1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #include "opt_kern_tls.h" 72 #include "opt_ratelimit.h" 73 #include "opt_route.h" 74 #include "opt_rss.h" 75 #include "opt_sctp.h" 76 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/ktls.h> 80 #include <sys/malloc.h> 81 #include <sys/mbuf.h> 82 #include <sys/errno.h> 83 #include <sys/priv.h> 84 #include <sys/proc.h> 85 #include <sys/protosw.h> 86 #include <sys/socket.h> 87 #include <sys/socketvar.h> 88 #include <sys/syslog.h> 89 #include <sys/ucred.h> 90 91 #include <machine/in_cksum.h> 92 93 #include <net/if.h> 94 #include <net/if_var.h> 95 #include <net/if_private.h> 96 #include <net/if_vlan_var.h> 97 #include <net/if_llatbl.h> 98 #include <net/ethernet.h> 99 #include <net/netisr.h> 100 #include <net/route.h> 101 #include <net/route/nhop.h> 102 #include <net/pfil.h> 103 #include <net/rss_config.h> 104 #include <net/vnet.h> 105 106 #include <netinet/in.h> 107 #include <netinet/in_var.h> 108 #include <netinet/ip_var.h> 109 #include <netinet6/in6_fib.h> 110 #include <netinet6/in6_var.h> 111 #include <netinet/ip6.h> 112 #include <netinet/icmp6.h> 113 #include <netinet6/ip6_var.h> 114 #include <netinet/in_pcb.h> 115 #include <netinet/tcp_var.h> 116 #include <netinet6/nd6.h> 117 #include <netinet6/in6_rss.h> 118 119 #include <netipsec/ipsec_support.h> 120 #if defined(SCTP) || defined(SCTP_SUPPORT) 121 #include <netinet/sctp.h> 122 #include <netinet/sctp_crc32.h> 123 #endif 124 125 #include <netinet6/scope6_var.h> 126 127 extern int in6_mcast_loop; 128 129 struct ip6_exthdrs { 130 struct mbuf *ip6e_ip6; 131 struct mbuf *ip6e_hbh; 132 struct mbuf *ip6e_dest1; 133 struct mbuf *ip6e_rthdr; 134 struct mbuf *ip6e_dest2; 135 }; 136 137 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 138 139 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 140 struct ucred *, int); 141 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 142 struct socket *, struct sockopt *); 143 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 144 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 145 struct ucred *, int, int, int); 146 147 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 148 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 149 struct ip6_frag **); 150 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 151 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 152 static int ip6_getpmtu(struct route_in6 *, int, 153 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 154 u_int); 155 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 156 u_long *, int *, u_int); 157 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 158 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 159 160 /* 161 * Make an extension header from option data. hp is the source, 162 * mp is the destination, and _ol is the optlen. 163 */ 164 #define MAKE_EXTHDR(hp, mp, _ol) \ 165 do { \ 166 if (hp) { \ 167 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 168 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 169 ((eh)->ip6e_len + 1) << 3); \ 170 if (error) \ 171 goto freehdrs; \ 172 (_ol) += (*(mp))->m_len; \ 173 } \ 174 } while (/*CONSTCOND*/ 0) 175 176 /* 177 * Form a chain of extension headers. 178 * m is the extension header mbuf 179 * mp is the previous mbuf in the chain 180 * p is the next header 181 * i is the type of option. 182 */ 183 #define MAKE_CHAIN(m, mp, p, i)\ 184 do {\ 185 if (m) {\ 186 if (!hdrsplit) \ 187 panic("%s:%d: assumption failed: "\ 188 "hdr not split: hdrsplit %d exthdrs %p",\ 189 __func__, __LINE__, hdrsplit, &exthdrs);\ 190 *mtod((m), u_char *) = *(p);\ 191 *(p) = (i);\ 192 p = mtod((m), u_char *);\ 193 (m)->m_next = (mp)->m_next;\ 194 (mp)->m_next = (m);\ 195 (mp) = (m);\ 196 }\ 197 } while (/*CONSTCOND*/ 0) 198 199 void 200 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 201 { 202 u_short csum; 203 204 csum = in_cksum_skip(m, offset + plen, offset); 205 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 206 csum = 0xffff; 207 offset += m->m_pkthdr.csum_data; /* checksum offset */ 208 209 if (offset + sizeof(csum) > m->m_len) 210 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 211 else 212 *(u_short *)mtodo(m, offset) = csum; 213 } 214 215 static void 216 ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags, 217 int plen, int optlen) 218 { 219 220 KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p " 221 "csum_flags %#x", 222 __func__, __LINE__, plen, optlen, m, ifp, csum_flags)); 223 224 if (csum_flags & CSUM_DELAY_DATA_IPV6) { 225 in6_delayed_cksum(m, plen - optlen, 226 sizeof(struct ip6_hdr) + optlen); 227 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 228 } 229 #if defined(SCTP) || defined(SCTP_SUPPORT) 230 if (csum_flags & CSUM_SCTP_IPV6) { 231 sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen); 232 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 233 } 234 #endif 235 } 236 237 int 238 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 239 int fraglen , uint32_t id) 240 { 241 struct mbuf *m, **mnext, *m_frgpart; 242 struct ip6_hdr *ip6, *mhip6; 243 struct ip6_frag *ip6f; 244 int off; 245 int error; 246 int tlen = m0->m_pkthdr.len; 247 248 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 249 250 m = m0; 251 ip6 = mtod(m, struct ip6_hdr *); 252 mnext = &m->m_nextpkt; 253 254 for (off = hlen; off < tlen; off += fraglen) { 255 m = m_gethdr(M_NOWAIT, MT_DATA); 256 if (!m) { 257 IP6STAT_INC(ip6s_odropped); 258 return (ENOBUFS); 259 } 260 261 /* 262 * Make sure the complete packet header gets copied 263 * from the originating mbuf to the newly created 264 * mbuf. This also ensures that existing firewall 265 * classification(s), VLAN tags and so on get copied 266 * to the resulting fragmented packet(s): 267 */ 268 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 269 m_free(m); 270 IP6STAT_INC(ip6s_odropped); 271 return (ENOBUFS); 272 } 273 274 *mnext = m; 275 mnext = &m->m_nextpkt; 276 m->m_data += max_linkhdr; 277 mhip6 = mtod(m, struct ip6_hdr *); 278 *mhip6 = *ip6; 279 m->m_len = sizeof(*mhip6); 280 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 281 if (error) { 282 IP6STAT_INC(ip6s_odropped); 283 return (error); 284 } 285 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 286 if (off + fraglen >= tlen) 287 fraglen = tlen - off; 288 else 289 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 290 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 291 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 292 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 293 IP6STAT_INC(ip6s_odropped); 294 return (ENOBUFS); 295 } 296 m_cat(m, m_frgpart); 297 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 298 ip6f->ip6f_reserved = 0; 299 ip6f->ip6f_ident = id; 300 ip6f->ip6f_nxt = nextproto; 301 IP6STAT_INC(ip6s_ofragments); 302 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 303 } 304 305 return (0); 306 } 307 308 static int 309 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp, 310 struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro, 311 bool stamp_tag) 312 { 313 #ifdef KERN_TLS 314 struct ktls_session *tls = NULL; 315 #endif 316 struct m_snd_tag *mst; 317 int error; 318 319 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 320 mst = NULL; 321 322 #ifdef KERN_TLS 323 /* 324 * If this is an unencrypted TLS record, save a reference to 325 * the record. This local reference is used to call 326 * ktls_output_eagain after the mbuf has been freed (thus 327 * dropping the mbuf's reference) in if_output. 328 */ 329 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 330 tls = ktls_hold(m->m_next->m_epg_tls); 331 mst = tls->snd_tag; 332 333 /* 334 * If a TLS session doesn't have a valid tag, it must 335 * have had an earlier ifp mismatch, so drop this 336 * packet. 337 */ 338 if (mst == NULL) { 339 m_freem(m); 340 error = EAGAIN; 341 goto done; 342 } 343 /* 344 * Always stamp tags that include NIC ktls. 345 */ 346 stamp_tag = true; 347 } 348 #endif 349 #ifdef RATELIMIT 350 if (inp != NULL && mst == NULL) { 351 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 352 (inp->inp_snd_tag != NULL && 353 inp->inp_snd_tag->ifp != ifp)) 354 in_pcboutput_txrtlmt(inp, ifp, m); 355 356 if (inp->inp_snd_tag != NULL) 357 mst = inp->inp_snd_tag; 358 } 359 #endif 360 if (stamp_tag && mst != NULL) { 361 KASSERT(m->m_pkthdr.rcvif == NULL, 362 ("trying to add a send tag to a forwarded packet")); 363 if (mst->ifp != ifp) { 364 m_freem(m); 365 error = EAGAIN; 366 goto done; 367 } 368 369 /* stamp send tag on mbuf */ 370 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 371 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 372 } 373 374 error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); 375 376 done: 377 /* Check for route change invalidating send tags. */ 378 #ifdef KERN_TLS 379 if (tls != NULL) { 380 if (error == EAGAIN) 381 error = ktls_output_eagain(inp, tls); 382 ktls_free(tls); 383 } 384 #endif 385 #ifdef RATELIMIT 386 if (error == EAGAIN) 387 in_pcboutput_eagain(inp); 388 #endif 389 return (error); 390 } 391 392 /* 393 * IP6 output. 394 * The packet in mbuf chain m contains a skeletal IP6 header (with pri, len, 395 * nxt, hlim, src, dst). 396 * This function may modify ver and hlim only. 397 * The mbuf chain containing the packet will be freed. 398 * The mbuf opt, if present, will not be freed. 399 * If route_in6 ro is present and has ro_nh initialized, route lookup would be 400 * skipped and ro->ro_nh would be used. If ro is present but ro->ro_nh is NULL, 401 * then result of route lookup is stored in ro->ro_nh. 402 * 403 * Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu 404 * is uint32_t. So we use u_long to hold largest one, which is rt_mtu. 405 * 406 * ifpp - XXX: just for statistics 407 */ 408 int 409 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 410 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 411 struct ifnet **ifpp, struct inpcb *inp) 412 { 413 struct ip6_hdr *ip6; 414 struct ifnet *ifp, *origifp; 415 struct mbuf *m = m0; 416 struct mbuf *mprev; 417 struct route_in6 *ro_pmtu; 418 struct nhop_object *nh; 419 struct sockaddr_in6 *dst, sin6, src_sa, dst_sa; 420 struct in6_addr odst; 421 u_char *nexthdrp; 422 int tlen, len; 423 int error = 0; 424 int vlan_pcp = -1; 425 struct in6_ifaddr *ia = NULL; 426 u_long mtu; 427 int alwaysfrag, dontfrag; 428 u_int32_t optlen, plen = 0, unfragpartlen; 429 struct ip6_exthdrs exthdrs; 430 struct in6_addr src0, dst0; 431 u_int32_t zone; 432 bool hdrsplit; 433 int sw_csum, tso; 434 int needfiblookup; 435 uint32_t fibnum; 436 struct m_tag *fwd_tag = NULL; 437 uint32_t id; 438 439 NET_EPOCH_ASSERT(); 440 441 if (inp != NULL) { 442 INP_LOCK_ASSERT(inp); 443 M_SETFIB(m, inp->inp_inc.inc_fibnum); 444 if ((flags & IP_NODEFAULTFLOWID) == 0) { 445 /* Unconditionally set flowid. */ 446 m->m_pkthdr.flowid = inp->inp_flowid; 447 M_HASHTYPE_SET(m, inp->inp_flowtype); 448 } 449 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 450 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 451 INP_2PCP_SHIFT; 452 #ifdef NUMA 453 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 454 #endif 455 } 456 457 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 458 /* 459 * IPSec checking which handles several cases. 460 * FAST IPSEC: We re-injected the packet. 461 * XXX: need scope argument. 462 */ 463 if (IPSEC_ENABLED(ipv6)) { 464 m = mb_unmapped_to_ext(m); 465 if (m == NULL) { 466 IP6STAT_INC(ip6s_odropped); 467 error = ENOBUFS; 468 goto bad; 469 } 470 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 471 if (error == EINPROGRESS) 472 error = 0; 473 goto done; 474 } 475 } 476 #endif /* IPSEC */ 477 478 /* Source address validation. */ 479 ip6 = mtod(m, struct ip6_hdr *); 480 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 481 (flags & IPV6_UNSPECSRC) == 0) { 482 error = EOPNOTSUPP; 483 IP6STAT_INC(ip6s_badscope); 484 goto bad; 485 } 486 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 487 error = EOPNOTSUPP; 488 IP6STAT_INC(ip6s_badscope); 489 goto bad; 490 } 491 492 /* 493 * If we are given packet options to add extension headers prepare them. 494 * Calculate the total length of the extension header chain. 495 * Keep the length of the unfragmentable part for fragmentation. 496 */ 497 bzero(&exthdrs, sizeof(exthdrs)); 498 optlen = 0; 499 unfragpartlen = sizeof(struct ip6_hdr); 500 if (opt) { 501 /* Hop-by-Hop options header. */ 502 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen); 503 504 /* Destination options header (1st part). */ 505 if (opt->ip6po_rthdr) { 506 #ifndef RTHDR_SUPPORT_IMPLEMENTED 507 /* 508 * If there is a routing header, discard the packet 509 * right away here. RH0/1 are obsolete and we do not 510 * currently support RH2/3/4. 511 * People trying to use RH253/254 may want to disable 512 * this check. 513 * The moment we do support any routing header (again) 514 * this block should check the routing type more 515 * selectively. 516 */ 517 error = EINVAL; 518 goto bad; 519 #endif 520 521 /* 522 * Destination options header (1st part). 523 * This only makes sense with a routing header. 524 * See Section 9.2 of RFC 3542. 525 * Disabling this part just for MIP6 convenience is 526 * a bad idea. We need to think carefully about a 527 * way to make the advanced API coexist with MIP6 528 * options, which might automatically be inserted in 529 * the kernel. 530 */ 531 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1, 532 optlen); 533 } 534 /* Routing header. */ 535 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen); 536 537 unfragpartlen += optlen; 538 539 /* 540 * NOTE: we don't add AH/ESP length here (done in 541 * ip6_ipsec_output()). 542 */ 543 544 /* Destination options header (2nd part). */ 545 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen); 546 } 547 548 /* 549 * If there is at least one extension header, 550 * separate IP6 header from the payload. 551 */ 552 hdrsplit = false; 553 if (optlen) { 554 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 555 m = NULL; 556 goto freehdrs; 557 } 558 m = exthdrs.ip6e_ip6; 559 ip6 = mtod(m, struct ip6_hdr *); 560 hdrsplit = true; 561 } 562 563 /* Adjust mbuf packet header length. */ 564 m->m_pkthdr.len += optlen; 565 plen = m->m_pkthdr.len - sizeof(*ip6); 566 567 /* If this is a jumbo payload, insert a jumbo payload option. */ 568 if (plen > IPV6_MAXPACKET) { 569 if (!hdrsplit) { 570 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 571 m = NULL; 572 goto freehdrs; 573 } 574 m = exthdrs.ip6e_ip6; 575 ip6 = mtod(m, struct ip6_hdr *); 576 hdrsplit = true; 577 } 578 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 579 goto freehdrs; 580 ip6->ip6_plen = 0; 581 } else 582 ip6->ip6_plen = htons(plen); 583 nexthdrp = &ip6->ip6_nxt; 584 585 if (optlen) { 586 /* 587 * Concatenate headers and fill in next header fields. 588 * Here we have, on "m" 589 * IPv6 payload 590 * and we insert headers accordingly. 591 * Finally, we should be getting: 592 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]. 593 * 594 * During the header composing process "m" points to IPv6 595 * header. "mprev" points to an extension header prior to esp. 596 */ 597 mprev = m; 598 599 /* 600 * We treat dest2 specially. This makes IPsec processing 601 * much easier. The goal here is to make mprev point the 602 * mbuf prior to dest2. 603 * 604 * Result: IPv6 dest2 payload. 605 * m and mprev will point to IPv6 header. 606 */ 607 if (exthdrs.ip6e_dest2) { 608 if (!hdrsplit) 609 panic("%s:%d: assumption failed: " 610 "hdr not split: hdrsplit %d exthdrs %p", 611 __func__, __LINE__, hdrsplit, &exthdrs); 612 exthdrs.ip6e_dest2->m_next = m->m_next; 613 m->m_next = exthdrs.ip6e_dest2; 614 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 615 ip6->ip6_nxt = IPPROTO_DSTOPTS; 616 } 617 618 /* 619 * Result: IPv6 hbh dest1 rthdr dest2 payload. 620 * m will point to IPv6 header. mprev will point to the 621 * extension header prior to dest2 (rthdr in the above case). 622 */ 623 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 624 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 625 IPPROTO_DSTOPTS); 626 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 627 IPPROTO_ROUTING); 628 } 629 630 IP6STAT_INC(ip6s_localout); 631 632 /* Route packet. */ 633 ro_pmtu = ro; 634 if (opt && opt->ip6po_rthdr) 635 ro = &opt->ip6po_route; 636 if (ro != NULL) 637 dst = (struct sockaddr_in6 *)&ro->ro_dst; 638 else 639 dst = &sin6; 640 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 641 642 again: 643 /* 644 * If specified, try to fill in the traffic class field. 645 * Do not override if a non-zero value is already set. 646 * We check the diffserv field and the ECN field separately. 647 */ 648 if (opt && opt->ip6po_tclass >= 0) { 649 int mask = 0; 650 651 if (IPV6_DSCP(ip6) == 0) 652 mask |= 0xfc; 653 if (IPV6_ECN(ip6) == 0) 654 mask |= 0x03; 655 if (mask != 0) 656 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 657 } 658 659 /* Fill in or override the hop limit field, if necessary. */ 660 if (opt && opt->ip6po_hlim != -1) 661 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 662 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 663 if (im6o != NULL) 664 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 665 else 666 ip6->ip6_hlim = V_ip6_defmcasthlim; 667 } 668 669 if (ro == NULL || ro->ro_nh == NULL) { 670 bzero(dst, sizeof(*dst)); 671 dst->sin6_family = AF_INET6; 672 dst->sin6_len = sizeof(*dst); 673 dst->sin6_addr = ip6->ip6_dst; 674 } 675 /* 676 * Validate route against routing table changes. 677 * Make sure that the address family is set in route. 678 */ 679 nh = NULL; 680 ifp = NULL; 681 mtu = 0; 682 if (ro != NULL) { 683 if (ro->ro_nh != NULL && inp != NULL) { 684 ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */ 685 NH_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, 686 fibnum); 687 } 688 if (ro->ro_nh != NULL && fwd_tag == NULL && 689 (!NH_IS_VALID(ro->ro_nh) || 690 ro->ro_dst.sin6_family != AF_INET6 || 691 !IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst))) 692 RO_INVALIDATE_CACHE(ro); 693 694 if (ro->ro_nh != NULL && fwd_tag == NULL && 695 ro->ro_dst.sin6_family == AF_INET6 && 696 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 697 /* Nexthop is valid and contains valid ifp */ 698 nh = ro->ro_nh; 699 } else { 700 if (ro->ro_lle) 701 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 702 ro->ro_lle = NULL; 703 if (fwd_tag == NULL) { 704 bzero(&dst_sa, sizeof(dst_sa)); 705 dst_sa.sin6_family = AF_INET6; 706 dst_sa.sin6_len = sizeof(dst_sa); 707 dst_sa.sin6_addr = ip6->ip6_dst; 708 } 709 error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, 710 &nh, fibnum, m->m_pkthdr.flowid); 711 if (error != 0) { 712 IP6STAT_INC(ip6s_noroute); 713 if (ifp != NULL) 714 in6_ifstat_inc(ifp, ifs6_out_discard); 715 goto bad; 716 } 717 /* 718 * At this point at least @ifp is not NULL 719 * Can be the case when dst is multicast, link-local or 720 * interface is explicitly specificed by the caller. 721 */ 722 } 723 if (nh == NULL) { 724 /* 725 * If in6_selectroute() does not return a nexthop 726 * dst may not have been updated. 727 */ 728 *dst = dst_sa; /* XXX */ 729 origifp = ifp; 730 mtu = ifp->if_mtu; 731 } else { 732 ifp = nh->nh_ifp; 733 origifp = nh->nh_aifp; 734 ia = (struct in6_ifaddr *)(nh->nh_ifa); 735 counter_u64_add(nh->nh_pksent, 1); 736 } 737 } else { 738 struct nhop_object *nh; 739 struct in6_addr kdst; 740 uint32_t scopeid; 741 742 if (fwd_tag == NULL) { 743 bzero(&dst_sa, sizeof(dst_sa)); 744 dst_sa.sin6_family = AF_INET6; 745 dst_sa.sin6_len = sizeof(dst_sa); 746 dst_sa.sin6_addr = ip6->ip6_dst; 747 } 748 749 if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) && 750 im6o != NULL && 751 (ifp = im6o->im6o_multicast_ifp) != NULL) { 752 /* We do not need a route lookup. */ 753 *dst = dst_sa; /* XXX */ 754 origifp = ifp; 755 goto nonh6lookup; 756 } 757 758 in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid); 759 760 if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) || 761 IN6_IS_ADDR_MC_NODELOCAL(&dst_sa.sin6_addr)) { 762 if (scopeid > 0) { 763 ifp = in6_getlinkifnet(scopeid); 764 if (ifp == NULL) { 765 error = EHOSTUNREACH; 766 goto bad; 767 } 768 *dst = dst_sa; /* XXX */ 769 origifp = ifp; 770 goto nonh6lookup; 771 } 772 } 773 774 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 775 m->m_pkthdr.flowid); 776 if (nh == NULL) { 777 IP6STAT_INC(ip6s_noroute); 778 /* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */ 779 error = EHOSTUNREACH; 780 goto bad; 781 } 782 783 ifp = nh->nh_ifp; 784 origifp = nh->nh_aifp; 785 ia = ifatoia6(nh->nh_ifa); 786 if (nh->nh_flags & NHF_GATEWAY) 787 dst->sin6_addr = nh->gw6_sa.sin6_addr; 788 else if (fwd_tag != NULL) 789 dst->sin6_addr = dst_sa.sin6_addr; 790 nonh6lookup: 791 ; 792 } 793 /* 794 * At this point ifp MUST be pointing to the valid transmit ifp. 795 * origifp MUST be valid and pointing to either the same ifp or, 796 * in case of loopback output, to the interface which ip6_src 797 * belongs to. 798 * Examples: 799 * fe80::1%em0 -> fe80::2%em0 -> ifp=em0, origifp=em0 800 * fe80::1%em0 -> fe80::1%em0 -> ifp=lo0, origifp=em0 801 * ::1 -> ::1 -> ifp=lo0, origifp=lo0 802 * 803 * mtu can be 0 and will be refined later. 804 */ 805 KASSERT((ifp != NULL), ("output interface must not be NULL")); 806 KASSERT((origifp != NULL), ("output address interface must not be NULL")); 807 808 if ((flags & IPV6_FORWARDING) == 0) { 809 /* XXX: the FORWARDING flag can be set for mrouting. */ 810 in6_ifstat_inc(ifp, ifs6_out_request); 811 } 812 813 /* Setup data structures for scope ID checks. */ 814 src0 = ip6->ip6_src; 815 bzero(&src_sa, sizeof(src_sa)); 816 src_sa.sin6_family = AF_INET6; 817 src_sa.sin6_len = sizeof(src_sa); 818 src_sa.sin6_addr = ip6->ip6_src; 819 820 dst0 = ip6->ip6_dst; 821 /* Re-initialize to be sure. */ 822 bzero(&dst_sa, sizeof(dst_sa)); 823 dst_sa.sin6_family = AF_INET6; 824 dst_sa.sin6_len = sizeof(dst_sa); 825 dst_sa.sin6_addr = ip6->ip6_dst; 826 827 /* Check for valid scope ID. */ 828 if (in6_setscope(&src0, origifp, &zone) == 0 && 829 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && 830 in6_setscope(&dst0, origifp, &zone) == 0 && 831 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { 832 /* 833 * The outgoing interface is in the zone of the source 834 * and destination addresses. 835 * 836 */ 837 } else if ((origifp->if_flags & IFF_LOOPBACK) == 0 || 838 sa6_recoverscope(&src_sa) != 0 || 839 sa6_recoverscope(&dst_sa) != 0 || 840 dst_sa.sin6_scope_id == 0 || 841 (src_sa.sin6_scope_id != 0 && 842 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || 843 ifnet_byindex(dst_sa.sin6_scope_id) == NULL) { 844 /* 845 * If the destination network interface is not a 846 * loopback interface, or the destination network 847 * address has no scope ID, or the source address has 848 * a scope ID set which is different from the 849 * destination address one, or there is no network 850 * interface representing this scope ID, the address 851 * pair is considered invalid. 852 */ 853 IP6STAT_INC(ip6s_badscope); 854 in6_ifstat_inc(origifp, ifs6_out_discard); 855 if (error == 0) 856 error = EHOSTUNREACH; /* XXX */ 857 goto bad; 858 } 859 /* All scope ID checks are successful. */ 860 861 if (nh && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 862 if (opt && opt->ip6po_nextroute.ro_nh) { 863 /* 864 * The nexthop is explicitly specified by the 865 * application. We assume the next hop is an IPv6 866 * address. 867 */ 868 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 869 } 870 else if ((nh->nh_flags & NHF_GATEWAY)) 871 dst = &nh->gw6_sa; 872 } 873 874 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 875 m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */ 876 } else { 877 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 878 in6_ifstat_inc(ifp, ifs6_out_mcast); 879 880 /* Confirm that the outgoing interface supports multicast. */ 881 if (!(ifp->if_flags & IFF_MULTICAST)) { 882 IP6STAT_INC(ip6s_noroute); 883 in6_ifstat_inc(ifp, ifs6_out_discard); 884 error = ENETUNREACH; 885 goto bad; 886 } 887 if ((im6o == NULL && in6_mcast_loop) || 888 (im6o && im6o->im6o_multicast_loop)) { 889 /* 890 * Loop back multicast datagram if not expressly 891 * forbidden to do so, even if we have not joined 892 * the address; protocols will filter it later, 893 * thus deferring a hash lookup and lock acquisition 894 * at the expense of an m_copym(). 895 */ 896 ip6_mloopback(ifp, m); 897 } else { 898 /* 899 * If we are acting as a multicast router, perform 900 * multicast forwarding as if the packet had just 901 * arrived on the interface to which we are about 902 * to send. The multicast forwarding function 903 * recursively calls this function, using the 904 * IPV6_FORWARDING flag to prevent infinite recursion. 905 * 906 * Multicasts that are looped back by ip6_mloopback(), 907 * above, will be forwarded by the ip6_input() routine, 908 * if necessary. 909 */ 910 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 911 /* 912 * XXX: ip6_mforward expects that rcvif is NULL 913 * when it is called from the originating path. 914 * However, it may not always be the case. 915 */ 916 m->m_pkthdr.rcvif = NULL; 917 if (ip6_mforward(ip6, ifp, m) != 0) { 918 m_freem(m); 919 goto done; 920 } 921 } 922 } 923 /* 924 * Multicasts with a hoplimit of zero may be looped back, 925 * above, but must not be transmitted on a network. 926 * Also, multicasts addressed to the loopback interface 927 * are not sent -- the above call to ip6_mloopback() will 928 * loop back a copy if this host actually belongs to the 929 * destination group on the loopback interface. 930 */ 931 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 932 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 933 m_freem(m); 934 goto done; 935 } 936 } 937 938 /* 939 * Fill the outgoing inteface to tell the upper layer 940 * to increment per-interface statistics. 941 */ 942 if (ifpp) 943 *ifpp = ifp; 944 945 /* Determine path MTU. */ 946 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 947 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 948 goto bad; 949 KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p " 950 "alwaysfrag %d fibnum %u\n", __func__, __LINE__, mtu, ro_pmtu, ro, 951 ifp, alwaysfrag, fibnum)); 952 953 /* 954 * The caller of this function may specify to use the minimum MTU 955 * in some cases. 956 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 957 * setting. The logic is a bit complicated; by default, unicast 958 * packets will follow path MTU while multicast packets will be sent at 959 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 960 * including unicast ones will be sent at the minimum MTU. Multicast 961 * packets will always be sent at the minimum MTU unless 962 * IP6PO_MINMTU_DISABLE is explicitly specified. 963 * See RFC 3542 for more details. 964 */ 965 if (mtu > IPV6_MMTU) { 966 if ((flags & IPV6_MINMTU)) 967 mtu = IPV6_MMTU; 968 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 969 mtu = IPV6_MMTU; 970 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 971 (opt == NULL || 972 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 973 mtu = IPV6_MMTU; 974 } 975 } 976 977 /* 978 * Clear embedded scope identifiers if necessary. 979 * in6_clearscope() will touch the addresses only when necessary. 980 */ 981 in6_clearscope(&ip6->ip6_src); 982 in6_clearscope(&ip6->ip6_dst); 983 984 /* 985 * If the outgoing packet contains a hop-by-hop options header, 986 * it must be examined and processed even by the source node. 987 * (RFC 2460, section 4.) 988 */ 989 if (exthdrs.ip6e_hbh) { 990 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 991 u_int32_t dummy; /* XXX unused */ 992 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 993 994 #ifdef DIAGNOSTIC 995 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 996 panic("ip6e_hbh is not contiguous"); 997 #endif 998 /* 999 * XXX: if we have to send an ICMPv6 error to the sender, 1000 * we need the M_LOOP flag since icmp6_error() expects 1001 * the IPv6 and the hop-by-hop options header are 1002 * contiguous unless the flag is set. 1003 */ 1004 m->m_flags |= M_LOOP; 1005 m->m_pkthdr.rcvif = ifp; 1006 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 1007 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 1008 &dummy, &plen) < 0) { 1009 /* m was already freed at this point. */ 1010 error = EINVAL;/* better error? */ 1011 goto done; 1012 } 1013 m->m_flags &= ~M_LOOP; /* XXX */ 1014 m->m_pkthdr.rcvif = NULL; 1015 } 1016 1017 /* Jump over all PFIL processing if hooks are not active. */ 1018 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head)) 1019 goto passout; 1020 1021 odst = ip6->ip6_dst; 1022 /* Run through list of hooks for output packets. */ 1023 switch (pfil_mbuf_out(V_inet6_pfil_head, &m, ifp, inp)) { 1024 case PFIL_PASS: 1025 ip6 = mtod(m, struct ip6_hdr *); 1026 break; 1027 case PFIL_DROPPED: 1028 error = EACCES; 1029 /* FALLTHROUGH */ 1030 case PFIL_CONSUMED: 1031 goto done; 1032 } 1033 1034 needfiblookup = 0; 1035 /* See if destination IP address was changed by packet filter. */ 1036 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 1037 m->m_flags |= M_SKIP_FIREWALL; 1038 /* If destination is now ourself drop to ip6_input(). */ 1039 if (in6_localip(&ip6->ip6_dst)) { 1040 m->m_flags |= M_FASTFWD_OURS; 1041 if (m->m_pkthdr.rcvif == NULL) 1042 m->m_pkthdr.rcvif = V_loif; 1043 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1044 m->m_pkthdr.csum_flags |= 1045 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1046 m->m_pkthdr.csum_data = 0xffff; 1047 } 1048 #if defined(SCTP) || defined(SCTP_SUPPORT) 1049 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1050 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1051 #endif 1052 error = netisr_queue(NETISR_IPV6, m); 1053 goto done; 1054 } else { 1055 if (ro != NULL) 1056 RO_INVALIDATE_CACHE(ro); 1057 needfiblookup = 1; /* Redo the routing table lookup. */ 1058 } 1059 } 1060 /* See if fib was changed by packet filter. */ 1061 if (fibnum != M_GETFIB(m)) { 1062 m->m_flags |= M_SKIP_FIREWALL; 1063 fibnum = M_GETFIB(m); 1064 if (ro != NULL) 1065 RO_INVALIDATE_CACHE(ro); 1066 needfiblookup = 1; 1067 } 1068 if (needfiblookup) 1069 goto again; 1070 1071 /* See if local, if yes, send it to netisr. */ 1072 if (m->m_flags & M_FASTFWD_OURS) { 1073 if (m->m_pkthdr.rcvif == NULL) 1074 m->m_pkthdr.rcvif = V_loif; 1075 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1076 m->m_pkthdr.csum_flags |= 1077 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1078 m->m_pkthdr.csum_data = 0xffff; 1079 } 1080 #if defined(SCTP) || defined(SCTP_SUPPORT) 1081 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1082 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1083 #endif 1084 error = netisr_queue(NETISR_IPV6, m); 1085 goto done; 1086 } 1087 /* Or forward to some other address? */ 1088 if ((m->m_flags & M_IP6_NEXTHOP) && 1089 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 1090 if (ro != NULL) 1091 dst = (struct sockaddr_in6 *)&ro->ro_dst; 1092 else 1093 dst = &sin6; 1094 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 1095 m->m_flags |= M_SKIP_FIREWALL; 1096 m->m_flags &= ~M_IP6_NEXTHOP; 1097 m_tag_delete(m, fwd_tag); 1098 goto again; 1099 } 1100 1101 passout: 1102 if (vlan_pcp > -1) 1103 EVL_APPLY_PRI(m, vlan_pcp); 1104 1105 /* Ensure the packet data is mapped if the interface requires it. */ 1106 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 1107 m = mb_unmapped_to_ext(m); 1108 if (m == NULL) { 1109 IP6STAT_INC(ip6s_odropped); 1110 return (ENOBUFS); 1111 } 1112 } 1113 1114 /* 1115 * Send the packet to the outgoing interface. 1116 * If necessary, do IPv6 fragmentation before sending. 1117 * 1118 * The logic here is rather complex: 1119 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 1120 * 1-a: send as is if tlen <= path mtu 1121 * 1-b: fragment if tlen > path mtu 1122 * 1123 * 2: if user asks us not to fragment (dontfrag == 1) 1124 * 2-a: send as is if tlen <= interface mtu 1125 * 2-b: error if tlen > interface mtu 1126 * 1127 * 3: if we always need to attach fragment header (alwaysfrag == 1) 1128 * always fragment 1129 * 1130 * 4: if dontfrag == 1 && alwaysfrag == 1 1131 * error, as we cannot handle this conflicting request. 1132 */ 1133 sw_csum = m->m_pkthdr.csum_flags; 1134 if (!hdrsplit) { 1135 tso = ((sw_csum & ifp->if_hwassist & 1136 (CSUM_TSO | CSUM_INNER_TSO)) != 0) ? 1 : 0; 1137 sw_csum &= ~ifp->if_hwassist; 1138 } else 1139 tso = 0; 1140 /* 1141 * If we added extension headers, we will not do TSO and calculate the 1142 * checksums ourselves for now. 1143 * XXX-BZ Need a framework to know when the NIC can handle it, even 1144 * with ext. hdrs. 1145 */ 1146 ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen); 1147 /* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */ 1148 tlen = m->m_pkthdr.len; 1149 1150 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 1151 dontfrag = 1; 1152 else 1153 dontfrag = 0; 1154 if (dontfrag && alwaysfrag) { /* Case 4. */ 1155 /* Conflicting request - can't transmit. */ 1156 error = EMSGSIZE; 1157 goto bad; 1158 } 1159 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* Case 2-b. */ 1160 /* 1161 * Even if the DONTFRAG option is specified, we cannot send the 1162 * packet when the data length is larger than the MTU of the 1163 * outgoing interface. 1164 * Notify the error by sending IPV6_PATHMTU ancillary data if 1165 * application wanted to know the MTU value. Also return an 1166 * error code (this is not described in the API spec). 1167 */ 1168 if (inp != NULL) 1169 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 1170 error = EMSGSIZE; 1171 goto bad; 1172 } 1173 1174 /* Transmit packet without fragmentation. */ 1175 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* Cases 1-a and 2-a. */ 1176 struct in6_ifaddr *ia6; 1177 1178 ip6 = mtod(m, struct ip6_hdr *); 1179 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1180 if (ia6) { 1181 /* Record statistics for this interface address. */ 1182 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 1183 counter_u64_add(ia6->ia_ifa.ifa_obytes, 1184 m->m_pkthdr.len); 1185 } 1186 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1187 (flags & IP_NO_SND_TAG_RL) ? false : true); 1188 goto done; 1189 } 1190 1191 /* Try to fragment the packet. Cases 1-b and 3. */ 1192 if (mtu < IPV6_MMTU) { 1193 /* Path MTU cannot be less than IPV6_MMTU. */ 1194 error = EMSGSIZE; 1195 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1196 goto bad; 1197 } else if (ip6->ip6_plen == 0) { 1198 /* Jumbo payload cannot be fragmented. */ 1199 error = EMSGSIZE; 1200 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1201 goto bad; 1202 } else { 1203 u_char nextproto; 1204 1205 /* 1206 * Too large for the destination or interface; 1207 * fragment if possible. 1208 * Must be able to put at least 8 bytes per fragment. 1209 */ 1210 if (mtu > IPV6_MAXPACKET) 1211 mtu = IPV6_MAXPACKET; 1212 1213 len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7; 1214 if (len < 8) { 1215 error = EMSGSIZE; 1216 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1217 goto bad; 1218 } 1219 1220 /* 1221 * If the interface will not calculate checksums on 1222 * fragmented packets, then do it here. 1223 * XXX-BZ handle the hw offloading case. Need flags. 1224 */ 1225 ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags, plen, 1226 optlen); 1227 1228 /* 1229 * Change the next header field of the last header in the 1230 * unfragmentable part. 1231 */ 1232 if (exthdrs.ip6e_rthdr) { 1233 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1234 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1235 } else if (exthdrs.ip6e_dest1) { 1236 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1237 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1238 } else if (exthdrs.ip6e_hbh) { 1239 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1240 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1241 } else { 1242 ip6 = mtod(m, struct ip6_hdr *); 1243 nextproto = ip6->ip6_nxt; 1244 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1245 } 1246 1247 /* 1248 * Loop through length of segment after first fragment, 1249 * make new header and copy data of each part and link onto 1250 * chain. 1251 */ 1252 m0 = m; 1253 id = htonl(ip6_randomid()); 1254 error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id); 1255 if (error != 0) 1256 goto sendorfree; 1257 1258 in6_ifstat_inc(ifp, ifs6_out_fragok); 1259 } 1260 1261 /* Remove leading garbage. */ 1262 sendorfree: 1263 m = m0->m_nextpkt; 1264 m0->m_nextpkt = 0; 1265 m_freem(m0); 1266 for (; m; m = m0) { 1267 m0 = m->m_nextpkt; 1268 m->m_nextpkt = 0; 1269 if (error == 0) { 1270 /* Record statistics for this interface address. */ 1271 if (ia) { 1272 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1273 counter_u64_add(ia->ia_ifa.ifa_obytes, 1274 m->m_pkthdr.len); 1275 } 1276 if (vlan_pcp > -1) 1277 EVL_APPLY_PRI(m, vlan_pcp); 1278 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1279 true); 1280 } else 1281 m_freem(m); 1282 } 1283 1284 if (error == 0) 1285 IP6STAT_INC(ip6s_fragmented); 1286 1287 done: 1288 return (error); 1289 1290 freehdrs: 1291 m_freem(exthdrs.ip6e_hbh); /* m_freem() checks if mbuf is NULL. */ 1292 m_freem(exthdrs.ip6e_dest1); 1293 m_freem(exthdrs.ip6e_rthdr); 1294 m_freem(exthdrs.ip6e_dest2); 1295 /* FALLTHROUGH */ 1296 bad: 1297 if (m) 1298 m_freem(m); 1299 goto done; 1300 } 1301 1302 static int 1303 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1304 { 1305 struct mbuf *m; 1306 1307 if (hlen > MCLBYTES) 1308 return (ENOBUFS); /* XXX */ 1309 1310 if (hlen > MLEN) 1311 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1312 else 1313 m = m_get(M_NOWAIT, MT_DATA); 1314 if (m == NULL) 1315 return (ENOBUFS); 1316 m->m_len = hlen; 1317 if (hdr) 1318 bcopy(hdr, mtod(m, caddr_t), hlen); 1319 1320 *mp = m; 1321 return (0); 1322 } 1323 1324 /* 1325 * Insert jumbo payload option. 1326 */ 1327 static int 1328 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1329 { 1330 struct mbuf *mopt; 1331 u_char *optbuf; 1332 u_int32_t v; 1333 1334 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1335 1336 /* 1337 * If there is no hop-by-hop options header, allocate new one. 1338 * If there is one but it doesn't have enough space to store the 1339 * jumbo payload option, allocate a cluster to store the whole options. 1340 * Otherwise, use it to store the options. 1341 */ 1342 if (exthdrs->ip6e_hbh == NULL) { 1343 mopt = m_get(M_NOWAIT, MT_DATA); 1344 if (mopt == NULL) 1345 return (ENOBUFS); 1346 mopt->m_len = JUMBOOPTLEN; 1347 optbuf = mtod(mopt, u_char *); 1348 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1349 exthdrs->ip6e_hbh = mopt; 1350 } else { 1351 struct ip6_hbh *hbh; 1352 1353 mopt = exthdrs->ip6e_hbh; 1354 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1355 /* 1356 * XXX assumption: 1357 * - exthdrs->ip6e_hbh is not referenced from places 1358 * other than exthdrs. 1359 * - exthdrs->ip6e_hbh is not an mbuf chain. 1360 */ 1361 int oldoptlen = mopt->m_len; 1362 struct mbuf *n; 1363 1364 /* 1365 * XXX: give up if the whole (new) hbh header does 1366 * not fit even in an mbuf cluster. 1367 */ 1368 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1369 return (ENOBUFS); 1370 1371 /* 1372 * As a consequence, we must always prepare a cluster 1373 * at this point. 1374 */ 1375 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1376 if (n == NULL) 1377 return (ENOBUFS); 1378 n->m_len = oldoptlen + JUMBOOPTLEN; 1379 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1380 oldoptlen); 1381 optbuf = mtod(n, caddr_t) + oldoptlen; 1382 m_freem(mopt); 1383 mopt = exthdrs->ip6e_hbh = n; 1384 } else { 1385 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1386 mopt->m_len += JUMBOOPTLEN; 1387 } 1388 optbuf[0] = IP6OPT_PADN; 1389 optbuf[1] = 1; 1390 1391 /* 1392 * Adjust the header length according to the pad and 1393 * the jumbo payload option. 1394 */ 1395 hbh = mtod(mopt, struct ip6_hbh *); 1396 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1397 } 1398 1399 /* fill in the option. */ 1400 optbuf[2] = IP6OPT_JUMBO; 1401 optbuf[3] = 4; 1402 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1403 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1404 1405 /* finally, adjust the packet header length */ 1406 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1407 1408 return (0); 1409 #undef JUMBOOPTLEN 1410 } 1411 1412 /* 1413 * Insert fragment header and copy unfragmentable header portions. 1414 */ 1415 static int 1416 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1417 struct ip6_frag **frghdrp) 1418 { 1419 struct mbuf *n, *mlast; 1420 1421 if (hlen > sizeof(struct ip6_hdr)) { 1422 n = m_copym(m0, sizeof(struct ip6_hdr), 1423 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1424 if (n == NULL) 1425 return (ENOBUFS); 1426 m->m_next = n; 1427 } else 1428 n = m; 1429 1430 /* Search for the last mbuf of unfragmentable part. */ 1431 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1432 ; 1433 1434 if (M_WRITABLE(mlast) && 1435 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1436 /* use the trailing space of the last mbuf for the fragment hdr */ 1437 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1438 mlast->m_len); 1439 mlast->m_len += sizeof(struct ip6_frag); 1440 m->m_pkthdr.len += sizeof(struct ip6_frag); 1441 } else { 1442 /* allocate a new mbuf for the fragment header */ 1443 struct mbuf *mfrg; 1444 1445 mfrg = m_get(M_NOWAIT, MT_DATA); 1446 if (mfrg == NULL) 1447 return (ENOBUFS); 1448 mfrg->m_len = sizeof(struct ip6_frag); 1449 *frghdrp = mtod(mfrg, struct ip6_frag *); 1450 mlast->m_next = mfrg; 1451 } 1452 1453 return (0); 1454 } 1455 1456 /* 1457 * Calculates IPv6 path mtu for destination @dst. 1458 * Resulting MTU is stored in @mtup. 1459 * 1460 * Returns 0 on success. 1461 */ 1462 static int 1463 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1464 { 1465 struct epoch_tracker et; 1466 struct nhop_object *nh; 1467 struct in6_addr kdst; 1468 uint32_t scopeid; 1469 int error; 1470 1471 in6_splitscope(dst, &kdst, &scopeid); 1472 1473 NET_EPOCH_ENTER(et); 1474 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1475 if (nh != NULL) 1476 error = ip6_calcmtu(nh->nh_ifp, dst, nh->nh_mtu, mtup, NULL, 0); 1477 else 1478 error = EHOSTUNREACH; 1479 NET_EPOCH_EXIT(et); 1480 1481 return (error); 1482 } 1483 1484 /* 1485 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1486 * and cached data in @ro_pmtu. 1487 * MTU from (successful) route lookup is saved (along with dst) 1488 * inside @ro_pmtu to avoid subsequent route lookups after packet 1489 * filter processing. 1490 * 1491 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1492 * Returns 0 on success. 1493 */ 1494 static int 1495 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1496 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1497 int *alwaysfragp, u_int fibnum, u_int proto) 1498 { 1499 struct nhop_object *nh; 1500 struct in6_addr kdst; 1501 uint32_t scopeid; 1502 struct sockaddr_in6 *sa6_dst, sin6; 1503 u_long mtu; 1504 1505 NET_EPOCH_ASSERT(); 1506 1507 mtu = 0; 1508 if (ro_pmtu == NULL || do_lookup) { 1509 /* 1510 * Here ro_pmtu has final destination address, while 1511 * ro might represent immediate destination. 1512 * Use ro_pmtu destination since mtu might differ. 1513 */ 1514 if (ro_pmtu != NULL) { 1515 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1516 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1517 ro_pmtu->ro_mtu = 0; 1518 } else 1519 sa6_dst = &sin6; 1520 1521 if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) { 1522 bzero(sa6_dst, sizeof(*sa6_dst)); 1523 sa6_dst->sin6_family = AF_INET6; 1524 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1525 sa6_dst->sin6_addr = *dst; 1526 1527 in6_splitscope(dst, &kdst, &scopeid); 1528 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1529 if (nh != NULL) { 1530 mtu = nh->nh_mtu; 1531 if (ro_pmtu != NULL) 1532 ro_pmtu->ro_mtu = mtu; 1533 } 1534 } else 1535 mtu = ro_pmtu->ro_mtu; 1536 } 1537 1538 if (ro_pmtu != NULL && ro_pmtu->ro_nh != NULL) 1539 mtu = ro_pmtu->ro_nh->nh_mtu; 1540 1541 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1542 } 1543 1544 /* 1545 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1546 * hostcache data for @dst. 1547 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1548 * 1549 * Returns 0 on success. 1550 */ 1551 static int 1552 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1553 u_long *mtup, int *alwaysfragp, u_int proto) 1554 { 1555 u_long mtu = 0; 1556 int alwaysfrag = 0; 1557 int error = 0; 1558 1559 if (rt_mtu > 0) { 1560 u_int32_t ifmtu; 1561 struct in_conninfo inc; 1562 1563 bzero(&inc, sizeof(inc)); 1564 inc.inc_flags |= INC_ISIPV6; 1565 inc.inc6_faddr = *dst; 1566 1567 ifmtu = IN6_LINKMTU(ifp); 1568 1569 /* TCP is known to react to pmtu changes so skip hc */ 1570 if (proto != IPPROTO_TCP) 1571 mtu = tcp_hc_getmtu(&inc); 1572 1573 if (mtu) 1574 mtu = min(mtu, rt_mtu); 1575 else 1576 mtu = rt_mtu; 1577 if (mtu == 0) 1578 mtu = ifmtu; 1579 else if (mtu < IPV6_MMTU) { 1580 /* 1581 * RFC2460 section 5, last paragraph: 1582 * if we record ICMPv6 too big message with 1583 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1584 * or smaller, with framgent header attached. 1585 * (fragment header is needed regardless from the 1586 * packet size, for translators to identify packets) 1587 */ 1588 alwaysfrag = 1; 1589 mtu = IPV6_MMTU; 1590 } 1591 } else if (ifp) { 1592 mtu = IN6_LINKMTU(ifp); 1593 } else 1594 error = EHOSTUNREACH; /* XXX */ 1595 1596 *mtup = mtu; 1597 if (alwaysfragp) 1598 *alwaysfragp = alwaysfrag; 1599 return (error); 1600 } 1601 1602 /* 1603 * IP6 socket option processing. 1604 */ 1605 int 1606 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1607 { 1608 int optdatalen, uproto; 1609 void *optdata; 1610 struct inpcb *inp = sotoinpcb(so); 1611 int error, optval; 1612 int level, op, optname; 1613 int optlen; 1614 struct thread *td; 1615 #ifdef RSS 1616 uint32_t rss_bucket; 1617 int retval; 1618 #endif 1619 1620 /* 1621 * Don't use more than a quarter of mbuf clusters. N.B.: 1622 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1623 * on LP64 architectures, so cast to u_long to avoid undefined 1624 * behavior. ILP32 architectures cannot have nmbclusters 1625 * large enough to overflow for other reasons. 1626 */ 1627 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1628 1629 level = sopt->sopt_level; 1630 op = sopt->sopt_dir; 1631 optname = sopt->sopt_name; 1632 optlen = sopt->sopt_valsize; 1633 td = sopt->sopt_td; 1634 error = 0; 1635 optval = 0; 1636 uproto = (int)so->so_proto->pr_protocol; 1637 1638 if (level != IPPROTO_IPV6) { 1639 error = EINVAL; 1640 1641 if (sopt->sopt_level == SOL_SOCKET && 1642 sopt->sopt_dir == SOPT_SET) { 1643 switch (sopt->sopt_name) { 1644 case SO_SETFIB: 1645 INP_WLOCK(inp); 1646 inp->inp_inc.inc_fibnum = so->so_fibnum; 1647 INP_WUNLOCK(inp); 1648 error = 0; 1649 break; 1650 case SO_MAX_PACING_RATE: 1651 #ifdef RATELIMIT 1652 INP_WLOCK(inp); 1653 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1654 INP_WUNLOCK(inp); 1655 error = 0; 1656 #else 1657 error = EOPNOTSUPP; 1658 #endif 1659 break; 1660 default: 1661 break; 1662 } 1663 } 1664 } else { /* level == IPPROTO_IPV6 */ 1665 switch (op) { 1666 case SOPT_SET: 1667 switch (optname) { 1668 case IPV6_2292PKTOPTIONS: 1669 #ifdef IPV6_PKTOPTIONS 1670 case IPV6_PKTOPTIONS: 1671 #endif 1672 { 1673 struct mbuf *m; 1674 1675 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1676 printf("ip6_ctloutput: mbuf limit hit\n"); 1677 error = ENOBUFS; 1678 break; 1679 } 1680 1681 error = soopt_getm(sopt, &m); /* XXX */ 1682 if (error != 0) 1683 break; 1684 error = soopt_mcopyin(sopt, m); /* XXX */ 1685 if (error != 0) 1686 break; 1687 INP_WLOCK(inp); 1688 error = ip6_pcbopts(&inp->in6p_outputopts, m, 1689 so, sopt); 1690 INP_WUNLOCK(inp); 1691 m_freem(m); /* XXX */ 1692 break; 1693 } 1694 1695 /* 1696 * Use of some Hop-by-Hop options or some 1697 * Destination options, might require special 1698 * privilege. That is, normal applications 1699 * (without special privilege) might be forbidden 1700 * from setting certain options in outgoing packets, 1701 * and might never see certain options in received 1702 * packets. [RFC 2292 Section 6] 1703 * KAME specific note: 1704 * KAME prevents non-privileged users from sending or 1705 * receiving ANY hbh/dst options in order to avoid 1706 * overhead of parsing options in the kernel. 1707 */ 1708 case IPV6_RECVHOPOPTS: 1709 case IPV6_RECVDSTOPTS: 1710 case IPV6_RECVRTHDRDSTOPTS: 1711 if (td != NULL) { 1712 error = priv_check(td, 1713 PRIV_NETINET_SETHDROPTS); 1714 if (error) 1715 break; 1716 } 1717 /* FALLTHROUGH */ 1718 case IPV6_UNICAST_HOPS: 1719 case IPV6_HOPLIMIT: 1720 1721 case IPV6_RECVPKTINFO: 1722 case IPV6_RECVHOPLIMIT: 1723 case IPV6_RECVRTHDR: 1724 case IPV6_RECVPATHMTU: 1725 case IPV6_RECVTCLASS: 1726 case IPV6_RECVFLOWID: 1727 #ifdef RSS 1728 case IPV6_RECVRSSBUCKETID: 1729 #endif 1730 case IPV6_V6ONLY: 1731 case IPV6_AUTOFLOWLABEL: 1732 case IPV6_ORIGDSTADDR: 1733 case IPV6_BINDANY: 1734 case IPV6_VLAN_PCP: 1735 if (optname == IPV6_BINDANY && td != NULL) { 1736 error = priv_check(td, 1737 PRIV_NETINET_BINDANY); 1738 if (error) 1739 break; 1740 } 1741 1742 if (optlen != sizeof(int)) { 1743 error = EINVAL; 1744 break; 1745 } 1746 error = sooptcopyin(sopt, &optval, 1747 sizeof optval, sizeof optval); 1748 if (error) 1749 break; 1750 switch (optname) { 1751 case IPV6_UNICAST_HOPS: 1752 if (optval < -1 || optval >= 256) 1753 error = EINVAL; 1754 else { 1755 /* -1 = kernel default */ 1756 inp->in6p_hops = optval; 1757 if ((inp->inp_vflag & 1758 INP_IPV4) != 0) 1759 inp->inp_ip_ttl = optval; 1760 } 1761 break; 1762 #define OPTSET(bit) \ 1763 do { \ 1764 INP_WLOCK(inp); \ 1765 if (optval) \ 1766 inp->inp_flags |= (bit); \ 1767 else \ 1768 inp->inp_flags &= ~(bit); \ 1769 INP_WUNLOCK(inp); \ 1770 } while (/*CONSTCOND*/ 0) 1771 #define OPTSET2292(bit) \ 1772 do { \ 1773 INP_WLOCK(inp); \ 1774 inp->inp_flags |= IN6P_RFC2292; \ 1775 if (optval) \ 1776 inp->inp_flags |= (bit); \ 1777 else \ 1778 inp->inp_flags &= ~(bit); \ 1779 INP_WUNLOCK(inp); \ 1780 } while (/*CONSTCOND*/ 0) 1781 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1782 1783 #define OPTSET2_N(bit, val) do { \ 1784 if (val) \ 1785 inp->inp_flags2 |= bit; \ 1786 else \ 1787 inp->inp_flags2 &= ~bit; \ 1788 } while (0) 1789 #define OPTSET2(bit, val) do { \ 1790 INP_WLOCK(inp); \ 1791 OPTSET2_N(bit, val); \ 1792 INP_WUNLOCK(inp); \ 1793 } while (0) 1794 #define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0) 1795 #define OPTSET2292_EXCLUSIVE(bit) \ 1796 do { \ 1797 INP_WLOCK(inp); \ 1798 if (OPTBIT(IN6P_RFC2292)) { \ 1799 error = EINVAL; \ 1800 } else { \ 1801 if (optval) \ 1802 inp->inp_flags |= (bit); \ 1803 else \ 1804 inp->inp_flags &= ~(bit); \ 1805 } \ 1806 INP_WUNLOCK(inp); \ 1807 } while (/*CONSTCOND*/ 0) 1808 1809 case IPV6_RECVPKTINFO: 1810 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1811 break; 1812 1813 case IPV6_HOPLIMIT: 1814 { 1815 struct ip6_pktopts **optp; 1816 1817 /* cannot mix with RFC2292 */ 1818 if (OPTBIT(IN6P_RFC2292)) { 1819 error = EINVAL; 1820 break; 1821 } 1822 INP_WLOCK(inp); 1823 if (inp->inp_flags & INP_DROPPED) { 1824 INP_WUNLOCK(inp); 1825 return (ECONNRESET); 1826 } 1827 optp = &inp->in6p_outputopts; 1828 error = ip6_pcbopt(IPV6_HOPLIMIT, 1829 (u_char *)&optval, sizeof(optval), 1830 optp, (td != NULL) ? td->td_ucred : 1831 NULL, uproto); 1832 INP_WUNLOCK(inp); 1833 break; 1834 } 1835 1836 case IPV6_RECVHOPLIMIT: 1837 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1838 break; 1839 1840 case IPV6_RECVHOPOPTS: 1841 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1842 break; 1843 1844 case IPV6_RECVDSTOPTS: 1845 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1846 break; 1847 1848 case IPV6_RECVRTHDRDSTOPTS: 1849 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1850 break; 1851 1852 case IPV6_RECVRTHDR: 1853 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1854 break; 1855 1856 case IPV6_RECVPATHMTU: 1857 /* 1858 * We ignore this option for TCP 1859 * sockets. 1860 * (RFC3542 leaves this case 1861 * unspecified.) 1862 */ 1863 if (uproto != IPPROTO_TCP) 1864 OPTSET(IN6P_MTU); 1865 break; 1866 1867 case IPV6_RECVFLOWID: 1868 OPTSET2(INP_RECVFLOWID, optval); 1869 break; 1870 1871 #ifdef RSS 1872 case IPV6_RECVRSSBUCKETID: 1873 OPTSET2(INP_RECVRSSBUCKETID, optval); 1874 break; 1875 #endif 1876 1877 case IPV6_V6ONLY: 1878 INP_WLOCK(inp); 1879 if (inp->inp_lport || 1880 !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { 1881 /* 1882 * The socket is already bound. 1883 */ 1884 INP_WUNLOCK(inp); 1885 error = EINVAL; 1886 break; 1887 } 1888 if (optval) { 1889 inp->inp_flags |= IN6P_IPV6_V6ONLY; 1890 inp->inp_vflag &= ~INP_IPV4; 1891 } else { 1892 inp->inp_flags &= ~IN6P_IPV6_V6ONLY; 1893 inp->inp_vflag |= INP_IPV4; 1894 } 1895 INP_WUNLOCK(inp); 1896 break; 1897 case IPV6_RECVTCLASS: 1898 /* cannot mix with RFC2292 XXX */ 1899 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1900 break; 1901 case IPV6_AUTOFLOWLABEL: 1902 OPTSET(IN6P_AUTOFLOWLABEL); 1903 break; 1904 1905 case IPV6_ORIGDSTADDR: 1906 OPTSET2(INP_ORIGDSTADDR, optval); 1907 break; 1908 case IPV6_BINDANY: 1909 OPTSET(INP_BINDANY); 1910 break; 1911 case IPV6_VLAN_PCP: 1912 if ((optval >= -1) && (optval <= 1913 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1914 if (optval == -1) { 1915 INP_WLOCK(inp); 1916 inp->inp_flags2 &= 1917 ~(INP_2PCP_SET | 1918 INP_2PCP_MASK); 1919 INP_WUNLOCK(inp); 1920 } else { 1921 INP_WLOCK(inp); 1922 inp->inp_flags2 |= 1923 INP_2PCP_SET; 1924 inp->inp_flags2 &= 1925 ~INP_2PCP_MASK; 1926 inp->inp_flags2 |= 1927 optval << 1928 INP_2PCP_SHIFT; 1929 INP_WUNLOCK(inp); 1930 } 1931 } else 1932 error = EINVAL; 1933 break; 1934 } 1935 break; 1936 1937 case IPV6_TCLASS: 1938 case IPV6_DONTFRAG: 1939 case IPV6_USE_MIN_MTU: 1940 case IPV6_PREFER_TEMPADDR: 1941 if (optlen != sizeof(optval)) { 1942 error = EINVAL; 1943 break; 1944 } 1945 error = sooptcopyin(sopt, &optval, 1946 sizeof optval, sizeof optval); 1947 if (error) 1948 break; 1949 { 1950 struct ip6_pktopts **optp; 1951 INP_WLOCK(inp); 1952 if (inp->inp_flags & INP_DROPPED) { 1953 INP_WUNLOCK(inp); 1954 return (ECONNRESET); 1955 } 1956 optp = &inp->in6p_outputopts; 1957 error = ip6_pcbopt(optname, 1958 (u_char *)&optval, sizeof(optval), 1959 optp, (td != NULL) ? td->td_ucred : 1960 NULL, uproto); 1961 INP_WUNLOCK(inp); 1962 break; 1963 } 1964 1965 case IPV6_2292PKTINFO: 1966 case IPV6_2292HOPLIMIT: 1967 case IPV6_2292HOPOPTS: 1968 case IPV6_2292DSTOPTS: 1969 case IPV6_2292RTHDR: 1970 /* RFC 2292 */ 1971 if (optlen != sizeof(int)) { 1972 error = EINVAL; 1973 break; 1974 } 1975 error = sooptcopyin(sopt, &optval, 1976 sizeof optval, sizeof optval); 1977 if (error) 1978 break; 1979 switch (optname) { 1980 case IPV6_2292PKTINFO: 1981 OPTSET2292(IN6P_PKTINFO); 1982 break; 1983 case IPV6_2292HOPLIMIT: 1984 OPTSET2292(IN6P_HOPLIMIT); 1985 break; 1986 case IPV6_2292HOPOPTS: 1987 /* 1988 * Check super-user privilege. 1989 * See comments for IPV6_RECVHOPOPTS. 1990 */ 1991 if (td != NULL) { 1992 error = priv_check(td, 1993 PRIV_NETINET_SETHDROPTS); 1994 if (error) 1995 return (error); 1996 } 1997 OPTSET2292(IN6P_HOPOPTS); 1998 break; 1999 case IPV6_2292DSTOPTS: 2000 if (td != NULL) { 2001 error = priv_check(td, 2002 PRIV_NETINET_SETHDROPTS); 2003 if (error) 2004 return (error); 2005 } 2006 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 2007 break; 2008 case IPV6_2292RTHDR: 2009 OPTSET2292(IN6P_RTHDR); 2010 break; 2011 } 2012 break; 2013 case IPV6_PKTINFO: 2014 case IPV6_HOPOPTS: 2015 case IPV6_RTHDR: 2016 case IPV6_DSTOPTS: 2017 case IPV6_RTHDRDSTOPTS: 2018 case IPV6_NEXTHOP: 2019 { 2020 /* new advanced API (RFC3542) */ 2021 u_char *optbuf; 2022 u_char optbuf_storage[MCLBYTES]; 2023 int optlen; 2024 struct ip6_pktopts **optp; 2025 2026 /* cannot mix with RFC2292 */ 2027 if (OPTBIT(IN6P_RFC2292)) { 2028 error = EINVAL; 2029 break; 2030 } 2031 2032 /* 2033 * We only ensure valsize is not too large 2034 * here. Further validation will be done 2035 * later. 2036 */ 2037 error = sooptcopyin(sopt, optbuf_storage, 2038 sizeof(optbuf_storage), 0); 2039 if (error) 2040 break; 2041 optlen = sopt->sopt_valsize; 2042 optbuf = optbuf_storage; 2043 INP_WLOCK(inp); 2044 if (inp->inp_flags & INP_DROPPED) { 2045 INP_WUNLOCK(inp); 2046 return (ECONNRESET); 2047 } 2048 optp = &inp->in6p_outputopts; 2049 error = ip6_pcbopt(optname, optbuf, optlen, 2050 optp, (td != NULL) ? td->td_ucred : NULL, 2051 uproto); 2052 INP_WUNLOCK(inp); 2053 break; 2054 } 2055 #undef OPTSET 2056 2057 case IPV6_MULTICAST_IF: 2058 case IPV6_MULTICAST_HOPS: 2059 case IPV6_MULTICAST_LOOP: 2060 case IPV6_JOIN_GROUP: 2061 case IPV6_LEAVE_GROUP: 2062 case IPV6_MSFILTER: 2063 case MCAST_BLOCK_SOURCE: 2064 case MCAST_UNBLOCK_SOURCE: 2065 case MCAST_JOIN_GROUP: 2066 case MCAST_LEAVE_GROUP: 2067 case MCAST_JOIN_SOURCE_GROUP: 2068 case MCAST_LEAVE_SOURCE_GROUP: 2069 error = ip6_setmoptions(inp, sopt); 2070 break; 2071 2072 case IPV6_PORTRANGE: 2073 error = sooptcopyin(sopt, &optval, 2074 sizeof optval, sizeof optval); 2075 if (error) 2076 break; 2077 2078 INP_WLOCK(inp); 2079 switch (optval) { 2080 case IPV6_PORTRANGE_DEFAULT: 2081 inp->inp_flags &= ~(INP_LOWPORT); 2082 inp->inp_flags &= ~(INP_HIGHPORT); 2083 break; 2084 2085 case IPV6_PORTRANGE_HIGH: 2086 inp->inp_flags &= ~(INP_LOWPORT); 2087 inp->inp_flags |= INP_HIGHPORT; 2088 break; 2089 2090 case IPV6_PORTRANGE_LOW: 2091 inp->inp_flags &= ~(INP_HIGHPORT); 2092 inp->inp_flags |= INP_LOWPORT; 2093 break; 2094 2095 default: 2096 error = EINVAL; 2097 break; 2098 } 2099 INP_WUNLOCK(inp); 2100 break; 2101 2102 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2103 case IPV6_IPSEC_POLICY: 2104 if (IPSEC_ENABLED(ipv6)) { 2105 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2106 break; 2107 } 2108 /* FALLTHROUGH */ 2109 #endif /* IPSEC */ 2110 2111 default: 2112 error = ENOPROTOOPT; 2113 break; 2114 } 2115 break; 2116 2117 case SOPT_GET: 2118 switch (optname) { 2119 case IPV6_2292PKTOPTIONS: 2120 #ifdef IPV6_PKTOPTIONS 2121 case IPV6_PKTOPTIONS: 2122 #endif 2123 /* 2124 * RFC3542 (effectively) deprecated the 2125 * semantics of the 2292-style pktoptions. 2126 * Since it was not reliable in nature (i.e., 2127 * applications had to expect the lack of some 2128 * information after all), it would make sense 2129 * to simplify this part by always returning 2130 * empty data. 2131 */ 2132 sopt->sopt_valsize = 0; 2133 break; 2134 2135 case IPV6_RECVHOPOPTS: 2136 case IPV6_RECVDSTOPTS: 2137 case IPV6_RECVRTHDRDSTOPTS: 2138 case IPV6_UNICAST_HOPS: 2139 case IPV6_RECVPKTINFO: 2140 case IPV6_RECVHOPLIMIT: 2141 case IPV6_RECVRTHDR: 2142 case IPV6_RECVPATHMTU: 2143 2144 case IPV6_V6ONLY: 2145 case IPV6_PORTRANGE: 2146 case IPV6_RECVTCLASS: 2147 case IPV6_AUTOFLOWLABEL: 2148 case IPV6_BINDANY: 2149 case IPV6_FLOWID: 2150 case IPV6_FLOWTYPE: 2151 case IPV6_RECVFLOWID: 2152 #ifdef RSS 2153 case IPV6_RSSBUCKETID: 2154 case IPV6_RECVRSSBUCKETID: 2155 #endif 2156 case IPV6_VLAN_PCP: 2157 switch (optname) { 2158 case IPV6_RECVHOPOPTS: 2159 optval = OPTBIT(IN6P_HOPOPTS); 2160 break; 2161 2162 case IPV6_RECVDSTOPTS: 2163 optval = OPTBIT(IN6P_DSTOPTS); 2164 break; 2165 2166 case IPV6_RECVRTHDRDSTOPTS: 2167 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 2168 break; 2169 2170 case IPV6_UNICAST_HOPS: 2171 optval = inp->in6p_hops; 2172 break; 2173 2174 case IPV6_RECVPKTINFO: 2175 optval = OPTBIT(IN6P_PKTINFO); 2176 break; 2177 2178 case IPV6_RECVHOPLIMIT: 2179 optval = OPTBIT(IN6P_HOPLIMIT); 2180 break; 2181 2182 case IPV6_RECVRTHDR: 2183 optval = OPTBIT(IN6P_RTHDR); 2184 break; 2185 2186 case IPV6_RECVPATHMTU: 2187 optval = OPTBIT(IN6P_MTU); 2188 break; 2189 2190 case IPV6_V6ONLY: 2191 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2192 break; 2193 2194 case IPV6_PORTRANGE: 2195 { 2196 int flags; 2197 flags = inp->inp_flags; 2198 if (flags & INP_HIGHPORT) 2199 optval = IPV6_PORTRANGE_HIGH; 2200 else if (flags & INP_LOWPORT) 2201 optval = IPV6_PORTRANGE_LOW; 2202 else 2203 optval = 0; 2204 break; 2205 } 2206 case IPV6_RECVTCLASS: 2207 optval = OPTBIT(IN6P_TCLASS); 2208 break; 2209 2210 case IPV6_AUTOFLOWLABEL: 2211 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2212 break; 2213 2214 case IPV6_ORIGDSTADDR: 2215 optval = OPTBIT2(INP_ORIGDSTADDR); 2216 break; 2217 2218 case IPV6_BINDANY: 2219 optval = OPTBIT(INP_BINDANY); 2220 break; 2221 2222 case IPV6_FLOWID: 2223 optval = inp->inp_flowid; 2224 break; 2225 2226 case IPV6_FLOWTYPE: 2227 optval = inp->inp_flowtype; 2228 break; 2229 2230 case IPV6_RECVFLOWID: 2231 optval = OPTBIT2(INP_RECVFLOWID); 2232 break; 2233 #ifdef RSS 2234 case IPV6_RSSBUCKETID: 2235 retval = 2236 rss_hash2bucket(inp->inp_flowid, 2237 inp->inp_flowtype, 2238 &rss_bucket); 2239 if (retval == 0) 2240 optval = rss_bucket; 2241 else 2242 error = EINVAL; 2243 break; 2244 2245 case IPV6_RECVRSSBUCKETID: 2246 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2247 break; 2248 #endif 2249 2250 2251 case IPV6_VLAN_PCP: 2252 if (OPTBIT2(INP_2PCP_SET)) { 2253 optval = (inp->inp_flags2 & 2254 INP_2PCP_MASK) >> 2255 INP_2PCP_SHIFT; 2256 } else { 2257 optval = -1; 2258 } 2259 break; 2260 } 2261 2262 if (error) 2263 break; 2264 error = sooptcopyout(sopt, &optval, 2265 sizeof optval); 2266 break; 2267 2268 case IPV6_PATHMTU: 2269 { 2270 u_long pmtu = 0; 2271 struct ip6_mtuinfo mtuinfo; 2272 struct in6_addr addr; 2273 2274 if (!(so->so_state & SS_ISCONNECTED)) 2275 return (ENOTCONN); 2276 /* 2277 * XXX: we dot not consider the case of source 2278 * routing, or optional information to specify 2279 * the outgoing interface. 2280 * Copy faddr out of inp to avoid holding lock 2281 * on inp during route lookup. 2282 */ 2283 INP_RLOCK(inp); 2284 bcopy(&inp->in6p_faddr, &addr, sizeof(addr)); 2285 INP_RUNLOCK(inp); 2286 error = ip6_getpmtu_ctl(so->so_fibnum, 2287 &addr, &pmtu); 2288 if (error) 2289 break; 2290 if (pmtu > IPV6_MAXPACKET) 2291 pmtu = IPV6_MAXPACKET; 2292 2293 bzero(&mtuinfo, sizeof(mtuinfo)); 2294 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2295 optdata = (void *)&mtuinfo; 2296 optdatalen = sizeof(mtuinfo); 2297 error = sooptcopyout(sopt, optdata, 2298 optdatalen); 2299 break; 2300 } 2301 2302 case IPV6_2292PKTINFO: 2303 case IPV6_2292HOPLIMIT: 2304 case IPV6_2292HOPOPTS: 2305 case IPV6_2292RTHDR: 2306 case IPV6_2292DSTOPTS: 2307 switch (optname) { 2308 case IPV6_2292PKTINFO: 2309 optval = OPTBIT(IN6P_PKTINFO); 2310 break; 2311 case IPV6_2292HOPLIMIT: 2312 optval = OPTBIT(IN6P_HOPLIMIT); 2313 break; 2314 case IPV6_2292HOPOPTS: 2315 optval = OPTBIT(IN6P_HOPOPTS); 2316 break; 2317 case IPV6_2292RTHDR: 2318 optval = OPTBIT(IN6P_RTHDR); 2319 break; 2320 case IPV6_2292DSTOPTS: 2321 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2322 break; 2323 } 2324 error = sooptcopyout(sopt, &optval, 2325 sizeof optval); 2326 break; 2327 case IPV6_PKTINFO: 2328 case IPV6_HOPOPTS: 2329 case IPV6_RTHDR: 2330 case IPV6_DSTOPTS: 2331 case IPV6_RTHDRDSTOPTS: 2332 case IPV6_NEXTHOP: 2333 case IPV6_TCLASS: 2334 case IPV6_DONTFRAG: 2335 case IPV6_USE_MIN_MTU: 2336 case IPV6_PREFER_TEMPADDR: 2337 error = ip6_getpcbopt(inp, optname, sopt); 2338 break; 2339 2340 case IPV6_MULTICAST_IF: 2341 case IPV6_MULTICAST_HOPS: 2342 case IPV6_MULTICAST_LOOP: 2343 case IPV6_MSFILTER: 2344 error = ip6_getmoptions(inp, sopt); 2345 break; 2346 2347 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2348 case IPV6_IPSEC_POLICY: 2349 if (IPSEC_ENABLED(ipv6)) { 2350 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2351 break; 2352 } 2353 /* FALLTHROUGH */ 2354 #endif /* IPSEC */ 2355 default: 2356 error = ENOPROTOOPT; 2357 break; 2358 } 2359 break; 2360 } 2361 } 2362 return (error); 2363 } 2364 2365 int 2366 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2367 { 2368 int error = 0, optval, optlen; 2369 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2370 struct inpcb *inp = sotoinpcb(so); 2371 int level, op, optname; 2372 2373 level = sopt->sopt_level; 2374 op = sopt->sopt_dir; 2375 optname = sopt->sopt_name; 2376 optlen = sopt->sopt_valsize; 2377 2378 if (level != IPPROTO_IPV6) { 2379 return (EINVAL); 2380 } 2381 2382 switch (optname) { 2383 case IPV6_CHECKSUM: 2384 /* 2385 * For ICMPv6 sockets, no modification allowed for checksum 2386 * offset, permit "no change" values to help existing apps. 2387 * 2388 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2389 * for an ICMPv6 socket will fail." 2390 * The current behavior does not meet RFC3542. 2391 */ 2392 switch (op) { 2393 case SOPT_SET: 2394 if (optlen != sizeof(int)) { 2395 error = EINVAL; 2396 break; 2397 } 2398 error = sooptcopyin(sopt, &optval, sizeof(optval), 2399 sizeof(optval)); 2400 if (error) 2401 break; 2402 if (optval < -1 || (optval % 2) != 0) { 2403 /* 2404 * The API assumes non-negative even offset 2405 * values or -1 as a special value. 2406 */ 2407 error = EINVAL; 2408 } else if (inp->inp_ip_p == IPPROTO_ICMPV6) { 2409 if (optval != icmp6off) 2410 error = EINVAL; 2411 } else 2412 inp->in6p_cksum = optval; 2413 break; 2414 2415 case SOPT_GET: 2416 if (inp->inp_ip_p == IPPROTO_ICMPV6) 2417 optval = icmp6off; 2418 else 2419 optval = inp->in6p_cksum; 2420 2421 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2422 break; 2423 2424 default: 2425 error = EINVAL; 2426 break; 2427 } 2428 break; 2429 2430 default: 2431 error = ENOPROTOOPT; 2432 break; 2433 } 2434 2435 return (error); 2436 } 2437 2438 /* 2439 * Set up IP6 options in pcb for insertion in output packets or 2440 * specifying behavior of outgoing packets. 2441 */ 2442 static int 2443 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2444 struct socket *so, struct sockopt *sopt) 2445 { 2446 struct ip6_pktopts *opt = *pktopt; 2447 int error = 0; 2448 struct thread *td = sopt->sopt_td; 2449 struct epoch_tracker et; 2450 2451 /* turn off any old options. */ 2452 if (opt) { 2453 #ifdef DIAGNOSTIC 2454 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2455 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2456 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2457 printf("ip6_pcbopts: all specified options are cleared.\n"); 2458 #endif 2459 ip6_clearpktopts(opt, -1); 2460 } else { 2461 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2462 if (opt == NULL) 2463 return (ENOMEM); 2464 } 2465 *pktopt = NULL; 2466 2467 if (!m || m->m_len == 0) { 2468 /* 2469 * Only turning off any previous options, regardless of 2470 * whether the opt is just created or given. 2471 */ 2472 free(opt, M_IP6OPT); 2473 return (0); 2474 } 2475 2476 /* set options specified by user. */ 2477 NET_EPOCH_ENTER(et); 2478 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2479 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2480 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2481 free(opt, M_IP6OPT); 2482 NET_EPOCH_EXIT(et); 2483 return (error); 2484 } 2485 NET_EPOCH_EXIT(et); 2486 *pktopt = opt; 2487 return (0); 2488 } 2489 2490 /* 2491 * initialize ip6_pktopts. beware that there are non-zero default values in 2492 * the struct. 2493 */ 2494 void 2495 ip6_initpktopts(struct ip6_pktopts *opt) 2496 { 2497 2498 bzero(opt, sizeof(*opt)); 2499 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2500 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2501 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2502 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2503 } 2504 2505 static int 2506 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2507 struct ucred *cred, int uproto) 2508 { 2509 struct epoch_tracker et; 2510 struct ip6_pktopts *opt; 2511 int ret; 2512 2513 if (*pktopt == NULL) { 2514 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2515 M_NOWAIT); 2516 if (*pktopt == NULL) 2517 return (ENOBUFS); 2518 ip6_initpktopts(*pktopt); 2519 } 2520 opt = *pktopt; 2521 2522 NET_EPOCH_ENTER(et); 2523 ret = ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto); 2524 NET_EPOCH_EXIT(et); 2525 2526 return (ret); 2527 } 2528 2529 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2530 if (pktopt && pktopt->field) { \ 2531 INP_RUNLOCK(inp); \ 2532 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2533 malloc_optdata = true; \ 2534 INP_RLOCK(inp); \ 2535 if (inp->inp_flags & INP_DROPPED) { \ 2536 INP_RUNLOCK(inp); \ 2537 free(optdata, M_TEMP); \ 2538 return (ECONNRESET); \ 2539 } \ 2540 pktopt = inp->in6p_outputopts; \ 2541 if (pktopt && pktopt->field) { \ 2542 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2543 bcopy(pktopt->field, optdata, optdatalen); \ 2544 } else { \ 2545 free(optdata, M_TEMP); \ 2546 optdata = NULL; \ 2547 malloc_optdata = false; \ 2548 } \ 2549 } \ 2550 } while(0) 2551 2552 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2553 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2554 2555 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2556 pktopt->field->sa_len) 2557 2558 static int 2559 ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt) 2560 { 2561 void *optdata = NULL; 2562 bool malloc_optdata = false; 2563 int optdatalen = 0; 2564 int error = 0; 2565 struct in6_pktinfo null_pktinfo; 2566 int deftclass = 0, on; 2567 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2568 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2569 struct ip6_pktopts *pktopt; 2570 2571 INP_RLOCK(inp); 2572 pktopt = inp->in6p_outputopts; 2573 2574 switch (optname) { 2575 case IPV6_PKTINFO: 2576 optdata = (void *)&null_pktinfo; 2577 if (pktopt && pktopt->ip6po_pktinfo) { 2578 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2579 sizeof(null_pktinfo)); 2580 in6_clearscope(&null_pktinfo.ipi6_addr); 2581 } else { 2582 /* XXX: we don't have to do this every time... */ 2583 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2584 } 2585 optdatalen = sizeof(struct in6_pktinfo); 2586 break; 2587 case IPV6_TCLASS: 2588 if (pktopt && pktopt->ip6po_tclass >= 0) 2589 deftclass = pktopt->ip6po_tclass; 2590 optdata = (void *)&deftclass; 2591 optdatalen = sizeof(int); 2592 break; 2593 case IPV6_HOPOPTS: 2594 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2595 break; 2596 case IPV6_RTHDR: 2597 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2598 break; 2599 case IPV6_RTHDRDSTOPTS: 2600 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2601 break; 2602 case IPV6_DSTOPTS: 2603 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2604 break; 2605 case IPV6_NEXTHOP: 2606 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2607 break; 2608 case IPV6_USE_MIN_MTU: 2609 if (pktopt) 2610 defminmtu = pktopt->ip6po_minmtu; 2611 optdata = (void *)&defminmtu; 2612 optdatalen = sizeof(int); 2613 break; 2614 case IPV6_DONTFRAG: 2615 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2616 on = 1; 2617 else 2618 on = 0; 2619 optdata = (void *)&on; 2620 optdatalen = sizeof(on); 2621 break; 2622 case IPV6_PREFER_TEMPADDR: 2623 if (pktopt) 2624 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2625 optdata = (void *)&defpreftemp; 2626 optdatalen = sizeof(int); 2627 break; 2628 default: /* should not happen */ 2629 #ifdef DIAGNOSTIC 2630 panic("ip6_getpcbopt: unexpected option\n"); 2631 #endif 2632 INP_RUNLOCK(inp); 2633 return (ENOPROTOOPT); 2634 } 2635 INP_RUNLOCK(inp); 2636 2637 error = sooptcopyout(sopt, optdata, optdatalen); 2638 if (malloc_optdata) 2639 free(optdata, M_TEMP); 2640 2641 return (error); 2642 } 2643 2644 void 2645 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2646 { 2647 if (pktopt == NULL) 2648 return; 2649 2650 if (optname == -1 || optname == IPV6_PKTINFO) { 2651 if (pktopt->ip6po_pktinfo) 2652 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2653 pktopt->ip6po_pktinfo = NULL; 2654 } 2655 if (optname == -1 || optname == IPV6_HOPLIMIT) 2656 pktopt->ip6po_hlim = -1; 2657 if (optname == -1 || optname == IPV6_TCLASS) 2658 pktopt->ip6po_tclass = -1; 2659 if (optname == -1 || optname == IPV6_NEXTHOP) { 2660 if (pktopt->ip6po_nextroute.ro_nh) { 2661 NH_FREE(pktopt->ip6po_nextroute.ro_nh); 2662 pktopt->ip6po_nextroute.ro_nh = NULL; 2663 } 2664 if (pktopt->ip6po_nexthop) 2665 free(pktopt->ip6po_nexthop, M_IP6OPT); 2666 pktopt->ip6po_nexthop = NULL; 2667 } 2668 if (optname == -1 || optname == IPV6_HOPOPTS) { 2669 if (pktopt->ip6po_hbh) 2670 free(pktopt->ip6po_hbh, M_IP6OPT); 2671 pktopt->ip6po_hbh = NULL; 2672 } 2673 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2674 if (pktopt->ip6po_dest1) 2675 free(pktopt->ip6po_dest1, M_IP6OPT); 2676 pktopt->ip6po_dest1 = NULL; 2677 } 2678 if (optname == -1 || optname == IPV6_RTHDR) { 2679 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2680 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2681 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2682 if (pktopt->ip6po_route.ro_nh) { 2683 NH_FREE(pktopt->ip6po_route.ro_nh); 2684 pktopt->ip6po_route.ro_nh = NULL; 2685 } 2686 } 2687 if (optname == -1 || optname == IPV6_DSTOPTS) { 2688 if (pktopt->ip6po_dest2) 2689 free(pktopt->ip6po_dest2, M_IP6OPT); 2690 pktopt->ip6po_dest2 = NULL; 2691 } 2692 } 2693 2694 #define PKTOPT_EXTHDRCPY(type) \ 2695 do {\ 2696 if (src->type) {\ 2697 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2698 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2699 if (dst->type == NULL)\ 2700 goto bad;\ 2701 bcopy(src->type, dst->type, hlen);\ 2702 }\ 2703 } while (/*CONSTCOND*/ 0) 2704 2705 static int 2706 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2707 { 2708 if (dst == NULL || src == NULL) { 2709 printf("ip6_clearpktopts: invalid argument\n"); 2710 return (EINVAL); 2711 } 2712 2713 dst->ip6po_hlim = src->ip6po_hlim; 2714 dst->ip6po_tclass = src->ip6po_tclass; 2715 dst->ip6po_flags = src->ip6po_flags; 2716 dst->ip6po_minmtu = src->ip6po_minmtu; 2717 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2718 if (src->ip6po_pktinfo) { 2719 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2720 M_IP6OPT, canwait); 2721 if (dst->ip6po_pktinfo == NULL) 2722 goto bad; 2723 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2724 } 2725 if (src->ip6po_nexthop) { 2726 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2727 M_IP6OPT, canwait); 2728 if (dst->ip6po_nexthop == NULL) 2729 goto bad; 2730 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2731 src->ip6po_nexthop->sa_len); 2732 } 2733 PKTOPT_EXTHDRCPY(ip6po_hbh); 2734 PKTOPT_EXTHDRCPY(ip6po_dest1); 2735 PKTOPT_EXTHDRCPY(ip6po_dest2); 2736 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2737 return (0); 2738 2739 bad: 2740 ip6_clearpktopts(dst, -1); 2741 return (ENOBUFS); 2742 } 2743 #undef PKTOPT_EXTHDRCPY 2744 2745 struct ip6_pktopts * 2746 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2747 { 2748 int error; 2749 struct ip6_pktopts *dst; 2750 2751 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2752 if (dst == NULL) 2753 return (NULL); 2754 ip6_initpktopts(dst); 2755 2756 if ((error = copypktopts(dst, src, canwait)) != 0) { 2757 free(dst, M_IP6OPT); 2758 return (NULL); 2759 } 2760 2761 return (dst); 2762 } 2763 2764 void 2765 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2766 { 2767 if (pktopt == NULL) 2768 return; 2769 2770 ip6_clearpktopts(pktopt, -1); 2771 2772 free(pktopt, M_IP6OPT); 2773 } 2774 2775 /* 2776 * Set IPv6 outgoing packet options based on advanced API. 2777 */ 2778 int 2779 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2780 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2781 { 2782 struct cmsghdr *cm = NULL; 2783 2784 if (control == NULL || opt == NULL) 2785 return (EINVAL); 2786 2787 /* 2788 * ip6_setpktopt can call ifnet_byindex(), so it's imperative that we 2789 * are in the network epoch here. 2790 */ 2791 NET_EPOCH_ASSERT(); 2792 2793 ip6_initpktopts(opt); 2794 if (stickyopt) { 2795 int error; 2796 2797 /* 2798 * If stickyopt is provided, make a local copy of the options 2799 * for this particular packet, then override them by ancillary 2800 * objects. 2801 * XXX: copypktopts() does not copy the cached route to a next 2802 * hop (if any). This is not very good in terms of efficiency, 2803 * but we can allow this since this option should be rarely 2804 * used. 2805 */ 2806 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2807 return (error); 2808 } 2809 2810 /* 2811 * XXX: Currently, we assume all the optional information is stored 2812 * in a single mbuf. 2813 */ 2814 if (control->m_next) 2815 return (EINVAL); 2816 2817 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2818 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2819 int error; 2820 2821 if (control->m_len < CMSG_LEN(0)) 2822 return (EINVAL); 2823 2824 cm = mtod(control, struct cmsghdr *); 2825 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2826 return (EINVAL); 2827 if (cm->cmsg_level != IPPROTO_IPV6) 2828 continue; 2829 2830 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2831 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2832 if (error) 2833 return (error); 2834 } 2835 2836 return (0); 2837 } 2838 2839 /* 2840 * Set a particular packet option, as a sticky option or an ancillary data 2841 * item. "len" can be 0 only when it's a sticky option. 2842 * We have 4 cases of combination of "sticky" and "cmsg": 2843 * "sticky=0, cmsg=0": impossible 2844 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2845 * "sticky=1, cmsg=0": RFC3542 socket option 2846 * "sticky=1, cmsg=1": RFC2292 socket option 2847 */ 2848 static int 2849 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2850 struct ucred *cred, int sticky, int cmsg, int uproto) 2851 { 2852 int minmtupolicy, preftemp; 2853 int error; 2854 2855 NET_EPOCH_ASSERT(); 2856 2857 if (!sticky && !cmsg) { 2858 #ifdef DIAGNOSTIC 2859 printf("ip6_setpktopt: impossible case\n"); 2860 #endif 2861 return (EINVAL); 2862 } 2863 2864 /* 2865 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2866 * not be specified in the context of RFC3542. Conversely, 2867 * RFC3542 types should not be specified in the context of RFC2292. 2868 */ 2869 if (!cmsg) { 2870 switch (optname) { 2871 case IPV6_2292PKTINFO: 2872 case IPV6_2292HOPLIMIT: 2873 case IPV6_2292NEXTHOP: 2874 case IPV6_2292HOPOPTS: 2875 case IPV6_2292DSTOPTS: 2876 case IPV6_2292RTHDR: 2877 case IPV6_2292PKTOPTIONS: 2878 return (ENOPROTOOPT); 2879 } 2880 } 2881 if (sticky && cmsg) { 2882 switch (optname) { 2883 case IPV6_PKTINFO: 2884 case IPV6_HOPLIMIT: 2885 case IPV6_NEXTHOP: 2886 case IPV6_HOPOPTS: 2887 case IPV6_DSTOPTS: 2888 case IPV6_RTHDRDSTOPTS: 2889 case IPV6_RTHDR: 2890 case IPV6_USE_MIN_MTU: 2891 case IPV6_DONTFRAG: 2892 case IPV6_TCLASS: 2893 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2894 return (ENOPROTOOPT); 2895 } 2896 } 2897 2898 switch (optname) { 2899 case IPV6_2292PKTINFO: 2900 case IPV6_PKTINFO: 2901 { 2902 struct ifnet *ifp = NULL; 2903 struct in6_pktinfo *pktinfo; 2904 2905 if (len != sizeof(struct in6_pktinfo)) 2906 return (EINVAL); 2907 2908 pktinfo = (struct in6_pktinfo *)buf; 2909 2910 /* 2911 * An application can clear any sticky IPV6_PKTINFO option by 2912 * doing a "regular" setsockopt with ipi6_addr being 2913 * in6addr_any and ipi6_ifindex being zero. 2914 * [RFC 3542, Section 6] 2915 */ 2916 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2917 pktinfo->ipi6_ifindex == 0 && 2918 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2919 ip6_clearpktopts(opt, optname); 2920 break; 2921 } 2922 2923 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2924 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2925 return (EINVAL); 2926 } 2927 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2928 return (EINVAL); 2929 /* validate the interface index if specified. */ 2930 if (pktinfo->ipi6_ifindex) { 2931 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2932 if (ifp == NULL) 2933 return (ENXIO); 2934 } 2935 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2936 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2937 return (ENETDOWN); 2938 2939 if (ifp != NULL && 2940 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2941 struct in6_ifaddr *ia; 2942 2943 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2944 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2945 if (ia == NULL) 2946 return (EADDRNOTAVAIL); 2947 ifa_free(&ia->ia_ifa); 2948 } 2949 /* 2950 * We store the address anyway, and let in6_selectsrc() 2951 * validate the specified address. This is because ipi6_addr 2952 * may not have enough information about its scope zone, and 2953 * we may need additional information (such as outgoing 2954 * interface or the scope zone of a destination address) to 2955 * disambiguate the scope. 2956 * XXX: the delay of the validation may confuse the 2957 * application when it is used as a sticky option. 2958 */ 2959 if (opt->ip6po_pktinfo == NULL) { 2960 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2961 M_IP6OPT, M_NOWAIT); 2962 if (opt->ip6po_pktinfo == NULL) 2963 return (ENOBUFS); 2964 } 2965 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2966 break; 2967 } 2968 2969 case IPV6_2292HOPLIMIT: 2970 case IPV6_HOPLIMIT: 2971 { 2972 int *hlimp; 2973 2974 /* 2975 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2976 * to simplify the ordering among hoplimit options. 2977 */ 2978 if (optname == IPV6_HOPLIMIT && sticky) 2979 return (ENOPROTOOPT); 2980 2981 if (len != sizeof(int)) 2982 return (EINVAL); 2983 hlimp = (int *)buf; 2984 if (*hlimp < -1 || *hlimp > 255) 2985 return (EINVAL); 2986 2987 opt->ip6po_hlim = *hlimp; 2988 break; 2989 } 2990 2991 case IPV6_TCLASS: 2992 { 2993 int tclass; 2994 2995 if (len != sizeof(int)) 2996 return (EINVAL); 2997 tclass = *(int *)buf; 2998 if (tclass < -1 || tclass > 255) 2999 return (EINVAL); 3000 3001 opt->ip6po_tclass = tclass; 3002 break; 3003 } 3004 3005 case IPV6_2292NEXTHOP: 3006 case IPV6_NEXTHOP: 3007 if (cred != NULL) { 3008 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3009 if (error) 3010 return (error); 3011 } 3012 3013 if (len == 0) { /* just remove the option */ 3014 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3015 break; 3016 } 3017 3018 /* check if cmsg_len is large enough for sa_len */ 3019 if (len < sizeof(struct sockaddr) || len < *buf) 3020 return (EINVAL); 3021 3022 switch (((struct sockaddr *)buf)->sa_family) { 3023 case AF_INET6: 3024 { 3025 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3026 int error; 3027 3028 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3029 return (EINVAL); 3030 3031 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3032 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3033 return (EINVAL); 3034 } 3035 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 3036 != 0) { 3037 return (error); 3038 } 3039 break; 3040 } 3041 case AF_LINK: /* should eventually be supported */ 3042 default: 3043 return (EAFNOSUPPORT); 3044 } 3045 3046 /* turn off the previous option, then set the new option. */ 3047 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3048 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3049 if (opt->ip6po_nexthop == NULL) 3050 return (ENOBUFS); 3051 bcopy(buf, opt->ip6po_nexthop, *buf); 3052 break; 3053 3054 case IPV6_2292HOPOPTS: 3055 case IPV6_HOPOPTS: 3056 { 3057 struct ip6_hbh *hbh; 3058 int hbhlen; 3059 3060 /* 3061 * XXX: We don't allow a non-privileged user to set ANY HbH 3062 * options, since per-option restriction has too much 3063 * overhead. 3064 */ 3065 if (cred != NULL) { 3066 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3067 if (error) 3068 return (error); 3069 } 3070 3071 if (len == 0) { 3072 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3073 break; /* just remove the option */ 3074 } 3075 3076 /* message length validation */ 3077 if (len < sizeof(struct ip6_hbh)) 3078 return (EINVAL); 3079 hbh = (struct ip6_hbh *)buf; 3080 hbhlen = (hbh->ip6h_len + 1) << 3; 3081 if (len != hbhlen) 3082 return (EINVAL); 3083 3084 /* turn off the previous option, then set the new option. */ 3085 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3086 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3087 if (opt->ip6po_hbh == NULL) 3088 return (ENOBUFS); 3089 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3090 3091 break; 3092 } 3093 3094 case IPV6_2292DSTOPTS: 3095 case IPV6_DSTOPTS: 3096 case IPV6_RTHDRDSTOPTS: 3097 { 3098 struct ip6_dest *dest, **newdest = NULL; 3099 int destlen; 3100 3101 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 3102 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3103 if (error) 3104 return (error); 3105 } 3106 3107 if (len == 0) { 3108 ip6_clearpktopts(opt, optname); 3109 break; /* just remove the option */ 3110 } 3111 3112 /* message length validation */ 3113 if (len < sizeof(struct ip6_dest)) 3114 return (EINVAL); 3115 dest = (struct ip6_dest *)buf; 3116 destlen = (dest->ip6d_len + 1) << 3; 3117 if (len != destlen) 3118 return (EINVAL); 3119 3120 /* 3121 * Determine the position that the destination options header 3122 * should be inserted; before or after the routing header. 3123 */ 3124 switch (optname) { 3125 case IPV6_2292DSTOPTS: 3126 /* 3127 * The old advacned API is ambiguous on this point. 3128 * Our approach is to determine the position based 3129 * according to the existence of a routing header. 3130 * Note, however, that this depends on the order of the 3131 * extension headers in the ancillary data; the 1st 3132 * part of the destination options header must appear 3133 * before the routing header in the ancillary data, 3134 * too. 3135 * RFC3542 solved the ambiguity by introducing 3136 * separate ancillary data or option types. 3137 */ 3138 if (opt->ip6po_rthdr == NULL) 3139 newdest = &opt->ip6po_dest1; 3140 else 3141 newdest = &opt->ip6po_dest2; 3142 break; 3143 case IPV6_RTHDRDSTOPTS: 3144 newdest = &opt->ip6po_dest1; 3145 break; 3146 case IPV6_DSTOPTS: 3147 newdest = &opt->ip6po_dest2; 3148 break; 3149 } 3150 3151 /* turn off the previous option, then set the new option. */ 3152 ip6_clearpktopts(opt, optname); 3153 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3154 if (*newdest == NULL) 3155 return (ENOBUFS); 3156 bcopy(dest, *newdest, destlen); 3157 3158 break; 3159 } 3160 3161 case IPV6_2292RTHDR: 3162 case IPV6_RTHDR: 3163 { 3164 struct ip6_rthdr *rth; 3165 int rthlen; 3166 3167 if (len == 0) { 3168 ip6_clearpktopts(opt, IPV6_RTHDR); 3169 break; /* just remove the option */ 3170 } 3171 3172 /* message length validation */ 3173 if (len < sizeof(struct ip6_rthdr)) 3174 return (EINVAL); 3175 rth = (struct ip6_rthdr *)buf; 3176 rthlen = (rth->ip6r_len + 1) << 3; 3177 if (len != rthlen) 3178 return (EINVAL); 3179 3180 switch (rth->ip6r_type) { 3181 case IPV6_RTHDR_TYPE_0: 3182 if (rth->ip6r_len == 0) /* must contain one addr */ 3183 return (EINVAL); 3184 if (rth->ip6r_len % 2) /* length must be even */ 3185 return (EINVAL); 3186 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3187 return (EINVAL); 3188 break; 3189 default: 3190 return (EINVAL); /* not supported */ 3191 } 3192 3193 /* turn off the previous option */ 3194 ip6_clearpktopts(opt, IPV6_RTHDR); 3195 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3196 if (opt->ip6po_rthdr == NULL) 3197 return (ENOBUFS); 3198 bcopy(rth, opt->ip6po_rthdr, rthlen); 3199 3200 break; 3201 } 3202 3203 case IPV6_USE_MIN_MTU: 3204 if (len != sizeof(int)) 3205 return (EINVAL); 3206 minmtupolicy = *(int *)buf; 3207 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3208 minmtupolicy != IP6PO_MINMTU_DISABLE && 3209 minmtupolicy != IP6PO_MINMTU_ALL) { 3210 return (EINVAL); 3211 } 3212 opt->ip6po_minmtu = minmtupolicy; 3213 break; 3214 3215 case IPV6_DONTFRAG: 3216 if (len != sizeof(int)) 3217 return (EINVAL); 3218 3219 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3220 /* 3221 * we ignore this option for TCP sockets. 3222 * (RFC3542 leaves this case unspecified.) 3223 */ 3224 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3225 } else 3226 opt->ip6po_flags |= IP6PO_DONTFRAG; 3227 break; 3228 3229 case IPV6_PREFER_TEMPADDR: 3230 if (len != sizeof(int)) 3231 return (EINVAL); 3232 preftemp = *(int *)buf; 3233 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3234 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3235 preftemp != IP6PO_TEMPADDR_PREFER) { 3236 return (EINVAL); 3237 } 3238 opt->ip6po_prefer_tempaddr = preftemp; 3239 break; 3240 3241 default: 3242 return (ENOPROTOOPT); 3243 } /* end of switch */ 3244 3245 return (0); 3246 } 3247 3248 /* 3249 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3250 * packet to the input queue of a specified interface. Note that this 3251 * calls the output routine of the loopback "driver", but with an interface 3252 * pointer that might NOT be &loif -- easier than replicating that code here. 3253 */ 3254 void 3255 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3256 { 3257 struct mbuf *copym; 3258 struct ip6_hdr *ip6; 3259 3260 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3261 if (copym == NULL) 3262 return; 3263 3264 /* 3265 * Make sure to deep-copy IPv6 header portion in case the data 3266 * is in an mbuf cluster, so that we can safely override the IPv6 3267 * header portion later. 3268 */ 3269 if (!M_WRITABLE(copym) || 3270 copym->m_len < sizeof(struct ip6_hdr)) { 3271 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3272 if (copym == NULL) 3273 return; 3274 } 3275 ip6 = mtod(copym, struct ip6_hdr *); 3276 /* 3277 * clear embedded scope identifiers if necessary. 3278 * in6_clearscope will touch the addresses only when necessary. 3279 */ 3280 in6_clearscope(&ip6->ip6_src); 3281 in6_clearscope(&ip6->ip6_dst); 3282 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3283 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3284 CSUM_PSEUDO_HDR; 3285 copym->m_pkthdr.csum_data = 0xffff; 3286 } 3287 if_simloop(ifp, copym, AF_INET6, 0); 3288 } 3289 3290 /* 3291 * Chop IPv6 header off from the payload. 3292 */ 3293 static int 3294 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3295 { 3296 struct mbuf *mh; 3297 struct ip6_hdr *ip6; 3298 3299 ip6 = mtod(m, struct ip6_hdr *); 3300 if (m->m_len > sizeof(*ip6)) { 3301 mh = m_gethdr(M_NOWAIT, MT_DATA); 3302 if (mh == NULL) { 3303 m_freem(m); 3304 return ENOBUFS; 3305 } 3306 m_move_pkthdr(mh, m); 3307 M_ALIGN(mh, sizeof(*ip6)); 3308 m->m_len -= sizeof(*ip6); 3309 m->m_data += sizeof(*ip6); 3310 mh->m_next = m; 3311 m = mh; 3312 m->m_len = sizeof(*ip6); 3313 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3314 } 3315 exthdrs->ip6e_ip6 = m; 3316 return 0; 3317 } 3318 3319 /* 3320 * Compute IPv6 extension header length. 3321 */ 3322 int 3323 ip6_optlen(struct inpcb *inp) 3324 { 3325 int len; 3326 3327 if (!inp->in6p_outputopts) 3328 return 0; 3329 3330 len = 0; 3331 #define elen(x) \ 3332 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3333 3334 len += elen(inp->in6p_outputopts->ip6po_hbh); 3335 if (inp->in6p_outputopts->ip6po_rthdr) 3336 /* dest1 is valid with rthdr only */ 3337 len += elen(inp->in6p_outputopts->ip6po_dest1); 3338 len += elen(inp->in6p_outputopts->ip6po_rthdr); 3339 len += elen(inp->in6p_outputopts->ip6po_dest2); 3340 return len; 3341 #undef elen 3342 } 3343