1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ratelimit.h" 69 #include "opt_ipsec.h" 70 #include "opt_sctp.h" 71 #include "opt_route.h" 72 #include "opt_rss.h" 73 74 #include <sys/param.h> 75 #include <sys/kernel.h> 76 #include <sys/malloc.h> 77 #include <sys/mbuf.h> 78 #include <sys/errno.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/protosw.h> 82 #include <sys/socket.h> 83 #include <sys/socketvar.h> 84 #include <sys/syslog.h> 85 #include <sys/ucred.h> 86 87 #include <machine/in_cksum.h> 88 89 #include <net/if.h> 90 #include <net/if_var.h> 91 #include <net/if_llatbl.h> 92 #include <net/netisr.h> 93 #include <net/route.h> 94 #include <net/pfil.h> 95 #include <net/rss_config.h> 96 #include <net/vnet.h> 97 98 #include <netinet/in.h> 99 #include <netinet/in_var.h> 100 #include <netinet/ip_var.h> 101 #include <netinet6/in6_fib.h> 102 #include <netinet6/in6_var.h> 103 #include <netinet/ip6.h> 104 #include <netinet/icmp6.h> 105 #include <netinet6/ip6_var.h> 106 #include <netinet/in_pcb.h> 107 #include <netinet/tcp_var.h> 108 #include <netinet6/nd6.h> 109 #include <netinet6/in6_rss.h> 110 111 #include <netipsec/ipsec_support.h> 112 #ifdef SCTP 113 #include <netinet/sctp.h> 114 #include <netinet/sctp_crc32.h> 115 #endif 116 117 #include <netinet6/ip6protosw.h> 118 #include <netinet6/scope6_var.h> 119 120 #ifdef FLOWTABLE 121 #include <net/flowtable.h> 122 #endif 123 124 extern int in6_mcast_loop; 125 126 struct ip6_exthdrs { 127 struct mbuf *ip6e_ip6; 128 struct mbuf *ip6e_hbh; 129 struct mbuf *ip6e_dest1; 130 struct mbuf *ip6e_rthdr; 131 struct mbuf *ip6e_dest2; 132 }; 133 134 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 135 136 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 137 struct ucred *, int); 138 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 139 struct socket *, struct sockopt *); 140 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 141 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 142 struct ucred *, int, int, int); 143 144 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 145 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 146 struct ip6_frag **); 147 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 148 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 149 static int ip6_getpmtu(struct route_in6 *, int, 150 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 151 u_int); 152 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 153 u_long *, int *, u_int); 154 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 155 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 156 157 158 /* 159 * Make an extension header from option data. hp is the source, and 160 * mp is the destination. 161 */ 162 #define MAKE_EXTHDR(hp, mp) \ 163 do { \ 164 if (hp) { \ 165 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 166 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 167 ((eh)->ip6e_len + 1) << 3); \ 168 if (error) \ 169 goto freehdrs; \ 170 } \ 171 } while (/*CONSTCOND*/ 0) 172 173 /* 174 * Form a chain of extension headers. 175 * m is the extension header mbuf 176 * mp is the previous mbuf in the chain 177 * p is the next header 178 * i is the type of option. 179 */ 180 #define MAKE_CHAIN(m, mp, p, i)\ 181 do {\ 182 if (m) {\ 183 if (!hdrsplit) \ 184 panic("assumption failed: hdr not split"); \ 185 *mtod((m), u_char *) = *(p);\ 186 *(p) = (i);\ 187 p = mtod((m), u_char *);\ 188 (m)->m_next = (mp)->m_next;\ 189 (mp)->m_next = (m);\ 190 (mp) = (m);\ 191 }\ 192 } while (/*CONSTCOND*/ 0) 193 194 void 195 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 196 { 197 u_short csum; 198 199 csum = in_cksum_skip(m, offset + plen, offset); 200 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 201 csum = 0xffff; 202 offset += m->m_pkthdr.csum_data; /* checksum offset */ 203 204 if (offset + sizeof(u_short) > m->m_len) { 205 printf("%s: delayed m_pullup, m->len: %d plen %u off %u " 206 "csum_flags=%b\n", __func__, m->m_len, plen, offset, 207 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 208 /* 209 * XXX this should not happen, but if it does, the correct 210 * behavior may be to insert the checksum in the appropriate 211 * next mbuf in the chain. 212 */ 213 return; 214 } 215 *(u_short *)(m->m_data + offset) = csum; 216 } 217 218 int 219 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 220 int mtu, uint32_t id) 221 { 222 struct mbuf *m, **mnext, *m_frgpart; 223 struct ip6_hdr *ip6, *mhip6; 224 struct ip6_frag *ip6f; 225 int off; 226 int error; 227 int tlen = m0->m_pkthdr.len; 228 229 m = m0; 230 ip6 = mtod(m, struct ip6_hdr *); 231 mnext = &m->m_nextpkt; 232 233 for (off = hlen; off < tlen; off += mtu) { 234 m = m_gethdr(M_NOWAIT, MT_DATA); 235 if (!m) { 236 IP6STAT_INC(ip6s_odropped); 237 return (ENOBUFS); 238 } 239 m->m_flags = m0->m_flags & M_COPYFLAGS; 240 *mnext = m; 241 mnext = &m->m_nextpkt; 242 m->m_data += max_linkhdr; 243 mhip6 = mtod(m, struct ip6_hdr *); 244 *mhip6 = *ip6; 245 m->m_len = sizeof(*mhip6); 246 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 247 if (error) { 248 IP6STAT_INC(ip6s_odropped); 249 return (error); 250 } 251 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 252 if (off + mtu >= tlen) 253 mtu = tlen - off; 254 else 255 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 256 mhip6->ip6_plen = htons((u_short)(mtu + hlen + 257 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 258 if ((m_frgpart = m_copym(m0, off, mtu, M_NOWAIT)) == NULL) { 259 IP6STAT_INC(ip6s_odropped); 260 return (ENOBUFS); 261 } 262 m_cat(m, m_frgpart); 263 m->m_pkthdr.len = mtu + hlen + sizeof(*ip6f); 264 m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; 265 m->m_pkthdr.rcvif = NULL; 266 ip6f->ip6f_reserved = 0; 267 ip6f->ip6f_ident = id; 268 ip6f->ip6f_nxt = nextproto; 269 IP6STAT_INC(ip6s_ofragments); 270 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 271 } 272 273 return (0); 274 } 275 276 /* 277 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 278 * header (with pri, len, nxt, hlim, src, dst). 279 * This function may modify ver and hlim only. 280 * The mbuf chain containing the packet will be freed. 281 * The mbuf opt, if present, will not be freed. 282 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 283 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 284 * then result of route lookup is stored in ro->ro_rt. 285 * 286 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 287 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 288 * which is rt_mtu. 289 * 290 * ifpp - XXX: just for statistics 291 */ 292 /* 293 * XXX TODO: no flowid is assigned for outbound flows? 294 */ 295 int 296 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 297 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 298 struct ifnet **ifpp, struct inpcb *inp) 299 { 300 struct ip6_hdr *ip6; 301 struct ifnet *ifp, *origifp; 302 struct mbuf *m = m0; 303 struct mbuf *mprev = NULL; 304 int hlen, tlen, len; 305 struct route_in6 ip6route; 306 struct rtentry *rt = NULL; 307 struct sockaddr_in6 *dst, src_sa, dst_sa; 308 struct in6_addr odst; 309 int error = 0; 310 struct in6_ifaddr *ia = NULL; 311 u_long mtu; 312 int alwaysfrag, dontfrag; 313 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 314 struct ip6_exthdrs exthdrs; 315 struct in6_addr src0, dst0; 316 u_int32_t zone; 317 struct route_in6 *ro_pmtu = NULL; 318 int hdrsplit = 0; 319 int sw_csum, tso; 320 int needfiblookup; 321 uint32_t fibnum; 322 struct m_tag *fwd_tag = NULL; 323 uint32_t id; 324 325 if (inp != NULL) { 326 M_SETFIB(m, inp->inp_inc.inc_fibnum); 327 if ((flags & IP_NODEFAULTFLOWID) == 0) { 328 /* unconditionally set flowid */ 329 m->m_pkthdr.flowid = inp->inp_flowid; 330 M_HASHTYPE_SET(m, inp->inp_flowtype); 331 } 332 } 333 334 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 335 /* 336 * IPSec checking which handles several cases. 337 * FAST IPSEC: We re-injected the packet. 338 * XXX: need scope argument. 339 */ 340 if (IPSEC_ENABLED(ipv6)) { 341 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 342 if (error == EINPROGRESS) 343 error = 0; 344 goto done; 345 } 346 } 347 #endif /* IPSEC */ 348 349 bzero(&exthdrs, sizeof(exthdrs)); 350 if (opt) { 351 /* Hop-by-Hop options header */ 352 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 353 /* Destination options header(1st part) */ 354 if (opt->ip6po_rthdr) { 355 /* 356 * Destination options header(1st part) 357 * This only makes sense with a routing header. 358 * See Section 9.2 of RFC 3542. 359 * Disabling this part just for MIP6 convenience is 360 * a bad idea. We need to think carefully about a 361 * way to make the advanced API coexist with MIP6 362 * options, which might automatically be inserted in 363 * the kernel. 364 */ 365 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 366 } 367 /* Routing header */ 368 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 369 /* Destination options header(2nd part) */ 370 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 371 } 372 373 /* 374 * Calculate the total length of the extension header chain. 375 * Keep the length of the unfragmentable part for fragmentation. 376 */ 377 optlen = 0; 378 if (exthdrs.ip6e_hbh) 379 optlen += exthdrs.ip6e_hbh->m_len; 380 if (exthdrs.ip6e_dest1) 381 optlen += exthdrs.ip6e_dest1->m_len; 382 if (exthdrs.ip6e_rthdr) 383 optlen += exthdrs.ip6e_rthdr->m_len; 384 unfragpartlen = optlen + sizeof(struct ip6_hdr); 385 386 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 387 if (exthdrs.ip6e_dest2) 388 optlen += exthdrs.ip6e_dest2->m_len; 389 390 /* 391 * If there is at least one extension header, 392 * separate IP6 header from the payload. 393 */ 394 if (optlen && !hdrsplit) { 395 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 396 m = NULL; 397 goto freehdrs; 398 } 399 m = exthdrs.ip6e_ip6; 400 hdrsplit++; 401 } 402 403 ip6 = mtod(m, struct ip6_hdr *); 404 405 /* adjust mbuf packet header length */ 406 m->m_pkthdr.len += optlen; 407 plen = m->m_pkthdr.len - sizeof(*ip6); 408 409 /* If this is a jumbo payload, insert a jumbo payload option. */ 410 if (plen > IPV6_MAXPACKET) { 411 if (!hdrsplit) { 412 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 413 m = NULL; 414 goto freehdrs; 415 } 416 m = exthdrs.ip6e_ip6; 417 hdrsplit++; 418 } 419 /* adjust pointer */ 420 ip6 = mtod(m, struct ip6_hdr *); 421 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 422 goto freehdrs; 423 ip6->ip6_plen = 0; 424 } else 425 ip6->ip6_plen = htons(plen); 426 427 /* 428 * Concatenate headers and fill in next header fields. 429 * Here we have, on "m" 430 * IPv6 payload 431 * and we insert headers accordingly. Finally, we should be getting: 432 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 433 * 434 * during the header composing process, "m" points to IPv6 header. 435 * "mprev" points to an extension header prior to esp. 436 */ 437 u_char *nexthdrp = &ip6->ip6_nxt; 438 mprev = m; 439 440 /* 441 * we treat dest2 specially. this makes IPsec processing 442 * much easier. the goal here is to make mprev point the 443 * mbuf prior to dest2. 444 * 445 * result: IPv6 dest2 payload 446 * m and mprev will point to IPv6 header. 447 */ 448 if (exthdrs.ip6e_dest2) { 449 if (!hdrsplit) 450 panic("assumption failed: hdr not split"); 451 exthdrs.ip6e_dest2->m_next = m->m_next; 452 m->m_next = exthdrs.ip6e_dest2; 453 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 454 ip6->ip6_nxt = IPPROTO_DSTOPTS; 455 } 456 457 /* 458 * result: IPv6 hbh dest1 rthdr dest2 payload 459 * m will point to IPv6 header. mprev will point to the 460 * extension header prior to dest2 (rthdr in the above case). 461 */ 462 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 463 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 464 IPPROTO_DSTOPTS); 465 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 466 IPPROTO_ROUTING); 467 468 /* 469 * If there is a routing header, discard the packet. 470 */ 471 if (exthdrs.ip6e_rthdr) { 472 error = EINVAL; 473 goto bad; 474 } 475 476 /* Source address validation */ 477 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 478 (flags & IPV6_UNSPECSRC) == 0) { 479 error = EOPNOTSUPP; 480 IP6STAT_INC(ip6s_badscope); 481 goto bad; 482 } 483 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 484 error = EOPNOTSUPP; 485 IP6STAT_INC(ip6s_badscope); 486 goto bad; 487 } 488 489 IP6STAT_INC(ip6s_localout); 490 491 /* 492 * Route packet. 493 */ 494 if (ro == NULL) { 495 ro = &ip6route; 496 bzero((caddr_t)ro, sizeof(*ro)); 497 } else 498 ro->ro_flags |= RT_LLE_CACHE; 499 ro_pmtu = ro; 500 if (opt && opt->ip6po_rthdr) 501 ro = &opt->ip6po_route; 502 dst = (struct sockaddr_in6 *)&ro->ro_dst; 503 #ifdef FLOWTABLE 504 if (ro->ro_rt == NULL) 505 (void )flowtable_lookup(AF_INET6, m, (struct route *)ro); 506 #endif 507 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 508 again: 509 /* 510 * if specified, try to fill in the traffic class field. 511 * do not override if a non-zero value is already set. 512 * we check the diffserv field and the ecn field separately. 513 */ 514 if (opt && opt->ip6po_tclass >= 0) { 515 int mask = 0; 516 517 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 518 mask |= 0xfc; 519 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 520 mask |= 0x03; 521 if (mask != 0) 522 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 523 } 524 525 /* fill in or override the hop limit field, if necessary. */ 526 if (opt && opt->ip6po_hlim != -1) 527 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 528 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 529 if (im6o != NULL) 530 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 531 else 532 ip6->ip6_hlim = V_ip6_defmcasthlim; 533 } 534 /* 535 * Validate route against routing table additions; 536 * a better/more specific route might have been added. 537 * Make sure address family is set in route. 538 */ 539 if (inp) { 540 ro->ro_dst.sin6_family = AF_INET6; 541 RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, fibnum); 542 } 543 if (ro->ro_rt && fwd_tag == NULL && (ro->ro_rt->rt_flags & RTF_UP) && 544 ro->ro_dst.sin6_family == AF_INET6 && 545 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 546 rt = ro->ro_rt; 547 ifp = ro->ro_rt->rt_ifp; 548 } else { 549 if (ro->ro_lle) 550 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 551 ro->ro_lle = NULL; 552 if (fwd_tag == NULL) { 553 bzero(&dst_sa, sizeof(dst_sa)); 554 dst_sa.sin6_family = AF_INET6; 555 dst_sa.sin6_len = sizeof(dst_sa); 556 dst_sa.sin6_addr = ip6->ip6_dst; 557 } 558 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 559 &rt, fibnum); 560 if (error != 0) { 561 if (ifp != NULL) 562 in6_ifstat_inc(ifp, ifs6_out_discard); 563 goto bad; 564 } 565 } 566 if (rt == NULL) { 567 /* 568 * If in6_selectroute() does not return a route entry, 569 * dst may not have been updated. 570 */ 571 *dst = dst_sa; /* XXX */ 572 } 573 574 /* 575 * then rt (for unicast) and ifp must be non-NULL valid values. 576 */ 577 if ((flags & IPV6_FORWARDING) == 0) { 578 /* XXX: the FORWARDING flag can be set for mrouting. */ 579 in6_ifstat_inc(ifp, ifs6_out_request); 580 } 581 if (rt != NULL) { 582 ia = (struct in6_ifaddr *)(rt->rt_ifa); 583 counter_u64_add(rt->rt_pksent, 1); 584 } 585 586 587 /* 588 * The outgoing interface must be in the zone of source and 589 * destination addresses. 590 */ 591 origifp = ifp; 592 593 src0 = ip6->ip6_src; 594 if (in6_setscope(&src0, origifp, &zone)) 595 goto badscope; 596 bzero(&src_sa, sizeof(src_sa)); 597 src_sa.sin6_family = AF_INET6; 598 src_sa.sin6_len = sizeof(src_sa); 599 src_sa.sin6_addr = ip6->ip6_src; 600 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 601 goto badscope; 602 603 dst0 = ip6->ip6_dst; 604 if (in6_setscope(&dst0, origifp, &zone)) 605 goto badscope; 606 /* re-initialize to be sure */ 607 bzero(&dst_sa, sizeof(dst_sa)); 608 dst_sa.sin6_family = AF_INET6; 609 dst_sa.sin6_len = sizeof(dst_sa); 610 dst_sa.sin6_addr = ip6->ip6_dst; 611 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 612 goto badscope; 613 } 614 615 /* We should use ia_ifp to support the case of 616 * sending packets to an address of our own. 617 */ 618 if (ia != NULL && ia->ia_ifp) 619 ifp = ia->ia_ifp; 620 621 /* scope check is done. */ 622 goto routefound; 623 624 badscope: 625 IP6STAT_INC(ip6s_badscope); 626 in6_ifstat_inc(origifp, ifs6_out_discard); 627 if (error == 0) 628 error = EHOSTUNREACH; /* XXX */ 629 goto bad; 630 631 routefound: 632 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 633 if (opt && opt->ip6po_nextroute.ro_rt) { 634 /* 635 * The nexthop is explicitly specified by the 636 * application. We assume the next hop is an IPv6 637 * address. 638 */ 639 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 640 } 641 else if ((rt->rt_flags & RTF_GATEWAY)) 642 dst = (struct sockaddr_in6 *)rt->rt_gateway; 643 } 644 645 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 646 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 647 } else { 648 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 649 in6_ifstat_inc(ifp, ifs6_out_mcast); 650 /* 651 * Confirm that the outgoing interface supports multicast. 652 */ 653 if (!(ifp->if_flags & IFF_MULTICAST)) { 654 IP6STAT_INC(ip6s_noroute); 655 in6_ifstat_inc(ifp, ifs6_out_discard); 656 error = ENETUNREACH; 657 goto bad; 658 } 659 if ((im6o == NULL && in6_mcast_loop) || 660 (im6o && im6o->im6o_multicast_loop)) { 661 /* 662 * Loop back multicast datagram if not expressly 663 * forbidden to do so, even if we have not joined 664 * the address; protocols will filter it later, 665 * thus deferring a hash lookup and lock acquisition 666 * at the expense of an m_copym(). 667 */ 668 ip6_mloopback(ifp, m); 669 } else { 670 /* 671 * If we are acting as a multicast router, perform 672 * multicast forwarding as if the packet had just 673 * arrived on the interface to which we are about 674 * to send. The multicast forwarding function 675 * recursively calls this function, using the 676 * IPV6_FORWARDING flag to prevent infinite recursion. 677 * 678 * Multicasts that are looped back by ip6_mloopback(), 679 * above, will be forwarded by the ip6_input() routine, 680 * if necessary. 681 */ 682 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 683 /* 684 * XXX: ip6_mforward expects that rcvif is NULL 685 * when it is called from the originating path. 686 * However, it may not always be the case. 687 */ 688 m->m_pkthdr.rcvif = NULL; 689 if (ip6_mforward(ip6, ifp, m) != 0) { 690 m_freem(m); 691 goto done; 692 } 693 } 694 } 695 /* 696 * Multicasts with a hoplimit of zero may be looped back, 697 * above, but must not be transmitted on a network. 698 * Also, multicasts addressed to the loopback interface 699 * are not sent -- the above call to ip6_mloopback() will 700 * loop back a copy if this host actually belongs to the 701 * destination group on the loopback interface. 702 */ 703 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 704 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 705 m_freem(m); 706 goto done; 707 } 708 } 709 710 /* 711 * Fill the outgoing inteface to tell the upper layer 712 * to increment per-interface statistics. 713 */ 714 if (ifpp) 715 *ifpp = ifp; 716 717 /* Determine path MTU. */ 718 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 719 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 720 goto bad; 721 722 /* 723 * The caller of this function may specify to use the minimum MTU 724 * in some cases. 725 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 726 * setting. The logic is a bit complicated; by default, unicast 727 * packets will follow path MTU while multicast packets will be sent at 728 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 729 * including unicast ones will be sent at the minimum MTU. Multicast 730 * packets will always be sent at the minimum MTU unless 731 * IP6PO_MINMTU_DISABLE is explicitly specified. 732 * See RFC 3542 for more details. 733 */ 734 if (mtu > IPV6_MMTU) { 735 if ((flags & IPV6_MINMTU)) 736 mtu = IPV6_MMTU; 737 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 738 mtu = IPV6_MMTU; 739 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 740 (opt == NULL || 741 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 742 mtu = IPV6_MMTU; 743 } 744 } 745 746 /* 747 * clear embedded scope identifiers if necessary. 748 * in6_clearscope will touch the addresses only when necessary. 749 */ 750 in6_clearscope(&ip6->ip6_src); 751 in6_clearscope(&ip6->ip6_dst); 752 753 /* 754 * If the outgoing packet contains a hop-by-hop options header, 755 * it must be examined and processed even by the source node. 756 * (RFC 2460, section 4.) 757 */ 758 if (exthdrs.ip6e_hbh) { 759 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 760 u_int32_t dummy; /* XXX unused */ 761 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 762 763 #ifdef DIAGNOSTIC 764 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 765 panic("ip6e_hbh is not contiguous"); 766 #endif 767 /* 768 * XXX: if we have to send an ICMPv6 error to the sender, 769 * we need the M_LOOP flag since icmp6_error() expects 770 * the IPv6 and the hop-by-hop options header are 771 * contiguous unless the flag is set. 772 */ 773 m->m_flags |= M_LOOP; 774 m->m_pkthdr.rcvif = ifp; 775 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 776 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 777 &dummy, &plen) < 0) { 778 /* m was already freed at this point */ 779 error = EINVAL;/* better error? */ 780 goto done; 781 } 782 m->m_flags &= ~M_LOOP; /* XXX */ 783 m->m_pkthdr.rcvif = NULL; 784 } 785 786 /* Jump over all PFIL processing if hooks are not active. */ 787 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 788 goto passout; 789 790 odst = ip6->ip6_dst; 791 /* Run through list of hooks for output packets. */ 792 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 793 if (error != 0 || m == NULL) 794 goto done; 795 /* adjust pointer */ 796 ip6 = mtod(m, struct ip6_hdr *); 797 798 needfiblookup = 0; 799 /* See if destination IP address was changed by packet filter. */ 800 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 801 m->m_flags |= M_SKIP_FIREWALL; 802 /* If destination is now ourself drop to ip6_input(). */ 803 if (in6_localip(&ip6->ip6_dst)) { 804 m->m_flags |= M_FASTFWD_OURS; 805 if (m->m_pkthdr.rcvif == NULL) 806 m->m_pkthdr.rcvif = V_loif; 807 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 808 m->m_pkthdr.csum_flags |= 809 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 810 m->m_pkthdr.csum_data = 0xffff; 811 } 812 #ifdef SCTP 813 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 814 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 815 #endif 816 error = netisr_queue(NETISR_IPV6, m); 817 goto done; 818 } else { 819 RO_RTFREE(ro); 820 needfiblookup = 1; /* Redo the routing table lookup. */ 821 if (ro->ro_lle) 822 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 823 ro->ro_lle = NULL; 824 } 825 } 826 /* See if fib was changed by packet filter. */ 827 if (fibnum != M_GETFIB(m)) { 828 m->m_flags |= M_SKIP_FIREWALL; 829 fibnum = M_GETFIB(m); 830 RO_RTFREE(ro); 831 needfiblookup = 1; 832 if (ro->ro_lle) 833 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 834 ro->ro_lle = NULL; 835 } 836 if (needfiblookup) 837 goto again; 838 839 /* See if local, if yes, send it to netisr. */ 840 if (m->m_flags & M_FASTFWD_OURS) { 841 if (m->m_pkthdr.rcvif == NULL) 842 m->m_pkthdr.rcvif = V_loif; 843 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 844 m->m_pkthdr.csum_flags |= 845 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 846 m->m_pkthdr.csum_data = 0xffff; 847 } 848 #ifdef SCTP 849 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 850 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 851 #endif 852 error = netisr_queue(NETISR_IPV6, m); 853 goto done; 854 } 855 /* Or forward to some other address? */ 856 if ((m->m_flags & M_IP6_NEXTHOP) && 857 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 858 dst = (struct sockaddr_in6 *)&ro->ro_dst; 859 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 860 m->m_flags |= M_SKIP_FIREWALL; 861 m->m_flags &= ~M_IP6_NEXTHOP; 862 m_tag_delete(m, fwd_tag); 863 goto again; 864 } 865 866 passout: 867 /* 868 * Send the packet to the outgoing interface. 869 * If necessary, do IPv6 fragmentation before sending. 870 * 871 * the logic here is rather complex: 872 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 873 * 1-a: send as is if tlen <= path mtu 874 * 1-b: fragment if tlen > path mtu 875 * 876 * 2: if user asks us not to fragment (dontfrag == 1) 877 * 2-a: send as is if tlen <= interface mtu 878 * 2-b: error if tlen > interface mtu 879 * 880 * 3: if we always need to attach fragment header (alwaysfrag == 1) 881 * always fragment 882 * 883 * 4: if dontfrag == 1 && alwaysfrag == 1 884 * error, as we cannot handle this conflicting request 885 */ 886 sw_csum = m->m_pkthdr.csum_flags; 887 if (!hdrsplit) { 888 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 889 sw_csum &= ~ifp->if_hwassist; 890 } else 891 tso = 0; 892 /* 893 * If we added extension headers, we will not do TSO and calculate the 894 * checksums ourselves for now. 895 * XXX-BZ Need a framework to know when the NIC can handle it, even 896 * with ext. hdrs. 897 */ 898 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 899 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 900 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 901 } 902 #ifdef SCTP 903 if (sw_csum & CSUM_SCTP_IPV6) { 904 sw_csum &= ~CSUM_SCTP_IPV6; 905 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 906 } 907 #endif 908 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 909 tlen = m->m_pkthdr.len; 910 911 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 912 dontfrag = 1; 913 else 914 dontfrag = 0; 915 if (dontfrag && alwaysfrag) { /* case 4 */ 916 /* conflicting request - can't transmit */ 917 error = EMSGSIZE; 918 goto bad; 919 } 920 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 921 /* 922 * Even if the DONTFRAG option is specified, we cannot send the 923 * packet when the data length is larger than the MTU of the 924 * outgoing interface. 925 * Notify the error by sending IPV6_PATHMTU ancillary data if 926 * application wanted to know the MTU value. Also return an 927 * error code (this is not described in the API spec). 928 */ 929 if (inp != NULL) 930 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 931 error = EMSGSIZE; 932 goto bad; 933 } 934 935 /* 936 * transmit packet without fragmentation 937 */ 938 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 939 struct in6_ifaddr *ia6; 940 941 ip6 = mtod(m, struct ip6_hdr *); 942 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 943 if (ia6) { 944 /* Record statistics for this interface address. */ 945 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 946 counter_u64_add(ia6->ia_ifa.ifa_obytes, 947 m->m_pkthdr.len); 948 ifa_free(&ia6->ia_ifa); 949 } 950 #ifdef RATELIMIT 951 if (inp != NULL) { 952 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 953 in_pcboutput_txrtlmt(inp, ifp, m); 954 /* stamp send tag on mbuf */ 955 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 956 } else { 957 m->m_pkthdr.snd_tag = NULL; 958 } 959 #endif 960 error = nd6_output_ifp(ifp, origifp, m, dst, 961 (struct route *)ro); 962 #ifdef RATELIMIT 963 /* check for route change */ 964 if (error == EAGAIN) 965 in_pcboutput_eagain(inp); 966 #endif 967 goto done; 968 } 969 970 /* 971 * try to fragment the packet. case 1-b and 3 972 */ 973 if (mtu < IPV6_MMTU) { 974 /* path MTU cannot be less than IPV6_MMTU */ 975 error = EMSGSIZE; 976 in6_ifstat_inc(ifp, ifs6_out_fragfail); 977 goto bad; 978 } else if (ip6->ip6_plen == 0) { 979 /* jumbo payload cannot be fragmented */ 980 error = EMSGSIZE; 981 in6_ifstat_inc(ifp, ifs6_out_fragfail); 982 goto bad; 983 } else { 984 u_char nextproto; 985 986 /* 987 * Too large for the destination or interface; 988 * fragment if possible. 989 * Must be able to put at least 8 bytes per fragment. 990 */ 991 hlen = unfragpartlen; 992 if (mtu > IPV6_MAXPACKET) 993 mtu = IPV6_MAXPACKET; 994 995 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 996 if (len < 8) { 997 error = EMSGSIZE; 998 in6_ifstat_inc(ifp, ifs6_out_fragfail); 999 goto bad; 1000 } 1001 1002 /* 1003 * If the interface will not calculate checksums on 1004 * fragmented packets, then do it here. 1005 * XXX-BZ handle the hw offloading case. Need flags. 1006 */ 1007 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1008 in6_delayed_cksum(m, plen, hlen); 1009 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 1010 } 1011 #ifdef SCTP 1012 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 1013 sctp_delayed_cksum(m, hlen); 1014 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 1015 } 1016 #endif 1017 /* 1018 * Change the next header field of the last header in the 1019 * unfragmentable part. 1020 */ 1021 if (exthdrs.ip6e_rthdr) { 1022 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1023 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1024 } else if (exthdrs.ip6e_dest1) { 1025 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1026 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1027 } else if (exthdrs.ip6e_hbh) { 1028 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1029 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1030 } else { 1031 nextproto = ip6->ip6_nxt; 1032 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1033 } 1034 1035 /* 1036 * Loop through length of segment after first fragment, 1037 * make new header and copy data of each part and link onto 1038 * chain. 1039 */ 1040 m0 = m; 1041 id = htonl(ip6_randomid()); 1042 if ((error = ip6_fragment(ifp, m, hlen, nextproto, len, id))) 1043 goto sendorfree; 1044 1045 in6_ifstat_inc(ifp, ifs6_out_fragok); 1046 } 1047 1048 /* 1049 * Remove leading garbages. 1050 */ 1051 sendorfree: 1052 m = m0->m_nextpkt; 1053 m0->m_nextpkt = 0; 1054 m_freem(m0); 1055 for (m0 = m; m; m = m0) { 1056 m0 = m->m_nextpkt; 1057 m->m_nextpkt = 0; 1058 if (error == 0) { 1059 /* Record statistics for this interface address. */ 1060 if (ia) { 1061 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1062 counter_u64_add(ia->ia_ifa.ifa_obytes, 1063 m->m_pkthdr.len); 1064 } 1065 #ifdef RATELIMIT 1066 if (inp != NULL) { 1067 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 1068 in_pcboutput_txrtlmt(inp, ifp, m); 1069 /* stamp send tag on mbuf */ 1070 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 1071 } else { 1072 m->m_pkthdr.snd_tag = NULL; 1073 } 1074 #endif 1075 error = nd6_output_ifp(ifp, origifp, m, dst, 1076 (struct route *)ro); 1077 #ifdef RATELIMIT 1078 /* check for route change */ 1079 if (error == EAGAIN) 1080 in_pcboutput_eagain(inp); 1081 #endif 1082 } else 1083 m_freem(m); 1084 } 1085 1086 if (error == 0) 1087 IP6STAT_INC(ip6s_fragmented); 1088 1089 done: 1090 if (ro == &ip6route) 1091 RO_RTFREE(ro); 1092 return (error); 1093 1094 freehdrs: 1095 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1096 m_freem(exthdrs.ip6e_dest1); 1097 m_freem(exthdrs.ip6e_rthdr); 1098 m_freem(exthdrs.ip6e_dest2); 1099 /* FALLTHROUGH */ 1100 bad: 1101 if (m) 1102 m_freem(m); 1103 goto done; 1104 } 1105 1106 static int 1107 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1108 { 1109 struct mbuf *m; 1110 1111 if (hlen > MCLBYTES) 1112 return (ENOBUFS); /* XXX */ 1113 1114 if (hlen > MLEN) 1115 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1116 else 1117 m = m_get(M_NOWAIT, MT_DATA); 1118 if (m == NULL) 1119 return (ENOBUFS); 1120 m->m_len = hlen; 1121 if (hdr) 1122 bcopy(hdr, mtod(m, caddr_t), hlen); 1123 1124 *mp = m; 1125 return (0); 1126 } 1127 1128 /* 1129 * Insert jumbo payload option. 1130 */ 1131 static int 1132 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1133 { 1134 struct mbuf *mopt; 1135 u_char *optbuf; 1136 u_int32_t v; 1137 1138 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1139 1140 /* 1141 * If there is no hop-by-hop options header, allocate new one. 1142 * If there is one but it doesn't have enough space to store the 1143 * jumbo payload option, allocate a cluster to store the whole options. 1144 * Otherwise, use it to store the options. 1145 */ 1146 if (exthdrs->ip6e_hbh == NULL) { 1147 mopt = m_get(M_NOWAIT, MT_DATA); 1148 if (mopt == NULL) 1149 return (ENOBUFS); 1150 mopt->m_len = JUMBOOPTLEN; 1151 optbuf = mtod(mopt, u_char *); 1152 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1153 exthdrs->ip6e_hbh = mopt; 1154 } else { 1155 struct ip6_hbh *hbh; 1156 1157 mopt = exthdrs->ip6e_hbh; 1158 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1159 /* 1160 * XXX assumption: 1161 * - exthdrs->ip6e_hbh is not referenced from places 1162 * other than exthdrs. 1163 * - exthdrs->ip6e_hbh is not an mbuf chain. 1164 */ 1165 int oldoptlen = mopt->m_len; 1166 struct mbuf *n; 1167 1168 /* 1169 * XXX: give up if the whole (new) hbh header does 1170 * not fit even in an mbuf cluster. 1171 */ 1172 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1173 return (ENOBUFS); 1174 1175 /* 1176 * As a consequence, we must always prepare a cluster 1177 * at this point. 1178 */ 1179 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1180 if (n == NULL) 1181 return (ENOBUFS); 1182 n->m_len = oldoptlen + JUMBOOPTLEN; 1183 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1184 oldoptlen); 1185 optbuf = mtod(n, caddr_t) + oldoptlen; 1186 m_freem(mopt); 1187 mopt = exthdrs->ip6e_hbh = n; 1188 } else { 1189 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1190 mopt->m_len += JUMBOOPTLEN; 1191 } 1192 optbuf[0] = IP6OPT_PADN; 1193 optbuf[1] = 1; 1194 1195 /* 1196 * Adjust the header length according to the pad and 1197 * the jumbo payload option. 1198 */ 1199 hbh = mtod(mopt, struct ip6_hbh *); 1200 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1201 } 1202 1203 /* fill in the option. */ 1204 optbuf[2] = IP6OPT_JUMBO; 1205 optbuf[3] = 4; 1206 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1207 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1208 1209 /* finally, adjust the packet header length */ 1210 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1211 1212 return (0); 1213 #undef JUMBOOPTLEN 1214 } 1215 1216 /* 1217 * Insert fragment header and copy unfragmentable header portions. 1218 */ 1219 static int 1220 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1221 struct ip6_frag **frghdrp) 1222 { 1223 struct mbuf *n, *mlast; 1224 1225 if (hlen > sizeof(struct ip6_hdr)) { 1226 n = m_copym(m0, sizeof(struct ip6_hdr), 1227 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1228 if (n == NULL) 1229 return (ENOBUFS); 1230 m->m_next = n; 1231 } else 1232 n = m; 1233 1234 /* Search for the last mbuf of unfragmentable part. */ 1235 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1236 ; 1237 1238 if (M_WRITABLE(mlast) && 1239 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1240 /* use the trailing space of the last mbuf for the fragment hdr */ 1241 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1242 mlast->m_len); 1243 mlast->m_len += sizeof(struct ip6_frag); 1244 m->m_pkthdr.len += sizeof(struct ip6_frag); 1245 } else { 1246 /* allocate a new mbuf for the fragment header */ 1247 struct mbuf *mfrg; 1248 1249 mfrg = m_get(M_NOWAIT, MT_DATA); 1250 if (mfrg == NULL) 1251 return (ENOBUFS); 1252 mfrg->m_len = sizeof(struct ip6_frag); 1253 *frghdrp = mtod(mfrg, struct ip6_frag *); 1254 mlast->m_next = mfrg; 1255 } 1256 1257 return (0); 1258 } 1259 1260 /* 1261 * Calculates IPv6 path mtu for destination @dst. 1262 * Resulting MTU is stored in @mtup. 1263 * 1264 * Returns 0 on success. 1265 */ 1266 static int 1267 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1268 { 1269 struct nhop6_extended nh6; 1270 struct in6_addr kdst; 1271 uint32_t scopeid; 1272 struct ifnet *ifp; 1273 u_long mtu; 1274 int error; 1275 1276 in6_splitscope(dst, &kdst, &scopeid); 1277 if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0) 1278 return (EHOSTUNREACH); 1279 1280 ifp = nh6.nh_ifp; 1281 mtu = nh6.nh_mtu; 1282 1283 error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL, 0); 1284 fib6_free_nh_ext(fibnum, &nh6); 1285 1286 return (error); 1287 } 1288 1289 /* 1290 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1291 * and cached data in @ro_pmtu. 1292 * MTU from (successful) route lookup is saved (along with dst) 1293 * inside @ro_pmtu to avoid subsequent route lookups after packet 1294 * filter processing. 1295 * 1296 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1297 * Returns 0 on success. 1298 */ 1299 static int 1300 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1301 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1302 int *alwaysfragp, u_int fibnum, u_int proto) 1303 { 1304 struct nhop6_basic nh6; 1305 struct in6_addr kdst; 1306 uint32_t scopeid; 1307 struct sockaddr_in6 *sa6_dst; 1308 u_long mtu; 1309 1310 mtu = 0; 1311 if (do_lookup) { 1312 1313 /* 1314 * Here ro_pmtu has final destination address, while 1315 * ro might represent immediate destination. 1316 * Use ro_pmtu destination since mtu might differ. 1317 */ 1318 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1319 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1320 ro_pmtu->ro_mtu = 0; 1321 1322 if (ro_pmtu->ro_mtu == 0) { 1323 bzero(sa6_dst, sizeof(*sa6_dst)); 1324 sa6_dst->sin6_family = AF_INET6; 1325 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1326 sa6_dst->sin6_addr = *dst; 1327 1328 in6_splitscope(dst, &kdst, &scopeid); 1329 if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0, 1330 &nh6) == 0) 1331 ro_pmtu->ro_mtu = nh6.nh_mtu; 1332 } 1333 1334 mtu = ro_pmtu->ro_mtu; 1335 } 1336 1337 if (ro_pmtu->ro_rt) 1338 mtu = ro_pmtu->ro_rt->rt_mtu; 1339 1340 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1341 } 1342 1343 /* 1344 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1345 * hostcache data for @dst. 1346 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1347 * 1348 * Returns 0 on success. 1349 */ 1350 static int 1351 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1352 u_long *mtup, int *alwaysfragp, u_int proto) 1353 { 1354 u_long mtu = 0; 1355 int alwaysfrag = 0; 1356 int error = 0; 1357 1358 if (rt_mtu > 0) { 1359 u_int32_t ifmtu; 1360 struct in_conninfo inc; 1361 1362 bzero(&inc, sizeof(inc)); 1363 inc.inc_flags |= INC_ISIPV6; 1364 inc.inc6_faddr = *dst; 1365 1366 ifmtu = IN6_LINKMTU(ifp); 1367 1368 /* TCP is known to react to pmtu changes so skip hc */ 1369 if (proto != IPPROTO_TCP) 1370 mtu = tcp_hc_getmtu(&inc); 1371 1372 if (mtu) 1373 mtu = min(mtu, rt_mtu); 1374 else 1375 mtu = rt_mtu; 1376 if (mtu == 0) 1377 mtu = ifmtu; 1378 else if (mtu < IPV6_MMTU) { 1379 /* 1380 * RFC2460 section 5, last paragraph: 1381 * if we record ICMPv6 too big message with 1382 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1383 * or smaller, with framgent header attached. 1384 * (fragment header is needed regardless from the 1385 * packet size, for translators to identify packets) 1386 */ 1387 alwaysfrag = 1; 1388 mtu = IPV6_MMTU; 1389 } 1390 } else if (ifp) { 1391 mtu = IN6_LINKMTU(ifp); 1392 } else 1393 error = EHOSTUNREACH; /* XXX */ 1394 1395 *mtup = mtu; 1396 if (alwaysfragp) 1397 *alwaysfragp = alwaysfrag; 1398 return (error); 1399 } 1400 1401 /* 1402 * IP6 socket option processing. 1403 */ 1404 int 1405 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1406 { 1407 int optdatalen, uproto; 1408 void *optdata; 1409 struct inpcb *in6p = sotoinpcb(so); 1410 int error, optval; 1411 int level, op, optname; 1412 int optlen; 1413 struct thread *td; 1414 #ifdef RSS 1415 uint32_t rss_bucket; 1416 int retval; 1417 #endif 1418 1419 /* 1420 * Don't use more than a quarter of mbuf clusters. N.B.: 1421 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1422 * on LP64 architectures, so cast to u_long to avoid undefined 1423 * behavior. ILP32 architectures cannot have nmbclusters 1424 * large enough to overflow for other reasons. 1425 */ 1426 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1427 1428 level = sopt->sopt_level; 1429 op = sopt->sopt_dir; 1430 optname = sopt->sopt_name; 1431 optlen = sopt->sopt_valsize; 1432 td = sopt->sopt_td; 1433 error = 0; 1434 optval = 0; 1435 uproto = (int)so->so_proto->pr_protocol; 1436 1437 if (level != IPPROTO_IPV6) { 1438 error = EINVAL; 1439 1440 if (sopt->sopt_level == SOL_SOCKET && 1441 sopt->sopt_dir == SOPT_SET) { 1442 switch (sopt->sopt_name) { 1443 case SO_REUSEADDR: 1444 INP_WLOCK(in6p); 1445 if ((so->so_options & SO_REUSEADDR) != 0) 1446 in6p->inp_flags2 |= INP_REUSEADDR; 1447 else 1448 in6p->inp_flags2 &= ~INP_REUSEADDR; 1449 INP_WUNLOCK(in6p); 1450 error = 0; 1451 break; 1452 case SO_REUSEPORT: 1453 INP_WLOCK(in6p); 1454 if ((so->so_options & SO_REUSEPORT) != 0) 1455 in6p->inp_flags2 |= INP_REUSEPORT; 1456 else 1457 in6p->inp_flags2 &= ~INP_REUSEPORT; 1458 INP_WUNLOCK(in6p); 1459 error = 0; 1460 break; 1461 case SO_SETFIB: 1462 INP_WLOCK(in6p); 1463 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1464 INP_WUNLOCK(in6p); 1465 error = 0; 1466 break; 1467 case SO_MAX_PACING_RATE: 1468 #ifdef RATELIMIT 1469 INP_WLOCK(in6p); 1470 in6p->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1471 INP_WUNLOCK(in6p); 1472 error = 0; 1473 #else 1474 error = EOPNOTSUPP; 1475 #endif 1476 break; 1477 default: 1478 break; 1479 } 1480 } 1481 } else { /* level == IPPROTO_IPV6 */ 1482 switch (op) { 1483 1484 case SOPT_SET: 1485 switch (optname) { 1486 case IPV6_2292PKTOPTIONS: 1487 #ifdef IPV6_PKTOPTIONS 1488 case IPV6_PKTOPTIONS: 1489 #endif 1490 { 1491 struct mbuf *m; 1492 1493 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1494 printf("ip6_ctloutput: mbuf limit hit\n"); 1495 error = ENOBUFS; 1496 break; 1497 } 1498 1499 error = soopt_getm(sopt, &m); /* XXX */ 1500 if (error != 0) 1501 break; 1502 error = soopt_mcopyin(sopt, m); /* XXX */ 1503 if (error != 0) 1504 break; 1505 error = ip6_pcbopts(&in6p->in6p_outputopts, 1506 m, so, sopt); 1507 m_freem(m); /* XXX */ 1508 break; 1509 } 1510 1511 /* 1512 * Use of some Hop-by-Hop options or some 1513 * Destination options, might require special 1514 * privilege. That is, normal applications 1515 * (without special privilege) might be forbidden 1516 * from setting certain options in outgoing packets, 1517 * and might never see certain options in received 1518 * packets. [RFC 2292 Section 6] 1519 * KAME specific note: 1520 * KAME prevents non-privileged users from sending or 1521 * receiving ANY hbh/dst options in order to avoid 1522 * overhead of parsing options in the kernel. 1523 */ 1524 case IPV6_RECVHOPOPTS: 1525 case IPV6_RECVDSTOPTS: 1526 case IPV6_RECVRTHDRDSTOPTS: 1527 if (td != NULL) { 1528 error = priv_check(td, 1529 PRIV_NETINET_SETHDROPTS); 1530 if (error) 1531 break; 1532 } 1533 /* FALLTHROUGH */ 1534 case IPV6_UNICAST_HOPS: 1535 case IPV6_HOPLIMIT: 1536 1537 case IPV6_RECVPKTINFO: 1538 case IPV6_RECVHOPLIMIT: 1539 case IPV6_RECVRTHDR: 1540 case IPV6_RECVPATHMTU: 1541 case IPV6_RECVTCLASS: 1542 case IPV6_RECVFLOWID: 1543 #ifdef RSS 1544 case IPV6_RECVRSSBUCKETID: 1545 #endif 1546 case IPV6_V6ONLY: 1547 case IPV6_AUTOFLOWLABEL: 1548 case IPV6_ORIGDSTADDR: 1549 case IPV6_BINDANY: 1550 case IPV6_BINDMULTI: 1551 #ifdef RSS 1552 case IPV6_RSS_LISTEN_BUCKET: 1553 #endif 1554 if (optname == IPV6_BINDANY && td != NULL) { 1555 error = priv_check(td, 1556 PRIV_NETINET_BINDANY); 1557 if (error) 1558 break; 1559 } 1560 1561 if (optlen != sizeof(int)) { 1562 error = EINVAL; 1563 break; 1564 } 1565 error = sooptcopyin(sopt, &optval, 1566 sizeof optval, sizeof optval); 1567 if (error) 1568 break; 1569 switch (optname) { 1570 1571 case IPV6_UNICAST_HOPS: 1572 if (optval < -1 || optval >= 256) 1573 error = EINVAL; 1574 else { 1575 /* -1 = kernel default */ 1576 in6p->in6p_hops = optval; 1577 if ((in6p->inp_vflag & 1578 INP_IPV4) != 0) 1579 in6p->inp_ip_ttl = optval; 1580 } 1581 break; 1582 #define OPTSET(bit) \ 1583 do { \ 1584 INP_WLOCK(in6p); \ 1585 if (optval) \ 1586 in6p->inp_flags |= (bit); \ 1587 else \ 1588 in6p->inp_flags &= ~(bit); \ 1589 INP_WUNLOCK(in6p); \ 1590 } while (/*CONSTCOND*/ 0) 1591 #define OPTSET2292(bit) \ 1592 do { \ 1593 INP_WLOCK(in6p); \ 1594 in6p->inp_flags |= IN6P_RFC2292; \ 1595 if (optval) \ 1596 in6p->inp_flags |= (bit); \ 1597 else \ 1598 in6p->inp_flags &= ~(bit); \ 1599 INP_WUNLOCK(in6p); \ 1600 } while (/*CONSTCOND*/ 0) 1601 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1602 1603 #define OPTSET2(bit, val) do { \ 1604 INP_WLOCK(in6p); \ 1605 if (val) \ 1606 in6p->inp_flags2 |= bit; \ 1607 else \ 1608 in6p->inp_flags2 &= ~bit; \ 1609 INP_WUNLOCK(in6p); \ 1610 } while (0) 1611 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) 1612 1613 case IPV6_RECVPKTINFO: 1614 /* cannot mix with RFC2292 */ 1615 if (OPTBIT(IN6P_RFC2292)) { 1616 error = EINVAL; 1617 break; 1618 } 1619 OPTSET(IN6P_PKTINFO); 1620 break; 1621 1622 case IPV6_HOPLIMIT: 1623 { 1624 struct ip6_pktopts **optp; 1625 1626 /* cannot mix with RFC2292 */ 1627 if (OPTBIT(IN6P_RFC2292)) { 1628 error = EINVAL; 1629 break; 1630 } 1631 optp = &in6p->in6p_outputopts; 1632 error = ip6_pcbopt(IPV6_HOPLIMIT, 1633 (u_char *)&optval, sizeof(optval), 1634 optp, (td != NULL) ? td->td_ucred : 1635 NULL, uproto); 1636 break; 1637 } 1638 1639 case IPV6_RECVHOPLIMIT: 1640 /* cannot mix with RFC2292 */ 1641 if (OPTBIT(IN6P_RFC2292)) { 1642 error = EINVAL; 1643 break; 1644 } 1645 OPTSET(IN6P_HOPLIMIT); 1646 break; 1647 1648 case IPV6_RECVHOPOPTS: 1649 /* cannot mix with RFC2292 */ 1650 if (OPTBIT(IN6P_RFC2292)) { 1651 error = EINVAL; 1652 break; 1653 } 1654 OPTSET(IN6P_HOPOPTS); 1655 break; 1656 1657 case IPV6_RECVDSTOPTS: 1658 /* cannot mix with RFC2292 */ 1659 if (OPTBIT(IN6P_RFC2292)) { 1660 error = EINVAL; 1661 break; 1662 } 1663 OPTSET(IN6P_DSTOPTS); 1664 break; 1665 1666 case IPV6_RECVRTHDRDSTOPTS: 1667 /* cannot mix with RFC2292 */ 1668 if (OPTBIT(IN6P_RFC2292)) { 1669 error = EINVAL; 1670 break; 1671 } 1672 OPTSET(IN6P_RTHDRDSTOPTS); 1673 break; 1674 1675 case IPV6_RECVRTHDR: 1676 /* cannot mix with RFC2292 */ 1677 if (OPTBIT(IN6P_RFC2292)) { 1678 error = EINVAL; 1679 break; 1680 } 1681 OPTSET(IN6P_RTHDR); 1682 break; 1683 1684 case IPV6_RECVPATHMTU: 1685 /* 1686 * We ignore this option for TCP 1687 * sockets. 1688 * (RFC3542 leaves this case 1689 * unspecified.) 1690 */ 1691 if (uproto != IPPROTO_TCP) 1692 OPTSET(IN6P_MTU); 1693 break; 1694 1695 case IPV6_RECVFLOWID: 1696 OPTSET2(INP_RECVFLOWID, optval); 1697 break; 1698 1699 #ifdef RSS 1700 case IPV6_RECVRSSBUCKETID: 1701 OPTSET2(INP_RECVRSSBUCKETID, optval); 1702 break; 1703 #endif 1704 1705 case IPV6_V6ONLY: 1706 /* 1707 * make setsockopt(IPV6_V6ONLY) 1708 * available only prior to bind(2). 1709 * see ipng mailing list, Jun 22 2001. 1710 */ 1711 if (in6p->inp_lport || 1712 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1713 error = EINVAL; 1714 break; 1715 } 1716 OPTSET(IN6P_IPV6_V6ONLY); 1717 if (optval) 1718 in6p->inp_vflag &= ~INP_IPV4; 1719 else 1720 in6p->inp_vflag |= INP_IPV4; 1721 break; 1722 case IPV6_RECVTCLASS: 1723 /* cannot mix with RFC2292 XXX */ 1724 if (OPTBIT(IN6P_RFC2292)) { 1725 error = EINVAL; 1726 break; 1727 } 1728 OPTSET(IN6P_TCLASS); 1729 break; 1730 case IPV6_AUTOFLOWLABEL: 1731 OPTSET(IN6P_AUTOFLOWLABEL); 1732 break; 1733 1734 case IPV6_ORIGDSTADDR: 1735 OPTSET2(INP_ORIGDSTADDR, optval); 1736 break; 1737 case IPV6_BINDANY: 1738 OPTSET(INP_BINDANY); 1739 break; 1740 1741 case IPV6_BINDMULTI: 1742 OPTSET2(INP_BINDMULTI, optval); 1743 break; 1744 #ifdef RSS 1745 case IPV6_RSS_LISTEN_BUCKET: 1746 if ((optval >= 0) && 1747 (optval < rss_getnumbuckets())) { 1748 in6p->inp_rss_listen_bucket = optval; 1749 OPTSET2(INP_RSS_BUCKET_SET, 1); 1750 } else { 1751 error = EINVAL; 1752 } 1753 break; 1754 #endif 1755 } 1756 break; 1757 1758 case IPV6_TCLASS: 1759 case IPV6_DONTFRAG: 1760 case IPV6_USE_MIN_MTU: 1761 case IPV6_PREFER_TEMPADDR: 1762 if (optlen != sizeof(optval)) { 1763 error = EINVAL; 1764 break; 1765 } 1766 error = sooptcopyin(sopt, &optval, 1767 sizeof optval, sizeof optval); 1768 if (error) 1769 break; 1770 { 1771 struct ip6_pktopts **optp; 1772 optp = &in6p->in6p_outputopts; 1773 error = ip6_pcbopt(optname, 1774 (u_char *)&optval, sizeof(optval), 1775 optp, (td != NULL) ? td->td_ucred : 1776 NULL, uproto); 1777 break; 1778 } 1779 1780 case IPV6_2292PKTINFO: 1781 case IPV6_2292HOPLIMIT: 1782 case IPV6_2292HOPOPTS: 1783 case IPV6_2292DSTOPTS: 1784 case IPV6_2292RTHDR: 1785 /* RFC 2292 */ 1786 if (optlen != sizeof(int)) { 1787 error = EINVAL; 1788 break; 1789 } 1790 error = sooptcopyin(sopt, &optval, 1791 sizeof optval, sizeof optval); 1792 if (error) 1793 break; 1794 switch (optname) { 1795 case IPV6_2292PKTINFO: 1796 OPTSET2292(IN6P_PKTINFO); 1797 break; 1798 case IPV6_2292HOPLIMIT: 1799 OPTSET2292(IN6P_HOPLIMIT); 1800 break; 1801 case IPV6_2292HOPOPTS: 1802 /* 1803 * Check super-user privilege. 1804 * See comments for IPV6_RECVHOPOPTS. 1805 */ 1806 if (td != NULL) { 1807 error = priv_check(td, 1808 PRIV_NETINET_SETHDROPTS); 1809 if (error) 1810 return (error); 1811 } 1812 OPTSET2292(IN6P_HOPOPTS); 1813 break; 1814 case IPV6_2292DSTOPTS: 1815 if (td != NULL) { 1816 error = priv_check(td, 1817 PRIV_NETINET_SETHDROPTS); 1818 if (error) 1819 return (error); 1820 } 1821 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1822 break; 1823 case IPV6_2292RTHDR: 1824 OPTSET2292(IN6P_RTHDR); 1825 break; 1826 } 1827 break; 1828 case IPV6_PKTINFO: 1829 case IPV6_HOPOPTS: 1830 case IPV6_RTHDR: 1831 case IPV6_DSTOPTS: 1832 case IPV6_RTHDRDSTOPTS: 1833 case IPV6_NEXTHOP: 1834 { 1835 /* new advanced API (RFC3542) */ 1836 u_char *optbuf; 1837 u_char optbuf_storage[MCLBYTES]; 1838 int optlen; 1839 struct ip6_pktopts **optp; 1840 1841 /* cannot mix with RFC2292 */ 1842 if (OPTBIT(IN6P_RFC2292)) { 1843 error = EINVAL; 1844 break; 1845 } 1846 1847 /* 1848 * We only ensure valsize is not too large 1849 * here. Further validation will be done 1850 * later. 1851 */ 1852 error = sooptcopyin(sopt, optbuf_storage, 1853 sizeof(optbuf_storage), 0); 1854 if (error) 1855 break; 1856 optlen = sopt->sopt_valsize; 1857 optbuf = optbuf_storage; 1858 optp = &in6p->in6p_outputopts; 1859 error = ip6_pcbopt(optname, optbuf, optlen, 1860 optp, (td != NULL) ? td->td_ucred : NULL, 1861 uproto); 1862 break; 1863 } 1864 #undef OPTSET 1865 1866 case IPV6_MULTICAST_IF: 1867 case IPV6_MULTICAST_HOPS: 1868 case IPV6_MULTICAST_LOOP: 1869 case IPV6_JOIN_GROUP: 1870 case IPV6_LEAVE_GROUP: 1871 case IPV6_MSFILTER: 1872 case MCAST_BLOCK_SOURCE: 1873 case MCAST_UNBLOCK_SOURCE: 1874 case MCAST_JOIN_GROUP: 1875 case MCAST_LEAVE_GROUP: 1876 case MCAST_JOIN_SOURCE_GROUP: 1877 case MCAST_LEAVE_SOURCE_GROUP: 1878 error = ip6_setmoptions(in6p, sopt); 1879 break; 1880 1881 case IPV6_PORTRANGE: 1882 error = sooptcopyin(sopt, &optval, 1883 sizeof optval, sizeof optval); 1884 if (error) 1885 break; 1886 1887 INP_WLOCK(in6p); 1888 switch (optval) { 1889 case IPV6_PORTRANGE_DEFAULT: 1890 in6p->inp_flags &= ~(INP_LOWPORT); 1891 in6p->inp_flags &= ~(INP_HIGHPORT); 1892 break; 1893 1894 case IPV6_PORTRANGE_HIGH: 1895 in6p->inp_flags &= ~(INP_LOWPORT); 1896 in6p->inp_flags |= INP_HIGHPORT; 1897 break; 1898 1899 case IPV6_PORTRANGE_LOW: 1900 in6p->inp_flags &= ~(INP_HIGHPORT); 1901 in6p->inp_flags |= INP_LOWPORT; 1902 break; 1903 1904 default: 1905 error = EINVAL; 1906 break; 1907 } 1908 INP_WUNLOCK(in6p); 1909 break; 1910 1911 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1912 case IPV6_IPSEC_POLICY: 1913 if (IPSEC_ENABLED(ipv6)) { 1914 error = IPSEC_PCBCTL(ipv6, in6p, sopt); 1915 break; 1916 } 1917 /* FALLTHROUGH */ 1918 #endif /* IPSEC */ 1919 1920 default: 1921 error = ENOPROTOOPT; 1922 break; 1923 } 1924 break; 1925 1926 case SOPT_GET: 1927 switch (optname) { 1928 1929 case IPV6_2292PKTOPTIONS: 1930 #ifdef IPV6_PKTOPTIONS 1931 case IPV6_PKTOPTIONS: 1932 #endif 1933 /* 1934 * RFC3542 (effectively) deprecated the 1935 * semantics of the 2292-style pktoptions. 1936 * Since it was not reliable in nature (i.e., 1937 * applications had to expect the lack of some 1938 * information after all), it would make sense 1939 * to simplify this part by always returning 1940 * empty data. 1941 */ 1942 sopt->sopt_valsize = 0; 1943 break; 1944 1945 case IPV6_RECVHOPOPTS: 1946 case IPV6_RECVDSTOPTS: 1947 case IPV6_RECVRTHDRDSTOPTS: 1948 case IPV6_UNICAST_HOPS: 1949 case IPV6_RECVPKTINFO: 1950 case IPV6_RECVHOPLIMIT: 1951 case IPV6_RECVRTHDR: 1952 case IPV6_RECVPATHMTU: 1953 1954 case IPV6_V6ONLY: 1955 case IPV6_PORTRANGE: 1956 case IPV6_RECVTCLASS: 1957 case IPV6_AUTOFLOWLABEL: 1958 case IPV6_BINDANY: 1959 case IPV6_FLOWID: 1960 case IPV6_FLOWTYPE: 1961 case IPV6_RECVFLOWID: 1962 #ifdef RSS 1963 case IPV6_RSSBUCKETID: 1964 case IPV6_RECVRSSBUCKETID: 1965 #endif 1966 case IPV6_BINDMULTI: 1967 switch (optname) { 1968 1969 case IPV6_RECVHOPOPTS: 1970 optval = OPTBIT(IN6P_HOPOPTS); 1971 break; 1972 1973 case IPV6_RECVDSTOPTS: 1974 optval = OPTBIT(IN6P_DSTOPTS); 1975 break; 1976 1977 case IPV6_RECVRTHDRDSTOPTS: 1978 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1979 break; 1980 1981 case IPV6_UNICAST_HOPS: 1982 optval = in6p->in6p_hops; 1983 break; 1984 1985 case IPV6_RECVPKTINFO: 1986 optval = OPTBIT(IN6P_PKTINFO); 1987 break; 1988 1989 case IPV6_RECVHOPLIMIT: 1990 optval = OPTBIT(IN6P_HOPLIMIT); 1991 break; 1992 1993 case IPV6_RECVRTHDR: 1994 optval = OPTBIT(IN6P_RTHDR); 1995 break; 1996 1997 case IPV6_RECVPATHMTU: 1998 optval = OPTBIT(IN6P_MTU); 1999 break; 2000 2001 case IPV6_V6ONLY: 2002 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2003 break; 2004 2005 case IPV6_PORTRANGE: 2006 { 2007 int flags; 2008 flags = in6p->inp_flags; 2009 if (flags & INP_HIGHPORT) 2010 optval = IPV6_PORTRANGE_HIGH; 2011 else if (flags & INP_LOWPORT) 2012 optval = IPV6_PORTRANGE_LOW; 2013 else 2014 optval = 0; 2015 break; 2016 } 2017 case IPV6_RECVTCLASS: 2018 optval = OPTBIT(IN6P_TCLASS); 2019 break; 2020 2021 case IPV6_AUTOFLOWLABEL: 2022 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2023 break; 2024 2025 case IPV6_ORIGDSTADDR: 2026 optval = OPTBIT2(INP_ORIGDSTADDR); 2027 break; 2028 2029 case IPV6_BINDANY: 2030 optval = OPTBIT(INP_BINDANY); 2031 break; 2032 2033 case IPV6_FLOWID: 2034 optval = in6p->inp_flowid; 2035 break; 2036 2037 case IPV6_FLOWTYPE: 2038 optval = in6p->inp_flowtype; 2039 break; 2040 2041 case IPV6_RECVFLOWID: 2042 optval = OPTBIT2(INP_RECVFLOWID); 2043 break; 2044 #ifdef RSS 2045 case IPV6_RSSBUCKETID: 2046 retval = 2047 rss_hash2bucket(in6p->inp_flowid, 2048 in6p->inp_flowtype, 2049 &rss_bucket); 2050 if (retval == 0) 2051 optval = rss_bucket; 2052 else 2053 error = EINVAL; 2054 break; 2055 2056 case IPV6_RECVRSSBUCKETID: 2057 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2058 break; 2059 #endif 2060 2061 case IPV6_BINDMULTI: 2062 optval = OPTBIT2(INP_BINDMULTI); 2063 break; 2064 2065 } 2066 if (error) 2067 break; 2068 error = sooptcopyout(sopt, &optval, 2069 sizeof optval); 2070 break; 2071 2072 case IPV6_PATHMTU: 2073 { 2074 u_long pmtu = 0; 2075 struct ip6_mtuinfo mtuinfo; 2076 2077 if (!(so->so_state & SS_ISCONNECTED)) 2078 return (ENOTCONN); 2079 /* 2080 * XXX: we dot not consider the case of source 2081 * routing, or optional information to specify 2082 * the outgoing interface. 2083 */ 2084 error = ip6_getpmtu_ctl(so->so_fibnum, 2085 &in6p->in6p_faddr, &pmtu); 2086 if (error) 2087 break; 2088 if (pmtu > IPV6_MAXPACKET) 2089 pmtu = IPV6_MAXPACKET; 2090 2091 bzero(&mtuinfo, sizeof(mtuinfo)); 2092 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2093 optdata = (void *)&mtuinfo; 2094 optdatalen = sizeof(mtuinfo); 2095 error = sooptcopyout(sopt, optdata, 2096 optdatalen); 2097 break; 2098 } 2099 2100 case IPV6_2292PKTINFO: 2101 case IPV6_2292HOPLIMIT: 2102 case IPV6_2292HOPOPTS: 2103 case IPV6_2292RTHDR: 2104 case IPV6_2292DSTOPTS: 2105 switch (optname) { 2106 case IPV6_2292PKTINFO: 2107 optval = OPTBIT(IN6P_PKTINFO); 2108 break; 2109 case IPV6_2292HOPLIMIT: 2110 optval = OPTBIT(IN6P_HOPLIMIT); 2111 break; 2112 case IPV6_2292HOPOPTS: 2113 optval = OPTBIT(IN6P_HOPOPTS); 2114 break; 2115 case IPV6_2292RTHDR: 2116 optval = OPTBIT(IN6P_RTHDR); 2117 break; 2118 case IPV6_2292DSTOPTS: 2119 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2120 break; 2121 } 2122 error = sooptcopyout(sopt, &optval, 2123 sizeof optval); 2124 break; 2125 case IPV6_PKTINFO: 2126 case IPV6_HOPOPTS: 2127 case IPV6_RTHDR: 2128 case IPV6_DSTOPTS: 2129 case IPV6_RTHDRDSTOPTS: 2130 case IPV6_NEXTHOP: 2131 case IPV6_TCLASS: 2132 case IPV6_DONTFRAG: 2133 case IPV6_USE_MIN_MTU: 2134 case IPV6_PREFER_TEMPADDR: 2135 error = ip6_getpcbopt(in6p->in6p_outputopts, 2136 optname, sopt); 2137 break; 2138 2139 case IPV6_MULTICAST_IF: 2140 case IPV6_MULTICAST_HOPS: 2141 case IPV6_MULTICAST_LOOP: 2142 case IPV6_MSFILTER: 2143 error = ip6_getmoptions(in6p, sopt); 2144 break; 2145 2146 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2147 case IPV6_IPSEC_POLICY: 2148 if (IPSEC_ENABLED(ipv6)) { 2149 error = IPSEC_PCBCTL(ipv6, in6p, sopt); 2150 break; 2151 } 2152 /* FALLTHROUGH */ 2153 #endif /* IPSEC */ 2154 default: 2155 error = ENOPROTOOPT; 2156 break; 2157 } 2158 break; 2159 } 2160 } 2161 return (error); 2162 } 2163 2164 int 2165 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2166 { 2167 int error = 0, optval, optlen; 2168 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2169 struct inpcb *in6p = sotoinpcb(so); 2170 int level, op, optname; 2171 2172 level = sopt->sopt_level; 2173 op = sopt->sopt_dir; 2174 optname = sopt->sopt_name; 2175 optlen = sopt->sopt_valsize; 2176 2177 if (level != IPPROTO_IPV6) { 2178 return (EINVAL); 2179 } 2180 2181 switch (optname) { 2182 case IPV6_CHECKSUM: 2183 /* 2184 * For ICMPv6 sockets, no modification allowed for checksum 2185 * offset, permit "no change" values to help existing apps. 2186 * 2187 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2188 * for an ICMPv6 socket will fail." 2189 * The current behavior does not meet RFC3542. 2190 */ 2191 switch (op) { 2192 case SOPT_SET: 2193 if (optlen != sizeof(int)) { 2194 error = EINVAL; 2195 break; 2196 } 2197 error = sooptcopyin(sopt, &optval, sizeof(optval), 2198 sizeof(optval)); 2199 if (error) 2200 break; 2201 if ((optval % 2) != 0) { 2202 /* the API assumes even offset values */ 2203 error = EINVAL; 2204 } else if (so->so_proto->pr_protocol == 2205 IPPROTO_ICMPV6) { 2206 if (optval != icmp6off) 2207 error = EINVAL; 2208 } else 2209 in6p->in6p_cksum = optval; 2210 break; 2211 2212 case SOPT_GET: 2213 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2214 optval = icmp6off; 2215 else 2216 optval = in6p->in6p_cksum; 2217 2218 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2219 break; 2220 2221 default: 2222 error = EINVAL; 2223 break; 2224 } 2225 break; 2226 2227 default: 2228 error = ENOPROTOOPT; 2229 break; 2230 } 2231 2232 return (error); 2233 } 2234 2235 /* 2236 * Set up IP6 options in pcb for insertion in output packets or 2237 * specifying behavior of outgoing packets. 2238 */ 2239 static int 2240 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2241 struct socket *so, struct sockopt *sopt) 2242 { 2243 struct ip6_pktopts *opt = *pktopt; 2244 int error = 0; 2245 struct thread *td = sopt->sopt_td; 2246 2247 /* turn off any old options. */ 2248 if (opt) { 2249 #ifdef DIAGNOSTIC 2250 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2251 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2252 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2253 printf("ip6_pcbopts: all specified options are cleared.\n"); 2254 #endif 2255 ip6_clearpktopts(opt, -1); 2256 } else 2257 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2258 *pktopt = NULL; 2259 2260 if (!m || m->m_len == 0) { 2261 /* 2262 * Only turning off any previous options, regardless of 2263 * whether the opt is just created or given. 2264 */ 2265 free(opt, M_IP6OPT); 2266 return (0); 2267 } 2268 2269 /* set options specified by user. */ 2270 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2271 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2272 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2273 free(opt, M_IP6OPT); 2274 return (error); 2275 } 2276 *pktopt = opt; 2277 return (0); 2278 } 2279 2280 /* 2281 * initialize ip6_pktopts. beware that there are non-zero default values in 2282 * the struct. 2283 */ 2284 void 2285 ip6_initpktopts(struct ip6_pktopts *opt) 2286 { 2287 2288 bzero(opt, sizeof(*opt)); 2289 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2290 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2291 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2292 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2293 } 2294 2295 static int 2296 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2297 struct ucred *cred, int uproto) 2298 { 2299 struct ip6_pktopts *opt; 2300 2301 if (*pktopt == NULL) { 2302 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2303 M_WAITOK); 2304 ip6_initpktopts(*pktopt); 2305 } 2306 opt = *pktopt; 2307 2308 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2309 } 2310 2311 static int 2312 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2313 { 2314 void *optdata = NULL; 2315 int optdatalen = 0; 2316 struct ip6_ext *ip6e; 2317 int error = 0; 2318 struct in6_pktinfo null_pktinfo; 2319 int deftclass = 0, on; 2320 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2321 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2322 2323 switch (optname) { 2324 case IPV6_PKTINFO: 2325 optdata = (void *)&null_pktinfo; 2326 if (pktopt && pktopt->ip6po_pktinfo) { 2327 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2328 sizeof(null_pktinfo)); 2329 in6_clearscope(&null_pktinfo.ipi6_addr); 2330 } else { 2331 /* XXX: we don't have to do this every time... */ 2332 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2333 } 2334 optdatalen = sizeof(struct in6_pktinfo); 2335 break; 2336 case IPV6_TCLASS: 2337 if (pktopt && pktopt->ip6po_tclass >= 0) 2338 optdata = (void *)&pktopt->ip6po_tclass; 2339 else 2340 optdata = (void *)&deftclass; 2341 optdatalen = sizeof(int); 2342 break; 2343 case IPV6_HOPOPTS: 2344 if (pktopt && pktopt->ip6po_hbh) { 2345 optdata = (void *)pktopt->ip6po_hbh; 2346 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2347 optdatalen = (ip6e->ip6e_len + 1) << 3; 2348 } 2349 break; 2350 case IPV6_RTHDR: 2351 if (pktopt && pktopt->ip6po_rthdr) { 2352 optdata = (void *)pktopt->ip6po_rthdr; 2353 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2354 optdatalen = (ip6e->ip6e_len + 1) << 3; 2355 } 2356 break; 2357 case IPV6_RTHDRDSTOPTS: 2358 if (pktopt && pktopt->ip6po_dest1) { 2359 optdata = (void *)pktopt->ip6po_dest1; 2360 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2361 optdatalen = (ip6e->ip6e_len + 1) << 3; 2362 } 2363 break; 2364 case IPV6_DSTOPTS: 2365 if (pktopt && pktopt->ip6po_dest2) { 2366 optdata = (void *)pktopt->ip6po_dest2; 2367 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2368 optdatalen = (ip6e->ip6e_len + 1) << 3; 2369 } 2370 break; 2371 case IPV6_NEXTHOP: 2372 if (pktopt && pktopt->ip6po_nexthop) { 2373 optdata = (void *)pktopt->ip6po_nexthop; 2374 optdatalen = pktopt->ip6po_nexthop->sa_len; 2375 } 2376 break; 2377 case IPV6_USE_MIN_MTU: 2378 if (pktopt) 2379 optdata = (void *)&pktopt->ip6po_minmtu; 2380 else 2381 optdata = (void *)&defminmtu; 2382 optdatalen = sizeof(int); 2383 break; 2384 case IPV6_DONTFRAG: 2385 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2386 on = 1; 2387 else 2388 on = 0; 2389 optdata = (void *)&on; 2390 optdatalen = sizeof(on); 2391 break; 2392 case IPV6_PREFER_TEMPADDR: 2393 if (pktopt) 2394 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2395 else 2396 optdata = (void *)&defpreftemp; 2397 optdatalen = sizeof(int); 2398 break; 2399 default: /* should not happen */ 2400 #ifdef DIAGNOSTIC 2401 panic("ip6_getpcbopt: unexpected option\n"); 2402 #endif 2403 return (ENOPROTOOPT); 2404 } 2405 2406 error = sooptcopyout(sopt, optdata, optdatalen); 2407 2408 return (error); 2409 } 2410 2411 void 2412 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2413 { 2414 if (pktopt == NULL) 2415 return; 2416 2417 if (optname == -1 || optname == IPV6_PKTINFO) { 2418 if (pktopt->ip6po_pktinfo) 2419 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2420 pktopt->ip6po_pktinfo = NULL; 2421 } 2422 if (optname == -1 || optname == IPV6_HOPLIMIT) 2423 pktopt->ip6po_hlim = -1; 2424 if (optname == -1 || optname == IPV6_TCLASS) 2425 pktopt->ip6po_tclass = -1; 2426 if (optname == -1 || optname == IPV6_NEXTHOP) { 2427 if (pktopt->ip6po_nextroute.ro_rt) { 2428 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2429 pktopt->ip6po_nextroute.ro_rt = NULL; 2430 } 2431 if (pktopt->ip6po_nexthop) 2432 free(pktopt->ip6po_nexthop, M_IP6OPT); 2433 pktopt->ip6po_nexthop = NULL; 2434 } 2435 if (optname == -1 || optname == IPV6_HOPOPTS) { 2436 if (pktopt->ip6po_hbh) 2437 free(pktopt->ip6po_hbh, M_IP6OPT); 2438 pktopt->ip6po_hbh = NULL; 2439 } 2440 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2441 if (pktopt->ip6po_dest1) 2442 free(pktopt->ip6po_dest1, M_IP6OPT); 2443 pktopt->ip6po_dest1 = NULL; 2444 } 2445 if (optname == -1 || optname == IPV6_RTHDR) { 2446 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2447 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2448 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2449 if (pktopt->ip6po_route.ro_rt) { 2450 RTFREE(pktopt->ip6po_route.ro_rt); 2451 pktopt->ip6po_route.ro_rt = NULL; 2452 } 2453 } 2454 if (optname == -1 || optname == IPV6_DSTOPTS) { 2455 if (pktopt->ip6po_dest2) 2456 free(pktopt->ip6po_dest2, M_IP6OPT); 2457 pktopt->ip6po_dest2 = NULL; 2458 } 2459 } 2460 2461 #define PKTOPT_EXTHDRCPY(type) \ 2462 do {\ 2463 if (src->type) {\ 2464 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2465 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2466 if (dst->type == NULL && canwait == M_NOWAIT)\ 2467 goto bad;\ 2468 bcopy(src->type, dst->type, hlen);\ 2469 }\ 2470 } while (/*CONSTCOND*/ 0) 2471 2472 static int 2473 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2474 { 2475 if (dst == NULL || src == NULL) { 2476 printf("ip6_clearpktopts: invalid argument\n"); 2477 return (EINVAL); 2478 } 2479 2480 dst->ip6po_hlim = src->ip6po_hlim; 2481 dst->ip6po_tclass = src->ip6po_tclass; 2482 dst->ip6po_flags = src->ip6po_flags; 2483 dst->ip6po_minmtu = src->ip6po_minmtu; 2484 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2485 if (src->ip6po_pktinfo) { 2486 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2487 M_IP6OPT, canwait); 2488 if (dst->ip6po_pktinfo == NULL) 2489 goto bad; 2490 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2491 } 2492 if (src->ip6po_nexthop) { 2493 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2494 M_IP6OPT, canwait); 2495 if (dst->ip6po_nexthop == NULL) 2496 goto bad; 2497 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2498 src->ip6po_nexthop->sa_len); 2499 } 2500 PKTOPT_EXTHDRCPY(ip6po_hbh); 2501 PKTOPT_EXTHDRCPY(ip6po_dest1); 2502 PKTOPT_EXTHDRCPY(ip6po_dest2); 2503 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2504 return (0); 2505 2506 bad: 2507 ip6_clearpktopts(dst, -1); 2508 return (ENOBUFS); 2509 } 2510 #undef PKTOPT_EXTHDRCPY 2511 2512 struct ip6_pktopts * 2513 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2514 { 2515 int error; 2516 struct ip6_pktopts *dst; 2517 2518 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2519 if (dst == NULL) 2520 return (NULL); 2521 ip6_initpktopts(dst); 2522 2523 if ((error = copypktopts(dst, src, canwait)) != 0) { 2524 free(dst, M_IP6OPT); 2525 return (NULL); 2526 } 2527 2528 return (dst); 2529 } 2530 2531 void 2532 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2533 { 2534 if (pktopt == NULL) 2535 return; 2536 2537 ip6_clearpktopts(pktopt, -1); 2538 2539 free(pktopt, M_IP6OPT); 2540 } 2541 2542 /* 2543 * Set IPv6 outgoing packet options based on advanced API. 2544 */ 2545 int 2546 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2547 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2548 { 2549 struct cmsghdr *cm = NULL; 2550 2551 if (control == NULL || opt == NULL) 2552 return (EINVAL); 2553 2554 ip6_initpktopts(opt); 2555 if (stickyopt) { 2556 int error; 2557 2558 /* 2559 * If stickyopt is provided, make a local copy of the options 2560 * for this particular packet, then override them by ancillary 2561 * objects. 2562 * XXX: copypktopts() does not copy the cached route to a next 2563 * hop (if any). This is not very good in terms of efficiency, 2564 * but we can allow this since this option should be rarely 2565 * used. 2566 */ 2567 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2568 return (error); 2569 } 2570 2571 /* 2572 * XXX: Currently, we assume all the optional information is stored 2573 * in a single mbuf. 2574 */ 2575 if (control->m_next) 2576 return (EINVAL); 2577 2578 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2579 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2580 int error; 2581 2582 if (control->m_len < CMSG_LEN(0)) 2583 return (EINVAL); 2584 2585 cm = mtod(control, struct cmsghdr *); 2586 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2587 return (EINVAL); 2588 if (cm->cmsg_level != IPPROTO_IPV6) 2589 continue; 2590 2591 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2592 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2593 if (error) 2594 return (error); 2595 } 2596 2597 return (0); 2598 } 2599 2600 /* 2601 * Set a particular packet option, as a sticky option or an ancillary data 2602 * item. "len" can be 0 only when it's a sticky option. 2603 * We have 4 cases of combination of "sticky" and "cmsg": 2604 * "sticky=0, cmsg=0": impossible 2605 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2606 * "sticky=1, cmsg=0": RFC3542 socket option 2607 * "sticky=1, cmsg=1": RFC2292 socket option 2608 */ 2609 static int 2610 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2611 struct ucred *cred, int sticky, int cmsg, int uproto) 2612 { 2613 int minmtupolicy, preftemp; 2614 int error; 2615 2616 if (!sticky && !cmsg) { 2617 #ifdef DIAGNOSTIC 2618 printf("ip6_setpktopt: impossible case\n"); 2619 #endif 2620 return (EINVAL); 2621 } 2622 2623 /* 2624 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2625 * not be specified in the context of RFC3542. Conversely, 2626 * RFC3542 types should not be specified in the context of RFC2292. 2627 */ 2628 if (!cmsg) { 2629 switch (optname) { 2630 case IPV6_2292PKTINFO: 2631 case IPV6_2292HOPLIMIT: 2632 case IPV6_2292NEXTHOP: 2633 case IPV6_2292HOPOPTS: 2634 case IPV6_2292DSTOPTS: 2635 case IPV6_2292RTHDR: 2636 case IPV6_2292PKTOPTIONS: 2637 return (ENOPROTOOPT); 2638 } 2639 } 2640 if (sticky && cmsg) { 2641 switch (optname) { 2642 case IPV6_PKTINFO: 2643 case IPV6_HOPLIMIT: 2644 case IPV6_NEXTHOP: 2645 case IPV6_HOPOPTS: 2646 case IPV6_DSTOPTS: 2647 case IPV6_RTHDRDSTOPTS: 2648 case IPV6_RTHDR: 2649 case IPV6_USE_MIN_MTU: 2650 case IPV6_DONTFRAG: 2651 case IPV6_TCLASS: 2652 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2653 return (ENOPROTOOPT); 2654 } 2655 } 2656 2657 switch (optname) { 2658 case IPV6_2292PKTINFO: 2659 case IPV6_PKTINFO: 2660 { 2661 struct ifnet *ifp = NULL; 2662 struct in6_pktinfo *pktinfo; 2663 2664 if (len != sizeof(struct in6_pktinfo)) 2665 return (EINVAL); 2666 2667 pktinfo = (struct in6_pktinfo *)buf; 2668 2669 /* 2670 * An application can clear any sticky IPV6_PKTINFO option by 2671 * doing a "regular" setsockopt with ipi6_addr being 2672 * in6addr_any and ipi6_ifindex being zero. 2673 * [RFC 3542, Section 6] 2674 */ 2675 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2676 pktinfo->ipi6_ifindex == 0 && 2677 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2678 ip6_clearpktopts(opt, optname); 2679 break; 2680 } 2681 2682 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2683 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2684 return (EINVAL); 2685 } 2686 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2687 return (EINVAL); 2688 /* validate the interface index if specified. */ 2689 if (pktinfo->ipi6_ifindex > V_if_index) 2690 return (ENXIO); 2691 if (pktinfo->ipi6_ifindex) { 2692 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2693 if (ifp == NULL) 2694 return (ENXIO); 2695 } 2696 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2697 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2698 return (ENETDOWN); 2699 2700 if (ifp != NULL && 2701 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2702 struct in6_ifaddr *ia; 2703 2704 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2705 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2706 if (ia == NULL) 2707 return (EADDRNOTAVAIL); 2708 ifa_free(&ia->ia_ifa); 2709 } 2710 /* 2711 * We store the address anyway, and let in6_selectsrc() 2712 * validate the specified address. This is because ipi6_addr 2713 * may not have enough information about its scope zone, and 2714 * we may need additional information (such as outgoing 2715 * interface or the scope zone of a destination address) to 2716 * disambiguate the scope. 2717 * XXX: the delay of the validation may confuse the 2718 * application when it is used as a sticky option. 2719 */ 2720 if (opt->ip6po_pktinfo == NULL) { 2721 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2722 M_IP6OPT, M_NOWAIT); 2723 if (opt->ip6po_pktinfo == NULL) 2724 return (ENOBUFS); 2725 } 2726 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2727 break; 2728 } 2729 2730 case IPV6_2292HOPLIMIT: 2731 case IPV6_HOPLIMIT: 2732 { 2733 int *hlimp; 2734 2735 /* 2736 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2737 * to simplify the ordering among hoplimit options. 2738 */ 2739 if (optname == IPV6_HOPLIMIT && sticky) 2740 return (ENOPROTOOPT); 2741 2742 if (len != sizeof(int)) 2743 return (EINVAL); 2744 hlimp = (int *)buf; 2745 if (*hlimp < -1 || *hlimp > 255) 2746 return (EINVAL); 2747 2748 opt->ip6po_hlim = *hlimp; 2749 break; 2750 } 2751 2752 case IPV6_TCLASS: 2753 { 2754 int tclass; 2755 2756 if (len != sizeof(int)) 2757 return (EINVAL); 2758 tclass = *(int *)buf; 2759 if (tclass < -1 || tclass > 255) 2760 return (EINVAL); 2761 2762 opt->ip6po_tclass = tclass; 2763 break; 2764 } 2765 2766 case IPV6_2292NEXTHOP: 2767 case IPV6_NEXTHOP: 2768 if (cred != NULL) { 2769 error = priv_check_cred(cred, 2770 PRIV_NETINET_SETHDROPTS, 0); 2771 if (error) 2772 return (error); 2773 } 2774 2775 if (len == 0) { /* just remove the option */ 2776 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2777 break; 2778 } 2779 2780 /* check if cmsg_len is large enough for sa_len */ 2781 if (len < sizeof(struct sockaddr) || len < *buf) 2782 return (EINVAL); 2783 2784 switch (((struct sockaddr *)buf)->sa_family) { 2785 case AF_INET6: 2786 { 2787 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2788 int error; 2789 2790 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2791 return (EINVAL); 2792 2793 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2794 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2795 return (EINVAL); 2796 } 2797 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2798 != 0) { 2799 return (error); 2800 } 2801 break; 2802 } 2803 case AF_LINK: /* should eventually be supported */ 2804 default: 2805 return (EAFNOSUPPORT); 2806 } 2807 2808 /* turn off the previous option, then set the new option. */ 2809 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2810 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2811 if (opt->ip6po_nexthop == NULL) 2812 return (ENOBUFS); 2813 bcopy(buf, opt->ip6po_nexthop, *buf); 2814 break; 2815 2816 case IPV6_2292HOPOPTS: 2817 case IPV6_HOPOPTS: 2818 { 2819 struct ip6_hbh *hbh; 2820 int hbhlen; 2821 2822 /* 2823 * XXX: We don't allow a non-privileged user to set ANY HbH 2824 * options, since per-option restriction has too much 2825 * overhead. 2826 */ 2827 if (cred != NULL) { 2828 error = priv_check_cred(cred, 2829 PRIV_NETINET_SETHDROPTS, 0); 2830 if (error) 2831 return (error); 2832 } 2833 2834 if (len == 0) { 2835 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2836 break; /* just remove the option */ 2837 } 2838 2839 /* message length validation */ 2840 if (len < sizeof(struct ip6_hbh)) 2841 return (EINVAL); 2842 hbh = (struct ip6_hbh *)buf; 2843 hbhlen = (hbh->ip6h_len + 1) << 3; 2844 if (len != hbhlen) 2845 return (EINVAL); 2846 2847 /* turn off the previous option, then set the new option. */ 2848 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2849 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2850 if (opt->ip6po_hbh == NULL) 2851 return (ENOBUFS); 2852 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2853 2854 break; 2855 } 2856 2857 case IPV6_2292DSTOPTS: 2858 case IPV6_DSTOPTS: 2859 case IPV6_RTHDRDSTOPTS: 2860 { 2861 struct ip6_dest *dest, **newdest = NULL; 2862 int destlen; 2863 2864 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2865 error = priv_check_cred(cred, 2866 PRIV_NETINET_SETHDROPTS, 0); 2867 if (error) 2868 return (error); 2869 } 2870 2871 if (len == 0) { 2872 ip6_clearpktopts(opt, optname); 2873 break; /* just remove the option */ 2874 } 2875 2876 /* message length validation */ 2877 if (len < sizeof(struct ip6_dest)) 2878 return (EINVAL); 2879 dest = (struct ip6_dest *)buf; 2880 destlen = (dest->ip6d_len + 1) << 3; 2881 if (len != destlen) 2882 return (EINVAL); 2883 2884 /* 2885 * Determine the position that the destination options header 2886 * should be inserted; before or after the routing header. 2887 */ 2888 switch (optname) { 2889 case IPV6_2292DSTOPTS: 2890 /* 2891 * The old advacned API is ambiguous on this point. 2892 * Our approach is to determine the position based 2893 * according to the existence of a routing header. 2894 * Note, however, that this depends on the order of the 2895 * extension headers in the ancillary data; the 1st 2896 * part of the destination options header must appear 2897 * before the routing header in the ancillary data, 2898 * too. 2899 * RFC3542 solved the ambiguity by introducing 2900 * separate ancillary data or option types. 2901 */ 2902 if (opt->ip6po_rthdr == NULL) 2903 newdest = &opt->ip6po_dest1; 2904 else 2905 newdest = &opt->ip6po_dest2; 2906 break; 2907 case IPV6_RTHDRDSTOPTS: 2908 newdest = &opt->ip6po_dest1; 2909 break; 2910 case IPV6_DSTOPTS: 2911 newdest = &opt->ip6po_dest2; 2912 break; 2913 } 2914 2915 /* turn off the previous option, then set the new option. */ 2916 ip6_clearpktopts(opt, optname); 2917 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2918 if (*newdest == NULL) 2919 return (ENOBUFS); 2920 bcopy(dest, *newdest, destlen); 2921 2922 break; 2923 } 2924 2925 case IPV6_2292RTHDR: 2926 case IPV6_RTHDR: 2927 { 2928 struct ip6_rthdr *rth; 2929 int rthlen; 2930 2931 if (len == 0) { 2932 ip6_clearpktopts(opt, IPV6_RTHDR); 2933 break; /* just remove the option */ 2934 } 2935 2936 /* message length validation */ 2937 if (len < sizeof(struct ip6_rthdr)) 2938 return (EINVAL); 2939 rth = (struct ip6_rthdr *)buf; 2940 rthlen = (rth->ip6r_len + 1) << 3; 2941 if (len != rthlen) 2942 return (EINVAL); 2943 2944 switch (rth->ip6r_type) { 2945 case IPV6_RTHDR_TYPE_0: 2946 if (rth->ip6r_len == 0) /* must contain one addr */ 2947 return (EINVAL); 2948 if (rth->ip6r_len % 2) /* length must be even */ 2949 return (EINVAL); 2950 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2951 return (EINVAL); 2952 break; 2953 default: 2954 return (EINVAL); /* not supported */ 2955 } 2956 2957 /* turn off the previous option */ 2958 ip6_clearpktopts(opt, IPV6_RTHDR); 2959 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2960 if (opt->ip6po_rthdr == NULL) 2961 return (ENOBUFS); 2962 bcopy(rth, opt->ip6po_rthdr, rthlen); 2963 2964 break; 2965 } 2966 2967 case IPV6_USE_MIN_MTU: 2968 if (len != sizeof(int)) 2969 return (EINVAL); 2970 minmtupolicy = *(int *)buf; 2971 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2972 minmtupolicy != IP6PO_MINMTU_DISABLE && 2973 minmtupolicy != IP6PO_MINMTU_ALL) { 2974 return (EINVAL); 2975 } 2976 opt->ip6po_minmtu = minmtupolicy; 2977 break; 2978 2979 case IPV6_DONTFRAG: 2980 if (len != sizeof(int)) 2981 return (EINVAL); 2982 2983 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2984 /* 2985 * we ignore this option for TCP sockets. 2986 * (RFC3542 leaves this case unspecified.) 2987 */ 2988 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2989 } else 2990 opt->ip6po_flags |= IP6PO_DONTFRAG; 2991 break; 2992 2993 case IPV6_PREFER_TEMPADDR: 2994 if (len != sizeof(int)) 2995 return (EINVAL); 2996 preftemp = *(int *)buf; 2997 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 2998 preftemp != IP6PO_TEMPADDR_NOTPREFER && 2999 preftemp != IP6PO_TEMPADDR_PREFER) { 3000 return (EINVAL); 3001 } 3002 opt->ip6po_prefer_tempaddr = preftemp; 3003 break; 3004 3005 default: 3006 return (ENOPROTOOPT); 3007 } /* end of switch */ 3008 3009 return (0); 3010 } 3011 3012 /* 3013 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3014 * packet to the input queue of a specified interface. Note that this 3015 * calls the output routine of the loopback "driver", but with an interface 3016 * pointer that might NOT be &loif -- easier than replicating that code here. 3017 */ 3018 void 3019 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3020 { 3021 struct mbuf *copym; 3022 struct ip6_hdr *ip6; 3023 3024 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3025 if (copym == NULL) 3026 return; 3027 3028 /* 3029 * Make sure to deep-copy IPv6 header portion in case the data 3030 * is in an mbuf cluster, so that we can safely override the IPv6 3031 * header portion later. 3032 */ 3033 if (!M_WRITABLE(copym) || 3034 copym->m_len < sizeof(struct ip6_hdr)) { 3035 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3036 if (copym == NULL) 3037 return; 3038 } 3039 ip6 = mtod(copym, struct ip6_hdr *); 3040 /* 3041 * clear embedded scope identifiers if necessary. 3042 * in6_clearscope will touch the addresses only when necessary. 3043 */ 3044 in6_clearscope(&ip6->ip6_src); 3045 in6_clearscope(&ip6->ip6_dst); 3046 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3047 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3048 CSUM_PSEUDO_HDR; 3049 copym->m_pkthdr.csum_data = 0xffff; 3050 } 3051 if_simloop(ifp, copym, AF_INET6, 0); 3052 } 3053 3054 /* 3055 * Chop IPv6 header off from the payload. 3056 */ 3057 static int 3058 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3059 { 3060 struct mbuf *mh; 3061 struct ip6_hdr *ip6; 3062 3063 ip6 = mtod(m, struct ip6_hdr *); 3064 if (m->m_len > sizeof(*ip6)) { 3065 mh = m_gethdr(M_NOWAIT, MT_DATA); 3066 if (mh == NULL) { 3067 m_freem(m); 3068 return ENOBUFS; 3069 } 3070 m_move_pkthdr(mh, m); 3071 M_ALIGN(mh, sizeof(*ip6)); 3072 m->m_len -= sizeof(*ip6); 3073 m->m_data += sizeof(*ip6); 3074 mh->m_next = m; 3075 m = mh; 3076 m->m_len = sizeof(*ip6); 3077 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3078 } 3079 exthdrs->ip6e_ip6 = m; 3080 return 0; 3081 } 3082 3083 /* 3084 * Compute IPv6 extension header length. 3085 */ 3086 int 3087 ip6_optlen(struct inpcb *in6p) 3088 { 3089 int len; 3090 3091 if (!in6p->in6p_outputopts) 3092 return 0; 3093 3094 len = 0; 3095 #define elen(x) \ 3096 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3097 3098 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3099 if (in6p->in6p_outputopts->ip6po_rthdr) 3100 /* dest1 is valid with rthdr only */ 3101 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3102 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3103 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3104 return len; 3105 #undef elen 3106 } 3107