1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #include "opt_kern_tls.h" 72 #include "opt_ratelimit.h" 73 #include "opt_route.h" 74 #include "opt_rss.h" 75 #include "opt_sctp.h" 76 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/ktls.h> 80 #include <sys/malloc.h> 81 #include <sys/mbuf.h> 82 #include <sys/errno.h> 83 #include <sys/priv.h> 84 #include <sys/proc.h> 85 #include <sys/protosw.h> 86 #include <sys/socket.h> 87 #include <sys/socketvar.h> 88 #include <sys/syslog.h> 89 #include <sys/ucred.h> 90 91 #include <machine/in_cksum.h> 92 93 #include <net/if.h> 94 #include <net/if_var.h> 95 #include <net/if_vlan_var.h> 96 #include <net/if_llatbl.h> 97 #include <net/ethernet.h> 98 #include <net/netisr.h> 99 #include <net/route.h> 100 #include <net/route/nhop.h> 101 #include <net/pfil.h> 102 #include <net/rss_config.h> 103 #include <net/vnet.h> 104 105 #include <netinet/in.h> 106 #include <netinet/in_var.h> 107 #include <netinet/ip_var.h> 108 #include <netinet6/in6_fib.h> 109 #include <netinet6/in6_var.h> 110 #include <netinet/ip6.h> 111 #include <netinet/icmp6.h> 112 #include <netinet6/ip6_var.h> 113 #include <netinet/in_pcb.h> 114 #include <netinet/tcp_var.h> 115 #include <netinet6/nd6.h> 116 #include <netinet6/in6_rss.h> 117 118 #include <netipsec/ipsec_support.h> 119 #if defined(SCTP) || defined(SCTP_SUPPORT) 120 #include <netinet/sctp.h> 121 #include <netinet/sctp_crc32.h> 122 #endif 123 124 #include <netinet6/ip6protosw.h> 125 #include <netinet6/scope6_var.h> 126 127 extern int in6_mcast_loop; 128 129 struct ip6_exthdrs { 130 struct mbuf *ip6e_ip6; 131 struct mbuf *ip6e_hbh; 132 struct mbuf *ip6e_dest1; 133 struct mbuf *ip6e_rthdr; 134 struct mbuf *ip6e_dest2; 135 }; 136 137 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 138 139 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 140 struct ucred *, int); 141 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 142 struct socket *, struct sockopt *); 143 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 144 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 145 struct ucred *, int, int, int); 146 147 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 148 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 149 struct ip6_frag **); 150 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 151 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 152 static int ip6_getpmtu(struct route_in6 *, int, 153 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 154 u_int); 155 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 156 u_long *, int *, u_int); 157 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 158 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 159 160 /* 161 * Make an extension header from option data. hp is the source, 162 * mp is the destination, and _ol is the optlen. 163 */ 164 #define MAKE_EXTHDR(hp, mp, _ol) \ 165 do { \ 166 if (hp) { \ 167 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 168 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 169 ((eh)->ip6e_len + 1) << 3); \ 170 if (error) \ 171 goto freehdrs; \ 172 (_ol) += (*(mp))->m_len; \ 173 } \ 174 } while (/*CONSTCOND*/ 0) 175 176 /* 177 * Form a chain of extension headers. 178 * m is the extension header mbuf 179 * mp is the previous mbuf in the chain 180 * p is the next header 181 * i is the type of option. 182 */ 183 #define MAKE_CHAIN(m, mp, p, i)\ 184 do {\ 185 if (m) {\ 186 if (!hdrsplit) \ 187 panic("%s:%d: assumption failed: "\ 188 "hdr not split: hdrsplit %d exthdrs %p",\ 189 __func__, __LINE__, hdrsplit, &exthdrs);\ 190 *mtod((m), u_char *) = *(p);\ 191 *(p) = (i);\ 192 p = mtod((m), u_char *);\ 193 (m)->m_next = (mp)->m_next;\ 194 (mp)->m_next = (m);\ 195 (mp) = (m);\ 196 }\ 197 } while (/*CONSTCOND*/ 0) 198 199 void 200 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 201 { 202 u_short csum; 203 204 csum = in_cksum_skip(m, offset + plen, offset); 205 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 206 csum = 0xffff; 207 offset += m->m_pkthdr.csum_data; /* checksum offset */ 208 209 if (offset + sizeof(csum) > m->m_len) 210 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 211 else 212 *(u_short *)mtodo(m, offset) = csum; 213 } 214 215 static void 216 ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags, 217 int plen, int optlen) 218 { 219 220 KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p " 221 "csum_flags %#x", 222 __func__, __LINE__, plen, optlen, m, ifp, csum_flags)); 223 224 if (csum_flags & CSUM_DELAY_DATA_IPV6) { 225 in6_delayed_cksum(m, plen - optlen, 226 sizeof(struct ip6_hdr) + optlen); 227 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 228 } 229 #if defined(SCTP) || defined(SCTP_SUPPORT) 230 if (csum_flags & CSUM_SCTP_IPV6) { 231 sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen); 232 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 233 } 234 #endif 235 } 236 237 int 238 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 239 int fraglen , uint32_t id) 240 { 241 struct mbuf *m, **mnext, *m_frgpart; 242 struct ip6_hdr *ip6, *mhip6; 243 struct ip6_frag *ip6f; 244 int off; 245 int error; 246 int tlen = m0->m_pkthdr.len; 247 248 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 249 250 m = m0; 251 ip6 = mtod(m, struct ip6_hdr *); 252 mnext = &m->m_nextpkt; 253 254 for (off = hlen; off < tlen; off += fraglen) { 255 m = m_gethdr(M_NOWAIT, MT_DATA); 256 if (!m) { 257 IP6STAT_INC(ip6s_odropped); 258 return (ENOBUFS); 259 } 260 261 /* 262 * Make sure the complete packet header gets copied 263 * from the originating mbuf to the newly created 264 * mbuf. This also ensures that existing firewall 265 * classification(s), VLAN tags and so on get copied 266 * to the resulting fragmented packet(s): 267 */ 268 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 269 m_free(m); 270 IP6STAT_INC(ip6s_odropped); 271 return (ENOBUFS); 272 } 273 274 *mnext = m; 275 mnext = &m->m_nextpkt; 276 m->m_data += max_linkhdr; 277 mhip6 = mtod(m, struct ip6_hdr *); 278 *mhip6 = *ip6; 279 m->m_len = sizeof(*mhip6); 280 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 281 if (error) { 282 IP6STAT_INC(ip6s_odropped); 283 return (error); 284 } 285 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 286 if (off + fraglen >= tlen) 287 fraglen = tlen - off; 288 else 289 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 290 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 291 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 292 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 293 IP6STAT_INC(ip6s_odropped); 294 return (ENOBUFS); 295 } 296 m_cat(m, m_frgpart); 297 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 298 ip6f->ip6f_reserved = 0; 299 ip6f->ip6f_ident = id; 300 ip6f->ip6f_nxt = nextproto; 301 IP6STAT_INC(ip6s_ofragments); 302 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 303 } 304 305 return (0); 306 } 307 308 static int 309 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp, 310 struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro, 311 bool stamp_tag) 312 { 313 #ifdef KERN_TLS 314 struct ktls_session *tls = NULL; 315 #endif 316 struct m_snd_tag *mst; 317 int error; 318 319 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 320 mst = NULL; 321 322 #ifdef KERN_TLS 323 /* 324 * If this is an unencrypted TLS record, save a reference to 325 * the record. This local reference is used to call 326 * ktls_output_eagain after the mbuf has been freed (thus 327 * dropping the mbuf's reference) in if_output. 328 */ 329 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 330 tls = ktls_hold(m->m_next->m_epg_tls); 331 mst = tls->snd_tag; 332 333 /* 334 * If a TLS session doesn't have a valid tag, it must 335 * have had an earlier ifp mismatch, so drop this 336 * packet. 337 */ 338 if (mst == NULL) { 339 m_freem(m); 340 error = EAGAIN; 341 goto done; 342 } 343 /* 344 * Always stamp tags that include NIC ktls. 345 */ 346 stamp_tag = true; 347 } 348 #endif 349 #ifdef RATELIMIT 350 if (inp != NULL && mst == NULL) { 351 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 352 (inp->inp_snd_tag != NULL && 353 inp->inp_snd_tag->ifp != ifp)) 354 in_pcboutput_txrtlmt(inp, ifp, m); 355 356 if (inp->inp_snd_tag != NULL) 357 mst = inp->inp_snd_tag; 358 } 359 #endif 360 if (stamp_tag && mst != NULL) { 361 KASSERT(m->m_pkthdr.rcvif == NULL, 362 ("trying to add a send tag to a forwarded packet")); 363 if (mst->ifp != ifp) { 364 m_freem(m); 365 error = EAGAIN; 366 goto done; 367 } 368 369 /* stamp send tag on mbuf */ 370 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 371 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 372 } 373 374 error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); 375 376 done: 377 /* Check for route change invalidating send tags. */ 378 #ifdef KERN_TLS 379 if (tls != NULL) { 380 if (error == EAGAIN) 381 error = ktls_output_eagain(inp, tls); 382 ktls_free(tls); 383 } 384 #endif 385 #ifdef RATELIMIT 386 if (error == EAGAIN) 387 in_pcboutput_eagain(inp); 388 #endif 389 return (error); 390 } 391 392 /* 393 * IP6 output. 394 * The packet in mbuf chain m contains a skeletal IP6 header (with pri, len, 395 * nxt, hlim, src, dst). 396 * This function may modify ver and hlim only. 397 * The mbuf chain containing the packet will be freed. 398 * The mbuf opt, if present, will not be freed. 399 * If route_in6 ro is present and has ro_nh initialized, route lookup would be 400 * skipped and ro->ro_nh would be used. If ro is present but ro->ro_nh is NULL, 401 * then result of route lookup is stored in ro->ro_nh. 402 * 403 * Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu 404 * is uint32_t. So we use u_long to hold largest one, which is rt_mtu. 405 * 406 * ifpp - XXX: just for statistics 407 */ 408 int 409 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 410 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 411 struct ifnet **ifpp, struct inpcb *inp) 412 { 413 struct ip6_hdr *ip6; 414 struct ifnet *ifp, *origifp; 415 struct mbuf *m = m0; 416 struct mbuf *mprev; 417 struct route_in6 *ro_pmtu; 418 struct nhop_object *nh; 419 struct sockaddr_in6 *dst, sin6, src_sa, dst_sa; 420 struct in6_addr odst; 421 u_char *nexthdrp; 422 int tlen, len; 423 int error = 0; 424 int vlan_pcp = -1; 425 struct in6_ifaddr *ia = NULL; 426 u_long mtu; 427 int alwaysfrag, dontfrag; 428 u_int32_t optlen, plen = 0, unfragpartlen; 429 struct ip6_exthdrs exthdrs; 430 struct in6_addr src0, dst0; 431 u_int32_t zone; 432 bool hdrsplit; 433 int sw_csum, tso; 434 int needfiblookup; 435 uint32_t fibnum; 436 struct m_tag *fwd_tag = NULL; 437 uint32_t id; 438 439 NET_EPOCH_ASSERT(); 440 441 if (inp != NULL) { 442 INP_LOCK_ASSERT(inp); 443 M_SETFIB(m, inp->inp_inc.inc_fibnum); 444 if ((flags & IP_NODEFAULTFLOWID) == 0) { 445 /* Unconditionally set flowid. */ 446 m->m_pkthdr.flowid = inp->inp_flowid; 447 M_HASHTYPE_SET(m, inp->inp_flowtype); 448 } 449 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 450 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 451 INP_2PCP_SHIFT; 452 #ifdef NUMA 453 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 454 #endif 455 } 456 457 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 458 /* 459 * IPSec checking which handles several cases. 460 * FAST IPSEC: We re-injected the packet. 461 * XXX: need scope argument. 462 */ 463 if (IPSEC_ENABLED(ipv6)) { 464 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 465 if (error == EINPROGRESS) 466 error = 0; 467 goto done; 468 } 469 } 470 #endif /* IPSEC */ 471 472 /* Source address validation. */ 473 ip6 = mtod(m, struct ip6_hdr *); 474 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 475 (flags & IPV6_UNSPECSRC) == 0) { 476 error = EOPNOTSUPP; 477 IP6STAT_INC(ip6s_badscope); 478 goto bad; 479 } 480 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 481 error = EOPNOTSUPP; 482 IP6STAT_INC(ip6s_badscope); 483 goto bad; 484 } 485 486 /* 487 * If we are given packet options to add extension headers prepare them. 488 * Calculate the total length of the extension header chain. 489 * Keep the length of the unfragmentable part for fragmentation. 490 */ 491 bzero(&exthdrs, sizeof(exthdrs)); 492 optlen = 0; 493 unfragpartlen = sizeof(struct ip6_hdr); 494 if (opt) { 495 /* Hop-by-Hop options header. */ 496 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen); 497 498 /* Destination options header (1st part). */ 499 if (opt->ip6po_rthdr) { 500 #ifndef RTHDR_SUPPORT_IMPLEMENTED 501 /* 502 * If there is a routing header, discard the packet 503 * right away here. RH0/1 are obsolete and we do not 504 * currently support RH2/3/4. 505 * People trying to use RH253/254 may want to disable 506 * this check. 507 * The moment we do support any routing header (again) 508 * this block should check the routing type more 509 * selectively. 510 */ 511 error = EINVAL; 512 goto bad; 513 #endif 514 515 /* 516 * Destination options header (1st part). 517 * This only makes sense with a routing header. 518 * See Section 9.2 of RFC 3542. 519 * Disabling this part just for MIP6 convenience is 520 * a bad idea. We need to think carefully about a 521 * way to make the advanced API coexist with MIP6 522 * options, which might automatically be inserted in 523 * the kernel. 524 */ 525 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1, 526 optlen); 527 } 528 /* Routing header. */ 529 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen); 530 531 unfragpartlen += optlen; 532 533 /* 534 * NOTE: we don't add AH/ESP length here (done in 535 * ip6_ipsec_output()). 536 */ 537 538 /* Destination options header (2nd part). */ 539 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen); 540 } 541 542 /* 543 * If there is at least one extension header, 544 * separate IP6 header from the payload. 545 */ 546 hdrsplit = false; 547 if (optlen) { 548 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 549 m = NULL; 550 goto freehdrs; 551 } 552 m = exthdrs.ip6e_ip6; 553 ip6 = mtod(m, struct ip6_hdr *); 554 hdrsplit = true; 555 } 556 557 /* Adjust mbuf packet header length. */ 558 m->m_pkthdr.len += optlen; 559 plen = m->m_pkthdr.len - sizeof(*ip6); 560 561 /* If this is a jumbo payload, insert a jumbo payload option. */ 562 if (plen > IPV6_MAXPACKET) { 563 if (!hdrsplit) { 564 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 565 m = NULL; 566 goto freehdrs; 567 } 568 m = exthdrs.ip6e_ip6; 569 ip6 = mtod(m, struct ip6_hdr *); 570 hdrsplit = true; 571 } 572 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 573 goto freehdrs; 574 ip6->ip6_plen = 0; 575 } else 576 ip6->ip6_plen = htons(plen); 577 nexthdrp = &ip6->ip6_nxt; 578 579 if (optlen) { 580 /* 581 * Concatenate headers and fill in next header fields. 582 * Here we have, on "m" 583 * IPv6 payload 584 * and we insert headers accordingly. 585 * Finally, we should be getting: 586 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]. 587 * 588 * During the header composing process "m" points to IPv6 589 * header. "mprev" points to an extension header prior to esp. 590 */ 591 mprev = m; 592 593 /* 594 * We treat dest2 specially. This makes IPsec processing 595 * much easier. The goal here is to make mprev point the 596 * mbuf prior to dest2. 597 * 598 * Result: IPv6 dest2 payload. 599 * m and mprev will point to IPv6 header. 600 */ 601 if (exthdrs.ip6e_dest2) { 602 if (!hdrsplit) 603 panic("%s:%d: assumption failed: " 604 "hdr not split: hdrsplit %d exthdrs %p", 605 __func__, __LINE__, hdrsplit, &exthdrs); 606 exthdrs.ip6e_dest2->m_next = m->m_next; 607 m->m_next = exthdrs.ip6e_dest2; 608 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 609 ip6->ip6_nxt = IPPROTO_DSTOPTS; 610 } 611 612 /* 613 * Result: IPv6 hbh dest1 rthdr dest2 payload. 614 * m will point to IPv6 header. mprev will point to the 615 * extension header prior to dest2 (rthdr in the above case). 616 */ 617 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 618 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 619 IPPROTO_DSTOPTS); 620 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 621 IPPROTO_ROUTING); 622 } 623 624 IP6STAT_INC(ip6s_localout); 625 626 /* Route packet. */ 627 ro_pmtu = ro; 628 if (opt && opt->ip6po_rthdr) 629 ro = &opt->ip6po_route; 630 if (ro != NULL) 631 dst = (struct sockaddr_in6 *)&ro->ro_dst; 632 else 633 dst = &sin6; 634 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 635 636 again: 637 /* 638 * If specified, try to fill in the traffic class field. 639 * Do not override if a non-zero value is already set. 640 * We check the diffserv field and the ECN field separately. 641 */ 642 if (opt && opt->ip6po_tclass >= 0) { 643 int mask = 0; 644 645 if (IPV6_DSCP(ip6) == 0) 646 mask |= 0xfc; 647 if (IPV6_ECN(ip6) == 0) 648 mask |= 0x03; 649 if (mask != 0) 650 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 651 } 652 653 /* Fill in or override the hop limit field, if necessary. */ 654 if (opt && opt->ip6po_hlim != -1) 655 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 656 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 657 if (im6o != NULL) 658 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 659 else 660 ip6->ip6_hlim = V_ip6_defmcasthlim; 661 } 662 663 if (ro == NULL || ro->ro_nh == NULL) { 664 bzero(dst, sizeof(*dst)); 665 dst->sin6_family = AF_INET6; 666 dst->sin6_len = sizeof(*dst); 667 dst->sin6_addr = ip6->ip6_dst; 668 } 669 /* 670 * Validate route against routing table changes. 671 * Make sure that the address family is set in route. 672 */ 673 nh = NULL; 674 ifp = NULL; 675 mtu = 0; 676 if (ro != NULL) { 677 if (ro->ro_nh != NULL && inp != NULL) { 678 ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */ 679 NH_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, 680 fibnum); 681 } 682 if (ro->ro_nh != NULL && fwd_tag == NULL && 683 (!NH_IS_VALID(ro->ro_nh) || 684 ro->ro_dst.sin6_family != AF_INET6 || 685 !IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst))) 686 RO_INVALIDATE_CACHE(ro); 687 688 if (ro->ro_nh != NULL && fwd_tag == NULL && 689 ro->ro_dst.sin6_family == AF_INET6 && 690 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 691 nh = ro->ro_nh; 692 ifp = nh->nh_ifp; 693 } else { 694 if (ro->ro_lle) 695 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 696 ro->ro_lle = NULL; 697 if (fwd_tag == NULL) { 698 bzero(&dst_sa, sizeof(dst_sa)); 699 dst_sa.sin6_family = AF_INET6; 700 dst_sa.sin6_len = sizeof(dst_sa); 701 dst_sa.sin6_addr = ip6->ip6_dst; 702 } 703 error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, 704 &nh, fibnum, m->m_pkthdr.flowid); 705 if (error != 0) { 706 IP6STAT_INC(ip6s_noroute); 707 if (ifp != NULL) 708 in6_ifstat_inc(ifp, ifs6_out_discard); 709 goto bad; 710 } 711 if (ifp != NULL) 712 mtu = ifp->if_mtu; 713 } 714 if (nh == NULL) { 715 /* 716 * If in6_selectroute() does not return a nexthop 717 * dst may not have been updated. 718 */ 719 *dst = dst_sa; /* XXX */ 720 } else { 721 if (nh->nh_flags & NHF_HOST) 722 mtu = nh->nh_mtu; 723 ia = (struct in6_ifaddr *)(nh->nh_ifa); 724 counter_u64_add(nh->nh_pksent, 1); 725 } 726 } else { 727 struct nhop_object *nh; 728 struct in6_addr kdst; 729 uint32_t scopeid; 730 731 if (fwd_tag == NULL) { 732 bzero(&dst_sa, sizeof(dst_sa)); 733 dst_sa.sin6_family = AF_INET6; 734 dst_sa.sin6_len = sizeof(dst_sa); 735 dst_sa.sin6_addr = ip6->ip6_dst; 736 } 737 738 if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) && 739 im6o != NULL && 740 (ifp = im6o->im6o_multicast_ifp) != NULL) { 741 /* We do not need a route lookup. */ 742 *dst = dst_sa; /* XXX */ 743 goto nonh6lookup; 744 } 745 746 in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid); 747 748 if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) || 749 IN6_IS_ADDR_MC_NODELOCAL(&dst_sa.sin6_addr)) { 750 if (scopeid > 0) { 751 ifp = in6_getlinkifnet(scopeid); 752 if (ifp == NULL) { 753 error = EHOSTUNREACH; 754 goto bad; 755 } 756 *dst = dst_sa; /* XXX */ 757 goto nonh6lookup; 758 } 759 } 760 761 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 762 m->m_pkthdr.flowid); 763 if (nh == NULL) { 764 IP6STAT_INC(ip6s_noroute); 765 /* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */ 766 error = EHOSTUNREACH;; 767 goto bad; 768 } 769 770 ifp = nh->nh_ifp; 771 mtu = nh->nh_mtu; 772 ia = ifatoia6(nh->nh_ifa); 773 if (nh->nh_flags & NHF_GATEWAY) 774 dst->sin6_addr = nh->gw6_sa.sin6_addr; 775 nonh6lookup: 776 ; 777 } 778 779 /* Then nh (for unicast) and ifp must be non-NULL valid values. */ 780 if ((flags & IPV6_FORWARDING) == 0) { 781 /* XXX: the FORWARDING flag can be set for mrouting. */ 782 in6_ifstat_inc(ifp, ifs6_out_request); 783 } 784 785 /* Setup data structures for scope ID checks. */ 786 src0 = ip6->ip6_src; 787 bzero(&src_sa, sizeof(src_sa)); 788 src_sa.sin6_family = AF_INET6; 789 src_sa.sin6_len = sizeof(src_sa); 790 src_sa.sin6_addr = ip6->ip6_src; 791 792 dst0 = ip6->ip6_dst; 793 /* Re-initialize to be sure. */ 794 bzero(&dst_sa, sizeof(dst_sa)); 795 dst_sa.sin6_family = AF_INET6; 796 dst_sa.sin6_len = sizeof(dst_sa); 797 dst_sa.sin6_addr = ip6->ip6_dst; 798 799 /* Check for valid scope ID. */ 800 if (in6_setscope(&src0, ifp, &zone) == 0 && 801 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && 802 in6_setscope(&dst0, ifp, &zone) == 0 && 803 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { 804 /* 805 * The outgoing interface is in the zone of the source 806 * and destination addresses. 807 * 808 * Because the loopback interface cannot receive 809 * packets with a different scope ID than its own, 810 * there is a trick to pretend the outgoing packet 811 * was received by the real network interface, by 812 * setting "origifp" different from "ifp". This is 813 * only allowed when "ifp" is a loopback network 814 * interface. Refer to code in nd6_output_ifp() for 815 * more details. 816 */ 817 origifp = ifp; 818 819 /* 820 * We should use ia_ifp to support the case of sending 821 * packets to an address of our own. 822 */ 823 if (ia != NULL && ia->ia_ifp) 824 ifp = ia->ia_ifp; 825 826 } else if ((ifp->if_flags & IFF_LOOPBACK) == 0 || 827 sa6_recoverscope(&src_sa) != 0 || 828 sa6_recoverscope(&dst_sa) != 0 || 829 dst_sa.sin6_scope_id == 0 || 830 (src_sa.sin6_scope_id != 0 && 831 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || 832 (origifp = ifnet_byindex(dst_sa.sin6_scope_id)) == NULL) { 833 /* 834 * If the destination network interface is not a 835 * loopback interface, or the destination network 836 * address has no scope ID, or the source address has 837 * a scope ID set which is different from the 838 * destination address one, or there is no network 839 * interface representing this scope ID, the address 840 * pair is considered invalid. 841 */ 842 IP6STAT_INC(ip6s_badscope); 843 in6_ifstat_inc(ifp, ifs6_out_discard); 844 if (error == 0) 845 error = EHOSTUNREACH; /* XXX */ 846 goto bad; 847 } 848 /* All scope ID checks are successful. */ 849 850 if (nh && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 851 if (opt && opt->ip6po_nextroute.ro_nh) { 852 /* 853 * The nexthop is explicitly specified by the 854 * application. We assume the next hop is an IPv6 855 * address. 856 */ 857 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 858 } 859 else if ((nh->nh_flags & NHF_GATEWAY)) 860 dst = &nh->gw6_sa; 861 } 862 863 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 864 m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */ 865 } else { 866 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 867 in6_ifstat_inc(ifp, ifs6_out_mcast); 868 869 /* Confirm that the outgoing interface supports multicast. */ 870 if (!(ifp->if_flags & IFF_MULTICAST)) { 871 IP6STAT_INC(ip6s_noroute); 872 in6_ifstat_inc(ifp, ifs6_out_discard); 873 error = ENETUNREACH; 874 goto bad; 875 } 876 if ((im6o == NULL && in6_mcast_loop) || 877 (im6o && im6o->im6o_multicast_loop)) { 878 /* 879 * Loop back multicast datagram if not expressly 880 * forbidden to do so, even if we have not joined 881 * the address; protocols will filter it later, 882 * thus deferring a hash lookup and lock acquisition 883 * at the expense of an m_copym(). 884 */ 885 ip6_mloopback(ifp, m); 886 } else { 887 /* 888 * If we are acting as a multicast router, perform 889 * multicast forwarding as if the packet had just 890 * arrived on the interface to which we are about 891 * to send. The multicast forwarding function 892 * recursively calls this function, using the 893 * IPV6_FORWARDING flag to prevent infinite recursion. 894 * 895 * Multicasts that are looped back by ip6_mloopback(), 896 * above, will be forwarded by the ip6_input() routine, 897 * if necessary. 898 */ 899 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 900 /* 901 * XXX: ip6_mforward expects that rcvif is NULL 902 * when it is called from the originating path. 903 * However, it may not always be the case. 904 */ 905 m->m_pkthdr.rcvif = NULL; 906 if (ip6_mforward(ip6, ifp, m) != 0) { 907 m_freem(m); 908 goto done; 909 } 910 } 911 } 912 /* 913 * Multicasts with a hoplimit of zero may be looped back, 914 * above, but must not be transmitted on a network. 915 * Also, multicasts addressed to the loopback interface 916 * are not sent -- the above call to ip6_mloopback() will 917 * loop back a copy if this host actually belongs to the 918 * destination group on the loopback interface. 919 */ 920 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 921 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 922 m_freem(m); 923 goto done; 924 } 925 } 926 927 /* 928 * Fill the outgoing inteface to tell the upper layer 929 * to increment per-interface statistics. 930 */ 931 if (ifpp) 932 *ifpp = ifp; 933 934 /* Determine path MTU. */ 935 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 936 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 937 goto bad; 938 KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p " 939 "alwaysfrag %d fibnum %u\n", __func__, __LINE__, mtu, ro_pmtu, ro, 940 ifp, alwaysfrag, fibnum)); 941 942 /* 943 * The caller of this function may specify to use the minimum MTU 944 * in some cases. 945 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 946 * setting. The logic is a bit complicated; by default, unicast 947 * packets will follow path MTU while multicast packets will be sent at 948 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 949 * including unicast ones will be sent at the minimum MTU. Multicast 950 * packets will always be sent at the minimum MTU unless 951 * IP6PO_MINMTU_DISABLE is explicitly specified. 952 * See RFC 3542 for more details. 953 */ 954 if (mtu > IPV6_MMTU) { 955 if ((flags & IPV6_MINMTU)) 956 mtu = IPV6_MMTU; 957 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 958 mtu = IPV6_MMTU; 959 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 960 (opt == NULL || 961 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 962 mtu = IPV6_MMTU; 963 } 964 } 965 966 /* 967 * Clear embedded scope identifiers if necessary. 968 * in6_clearscope() will touch the addresses only when necessary. 969 */ 970 in6_clearscope(&ip6->ip6_src); 971 in6_clearscope(&ip6->ip6_dst); 972 973 /* 974 * If the outgoing packet contains a hop-by-hop options header, 975 * it must be examined and processed even by the source node. 976 * (RFC 2460, section 4.) 977 */ 978 if (exthdrs.ip6e_hbh) { 979 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 980 u_int32_t dummy; /* XXX unused */ 981 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 982 983 #ifdef DIAGNOSTIC 984 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 985 panic("ip6e_hbh is not contiguous"); 986 #endif 987 /* 988 * XXX: if we have to send an ICMPv6 error to the sender, 989 * we need the M_LOOP flag since icmp6_error() expects 990 * the IPv6 and the hop-by-hop options header are 991 * contiguous unless the flag is set. 992 */ 993 m->m_flags |= M_LOOP; 994 m->m_pkthdr.rcvif = ifp; 995 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 996 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 997 &dummy, &plen) < 0) { 998 /* m was already freed at this point. */ 999 error = EINVAL;/* better error? */ 1000 goto done; 1001 } 1002 m->m_flags &= ~M_LOOP; /* XXX */ 1003 m->m_pkthdr.rcvif = NULL; 1004 } 1005 1006 /* Jump over all PFIL processing if hooks are not active. */ 1007 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head)) 1008 goto passout; 1009 1010 odst = ip6->ip6_dst; 1011 /* Run through list of hooks for output packets. */ 1012 switch (pfil_run_hooks(V_inet6_pfil_head, &m, ifp, PFIL_OUT, inp)) { 1013 case PFIL_PASS: 1014 ip6 = mtod(m, struct ip6_hdr *); 1015 break; 1016 case PFIL_DROPPED: 1017 error = EACCES; 1018 /* FALLTHROUGH */ 1019 case PFIL_CONSUMED: 1020 goto done; 1021 } 1022 1023 needfiblookup = 0; 1024 /* See if destination IP address was changed by packet filter. */ 1025 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 1026 m->m_flags |= M_SKIP_FIREWALL; 1027 /* If destination is now ourself drop to ip6_input(). */ 1028 if (in6_localip(&ip6->ip6_dst)) { 1029 m->m_flags |= M_FASTFWD_OURS; 1030 if (m->m_pkthdr.rcvif == NULL) 1031 m->m_pkthdr.rcvif = V_loif; 1032 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1033 m->m_pkthdr.csum_flags |= 1034 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1035 m->m_pkthdr.csum_data = 0xffff; 1036 } 1037 #if defined(SCTP) || defined(SCTP_SUPPORT) 1038 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1039 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1040 #endif 1041 error = netisr_queue(NETISR_IPV6, m); 1042 goto done; 1043 } else { 1044 if (ro != NULL) 1045 RO_INVALIDATE_CACHE(ro); 1046 needfiblookup = 1; /* Redo the routing table lookup. */ 1047 } 1048 } 1049 /* See if fib was changed by packet filter. */ 1050 if (fibnum != M_GETFIB(m)) { 1051 m->m_flags |= M_SKIP_FIREWALL; 1052 fibnum = M_GETFIB(m); 1053 if (ro != NULL) 1054 RO_INVALIDATE_CACHE(ro); 1055 needfiblookup = 1; 1056 } 1057 if (needfiblookup) 1058 goto again; 1059 1060 /* See if local, if yes, send it to netisr. */ 1061 if (m->m_flags & M_FASTFWD_OURS) { 1062 if (m->m_pkthdr.rcvif == NULL) 1063 m->m_pkthdr.rcvif = V_loif; 1064 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1065 m->m_pkthdr.csum_flags |= 1066 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1067 m->m_pkthdr.csum_data = 0xffff; 1068 } 1069 #if defined(SCTP) || defined(SCTP_SUPPORT) 1070 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1071 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1072 #endif 1073 error = netisr_queue(NETISR_IPV6, m); 1074 goto done; 1075 } 1076 /* Or forward to some other address? */ 1077 if ((m->m_flags & M_IP6_NEXTHOP) && 1078 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 1079 if (ro != NULL) 1080 dst = (struct sockaddr_in6 *)&ro->ro_dst; 1081 else 1082 dst = &sin6; 1083 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 1084 m->m_flags |= M_SKIP_FIREWALL; 1085 m->m_flags &= ~M_IP6_NEXTHOP; 1086 m_tag_delete(m, fwd_tag); 1087 goto again; 1088 } 1089 1090 passout: 1091 if (vlan_pcp > -1) 1092 EVL_APPLY_PRI(m, vlan_pcp); 1093 1094 /* Ensure the packet data is mapped if the interface requires it. */ 1095 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 1096 m = mb_unmapped_to_ext(m); 1097 if (m == NULL) { 1098 IP6STAT_INC(ip6s_odropped); 1099 return (ENOBUFS); 1100 } 1101 } 1102 1103 /* 1104 * Send the packet to the outgoing interface. 1105 * If necessary, do IPv6 fragmentation before sending. 1106 * 1107 * The logic here is rather complex: 1108 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 1109 * 1-a: send as is if tlen <= path mtu 1110 * 1-b: fragment if tlen > path mtu 1111 * 1112 * 2: if user asks us not to fragment (dontfrag == 1) 1113 * 2-a: send as is if tlen <= interface mtu 1114 * 2-b: error if tlen > interface mtu 1115 * 1116 * 3: if we always need to attach fragment header (alwaysfrag == 1) 1117 * always fragment 1118 * 1119 * 4: if dontfrag == 1 && alwaysfrag == 1 1120 * error, as we cannot handle this conflicting request. 1121 */ 1122 sw_csum = m->m_pkthdr.csum_flags; 1123 if (!hdrsplit) { 1124 tso = ((sw_csum & ifp->if_hwassist & 1125 (CSUM_TSO | CSUM_INNER_TSO)) != 0) ? 1 : 0; 1126 sw_csum &= ~ifp->if_hwassist; 1127 } else 1128 tso = 0; 1129 /* 1130 * If we added extension headers, we will not do TSO and calculate the 1131 * checksums ourselves for now. 1132 * XXX-BZ Need a framework to know when the NIC can handle it, even 1133 * with ext. hdrs. 1134 */ 1135 ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen); 1136 /* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */ 1137 tlen = m->m_pkthdr.len; 1138 1139 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 1140 dontfrag = 1; 1141 else 1142 dontfrag = 0; 1143 if (dontfrag && alwaysfrag) { /* Case 4. */ 1144 /* Conflicting request - can't transmit. */ 1145 error = EMSGSIZE; 1146 goto bad; 1147 } 1148 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* Case 2-b. */ 1149 /* 1150 * Even if the DONTFRAG option is specified, we cannot send the 1151 * packet when the data length is larger than the MTU of the 1152 * outgoing interface. 1153 * Notify the error by sending IPV6_PATHMTU ancillary data if 1154 * application wanted to know the MTU value. Also return an 1155 * error code (this is not described in the API spec). 1156 */ 1157 if (inp != NULL) 1158 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 1159 error = EMSGSIZE; 1160 goto bad; 1161 } 1162 1163 /* Transmit packet without fragmentation. */ 1164 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* Cases 1-a and 2-a. */ 1165 struct in6_ifaddr *ia6; 1166 1167 ip6 = mtod(m, struct ip6_hdr *); 1168 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1169 if (ia6) { 1170 /* Record statistics for this interface address. */ 1171 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 1172 counter_u64_add(ia6->ia_ifa.ifa_obytes, 1173 m->m_pkthdr.len); 1174 } 1175 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1176 (flags & IP_NO_SND_TAG_RL) ? false : true); 1177 goto done; 1178 } 1179 1180 /* Try to fragment the packet. Cases 1-b and 3. */ 1181 if (mtu < IPV6_MMTU) { 1182 /* Path MTU cannot be less than IPV6_MMTU. */ 1183 error = EMSGSIZE; 1184 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1185 goto bad; 1186 } else if (ip6->ip6_plen == 0) { 1187 /* Jumbo payload cannot be fragmented. */ 1188 error = EMSGSIZE; 1189 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1190 goto bad; 1191 } else { 1192 u_char nextproto; 1193 1194 /* 1195 * Too large for the destination or interface; 1196 * fragment if possible. 1197 * Must be able to put at least 8 bytes per fragment. 1198 */ 1199 if (mtu > IPV6_MAXPACKET) 1200 mtu = IPV6_MAXPACKET; 1201 1202 len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7; 1203 if (len < 8) { 1204 error = EMSGSIZE; 1205 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1206 goto bad; 1207 } 1208 1209 /* 1210 * If the interface will not calculate checksums on 1211 * fragmented packets, then do it here. 1212 * XXX-BZ handle the hw offloading case. Need flags. 1213 */ 1214 ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags, plen, 1215 optlen); 1216 1217 /* 1218 * Change the next header field of the last header in the 1219 * unfragmentable part. 1220 */ 1221 if (exthdrs.ip6e_rthdr) { 1222 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1223 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1224 } else if (exthdrs.ip6e_dest1) { 1225 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1226 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1227 } else if (exthdrs.ip6e_hbh) { 1228 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1229 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1230 } else { 1231 ip6 = mtod(m, struct ip6_hdr *); 1232 nextproto = ip6->ip6_nxt; 1233 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1234 } 1235 1236 /* 1237 * Loop through length of segment after first fragment, 1238 * make new header and copy data of each part and link onto 1239 * chain. 1240 */ 1241 m0 = m; 1242 id = htonl(ip6_randomid()); 1243 error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id); 1244 if (error != 0) 1245 goto sendorfree; 1246 1247 in6_ifstat_inc(ifp, ifs6_out_fragok); 1248 } 1249 1250 /* Remove leading garbage. */ 1251 sendorfree: 1252 m = m0->m_nextpkt; 1253 m0->m_nextpkt = 0; 1254 m_freem(m0); 1255 for (; m; m = m0) { 1256 m0 = m->m_nextpkt; 1257 m->m_nextpkt = 0; 1258 if (error == 0) { 1259 /* Record statistics for this interface address. */ 1260 if (ia) { 1261 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1262 counter_u64_add(ia->ia_ifa.ifa_obytes, 1263 m->m_pkthdr.len); 1264 } 1265 if (vlan_pcp > -1) 1266 EVL_APPLY_PRI(m, vlan_pcp); 1267 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1268 true); 1269 } else 1270 m_freem(m); 1271 } 1272 1273 if (error == 0) 1274 IP6STAT_INC(ip6s_fragmented); 1275 1276 done: 1277 return (error); 1278 1279 freehdrs: 1280 m_freem(exthdrs.ip6e_hbh); /* m_freem() checks if mbuf is NULL. */ 1281 m_freem(exthdrs.ip6e_dest1); 1282 m_freem(exthdrs.ip6e_rthdr); 1283 m_freem(exthdrs.ip6e_dest2); 1284 /* FALLTHROUGH */ 1285 bad: 1286 if (m) 1287 m_freem(m); 1288 goto done; 1289 } 1290 1291 static int 1292 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1293 { 1294 struct mbuf *m; 1295 1296 if (hlen > MCLBYTES) 1297 return (ENOBUFS); /* XXX */ 1298 1299 if (hlen > MLEN) 1300 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1301 else 1302 m = m_get(M_NOWAIT, MT_DATA); 1303 if (m == NULL) 1304 return (ENOBUFS); 1305 m->m_len = hlen; 1306 if (hdr) 1307 bcopy(hdr, mtod(m, caddr_t), hlen); 1308 1309 *mp = m; 1310 return (0); 1311 } 1312 1313 /* 1314 * Insert jumbo payload option. 1315 */ 1316 static int 1317 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1318 { 1319 struct mbuf *mopt; 1320 u_char *optbuf; 1321 u_int32_t v; 1322 1323 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1324 1325 /* 1326 * If there is no hop-by-hop options header, allocate new one. 1327 * If there is one but it doesn't have enough space to store the 1328 * jumbo payload option, allocate a cluster to store the whole options. 1329 * Otherwise, use it to store the options. 1330 */ 1331 if (exthdrs->ip6e_hbh == NULL) { 1332 mopt = m_get(M_NOWAIT, MT_DATA); 1333 if (mopt == NULL) 1334 return (ENOBUFS); 1335 mopt->m_len = JUMBOOPTLEN; 1336 optbuf = mtod(mopt, u_char *); 1337 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1338 exthdrs->ip6e_hbh = mopt; 1339 } else { 1340 struct ip6_hbh *hbh; 1341 1342 mopt = exthdrs->ip6e_hbh; 1343 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1344 /* 1345 * XXX assumption: 1346 * - exthdrs->ip6e_hbh is not referenced from places 1347 * other than exthdrs. 1348 * - exthdrs->ip6e_hbh is not an mbuf chain. 1349 */ 1350 int oldoptlen = mopt->m_len; 1351 struct mbuf *n; 1352 1353 /* 1354 * XXX: give up if the whole (new) hbh header does 1355 * not fit even in an mbuf cluster. 1356 */ 1357 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1358 return (ENOBUFS); 1359 1360 /* 1361 * As a consequence, we must always prepare a cluster 1362 * at this point. 1363 */ 1364 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1365 if (n == NULL) 1366 return (ENOBUFS); 1367 n->m_len = oldoptlen + JUMBOOPTLEN; 1368 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1369 oldoptlen); 1370 optbuf = mtod(n, caddr_t) + oldoptlen; 1371 m_freem(mopt); 1372 mopt = exthdrs->ip6e_hbh = n; 1373 } else { 1374 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1375 mopt->m_len += JUMBOOPTLEN; 1376 } 1377 optbuf[0] = IP6OPT_PADN; 1378 optbuf[1] = 1; 1379 1380 /* 1381 * Adjust the header length according to the pad and 1382 * the jumbo payload option. 1383 */ 1384 hbh = mtod(mopt, struct ip6_hbh *); 1385 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1386 } 1387 1388 /* fill in the option. */ 1389 optbuf[2] = IP6OPT_JUMBO; 1390 optbuf[3] = 4; 1391 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1392 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1393 1394 /* finally, adjust the packet header length */ 1395 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1396 1397 return (0); 1398 #undef JUMBOOPTLEN 1399 } 1400 1401 /* 1402 * Insert fragment header and copy unfragmentable header portions. 1403 */ 1404 static int 1405 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1406 struct ip6_frag **frghdrp) 1407 { 1408 struct mbuf *n, *mlast; 1409 1410 if (hlen > sizeof(struct ip6_hdr)) { 1411 n = m_copym(m0, sizeof(struct ip6_hdr), 1412 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1413 if (n == NULL) 1414 return (ENOBUFS); 1415 m->m_next = n; 1416 } else 1417 n = m; 1418 1419 /* Search for the last mbuf of unfragmentable part. */ 1420 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1421 ; 1422 1423 if (M_WRITABLE(mlast) && 1424 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1425 /* use the trailing space of the last mbuf for the fragment hdr */ 1426 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1427 mlast->m_len); 1428 mlast->m_len += sizeof(struct ip6_frag); 1429 m->m_pkthdr.len += sizeof(struct ip6_frag); 1430 } else { 1431 /* allocate a new mbuf for the fragment header */ 1432 struct mbuf *mfrg; 1433 1434 mfrg = m_get(M_NOWAIT, MT_DATA); 1435 if (mfrg == NULL) 1436 return (ENOBUFS); 1437 mfrg->m_len = sizeof(struct ip6_frag); 1438 *frghdrp = mtod(mfrg, struct ip6_frag *); 1439 mlast->m_next = mfrg; 1440 } 1441 1442 return (0); 1443 } 1444 1445 /* 1446 * Calculates IPv6 path mtu for destination @dst. 1447 * Resulting MTU is stored in @mtup. 1448 * 1449 * Returns 0 on success. 1450 */ 1451 static int 1452 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1453 { 1454 struct epoch_tracker et; 1455 struct nhop_object *nh; 1456 struct in6_addr kdst; 1457 uint32_t scopeid; 1458 int error; 1459 1460 in6_splitscope(dst, &kdst, &scopeid); 1461 1462 NET_EPOCH_ENTER(et); 1463 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1464 if (nh != NULL) 1465 error = ip6_calcmtu(nh->nh_ifp, dst, nh->nh_mtu, mtup, NULL, 0); 1466 else 1467 error = EHOSTUNREACH; 1468 NET_EPOCH_EXIT(et); 1469 1470 return (error); 1471 } 1472 1473 /* 1474 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1475 * and cached data in @ro_pmtu. 1476 * MTU from (successful) route lookup is saved (along with dst) 1477 * inside @ro_pmtu to avoid subsequent route lookups after packet 1478 * filter processing. 1479 * 1480 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1481 * Returns 0 on success. 1482 */ 1483 static int 1484 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1485 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1486 int *alwaysfragp, u_int fibnum, u_int proto) 1487 { 1488 struct nhop_object *nh; 1489 struct in6_addr kdst; 1490 uint32_t scopeid; 1491 struct sockaddr_in6 *sa6_dst, sin6; 1492 u_long mtu; 1493 1494 NET_EPOCH_ASSERT(); 1495 1496 mtu = 0; 1497 if (ro_pmtu == NULL || do_lookup) { 1498 /* 1499 * Here ro_pmtu has final destination address, while 1500 * ro might represent immediate destination. 1501 * Use ro_pmtu destination since mtu might differ. 1502 */ 1503 if (ro_pmtu != NULL) { 1504 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1505 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1506 ro_pmtu->ro_mtu = 0; 1507 } else 1508 sa6_dst = &sin6; 1509 1510 if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) { 1511 bzero(sa6_dst, sizeof(*sa6_dst)); 1512 sa6_dst->sin6_family = AF_INET6; 1513 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1514 sa6_dst->sin6_addr = *dst; 1515 1516 in6_splitscope(dst, &kdst, &scopeid); 1517 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1518 if (nh != NULL) { 1519 mtu = nh->nh_mtu; 1520 if (ro_pmtu != NULL) 1521 ro_pmtu->ro_mtu = mtu; 1522 } 1523 } else 1524 mtu = ro_pmtu->ro_mtu; 1525 } 1526 1527 if (ro_pmtu != NULL && ro_pmtu->ro_nh != NULL) 1528 mtu = ro_pmtu->ro_nh->nh_mtu; 1529 1530 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1531 } 1532 1533 /* 1534 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1535 * hostcache data for @dst. 1536 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1537 * 1538 * Returns 0 on success. 1539 */ 1540 static int 1541 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1542 u_long *mtup, int *alwaysfragp, u_int proto) 1543 { 1544 u_long mtu = 0; 1545 int alwaysfrag = 0; 1546 int error = 0; 1547 1548 if (rt_mtu > 0) { 1549 u_int32_t ifmtu; 1550 struct in_conninfo inc; 1551 1552 bzero(&inc, sizeof(inc)); 1553 inc.inc_flags |= INC_ISIPV6; 1554 inc.inc6_faddr = *dst; 1555 1556 ifmtu = IN6_LINKMTU(ifp); 1557 1558 /* TCP is known to react to pmtu changes so skip hc */ 1559 if (proto != IPPROTO_TCP) 1560 mtu = tcp_hc_getmtu(&inc); 1561 1562 if (mtu) 1563 mtu = min(mtu, rt_mtu); 1564 else 1565 mtu = rt_mtu; 1566 if (mtu == 0) 1567 mtu = ifmtu; 1568 else if (mtu < IPV6_MMTU) { 1569 /* 1570 * RFC2460 section 5, last paragraph: 1571 * if we record ICMPv6 too big message with 1572 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1573 * or smaller, with framgent header attached. 1574 * (fragment header is needed regardless from the 1575 * packet size, for translators to identify packets) 1576 */ 1577 alwaysfrag = 1; 1578 mtu = IPV6_MMTU; 1579 } 1580 } else if (ifp) { 1581 mtu = IN6_LINKMTU(ifp); 1582 } else 1583 error = EHOSTUNREACH; /* XXX */ 1584 1585 *mtup = mtu; 1586 if (alwaysfragp) 1587 *alwaysfragp = alwaysfrag; 1588 return (error); 1589 } 1590 1591 /* 1592 * IP6 socket option processing. 1593 */ 1594 int 1595 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1596 { 1597 int optdatalen, uproto; 1598 void *optdata; 1599 struct inpcb *inp = sotoinpcb(so); 1600 int error, optval; 1601 int level, op, optname; 1602 int optlen; 1603 struct thread *td; 1604 #ifdef RSS 1605 uint32_t rss_bucket; 1606 int retval; 1607 #endif 1608 1609 /* 1610 * Don't use more than a quarter of mbuf clusters. N.B.: 1611 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1612 * on LP64 architectures, so cast to u_long to avoid undefined 1613 * behavior. ILP32 architectures cannot have nmbclusters 1614 * large enough to overflow for other reasons. 1615 */ 1616 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1617 1618 level = sopt->sopt_level; 1619 op = sopt->sopt_dir; 1620 optname = sopt->sopt_name; 1621 optlen = sopt->sopt_valsize; 1622 td = sopt->sopt_td; 1623 error = 0; 1624 optval = 0; 1625 uproto = (int)so->so_proto->pr_protocol; 1626 1627 if (level != IPPROTO_IPV6) { 1628 error = EINVAL; 1629 1630 if (sopt->sopt_level == SOL_SOCKET && 1631 sopt->sopt_dir == SOPT_SET) { 1632 switch (sopt->sopt_name) { 1633 case SO_REUSEADDR: 1634 INP_WLOCK(inp); 1635 if ((so->so_options & SO_REUSEADDR) != 0) 1636 inp->inp_flags2 |= INP_REUSEADDR; 1637 else 1638 inp->inp_flags2 &= ~INP_REUSEADDR; 1639 INP_WUNLOCK(inp); 1640 error = 0; 1641 break; 1642 case SO_REUSEPORT: 1643 INP_WLOCK(inp); 1644 if ((so->so_options & SO_REUSEPORT) != 0) 1645 inp->inp_flags2 |= INP_REUSEPORT; 1646 else 1647 inp->inp_flags2 &= ~INP_REUSEPORT; 1648 INP_WUNLOCK(inp); 1649 error = 0; 1650 break; 1651 case SO_REUSEPORT_LB: 1652 INP_WLOCK(inp); 1653 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1654 inp->inp_flags2 |= INP_REUSEPORT_LB; 1655 else 1656 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1657 INP_WUNLOCK(inp); 1658 error = 0; 1659 break; 1660 case SO_SETFIB: 1661 INP_WLOCK(inp); 1662 inp->inp_inc.inc_fibnum = so->so_fibnum; 1663 INP_WUNLOCK(inp); 1664 error = 0; 1665 break; 1666 case SO_MAX_PACING_RATE: 1667 #ifdef RATELIMIT 1668 INP_WLOCK(inp); 1669 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1670 INP_WUNLOCK(inp); 1671 error = 0; 1672 #else 1673 error = EOPNOTSUPP; 1674 #endif 1675 break; 1676 default: 1677 break; 1678 } 1679 } 1680 } else { /* level == IPPROTO_IPV6 */ 1681 switch (op) { 1682 case SOPT_SET: 1683 switch (optname) { 1684 case IPV6_2292PKTOPTIONS: 1685 #ifdef IPV6_PKTOPTIONS 1686 case IPV6_PKTOPTIONS: 1687 #endif 1688 { 1689 struct mbuf *m; 1690 1691 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1692 printf("ip6_ctloutput: mbuf limit hit\n"); 1693 error = ENOBUFS; 1694 break; 1695 } 1696 1697 error = soopt_getm(sopt, &m); /* XXX */ 1698 if (error != 0) 1699 break; 1700 error = soopt_mcopyin(sopt, m); /* XXX */ 1701 if (error != 0) 1702 break; 1703 INP_WLOCK(inp); 1704 error = ip6_pcbopts(&inp->in6p_outputopts, m, 1705 so, sopt); 1706 INP_WUNLOCK(inp); 1707 m_freem(m); /* XXX */ 1708 break; 1709 } 1710 1711 /* 1712 * Use of some Hop-by-Hop options or some 1713 * Destination options, might require special 1714 * privilege. That is, normal applications 1715 * (without special privilege) might be forbidden 1716 * from setting certain options in outgoing packets, 1717 * and might never see certain options in received 1718 * packets. [RFC 2292 Section 6] 1719 * KAME specific note: 1720 * KAME prevents non-privileged users from sending or 1721 * receiving ANY hbh/dst options in order to avoid 1722 * overhead of parsing options in the kernel. 1723 */ 1724 case IPV6_RECVHOPOPTS: 1725 case IPV6_RECVDSTOPTS: 1726 case IPV6_RECVRTHDRDSTOPTS: 1727 if (td != NULL) { 1728 error = priv_check(td, 1729 PRIV_NETINET_SETHDROPTS); 1730 if (error) 1731 break; 1732 } 1733 /* FALLTHROUGH */ 1734 case IPV6_UNICAST_HOPS: 1735 case IPV6_HOPLIMIT: 1736 1737 case IPV6_RECVPKTINFO: 1738 case IPV6_RECVHOPLIMIT: 1739 case IPV6_RECVRTHDR: 1740 case IPV6_RECVPATHMTU: 1741 case IPV6_RECVTCLASS: 1742 case IPV6_RECVFLOWID: 1743 #ifdef RSS 1744 case IPV6_RECVRSSBUCKETID: 1745 #endif 1746 case IPV6_V6ONLY: 1747 case IPV6_AUTOFLOWLABEL: 1748 case IPV6_ORIGDSTADDR: 1749 case IPV6_BINDANY: 1750 case IPV6_BINDMULTI: 1751 #ifdef RSS 1752 case IPV6_RSS_LISTEN_BUCKET: 1753 #endif 1754 case IPV6_VLAN_PCP: 1755 if (optname == IPV6_BINDANY && td != NULL) { 1756 error = priv_check(td, 1757 PRIV_NETINET_BINDANY); 1758 if (error) 1759 break; 1760 } 1761 1762 if (optlen != sizeof(int)) { 1763 error = EINVAL; 1764 break; 1765 } 1766 error = sooptcopyin(sopt, &optval, 1767 sizeof optval, sizeof optval); 1768 if (error) 1769 break; 1770 switch (optname) { 1771 case IPV6_UNICAST_HOPS: 1772 if (optval < -1 || optval >= 256) 1773 error = EINVAL; 1774 else { 1775 /* -1 = kernel default */ 1776 inp->in6p_hops = optval; 1777 if ((inp->inp_vflag & 1778 INP_IPV4) != 0) 1779 inp->inp_ip_ttl = optval; 1780 } 1781 break; 1782 #define OPTSET(bit) \ 1783 do { \ 1784 INP_WLOCK(inp); \ 1785 if (optval) \ 1786 inp->inp_flags |= (bit); \ 1787 else \ 1788 inp->inp_flags &= ~(bit); \ 1789 INP_WUNLOCK(inp); \ 1790 } while (/*CONSTCOND*/ 0) 1791 #define OPTSET2292(bit) \ 1792 do { \ 1793 INP_WLOCK(inp); \ 1794 inp->inp_flags |= IN6P_RFC2292; \ 1795 if (optval) \ 1796 inp->inp_flags |= (bit); \ 1797 else \ 1798 inp->inp_flags &= ~(bit); \ 1799 INP_WUNLOCK(inp); \ 1800 } while (/*CONSTCOND*/ 0) 1801 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1802 1803 #define OPTSET2_N(bit, val) do { \ 1804 if (val) \ 1805 inp->inp_flags2 |= bit; \ 1806 else \ 1807 inp->inp_flags2 &= ~bit; \ 1808 } while (0) 1809 #define OPTSET2(bit, val) do { \ 1810 INP_WLOCK(inp); \ 1811 OPTSET2_N(bit, val); \ 1812 INP_WUNLOCK(inp); \ 1813 } while (0) 1814 #define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0) 1815 #define OPTSET2292_EXCLUSIVE(bit) \ 1816 do { \ 1817 INP_WLOCK(inp); \ 1818 if (OPTBIT(IN6P_RFC2292)) { \ 1819 error = EINVAL; \ 1820 } else { \ 1821 if (optval) \ 1822 inp->inp_flags |= (bit); \ 1823 else \ 1824 inp->inp_flags &= ~(bit); \ 1825 } \ 1826 INP_WUNLOCK(inp); \ 1827 } while (/*CONSTCOND*/ 0) 1828 1829 case IPV6_RECVPKTINFO: 1830 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1831 break; 1832 1833 case IPV6_HOPLIMIT: 1834 { 1835 struct ip6_pktopts **optp; 1836 1837 /* cannot mix with RFC2292 */ 1838 if (OPTBIT(IN6P_RFC2292)) { 1839 error = EINVAL; 1840 break; 1841 } 1842 INP_WLOCK(inp); 1843 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1844 INP_WUNLOCK(inp); 1845 return (ECONNRESET); 1846 } 1847 optp = &inp->in6p_outputopts; 1848 error = ip6_pcbopt(IPV6_HOPLIMIT, 1849 (u_char *)&optval, sizeof(optval), 1850 optp, (td != NULL) ? td->td_ucred : 1851 NULL, uproto); 1852 INP_WUNLOCK(inp); 1853 break; 1854 } 1855 1856 case IPV6_RECVHOPLIMIT: 1857 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1858 break; 1859 1860 case IPV6_RECVHOPOPTS: 1861 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1862 break; 1863 1864 case IPV6_RECVDSTOPTS: 1865 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1866 break; 1867 1868 case IPV6_RECVRTHDRDSTOPTS: 1869 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1870 break; 1871 1872 case IPV6_RECVRTHDR: 1873 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1874 break; 1875 1876 case IPV6_RECVPATHMTU: 1877 /* 1878 * We ignore this option for TCP 1879 * sockets. 1880 * (RFC3542 leaves this case 1881 * unspecified.) 1882 */ 1883 if (uproto != IPPROTO_TCP) 1884 OPTSET(IN6P_MTU); 1885 break; 1886 1887 case IPV6_RECVFLOWID: 1888 OPTSET2(INP_RECVFLOWID, optval); 1889 break; 1890 1891 #ifdef RSS 1892 case IPV6_RECVRSSBUCKETID: 1893 OPTSET2(INP_RECVRSSBUCKETID, optval); 1894 break; 1895 #endif 1896 1897 case IPV6_V6ONLY: 1898 INP_WLOCK(inp); 1899 if (inp->inp_lport || 1900 !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { 1901 /* 1902 * The socket is already bound. 1903 */ 1904 INP_WUNLOCK(inp); 1905 error = EINVAL; 1906 break; 1907 } 1908 if (optval) { 1909 inp->inp_flags |= IN6P_IPV6_V6ONLY; 1910 inp->inp_vflag &= ~INP_IPV4; 1911 } else { 1912 inp->inp_flags &= ~IN6P_IPV6_V6ONLY; 1913 inp->inp_vflag |= INP_IPV4; 1914 } 1915 INP_WUNLOCK(inp); 1916 break; 1917 case IPV6_RECVTCLASS: 1918 /* cannot mix with RFC2292 XXX */ 1919 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1920 break; 1921 case IPV6_AUTOFLOWLABEL: 1922 OPTSET(IN6P_AUTOFLOWLABEL); 1923 break; 1924 1925 case IPV6_ORIGDSTADDR: 1926 OPTSET2(INP_ORIGDSTADDR, optval); 1927 break; 1928 case IPV6_BINDANY: 1929 OPTSET(INP_BINDANY); 1930 break; 1931 1932 case IPV6_BINDMULTI: 1933 OPTSET2(INP_BINDMULTI, optval); 1934 break; 1935 #ifdef RSS 1936 case IPV6_RSS_LISTEN_BUCKET: 1937 if ((optval >= 0) && 1938 (optval < rss_getnumbuckets())) { 1939 INP_WLOCK(inp); 1940 inp->inp_rss_listen_bucket = optval; 1941 OPTSET2_N(INP_RSS_BUCKET_SET, 1); 1942 INP_WUNLOCK(inp); 1943 } else { 1944 error = EINVAL; 1945 } 1946 break; 1947 #endif 1948 case IPV6_VLAN_PCP: 1949 if ((optval >= -1) && (optval <= 1950 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1951 if (optval == -1) { 1952 INP_WLOCK(inp); 1953 inp->inp_flags2 &= 1954 ~(INP_2PCP_SET | 1955 INP_2PCP_MASK); 1956 INP_WUNLOCK(inp); 1957 } else { 1958 INP_WLOCK(inp); 1959 inp->inp_flags2 |= 1960 INP_2PCP_SET; 1961 inp->inp_flags2 &= 1962 ~INP_2PCP_MASK; 1963 inp->inp_flags2 |= 1964 optval << 1965 INP_2PCP_SHIFT; 1966 INP_WUNLOCK(inp); 1967 } 1968 } else 1969 error = EINVAL; 1970 break; 1971 } 1972 break; 1973 1974 case IPV6_TCLASS: 1975 case IPV6_DONTFRAG: 1976 case IPV6_USE_MIN_MTU: 1977 case IPV6_PREFER_TEMPADDR: 1978 if (optlen != sizeof(optval)) { 1979 error = EINVAL; 1980 break; 1981 } 1982 error = sooptcopyin(sopt, &optval, 1983 sizeof optval, sizeof optval); 1984 if (error) 1985 break; 1986 { 1987 struct ip6_pktopts **optp; 1988 INP_WLOCK(inp); 1989 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1990 INP_WUNLOCK(inp); 1991 return (ECONNRESET); 1992 } 1993 optp = &inp->in6p_outputopts; 1994 error = ip6_pcbopt(optname, 1995 (u_char *)&optval, sizeof(optval), 1996 optp, (td != NULL) ? td->td_ucred : 1997 NULL, uproto); 1998 INP_WUNLOCK(inp); 1999 break; 2000 } 2001 2002 case IPV6_2292PKTINFO: 2003 case IPV6_2292HOPLIMIT: 2004 case IPV6_2292HOPOPTS: 2005 case IPV6_2292DSTOPTS: 2006 case IPV6_2292RTHDR: 2007 /* RFC 2292 */ 2008 if (optlen != sizeof(int)) { 2009 error = EINVAL; 2010 break; 2011 } 2012 error = sooptcopyin(sopt, &optval, 2013 sizeof optval, sizeof optval); 2014 if (error) 2015 break; 2016 switch (optname) { 2017 case IPV6_2292PKTINFO: 2018 OPTSET2292(IN6P_PKTINFO); 2019 break; 2020 case IPV6_2292HOPLIMIT: 2021 OPTSET2292(IN6P_HOPLIMIT); 2022 break; 2023 case IPV6_2292HOPOPTS: 2024 /* 2025 * Check super-user privilege. 2026 * See comments for IPV6_RECVHOPOPTS. 2027 */ 2028 if (td != NULL) { 2029 error = priv_check(td, 2030 PRIV_NETINET_SETHDROPTS); 2031 if (error) 2032 return (error); 2033 } 2034 OPTSET2292(IN6P_HOPOPTS); 2035 break; 2036 case IPV6_2292DSTOPTS: 2037 if (td != NULL) { 2038 error = priv_check(td, 2039 PRIV_NETINET_SETHDROPTS); 2040 if (error) 2041 return (error); 2042 } 2043 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 2044 break; 2045 case IPV6_2292RTHDR: 2046 OPTSET2292(IN6P_RTHDR); 2047 break; 2048 } 2049 break; 2050 case IPV6_PKTINFO: 2051 case IPV6_HOPOPTS: 2052 case IPV6_RTHDR: 2053 case IPV6_DSTOPTS: 2054 case IPV6_RTHDRDSTOPTS: 2055 case IPV6_NEXTHOP: 2056 { 2057 /* new advanced API (RFC3542) */ 2058 u_char *optbuf; 2059 u_char optbuf_storage[MCLBYTES]; 2060 int optlen; 2061 struct ip6_pktopts **optp; 2062 2063 /* cannot mix with RFC2292 */ 2064 if (OPTBIT(IN6P_RFC2292)) { 2065 error = EINVAL; 2066 break; 2067 } 2068 2069 /* 2070 * We only ensure valsize is not too large 2071 * here. Further validation will be done 2072 * later. 2073 */ 2074 error = sooptcopyin(sopt, optbuf_storage, 2075 sizeof(optbuf_storage), 0); 2076 if (error) 2077 break; 2078 optlen = sopt->sopt_valsize; 2079 optbuf = optbuf_storage; 2080 INP_WLOCK(inp); 2081 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 2082 INP_WUNLOCK(inp); 2083 return (ECONNRESET); 2084 } 2085 optp = &inp->in6p_outputopts; 2086 error = ip6_pcbopt(optname, optbuf, optlen, 2087 optp, (td != NULL) ? td->td_ucred : NULL, 2088 uproto); 2089 INP_WUNLOCK(inp); 2090 break; 2091 } 2092 #undef OPTSET 2093 2094 case IPV6_MULTICAST_IF: 2095 case IPV6_MULTICAST_HOPS: 2096 case IPV6_MULTICAST_LOOP: 2097 case IPV6_JOIN_GROUP: 2098 case IPV6_LEAVE_GROUP: 2099 case IPV6_MSFILTER: 2100 case MCAST_BLOCK_SOURCE: 2101 case MCAST_UNBLOCK_SOURCE: 2102 case MCAST_JOIN_GROUP: 2103 case MCAST_LEAVE_GROUP: 2104 case MCAST_JOIN_SOURCE_GROUP: 2105 case MCAST_LEAVE_SOURCE_GROUP: 2106 error = ip6_setmoptions(inp, sopt); 2107 break; 2108 2109 case IPV6_PORTRANGE: 2110 error = sooptcopyin(sopt, &optval, 2111 sizeof optval, sizeof optval); 2112 if (error) 2113 break; 2114 2115 INP_WLOCK(inp); 2116 switch (optval) { 2117 case IPV6_PORTRANGE_DEFAULT: 2118 inp->inp_flags &= ~(INP_LOWPORT); 2119 inp->inp_flags &= ~(INP_HIGHPORT); 2120 break; 2121 2122 case IPV6_PORTRANGE_HIGH: 2123 inp->inp_flags &= ~(INP_LOWPORT); 2124 inp->inp_flags |= INP_HIGHPORT; 2125 break; 2126 2127 case IPV6_PORTRANGE_LOW: 2128 inp->inp_flags &= ~(INP_HIGHPORT); 2129 inp->inp_flags |= INP_LOWPORT; 2130 break; 2131 2132 default: 2133 error = EINVAL; 2134 break; 2135 } 2136 INP_WUNLOCK(inp); 2137 break; 2138 2139 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2140 case IPV6_IPSEC_POLICY: 2141 if (IPSEC_ENABLED(ipv6)) { 2142 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2143 break; 2144 } 2145 /* FALLTHROUGH */ 2146 #endif /* IPSEC */ 2147 2148 default: 2149 error = ENOPROTOOPT; 2150 break; 2151 } 2152 break; 2153 2154 case SOPT_GET: 2155 switch (optname) { 2156 case IPV6_2292PKTOPTIONS: 2157 #ifdef IPV6_PKTOPTIONS 2158 case IPV6_PKTOPTIONS: 2159 #endif 2160 /* 2161 * RFC3542 (effectively) deprecated the 2162 * semantics of the 2292-style pktoptions. 2163 * Since it was not reliable in nature (i.e., 2164 * applications had to expect the lack of some 2165 * information after all), it would make sense 2166 * to simplify this part by always returning 2167 * empty data. 2168 */ 2169 sopt->sopt_valsize = 0; 2170 break; 2171 2172 case IPV6_RECVHOPOPTS: 2173 case IPV6_RECVDSTOPTS: 2174 case IPV6_RECVRTHDRDSTOPTS: 2175 case IPV6_UNICAST_HOPS: 2176 case IPV6_RECVPKTINFO: 2177 case IPV6_RECVHOPLIMIT: 2178 case IPV6_RECVRTHDR: 2179 case IPV6_RECVPATHMTU: 2180 2181 case IPV6_V6ONLY: 2182 case IPV6_PORTRANGE: 2183 case IPV6_RECVTCLASS: 2184 case IPV6_AUTOFLOWLABEL: 2185 case IPV6_BINDANY: 2186 case IPV6_FLOWID: 2187 case IPV6_FLOWTYPE: 2188 case IPV6_RECVFLOWID: 2189 #ifdef RSS 2190 case IPV6_RSSBUCKETID: 2191 case IPV6_RECVRSSBUCKETID: 2192 #endif 2193 case IPV6_BINDMULTI: 2194 case IPV6_VLAN_PCP: 2195 switch (optname) { 2196 case IPV6_RECVHOPOPTS: 2197 optval = OPTBIT(IN6P_HOPOPTS); 2198 break; 2199 2200 case IPV6_RECVDSTOPTS: 2201 optval = OPTBIT(IN6P_DSTOPTS); 2202 break; 2203 2204 case IPV6_RECVRTHDRDSTOPTS: 2205 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 2206 break; 2207 2208 case IPV6_UNICAST_HOPS: 2209 optval = inp->in6p_hops; 2210 break; 2211 2212 case IPV6_RECVPKTINFO: 2213 optval = OPTBIT(IN6P_PKTINFO); 2214 break; 2215 2216 case IPV6_RECVHOPLIMIT: 2217 optval = OPTBIT(IN6P_HOPLIMIT); 2218 break; 2219 2220 case IPV6_RECVRTHDR: 2221 optval = OPTBIT(IN6P_RTHDR); 2222 break; 2223 2224 case IPV6_RECVPATHMTU: 2225 optval = OPTBIT(IN6P_MTU); 2226 break; 2227 2228 case IPV6_V6ONLY: 2229 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2230 break; 2231 2232 case IPV6_PORTRANGE: 2233 { 2234 int flags; 2235 flags = inp->inp_flags; 2236 if (flags & INP_HIGHPORT) 2237 optval = IPV6_PORTRANGE_HIGH; 2238 else if (flags & INP_LOWPORT) 2239 optval = IPV6_PORTRANGE_LOW; 2240 else 2241 optval = 0; 2242 break; 2243 } 2244 case IPV6_RECVTCLASS: 2245 optval = OPTBIT(IN6P_TCLASS); 2246 break; 2247 2248 case IPV6_AUTOFLOWLABEL: 2249 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2250 break; 2251 2252 case IPV6_ORIGDSTADDR: 2253 optval = OPTBIT2(INP_ORIGDSTADDR); 2254 break; 2255 2256 case IPV6_BINDANY: 2257 optval = OPTBIT(INP_BINDANY); 2258 break; 2259 2260 case IPV6_FLOWID: 2261 optval = inp->inp_flowid; 2262 break; 2263 2264 case IPV6_FLOWTYPE: 2265 optval = inp->inp_flowtype; 2266 break; 2267 2268 case IPV6_RECVFLOWID: 2269 optval = OPTBIT2(INP_RECVFLOWID); 2270 break; 2271 #ifdef RSS 2272 case IPV6_RSSBUCKETID: 2273 retval = 2274 rss_hash2bucket(inp->inp_flowid, 2275 inp->inp_flowtype, 2276 &rss_bucket); 2277 if (retval == 0) 2278 optval = rss_bucket; 2279 else 2280 error = EINVAL; 2281 break; 2282 2283 case IPV6_RECVRSSBUCKETID: 2284 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2285 break; 2286 #endif 2287 2288 case IPV6_BINDMULTI: 2289 optval = OPTBIT2(INP_BINDMULTI); 2290 break; 2291 2292 case IPV6_VLAN_PCP: 2293 if (OPTBIT2(INP_2PCP_SET)) { 2294 optval = (inp->inp_flags2 & 2295 INP_2PCP_MASK) >> 2296 INP_2PCP_SHIFT; 2297 } else { 2298 optval = -1; 2299 } 2300 break; 2301 } 2302 2303 if (error) 2304 break; 2305 error = sooptcopyout(sopt, &optval, 2306 sizeof optval); 2307 break; 2308 2309 case IPV6_PATHMTU: 2310 { 2311 u_long pmtu = 0; 2312 struct ip6_mtuinfo mtuinfo; 2313 struct in6_addr addr; 2314 2315 if (!(so->so_state & SS_ISCONNECTED)) 2316 return (ENOTCONN); 2317 /* 2318 * XXX: we dot not consider the case of source 2319 * routing, or optional information to specify 2320 * the outgoing interface. 2321 * Copy faddr out of inp to avoid holding lock 2322 * on inp during route lookup. 2323 */ 2324 INP_RLOCK(inp); 2325 bcopy(&inp->in6p_faddr, &addr, sizeof(addr)); 2326 INP_RUNLOCK(inp); 2327 error = ip6_getpmtu_ctl(so->so_fibnum, 2328 &addr, &pmtu); 2329 if (error) 2330 break; 2331 if (pmtu > IPV6_MAXPACKET) 2332 pmtu = IPV6_MAXPACKET; 2333 2334 bzero(&mtuinfo, sizeof(mtuinfo)); 2335 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2336 optdata = (void *)&mtuinfo; 2337 optdatalen = sizeof(mtuinfo); 2338 error = sooptcopyout(sopt, optdata, 2339 optdatalen); 2340 break; 2341 } 2342 2343 case IPV6_2292PKTINFO: 2344 case IPV6_2292HOPLIMIT: 2345 case IPV6_2292HOPOPTS: 2346 case IPV6_2292RTHDR: 2347 case IPV6_2292DSTOPTS: 2348 switch (optname) { 2349 case IPV6_2292PKTINFO: 2350 optval = OPTBIT(IN6P_PKTINFO); 2351 break; 2352 case IPV6_2292HOPLIMIT: 2353 optval = OPTBIT(IN6P_HOPLIMIT); 2354 break; 2355 case IPV6_2292HOPOPTS: 2356 optval = OPTBIT(IN6P_HOPOPTS); 2357 break; 2358 case IPV6_2292RTHDR: 2359 optval = OPTBIT(IN6P_RTHDR); 2360 break; 2361 case IPV6_2292DSTOPTS: 2362 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2363 break; 2364 } 2365 error = sooptcopyout(sopt, &optval, 2366 sizeof optval); 2367 break; 2368 case IPV6_PKTINFO: 2369 case IPV6_HOPOPTS: 2370 case IPV6_RTHDR: 2371 case IPV6_DSTOPTS: 2372 case IPV6_RTHDRDSTOPTS: 2373 case IPV6_NEXTHOP: 2374 case IPV6_TCLASS: 2375 case IPV6_DONTFRAG: 2376 case IPV6_USE_MIN_MTU: 2377 case IPV6_PREFER_TEMPADDR: 2378 error = ip6_getpcbopt(inp, optname, sopt); 2379 break; 2380 2381 case IPV6_MULTICAST_IF: 2382 case IPV6_MULTICAST_HOPS: 2383 case IPV6_MULTICAST_LOOP: 2384 case IPV6_MSFILTER: 2385 error = ip6_getmoptions(inp, sopt); 2386 break; 2387 2388 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2389 case IPV6_IPSEC_POLICY: 2390 if (IPSEC_ENABLED(ipv6)) { 2391 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2392 break; 2393 } 2394 /* FALLTHROUGH */ 2395 #endif /* IPSEC */ 2396 default: 2397 error = ENOPROTOOPT; 2398 break; 2399 } 2400 break; 2401 } 2402 } 2403 return (error); 2404 } 2405 2406 int 2407 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2408 { 2409 int error = 0, optval, optlen; 2410 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2411 struct inpcb *inp = sotoinpcb(so); 2412 int level, op, optname; 2413 2414 level = sopt->sopt_level; 2415 op = sopt->sopt_dir; 2416 optname = sopt->sopt_name; 2417 optlen = sopt->sopt_valsize; 2418 2419 if (level != IPPROTO_IPV6) { 2420 return (EINVAL); 2421 } 2422 2423 switch (optname) { 2424 case IPV6_CHECKSUM: 2425 /* 2426 * For ICMPv6 sockets, no modification allowed for checksum 2427 * offset, permit "no change" values to help existing apps. 2428 * 2429 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2430 * for an ICMPv6 socket will fail." 2431 * The current behavior does not meet RFC3542. 2432 */ 2433 switch (op) { 2434 case SOPT_SET: 2435 if (optlen != sizeof(int)) { 2436 error = EINVAL; 2437 break; 2438 } 2439 error = sooptcopyin(sopt, &optval, sizeof(optval), 2440 sizeof(optval)); 2441 if (error) 2442 break; 2443 if (optval < -1 || (optval % 2) != 0) { 2444 /* 2445 * The API assumes non-negative even offset 2446 * values or -1 as a special value. 2447 */ 2448 error = EINVAL; 2449 } else if (so->so_proto->pr_protocol == 2450 IPPROTO_ICMPV6) { 2451 if (optval != icmp6off) 2452 error = EINVAL; 2453 } else 2454 inp->in6p_cksum = optval; 2455 break; 2456 2457 case SOPT_GET: 2458 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2459 optval = icmp6off; 2460 else 2461 optval = inp->in6p_cksum; 2462 2463 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2464 break; 2465 2466 default: 2467 error = EINVAL; 2468 break; 2469 } 2470 break; 2471 2472 default: 2473 error = ENOPROTOOPT; 2474 break; 2475 } 2476 2477 return (error); 2478 } 2479 2480 /* 2481 * Set up IP6 options in pcb for insertion in output packets or 2482 * specifying behavior of outgoing packets. 2483 */ 2484 static int 2485 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2486 struct socket *so, struct sockopt *sopt) 2487 { 2488 struct ip6_pktopts *opt = *pktopt; 2489 int error = 0; 2490 struct thread *td = sopt->sopt_td; 2491 struct epoch_tracker et; 2492 2493 /* turn off any old options. */ 2494 if (opt) { 2495 #ifdef DIAGNOSTIC 2496 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2497 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2498 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2499 printf("ip6_pcbopts: all specified options are cleared.\n"); 2500 #endif 2501 ip6_clearpktopts(opt, -1); 2502 } else { 2503 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2504 if (opt == NULL) 2505 return (ENOMEM); 2506 } 2507 *pktopt = NULL; 2508 2509 if (!m || m->m_len == 0) { 2510 /* 2511 * Only turning off any previous options, regardless of 2512 * whether the opt is just created or given. 2513 */ 2514 free(opt, M_IP6OPT); 2515 return (0); 2516 } 2517 2518 /* set options specified by user. */ 2519 NET_EPOCH_ENTER(et); 2520 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2521 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2522 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2523 free(opt, M_IP6OPT); 2524 NET_EPOCH_EXIT(et); 2525 return (error); 2526 } 2527 NET_EPOCH_EXIT(et); 2528 *pktopt = opt; 2529 return (0); 2530 } 2531 2532 /* 2533 * initialize ip6_pktopts. beware that there are non-zero default values in 2534 * the struct. 2535 */ 2536 void 2537 ip6_initpktopts(struct ip6_pktopts *opt) 2538 { 2539 2540 bzero(opt, sizeof(*opt)); 2541 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2542 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2543 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2544 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2545 } 2546 2547 static int 2548 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2549 struct ucred *cred, int uproto) 2550 { 2551 struct epoch_tracker et; 2552 struct ip6_pktopts *opt; 2553 int ret; 2554 2555 if (*pktopt == NULL) { 2556 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2557 M_NOWAIT); 2558 if (*pktopt == NULL) 2559 return (ENOBUFS); 2560 ip6_initpktopts(*pktopt); 2561 } 2562 opt = *pktopt; 2563 2564 NET_EPOCH_ENTER(et); 2565 ret = ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto); 2566 NET_EPOCH_EXIT(et); 2567 2568 return (ret); 2569 } 2570 2571 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2572 if (pktopt && pktopt->field) { \ 2573 INP_RUNLOCK(inp); \ 2574 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2575 malloc_optdata = true; \ 2576 INP_RLOCK(inp); \ 2577 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ 2578 INP_RUNLOCK(inp); \ 2579 free(optdata, M_TEMP); \ 2580 return (ECONNRESET); \ 2581 } \ 2582 pktopt = inp->in6p_outputopts; \ 2583 if (pktopt && pktopt->field) { \ 2584 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2585 bcopy(pktopt->field, optdata, optdatalen); \ 2586 } else { \ 2587 free(optdata, M_TEMP); \ 2588 optdata = NULL; \ 2589 malloc_optdata = false; \ 2590 } \ 2591 } \ 2592 } while(0) 2593 2594 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2595 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2596 2597 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2598 pktopt->field->sa_len) 2599 2600 static int 2601 ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt) 2602 { 2603 void *optdata = NULL; 2604 bool malloc_optdata = false; 2605 int optdatalen = 0; 2606 int error = 0; 2607 struct in6_pktinfo null_pktinfo; 2608 int deftclass = 0, on; 2609 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2610 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2611 struct ip6_pktopts *pktopt; 2612 2613 INP_RLOCK(inp); 2614 pktopt = inp->in6p_outputopts; 2615 2616 switch (optname) { 2617 case IPV6_PKTINFO: 2618 optdata = (void *)&null_pktinfo; 2619 if (pktopt && pktopt->ip6po_pktinfo) { 2620 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2621 sizeof(null_pktinfo)); 2622 in6_clearscope(&null_pktinfo.ipi6_addr); 2623 } else { 2624 /* XXX: we don't have to do this every time... */ 2625 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2626 } 2627 optdatalen = sizeof(struct in6_pktinfo); 2628 break; 2629 case IPV6_TCLASS: 2630 if (pktopt && pktopt->ip6po_tclass >= 0) 2631 deftclass = pktopt->ip6po_tclass; 2632 optdata = (void *)&deftclass; 2633 optdatalen = sizeof(int); 2634 break; 2635 case IPV6_HOPOPTS: 2636 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2637 break; 2638 case IPV6_RTHDR: 2639 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2640 break; 2641 case IPV6_RTHDRDSTOPTS: 2642 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2643 break; 2644 case IPV6_DSTOPTS: 2645 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2646 break; 2647 case IPV6_NEXTHOP: 2648 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2649 break; 2650 case IPV6_USE_MIN_MTU: 2651 if (pktopt) 2652 defminmtu = pktopt->ip6po_minmtu; 2653 optdata = (void *)&defminmtu; 2654 optdatalen = sizeof(int); 2655 break; 2656 case IPV6_DONTFRAG: 2657 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2658 on = 1; 2659 else 2660 on = 0; 2661 optdata = (void *)&on; 2662 optdatalen = sizeof(on); 2663 break; 2664 case IPV6_PREFER_TEMPADDR: 2665 if (pktopt) 2666 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2667 optdata = (void *)&defpreftemp; 2668 optdatalen = sizeof(int); 2669 break; 2670 default: /* should not happen */ 2671 #ifdef DIAGNOSTIC 2672 panic("ip6_getpcbopt: unexpected option\n"); 2673 #endif 2674 INP_RUNLOCK(inp); 2675 return (ENOPROTOOPT); 2676 } 2677 INP_RUNLOCK(inp); 2678 2679 error = sooptcopyout(sopt, optdata, optdatalen); 2680 if (malloc_optdata) 2681 free(optdata, M_TEMP); 2682 2683 return (error); 2684 } 2685 2686 void 2687 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2688 { 2689 if (pktopt == NULL) 2690 return; 2691 2692 if (optname == -1 || optname == IPV6_PKTINFO) { 2693 if (pktopt->ip6po_pktinfo) 2694 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2695 pktopt->ip6po_pktinfo = NULL; 2696 } 2697 if (optname == -1 || optname == IPV6_HOPLIMIT) 2698 pktopt->ip6po_hlim = -1; 2699 if (optname == -1 || optname == IPV6_TCLASS) 2700 pktopt->ip6po_tclass = -1; 2701 if (optname == -1 || optname == IPV6_NEXTHOP) { 2702 if (pktopt->ip6po_nextroute.ro_nh) { 2703 NH_FREE(pktopt->ip6po_nextroute.ro_nh); 2704 pktopt->ip6po_nextroute.ro_nh = NULL; 2705 } 2706 if (pktopt->ip6po_nexthop) 2707 free(pktopt->ip6po_nexthop, M_IP6OPT); 2708 pktopt->ip6po_nexthop = NULL; 2709 } 2710 if (optname == -1 || optname == IPV6_HOPOPTS) { 2711 if (pktopt->ip6po_hbh) 2712 free(pktopt->ip6po_hbh, M_IP6OPT); 2713 pktopt->ip6po_hbh = NULL; 2714 } 2715 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2716 if (pktopt->ip6po_dest1) 2717 free(pktopt->ip6po_dest1, M_IP6OPT); 2718 pktopt->ip6po_dest1 = NULL; 2719 } 2720 if (optname == -1 || optname == IPV6_RTHDR) { 2721 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2722 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2723 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2724 if (pktopt->ip6po_route.ro_nh) { 2725 NH_FREE(pktopt->ip6po_route.ro_nh); 2726 pktopt->ip6po_route.ro_nh = NULL; 2727 } 2728 } 2729 if (optname == -1 || optname == IPV6_DSTOPTS) { 2730 if (pktopt->ip6po_dest2) 2731 free(pktopt->ip6po_dest2, M_IP6OPT); 2732 pktopt->ip6po_dest2 = NULL; 2733 } 2734 } 2735 2736 #define PKTOPT_EXTHDRCPY(type) \ 2737 do {\ 2738 if (src->type) {\ 2739 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2740 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2741 if (dst->type == NULL)\ 2742 goto bad;\ 2743 bcopy(src->type, dst->type, hlen);\ 2744 }\ 2745 } while (/*CONSTCOND*/ 0) 2746 2747 static int 2748 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2749 { 2750 if (dst == NULL || src == NULL) { 2751 printf("ip6_clearpktopts: invalid argument\n"); 2752 return (EINVAL); 2753 } 2754 2755 dst->ip6po_hlim = src->ip6po_hlim; 2756 dst->ip6po_tclass = src->ip6po_tclass; 2757 dst->ip6po_flags = src->ip6po_flags; 2758 dst->ip6po_minmtu = src->ip6po_minmtu; 2759 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2760 if (src->ip6po_pktinfo) { 2761 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2762 M_IP6OPT, canwait); 2763 if (dst->ip6po_pktinfo == NULL) 2764 goto bad; 2765 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2766 } 2767 if (src->ip6po_nexthop) { 2768 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2769 M_IP6OPT, canwait); 2770 if (dst->ip6po_nexthop == NULL) 2771 goto bad; 2772 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2773 src->ip6po_nexthop->sa_len); 2774 } 2775 PKTOPT_EXTHDRCPY(ip6po_hbh); 2776 PKTOPT_EXTHDRCPY(ip6po_dest1); 2777 PKTOPT_EXTHDRCPY(ip6po_dest2); 2778 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2779 return (0); 2780 2781 bad: 2782 ip6_clearpktopts(dst, -1); 2783 return (ENOBUFS); 2784 } 2785 #undef PKTOPT_EXTHDRCPY 2786 2787 struct ip6_pktopts * 2788 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2789 { 2790 int error; 2791 struct ip6_pktopts *dst; 2792 2793 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2794 if (dst == NULL) 2795 return (NULL); 2796 ip6_initpktopts(dst); 2797 2798 if ((error = copypktopts(dst, src, canwait)) != 0) { 2799 free(dst, M_IP6OPT); 2800 return (NULL); 2801 } 2802 2803 return (dst); 2804 } 2805 2806 void 2807 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2808 { 2809 if (pktopt == NULL) 2810 return; 2811 2812 ip6_clearpktopts(pktopt, -1); 2813 2814 free(pktopt, M_IP6OPT); 2815 } 2816 2817 /* 2818 * Set IPv6 outgoing packet options based on advanced API. 2819 */ 2820 int 2821 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2822 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2823 { 2824 struct cmsghdr *cm = NULL; 2825 2826 if (control == NULL || opt == NULL) 2827 return (EINVAL); 2828 2829 /* 2830 * ip6_setpktopt can call ifnet_byindex(), so it's imperative that we 2831 * are in the network epoch here. 2832 */ 2833 NET_EPOCH_ASSERT(); 2834 2835 ip6_initpktopts(opt); 2836 if (stickyopt) { 2837 int error; 2838 2839 /* 2840 * If stickyopt is provided, make a local copy of the options 2841 * for this particular packet, then override them by ancillary 2842 * objects. 2843 * XXX: copypktopts() does not copy the cached route to a next 2844 * hop (if any). This is not very good in terms of efficiency, 2845 * but we can allow this since this option should be rarely 2846 * used. 2847 */ 2848 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2849 return (error); 2850 } 2851 2852 /* 2853 * XXX: Currently, we assume all the optional information is stored 2854 * in a single mbuf. 2855 */ 2856 if (control->m_next) 2857 return (EINVAL); 2858 2859 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2860 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2861 int error; 2862 2863 if (control->m_len < CMSG_LEN(0)) 2864 return (EINVAL); 2865 2866 cm = mtod(control, struct cmsghdr *); 2867 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2868 return (EINVAL); 2869 if (cm->cmsg_level != IPPROTO_IPV6) 2870 continue; 2871 2872 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2873 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2874 if (error) 2875 return (error); 2876 } 2877 2878 return (0); 2879 } 2880 2881 /* 2882 * Set a particular packet option, as a sticky option or an ancillary data 2883 * item. "len" can be 0 only when it's a sticky option. 2884 * We have 4 cases of combination of "sticky" and "cmsg": 2885 * "sticky=0, cmsg=0": impossible 2886 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2887 * "sticky=1, cmsg=0": RFC3542 socket option 2888 * "sticky=1, cmsg=1": RFC2292 socket option 2889 */ 2890 static int 2891 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2892 struct ucred *cred, int sticky, int cmsg, int uproto) 2893 { 2894 int minmtupolicy, preftemp; 2895 int error; 2896 2897 NET_EPOCH_ASSERT(); 2898 2899 if (!sticky && !cmsg) { 2900 #ifdef DIAGNOSTIC 2901 printf("ip6_setpktopt: impossible case\n"); 2902 #endif 2903 return (EINVAL); 2904 } 2905 2906 /* 2907 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2908 * not be specified in the context of RFC3542. Conversely, 2909 * RFC3542 types should not be specified in the context of RFC2292. 2910 */ 2911 if (!cmsg) { 2912 switch (optname) { 2913 case IPV6_2292PKTINFO: 2914 case IPV6_2292HOPLIMIT: 2915 case IPV6_2292NEXTHOP: 2916 case IPV6_2292HOPOPTS: 2917 case IPV6_2292DSTOPTS: 2918 case IPV6_2292RTHDR: 2919 case IPV6_2292PKTOPTIONS: 2920 return (ENOPROTOOPT); 2921 } 2922 } 2923 if (sticky && cmsg) { 2924 switch (optname) { 2925 case IPV6_PKTINFO: 2926 case IPV6_HOPLIMIT: 2927 case IPV6_NEXTHOP: 2928 case IPV6_HOPOPTS: 2929 case IPV6_DSTOPTS: 2930 case IPV6_RTHDRDSTOPTS: 2931 case IPV6_RTHDR: 2932 case IPV6_USE_MIN_MTU: 2933 case IPV6_DONTFRAG: 2934 case IPV6_TCLASS: 2935 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2936 return (ENOPROTOOPT); 2937 } 2938 } 2939 2940 switch (optname) { 2941 case IPV6_2292PKTINFO: 2942 case IPV6_PKTINFO: 2943 { 2944 struct ifnet *ifp = NULL; 2945 struct in6_pktinfo *pktinfo; 2946 2947 if (len != sizeof(struct in6_pktinfo)) 2948 return (EINVAL); 2949 2950 pktinfo = (struct in6_pktinfo *)buf; 2951 2952 /* 2953 * An application can clear any sticky IPV6_PKTINFO option by 2954 * doing a "regular" setsockopt with ipi6_addr being 2955 * in6addr_any and ipi6_ifindex being zero. 2956 * [RFC 3542, Section 6] 2957 */ 2958 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2959 pktinfo->ipi6_ifindex == 0 && 2960 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2961 ip6_clearpktopts(opt, optname); 2962 break; 2963 } 2964 2965 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2966 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2967 return (EINVAL); 2968 } 2969 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2970 return (EINVAL); 2971 /* validate the interface index if specified. */ 2972 if (pktinfo->ipi6_ifindex) { 2973 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2974 if (ifp == NULL) 2975 return (ENXIO); 2976 } 2977 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2978 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2979 return (ENETDOWN); 2980 2981 if (ifp != NULL && 2982 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2983 struct in6_ifaddr *ia; 2984 2985 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2986 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2987 if (ia == NULL) 2988 return (EADDRNOTAVAIL); 2989 ifa_free(&ia->ia_ifa); 2990 } 2991 /* 2992 * We store the address anyway, and let in6_selectsrc() 2993 * validate the specified address. This is because ipi6_addr 2994 * may not have enough information about its scope zone, and 2995 * we may need additional information (such as outgoing 2996 * interface or the scope zone of a destination address) to 2997 * disambiguate the scope. 2998 * XXX: the delay of the validation may confuse the 2999 * application when it is used as a sticky option. 3000 */ 3001 if (opt->ip6po_pktinfo == NULL) { 3002 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 3003 M_IP6OPT, M_NOWAIT); 3004 if (opt->ip6po_pktinfo == NULL) 3005 return (ENOBUFS); 3006 } 3007 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 3008 break; 3009 } 3010 3011 case IPV6_2292HOPLIMIT: 3012 case IPV6_HOPLIMIT: 3013 { 3014 int *hlimp; 3015 3016 /* 3017 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 3018 * to simplify the ordering among hoplimit options. 3019 */ 3020 if (optname == IPV6_HOPLIMIT && sticky) 3021 return (ENOPROTOOPT); 3022 3023 if (len != sizeof(int)) 3024 return (EINVAL); 3025 hlimp = (int *)buf; 3026 if (*hlimp < -1 || *hlimp > 255) 3027 return (EINVAL); 3028 3029 opt->ip6po_hlim = *hlimp; 3030 break; 3031 } 3032 3033 case IPV6_TCLASS: 3034 { 3035 int tclass; 3036 3037 if (len != sizeof(int)) 3038 return (EINVAL); 3039 tclass = *(int *)buf; 3040 if (tclass < -1 || tclass > 255) 3041 return (EINVAL); 3042 3043 opt->ip6po_tclass = tclass; 3044 break; 3045 } 3046 3047 case IPV6_2292NEXTHOP: 3048 case IPV6_NEXTHOP: 3049 if (cred != NULL) { 3050 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3051 if (error) 3052 return (error); 3053 } 3054 3055 if (len == 0) { /* just remove the option */ 3056 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3057 break; 3058 } 3059 3060 /* check if cmsg_len is large enough for sa_len */ 3061 if (len < sizeof(struct sockaddr) || len < *buf) 3062 return (EINVAL); 3063 3064 switch (((struct sockaddr *)buf)->sa_family) { 3065 case AF_INET6: 3066 { 3067 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3068 int error; 3069 3070 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3071 return (EINVAL); 3072 3073 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3074 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3075 return (EINVAL); 3076 } 3077 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 3078 != 0) { 3079 return (error); 3080 } 3081 break; 3082 } 3083 case AF_LINK: /* should eventually be supported */ 3084 default: 3085 return (EAFNOSUPPORT); 3086 } 3087 3088 /* turn off the previous option, then set the new option. */ 3089 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3090 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3091 if (opt->ip6po_nexthop == NULL) 3092 return (ENOBUFS); 3093 bcopy(buf, opt->ip6po_nexthop, *buf); 3094 break; 3095 3096 case IPV6_2292HOPOPTS: 3097 case IPV6_HOPOPTS: 3098 { 3099 struct ip6_hbh *hbh; 3100 int hbhlen; 3101 3102 /* 3103 * XXX: We don't allow a non-privileged user to set ANY HbH 3104 * options, since per-option restriction has too much 3105 * overhead. 3106 */ 3107 if (cred != NULL) { 3108 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3109 if (error) 3110 return (error); 3111 } 3112 3113 if (len == 0) { 3114 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3115 break; /* just remove the option */ 3116 } 3117 3118 /* message length validation */ 3119 if (len < sizeof(struct ip6_hbh)) 3120 return (EINVAL); 3121 hbh = (struct ip6_hbh *)buf; 3122 hbhlen = (hbh->ip6h_len + 1) << 3; 3123 if (len != hbhlen) 3124 return (EINVAL); 3125 3126 /* turn off the previous option, then set the new option. */ 3127 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3128 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3129 if (opt->ip6po_hbh == NULL) 3130 return (ENOBUFS); 3131 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3132 3133 break; 3134 } 3135 3136 case IPV6_2292DSTOPTS: 3137 case IPV6_DSTOPTS: 3138 case IPV6_RTHDRDSTOPTS: 3139 { 3140 struct ip6_dest *dest, **newdest = NULL; 3141 int destlen; 3142 3143 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 3144 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3145 if (error) 3146 return (error); 3147 } 3148 3149 if (len == 0) { 3150 ip6_clearpktopts(opt, optname); 3151 break; /* just remove the option */ 3152 } 3153 3154 /* message length validation */ 3155 if (len < sizeof(struct ip6_dest)) 3156 return (EINVAL); 3157 dest = (struct ip6_dest *)buf; 3158 destlen = (dest->ip6d_len + 1) << 3; 3159 if (len != destlen) 3160 return (EINVAL); 3161 3162 /* 3163 * Determine the position that the destination options header 3164 * should be inserted; before or after the routing header. 3165 */ 3166 switch (optname) { 3167 case IPV6_2292DSTOPTS: 3168 /* 3169 * The old advacned API is ambiguous on this point. 3170 * Our approach is to determine the position based 3171 * according to the existence of a routing header. 3172 * Note, however, that this depends on the order of the 3173 * extension headers in the ancillary data; the 1st 3174 * part of the destination options header must appear 3175 * before the routing header in the ancillary data, 3176 * too. 3177 * RFC3542 solved the ambiguity by introducing 3178 * separate ancillary data or option types. 3179 */ 3180 if (opt->ip6po_rthdr == NULL) 3181 newdest = &opt->ip6po_dest1; 3182 else 3183 newdest = &opt->ip6po_dest2; 3184 break; 3185 case IPV6_RTHDRDSTOPTS: 3186 newdest = &opt->ip6po_dest1; 3187 break; 3188 case IPV6_DSTOPTS: 3189 newdest = &opt->ip6po_dest2; 3190 break; 3191 } 3192 3193 /* turn off the previous option, then set the new option. */ 3194 ip6_clearpktopts(opt, optname); 3195 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3196 if (*newdest == NULL) 3197 return (ENOBUFS); 3198 bcopy(dest, *newdest, destlen); 3199 3200 break; 3201 } 3202 3203 case IPV6_2292RTHDR: 3204 case IPV6_RTHDR: 3205 { 3206 struct ip6_rthdr *rth; 3207 int rthlen; 3208 3209 if (len == 0) { 3210 ip6_clearpktopts(opt, IPV6_RTHDR); 3211 break; /* just remove the option */ 3212 } 3213 3214 /* message length validation */ 3215 if (len < sizeof(struct ip6_rthdr)) 3216 return (EINVAL); 3217 rth = (struct ip6_rthdr *)buf; 3218 rthlen = (rth->ip6r_len + 1) << 3; 3219 if (len != rthlen) 3220 return (EINVAL); 3221 3222 switch (rth->ip6r_type) { 3223 case IPV6_RTHDR_TYPE_0: 3224 if (rth->ip6r_len == 0) /* must contain one addr */ 3225 return (EINVAL); 3226 if (rth->ip6r_len % 2) /* length must be even */ 3227 return (EINVAL); 3228 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3229 return (EINVAL); 3230 break; 3231 default: 3232 return (EINVAL); /* not supported */ 3233 } 3234 3235 /* turn off the previous option */ 3236 ip6_clearpktopts(opt, IPV6_RTHDR); 3237 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3238 if (opt->ip6po_rthdr == NULL) 3239 return (ENOBUFS); 3240 bcopy(rth, opt->ip6po_rthdr, rthlen); 3241 3242 break; 3243 } 3244 3245 case IPV6_USE_MIN_MTU: 3246 if (len != sizeof(int)) 3247 return (EINVAL); 3248 minmtupolicy = *(int *)buf; 3249 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3250 minmtupolicy != IP6PO_MINMTU_DISABLE && 3251 minmtupolicy != IP6PO_MINMTU_ALL) { 3252 return (EINVAL); 3253 } 3254 opt->ip6po_minmtu = minmtupolicy; 3255 break; 3256 3257 case IPV6_DONTFRAG: 3258 if (len != sizeof(int)) 3259 return (EINVAL); 3260 3261 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3262 /* 3263 * we ignore this option for TCP sockets. 3264 * (RFC3542 leaves this case unspecified.) 3265 */ 3266 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3267 } else 3268 opt->ip6po_flags |= IP6PO_DONTFRAG; 3269 break; 3270 3271 case IPV6_PREFER_TEMPADDR: 3272 if (len != sizeof(int)) 3273 return (EINVAL); 3274 preftemp = *(int *)buf; 3275 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3276 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3277 preftemp != IP6PO_TEMPADDR_PREFER) { 3278 return (EINVAL); 3279 } 3280 opt->ip6po_prefer_tempaddr = preftemp; 3281 break; 3282 3283 default: 3284 return (ENOPROTOOPT); 3285 } /* end of switch */ 3286 3287 return (0); 3288 } 3289 3290 /* 3291 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3292 * packet to the input queue of a specified interface. Note that this 3293 * calls the output routine of the loopback "driver", but with an interface 3294 * pointer that might NOT be &loif -- easier than replicating that code here. 3295 */ 3296 void 3297 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3298 { 3299 struct mbuf *copym; 3300 struct ip6_hdr *ip6; 3301 3302 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3303 if (copym == NULL) 3304 return; 3305 3306 /* 3307 * Make sure to deep-copy IPv6 header portion in case the data 3308 * is in an mbuf cluster, so that we can safely override the IPv6 3309 * header portion later. 3310 */ 3311 if (!M_WRITABLE(copym) || 3312 copym->m_len < sizeof(struct ip6_hdr)) { 3313 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3314 if (copym == NULL) 3315 return; 3316 } 3317 ip6 = mtod(copym, struct ip6_hdr *); 3318 /* 3319 * clear embedded scope identifiers if necessary. 3320 * in6_clearscope will touch the addresses only when necessary. 3321 */ 3322 in6_clearscope(&ip6->ip6_src); 3323 in6_clearscope(&ip6->ip6_dst); 3324 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3325 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3326 CSUM_PSEUDO_HDR; 3327 copym->m_pkthdr.csum_data = 0xffff; 3328 } 3329 if_simloop(ifp, copym, AF_INET6, 0); 3330 } 3331 3332 /* 3333 * Chop IPv6 header off from the payload. 3334 */ 3335 static int 3336 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3337 { 3338 struct mbuf *mh; 3339 struct ip6_hdr *ip6; 3340 3341 ip6 = mtod(m, struct ip6_hdr *); 3342 if (m->m_len > sizeof(*ip6)) { 3343 mh = m_gethdr(M_NOWAIT, MT_DATA); 3344 if (mh == NULL) { 3345 m_freem(m); 3346 return ENOBUFS; 3347 } 3348 m_move_pkthdr(mh, m); 3349 M_ALIGN(mh, sizeof(*ip6)); 3350 m->m_len -= sizeof(*ip6); 3351 m->m_data += sizeof(*ip6); 3352 mh->m_next = m; 3353 m = mh; 3354 m->m_len = sizeof(*ip6); 3355 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3356 } 3357 exthdrs->ip6e_ip6 = m; 3358 return 0; 3359 } 3360 3361 /* 3362 * Compute IPv6 extension header length. 3363 */ 3364 int 3365 ip6_optlen(struct inpcb *inp) 3366 { 3367 int len; 3368 3369 if (!inp->in6p_outputopts) 3370 return 0; 3371 3372 len = 0; 3373 #define elen(x) \ 3374 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3375 3376 len += elen(inp->in6p_outputopts->ip6po_hbh); 3377 if (inp->in6p_outputopts->ip6po_rthdr) 3378 /* dest1 is valid with rthdr only */ 3379 len += elen(inp->in6p_outputopts->ip6po_dest1); 3380 len += elen(inp->in6p_outputopts->ip6po_rthdr); 3381 len += elen(inp->in6p_outputopts->ip6po_dest2); 3382 return len; 3383 #undef elen 3384 } 3385