1 /* $FreeBSD$ */ 2 /* $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /*- 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 4. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include "opt_ip6fw.h" 65 #include "opt_inet.h" 66 #include "opt_inet6.h" 67 #include "opt_ipsec.h" 68 69 #include <sys/param.h> 70 #include <sys/malloc.h> 71 #include <sys/mbuf.h> 72 #include <sys/proc.h> 73 #include <sys/errno.h> 74 #include <sys/protosw.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/systm.h> 78 #include <sys/kernel.h> 79 80 #include <net/if.h> 81 #include <net/netisr.h> 82 #include <net/route.h> 83 #include <net/pfil.h> 84 85 #include <netinet/in.h> 86 #include <netinet/in_var.h> 87 #include <netinet6/in6_var.h> 88 #include <netinet/ip6.h> 89 #include <netinet/icmp6.h> 90 #include <netinet6/ip6_var.h> 91 #include <netinet/in_pcb.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet6/nd6.h> 94 95 #ifdef IPSEC 96 #include <netinet6/ipsec.h> 97 #ifdef INET6 98 #include <netinet6/ipsec6.h> 99 #endif 100 #include <netkey/key.h> 101 #endif /* IPSEC */ 102 103 #ifdef FAST_IPSEC 104 #include <netipsec/ipsec.h> 105 #include <netipsec/ipsec6.h> 106 #include <netipsec/key.h> 107 #endif /* FAST_IPSEC */ 108 109 #include <netinet6/ip6_fw.h> 110 111 #include <net/net_osdep.h> 112 113 #include <netinet6/ip6protosw.h> 114 #include <netinet6/scope6_var.h> 115 116 static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "internet multicast options"); 117 118 struct ip6_exthdrs { 119 struct mbuf *ip6e_ip6; 120 struct mbuf *ip6e_hbh; 121 struct mbuf *ip6e_dest1; 122 struct mbuf *ip6e_rthdr; 123 struct mbuf *ip6e_dest2; 124 }; 125 126 static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **, 127 int, int)); 128 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 129 struct socket *, struct sockopt *)); 130 static int ip6_getpcbopt __P((struct ip6_pktopts *, int, struct sockopt *)); 131 static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *, int, 132 int, int, int)); 133 134 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *)); 135 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **)); 136 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int)); 137 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 138 struct ip6_frag **)); 139 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t)); 140 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *)); 141 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *, 142 struct ifnet *, struct in6_addr *, u_long *, int *)); 143 static int copypktopts __P((struct ip6_pktopts *, struct ip6_pktopts *, int)); 144 145 146 /* 147 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 148 * header (with pri, len, nxt, hlim, src, dst). 149 * This function may modify ver and hlim only. 150 * The mbuf chain containing the packet will be freed. 151 * The mbuf opt, if present, will not be freed. 152 * 153 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 154 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 155 * which is rt_rmx.rmx_mtu. 156 */ 157 int 158 ip6_output(m0, opt, ro, flags, im6o, ifpp, inp) 159 struct mbuf *m0; 160 struct ip6_pktopts *opt; 161 struct route_in6 *ro; 162 int flags; 163 struct ip6_moptions *im6o; 164 struct ifnet **ifpp; /* XXX: just for statistics */ 165 struct inpcb *inp; 166 { 167 struct ip6_hdr *ip6, *mhip6; 168 struct ifnet *ifp, *origifp; 169 struct mbuf *m = m0; 170 int hlen, tlen, len, off; 171 struct route_in6 ip6route; 172 struct rtentry *rt = NULL; 173 struct sockaddr_in6 *dst, src_sa, dst_sa; 174 struct in6_addr odst; 175 int error = 0; 176 struct in6_ifaddr *ia = NULL; 177 u_long mtu; 178 int alwaysfrag, dontfrag; 179 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 180 struct ip6_exthdrs exthdrs; 181 struct in6_addr finaldst, src0, dst0; 182 u_int32_t zone; 183 struct route_in6 *ro_pmtu = NULL; 184 int hdrsplit = 0; 185 int needipsec = 0; 186 #if defined(IPSEC) || defined(FAST_IPSEC) 187 int needipsectun = 0; 188 struct secpolicy *sp = NULL; 189 #endif /*IPSEC || FAST_IPSEC*/ 190 191 ip6 = mtod(m, struct ip6_hdr *); 192 finaldst = ip6->ip6_dst; 193 194 #define MAKE_EXTHDR(hp, mp) \ 195 do { \ 196 if (hp) { \ 197 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 198 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 199 ((eh)->ip6e_len + 1) << 3); \ 200 if (error) \ 201 goto freehdrs; \ 202 } \ 203 } while (/*CONSTCOND*/ 0) 204 205 bzero(&exthdrs, sizeof(exthdrs)); 206 207 if (opt) { 208 /* Hop-by-Hop options header */ 209 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 210 /* Destination options header(1st part) */ 211 if (opt->ip6po_rthdr) { 212 /* 213 * Destination options header(1st part) 214 * This only makes sence with a routing header. 215 * See Section 9.2 of RFC 3542. 216 * Disabling this part just for MIP6 convenience is 217 * a bad idea. We need to think carefully about a 218 * way to make the advanced API coexist with MIP6 219 * options, which might automatically be inserted in 220 * the kernel. 221 */ 222 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 223 } 224 /* Routing header */ 225 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 226 /* Destination options header(2nd part) */ 227 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 228 } 229 230 #ifdef IPSEC 231 /* get a security policy for this packet */ 232 if (inp == NULL) 233 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 234 else 235 sp = ipsec6_getpolicybypcb(m, IPSEC_DIR_OUTBOUND, inp, &error); 236 237 if (sp == NULL) { 238 ipsec6stat.out_inval++; 239 goto freehdrs; 240 } 241 242 error = 0; 243 244 /* check policy */ 245 switch (sp->policy) { 246 case IPSEC_POLICY_DISCARD: 247 /* 248 * This packet is just discarded. 249 */ 250 ipsec6stat.out_polvio++; 251 goto freehdrs; 252 253 case IPSEC_POLICY_BYPASS: 254 case IPSEC_POLICY_NONE: 255 /* no need to do IPsec. */ 256 needipsec = 0; 257 break; 258 259 case IPSEC_POLICY_IPSEC: 260 if (sp->req == NULL) { 261 /* acquire a policy */ 262 error = key_spdacquire(sp); 263 goto freehdrs; 264 } 265 needipsec = 1; 266 break; 267 268 case IPSEC_POLICY_ENTRUST: 269 default: 270 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 271 } 272 #endif /* IPSEC */ 273 #ifdef FAST_IPSEC 274 /* get a security policy for this packet */ 275 if (inp == NULL) 276 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 277 else 278 sp = ipsec_getpolicybysock(m, IPSEC_DIR_OUTBOUND, inp, &error); 279 280 if (sp == NULL) { 281 newipsecstat.ips_out_inval++; 282 goto freehdrs; 283 } 284 285 error = 0; 286 287 /* check policy */ 288 switch (sp->policy) { 289 case IPSEC_POLICY_DISCARD: 290 /* 291 * This packet is just discarded. 292 */ 293 newipsecstat.ips_out_polvio++; 294 goto freehdrs; 295 296 case IPSEC_POLICY_BYPASS: 297 case IPSEC_POLICY_NONE: 298 /* no need to do IPsec. */ 299 needipsec = 0; 300 break; 301 302 case IPSEC_POLICY_IPSEC: 303 if (sp->req == NULL) { 304 /* acquire a policy */ 305 error = key_spdacquire(sp); 306 goto freehdrs; 307 } 308 needipsec = 1; 309 break; 310 311 case IPSEC_POLICY_ENTRUST: 312 default: 313 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 314 } 315 #endif /* FAST_IPSEC */ 316 317 /* 318 * Calculate the total length of the extension header chain. 319 * Keep the length of the unfragmentable part for fragmentation. 320 */ 321 optlen = 0; 322 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 323 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 324 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 325 unfragpartlen = optlen + sizeof(struct ip6_hdr); 326 /* NOTE: we don't add AH/ESP length here. do that later. */ 327 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 328 329 /* 330 * If we need IPsec, or there is at least one extension header, 331 * separate IP6 header from the payload. 332 */ 333 if ((needipsec || optlen) && !hdrsplit) { 334 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 335 m = NULL; 336 goto freehdrs; 337 } 338 m = exthdrs.ip6e_ip6; 339 hdrsplit++; 340 } 341 342 /* adjust pointer */ 343 ip6 = mtod(m, struct ip6_hdr *); 344 345 /* adjust mbuf packet header length */ 346 m->m_pkthdr.len += optlen; 347 plen = m->m_pkthdr.len - sizeof(*ip6); 348 349 /* If this is a jumbo payload, insert a jumbo payload option. */ 350 if (plen > IPV6_MAXPACKET) { 351 if (!hdrsplit) { 352 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 353 m = NULL; 354 goto freehdrs; 355 } 356 m = exthdrs.ip6e_ip6; 357 hdrsplit++; 358 } 359 /* adjust pointer */ 360 ip6 = mtod(m, struct ip6_hdr *); 361 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 362 goto freehdrs; 363 ip6->ip6_plen = 0; 364 } else 365 ip6->ip6_plen = htons(plen); 366 367 /* 368 * Concatenate headers and fill in next header fields. 369 * Here we have, on "m" 370 * IPv6 payload 371 * and we insert headers accordingly. Finally, we should be getting: 372 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 373 * 374 * during the header composing process, "m" points to IPv6 header. 375 * "mprev" points to an extension header prior to esp. 376 */ 377 { 378 u_char *nexthdrp = &ip6->ip6_nxt; 379 struct mbuf *mprev = m; 380 381 /* 382 * we treat dest2 specially. this makes IPsec processing 383 * much easier. the goal here is to make mprev point the 384 * mbuf prior to dest2. 385 * 386 * result: IPv6 dest2 payload 387 * m and mprev will point to IPv6 header. 388 */ 389 if (exthdrs.ip6e_dest2) { 390 if (!hdrsplit) 391 panic("assumption failed: hdr not split"); 392 exthdrs.ip6e_dest2->m_next = m->m_next; 393 m->m_next = exthdrs.ip6e_dest2; 394 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 395 ip6->ip6_nxt = IPPROTO_DSTOPTS; 396 } 397 398 #define MAKE_CHAIN(m, mp, p, i)\ 399 do {\ 400 if (m) {\ 401 if (!hdrsplit) \ 402 panic("assumption failed: hdr not split"); \ 403 *mtod((m), u_char *) = *(p);\ 404 *(p) = (i);\ 405 p = mtod((m), u_char *);\ 406 (m)->m_next = (mp)->m_next;\ 407 (mp)->m_next = (m);\ 408 (mp) = (m);\ 409 }\ 410 } while (/*CONSTCOND*/ 0) 411 /* 412 * result: IPv6 hbh dest1 rthdr dest2 payload 413 * m will point to IPv6 header. mprev will point to the 414 * extension header prior to dest2 (rthdr in the above case). 415 */ 416 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 417 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 418 IPPROTO_DSTOPTS); 419 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 420 IPPROTO_ROUTING); 421 422 #if defined(IPSEC) || defined(FAST_IPSEC) 423 if (!needipsec) 424 goto skip_ipsec2; 425 426 /* 427 * pointers after IPsec headers are not valid any more. 428 * other pointers need a great care too. 429 * (IPsec routines should not mangle mbufs prior to AH/ESP) 430 */ 431 exthdrs.ip6e_dest2 = NULL; 432 433 { 434 struct ip6_rthdr *rh = NULL; 435 int segleft_org = 0; 436 struct ipsec_output_state state; 437 438 if (exthdrs.ip6e_rthdr) { 439 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 440 segleft_org = rh->ip6r_segleft; 441 rh->ip6r_segleft = 0; 442 } 443 444 bzero(&state, sizeof(state)); 445 state.m = m; 446 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 447 &needipsectun); 448 m = state.m; 449 if (error) { 450 /* mbuf is already reclaimed in ipsec6_output_trans. */ 451 m = NULL; 452 switch (error) { 453 case EHOSTUNREACH: 454 case ENETUNREACH: 455 case EMSGSIZE: 456 case ENOBUFS: 457 case ENOMEM: 458 break; 459 default: 460 printf("ip6_output (ipsec): error code %d\n", error); 461 /* FALLTHROUGH */ 462 case ENOENT: 463 /* don't show these error codes to the user */ 464 error = 0; 465 break; 466 } 467 goto bad; 468 } 469 if (exthdrs.ip6e_rthdr) { 470 /* ah6_output doesn't modify mbuf chain */ 471 rh->ip6r_segleft = segleft_org; 472 } 473 } 474 skip_ipsec2:; 475 #endif 476 } 477 478 /* 479 * If there is a routing header, replace the destination address field 480 * with the first hop of the routing header. 481 */ 482 if (exthdrs.ip6e_rthdr) { 483 struct ip6_rthdr *rh = 484 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 485 struct ip6_rthdr *)); 486 struct ip6_rthdr0 *rh0; 487 struct in6_addr *addr; 488 struct sockaddr_in6 sa; 489 490 switch (rh->ip6r_type) { 491 case IPV6_RTHDR_TYPE_0: 492 rh0 = (struct ip6_rthdr0 *)rh; 493 addr = (struct in6_addr *)(rh0 + 1); 494 495 /* 496 * construct a sockaddr_in6 form of 497 * the first hop. 498 * 499 * XXX: we may not have enough 500 * information about its scope zone; 501 * there is no standard API to pass 502 * the information from the 503 * application. 504 */ 505 bzero(&sa, sizeof(sa)); 506 sa.sin6_family = AF_INET6; 507 sa.sin6_len = sizeof(sa); 508 sa.sin6_addr = addr[0]; 509 if ((error = sa6_embedscope(&sa, 510 ip6_use_defzone)) != 0) { 511 goto bad; 512 } 513 ip6->ip6_dst = sa.sin6_addr; 514 bcopy(&addr[1], &addr[0], sizeof(struct in6_addr) 515 * (rh0->ip6r0_segleft - 1)); 516 addr[rh0->ip6r0_segleft - 1] = finaldst; 517 /* XXX */ 518 in6_clearscope(addr + rh0->ip6r0_segleft - 1); 519 break; 520 default: /* is it possible? */ 521 error = EINVAL; 522 goto bad; 523 } 524 } 525 526 /* Source address validation */ 527 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 528 (flags & IPV6_UNSPECSRC) == 0) { 529 error = EOPNOTSUPP; 530 ip6stat.ip6s_badscope++; 531 goto bad; 532 } 533 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 534 error = EOPNOTSUPP; 535 ip6stat.ip6s_badscope++; 536 goto bad; 537 } 538 539 ip6stat.ip6s_localout++; 540 541 /* 542 * Route packet. 543 */ 544 if (ro == 0) { 545 ro = &ip6route; 546 bzero((caddr_t)ro, sizeof(*ro)); 547 } 548 ro_pmtu = ro; 549 if (opt && opt->ip6po_rthdr) 550 ro = &opt->ip6po_route; 551 dst = (struct sockaddr_in6 *)&ro->ro_dst; 552 553 again: 554 /* 555 * if specified, try to fill in the traffic class field. 556 * do not override if a non-zero value is already set. 557 * we check the diffserv field and the ecn field separately. 558 */ 559 if (opt && opt->ip6po_tclass >= 0) { 560 int mask = 0; 561 562 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 563 mask |= 0xfc; 564 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 565 mask |= 0x03; 566 if (mask != 0) 567 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 568 } 569 570 /* fill in or override the hop limit field, if necessary. */ 571 if (opt && opt->ip6po_hlim != -1) 572 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 573 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 574 if (im6o != NULL) 575 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 576 else 577 ip6->ip6_hlim = ip6_defmcasthlim; 578 } 579 580 #if defined(IPSEC) || defined(FAST_IPSEC) 581 if (needipsec && needipsectun) { 582 struct ipsec_output_state state; 583 584 /* 585 * All the extension headers will become inaccessible 586 * (since they can be encrypted). 587 * Don't panic, we need no more updates to extension headers 588 * on inner IPv6 packet (since they are now encapsulated). 589 * 590 * IPv6 [ESP|AH] IPv6 [extension headers] payload 591 */ 592 bzero(&exthdrs, sizeof(exthdrs)); 593 exthdrs.ip6e_ip6 = m; 594 595 bzero(&state, sizeof(state)); 596 state.m = m; 597 state.ro = (struct route *)ro; 598 state.dst = (struct sockaddr *)dst; 599 600 error = ipsec6_output_tunnel(&state, sp, flags); 601 602 m = state.m; 603 ro = (struct route_in6 *)state.ro; 604 dst = (struct sockaddr_in6 *)state.dst; 605 if (error) { 606 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 607 m0 = m = NULL; 608 m = NULL; 609 switch (error) { 610 case EHOSTUNREACH: 611 case ENETUNREACH: 612 case EMSGSIZE: 613 case ENOBUFS: 614 case ENOMEM: 615 break; 616 default: 617 printf("ip6_output (ipsec): error code %d\n", error); 618 /* FALLTHROUGH */ 619 case ENOENT: 620 /* don't show these error codes to the user */ 621 error = 0; 622 break; 623 } 624 goto bad; 625 } 626 627 exthdrs.ip6e_ip6 = m; 628 } 629 #endif /* IPSEC */ 630 631 /* adjust pointer */ 632 ip6 = mtod(m, struct ip6_hdr *); 633 634 bzero(&dst_sa, sizeof(dst_sa)); 635 dst_sa.sin6_family = AF_INET6; 636 dst_sa.sin6_len = sizeof(dst_sa); 637 dst_sa.sin6_addr = ip6->ip6_dst; 638 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, 639 &ifp, &rt, 0)) != 0) { 640 switch (error) { 641 case EHOSTUNREACH: 642 ip6stat.ip6s_noroute++; 643 break; 644 case EADDRNOTAVAIL: 645 default: 646 break; /* XXX statistics? */ 647 } 648 if (ifp != NULL) 649 in6_ifstat_inc(ifp, ifs6_out_discard); 650 goto bad; 651 } 652 if (rt == NULL) { 653 /* 654 * If in6_selectroute() does not return a route entry, 655 * dst may not have been updated. 656 */ 657 *dst = dst_sa; /* XXX */ 658 } 659 660 /* 661 * then rt (for unicast) and ifp must be non-NULL valid values. 662 */ 663 if ((flags & IPV6_FORWARDING) == 0) { 664 /* XXX: the FORWARDING flag can be set for mrouting. */ 665 in6_ifstat_inc(ifp, ifs6_out_request); 666 } 667 if (rt != NULL) { 668 ia = (struct in6_ifaddr *)(rt->rt_ifa); 669 rt->rt_use++; 670 } 671 672 /* 673 * The outgoing interface must be in the zone of source and 674 * destination addresses. We should use ia_ifp to support the 675 * case of sending packets to an address of our own. 676 */ 677 if (ia != NULL && ia->ia_ifp) 678 origifp = ia->ia_ifp; 679 else 680 origifp = ifp; 681 682 src0 = ip6->ip6_src; 683 if (in6_setscope(&src0, origifp, &zone)) 684 goto badscope; 685 bzero(&src_sa, sizeof(src_sa)); 686 src_sa.sin6_family = AF_INET6; 687 src_sa.sin6_len = sizeof(src_sa); 688 src_sa.sin6_addr = ip6->ip6_src; 689 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 690 goto badscope; 691 692 dst0 = ip6->ip6_dst; 693 if (in6_setscope(&dst0, origifp, &zone)) 694 goto badscope; 695 /* re-initialize to be sure */ 696 bzero(&dst_sa, sizeof(dst_sa)); 697 dst_sa.sin6_family = AF_INET6; 698 dst_sa.sin6_len = sizeof(dst_sa); 699 dst_sa.sin6_addr = ip6->ip6_dst; 700 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 701 goto badscope; 702 } 703 704 /* scope check is done. */ 705 goto routefound; 706 707 badscope: 708 ip6stat.ip6s_badscope++; 709 in6_ifstat_inc(origifp, ifs6_out_discard); 710 if (error == 0) 711 error = EHOSTUNREACH; /* XXX */ 712 goto bad; 713 714 routefound: 715 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 716 if (opt && opt->ip6po_nextroute.ro_rt) { 717 /* 718 * The nexthop is explicitly specified by the 719 * application. We assume the next hop is an IPv6 720 * address. 721 */ 722 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 723 } 724 else if ((rt->rt_flags & RTF_GATEWAY)) 725 dst = (struct sockaddr_in6 *)rt->rt_gateway; 726 } 727 728 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 729 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 730 } else { 731 struct in6_multi *in6m; 732 733 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 734 735 in6_ifstat_inc(ifp, ifs6_out_mcast); 736 737 /* 738 * Confirm that the outgoing interface supports multicast. 739 */ 740 if (!(ifp->if_flags & IFF_MULTICAST)) { 741 ip6stat.ip6s_noroute++; 742 in6_ifstat_inc(ifp, ifs6_out_discard); 743 error = ENETUNREACH; 744 goto bad; 745 } 746 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 747 if (in6m != NULL && 748 (im6o == NULL || im6o->im6o_multicast_loop)) { 749 /* 750 * If we belong to the destination multicast group 751 * on the outgoing interface, and the caller did not 752 * forbid loopback, loop back a copy. 753 */ 754 ip6_mloopback(ifp, m, dst); 755 } else { 756 /* 757 * If we are acting as a multicast router, perform 758 * multicast forwarding as if the packet had just 759 * arrived on the interface to which we are about 760 * to send. The multicast forwarding function 761 * recursively calls this function, using the 762 * IPV6_FORWARDING flag to prevent infinite recursion. 763 * 764 * Multicasts that are looped back by ip6_mloopback(), 765 * above, will be forwarded by the ip6_input() routine, 766 * if necessary. 767 */ 768 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 769 /* 770 * XXX: ip6_mforward expects that rcvif is NULL 771 * when it is called from the originating path. 772 * However, it is not always the case, since 773 * some versions of MGETHDR() does not 774 * initialize the field. 775 */ 776 m->m_pkthdr.rcvif = NULL; 777 if (ip6_mforward(ip6, ifp, m) != 0) { 778 m_freem(m); 779 goto done; 780 } 781 } 782 } 783 /* 784 * Multicasts with a hoplimit of zero may be looped back, 785 * above, but must not be transmitted on a network. 786 * Also, multicasts addressed to the loopback interface 787 * are not sent -- the above call to ip6_mloopback() will 788 * loop back a copy if this host actually belongs to the 789 * destination group on the loopback interface. 790 */ 791 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 792 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 793 m_freem(m); 794 goto done; 795 } 796 } 797 798 /* 799 * Fill the outgoing inteface to tell the upper layer 800 * to increment per-interface statistics. 801 */ 802 if (ifpp) 803 *ifpp = ifp; 804 805 /* Determine path MTU. */ 806 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 807 &alwaysfrag)) != 0) 808 goto bad; 809 810 /* 811 * The caller of this function may specify to use the minimum MTU 812 * in some cases. 813 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 814 * setting. The logic is a bit complicated; by default, unicast 815 * packets will follow path MTU while multicast packets will be sent at 816 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 817 * including unicast ones will be sent at the minimum MTU. Multicast 818 * packets will always be sent at the minimum MTU unless 819 * IP6PO_MINMTU_DISABLE is explicitly specified. 820 * See RFC 3542 for more details. 821 */ 822 if (mtu > IPV6_MMTU) { 823 if ((flags & IPV6_MINMTU)) 824 mtu = IPV6_MMTU; 825 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 826 mtu = IPV6_MMTU; 827 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 828 (opt == NULL || 829 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 830 mtu = IPV6_MMTU; 831 } 832 } 833 834 /* 835 * clear embedded scope identifiers if necessary. 836 * in6_clearscope will touch the addresses only when necessary. 837 */ 838 in6_clearscope(&ip6->ip6_src); 839 in6_clearscope(&ip6->ip6_dst); 840 841 /* 842 * Check with the firewall... 843 */ 844 if (ip6_fw_enable && ip6_fw_chk_ptr) { 845 u_short port = 0; 846 m->m_pkthdr.rcvif = NULL; /* XXX */ 847 /* If ipfw says divert, we have to just drop packet */ 848 if ((*ip6_fw_chk_ptr)(&ip6, ifp, &port, &m)) { 849 m_freem(m); 850 goto done; 851 } 852 if (!m) { 853 error = EACCES; 854 goto done; 855 } 856 } 857 858 /* 859 * If the outgoing packet contains a hop-by-hop options header, 860 * it must be examined and processed even by the source node. 861 * (RFC 2460, section 4.) 862 */ 863 if (exthdrs.ip6e_hbh) { 864 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 865 u_int32_t dummy; /* XXX unused */ 866 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 867 868 #ifdef DIAGNOSTIC 869 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 870 panic("ip6e_hbh is not continuous"); 871 #endif 872 /* 873 * XXX: if we have to send an ICMPv6 error to the sender, 874 * we need the M_LOOP flag since icmp6_error() expects 875 * the IPv6 and the hop-by-hop options header are 876 * continuous unless the flag is set. 877 */ 878 m->m_flags |= M_LOOP; 879 m->m_pkthdr.rcvif = ifp; 880 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 881 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 882 &dummy, &plen) < 0) { 883 /* m was already freed at this point */ 884 error = EINVAL;/* better error? */ 885 goto done; 886 } 887 m->m_flags &= ~M_LOOP; /* XXX */ 888 m->m_pkthdr.rcvif = NULL; 889 } 890 891 /* Jump over all PFIL processing if hooks are not active. */ 892 if (!PFIL_HOOKED(&inet6_pfil_hook)) 893 goto passout; 894 895 odst = ip6->ip6_dst; 896 /* Run through list of hooks for output packets. */ 897 error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 898 if (error != 0 || m == NULL) 899 goto done; 900 ip6 = mtod(m, struct ip6_hdr *); 901 902 /* See if destination IP address was changed by packet filter. */ 903 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 904 m->m_flags |= M_SKIP_FIREWALL; 905 /* If destination is now ourself drop to ip6_input(). */ 906 if (in6_localaddr(&ip6->ip6_dst)) { 907 if (m->m_pkthdr.rcvif == NULL) 908 m->m_pkthdr.rcvif = loif; 909 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 910 m->m_pkthdr.csum_flags |= 911 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 912 m->m_pkthdr.csum_data = 0xffff; 913 } 914 m->m_pkthdr.csum_flags |= 915 CSUM_IP_CHECKED | CSUM_IP_VALID; 916 error = netisr_queue(NETISR_IPV6, m); 917 goto done; 918 } else 919 goto again; /* Redo the routing table lookup. */ 920 } 921 922 /* XXX: IPFIREWALL_FORWARD */ 923 924 passout: 925 /* 926 * Send the packet to the outgoing interface. 927 * If necessary, do IPv6 fragmentation before sending. 928 * 929 * the logic here is rather complex: 930 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 931 * 1-a: send as is if tlen <= path mtu 932 * 1-b: fragment if tlen > path mtu 933 * 934 * 2: if user asks us not to fragment (dontfrag == 1) 935 * 2-a: send as is if tlen <= interface mtu 936 * 2-b: error if tlen > interface mtu 937 * 938 * 3: if we always need to attach fragment header (alwaysfrag == 1) 939 * always fragment 940 * 941 * 4: if dontfrag == 1 && alwaysfrag == 1 942 * error, as we cannot handle this conflicting request 943 */ 944 tlen = m->m_pkthdr.len; 945 946 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 947 dontfrag = 1; 948 else 949 dontfrag = 0; 950 if (dontfrag && alwaysfrag) { /* case 4 */ 951 /* conflicting request - can't transmit */ 952 error = EMSGSIZE; 953 goto bad; 954 } 955 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */ 956 /* 957 * Even if the DONTFRAG option is specified, we cannot send the 958 * packet when the data length is larger than the MTU of the 959 * outgoing interface. 960 * Notify the error by sending IPV6_PATHMTU ancillary data as 961 * well as returning an error code (the latter is not described 962 * in the API spec.) 963 */ 964 u_int32_t mtu32; 965 struct ip6ctlparam ip6cp; 966 967 mtu32 = (u_int32_t)mtu; 968 bzero(&ip6cp, sizeof(ip6cp)); 969 ip6cp.ip6c_cmdarg = (void *)&mtu32; 970 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 971 (void *)&ip6cp); 972 973 error = EMSGSIZE; 974 goto bad; 975 } 976 977 /* 978 * transmit packet without fragmentation 979 */ 980 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 981 struct in6_ifaddr *ia6; 982 983 ip6 = mtod(m, struct ip6_hdr *); 984 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 985 if (ia6) { 986 /* Record statistics for this interface address. */ 987 ia6->ia_ifa.if_opackets++; 988 ia6->ia_ifa.if_obytes += m->m_pkthdr.len; 989 } 990 #ifdef IPSEC 991 /* clean ipsec history once it goes out of the node */ 992 ipsec_delaux(m); 993 #endif 994 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 995 goto done; 996 } 997 998 /* 999 * try to fragment the packet. case 1-b and 3 1000 */ 1001 if (mtu < IPV6_MMTU) { 1002 /* path MTU cannot be less than IPV6_MMTU */ 1003 error = EMSGSIZE; 1004 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1005 goto bad; 1006 } else if (ip6->ip6_plen == 0) { 1007 /* jumbo payload cannot be fragmented */ 1008 error = EMSGSIZE; 1009 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1010 goto bad; 1011 } else { 1012 struct mbuf **mnext, *m_frgpart; 1013 struct ip6_frag *ip6f; 1014 u_int32_t id = htonl(ip6_randomid()); 1015 u_char nextproto; 1016 #if 0 1017 struct ip6ctlparam ip6cp; 1018 u_int32_t mtu32; 1019 #endif 1020 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len; 1021 1022 /* 1023 * Too large for the destination or interface; 1024 * fragment if possible. 1025 * Must be able to put at least 8 bytes per fragment. 1026 */ 1027 hlen = unfragpartlen; 1028 if (mtu > IPV6_MAXPACKET) 1029 mtu = IPV6_MAXPACKET; 1030 1031 #if 0 1032 /* 1033 * It is believed this code is a leftover from the 1034 * development of the IPV6_RECVPATHMTU sockopt and 1035 * associated work to implement RFC3542. 1036 * It's not entirely clear what the intent of the API 1037 * is at this point, so disable this code for now. 1038 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG 1039 * will send notifications if the application requests. 1040 */ 1041 1042 /* Notify a proper path MTU to applications. */ 1043 mtu32 = (u_int32_t)mtu; 1044 bzero(&ip6cp, sizeof(ip6cp)); 1045 ip6cp.ip6c_cmdarg = (void *)&mtu32; 1046 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 1047 (void *)&ip6cp); 1048 #endif 1049 1050 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 1051 if (len < 8) { 1052 error = EMSGSIZE; 1053 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1054 goto bad; 1055 } 1056 1057 /* 1058 * Verify that we have any chance at all of being able to queue 1059 * the packet or packet fragments 1060 */ 1061 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen) 1062 < tlen /* - hlen */)) { 1063 error = ENOBUFS; 1064 ip6stat.ip6s_odropped++; 1065 goto bad; 1066 } 1067 1068 mnext = &m->m_nextpkt; 1069 1070 /* 1071 * Change the next header field of the last header in the 1072 * unfragmentable part. 1073 */ 1074 if (exthdrs.ip6e_rthdr) { 1075 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1076 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1077 } else if (exthdrs.ip6e_dest1) { 1078 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1079 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1080 } else if (exthdrs.ip6e_hbh) { 1081 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1082 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1083 } else { 1084 nextproto = ip6->ip6_nxt; 1085 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1086 } 1087 1088 /* 1089 * Loop through length of segment after first fragment, 1090 * make new header and copy data of each part and link onto 1091 * chain. 1092 */ 1093 m0 = m; 1094 for (off = hlen; off < tlen; off += len) { 1095 MGETHDR(m, M_DONTWAIT, MT_HEADER); 1096 if (!m) { 1097 error = ENOBUFS; 1098 ip6stat.ip6s_odropped++; 1099 goto sendorfree; 1100 } 1101 m->m_pkthdr.rcvif = NULL; 1102 m->m_flags = m0->m_flags & M_COPYFLAGS; 1103 *mnext = m; 1104 mnext = &m->m_nextpkt; 1105 m->m_data += max_linkhdr; 1106 mhip6 = mtod(m, struct ip6_hdr *); 1107 *mhip6 = *ip6; 1108 m->m_len = sizeof(*mhip6); 1109 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1110 if (error) { 1111 ip6stat.ip6s_odropped++; 1112 goto sendorfree; 1113 } 1114 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 1115 if (off + len >= tlen) 1116 len = tlen - off; 1117 else 1118 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1119 mhip6->ip6_plen = htons((u_short)(len + hlen + 1120 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1121 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1122 error = ENOBUFS; 1123 ip6stat.ip6s_odropped++; 1124 goto sendorfree; 1125 } 1126 m_cat(m, m_frgpart); 1127 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1128 m->m_pkthdr.rcvif = NULL; 1129 ip6f->ip6f_reserved = 0; 1130 ip6f->ip6f_ident = id; 1131 ip6f->ip6f_nxt = nextproto; 1132 ip6stat.ip6s_ofragments++; 1133 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1134 } 1135 1136 in6_ifstat_inc(ifp, ifs6_out_fragok); 1137 } 1138 1139 /* 1140 * Remove leading garbages. 1141 */ 1142 sendorfree: 1143 m = m0->m_nextpkt; 1144 m0->m_nextpkt = 0; 1145 m_freem(m0); 1146 for (m0 = m; m; m = m0) { 1147 m0 = m->m_nextpkt; 1148 m->m_nextpkt = 0; 1149 if (error == 0) { 1150 /* Record statistics for this interface address. */ 1151 if (ia) { 1152 ia->ia_ifa.if_opackets++; 1153 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 1154 } 1155 #ifdef IPSEC 1156 /* clean ipsec history once it goes out of the node */ 1157 ipsec_delaux(m); 1158 #endif 1159 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1160 } else 1161 m_freem(m); 1162 } 1163 1164 if (error == 0) 1165 ip6stat.ip6s_fragmented++; 1166 1167 done: 1168 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1169 RTFREE(ro->ro_rt); 1170 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1171 RTFREE(ro_pmtu->ro_rt); 1172 } 1173 1174 #ifdef IPSEC 1175 if (sp != NULL) 1176 key_freesp(sp); 1177 #endif /* IPSEC */ 1178 #ifdef FAST_IPSEC 1179 if (sp != NULL) 1180 KEY_FREESP(&sp); 1181 #endif /* FAST_IPSEC */ 1182 1183 return (error); 1184 1185 freehdrs: 1186 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1187 m_freem(exthdrs.ip6e_dest1); 1188 m_freem(exthdrs.ip6e_rthdr); 1189 m_freem(exthdrs.ip6e_dest2); 1190 /* FALLTHROUGH */ 1191 bad: 1192 m_freem(m); 1193 goto done; 1194 } 1195 1196 static int 1197 ip6_copyexthdr(mp, hdr, hlen) 1198 struct mbuf **mp; 1199 caddr_t hdr; 1200 int hlen; 1201 { 1202 struct mbuf *m; 1203 1204 if (hlen > MCLBYTES) 1205 return (ENOBUFS); /* XXX */ 1206 1207 MGET(m, M_DONTWAIT, MT_DATA); 1208 if (!m) 1209 return (ENOBUFS); 1210 1211 if (hlen > MLEN) { 1212 MCLGET(m, M_DONTWAIT); 1213 if ((m->m_flags & M_EXT) == 0) { 1214 m_free(m); 1215 return (ENOBUFS); 1216 } 1217 } 1218 m->m_len = hlen; 1219 if (hdr) 1220 bcopy(hdr, mtod(m, caddr_t), hlen); 1221 1222 *mp = m; 1223 return (0); 1224 } 1225 1226 /* 1227 * Insert jumbo payload option. 1228 */ 1229 static int 1230 ip6_insert_jumboopt(exthdrs, plen) 1231 struct ip6_exthdrs *exthdrs; 1232 u_int32_t plen; 1233 { 1234 struct mbuf *mopt; 1235 u_char *optbuf; 1236 u_int32_t v; 1237 1238 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1239 1240 /* 1241 * If there is no hop-by-hop options header, allocate new one. 1242 * If there is one but it doesn't have enough space to store the 1243 * jumbo payload option, allocate a cluster to store the whole options. 1244 * Otherwise, use it to store the options. 1245 */ 1246 if (exthdrs->ip6e_hbh == 0) { 1247 MGET(mopt, M_DONTWAIT, MT_DATA); 1248 if (mopt == 0) 1249 return (ENOBUFS); 1250 mopt->m_len = JUMBOOPTLEN; 1251 optbuf = mtod(mopt, u_char *); 1252 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1253 exthdrs->ip6e_hbh = mopt; 1254 } else { 1255 struct ip6_hbh *hbh; 1256 1257 mopt = exthdrs->ip6e_hbh; 1258 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1259 /* 1260 * XXX assumption: 1261 * - exthdrs->ip6e_hbh is not referenced from places 1262 * other than exthdrs. 1263 * - exthdrs->ip6e_hbh is not an mbuf chain. 1264 */ 1265 int oldoptlen = mopt->m_len; 1266 struct mbuf *n; 1267 1268 /* 1269 * XXX: give up if the whole (new) hbh header does 1270 * not fit even in an mbuf cluster. 1271 */ 1272 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1273 return (ENOBUFS); 1274 1275 /* 1276 * As a consequence, we must always prepare a cluster 1277 * at this point. 1278 */ 1279 MGET(n, M_DONTWAIT, MT_DATA); 1280 if (n) { 1281 MCLGET(n, M_DONTWAIT); 1282 if ((n->m_flags & M_EXT) == 0) { 1283 m_freem(n); 1284 n = NULL; 1285 } 1286 } 1287 if (!n) 1288 return (ENOBUFS); 1289 n->m_len = oldoptlen + JUMBOOPTLEN; 1290 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1291 oldoptlen); 1292 optbuf = mtod(n, caddr_t) + oldoptlen; 1293 m_freem(mopt); 1294 mopt = exthdrs->ip6e_hbh = n; 1295 } else { 1296 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1297 mopt->m_len += JUMBOOPTLEN; 1298 } 1299 optbuf[0] = IP6OPT_PADN; 1300 optbuf[1] = 1; 1301 1302 /* 1303 * Adjust the header length according to the pad and 1304 * the jumbo payload option. 1305 */ 1306 hbh = mtod(mopt, struct ip6_hbh *); 1307 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1308 } 1309 1310 /* fill in the option. */ 1311 optbuf[2] = IP6OPT_JUMBO; 1312 optbuf[3] = 4; 1313 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1314 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1315 1316 /* finally, adjust the packet header length */ 1317 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1318 1319 return (0); 1320 #undef JUMBOOPTLEN 1321 } 1322 1323 /* 1324 * Insert fragment header and copy unfragmentable header portions. 1325 */ 1326 static int 1327 ip6_insertfraghdr(m0, m, hlen, frghdrp) 1328 struct mbuf *m0, *m; 1329 int hlen; 1330 struct ip6_frag **frghdrp; 1331 { 1332 struct mbuf *n, *mlast; 1333 1334 if (hlen > sizeof(struct ip6_hdr)) { 1335 n = m_copym(m0, sizeof(struct ip6_hdr), 1336 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1337 if (n == 0) 1338 return (ENOBUFS); 1339 m->m_next = n; 1340 } else 1341 n = m; 1342 1343 /* Search for the last mbuf of unfragmentable part. */ 1344 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1345 ; 1346 1347 if ((mlast->m_flags & M_EXT) == 0 && 1348 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1349 /* use the trailing space of the last mbuf for the fragment hdr */ 1350 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1351 mlast->m_len); 1352 mlast->m_len += sizeof(struct ip6_frag); 1353 m->m_pkthdr.len += sizeof(struct ip6_frag); 1354 } else { 1355 /* allocate a new mbuf for the fragment header */ 1356 struct mbuf *mfrg; 1357 1358 MGET(mfrg, M_DONTWAIT, MT_DATA); 1359 if (mfrg == 0) 1360 return (ENOBUFS); 1361 mfrg->m_len = sizeof(struct ip6_frag); 1362 *frghdrp = mtod(mfrg, struct ip6_frag *); 1363 mlast->m_next = mfrg; 1364 } 1365 1366 return (0); 1367 } 1368 1369 static int 1370 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup, alwaysfragp) 1371 struct route_in6 *ro_pmtu, *ro; 1372 struct ifnet *ifp; 1373 struct in6_addr *dst; 1374 u_long *mtup; 1375 int *alwaysfragp; 1376 { 1377 u_int32_t mtu = 0; 1378 int alwaysfrag = 0; 1379 int error = 0; 1380 1381 if (ro_pmtu != ro) { 1382 /* The first hop and the final destination may differ. */ 1383 struct sockaddr_in6 *sa6_dst = 1384 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1385 if (ro_pmtu->ro_rt && 1386 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1387 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1388 RTFREE(ro_pmtu->ro_rt); 1389 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1390 } 1391 if (ro_pmtu->ro_rt == NULL) { 1392 bzero(sa6_dst, sizeof(*sa6_dst)); 1393 sa6_dst->sin6_family = AF_INET6; 1394 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1395 sa6_dst->sin6_addr = *dst; 1396 1397 rtalloc((struct route *)ro_pmtu); 1398 } 1399 } 1400 if (ro_pmtu->ro_rt) { 1401 u_int32_t ifmtu; 1402 struct in_conninfo inc; 1403 1404 bzero(&inc, sizeof(inc)); 1405 inc.inc_flags = 1; /* IPv6 */ 1406 inc.inc6_faddr = *dst; 1407 1408 if (ifp == NULL) 1409 ifp = ro_pmtu->ro_rt->rt_ifp; 1410 ifmtu = IN6_LINKMTU(ifp); 1411 mtu = tcp_hc_getmtu(&inc); 1412 if (mtu) 1413 mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu); 1414 else 1415 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 1416 if (mtu == 0) 1417 mtu = ifmtu; 1418 else if (mtu < IPV6_MMTU) { 1419 /* 1420 * RFC2460 section 5, last paragraph: 1421 * if we record ICMPv6 too big message with 1422 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1423 * or smaller, with framgent header attached. 1424 * (fragment header is needed regardless from the 1425 * packet size, for translators to identify packets) 1426 */ 1427 alwaysfrag = 1; 1428 mtu = IPV6_MMTU; 1429 } else if (mtu > ifmtu) { 1430 /* 1431 * The MTU on the route is larger than the MTU on 1432 * the interface! This shouldn't happen, unless the 1433 * MTU of the interface has been changed after the 1434 * interface was brought up. Change the MTU in the 1435 * route to match the interface MTU (as long as the 1436 * field isn't locked). 1437 */ 1438 mtu = ifmtu; 1439 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; 1440 } 1441 } else if (ifp) { 1442 mtu = IN6_LINKMTU(ifp); 1443 } else 1444 error = EHOSTUNREACH; /* XXX */ 1445 1446 *mtup = mtu; 1447 if (alwaysfragp) 1448 *alwaysfragp = alwaysfrag; 1449 return (error); 1450 } 1451 1452 /* 1453 * IP6 socket option processing. 1454 */ 1455 int 1456 ip6_ctloutput(so, sopt) 1457 struct socket *so; 1458 struct sockopt *sopt; 1459 { 1460 int privileged, optdatalen, uproto; 1461 void *optdata; 1462 struct inpcb *in6p = sotoinpcb(so); 1463 int error, optval; 1464 int level, op, optname; 1465 int optlen; 1466 struct thread *td; 1467 1468 if (sopt) { 1469 level = sopt->sopt_level; 1470 op = sopt->sopt_dir; 1471 optname = sopt->sopt_name; 1472 optlen = sopt->sopt_valsize; 1473 td = sopt->sopt_td; 1474 } else { 1475 panic("ip6_ctloutput: arg soopt is NULL"); 1476 } 1477 error = optval = 0; 1478 1479 privileged = (td == 0 || suser(td)) ? 0 : 1; 1480 uproto = (int)so->so_proto->pr_protocol; 1481 1482 if (level == IPPROTO_IPV6) { 1483 switch (op) { 1484 1485 case SOPT_SET: 1486 switch (optname) { 1487 case IPV6_2292PKTOPTIONS: 1488 #ifdef IPV6_PKTOPTIONS 1489 case IPV6_PKTOPTIONS: 1490 #endif 1491 { 1492 struct mbuf *m; 1493 1494 error = soopt_getm(sopt, &m); /* XXX */ 1495 if (error != 0) 1496 break; 1497 error = soopt_mcopyin(sopt, m); /* XXX */ 1498 if (error != 0) 1499 break; 1500 error = ip6_pcbopts(&in6p->in6p_outputopts, 1501 m, so, sopt); 1502 m_freem(m); /* XXX */ 1503 break; 1504 } 1505 1506 /* 1507 * Use of some Hop-by-Hop options or some 1508 * Destination options, might require special 1509 * privilege. That is, normal applications 1510 * (without special privilege) might be forbidden 1511 * from setting certain options in outgoing packets, 1512 * and might never see certain options in received 1513 * packets. [RFC 2292 Section 6] 1514 * KAME specific note: 1515 * KAME prevents non-privileged users from sending or 1516 * receiving ANY hbh/dst options in order to avoid 1517 * overhead of parsing options in the kernel. 1518 */ 1519 case IPV6_RECVHOPOPTS: 1520 case IPV6_RECVDSTOPTS: 1521 case IPV6_RECVRTHDRDSTOPTS: 1522 if (!privileged) { 1523 error = EPERM; 1524 break; 1525 } 1526 /* FALLTHROUGH */ 1527 case IPV6_UNICAST_HOPS: 1528 case IPV6_HOPLIMIT: 1529 case IPV6_FAITH: 1530 1531 case IPV6_RECVPKTINFO: 1532 case IPV6_RECVHOPLIMIT: 1533 case IPV6_RECVRTHDR: 1534 case IPV6_RECVPATHMTU: 1535 case IPV6_RECVTCLASS: 1536 case IPV6_V6ONLY: 1537 case IPV6_AUTOFLOWLABEL: 1538 if (optlen != sizeof(int)) { 1539 error = EINVAL; 1540 break; 1541 } 1542 error = sooptcopyin(sopt, &optval, 1543 sizeof optval, sizeof optval); 1544 if (error) 1545 break; 1546 switch (optname) { 1547 1548 case IPV6_UNICAST_HOPS: 1549 if (optval < -1 || optval >= 256) 1550 error = EINVAL; 1551 else { 1552 /* -1 = kernel default */ 1553 in6p->in6p_hops = optval; 1554 if ((in6p->in6p_vflag & 1555 INP_IPV4) != 0) 1556 in6p->inp_ip_ttl = optval; 1557 } 1558 break; 1559 #define OPTSET(bit) \ 1560 do { \ 1561 if (optval) \ 1562 in6p->in6p_flags |= (bit); \ 1563 else \ 1564 in6p->in6p_flags &= ~(bit); \ 1565 } while (/*CONSTCOND*/ 0) 1566 #define OPTSET2292(bit) \ 1567 do { \ 1568 in6p->in6p_flags |= IN6P_RFC2292; \ 1569 if (optval) \ 1570 in6p->in6p_flags |= (bit); \ 1571 else \ 1572 in6p->in6p_flags &= ~(bit); \ 1573 } while (/*CONSTCOND*/ 0) 1574 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1575 1576 case IPV6_RECVPKTINFO: 1577 /* cannot mix with RFC2292 */ 1578 if (OPTBIT(IN6P_RFC2292)) { 1579 error = EINVAL; 1580 break; 1581 } 1582 OPTSET(IN6P_PKTINFO); 1583 break; 1584 1585 case IPV6_HOPLIMIT: 1586 { 1587 struct ip6_pktopts **optp; 1588 1589 /* cannot mix with RFC2292 */ 1590 if (OPTBIT(IN6P_RFC2292)) { 1591 error = EINVAL; 1592 break; 1593 } 1594 optp = &in6p->in6p_outputopts; 1595 error = ip6_pcbopt(IPV6_HOPLIMIT, 1596 (u_char *)&optval, 1597 sizeof(optval), 1598 optp, 1599 privileged, uproto); 1600 break; 1601 } 1602 1603 case IPV6_RECVHOPLIMIT: 1604 /* cannot mix with RFC2292 */ 1605 if (OPTBIT(IN6P_RFC2292)) { 1606 error = EINVAL; 1607 break; 1608 } 1609 OPTSET(IN6P_HOPLIMIT); 1610 break; 1611 1612 case IPV6_RECVHOPOPTS: 1613 /* cannot mix with RFC2292 */ 1614 if (OPTBIT(IN6P_RFC2292)) { 1615 error = EINVAL; 1616 break; 1617 } 1618 OPTSET(IN6P_HOPOPTS); 1619 break; 1620 1621 case IPV6_RECVDSTOPTS: 1622 /* cannot mix with RFC2292 */ 1623 if (OPTBIT(IN6P_RFC2292)) { 1624 error = EINVAL; 1625 break; 1626 } 1627 OPTSET(IN6P_DSTOPTS); 1628 break; 1629 1630 case IPV6_RECVRTHDRDSTOPTS: 1631 /* cannot mix with RFC2292 */ 1632 if (OPTBIT(IN6P_RFC2292)) { 1633 error = EINVAL; 1634 break; 1635 } 1636 OPTSET(IN6P_RTHDRDSTOPTS); 1637 break; 1638 1639 case IPV6_RECVRTHDR: 1640 /* cannot mix with RFC2292 */ 1641 if (OPTBIT(IN6P_RFC2292)) { 1642 error = EINVAL; 1643 break; 1644 } 1645 OPTSET(IN6P_RTHDR); 1646 break; 1647 1648 case IPV6_FAITH: 1649 OPTSET(IN6P_FAITH); 1650 break; 1651 1652 case IPV6_RECVPATHMTU: 1653 /* 1654 * We ignore this option for TCP 1655 * sockets. 1656 * (RFC3542 leaves this case 1657 * unspecified.) 1658 */ 1659 if (uproto != IPPROTO_TCP) 1660 OPTSET(IN6P_MTU); 1661 break; 1662 1663 case IPV6_V6ONLY: 1664 /* 1665 * make setsockopt(IPV6_V6ONLY) 1666 * available only prior to bind(2). 1667 * see ipng mailing list, Jun 22 2001. 1668 */ 1669 if (in6p->in6p_lport || 1670 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1671 error = EINVAL; 1672 break; 1673 } 1674 OPTSET(IN6P_IPV6_V6ONLY); 1675 if (optval) 1676 in6p->in6p_vflag &= ~INP_IPV4; 1677 else 1678 in6p->in6p_vflag |= INP_IPV4; 1679 break; 1680 case IPV6_RECVTCLASS: 1681 /* cannot mix with RFC2292 XXX */ 1682 if (OPTBIT(IN6P_RFC2292)) { 1683 error = EINVAL; 1684 break; 1685 } 1686 OPTSET(IN6P_TCLASS); 1687 break; 1688 case IPV6_AUTOFLOWLABEL: 1689 OPTSET(IN6P_AUTOFLOWLABEL); 1690 break; 1691 1692 } 1693 break; 1694 1695 case IPV6_TCLASS: 1696 case IPV6_DONTFRAG: 1697 case IPV6_USE_MIN_MTU: 1698 case IPV6_PREFER_TEMPADDR: 1699 if (optlen != sizeof(optval)) { 1700 error = EINVAL; 1701 break; 1702 } 1703 error = sooptcopyin(sopt, &optval, 1704 sizeof optval, sizeof optval); 1705 if (error) 1706 break; 1707 { 1708 struct ip6_pktopts **optp; 1709 optp = &in6p->in6p_outputopts; 1710 error = ip6_pcbopt(optname, 1711 (u_char *)&optval, 1712 sizeof(optval), 1713 optp, 1714 privileged, uproto); 1715 break; 1716 } 1717 1718 case IPV6_2292PKTINFO: 1719 case IPV6_2292HOPLIMIT: 1720 case IPV6_2292HOPOPTS: 1721 case IPV6_2292DSTOPTS: 1722 case IPV6_2292RTHDR: 1723 /* RFC 2292 */ 1724 if (optlen != sizeof(int)) { 1725 error = EINVAL; 1726 break; 1727 } 1728 error = sooptcopyin(sopt, &optval, 1729 sizeof optval, sizeof optval); 1730 if (error) 1731 break; 1732 switch (optname) { 1733 case IPV6_2292PKTINFO: 1734 OPTSET2292(IN6P_PKTINFO); 1735 break; 1736 case IPV6_2292HOPLIMIT: 1737 OPTSET2292(IN6P_HOPLIMIT); 1738 break; 1739 case IPV6_2292HOPOPTS: 1740 /* 1741 * Check super-user privilege. 1742 * See comments for IPV6_RECVHOPOPTS. 1743 */ 1744 if (!privileged) 1745 return (EPERM); 1746 OPTSET2292(IN6P_HOPOPTS); 1747 break; 1748 case IPV6_2292DSTOPTS: 1749 if (!privileged) 1750 return (EPERM); 1751 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1752 break; 1753 case IPV6_2292RTHDR: 1754 OPTSET2292(IN6P_RTHDR); 1755 break; 1756 } 1757 break; 1758 case IPV6_PKTINFO: 1759 case IPV6_HOPOPTS: 1760 case IPV6_RTHDR: 1761 case IPV6_DSTOPTS: 1762 case IPV6_RTHDRDSTOPTS: 1763 case IPV6_NEXTHOP: 1764 { 1765 /* new advanced API (RFC3542) */ 1766 u_char *optbuf; 1767 u_char optbuf_storage[MCLBYTES]; 1768 int optlen; 1769 struct ip6_pktopts **optp; 1770 1771 /* cannot mix with RFC2292 */ 1772 if (OPTBIT(IN6P_RFC2292)) { 1773 error = EINVAL; 1774 break; 1775 } 1776 1777 /* 1778 * We only ensure valsize is not too large 1779 * here. Further validation will be done 1780 * later. 1781 */ 1782 error = sooptcopyin(sopt, optbuf_storage, 1783 sizeof(optbuf_storage), 0); 1784 if (error) 1785 break; 1786 optlen = sopt->sopt_valsize; 1787 optbuf = optbuf_storage; 1788 optp = &in6p->in6p_outputopts; 1789 error = ip6_pcbopt(optname, 1790 optbuf, optlen, 1791 optp, privileged, uproto); 1792 break; 1793 } 1794 #undef OPTSET 1795 1796 case IPV6_MULTICAST_IF: 1797 case IPV6_MULTICAST_HOPS: 1798 case IPV6_MULTICAST_LOOP: 1799 case IPV6_JOIN_GROUP: 1800 case IPV6_LEAVE_GROUP: 1801 { 1802 if (sopt->sopt_valsize > MLEN) { 1803 error = EMSGSIZE; 1804 break; 1805 } 1806 /* XXX */ 1807 } 1808 /* FALLTHROUGH */ 1809 { 1810 struct mbuf *m; 1811 1812 if (sopt->sopt_valsize > MCLBYTES) { 1813 error = EMSGSIZE; 1814 break; 1815 } 1816 /* XXX */ 1817 MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA); 1818 if (m == 0) { 1819 error = ENOBUFS; 1820 break; 1821 } 1822 if (sopt->sopt_valsize > MLEN) { 1823 MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT); 1824 if ((m->m_flags & M_EXT) == 0) { 1825 m_free(m); 1826 error = ENOBUFS; 1827 break; 1828 } 1829 } 1830 m->m_len = sopt->sopt_valsize; 1831 error = sooptcopyin(sopt, mtod(m, char *), 1832 m->m_len, m->m_len); 1833 if (error) { 1834 (void)m_free(m); 1835 break; 1836 } 1837 error = ip6_setmoptions(sopt->sopt_name, 1838 &in6p->in6p_moptions, 1839 m); 1840 (void)m_free(m); 1841 } 1842 break; 1843 1844 case IPV6_PORTRANGE: 1845 error = sooptcopyin(sopt, &optval, 1846 sizeof optval, sizeof optval); 1847 if (error) 1848 break; 1849 1850 switch (optval) { 1851 case IPV6_PORTRANGE_DEFAULT: 1852 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1853 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1854 break; 1855 1856 case IPV6_PORTRANGE_HIGH: 1857 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1858 in6p->in6p_flags |= IN6P_HIGHPORT; 1859 break; 1860 1861 case IPV6_PORTRANGE_LOW: 1862 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1863 in6p->in6p_flags |= IN6P_LOWPORT; 1864 break; 1865 1866 default: 1867 error = EINVAL; 1868 break; 1869 } 1870 break; 1871 1872 #if defined(IPSEC) || defined(FAST_IPSEC) 1873 case IPV6_IPSEC_POLICY: 1874 { 1875 caddr_t req = NULL; 1876 size_t len = 0; 1877 struct mbuf *m; 1878 1879 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1880 break; 1881 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1882 break; 1883 if (m) { 1884 req = mtod(m, caddr_t); 1885 len = m->m_len; 1886 } 1887 error = ipsec6_set_policy(in6p, optname, req, 1888 len, privileged); 1889 m_freem(m); 1890 } 1891 break; 1892 #endif /* KAME IPSEC */ 1893 1894 case IPV6_FW_ADD: 1895 case IPV6_FW_DEL: 1896 case IPV6_FW_FLUSH: 1897 case IPV6_FW_ZERO: 1898 { 1899 struct mbuf *m; 1900 struct mbuf **mp = &m; 1901 1902 if (ip6_fw_ctl_ptr == NULL) 1903 return EINVAL; 1904 /* XXX */ 1905 if ((error = soopt_getm(sopt, &m)) != 0) 1906 break; 1907 /* XXX */ 1908 if ((error = soopt_mcopyin(sopt, m)) != 0) 1909 break; 1910 error = (*ip6_fw_ctl_ptr)(optname, mp); 1911 m = *mp; 1912 } 1913 break; 1914 1915 default: 1916 error = ENOPROTOOPT; 1917 break; 1918 } 1919 break; 1920 1921 case SOPT_GET: 1922 switch (optname) { 1923 1924 case IPV6_2292PKTOPTIONS: 1925 #ifdef IPV6_PKTOPTIONS 1926 case IPV6_PKTOPTIONS: 1927 #endif 1928 /* 1929 * RFC3542 (effectively) deprecated the 1930 * semantics of the 2292-style pktoptions. 1931 * Since it was not reliable in nature (i.e., 1932 * applications had to expect the lack of some 1933 * information after all), it would make sense 1934 * to simplify this part by always returning 1935 * empty data. 1936 */ 1937 sopt->sopt_valsize = 0; 1938 break; 1939 1940 case IPV6_RECVHOPOPTS: 1941 case IPV6_RECVDSTOPTS: 1942 case IPV6_RECVRTHDRDSTOPTS: 1943 case IPV6_UNICAST_HOPS: 1944 case IPV6_RECVPKTINFO: 1945 case IPV6_RECVHOPLIMIT: 1946 case IPV6_RECVRTHDR: 1947 case IPV6_RECVPATHMTU: 1948 1949 case IPV6_FAITH: 1950 case IPV6_V6ONLY: 1951 case IPV6_PORTRANGE: 1952 case IPV6_RECVTCLASS: 1953 case IPV6_AUTOFLOWLABEL: 1954 switch (optname) { 1955 1956 case IPV6_RECVHOPOPTS: 1957 optval = OPTBIT(IN6P_HOPOPTS); 1958 break; 1959 1960 case IPV6_RECVDSTOPTS: 1961 optval = OPTBIT(IN6P_DSTOPTS); 1962 break; 1963 1964 case IPV6_RECVRTHDRDSTOPTS: 1965 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1966 break; 1967 1968 case IPV6_UNICAST_HOPS: 1969 optval = in6p->in6p_hops; 1970 break; 1971 1972 case IPV6_RECVPKTINFO: 1973 optval = OPTBIT(IN6P_PKTINFO); 1974 break; 1975 1976 case IPV6_RECVHOPLIMIT: 1977 optval = OPTBIT(IN6P_HOPLIMIT); 1978 break; 1979 1980 case IPV6_RECVRTHDR: 1981 optval = OPTBIT(IN6P_RTHDR); 1982 break; 1983 1984 case IPV6_RECVPATHMTU: 1985 optval = OPTBIT(IN6P_MTU); 1986 break; 1987 1988 case IPV6_FAITH: 1989 optval = OPTBIT(IN6P_FAITH); 1990 break; 1991 1992 case IPV6_V6ONLY: 1993 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1994 break; 1995 1996 case IPV6_PORTRANGE: 1997 { 1998 int flags; 1999 flags = in6p->in6p_flags; 2000 if (flags & IN6P_HIGHPORT) 2001 optval = IPV6_PORTRANGE_HIGH; 2002 else if (flags & IN6P_LOWPORT) 2003 optval = IPV6_PORTRANGE_LOW; 2004 else 2005 optval = 0; 2006 break; 2007 } 2008 case IPV6_RECVTCLASS: 2009 optval = OPTBIT(IN6P_TCLASS); 2010 break; 2011 2012 case IPV6_AUTOFLOWLABEL: 2013 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2014 break; 2015 } 2016 if (error) 2017 break; 2018 error = sooptcopyout(sopt, &optval, 2019 sizeof optval); 2020 break; 2021 2022 case IPV6_PATHMTU: 2023 { 2024 u_long pmtu = 0; 2025 struct ip6_mtuinfo mtuinfo; 2026 struct route_in6 sro; 2027 2028 bzero(&sro, sizeof(sro)); 2029 2030 if (!(so->so_state & SS_ISCONNECTED)) 2031 return (ENOTCONN); 2032 /* 2033 * XXX: we dot not consider the case of source 2034 * routing, or optional information to specify 2035 * the outgoing interface. 2036 */ 2037 error = ip6_getpmtu(&sro, NULL, NULL, 2038 &in6p->in6p_faddr, &pmtu, NULL); 2039 if (sro.ro_rt) 2040 RTFREE(sro.ro_rt); 2041 if (error) 2042 break; 2043 if (pmtu > IPV6_MAXPACKET) 2044 pmtu = IPV6_MAXPACKET; 2045 2046 bzero(&mtuinfo, sizeof(mtuinfo)); 2047 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2048 optdata = (void *)&mtuinfo; 2049 optdatalen = sizeof(mtuinfo); 2050 error = sooptcopyout(sopt, optdata, 2051 optdatalen); 2052 break; 2053 } 2054 2055 case IPV6_2292PKTINFO: 2056 case IPV6_2292HOPLIMIT: 2057 case IPV6_2292HOPOPTS: 2058 case IPV6_2292RTHDR: 2059 case IPV6_2292DSTOPTS: 2060 switch (optname) { 2061 case IPV6_2292PKTINFO: 2062 optval = OPTBIT(IN6P_PKTINFO); 2063 break; 2064 case IPV6_2292HOPLIMIT: 2065 optval = OPTBIT(IN6P_HOPLIMIT); 2066 break; 2067 case IPV6_2292HOPOPTS: 2068 optval = OPTBIT(IN6P_HOPOPTS); 2069 break; 2070 case IPV6_2292RTHDR: 2071 optval = OPTBIT(IN6P_RTHDR); 2072 break; 2073 case IPV6_2292DSTOPTS: 2074 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2075 break; 2076 } 2077 error = sooptcopyout(sopt, &optval, 2078 sizeof optval); 2079 break; 2080 case IPV6_PKTINFO: 2081 case IPV6_HOPOPTS: 2082 case IPV6_RTHDR: 2083 case IPV6_DSTOPTS: 2084 case IPV6_RTHDRDSTOPTS: 2085 case IPV6_NEXTHOP: 2086 case IPV6_TCLASS: 2087 case IPV6_DONTFRAG: 2088 case IPV6_USE_MIN_MTU: 2089 case IPV6_PREFER_TEMPADDR: 2090 error = ip6_getpcbopt(in6p->in6p_outputopts, 2091 optname, sopt); 2092 break; 2093 2094 case IPV6_MULTICAST_IF: 2095 case IPV6_MULTICAST_HOPS: 2096 case IPV6_MULTICAST_LOOP: 2097 case IPV6_JOIN_GROUP: 2098 case IPV6_LEAVE_GROUP: 2099 { 2100 struct mbuf *m; 2101 error = ip6_getmoptions(sopt->sopt_name, 2102 in6p->in6p_moptions, &m); 2103 if (error == 0) 2104 error = sooptcopyout(sopt, 2105 mtod(m, char *), m->m_len); 2106 m_freem(m); 2107 } 2108 break; 2109 2110 #if defined(IPSEC) || defined(FAST_IPSEC) 2111 case IPV6_IPSEC_POLICY: 2112 { 2113 caddr_t req = NULL; 2114 size_t len = 0; 2115 struct mbuf *m = NULL; 2116 struct mbuf **mp = &m; 2117 size_t ovalsize = sopt->sopt_valsize; 2118 caddr_t oval = (caddr_t)sopt->sopt_val; 2119 2120 error = soopt_getm(sopt, &m); /* XXX */ 2121 if (error != 0) 2122 break; 2123 error = soopt_mcopyin(sopt, m); /* XXX */ 2124 if (error != 0) 2125 break; 2126 sopt->sopt_valsize = ovalsize; 2127 sopt->sopt_val = oval; 2128 if (m) { 2129 req = mtod(m, caddr_t); 2130 len = m->m_len; 2131 } 2132 error = ipsec6_get_policy(in6p, req, len, mp); 2133 if (error == 0) 2134 error = soopt_mcopyout(sopt, m); /* XXX */ 2135 if (error == 0 && m) 2136 m_freem(m); 2137 break; 2138 } 2139 #endif /* KAME IPSEC */ 2140 2141 case IPV6_FW_GET: 2142 { 2143 struct mbuf *m; 2144 struct mbuf **mp = &m; 2145 2146 if (ip6_fw_ctl_ptr == NULL) 2147 { 2148 return EINVAL; 2149 } 2150 error = (*ip6_fw_ctl_ptr)(optname, mp); 2151 if (error == 0) 2152 error = soopt_mcopyout(sopt, m); /* XXX */ 2153 if (error == 0 && m) 2154 m_freem(m); 2155 } 2156 break; 2157 2158 default: 2159 error = ENOPROTOOPT; 2160 break; 2161 } 2162 break; 2163 } 2164 } else { /* level != IPPROTO_IPV6 */ 2165 error = EINVAL; 2166 } 2167 return (error); 2168 } 2169 2170 int 2171 ip6_raw_ctloutput(so, sopt) 2172 struct socket *so; 2173 struct sockopt *sopt; 2174 { 2175 int error = 0, optval, optlen; 2176 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2177 struct in6pcb *in6p = sotoin6pcb(so); 2178 int level, op, optname; 2179 2180 if (sopt) { 2181 level = sopt->sopt_level; 2182 op = sopt->sopt_dir; 2183 optname = sopt->sopt_name; 2184 optlen = sopt->sopt_valsize; 2185 } else 2186 panic("ip6_raw_ctloutput: arg soopt is NULL"); 2187 2188 if (level != IPPROTO_IPV6) { 2189 return (EINVAL); 2190 } 2191 2192 switch (optname) { 2193 case IPV6_CHECKSUM: 2194 /* 2195 * For ICMPv6 sockets, no modification allowed for checksum 2196 * offset, permit "no change" values to help existing apps. 2197 * 2198 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2199 * for an ICMPv6 socket will fail." 2200 * The current behavior does not meet RFC3542. 2201 */ 2202 switch (op) { 2203 case SOPT_SET: 2204 if (optlen != sizeof(int)) { 2205 error = EINVAL; 2206 break; 2207 } 2208 error = sooptcopyin(sopt, &optval, sizeof(optval), 2209 sizeof(optval)); 2210 if (error) 2211 break; 2212 if ((optval % 2) != 0) { 2213 /* the API assumes even offset values */ 2214 error = EINVAL; 2215 } else if (so->so_proto->pr_protocol == 2216 IPPROTO_ICMPV6) { 2217 if (optval != icmp6off) 2218 error = EINVAL; 2219 } else 2220 in6p->in6p_cksum = optval; 2221 break; 2222 2223 case SOPT_GET: 2224 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2225 optval = icmp6off; 2226 else 2227 optval = in6p->in6p_cksum; 2228 2229 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2230 break; 2231 2232 default: 2233 error = EINVAL; 2234 break; 2235 } 2236 break; 2237 2238 default: 2239 error = ENOPROTOOPT; 2240 break; 2241 } 2242 2243 return (error); 2244 } 2245 2246 /* 2247 * Set up IP6 options in pcb for insertion in output packets or 2248 * specifying behavior of outgoing packets. 2249 */ 2250 static int 2251 ip6_pcbopts(pktopt, m, so, sopt) 2252 struct ip6_pktopts **pktopt; 2253 struct mbuf *m; 2254 struct socket *so; 2255 struct sockopt *sopt; 2256 { 2257 struct ip6_pktopts *opt = *pktopt; 2258 int error = 0; 2259 struct thread *td = sopt->sopt_td; 2260 int priv = 0; 2261 2262 /* turn off any old options. */ 2263 if (opt) { 2264 #ifdef DIAGNOSTIC 2265 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2266 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2267 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2268 printf("ip6_pcbopts: all specified options are cleared.\n"); 2269 #endif 2270 ip6_clearpktopts(opt, -1); 2271 } else 2272 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2273 *pktopt = NULL; 2274 2275 if (!m || m->m_len == 0) { 2276 /* 2277 * Only turning off any previous options, regardless of 2278 * whether the opt is just created or given. 2279 */ 2280 free(opt, M_IP6OPT); 2281 return (0); 2282 } 2283 2284 /* set options specified by user. */ 2285 if (td && !suser(td)) 2286 priv = 1; 2287 if ((error = ip6_setpktopts(m, opt, NULL, priv, 2288 so->so_proto->pr_protocol)) != 0) { 2289 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2290 free(opt, M_IP6OPT); 2291 return (error); 2292 } 2293 *pktopt = opt; 2294 return (0); 2295 } 2296 2297 /* 2298 * initialize ip6_pktopts. beware that there are non-zero default values in 2299 * the struct. 2300 */ 2301 void 2302 ip6_initpktopts(opt) 2303 struct ip6_pktopts *opt; 2304 { 2305 2306 bzero(opt, sizeof(*opt)); 2307 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2308 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2309 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2310 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2311 } 2312 2313 static int 2314 ip6_pcbopt(optname, buf, len, pktopt, priv, uproto) 2315 int optname, len, priv; 2316 u_char *buf; 2317 struct ip6_pktopts **pktopt; 2318 int uproto; 2319 { 2320 struct ip6_pktopts *opt; 2321 2322 if (*pktopt == NULL) { 2323 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2324 M_WAITOK); 2325 ip6_initpktopts(*pktopt); 2326 } 2327 opt = *pktopt; 2328 2329 return (ip6_setpktopt(optname, buf, len, opt, priv, 1, 0, uproto)); 2330 } 2331 2332 static int 2333 ip6_getpcbopt(pktopt, optname, sopt) 2334 struct ip6_pktopts *pktopt; 2335 struct sockopt *sopt; 2336 int optname; 2337 { 2338 void *optdata = NULL; 2339 int optdatalen = 0; 2340 struct ip6_ext *ip6e; 2341 int error = 0; 2342 struct in6_pktinfo null_pktinfo; 2343 int deftclass = 0, on; 2344 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2345 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2346 2347 switch (optname) { 2348 case IPV6_PKTINFO: 2349 if (pktopt && pktopt->ip6po_pktinfo) 2350 optdata = (void *)pktopt->ip6po_pktinfo; 2351 else { 2352 /* XXX: we don't have to do this every time... */ 2353 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2354 optdata = (void *)&null_pktinfo; 2355 } 2356 optdatalen = sizeof(struct in6_pktinfo); 2357 break; 2358 case IPV6_TCLASS: 2359 if (pktopt && pktopt->ip6po_tclass >= 0) 2360 optdata = (void *)&pktopt->ip6po_tclass; 2361 else 2362 optdata = (void *)&deftclass; 2363 optdatalen = sizeof(int); 2364 break; 2365 case IPV6_HOPOPTS: 2366 if (pktopt && pktopt->ip6po_hbh) { 2367 optdata = (void *)pktopt->ip6po_hbh; 2368 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2369 optdatalen = (ip6e->ip6e_len + 1) << 3; 2370 } 2371 break; 2372 case IPV6_RTHDR: 2373 if (pktopt && pktopt->ip6po_rthdr) { 2374 optdata = (void *)pktopt->ip6po_rthdr; 2375 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2376 optdatalen = (ip6e->ip6e_len + 1) << 3; 2377 } 2378 break; 2379 case IPV6_RTHDRDSTOPTS: 2380 if (pktopt && pktopt->ip6po_dest1) { 2381 optdata = (void *)pktopt->ip6po_dest1; 2382 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2383 optdatalen = (ip6e->ip6e_len + 1) << 3; 2384 } 2385 break; 2386 case IPV6_DSTOPTS: 2387 if (pktopt && pktopt->ip6po_dest2) { 2388 optdata = (void *)pktopt->ip6po_dest2; 2389 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2390 optdatalen = (ip6e->ip6e_len + 1) << 3; 2391 } 2392 break; 2393 case IPV6_NEXTHOP: 2394 if (pktopt && pktopt->ip6po_nexthop) { 2395 optdata = (void *)pktopt->ip6po_nexthop; 2396 optdatalen = pktopt->ip6po_nexthop->sa_len; 2397 } 2398 break; 2399 case IPV6_USE_MIN_MTU: 2400 if (pktopt) 2401 optdata = (void *)&pktopt->ip6po_minmtu; 2402 else 2403 optdata = (void *)&defminmtu; 2404 optdatalen = sizeof(int); 2405 break; 2406 case IPV6_DONTFRAG: 2407 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2408 on = 1; 2409 else 2410 on = 0; 2411 optdata = (void *)&on; 2412 optdatalen = sizeof(on); 2413 break; 2414 case IPV6_PREFER_TEMPADDR: 2415 if (pktopt) 2416 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2417 else 2418 optdata = (void *)&defpreftemp; 2419 optdatalen = sizeof(int); 2420 break; 2421 default: /* should not happen */ 2422 #ifdef DIAGNOSTIC 2423 panic("ip6_getpcbopt: unexpected option\n"); 2424 #endif 2425 return (ENOPROTOOPT); 2426 } 2427 2428 error = sooptcopyout(sopt, optdata, optdatalen); 2429 2430 return (error); 2431 } 2432 2433 void 2434 ip6_clearpktopts(pktopt, optname) 2435 struct ip6_pktopts *pktopt; 2436 int optname; 2437 { 2438 if (pktopt == NULL) 2439 return; 2440 2441 if (optname == -1 || optname == IPV6_PKTINFO) { 2442 if (pktopt->ip6po_pktinfo) 2443 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2444 pktopt->ip6po_pktinfo = NULL; 2445 } 2446 if (optname == -1 || optname == IPV6_HOPLIMIT) 2447 pktopt->ip6po_hlim = -1; 2448 if (optname == -1 || optname == IPV6_TCLASS) 2449 pktopt->ip6po_tclass = -1; 2450 if (optname == -1 || optname == IPV6_NEXTHOP) { 2451 if (pktopt->ip6po_nextroute.ro_rt) { 2452 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2453 pktopt->ip6po_nextroute.ro_rt = NULL; 2454 } 2455 if (pktopt->ip6po_nexthop) 2456 free(pktopt->ip6po_nexthop, M_IP6OPT); 2457 pktopt->ip6po_nexthop = NULL; 2458 } 2459 if (optname == -1 || optname == IPV6_HOPOPTS) { 2460 if (pktopt->ip6po_hbh) 2461 free(pktopt->ip6po_hbh, M_IP6OPT); 2462 pktopt->ip6po_hbh = NULL; 2463 } 2464 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2465 if (pktopt->ip6po_dest1) 2466 free(pktopt->ip6po_dest1, M_IP6OPT); 2467 pktopt->ip6po_dest1 = NULL; 2468 } 2469 if (optname == -1 || optname == IPV6_RTHDR) { 2470 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2471 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2472 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2473 if (pktopt->ip6po_route.ro_rt) { 2474 RTFREE(pktopt->ip6po_route.ro_rt); 2475 pktopt->ip6po_route.ro_rt = NULL; 2476 } 2477 } 2478 if (optname == -1 || optname == IPV6_DSTOPTS) { 2479 if (pktopt->ip6po_dest2) 2480 free(pktopt->ip6po_dest2, M_IP6OPT); 2481 pktopt->ip6po_dest2 = NULL; 2482 } 2483 } 2484 2485 #define PKTOPT_EXTHDRCPY(type) \ 2486 do {\ 2487 if (src->type) {\ 2488 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2489 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2490 if (dst->type == NULL && canwait == M_NOWAIT)\ 2491 goto bad;\ 2492 bcopy(src->type, dst->type, hlen);\ 2493 }\ 2494 } while (/*CONSTCOND*/ 0) 2495 2496 static int 2497 copypktopts(dst, src, canwait) 2498 struct ip6_pktopts *dst, *src; 2499 int canwait; 2500 { 2501 if (dst == NULL || src == NULL) { 2502 printf("ip6_clearpktopts: invalid argument\n"); 2503 return (EINVAL); 2504 } 2505 2506 dst->ip6po_hlim = src->ip6po_hlim; 2507 dst->ip6po_tclass = src->ip6po_tclass; 2508 dst->ip6po_flags = src->ip6po_flags; 2509 if (src->ip6po_pktinfo) { 2510 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2511 M_IP6OPT, canwait); 2512 if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT) 2513 goto bad; 2514 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2515 } 2516 if (src->ip6po_nexthop) { 2517 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2518 M_IP6OPT, canwait); 2519 if (dst->ip6po_nexthop == NULL) 2520 goto bad; 2521 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2522 src->ip6po_nexthop->sa_len); 2523 } 2524 PKTOPT_EXTHDRCPY(ip6po_hbh); 2525 PKTOPT_EXTHDRCPY(ip6po_dest1); 2526 PKTOPT_EXTHDRCPY(ip6po_dest2); 2527 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2528 return (0); 2529 2530 bad: 2531 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); 2532 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); 2533 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); 2534 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); 2535 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); 2536 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); 2537 return (ENOBUFS); 2538 } 2539 #undef PKTOPT_EXTHDRCPY 2540 2541 struct ip6_pktopts * 2542 ip6_copypktopts(src, canwait) 2543 struct ip6_pktopts *src; 2544 int canwait; 2545 { 2546 int error; 2547 struct ip6_pktopts *dst; 2548 2549 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2550 if (dst == NULL && canwait == M_NOWAIT) 2551 return (NULL); 2552 ip6_initpktopts(dst); 2553 2554 if ((error = copypktopts(dst, src, canwait)) != 0) { 2555 free(dst, M_IP6OPT); 2556 return (NULL); 2557 } 2558 2559 return (dst); 2560 } 2561 2562 void 2563 ip6_freepcbopts(pktopt) 2564 struct ip6_pktopts *pktopt; 2565 { 2566 if (pktopt == NULL) 2567 return; 2568 2569 ip6_clearpktopts(pktopt, -1); 2570 2571 free(pktopt, M_IP6OPT); 2572 } 2573 2574 /* 2575 * Set the IP6 multicast options in response to user setsockopt(). 2576 */ 2577 static int 2578 ip6_setmoptions(optname, im6op, m) 2579 int optname; 2580 struct ip6_moptions **im6op; 2581 struct mbuf *m; 2582 { 2583 int error = 0; 2584 u_int loop, ifindex; 2585 struct ipv6_mreq *mreq; 2586 struct ifnet *ifp; 2587 struct ip6_moptions *im6o = *im6op; 2588 struct route_in6 ro; 2589 struct in6_multi_mship *imm; 2590 struct thread *td = curthread; 2591 2592 if (im6o == NULL) { 2593 /* 2594 * No multicast option buffer attached to the pcb; 2595 * allocate one and initialize to default values. 2596 */ 2597 im6o = (struct ip6_moptions *) 2598 malloc(sizeof(*im6o), M_IP6MOPTS, M_WAITOK); 2599 2600 if (im6o == NULL) 2601 return (ENOBUFS); 2602 *im6op = im6o; 2603 im6o->im6o_multicast_ifp = NULL; 2604 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2605 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2606 LIST_INIT(&im6o->im6o_memberships); 2607 } 2608 2609 switch (optname) { 2610 2611 case IPV6_MULTICAST_IF: 2612 /* 2613 * Select the interface for outgoing multicast packets. 2614 */ 2615 if (m == NULL || m->m_len != sizeof(u_int)) { 2616 error = EINVAL; 2617 break; 2618 } 2619 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 2620 if (ifindex < 0 || if_index < ifindex) { 2621 error = ENXIO; /* XXX EINVAL? */ 2622 break; 2623 } 2624 ifp = ifnet_byindex(ifindex); 2625 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2626 error = EADDRNOTAVAIL; 2627 break; 2628 } 2629 im6o->im6o_multicast_ifp = ifp; 2630 break; 2631 2632 case IPV6_MULTICAST_HOPS: 2633 { 2634 /* 2635 * Set the IP6 hoplimit for outgoing multicast packets. 2636 */ 2637 int optval; 2638 if (m == NULL || m->m_len != sizeof(int)) { 2639 error = EINVAL; 2640 break; 2641 } 2642 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 2643 if (optval < -1 || optval >= 256) 2644 error = EINVAL; 2645 else if (optval == -1) 2646 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2647 else 2648 im6o->im6o_multicast_hlim = optval; 2649 break; 2650 } 2651 2652 case IPV6_MULTICAST_LOOP: 2653 /* 2654 * Set the loopback flag for outgoing multicast packets. 2655 * Must be zero or one. 2656 */ 2657 if (m == NULL || m->m_len != sizeof(u_int)) { 2658 error = EINVAL; 2659 break; 2660 } 2661 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 2662 if (loop > 1) { 2663 error = EINVAL; 2664 break; 2665 } 2666 im6o->im6o_multicast_loop = loop; 2667 break; 2668 2669 case IPV6_JOIN_GROUP: 2670 /* 2671 * Add a multicast group membership. 2672 * Group must be a valid IP6 multicast address. 2673 */ 2674 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2675 error = EINVAL; 2676 break; 2677 } 2678 mreq = mtod(m, struct ipv6_mreq *); 2679 2680 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2681 /* 2682 * We use the unspecified address to specify to accept 2683 * all multicast addresses. Only super user is allowed 2684 * to do this. 2685 */ 2686 if (suser(td)) { 2687 error = EACCES; 2688 break; 2689 } 2690 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2691 error = EINVAL; 2692 break; 2693 } 2694 2695 /* 2696 * If no interface was explicitly specified, choose an 2697 * appropriate one according to the given multicast address. 2698 */ 2699 if (mreq->ipv6mr_interface == 0) { 2700 struct sockaddr_in6 *dst; 2701 2702 /* 2703 * Look up the routing table for the 2704 * address, and choose the outgoing interface. 2705 * XXX: is it a good approach? 2706 */ 2707 ro.ro_rt = NULL; 2708 dst = (struct sockaddr_in6 *)&ro.ro_dst; 2709 bzero(dst, sizeof(*dst)); 2710 dst->sin6_family = AF_INET6; 2711 dst->sin6_len = sizeof(*dst); 2712 dst->sin6_addr = mreq->ipv6mr_multiaddr; 2713 rtalloc((struct route *)&ro); 2714 if (ro.ro_rt == NULL) { 2715 error = EADDRNOTAVAIL; 2716 break; 2717 } 2718 ifp = ro.ro_rt->rt_ifp; 2719 RTFREE(ro.ro_rt); 2720 } else { 2721 /* 2722 * If the interface is specified, validate it. 2723 */ 2724 if (mreq->ipv6mr_interface < 0 || 2725 if_index < mreq->ipv6mr_interface) { 2726 error = ENXIO; /* XXX EINVAL? */ 2727 break; 2728 } 2729 ifp = ifnet_byindex(mreq->ipv6mr_interface); 2730 if (!ifp) { 2731 error = ENXIO; /* XXX EINVAL? */ 2732 break; 2733 } 2734 } 2735 2736 /* 2737 * See if we found an interface, and confirm that it 2738 * supports multicast 2739 */ 2740 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2741 error = EADDRNOTAVAIL; 2742 break; 2743 } 2744 2745 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) { 2746 error = EADDRNOTAVAIL; /* XXX: should not happen */ 2747 break; 2748 } 2749 2750 /* 2751 * See if the membership already exists. 2752 */ 2753 for (imm = im6o->im6o_memberships.lh_first; 2754 imm != NULL; imm = imm->i6mm_chain.le_next) 2755 if (imm->i6mm_maddr->in6m_ifp == ifp && 2756 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2757 &mreq->ipv6mr_multiaddr)) 2758 break; 2759 if (imm != NULL) { 2760 error = EADDRINUSE; 2761 break; 2762 } 2763 /* 2764 * Everything looks good; add a new record to the multicast 2765 * address list for the given interface. 2766 */ 2767 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error, 0); 2768 if (imm == NULL) 2769 break; 2770 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2771 break; 2772 2773 case IPV6_LEAVE_GROUP: 2774 /* 2775 * Drop a multicast group membership. 2776 * Group must be a valid IP6 multicast address. 2777 */ 2778 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2779 error = EINVAL; 2780 break; 2781 } 2782 mreq = mtod(m, struct ipv6_mreq *); 2783 2784 /* 2785 * If an interface address was specified, get a pointer 2786 * to its ifnet structure. 2787 */ 2788 if (mreq->ipv6mr_interface < 0 || 2789 if_index < mreq->ipv6mr_interface) { 2790 error = ENXIO; /* XXX EINVAL? */ 2791 break; 2792 } 2793 if (mreq->ipv6mr_interface == 0) 2794 ifp = NULL; 2795 else 2796 ifp = ifnet_byindex(mreq->ipv6mr_interface); 2797 2798 /* Fill in the scope zone ID */ 2799 if (ifp) { 2800 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) { 2801 /* XXX: should not happen */ 2802 error = EADDRNOTAVAIL; 2803 break; 2804 } 2805 } else if (mreq->ipv6mr_interface != 0) { 2806 /* 2807 * This case happens when the (positive) index is in 2808 * the valid range, but the corresponding interface has 2809 * been detached dynamically (XXX). 2810 */ 2811 error = EADDRNOTAVAIL; 2812 break; 2813 } else { /* ipv6mr_interface == 0 */ 2814 struct sockaddr_in6 sa6_mc; 2815 2816 /* 2817 * The API spec says as follows: 2818 * If the interface index is specified as 0, the 2819 * system may choose a multicast group membership to 2820 * drop by matching the multicast address only. 2821 * On the other hand, we cannot disambiguate the scope 2822 * zone unless an interface is provided. Thus, we 2823 * check if there's ambiguity with the default scope 2824 * zone as the last resort. 2825 */ 2826 bzero(&sa6_mc, sizeof(sa6_mc)); 2827 sa6_mc.sin6_family = AF_INET6; 2828 sa6_mc.sin6_len = sizeof(sa6_mc); 2829 sa6_mc.sin6_addr = mreq->ipv6mr_multiaddr; 2830 error = sa6_embedscope(&sa6_mc, ip6_use_defzone); 2831 if (error != 0) 2832 break; 2833 mreq->ipv6mr_multiaddr = sa6_mc.sin6_addr; 2834 } 2835 2836 /* 2837 * Find the membership in the membership list. 2838 */ 2839 for (imm = im6o->im6o_memberships.lh_first; 2840 imm != NULL; imm = imm->i6mm_chain.le_next) { 2841 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2842 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2843 &mreq->ipv6mr_multiaddr)) 2844 break; 2845 } 2846 if (imm == NULL) { 2847 /* Unable to resolve interface */ 2848 error = EADDRNOTAVAIL; 2849 break; 2850 } 2851 /* 2852 * Give up the multicast address record to which the 2853 * membership points. 2854 */ 2855 LIST_REMOVE(imm, i6mm_chain); 2856 in6_delmulti(imm->i6mm_maddr); 2857 free(imm, M_IP6MADDR); 2858 break; 2859 2860 default: 2861 error = EOPNOTSUPP; 2862 break; 2863 } 2864 2865 /* 2866 * If all options have default values, no need to keep the mbuf. 2867 */ 2868 if (im6o->im6o_multicast_ifp == NULL && 2869 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2870 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2871 im6o->im6o_memberships.lh_first == NULL) { 2872 free(*im6op, M_IP6MOPTS); 2873 *im6op = NULL; 2874 } 2875 2876 return (error); 2877 } 2878 2879 /* 2880 * Return the IP6 multicast options in response to user getsockopt(). 2881 */ 2882 static int 2883 ip6_getmoptions(optname, im6o, mp) 2884 int optname; 2885 struct ip6_moptions *im6o; 2886 struct mbuf **mp; 2887 { 2888 u_int *hlim, *loop, *ifindex; 2889 2890 *mp = m_get(M_TRYWAIT, MT_HEADER); /* XXX */ 2891 2892 switch (optname) { 2893 2894 case IPV6_MULTICAST_IF: 2895 ifindex = mtod(*mp, u_int *); 2896 (*mp)->m_len = sizeof(u_int); 2897 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2898 *ifindex = 0; 2899 else 2900 *ifindex = im6o->im6o_multicast_ifp->if_index; 2901 return (0); 2902 2903 case IPV6_MULTICAST_HOPS: 2904 hlim = mtod(*mp, u_int *); 2905 (*mp)->m_len = sizeof(u_int); 2906 if (im6o == NULL) 2907 *hlim = ip6_defmcasthlim; 2908 else 2909 *hlim = im6o->im6o_multicast_hlim; 2910 return (0); 2911 2912 case IPV6_MULTICAST_LOOP: 2913 loop = mtod(*mp, u_int *); 2914 (*mp)->m_len = sizeof(u_int); 2915 if (im6o == NULL) 2916 *loop = ip6_defmcasthlim; 2917 else 2918 *loop = im6o->im6o_multicast_loop; 2919 return (0); 2920 2921 default: 2922 return (EOPNOTSUPP); 2923 } 2924 } 2925 2926 /* 2927 * Discard the IP6 multicast options. 2928 */ 2929 void 2930 ip6_freemoptions(im6o) 2931 struct ip6_moptions *im6o; 2932 { 2933 struct in6_multi_mship *imm; 2934 2935 if (im6o == NULL) 2936 return; 2937 2938 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2939 LIST_REMOVE(imm, i6mm_chain); 2940 if (imm->i6mm_maddr) 2941 in6_delmulti(imm->i6mm_maddr); 2942 free(imm, M_IP6MADDR); 2943 } 2944 free(im6o, M_IP6MOPTS); 2945 } 2946 2947 /* 2948 * Set IPv6 outgoing packet options based on advanced API. 2949 */ 2950 int 2951 ip6_setpktopts(control, opt, stickyopt, priv, uproto) 2952 struct mbuf *control; 2953 struct ip6_pktopts *opt, *stickyopt; 2954 int priv, uproto; 2955 { 2956 struct cmsghdr *cm = 0; 2957 2958 if (control == NULL || opt == NULL) 2959 return (EINVAL); 2960 2961 ip6_initpktopts(opt); 2962 if (stickyopt) { 2963 int error; 2964 2965 /* 2966 * If stickyopt is provided, make a local copy of the options 2967 * for this particular packet, then override them by ancillary 2968 * objects. 2969 * XXX: copypktopts() does not copy the cached route to a next 2970 * hop (if any). This is not very good in terms of efficiency, 2971 * but we can allow this since this option should be rarely 2972 * used. 2973 */ 2974 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2975 return (error); 2976 } 2977 2978 /* 2979 * XXX: Currently, we assume all the optional information is stored 2980 * in a single mbuf. 2981 */ 2982 if (control->m_next) 2983 return (EINVAL); 2984 2985 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2986 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2987 int error; 2988 2989 if (control->m_len < CMSG_LEN(0)) 2990 return (EINVAL); 2991 2992 cm = mtod(control, struct cmsghdr *); 2993 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2994 return (EINVAL); 2995 if (cm->cmsg_level != IPPROTO_IPV6) 2996 continue; 2997 2998 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2999 cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, 1, uproto); 3000 if (error) 3001 return (error); 3002 } 3003 3004 return (0); 3005 } 3006 3007 /* 3008 * Set a particular packet option, as a sticky option or an ancillary data 3009 * item. "len" can be 0 only when it's a sticky option. 3010 * We have 4 cases of combination of "sticky" and "cmsg": 3011 * "sticky=0, cmsg=0": impossible 3012 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 3013 * "sticky=1, cmsg=0": RFC3542 socket option 3014 * "sticky=1, cmsg=1": RFC2292 socket option 3015 */ 3016 static int 3017 ip6_setpktopt(optname, buf, len, opt, priv, sticky, cmsg, uproto) 3018 int optname, len, priv, sticky, cmsg, uproto; 3019 u_char *buf; 3020 struct ip6_pktopts *opt; 3021 { 3022 int minmtupolicy, preftemp; 3023 3024 if (!sticky && !cmsg) { 3025 #ifdef DIAGNOSTIC 3026 printf("ip6_setpktopt: impossible case\n"); 3027 #endif 3028 return (EINVAL); 3029 } 3030 3031 /* 3032 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 3033 * not be specified in the context of RFC3542. Conversely, 3034 * RFC3542 types should not be specified in the context of RFC2292. 3035 */ 3036 if (!cmsg) { 3037 switch (optname) { 3038 case IPV6_2292PKTINFO: 3039 case IPV6_2292HOPLIMIT: 3040 case IPV6_2292NEXTHOP: 3041 case IPV6_2292HOPOPTS: 3042 case IPV6_2292DSTOPTS: 3043 case IPV6_2292RTHDR: 3044 case IPV6_2292PKTOPTIONS: 3045 return (ENOPROTOOPT); 3046 } 3047 } 3048 if (sticky && cmsg) { 3049 switch (optname) { 3050 case IPV6_PKTINFO: 3051 case IPV6_HOPLIMIT: 3052 case IPV6_NEXTHOP: 3053 case IPV6_HOPOPTS: 3054 case IPV6_DSTOPTS: 3055 case IPV6_RTHDRDSTOPTS: 3056 case IPV6_RTHDR: 3057 case IPV6_USE_MIN_MTU: 3058 case IPV6_DONTFRAG: 3059 case IPV6_TCLASS: 3060 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 3061 return (ENOPROTOOPT); 3062 } 3063 } 3064 3065 switch (optname) { 3066 case IPV6_2292PKTINFO: 3067 case IPV6_PKTINFO: 3068 { 3069 struct ifnet *ifp = NULL; 3070 struct in6_pktinfo *pktinfo; 3071 3072 if (len != sizeof(struct in6_pktinfo)) 3073 return (EINVAL); 3074 3075 pktinfo = (struct in6_pktinfo *)buf; 3076 3077 /* 3078 * An application can clear any sticky IPV6_PKTINFO option by 3079 * doing a "regular" setsockopt with ipi6_addr being 3080 * in6addr_any and ipi6_ifindex being zero. 3081 * [RFC 3542, Section 6] 3082 */ 3083 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 3084 pktinfo->ipi6_ifindex == 0 && 3085 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 3086 ip6_clearpktopts(opt, optname); 3087 break; 3088 } 3089 3090 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 3091 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 3092 return (EINVAL); 3093 } 3094 3095 /* validate the interface index if specified. */ 3096 if (pktinfo->ipi6_ifindex > if_index || 3097 pktinfo->ipi6_ifindex < 0) { 3098 return (ENXIO); 3099 } 3100 if (pktinfo->ipi6_ifindex) { 3101 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 3102 if (ifp == NULL) 3103 return (ENXIO); 3104 } 3105 3106 /* 3107 * We store the address anyway, and let in6_selectsrc() 3108 * validate the specified address. This is because ipi6_addr 3109 * may not have enough information about its scope zone, and 3110 * we may need additional information (such as outgoing 3111 * interface or the scope zone of a destination address) to 3112 * disambiguate the scope. 3113 * XXX: the delay of the validation may confuse the 3114 * application when it is used as a sticky option. 3115 */ 3116 if (opt->ip6po_pktinfo == NULL) { 3117 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 3118 M_IP6OPT, M_NOWAIT); 3119 if (opt->ip6po_pktinfo == NULL) 3120 return (ENOBUFS); 3121 } 3122 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 3123 break; 3124 } 3125 3126 case IPV6_2292HOPLIMIT: 3127 case IPV6_HOPLIMIT: 3128 { 3129 int *hlimp; 3130 3131 /* 3132 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 3133 * to simplify the ordering among hoplimit options. 3134 */ 3135 if (optname == IPV6_HOPLIMIT && sticky) 3136 return (ENOPROTOOPT); 3137 3138 if (len != sizeof(int)) 3139 return (EINVAL); 3140 hlimp = (int *)buf; 3141 if (*hlimp < -1 || *hlimp > 255) 3142 return (EINVAL); 3143 3144 opt->ip6po_hlim = *hlimp; 3145 break; 3146 } 3147 3148 case IPV6_TCLASS: 3149 { 3150 int tclass; 3151 3152 if (len != sizeof(int)) 3153 return (EINVAL); 3154 tclass = *(int *)buf; 3155 if (tclass < -1 || tclass > 255) 3156 return (EINVAL); 3157 3158 opt->ip6po_tclass = tclass; 3159 break; 3160 } 3161 3162 case IPV6_2292NEXTHOP: 3163 case IPV6_NEXTHOP: 3164 if (!priv) 3165 return (EPERM); 3166 3167 if (len == 0) { /* just remove the option */ 3168 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3169 break; 3170 } 3171 3172 /* check if cmsg_len is large enough for sa_len */ 3173 if (len < sizeof(struct sockaddr) || len < *buf) 3174 return (EINVAL); 3175 3176 switch (((struct sockaddr *)buf)->sa_family) { 3177 case AF_INET6: 3178 { 3179 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3180 int error; 3181 3182 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3183 return (EINVAL); 3184 3185 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3186 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3187 return (EINVAL); 3188 } 3189 if ((error = sa6_embedscope(sa6, ip6_use_defzone)) 3190 != 0) { 3191 return (error); 3192 } 3193 break; 3194 } 3195 case AF_LINK: /* should eventually be supported */ 3196 default: 3197 return (EAFNOSUPPORT); 3198 } 3199 3200 /* turn off the previous option, then set the new option. */ 3201 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3202 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3203 if (opt->ip6po_nexthop == NULL) 3204 return (ENOBUFS); 3205 bcopy(buf, opt->ip6po_nexthop, *buf); 3206 break; 3207 3208 case IPV6_2292HOPOPTS: 3209 case IPV6_HOPOPTS: 3210 { 3211 struct ip6_hbh *hbh; 3212 int hbhlen; 3213 3214 /* 3215 * XXX: We don't allow a non-privileged user to set ANY HbH 3216 * options, since per-option restriction has too much 3217 * overhead. 3218 */ 3219 if (!priv) 3220 return (EPERM); 3221 3222 if (len == 0) { 3223 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3224 break; /* just remove the option */ 3225 } 3226 3227 /* message length validation */ 3228 if (len < sizeof(struct ip6_hbh)) 3229 return (EINVAL); 3230 hbh = (struct ip6_hbh *)buf; 3231 hbhlen = (hbh->ip6h_len + 1) << 3; 3232 if (len != hbhlen) 3233 return (EINVAL); 3234 3235 /* turn off the previous option, then set the new option. */ 3236 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3237 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3238 if (opt->ip6po_hbh == NULL) 3239 return (ENOBUFS); 3240 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3241 3242 break; 3243 } 3244 3245 case IPV6_2292DSTOPTS: 3246 case IPV6_DSTOPTS: 3247 case IPV6_RTHDRDSTOPTS: 3248 { 3249 struct ip6_dest *dest, **newdest = NULL; 3250 int destlen; 3251 3252 if (!priv) /* XXX: see the comment for IPV6_HOPOPTS */ 3253 return (EPERM); 3254 3255 if (len == 0) { 3256 ip6_clearpktopts(opt, optname); 3257 break; /* just remove the option */ 3258 } 3259 3260 /* message length validation */ 3261 if (len < sizeof(struct ip6_dest)) 3262 return (EINVAL); 3263 dest = (struct ip6_dest *)buf; 3264 destlen = (dest->ip6d_len + 1) << 3; 3265 if (len != destlen) 3266 return (EINVAL); 3267 3268 /* 3269 * Determine the position that the destination options header 3270 * should be inserted; before or after the routing header. 3271 */ 3272 switch (optname) { 3273 case IPV6_2292DSTOPTS: 3274 /* 3275 * The old advacned API is ambiguous on this point. 3276 * Our approach is to determine the position based 3277 * according to the existence of a routing header. 3278 * Note, however, that this depends on the order of the 3279 * extension headers in the ancillary data; the 1st 3280 * part of the destination options header must appear 3281 * before the routing header in the ancillary data, 3282 * too. 3283 * RFC3542 solved the ambiguity by introducing 3284 * separate ancillary data or option types. 3285 */ 3286 if (opt->ip6po_rthdr == NULL) 3287 newdest = &opt->ip6po_dest1; 3288 else 3289 newdest = &opt->ip6po_dest2; 3290 break; 3291 case IPV6_RTHDRDSTOPTS: 3292 newdest = &opt->ip6po_dest1; 3293 break; 3294 case IPV6_DSTOPTS: 3295 newdest = &opt->ip6po_dest2; 3296 break; 3297 } 3298 3299 /* turn off the previous option, then set the new option. */ 3300 ip6_clearpktopts(opt, optname); 3301 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3302 if (*newdest == NULL) 3303 return (ENOBUFS); 3304 bcopy(dest, *newdest, destlen); 3305 3306 break; 3307 } 3308 3309 case IPV6_2292RTHDR: 3310 case IPV6_RTHDR: 3311 { 3312 struct ip6_rthdr *rth; 3313 int rthlen; 3314 3315 if (len == 0) { 3316 ip6_clearpktopts(opt, IPV6_RTHDR); 3317 break; /* just remove the option */ 3318 } 3319 3320 /* message length validation */ 3321 if (len < sizeof(struct ip6_rthdr)) 3322 return (EINVAL); 3323 rth = (struct ip6_rthdr *)buf; 3324 rthlen = (rth->ip6r_len + 1) << 3; 3325 if (len != rthlen) 3326 return (EINVAL); 3327 3328 switch (rth->ip6r_type) { 3329 case IPV6_RTHDR_TYPE_0: 3330 if (rth->ip6r_len == 0) /* must contain one addr */ 3331 return (EINVAL); 3332 if (rth->ip6r_len % 2) /* length must be even */ 3333 return (EINVAL); 3334 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3335 return (EINVAL); 3336 break; 3337 default: 3338 return (EINVAL); /* not supported */ 3339 } 3340 3341 /* turn off the previous option */ 3342 ip6_clearpktopts(opt, IPV6_RTHDR); 3343 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3344 if (opt->ip6po_rthdr == NULL) 3345 return (ENOBUFS); 3346 bcopy(rth, opt->ip6po_rthdr, rthlen); 3347 3348 break; 3349 } 3350 3351 case IPV6_USE_MIN_MTU: 3352 if (len != sizeof(int)) 3353 return (EINVAL); 3354 minmtupolicy = *(int *)buf; 3355 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3356 minmtupolicy != IP6PO_MINMTU_DISABLE && 3357 minmtupolicy != IP6PO_MINMTU_ALL) { 3358 return (EINVAL); 3359 } 3360 opt->ip6po_minmtu = minmtupolicy; 3361 break; 3362 3363 case IPV6_DONTFRAG: 3364 if (len != sizeof(int)) 3365 return (EINVAL); 3366 3367 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3368 /* 3369 * we ignore this option for TCP sockets. 3370 * (RFC3542 leaves this case unspecified.) 3371 */ 3372 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3373 } else 3374 opt->ip6po_flags |= IP6PO_DONTFRAG; 3375 break; 3376 3377 case IPV6_PREFER_TEMPADDR: 3378 if (len != sizeof(int)) 3379 return (EINVAL); 3380 preftemp = *(int *)buf; 3381 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3382 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3383 preftemp != IP6PO_TEMPADDR_PREFER) { 3384 return (EINVAL); 3385 } 3386 opt->ip6po_prefer_tempaddr = preftemp; 3387 break; 3388 3389 default: 3390 return (ENOPROTOOPT); 3391 } /* end of switch */ 3392 3393 return (0); 3394 } 3395 3396 /* 3397 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3398 * packet to the input queue of a specified interface. Note that this 3399 * calls the output routine of the loopback "driver", but with an interface 3400 * pointer that might NOT be &loif -- easier than replicating that code here. 3401 */ 3402 void 3403 ip6_mloopback(ifp, m, dst) 3404 struct ifnet *ifp; 3405 struct mbuf *m; 3406 struct sockaddr_in6 *dst; 3407 { 3408 struct mbuf *copym; 3409 struct ip6_hdr *ip6; 3410 3411 copym = m_copy(m, 0, M_COPYALL); 3412 if (copym == NULL) 3413 return; 3414 3415 /* 3416 * Make sure to deep-copy IPv6 header portion in case the data 3417 * is in an mbuf cluster, so that we can safely override the IPv6 3418 * header portion later. 3419 */ 3420 if ((copym->m_flags & M_EXT) != 0 || 3421 copym->m_len < sizeof(struct ip6_hdr)) { 3422 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3423 if (copym == NULL) 3424 return; 3425 } 3426 3427 #ifdef DIAGNOSTIC 3428 if (copym->m_len < sizeof(*ip6)) { 3429 m_freem(copym); 3430 return; 3431 } 3432 #endif 3433 3434 ip6 = mtod(copym, struct ip6_hdr *); 3435 /* 3436 * clear embedded scope identifiers if necessary. 3437 * in6_clearscope will touch the addresses only when necessary. 3438 */ 3439 in6_clearscope(&ip6->ip6_src); 3440 in6_clearscope(&ip6->ip6_dst); 3441 3442 (void)if_simloop(ifp, copym, dst->sin6_family, 0); 3443 } 3444 3445 /* 3446 * Chop IPv6 header off from the payload. 3447 */ 3448 static int 3449 ip6_splithdr(m, exthdrs) 3450 struct mbuf *m; 3451 struct ip6_exthdrs *exthdrs; 3452 { 3453 struct mbuf *mh; 3454 struct ip6_hdr *ip6; 3455 3456 ip6 = mtod(m, struct ip6_hdr *); 3457 if (m->m_len > sizeof(*ip6)) { 3458 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3459 if (mh == 0) { 3460 m_freem(m); 3461 return ENOBUFS; 3462 } 3463 M_MOVE_PKTHDR(mh, m); 3464 MH_ALIGN(mh, sizeof(*ip6)); 3465 m->m_len -= sizeof(*ip6); 3466 m->m_data += sizeof(*ip6); 3467 mh->m_next = m; 3468 m = mh; 3469 m->m_len = sizeof(*ip6); 3470 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3471 } 3472 exthdrs->ip6e_ip6 = m; 3473 return 0; 3474 } 3475 3476 /* 3477 * Compute IPv6 extension header length. 3478 */ 3479 int 3480 ip6_optlen(in6p) 3481 struct in6pcb *in6p; 3482 { 3483 int len; 3484 3485 if (!in6p->in6p_outputopts) 3486 return 0; 3487 3488 len = 0; 3489 #define elen(x) \ 3490 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3491 3492 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3493 if (in6p->in6p_outputopts->ip6po_rthdr) 3494 /* dest1 is valid with rthdr only */ 3495 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3496 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3497 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3498 return len; 3499 #undef elen 3500 } 3501