endif 2006 2007 case IPV6_BINDMULTI: 2008 optval = OPTBIT2(INP_BINDMULTI); 2009 break; 2010 2011 } 2012 if (error) 2013 break; 2014 error = sooptcopyout(sopt, &optval, 2015 sizeof optval); 2016 break; 2017 2018 case IPV6_PATHMTU: 2019 { 2020 u_long pmtu = 0; 2021 struct ip6_mtuinfo mtuinfo; 2022 2023 if (!(so->so_state & SS_ISCONNECTED)) 2024 return (ENOTCONN); 2025 /* 2026 * XXX: we dot not consider the case of source 2027 * routing, or optional information to specify 2028 * the outgoing interface. 2029 */ 2030 error = ip6_getpmtu_ctl(so->so_fibnum, 2031 &in6p->in6p_faddr, &pmtu); 2032 if (error) 2033 break; 2034 if (pmtu > IPV6_MAXPACKET) 2035 pmtu = IPV6_MAXPACKET; 2036 2037 bzero(&mtuinfo, sizeof(mtuinfo)); 2038 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2039 optdata = (void *)&mtuinfo; 2040 optdatalen = sizeof(mtuinfo); 2041 error = sooptcopyout(sopt, optdata, 2042 optdatalen); 2043 break; 2044 } 2045 2046 case IPV6_2292PKTINFO: 2047 case IPV6_2292HOPLIMIT: 2048 case IPV6_2292HOPOPTS: 2049 case IPV6_2292RTHDR: 2050 case IPV6_2292DSTOPTS: 2051 switch (optname) { 2052 case IPV6_2292PKTINFO: 2053 optval = OPTBIT(IN6P_PKTINFO); 2054 break; 2055 case IPV6_2292HOPLIMIT: 2056 optval = OPTBIT(IN6P_HOPLIMIT); 2057 break; 2058 case IPV6_2292HOPOPTS: 2059 optval = OPTBIT(IN6P_HOPOPTS); 2060 break; 2061 case IPV6_2292RTHDR: 2062 optval = OPTBIT(IN6P_RTHDR); 2063 break; 2064 case IPV6_2292DSTOPTS: 2065 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2066 break; 2067 } 2068 error = sooptcopyout(sopt, &optval, 2069 sizeof optval); 2070 break; 2071 case IPV6_PKTINFO: 2072 case IPV6_HOPOPTS: 2073 case IPV6_RTHDR: 2074 case IPV6_DSTOPTS: 2075 case IPV6_RTHDRDSTOPTS: 2076 case IPV6_NEXTHOP: 2077 case IPV6_TCLASS: 2078 case IPV6_DONTFRAG: 2079 case IPV6_USE_MIN_MTU: 2080 case IPV6_PREFER_TEMPADDR: 2081 error = ip6_getpcbopt(in6p->in6p_outputopts, 2082 optname, sopt); 2083 break; 2084 2085 case IPV6_MULTICAST_IF: 2086 case IPV6_MULTICAST_HOPS: 2087 case IPV6_MULTICAST_LOOP: 2088 case IPV6_MSFILTER: 2089 error = ip6_getmoptions(in6p, sopt); 2090 break; 2091 2092 #ifdef IPSEC 2093 case IPV6_IPSEC_POLICY: 2094 { 2095 caddr_t req = NULL; 2096 size_t len = 0; 2097 struct mbuf *m = NULL; 2098 struct mbuf **mp = &m; 2099 size_t ovalsize = sopt->sopt_valsize; 2100 caddr_t oval = (caddr_t)sopt->sopt_val; 2101 2102 error = soopt_getm(sopt, &m); /* XXX */ 2103 if (error != 0) 2104 break; 2105 error = soopt_mcopyin(sopt, m); /* XXX */ 2106 if (error != 0) 2107 break; 2108 sopt->sopt_valsize = ovalsize; 2109 sopt->sopt_val = oval; 2110 if (m) { 2111 req = mtod(m, caddr_t); 2112 len = m->m_len; 2113 } 2114 error = ipsec_get_policy(in6p, req, len, mp); 2115 if (error == 0) 2116 error = soopt_mcopyout(sopt, m); /* XXX */ 2117 if (error == 0 && m) 2118 m_freem(m); 2119 break; 2120 } 2121 #endif /* IPSEC */ 2122 2123 default: 2124 error = ENOPROTOOPT; 2125 break; 2126 } 2127 break; 2128 } 2129 } 2130 return (error); 2131 } 2132 2133 int 2134 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2135 { 2136 int error = 0, optval, optlen; 2137 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2138 struct inpcb *in6p = sotoinpcb(so); 2139 int level, op, optname; 2140 2141 level = sopt->sopt_level; 2142 op = sopt->sopt_dir; 2143 optname = sopt->sopt_name; 2144 optlen = sopt->sopt_valsize; 2145 2146 if (level != IPPROTO_IPV6) { 2147 return (EINVAL); 2148 } 2149 2150 switch (optname) { 2151 case IPV6_CHECKSUM: 2152 /* 2153 * For ICMPv6 sockets, no modification allowed for checksum 2154 * offset, permit "no change" values to help existing apps. 2155 * 2156 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2157 * for an ICMPv6 socket will fail." 2158 * The current behavior does not meet RFC3542. 2159 */ 2160 switch (op) { 2161 case SOPT_SET: 2162 if (optlen != sizeof(int)) { 2163 error = EINVAL; 2164 break; 2165 } 2166 error = sooptcopyin(sopt, &optval, sizeof(optval), 2167 sizeof(optval)); 2168 if (error) 2169 break; 2170 if ((optval % 2) != 0) { 2171 /* the API assumes even offset values */ 2172 error = EINVAL; 2173 } else if (so->so_proto->pr_protocol == 2174 IPPROTO_ICMPV6) { 2175 if (optval != icmp6off) 2176 error = EINVAL; 2177 } else 2178 in6p->in6p_cksum = optval; 2179 break; 2180 2181 case SOPT_GET: 2182 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2183 optval = icmp6off; 2184 else 2185 optval = in6p->in6p_cksum; 2186 2187 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2188 break; 2189 2190 default: 2191 error = EINVAL; 2192 break; 2193 } 2194 break; 2195 2196 default: 2197 error = ENOPROTOOPT; 2198 break; 2199 } 2200 2201 return (error); 2202 } 2203 2204 /* 2205 * Set up IP6 options in pcb for insertion in output packets or 2206 * specifying behavior of outgoing packets. 2207 */ 2208 static int 2209 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2210 struct socket *so, struct sockopt *sopt) 2211 { 2212 struct ip6_pktopts *opt = *pktopt; 2213 int error = 0; 2214 struct thread *td = sopt->sopt_td; 2215 2216 /* turn off any old options. */ 2217 if (opt) { 2218 #ifdef DIAGNOSTIC 2219 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2220 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2221 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2222 printf("ip6_pcbopts: all specified options are cleared.\n"); 2223 #endif 2224 ip6_clearpktopts(opt, -1); 2225 } else 2226 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2227 *pktopt = NULL; 2228 2229 if (!m || m->m_len == 0) { 2230 /* 2231 * Only turning off any previous options, regardless of 2232 * whether the opt is just created or given. 2233 */ 2234 free(opt, M_IP6OPT); 2235 return (0); 2236 } 2237 2238 /* set options specified by user. */ 2239 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2240 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2241 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2242 free(opt, M_IP6OPT); 2243 return (error); 2244 } 2245 *pktopt = opt; 2246 return (0); 2247 } 2248 2249 /* 2250 * initialize ip6_pktopts. beware that there are non-zero default values in 2251 * the struct. 2252 */ 2253 void 2254 ip6_initpktopts(struct ip6_pktopts *opt) 2255 { 2256 2257 bzero(opt, sizeof(*opt)); 2258 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2259 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2260 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2261 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2262 } 2263 2264 static int 2265 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2266 struct ucred *cred, int uproto) 2267 { 2268 struct ip6_pktopts *opt; 2269 2270 if (*pktopt == NULL) { 2271 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2272 M_WAITOK); 2273 ip6_initpktopts(*pktopt); 2274 } 2275 opt = *pktopt; 2276 2277 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2278 } 2279 2280 static int 2281 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2282 { 2283 void *optdata = NULL; 2284 int optdatalen = 0; 2285 struct ip6_ext *ip6e; 2286 int error = 0; 2287 struct in6_pktinfo null_pktinfo; 2288 int deftclass = 0, on; 2289 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2290 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2291 2292 switch (optname) { 2293 case IPV6_PKTINFO: 2294 optdata = (void *)&null_pktinfo; 2295 if (pktopt && pktopt->ip6po_pktinfo) { 2296 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2297 sizeof(null_pktinfo)); 2298 in6_clearscope(&null_pktinfo.ipi6_addr); 2299 } else { 2300 /* XXX: we don't have to do this every time... */ 2301 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2302 } 2303 optdatalen = sizeof(struct in6_pktinfo); 2304 break; 2305 case IPV6_TCLASS: 2306 if (pktopt && pktopt->ip6po_tclass >= 0) 2307 optdata = (void *)&pktopt->ip6po_tclass; 2308 else 2309 optdata = (void *)&deftclass; 2310 optdatalen = sizeof(int); 2311 break; 2312 case IPV6_HOPOPTS: 2313 if (pktopt && pktopt->ip6po_hbh) { 2314 optdata = (void *)pktopt->ip6po_hbh; 2315 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2316 optdatalen = (ip6e->ip6e_len + 1) << 3; 2317 } 2318 break; 2319 case IPV6_RTHDR: 2320 if (pktopt && pktopt->ip6po_rthdr) { 2321 optdata = (void *)pktopt->ip6po_rthdr; 2322 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2323 optdatalen = (ip6e->ip6e_len + 1) << 3; 2324 } 2325 break; 2326 case IPV6_RTHDRDSTOPTS: 2327 if (pktopt && pktopt->ip6po_dest1) { 2328 optdata = (void *)pktopt->ip6po_dest1; 2329 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2330 optdatalen = (ip6e->ip6e_len + 1) << 3; 2331 } 2332 break; 2333 case IPV6_DSTOPTS: 2334 if (pktopt && pktopt->ip6po_dest2) { 2335 optdata = (void *)pktopt->ip6po_dest2; 2336 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2337 optdatalen = (ip6e->ip6e_len + 1) << 3; 2338 } 2339 break; 2340 case IPV6_NEXTHOP: 2341 if (pktopt && pktopt->ip6po_nexthop) { 2342 optdata = (void *)pktopt->ip6po_nexthop; 2343 optdatalen = pktopt->ip6po_nexthop->sa_len; 2344 } 2345 break; 2346 case IPV6_USE_MIN_MTU: 2347 if (pktopt) 2348 optdata = (void *)&pktopt->ip6po_minmtu; 2349 else 2350 optdata = (void *)&defminmtu; 2351 optdatalen = sizeof(int); 2352 break; 2353 case IPV6_DONTFRAG: 2354 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2355 on = 1; 2356 else 2357 on = 0; 2358 optdata = (void *)&on; 2359 optdatalen = sizeof(on); 2360 break; 2361 case IPV6_PREFER_TEMPADDR: 2362 if (pktopt) 2363 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2364 else 2365 optdata = (void *)&defpreftemp; 2366 optdatalen = sizeof(int); 2367 break; 2368 default: /* should not happen */ 2369 #ifdef DIAGNOSTIC 2370 panic("ip6_getpcbopt: unexpected option\n"); 2371 #endif 2372 return (ENOPROTOOPT); 2373 } 2374 2375 error = sooptcopyout(sopt, optdata, optdatalen); 2376 2377 return (error); 2378 } 2379 2380 void 2381 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2382 { 2383 if (pktopt == NULL) 2384 return; 2385 2386 if (optname == -1 || optname == IPV6_PKTINFO) { 2387 if (pktopt->ip6po_pktinfo) 2388 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2389 pktopt->ip6po_pktinfo = NULL; 2390 } 2391 if (optname == -1 || optname == IPV6_HOPLIMIT) 2392 pktopt->ip6po_hlim = -1; 2393 if (optname == -1 || optname == IPV6_TCLASS) 2394 pktopt->ip6po_tclass = -1; 2395 if (optname == -1 || optname == IPV6_NEXTHOP) { 2396 if (pktopt->ip6po_nextroute.ro_rt) { 2397 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2398 pktopt->ip6po_nextroute.ro_rt = NULL; 2399 } 2400 if (pktopt->ip6po_nexthop) 2401 free(pktopt->ip6po_nexthop, M_IP6OPT); 2402 pktopt->ip6po_nexthop = NULL; 2403 } 2404 if (optname == -1 || optname == IPV6_HOPOPTS) { 2405 if (pktopt->ip6po_hbh) 2406 free(pktopt->ip6po_hbh, M_IP6OPT); 2407 pktopt->ip6po_hbh = NULL; 2408 } 2409 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2410 if (pktopt->ip6po_dest1) 2411 free(pktopt->ip6po_dest1, M_IP6OPT); 2412 pktopt->ip6po_dest1 = NULL; 2413 } 2414 if (optname == -1 || optname == IPV6_RTHDR) { 2415 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2416 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2417 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2418 if (pktopt->ip6po_route.ro_rt) { 2419 RTFREE(pktopt->ip6po_route.ro_rt); 2420 pktopt->ip6po_route.ro_rt = NULL; 2421 } 2422 } 2423 if (optname == -1 || optname == IPV6_DSTOPTS) { 2424 if (pktopt->ip6po_dest2) 2425 free(pktopt->ip6po_dest2, M_IP6OPT); 2426 pktopt->ip6po_dest2 = NULL; 2427 } 2428 } 2429 2430 #define PKTOPT_EXTHDRCPY(type) \ 2431 do {\ 2432 if (src->type) {\ 2433 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2434 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2435 if (dst->type == NULL && canwait == M_NOWAIT)\ 2436 goto bad;\ 2437 bcopy(src->type, dst->type, hlen);\ 2438 }\ 2439 } while (/*CONSTCOND*/ 0) 2440 2441 static int 2442 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2443 { 2444 if (dst == NULL || src == NULL) { 2445 printf("ip6_clearpktopts: invalid argument\n"); 2446 return (EINVAL); 2447 } 2448 2449 dst->ip6po_hlim = src->ip6po_hlim; 2450 dst->ip6po_tclass = src->ip6po_tclass; 2451 dst->ip6po_flags = src->ip6po_flags; 2452 dst->ip6po_minmtu = src->ip6po_minmtu; 2453 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2454 if (src->ip6po_pktinfo) { 2455 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2456 M_IP6OPT, canwait); 2457 if (dst->ip6po_pktinfo == NULL) 2458 goto bad; 2459 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2460 } 2461 if (src->ip6po_nexthop) { 2462 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2463 M_IP6OPT, canwait); 2464 if (dst->ip6po_nexthop == NULL) 2465 goto bad; 2466 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2467 src->ip6po_nexthop->sa_len); 2468 } 2469 PKTOPT_EXTHDRCPY(ip6po_hbh); 2470 PKTOPT_EXTHDRCPY(ip6po_dest1); 2471 PKTOPT_EXTHDRCPY(ip6po_dest2); 2472 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2473 return (0); 2474 2475 bad: 2476 ip6_clearpktopts(dst, -1); 2477 return (ENOBUFS); 2478 } 2479 #undef PKTOPT_EXTHDRCPY 2480 2481 struct ip6_pktopts * 2482 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2483 { 2484 int error; 2485 struct ip6_pktopts *dst; 2486 2487 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2488 if (dst == NULL) 2489 return (NULL); 2490 ip6_initpktopts(dst); 2491 2492 if ((error = copypktopts(dst, src, canwait)) != 0) { 2493 free(dst, M_IP6OPT); 2494 return (NULL); 2495 } 2496 2497 return (dst); 2498 } 2499 2500 void 2501 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2502 { 2503 if (pktopt == NULL) 2504 return; 2505 2506 ip6_clearpktopts(pktopt, -1); 2507 2508 free(pktopt, M_IP6OPT); 2509 } 2510 2511 /* 2512 * Set IPv6 outgoing packet options based on advanced API. 2513 */ 2514 int 2515 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2516 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2517 { 2518 struct cmsghdr *cm = NULL; 2519 2520 if (control == NULL || opt == NULL) 2521 return (EINVAL); 2522 2523 ip6_initpktopts(opt); 2524 if (stickyopt) { 2525 int error; 2526 2527 /* 2528 * If stickyopt is provided, make a local copy of the options 2529 * for this particular packet, then override them by ancillary 2530 * objects. 2531 * XXX: copypktopts() does not copy the cached route to a next 2532 * hop (if any). This is not very good in terms of efficiency, 2533 * but we can allow this since this option should be rarely 2534 * used. 2535 */ 2536 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2537 return (error); 2538 } 2539 2540 /* 2541 * XXX: Currently, we assume all the optional information is stored 2542 * in a single mbuf. 2543 */ 2544 if (control->m_next) 2545 return (EINVAL); 2546 2547 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2548 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2549 int error; 2550 2551 if (control->m_len < CMSG_LEN(0)) 2552 return (EINVAL); 2553 2554 cm = mtod(control, struct cmsghdr *); 2555 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2556 return (EINVAL); 2557 if (cm->cmsg_level != IPPROTO_IPV6) 2558 continue; 2559 2560 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2561 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2562 if (error) 2563 return (error); 2564 } 2565 2566 return (0); 2567 } 2568 2569 /* 2570 * Set a particular packet option, as a sticky option or an ancillary data 2571 * item. "len" can be 0 only when it's a sticky option. 2572 * We have 4 cases of combination of "sticky" and "cmsg": 2573 * "sticky=0, cmsg=0": impossible 2574 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2575 * "sticky=1, cmsg=0": RFC3542 socket option 2576 * "sticky=1, cmsg=1": RFC2292 socket option 2577 */ 2578 static int 2579 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2580 struct ucred *cred, int sticky, int cmsg, int uproto) 2581 { 2582 int minmtupolicy, preftemp; 2583 int error; 2584 2585 if (!sticky && !cmsg) { 2586 #ifdef DIAGNOSTIC 2587 printf("ip6_setpktopt: impossible case\n"); 2588 #endif 2589 return (EINVAL); 2590 } 2591 2592 /* 2593 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2594 * not be specified in the context of RFC3542. Conversely, 2595 * RFC3542 types should not be specified in the context of RFC2292. 2596 */ 2597 if (!cmsg) { 2598 switch (optname) { 2599 case IPV6_2292PKTINFO: 2600 case IPV6_2292HOPLIMIT: 2601 case IPV6_2292NEXTHOP: 2602 case IPV6_2292HOPOPTS: 2603 case IPV6_2292DSTOPTS: 2604 case IPV6_2292RTHDR: 2605 case IPV6_2292PKTOPTIONS: 2606 return (ENOPROTOOPT); 2607 } 2608 } 2609 if (sticky && cmsg) { 2610 switch (optname) { 2611 case IPV6_PKTINFO: 2612 case IPV6_HOPLIMIT: 2613 case IPV6_NEXTHOP: 2614 case IPV6_HOPOPTS: 2615 case IPV6_DSTOPTS: 2616 case IPV6_RTHDRDSTOPTS: 2617 case IPV6_RTHDR: 2618 case IPV6_USE_MIN_MTU: 2619 case IPV6_DONTFRAG: 2620 case IPV6_TCLASS: 2621 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2622 return (ENOPROTOOPT); 2623 } 2624 } 2625 2626 switch (optname) { 2627 case IPV6_2292PKTINFO: 2628 case IPV6_PKTINFO: 2629 { 2630 struct ifnet *ifp = NULL; 2631 struct in6_pktinfo *pktinfo; 2632 2633 if (len != sizeof(struct in6_pktinfo)) 2634 return (EINVAL); 2635 2636 pktinfo = (struct in6_pktinfo *)buf; 2637 2638 /* 2639 * An application can clear any sticky IPV6_PKTINFO option by 2640 * doing a "regular" setsockopt with ipi6_addr being 2641 * in6addr_any and ipi6_ifindex being zero. 2642 * [RFC 3542, Section 6] 2643 */ 2644 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2645 pktinfo->ipi6_ifindex == 0 && 2646 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2647 ip6_clearpktopts(opt, optname); 2648 break; 2649 } 2650 2651 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2652 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2653 return (EINVAL); 2654 } 2655 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2656 return (EINVAL); 2657 /* validate the interface index if specified. */ 2658 if (pktinfo->ipi6_ifindex > V_if_index) 2659 return (ENXIO); 2660 if (pktinfo->ipi6_ifindex) { 2661 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2662 if (ifp == NULL) 2663 return (ENXIO); 2664 } 2665 if (ifp != NULL && ( 2666 ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) 2667 return (ENETDOWN); 2668 2669 if (ifp != NULL && 2670 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2671 struct in6_ifaddr *ia; 2672 2673 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2674 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2675 if (ia == NULL) 2676 return (EADDRNOTAVAIL); 2677 ifa_free(&ia->ia_ifa); 2678 } 2679 /* 2680 * We store the address anyway, and let in6_selectsrc() 2681 * validate the specified address. This is because ipi6_addr 2682 * may not have enough information about its scope zone, and 2683 * we may need additional information (such as outgoing 2684 * interface or the scope zone of a destination address) to 2685 * disambiguate the scope. 2686 * XXX: the delay of the validation may confuse the 2687 * application when it is used as a sticky option. 2688 */ 2689 if (opt->ip6po_pktinfo == NULL) { 2690 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2691 M_IP6OPT, M_NOWAIT); 2692 if (opt->ip6po_pktinfo == NULL) 2693 return (ENOBUFS); 2694 } 2695 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2696 break; 2697 } 2698 2699 case IPV6_2292HOPLIMIT: 2700 case IPV6_HOPLIMIT: 2701 { 2702 int *hlimp; 2703 2704 /* 2705 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2706 * to simplify the ordering among hoplimit options. 2707 */ 2708 if (optname == IPV6_HOPLIMIT && sticky) 2709 return (ENOPROTOOPT); 2710 2711 if (len != sizeof(int)) 2712 return (EINVAL); 2713 hlimp = (int *)buf; 2714 if (*hlimp < -1 || *hlimp > 255) 2715 return (EINVAL); 2716 2717 opt->ip6po_hlim = *hlimp; 2718 break; 2719 } 2720 2721 case IPV6_TCLASS: 2722 { 2723 int tclass; 2724 2725 if (len != sizeof(int)) 2726 return (EINVAL); 2727 tclass = *(int *)buf; 2728 if (tclass < -1 || tclass > 255) 2729 return (EINVAL); 2730 2731 opt->ip6po_tclass = tclass; 2732 break; 2733 } 2734 2735 case IPV6_2292NEXTHOP: 2736 case IPV6_NEXTHOP: 2737 if (cred != NULL) { 2738 error = priv_check_cred(cred, 2739 PRIV_NETINET_SETHDROPTS, 0); 2740 if (error) 2741 return (error); 2742 } 2743 2744 if (len == 0) { /* just remove the option */ 2745 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2746 break; 2747 } 2748 2749 /* check if cmsg_len is large enough for sa_len */ 2750 if (len < sizeof(struct sockaddr) || len < *buf) 2751 return (EINVAL); 2752 2753 switch (((struct sockaddr *)buf)->sa_family) { 2754 case AF_INET6: 2755 { 2756 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2757 int error; 2758 2759 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2760 return (EINVAL); 2761 2762 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2763 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2764 return (EINVAL); 2765 } 2766 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2767 != 0) { 2768 return (error); 2769 } 2770 break; 2771 } 2772 case AF_LINK: /* should eventually be supported */ 2773 default: 2774 return (EAFNOSUPPORT); 2775 } 2776 2777 /* turn off the previous option, then set the new option. */ 2778 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2779 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2780 if (opt->ip6po_nexthop == NULL) 2781 return (ENOBUFS); 2782 bcopy(buf, opt->ip6po_nexthop, *buf); 2783 break; 2784 2785 case IPV6_2292HOPOPTS: 2786 case IPV6_HOPOPTS: 2787 { 2788 struct ip6_hbh *hbh; 2789 int hbhlen; 2790 2791 /* 2792 * XXX: We don't allow a non-privileged user to set ANY HbH 2793 * options, since per-option restriction has too much 2794 * overhead. 2795 */ 2796 if (cred != NULL) { 2797 error = priv_check_cred(cred, 2798 PRIV_NETINET_SETHDROPTS, 0); 2799 if (error) 2800 return (error); 2801 } 2802 2803 if (len == 0) { 2804 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2805 break; /* just remove the option */ 2806 } 2807 2808 /* message length validation */ 2809 if (len < sizeof(struct ip6_hbh)) 2810 return (EINVAL); 2811 hbh = (struct ip6_hbh *)buf; 2812 hbhlen = (hbh->ip6h_len + 1) << 3; 2813 if (len != hbhlen) 2814 return (EINVAL); 2815 2816 /* turn off the previous option, then set the new option. */ 2817 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2818 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2819 if (opt->ip6po_hbh == NULL) 2820 return (ENOBUFS); 2821 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2822 2823 break; 2824 } 2825 2826 case IPV6_2292DSTOPTS: 2827 case IPV6_DSTOPTS: 2828 case IPV6_RTHDRDSTOPTS: 2829 { 2830 struct ip6_dest *dest, **newdest = NULL; 2831 int destlen; 2832 2833 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2834 error = priv_check_cred(cred, 2835 PRIV_NETINET_SETHDROPTS, 0); 2836 if (error) 2837 return (error); 2838 } 2839 2840 if (len == 0) { 2841 ip6_clearpktopts(opt, optname); 2842 break; /* just remove the option */ 2843 } 2844 2845 /* message length validation */ 2846 if (len < sizeof(struct ip6_dest)) 2847 return (EINVAL); 2848 dest = (struct ip6_dest *)buf; 2849 destlen = (dest->ip6d_len + 1) << 3; 2850 if (len != destlen) 2851 return (EINVAL); 2852 2853 /* 2854 * Determine the position that the destination options header 2855 * should be inserted; before or after the routing header. 2856 */ 2857 switch (optname) { 2858 case IPV6_2292DSTOPTS: 2859 /* 2860 * The old advacned API is ambiguous on this point. 2861 * Our approach is to determine the position based 2862 * according to the existence of a routing header. 2863 * Note, however, that this depends on the order of the 2864 * extension headers in the ancillary data; the 1st 2865 * part of the destination options header must appear 2866 * before the routing header in the ancillary data, 2867 * too. 2868 * RFC3542 solved the ambiguity by introducing 2869 * separate ancillary data or option types. 2870 */ 2871 if (opt->ip6po_rthdr == NULL) 2872 newdest = &opt->ip6po_dest1; 2873 else 2874 newdest = &opt->ip6po_dest2; 2875 break; 2876 case IPV6_RTHDRDSTOPTS: 2877 newdest = &opt->ip6po_dest1; 2878 break; 2879 case IPV6_DSTOPTS: 2880 newdest = &opt->ip6po_dest2; 2881 break; 2882 } 2883 2884 /* turn off the previous option, then set the new option. */ 2885 ip6_clearpktopts(opt, optname); 2886 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2887 if (*newdest == NULL) 2888 return (ENOBUFS); 2889 bcopy(dest, *newdest, destlen); 2890 2891 break; 2892 } 2893 2894 case IPV6_2292RTHDR: 2895 case IPV6_RTHDR: 2896 { 2897 struct ip6_rthdr *rth; 2898 int rthlen; 2899 2900 if (len == 0) { 2901 ip6_clearpktopts(opt, IPV6_RTHDR); 2902 break; /* just remove the option */ 2903 } 2904 2905 /* message length validation */ 2906 if (len < sizeof(struct ip6_rthdr)) 2907 return (EINVAL); 2908 rth = (struct ip6_rthdr *)buf; 2909 rthlen = (rth->ip6r_len + 1) << 3; 2910 if (len != rthlen) 2911 return (EINVAL); 2912 2913 switch (rth->ip6r_type) { 2914 case IPV6_RTHDR_TYPE_0: 2915 if (rth->ip6r_len == 0) /* must contain one addr */ 2916 return (EINVAL); 2917 if (rth->ip6r_len % 2) /* length must be even */ 2918 return (EINVAL); 2919 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2920 return (EINVAL); 2921 break; 2922 default: 2923 return (EINVAL); /* not supported */ 2924 } 2925 2926 /* turn off the previous option */ 2927 ip6_clearpktopts(opt, IPV6_RTHDR); 2928 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2929 if (opt->ip6po_rthdr == NULL) 2930 return (ENOBUFS); 2931 bcopy(rth, opt->ip6po_rthdr, rthlen); 2932 2933 break; 2934 } 2935 2936 case IPV6_USE_MIN_MTU: 2937 if (len != sizeof(int)) 2938 return (EINVAL); 2939 minmtupolicy = *(int *)buf; 2940 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2941 minmtupolicy != IP6PO_MINMTU_DISABLE && 2942 minmtupolicy != IP6PO_MINMTU_ALL) { 2943 return (EINVAL); 2944 } 2945 opt->ip6po_minmtu = minmtupolicy; 2946 break; 2947 2948 case IPV6_DONTFRAG: 2949 if (len != sizeof(int)) 2950 return (EINVAL); 2951 2952 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2953 /* 2954 * we ignore this option for TCP sockets. 2955 * (RFC3542 leaves this case unspecified.) 2956 */ 2957 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2958 } else 2959 opt->ip6po_flags |= IP6PO_DONTFRAG; 2960 break; 2961 2962 case IPV6_PREFER_TEMPADDR: 2963 if (len != sizeof(int)) 2964 return (EINVAL); 2965 preftemp = *(int *)buf; 2966 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 2967 preftemp != IP6PO_TEMPADDR_NOTPREFER && 2968 preftemp != IP6PO_TEMPADDR_PREFER) { 2969 return (EINVAL); 2970 } 2971 opt->ip6po_prefer_tempaddr = preftemp; 2972 break; 2973 2974 default: 2975 return (ENOPROTOOPT); 2976 } /* end of switch */ 2977 2978 return (0); 2979 } 2980 2981 /* 2982 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2983 * packet to the input queue of a specified interface. Note that this 2984 * calls the output routine of the loopback "driver", but with an interface 2985 * pointer that might NOT be &loif -- easier than replicating that code here. 2986 */ 2987 void 2988 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 2989 { 2990 struct mbuf *copym; 2991 struct ip6_hdr *ip6; 2992 2993 copym = m_copy(m, 0, M_COPYALL); 2994 if (copym == NULL) 2995 return; 2996 2997 /* 2998 * Make sure to deep-copy IPv6 header portion in case the data 2999 * is in an mbuf cluster, so that we can safely override the IPv6 3000 * header portion later. 3001 */ 3002 if (!M_WRITABLE(copym) || 3003 copym->m_len < sizeof(struct ip6_hdr)) { 3004 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3005 if (copym == NULL) 3006 return; 3007 } 3008 ip6 = mtod(copym, struct ip6_hdr *); 3009 /* 3010 * clear embedded scope identifiers if necessary. 3011 * in6_clearscope will touch the addresses only when necessary. 3012 */ 3013 in6_clearscope(&ip6->ip6_src); 3014 in6_clearscope(&ip6->ip6_dst); 3015 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3016 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3017 CSUM_PSEUDO_HDR; 3018 copym->m_pkthdr.csum_data = 0xffff; 3019 } 3020 if_simloop(ifp, copym, AF_INET6, 0); 3021 } 3022 3023 /* 3024 * Chop IPv6 header off from the payload. 3025 */ 3026 static int 3027 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3028 { 3029 struct mbuf *mh; 3030 struct ip6_hdr *ip6; 3031 3032 ip6 = mtod(m, struct ip6_hdr *); 3033 if (m->m_len > sizeof(*ip6)) { 3034 mh = m_gethdr(M_NOWAIT, MT_DATA); 3035 if (mh == NULL) { 3036 m_freem(m); 3037 return ENOBUFS; 3038 } 3039 m_move_pkthdr(mh, m); 3040 M_ALIGN(mh, sizeof(*ip6)); 3041 m->m_len -= sizeof(*ip6); 3042 m->m_data += sizeof(*ip6); 3043 mh->m_next = m; 3044 m = mh; 3045 m->m_len = sizeof(*ip6); 3046 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3047 } 3048 exthdrs->ip6e_ip6 = m; 3049 return 0; 3050 } 3051 3052 /* 3053 * Compute IPv6 extension header length. 3054 */ 3055 int 3056 ip6_optlen(struct inpcb *in6p) 3057 { 3058 int len; 3059 3060 if (!in6p->in6p_outputopts) 3061 return 0; 3062 3063 len = 0; 3064 #define elen(x) \ 3065 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3066 3067 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3068 if (in6p->in6p_outputopts->ip6po_rthdr) 3069 /* dest1 is valid with rthdr only */ 3070 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3071 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3072 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3073 return len; 3074 #undef elen 3075 } 3076