1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ipfw.h" 69 #include "opt_ipsec.h" 70 #include "opt_sctp.h" 71 #include "opt_route.h" 72 73 #include <sys/param.h> 74 #include <sys/kernel.h> 75 #include <sys/malloc.h> 76 #include <sys/mbuf.h> 77 #include <sys/errno.h> 78 #include <sys/priv.h> 79 #include <sys/proc.h> 80 #include <sys/protosw.h> 81 #include <sys/socket.h> 82 #include <sys/socketvar.h> 83 #include <sys/syslog.h> 84 #include <sys/ucred.h> 85 86 #include <machine/in_cksum.h> 87 88 #include <net/if.h> 89 #include <net/netisr.h> 90 #include <net/route.h> 91 #include <net/pfil.h> 92 #include <net/vnet.h> 93 94 #include <netinet/in.h> 95 #include <netinet/in_var.h> 96 #include <netinet/ip_var.h> 97 #include <netinet6/in6_var.h> 98 #include <netinet/ip6.h> 99 #include <netinet/icmp6.h> 100 #include <netinet6/ip6_var.h> 101 #include <netinet/in_pcb.h> 102 #include <netinet/tcp_var.h> 103 #include <netinet6/nd6.h> 104 105 #ifdef IPSEC 106 #include <netipsec/ipsec.h> 107 #include <netipsec/ipsec6.h> 108 #include <netipsec/key.h> 109 #include <netinet6/ip6_ipsec.h> 110 #endif /* IPSEC */ 111 #ifdef SCTP 112 #include <netinet/sctp.h> 113 #include <netinet/sctp_crc32.h> 114 #endif 115 116 #include <netinet6/ip6protosw.h> 117 #include <netinet6/scope6_var.h> 118 119 #ifdef FLOWTABLE 120 #include <net/flowtable.h> 121 #endif 122 123 extern int in6_mcast_loop; 124 125 struct ip6_exthdrs { 126 struct mbuf *ip6e_ip6; 127 struct mbuf *ip6e_hbh; 128 struct mbuf *ip6e_dest1; 129 struct mbuf *ip6e_rthdr; 130 struct mbuf *ip6e_dest2; 131 }; 132 133 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 134 struct ucred *, int); 135 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 136 struct socket *, struct sockopt *); 137 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 138 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 139 struct ucred *, int, int, int); 140 141 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 142 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 143 struct ip6_frag **); 144 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 145 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 146 static int ip6_getpmtu(struct route_in6 *, struct route_in6 *, 147 struct ifnet *, struct in6_addr *, u_long *, int *, u_int); 148 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 149 150 151 /* 152 * Make an extension header from option data. hp is the source, and 153 * mp is the destination. 154 */ 155 #define MAKE_EXTHDR(hp, mp) \ 156 do { \ 157 if (hp) { \ 158 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 159 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 160 ((eh)->ip6e_len + 1) << 3); \ 161 if (error) \ 162 goto freehdrs; \ 163 } \ 164 } while (/*CONSTCOND*/ 0) 165 166 /* 167 * Form a chain of extension headers. 168 * m is the extension header mbuf 169 * mp is the previous mbuf in the chain 170 * p is the next header 171 * i is the type of option. 172 */ 173 #define MAKE_CHAIN(m, mp, p, i)\ 174 do {\ 175 if (m) {\ 176 if (!hdrsplit) \ 177 panic("assumption failed: hdr not split"); \ 178 *mtod((m), u_char *) = *(p);\ 179 *(p) = (i);\ 180 p = mtod((m), u_char *);\ 181 (m)->m_next = (mp)->m_next;\ 182 (mp)->m_next = (m);\ 183 (mp) = (m);\ 184 }\ 185 } while (/*CONSTCOND*/ 0) 186 187 static void 188 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 189 { 190 u_short csum; 191 192 csum = in_cksum_skip(m, offset + plen, offset); 193 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 194 csum = 0xffff; 195 offset += m->m_pkthdr.csum_data; /* checksum offset */ 196 197 if (offset + sizeof(u_short) > m->m_len) { 198 printf("%s: delayed m_pullup, m->len: %d plen %u off %u " 199 "csum_flags=0x%04x\n", __func__, m->m_len, plen, offset, 200 m->m_pkthdr.csum_flags); 201 /* 202 * XXX this should not happen, but if it does, the correct 203 * behavior may be to insert the checksum in the appropriate 204 * next mbuf in the chain. 205 */ 206 return; 207 } 208 *(u_short *)(m->m_data + offset) = csum; 209 } 210 211 /* 212 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 213 * header (with pri, len, nxt, hlim, src, dst). 214 * This function may modify ver and hlim only. 215 * The mbuf chain containing the packet will be freed. 216 * The mbuf opt, if present, will not be freed. 217 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 218 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 219 * then result of route lookup is stored in ro->ro_rt. 220 * 221 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 222 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 223 * which is rt_rmx.rmx_mtu. 224 * 225 * ifpp - XXX: just for statistics 226 */ 227 int 228 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 229 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 230 struct ifnet **ifpp, struct inpcb *inp) 231 { 232 struct ip6_hdr *ip6, *mhip6; 233 struct ifnet *ifp, *origifp; 234 struct mbuf *m = m0; 235 struct mbuf *mprev = NULL; 236 int hlen, tlen, len, off; 237 struct route_in6 ip6route; 238 struct rtentry *rt = NULL; 239 struct sockaddr_in6 *dst, src_sa, dst_sa; 240 struct in6_addr odst; 241 int error = 0; 242 struct in6_ifaddr *ia = NULL; 243 u_long mtu; 244 int alwaysfrag, dontfrag; 245 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 246 struct ip6_exthdrs exthdrs; 247 struct in6_addr finaldst, src0, dst0; 248 u_int32_t zone; 249 struct route_in6 *ro_pmtu = NULL; 250 int hdrsplit = 0; 251 int needipsec = 0; 252 int sw_csum, tso; 253 #ifdef IPSEC 254 struct ipsec_output_state state; 255 struct ip6_rthdr *rh = NULL; 256 int needipsectun = 0; 257 int segleft_org = 0; 258 struct secpolicy *sp = NULL; 259 #endif /* IPSEC */ 260 struct m_tag *fwd_tag; 261 262 ip6 = mtod(m, struct ip6_hdr *); 263 if (ip6 == NULL) { 264 printf ("ip6 is NULL"); 265 goto bad; 266 } 267 268 if (inp != NULL) 269 M_SETFIB(m, inp->inp_inc.inc_fibnum); 270 271 finaldst = ip6->ip6_dst; 272 bzero(&exthdrs, sizeof(exthdrs)); 273 if (opt) { 274 /* Hop-by-Hop options header */ 275 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 276 /* Destination options header(1st part) */ 277 if (opt->ip6po_rthdr) { 278 /* 279 * Destination options header(1st part) 280 * This only makes sense with a routing header. 281 * See Section 9.2 of RFC 3542. 282 * Disabling this part just for MIP6 convenience is 283 * a bad idea. We need to think carefully about a 284 * way to make the advanced API coexist with MIP6 285 * options, which might automatically be inserted in 286 * the kernel. 287 */ 288 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 289 } 290 /* Routing header */ 291 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 292 /* Destination options header(2nd part) */ 293 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 294 } 295 296 #ifdef IPSEC 297 /* 298 * IPSec checking which handles several cases. 299 * FAST IPSEC: We re-injected the packet. 300 */ 301 switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp)) 302 { 303 case 1: /* Bad packet */ 304 goto freehdrs; 305 case -1: /* Do IPSec */ 306 needipsec = 1; 307 /* 308 * Do delayed checksums now, as we may send before returning. 309 */ 310 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 311 plen = m->m_pkthdr.len - sizeof(*ip6); 312 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 313 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 314 } 315 #ifdef SCTP 316 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 317 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 318 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 319 } 320 #endif 321 case 0: /* No IPSec */ 322 default: 323 break; 324 } 325 #endif /* IPSEC */ 326 327 /* 328 * Calculate the total length of the extension header chain. 329 * Keep the length of the unfragmentable part for fragmentation. 330 */ 331 optlen = 0; 332 if (exthdrs.ip6e_hbh) 333 optlen += exthdrs.ip6e_hbh->m_len; 334 if (exthdrs.ip6e_dest1) 335 optlen += exthdrs.ip6e_dest1->m_len; 336 if (exthdrs.ip6e_rthdr) 337 optlen += exthdrs.ip6e_rthdr->m_len; 338 unfragpartlen = optlen + sizeof(struct ip6_hdr); 339 340 /* NOTE: we don't add AH/ESP length here. do that later. */ 341 if (exthdrs.ip6e_dest2) 342 optlen += exthdrs.ip6e_dest2->m_len; 343 344 /* 345 * If we need IPsec, or there is at least one extension header, 346 * separate IP6 header from the payload. 347 */ 348 if ((needipsec || optlen) && !hdrsplit) { 349 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 350 m = NULL; 351 goto freehdrs; 352 } 353 m = exthdrs.ip6e_ip6; 354 hdrsplit++; 355 } 356 357 /* adjust pointer */ 358 ip6 = mtod(m, struct ip6_hdr *); 359 360 /* adjust mbuf packet header length */ 361 m->m_pkthdr.len += optlen; 362 plen = m->m_pkthdr.len - sizeof(*ip6); 363 364 /* If this is a jumbo payload, insert a jumbo payload option. */ 365 if (plen > IPV6_MAXPACKET) { 366 if (!hdrsplit) { 367 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 368 m = NULL; 369 goto freehdrs; 370 } 371 m = exthdrs.ip6e_ip6; 372 hdrsplit++; 373 } 374 /* adjust pointer */ 375 ip6 = mtod(m, struct ip6_hdr *); 376 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 377 goto freehdrs; 378 ip6->ip6_plen = 0; 379 } else 380 ip6->ip6_plen = htons(plen); 381 382 /* 383 * Concatenate headers and fill in next header fields. 384 * Here we have, on "m" 385 * IPv6 payload 386 * and we insert headers accordingly. Finally, we should be getting: 387 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 388 * 389 * during the header composing process, "m" points to IPv6 header. 390 * "mprev" points to an extension header prior to esp. 391 */ 392 u_char *nexthdrp = &ip6->ip6_nxt; 393 mprev = m; 394 395 /* 396 * we treat dest2 specially. this makes IPsec processing 397 * much easier. the goal here is to make mprev point the 398 * mbuf prior to dest2. 399 * 400 * result: IPv6 dest2 payload 401 * m and mprev will point to IPv6 header. 402 */ 403 if (exthdrs.ip6e_dest2) { 404 if (!hdrsplit) 405 panic("assumption failed: hdr not split"); 406 exthdrs.ip6e_dest2->m_next = m->m_next; 407 m->m_next = exthdrs.ip6e_dest2; 408 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 409 ip6->ip6_nxt = IPPROTO_DSTOPTS; 410 } 411 412 /* 413 * result: IPv6 hbh dest1 rthdr dest2 payload 414 * m will point to IPv6 header. mprev will point to the 415 * extension header prior to dest2 (rthdr in the above case). 416 */ 417 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 418 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 419 IPPROTO_DSTOPTS); 420 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 421 IPPROTO_ROUTING); 422 423 #ifdef IPSEC 424 if (!needipsec) 425 goto skip_ipsec2; 426 427 /* 428 * pointers after IPsec headers are not valid any more. 429 * other pointers need a great care too. 430 * (IPsec routines should not mangle mbufs prior to AH/ESP) 431 */ 432 exthdrs.ip6e_dest2 = NULL; 433 434 if (exthdrs.ip6e_rthdr) { 435 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 436 segleft_org = rh->ip6r_segleft; 437 rh->ip6r_segleft = 0; 438 } 439 440 bzero(&state, sizeof(state)); 441 state.m = m; 442 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 443 &needipsectun); 444 m = state.m; 445 if (error == EJUSTRETURN) { 446 /* 447 * We had a SP with a level of 'use' and no SA. We 448 * will just continue to process the packet without 449 * IPsec processing. 450 */ 451 ; 452 } else if (error) { 453 /* mbuf is already reclaimed in ipsec6_output_trans. */ 454 m = NULL; 455 switch (error) { 456 case EHOSTUNREACH: 457 case ENETUNREACH: 458 case EMSGSIZE: 459 case ENOBUFS: 460 case ENOMEM: 461 break; 462 default: 463 printf("[%s:%d] (ipsec): error code %d\n", 464 __func__, __LINE__, error); 465 /* FALLTHROUGH */ 466 case ENOENT: 467 /* don't show these error codes to the user */ 468 error = 0; 469 break; 470 } 471 goto bad; 472 } else if (!needipsectun) { 473 /* 474 * In the FAST IPSec case we have already 475 * re-injected the packet and it has been freed 476 * by the ipsec_done() function. So, just clean 477 * up after ourselves. 478 */ 479 m = NULL; 480 goto done; 481 } 482 if (exthdrs.ip6e_rthdr) { 483 /* ah6_output doesn't modify mbuf chain */ 484 rh->ip6r_segleft = segleft_org; 485 } 486 skip_ipsec2:; 487 #endif /* IPSEC */ 488 489 /* 490 * If there is a routing header, discard the packet. 491 */ 492 if (exthdrs.ip6e_rthdr) { 493 error = EINVAL; 494 goto bad; 495 } 496 497 /* Source address validation */ 498 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 499 (flags & IPV6_UNSPECSRC) == 0) { 500 error = EOPNOTSUPP; 501 V_ip6stat.ip6s_badscope++; 502 goto bad; 503 } 504 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 505 error = EOPNOTSUPP; 506 V_ip6stat.ip6s_badscope++; 507 goto bad; 508 } 509 510 V_ip6stat.ip6s_localout++; 511 512 /* 513 * Route packet. 514 */ 515 if (ro == 0) { 516 ro = &ip6route; 517 bzero((caddr_t)ro, sizeof(*ro)); 518 } 519 ro_pmtu = ro; 520 if (opt && opt->ip6po_rthdr) 521 ro = &opt->ip6po_route; 522 dst = (struct sockaddr_in6 *)&ro->ro_dst; 523 #ifdef FLOWTABLE 524 if (ro->ro_rt == NULL) { 525 struct flentry *fle; 526 527 /* 528 * The flow table returns route entries valid for up to 30 529 * seconds; we rely on the remainder of ip_output() taking no 530 * longer than that long for the stability of ro_rt. The 531 * flow ID assignment must have happened before this point. 532 */ 533 fle = flowtable_lookup_mbuf(V_ip6_ft, m, AF_INET6); 534 if (fle != NULL) 535 flow_to_route_in6(fle, ro); 536 } 537 #endif 538 again: 539 /* 540 * if specified, try to fill in the traffic class field. 541 * do not override if a non-zero value is already set. 542 * we check the diffserv field and the ecn field separately. 543 */ 544 if (opt && opt->ip6po_tclass >= 0) { 545 int mask = 0; 546 547 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 548 mask |= 0xfc; 549 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 550 mask |= 0x03; 551 if (mask != 0) 552 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 553 } 554 555 /* fill in or override the hop limit field, if necessary. */ 556 if (opt && opt->ip6po_hlim != -1) 557 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 558 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 559 if (im6o != NULL) 560 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 561 else 562 ip6->ip6_hlim = V_ip6_defmcasthlim; 563 } 564 565 #ifdef IPSEC 566 /* 567 * We may re-inject packets into the stack here. 568 */ 569 if (needipsec && needipsectun) { 570 struct ipsec_output_state state; 571 572 /* 573 * All the extension headers will become inaccessible 574 * (since they can be encrypted). 575 * Don't panic, we need no more updates to extension headers 576 * on inner IPv6 packet (since they are now encapsulated). 577 * 578 * IPv6 [ESP|AH] IPv6 [extension headers] payload 579 */ 580 bzero(&exthdrs, sizeof(exthdrs)); 581 exthdrs.ip6e_ip6 = m; 582 583 bzero(&state, sizeof(state)); 584 state.m = m; 585 state.ro = (struct route *)ro; 586 state.dst = (struct sockaddr *)dst; 587 588 error = ipsec6_output_tunnel(&state, sp, flags); 589 590 m = state.m; 591 ro = (struct route_in6 *)state.ro; 592 dst = (struct sockaddr_in6 *)state.dst; 593 if (error == EJUSTRETURN) { 594 /* 595 * We had a SP with a level of 'use' and no SA. We 596 * will just continue to process the packet without 597 * IPsec processing. 598 */ 599 ; 600 } else if (error) { 601 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 602 m0 = m = NULL; 603 m = NULL; 604 switch (error) { 605 case EHOSTUNREACH: 606 case ENETUNREACH: 607 case EMSGSIZE: 608 case ENOBUFS: 609 case ENOMEM: 610 break; 611 default: 612 printf("[%s:%d] (ipsec): error code %d\n", 613 __func__, __LINE__, error); 614 /* FALLTHROUGH */ 615 case ENOENT: 616 /* don't show these error codes to the user */ 617 error = 0; 618 break; 619 } 620 goto bad; 621 } else { 622 /* 623 * In the FAST IPSec case we have already 624 * re-injected the packet and it has been freed 625 * by the ipsec_done() function. So, just clean 626 * up after ourselves. 627 */ 628 m = NULL; 629 goto done; 630 } 631 632 exthdrs.ip6e_ip6 = m; 633 } 634 #endif /* IPSEC */ 635 636 /* adjust pointer */ 637 ip6 = mtod(m, struct ip6_hdr *); 638 639 bzero(&dst_sa, sizeof(dst_sa)); 640 dst_sa.sin6_family = AF_INET6; 641 dst_sa.sin6_len = sizeof(dst_sa); 642 dst_sa.sin6_addr = ip6->ip6_dst; 643 if (ro->ro_rt) { 644 rt = ro->ro_rt; 645 ifp = ro->ro_rt->rt_ifp; 646 } else if ((error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, 647 &ifp, &rt, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m))) != 0) { 648 switch (error) { 649 case EHOSTUNREACH: 650 V_ip6stat.ip6s_noroute++; 651 break; 652 case EADDRNOTAVAIL: 653 default: 654 break; /* XXX statistics? */ 655 } 656 if (ifp != NULL) 657 in6_ifstat_inc(ifp, ifs6_out_discard); 658 goto bad; 659 } 660 if (rt == NULL) { 661 /* 662 * If in6_selectroute() does not return a route entry, 663 * dst may not have been updated. 664 */ 665 *dst = dst_sa; /* XXX */ 666 } 667 668 /* 669 * then rt (for unicast) and ifp must be non-NULL valid values. 670 */ 671 if ((flags & IPV6_FORWARDING) == 0) { 672 /* XXX: the FORWARDING flag can be set for mrouting. */ 673 in6_ifstat_inc(ifp, ifs6_out_request); 674 } 675 if (rt != NULL) { 676 ia = (struct in6_ifaddr *)(rt->rt_ifa); 677 rt->rt_use++; 678 } 679 680 681 /* 682 * The outgoing interface must be in the zone of source and 683 * destination addresses. 684 */ 685 origifp = ifp; 686 687 src0 = ip6->ip6_src; 688 if (in6_setscope(&src0, origifp, &zone)) 689 goto badscope; 690 bzero(&src_sa, sizeof(src_sa)); 691 src_sa.sin6_family = AF_INET6; 692 src_sa.sin6_len = sizeof(src_sa); 693 src_sa.sin6_addr = ip6->ip6_src; 694 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 695 goto badscope; 696 697 dst0 = ip6->ip6_dst; 698 if (in6_setscope(&dst0, origifp, &zone)) 699 goto badscope; 700 /* re-initialize to be sure */ 701 bzero(&dst_sa, sizeof(dst_sa)); 702 dst_sa.sin6_family = AF_INET6; 703 dst_sa.sin6_len = sizeof(dst_sa); 704 dst_sa.sin6_addr = ip6->ip6_dst; 705 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 706 goto badscope; 707 } 708 709 /* We should use ia_ifp to support the case of 710 * sending packets to an address of our own. 711 */ 712 if (ia != NULL && ia->ia_ifp) 713 ifp = ia->ia_ifp; 714 715 /* scope check is done. */ 716 goto routefound; 717 718 badscope: 719 V_ip6stat.ip6s_badscope++; 720 in6_ifstat_inc(origifp, ifs6_out_discard); 721 if (error == 0) 722 error = EHOSTUNREACH; /* XXX */ 723 goto bad; 724 725 routefound: 726 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 727 if (opt && opt->ip6po_nextroute.ro_rt) { 728 /* 729 * The nexthop is explicitly specified by the 730 * application. We assume the next hop is an IPv6 731 * address. 732 */ 733 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 734 } 735 else if ((rt->rt_flags & RTF_GATEWAY)) 736 dst = (struct sockaddr_in6 *)rt->rt_gateway; 737 } 738 739 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 740 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 741 } else { 742 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 743 in6_ifstat_inc(ifp, ifs6_out_mcast); 744 /* 745 * Confirm that the outgoing interface supports multicast. 746 */ 747 if (!(ifp->if_flags & IFF_MULTICAST)) { 748 V_ip6stat.ip6s_noroute++; 749 in6_ifstat_inc(ifp, ifs6_out_discard); 750 error = ENETUNREACH; 751 goto bad; 752 } 753 if ((im6o == NULL && in6_mcast_loop) || 754 (im6o && im6o->im6o_multicast_loop)) { 755 /* 756 * Loop back multicast datagram if not expressly 757 * forbidden to do so, even if we have not joined 758 * the address; protocols will filter it later, 759 * thus deferring a hash lookup and lock acquisition 760 * at the expense of an m_copym(). 761 */ 762 ip6_mloopback(ifp, m, dst); 763 } else { 764 /* 765 * If we are acting as a multicast router, perform 766 * multicast forwarding as if the packet had just 767 * arrived on the interface to which we are about 768 * to send. The multicast forwarding function 769 * recursively calls this function, using the 770 * IPV6_FORWARDING flag to prevent infinite recursion. 771 * 772 * Multicasts that are looped back by ip6_mloopback(), 773 * above, will be forwarded by the ip6_input() routine, 774 * if necessary. 775 */ 776 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 777 /* 778 * XXX: ip6_mforward expects that rcvif is NULL 779 * when it is called from the originating path. 780 * However, it is not always the case, since 781 * some versions of MGETHDR() does not 782 * initialize the field. 783 */ 784 m->m_pkthdr.rcvif = NULL; 785 if (ip6_mforward(ip6, ifp, m) != 0) { 786 m_freem(m); 787 goto done; 788 } 789 } 790 } 791 /* 792 * Multicasts with a hoplimit of zero may be looped back, 793 * above, but must not be transmitted on a network. 794 * Also, multicasts addressed to the loopback interface 795 * are not sent -- the above call to ip6_mloopback() will 796 * loop back a copy if this host actually belongs to the 797 * destination group on the loopback interface. 798 */ 799 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 800 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 801 m_freem(m); 802 goto done; 803 } 804 } 805 806 /* 807 * Fill the outgoing inteface to tell the upper layer 808 * to increment per-interface statistics. 809 */ 810 if (ifpp) 811 *ifpp = ifp; 812 813 /* Determine path MTU. */ 814 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 815 &alwaysfrag, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m))) != 0) 816 goto bad; 817 818 /* 819 * The caller of this function may specify to use the minimum MTU 820 * in some cases. 821 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 822 * setting. The logic is a bit complicated; by default, unicast 823 * packets will follow path MTU while multicast packets will be sent at 824 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 825 * including unicast ones will be sent at the minimum MTU. Multicast 826 * packets will always be sent at the minimum MTU unless 827 * IP6PO_MINMTU_DISABLE is explicitly specified. 828 * See RFC 3542 for more details. 829 */ 830 if (mtu > IPV6_MMTU) { 831 if ((flags & IPV6_MINMTU)) 832 mtu = IPV6_MMTU; 833 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 834 mtu = IPV6_MMTU; 835 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 836 (opt == NULL || 837 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 838 mtu = IPV6_MMTU; 839 } 840 } 841 842 /* 843 * clear embedded scope identifiers if necessary. 844 * in6_clearscope will touch the addresses only when necessary. 845 */ 846 in6_clearscope(&ip6->ip6_src); 847 in6_clearscope(&ip6->ip6_dst); 848 849 /* 850 * If the outgoing packet contains a hop-by-hop options header, 851 * it must be examined and processed even by the source node. 852 * (RFC 2460, section 4.) 853 */ 854 if (exthdrs.ip6e_hbh) { 855 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 856 u_int32_t dummy; /* XXX unused */ 857 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 858 859 #ifdef DIAGNOSTIC 860 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 861 panic("ip6e_hbh is not contiguous"); 862 #endif 863 /* 864 * XXX: if we have to send an ICMPv6 error to the sender, 865 * we need the M_LOOP flag since icmp6_error() expects 866 * the IPv6 and the hop-by-hop options header are 867 * contiguous unless the flag is set. 868 */ 869 m->m_flags |= M_LOOP; 870 m->m_pkthdr.rcvif = ifp; 871 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 872 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 873 &dummy, &plen) < 0) { 874 /* m was already freed at this point */ 875 error = EINVAL;/* better error? */ 876 goto done; 877 } 878 m->m_flags &= ~M_LOOP; /* XXX */ 879 m->m_pkthdr.rcvif = NULL; 880 } 881 882 /* Jump over all PFIL processing if hooks are not active. */ 883 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 884 goto passout; 885 886 odst = ip6->ip6_dst; 887 /* Run through list of hooks for output packets. */ 888 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 889 if (error != 0 || m == NULL) 890 goto done; 891 ip6 = mtod(m, struct ip6_hdr *); 892 893 /* See if destination IP address was changed by packet filter. */ 894 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 895 m->m_flags |= M_SKIP_FIREWALL; 896 /* If destination is now ourself drop to ip6_input(). */ 897 if (in6_localip(&ip6->ip6_dst)) { 898 m->m_flags |= M_FASTFWD_OURS; 899 if (m->m_pkthdr.rcvif == NULL) 900 m->m_pkthdr.rcvif = V_loif; 901 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 902 m->m_pkthdr.csum_flags |= 903 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 904 m->m_pkthdr.csum_data = 0xffff; 905 } 906 #ifdef SCTP 907 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 908 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 909 #endif 910 error = netisr_queue(NETISR_IPV6, m); 911 goto done; 912 } else 913 goto again; /* Redo the routing table lookup. */ 914 } 915 916 /* See if local, if yes, send it to netisr. */ 917 if (m->m_flags & M_FASTFWD_OURS) { 918 if (m->m_pkthdr.rcvif == NULL) 919 m->m_pkthdr.rcvif = V_loif; 920 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 921 m->m_pkthdr.csum_flags |= 922 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 923 m->m_pkthdr.csum_data = 0xffff; 924 } 925 #ifdef SCTP 926 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 927 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 928 #endif 929 error = netisr_queue(NETISR_IPV6, m); 930 goto done; 931 } 932 /* Or forward to some other address? */ 933 if ((m->m_flags & M_IP6_NEXTHOP) && 934 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 935 dst = (struct sockaddr_in6 *)&ro->ro_dst; 936 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in6)); 937 m->m_flags |= M_SKIP_FIREWALL; 938 m->m_flags &= ~M_IP6_NEXTHOP; 939 m_tag_delete(m, fwd_tag); 940 goto again; 941 } 942 943 passout: 944 /* 945 * Send the packet to the outgoing interface. 946 * If necessary, do IPv6 fragmentation before sending. 947 * 948 * the logic here is rather complex: 949 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 950 * 1-a: send as is if tlen <= path mtu 951 * 1-b: fragment if tlen > path mtu 952 * 953 * 2: if user asks us not to fragment (dontfrag == 1) 954 * 2-a: send as is if tlen <= interface mtu 955 * 2-b: error if tlen > interface mtu 956 * 957 * 3: if we always need to attach fragment header (alwaysfrag == 1) 958 * always fragment 959 * 960 * 4: if dontfrag == 1 && alwaysfrag == 1 961 * error, as we cannot handle this conflicting request 962 */ 963 sw_csum = m->m_pkthdr.csum_flags; 964 if (!hdrsplit) { 965 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 966 sw_csum &= ~ifp->if_hwassist; 967 } else 968 tso = 0; 969 /* 970 * If we added extension headers, we will not do TSO and calculate the 971 * checksums ourselves for now. 972 * XXX-BZ Need a framework to know when the NIC can handle it, even 973 * with ext. hdrs. 974 */ 975 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 976 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 977 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 978 } 979 #ifdef SCTP 980 if (sw_csum & CSUM_SCTP_IPV6) { 981 sw_csum &= ~CSUM_SCTP_IPV6; 982 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 983 } 984 #endif 985 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 986 tlen = m->m_pkthdr.len; 987 988 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 989 dontfrag = 1; 990 else 991 dontfrag = 0; 992 if (dontfrag && alwaysfrag) { /* case 4 */ 993 /* conflicting request - can't transmit */ 994 error = EMSGSIZE; 995 goto bad; 996 } 997 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 998 /* 999 * Even if the DONTFRAG option is specified, we cannot send the 1000 * packet when the data length is larger than the MTU of the 1001 * outgoing interface. 1002 * Notify the error by sending IPV6_PATHMTU ancillary data as 1003 * well as returning an error code (the latter is not described 1004 * in the API spec.) 1005 */ 1006 u_int32_t mtu32; 1007 struct ip6ctlparam ip6cp; 1008 1009 mtu32 = (u_int32_t)mtu; 1010 bzero(&ip6cp, sizeof(ip6cp)); 1011 ip6cp.ip6c_cmdarg = (void *)&mtu32; 1012 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 1013 (void *)&ip6cp); 1014 1015 error = EMSGSIZE; 1016 goto bad; 1017 } 1018 1019 /* 1020 * transmit packet without fragmentation 1021 */ 1022 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 1023 struct in6_ifaddr *ia6; 1024 1025 ip6 = mtod(m, struct ip6_hdr *); 1026 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1027 if (ia6) { 1028 /* Record statistics for this interface address. */ 1029 ia6->ia_ifa.if_opackets++; 1030 ia6->ia_ifa.if_obytes += m->m_pkthdr.len; 1031 ifa_free(&ia6->ia_ifa); 1032 } 1033 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1034 goto done; 1035 } 1036 1037 /* 1038 * try to fragment the packet. case 1-b and 3 1039 */ 1040 if (mtu < IPV6_MMTU) { 1041 /* path MTU cannot be less than IPV6_MMTU */ 1042 error = EMSGSIZE; 1043 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1044 goto bad; 1045 } else if (ip6->ip6_plen == 0) { 1046 /* jumbo payload cannot be fragmented */ 1047 error = EMSGSIZE; 1048 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1049 goto bad; 1050 } else { 1051 struct mbuf **mnext, *m_frgpart; 1052 struct ip6_frag *ip6f; 1053 u_int32_t id = htonl(ip6_randomid()); 1054 u_char nextproto; 1055 1056 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len; 1057 1058 /* 1059 * Too large for the destination or interface; 1060 * fragment if possible. 1061 * Must be able to put at least 8 bytes per fragment. 1062 */ 1063 hlen = unfragpartlen; 1064 if (mtu > IPV6_MAXPACKET) 1065 mtu = IPV6_MAXPACKET; 1066 1067 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 1068 if (len < 8) { 1069 error = EMSGSIZE; 1070 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1071 goto bad; 1072 } 1073 1074 /* 1075 * Verify that we have any chance at all of being able to queue 1076 * the packet or packet fragments 1077 */ 1078 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen) 1079 < tlen /* - hlen */)) { 1080 error = ENOBUFS; 1081 V_ip6stat.ip6s_odropped++; 1082 goto bad; 1083 } 1084 1085 1086 /* 1087 * If the interface will not calculate checksums on 1088 * fragmented packets, then do it here. 1089 * XXX-BZ handle the hw offloading case. Need flags. 1090 */ 1091 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1092 in6_delayed_cksum(m, plen, hlen); 1093 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 1094 } 1095 #ifdef SCTP 1096 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 1097 sctp_delayed_cksum(m, hlen); 1098 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 1099 } 1100 #endif 1101 mnext = &m->m_nextpkt; 1102 1103 /* 1104 * Change the next header field of the last header in the 1105 * unfragmentable part. 1106 */ 1107 if (exthdrs.ip6e_rthdr) { 1108 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1109 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1110 } else if (exthdrs.ip6e_dest1) { 1111 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1112 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1113 } else if (exthdrs.ip6e_hbh) { 1114 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1115 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1116 } else { 1117 nextproto = ip6->ip6_nxt; 1118 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1119 } 1120 1121 /* 1122 * Loop through length of segment after first fragment, 1123 * make new header and copy data of each part and link onto 1124 * chain. 1125 */ 1126 m0 = m; 1127 for (off = hlen; off < tlen; off += len) { 1128 MGETHDR(m, M_DONTWAIT, MT_HEADER); 1129 if (!m) { 1130 error = ENOBUFS; 1131 V_ip6stat.ip6s_odropped++; 1132 goto sendorfree; 1133 } 1134 m->m_pkthdr.rcvif = NULL; 1135 m->m_flags = m0->m_flags & M_COPYFLAGS; /* incl. FIB */ 1136 *mnext = m; 1137 mnext = &m->m_nextpkt; 1138 m->m_data += max_linkhdr; 1139 mhip6 = mtod(m, struct ip6_hdr *); 1140 *mhip6 = *ip6; 1141 m->m_len = sizeof(*mhip6); 1142 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1143 if (error) { 1144 V_ip6stat.ip6s_odropped++; 1145 goto sendorfree; 1146 } 1147 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 1148 if (off + len >= tlen) 1149 len = tlen - off; 1150 else 1151 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1152 mhip6->ip6_plen = htons((u_short)(len + hlen + 1153 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1154 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1155 error = ENOBUFS; 1156 V_ip6stat.ip6s_odropped++; 1157 goto sendorfree; 1158 } 1159 m_cat(m, m_frgpart); 1160 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1161 m->m_pkthdr.rcvif = NULL; 1162 ip6f->ip6f_reserved = 0; 1163 ip6f->ip6f_ident = id; 1164 ip6f->ip6f_nxt = nextproto; 1165 V_ip6stat.ip6s_ofragments++; 1166 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1167 } 1168 1169 in6_ifstat_inc(ifp, ifs6_out_fragok); 1170 } 1171 1172 /* 1173 * Remove leading garbages. 1174 */ 1175 sendorfree: 1176 m = m0->m_nextpkt; 1177 m0->m_nextpkt = 0; 1178 m_freem(m0); 1179 for (m0 = m; m; m = m0) { 1180 m0 = m->m_nextpkt; 1181 m->m_nextpkt = 0; 1182 if (error == 0) { 1183 /* Record statistics for this interface address. */ 1184 if (ia) { 1185 ia->ia_ifa.if_opackets++; 1186 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 1187 } 1188 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1189 } else 1190 m_freem(m); 1191 } 1192 1193 if (error == 0) 1194 V_ip6stat.ip6s_fragmented++; 1195 1196 done: 1197 if (ro == &ip6route) 1198 RO_RTFREE(ro); 1199 if (ro_pmtu == &ip6route) 1200 RO_RTFREE(ro_pmtu); 1201 #ifdef IPSEC 1202 if (sp != NULL) 1203 KEY_FREESP(&sp); 1204 #endif 1205 1206 return (error); 1207 1208 freehdrs: 1209 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1210 m_freem(exthdrs.ip6e_dest1); 1211 m_freem(exthdrs.ip6e_rthdr); 1212 m_freem(exthdrs.ip6e_dest2); 1213 /* FALLTHROUGH */ 1214 bad: 1215 if (m) 1216 m_freem(m); 1217 goto done; 1218 } 1219 1220 static int 1221 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1222 { 1223 struct mbuf *m; 1224 1225 if (hlen > MCLBYTES) 1226 return (ENOBUFS); /* XXX */ 1227 1228 MGET(m, M_DONTWAIT, MT_DATA); 1229 if (!m) 1230 return (ENOBUFS); 1231 1232 if (hlen > MLEN) { 1233 MCLGET(m, M_DONTWAIT); 1234 if ((m->m_flags & M_EXT) == 0) { 1235 m_free(m); 1236 return (ENOBUFS); 1237 } 1238 } 1239 m->m_len = hlen; 1240 if (hdr) 1241 bcopy(hdr, mtod(m, caddr_t), hlen); 1242 1243 *mp = m; 1244 return (0); 1245 } 1246 1247 /* 1248 * Insert jumbo payload option. 1249 */ 1250 static int 1251 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1252 { 1253 struct mbuf *mopt; 1254 u_char *optbuf; 1255 u_int32_t v; 1256 1257 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1258 1259 /* 1260 * If there is no hop-by-hop options header, allocate new one. 1261 * If there is one but it doesn't have enough space to store the 1262 * jumbo payload option, allocate a cluster to store the whole options. 1263 * Otherwise, use it to store the options. 1264 */ 1265 if (exthdrs->ip6e_hbh == 0) { 1266 MGET(mopt, M_DONTWAIT, MT_DATA); 1267 if (mopt == 0) 1268 return (ENOBUFS); 1269 mopt->m_len = JUMBOOPTLEN; 1270 optbuf = mtod(mopt, u_char *); 1271 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1272 exthdrs->ip6e_hbh = mopt; 1273 } else { 1274 struct ip6_hbh *hbh; 1275 1276 mopt = exthdrs->ip6e_hbh; 1277 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1278 /* 1279 * XXX assumption: 1280 * - exthdrs->ip6e_hbh is not referenced from places 1281 * other than exthdrs. 1282 * - exthdrs->ip6e_hbh is not an mbuf chain. 1283 */ 1284 int oldoptlen = mopt->m_len; 1285 struct mbuf *n; 1286 1287 /* 1288 * XXX: give up if the whole (new) hbh header does 1289 * not fit even in an mbuf cluster. 1290 */ 1291 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1292 return (ENOBUFS); 1293 1294 /* 1295 * As a consequence, we must always prepare a cluster 1296 * at this point. 1297 */ 1298 MGET(n, M_DONTWAIT, MT_DATA); 1299 if (n) { 1300 MCLGET(n, M_DONTWAIT); 1301 if ((n->m_flags & M_EXT) == 0) { 1302 m_freem(n); 1303 n = NULL; 1304 } 1305 } 1306 if (!n) 1307 return (ENOBUFS); 1308 n->m_len = oldoptlen + JUMBOOPTLEN; 1309 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1310 oldoptlen); 1311 optbuf = mtod(n, caddr_t) + oldoptlen; 1312 m_freem(mopt); 1313 mopt = exthdrs->ip6e_hbh = n; 1314 } else { 1315 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1316 mopt->m_len += JUMBOOPTLEN; 1317 } 1318 optbuf[0] = IP6OPT_PADN; 1319 optbuf[1] = 1; 1320 1321 /* 1322 * Adjust the header length according to the pad and 1323 * the jumbo payload option. 1324 */ 1325 hbh = mtod(mopt, struct ip6_hbh *); 1326 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1327 } 1328 1329 /* fill in the option. */ 1330 optbuf[2] = IP6OPT_JUMBO; 1331 optbuf[3] = 4; 1332 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1333 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1334 1335 /* finally, adjust the packet header length */ 1336 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1337 1338 return (0); 1339 #undef JUMBOOPTLEN 1340 } 1341 1342 /* 1343 * Insert fragment header and copy unfragmentable header portions. 1344 */ 1345 static int 1346 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1347 struct ip6_frag **frghdrp) 1348 { 1349 struct mbuf *n, *mlast; 1350 1351 if (hlen > sizeof(struct ip6_hdr)) { 1352 n = m_copym(m0, sizeof(struct ip6_hdr), 1353 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1354 if (n == 0) 1355 return (ENOBUFS); 1356 m->m_next = n; 1357 } else 1358 n = m; 1359 1360 /* Search for the last mbuf of unfragmentable part. */ 1361 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1362 ; 1363 1364 if ((mlast->m_flags & M_EXT) == 0 && 1365 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1366 /* use the trailing space of the last mbuf for the fragment hdr */ 1367 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1368 mlast->m_len); 1369 mlast->m_len += sizeof(struct ip6_frag); 1370 m->m_pkthdr.len += sizeof(struct ip6_frag); 1371 } else { 1372 /* allocate a new mbuf for the fragment header */ 1373 struct mbuf *mfrg; 1374 1375 MGET(mfrg, M_DONTWAIT, MT_DATA); 1376 if (mfrg == 0) 1377 return (ENOBUFS); 1378 mfrg->m_len = sizeof(struct ip6_frag); 1379 *frghdrp = mtod(mfrg, struct ip6_frag *); 1380 mlast->m_next = mfrg; 1381 } 1382 1383 return (0); 1384 } 1385 1386 static int 1387 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, 1388 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, 1389 int *alwaysfragp, u_int fibnum) 1390 { 1391 u_int32_t mtu = 0; 1392 int alwaysfrag = 0; 1393 int error = 0; 1394 1395 if (ro_pmtu != ro) { 1396 /* The first hop and the final destination may differ. */ 1397 struct sockaddr_in6 *sa6_dst = 1398 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1399 if (ro_pmtu->ro_rt && 1400 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1401 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1402 RTFREE(ro_pmtu->ro_rt); 1403 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1404 } 1405 if (ro_pmtu->ro_rt == NULL) { 1406 bzero(sa6_dst, sizeof(*sa6_dst)); 1407 sa6_dst->sin6_family = AF_INET6; 1408 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1409 sa6_dst->sin6_addr = *dst; 1410 1411 in6_rtalloc(ro_pmtu, fibnum); 1412 } 1413 } 1414 if (ro_pmtu->ro_rt) { 1415 u_int32_t ifmtu; 1416 struct in_conninfo inc; 1417 1418 bzero(&inc, sizeof(inc)); 1419 inc.inc_flags |= INC_ISIPV6; 1420 inc.inc6_faddr = *dst; 1421 1422 if (ifp == NULL) 1423 ifp = ro_pmtu->ro_rt->rt_ifp; 1424 ifmtu = IN6_LINKMTU(ifp); 1425 mtu = tcp_hc_getmtu(&inc); 1426 if (mtu) 1427 mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu); 1428 else 1429 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 1430 if (mtu == 0) 1431 mtu = ifmtu; 1432 else if (mtu < IPV6_MMTU) { 1433 /* 1434 * RFC2460 section 5, last paragraph: 1435 * if we record ICMPv6 too big message with 1436 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1437 * or smaller, with framgent header attached. 1438 * (fragment header is needed regardless from the 1439 * packet size, for translators to identify packets) 1440 */ 1441 alwaysfrag = 1; 1442 mtu = IPV6_MMTU; 1443 } else if (mtu > ifmtu) { 1444 /* 1445 * The MTU on the route is larger than the MTU on 1446 * the interface! This shouldn't happen, unless the 1447 * MTU of the interface has been changed after the 1448 * interface was brought up. Change the MTU in the 1449 * route to match the interface MTU (as long as the 1450 * field isn't locked). 1451 */ 1452 mtu = ifmtu; 1453 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; 1454 } 1455 } else if (ifp) { 1456 mtu = IN6_LINKMTU(ifp); 1457 } else 1458 error = EHOSTUNREACH; /* XXX */ 1459 1460 *mtup = mtu; 1461 if (alwaysfragp) 1462 *alwaysfragp = alwaysfrag; 1463 return (error); 1464 } 1465 1466 /* 1467 * IP6 socket option processing. 1468 */ 1469 int 1470 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1471 { 1472 int optdatalen, uproto; 1473 void *optdata; 1474 struct inpcb *in6p = sotoinpcb(so); 1475 int error, optval; 1476 int level, op, optname; 1477 int optlen; 1478 struct thread *td; 1479 1480 level = sopt->sopt_level; 1481 op = sopt->sopt_dir; 1482 optname = sopt->sopt_name; 1483 optlen = sopt->sopt_valsize; 1484 td = sopt->sopt_td; 1485 error = 0; 1486 optval = 0; 1487 uproto = (int)so->so_proto->pr_protocol; 1488 1489 if (level != IPPROTO_IPV6) { 1490 error = EINVAL; 1491 1492 if (sopt->sopt_level == SOL_SOCKET && 1493 sopt->sopt_dir == SOPT_SET) { 1494 switch (sopt->sopt_name) { 1495 case SO_REUSEADDR: 1496 INP_WLOCK(in6p); 1497 if (IN_MULTICAST(ntohl(in6p->inp_laddr.s_addr))) { 1498 if ((so->so_options & 1499 (SO_REUSEADDR | SO_REUSEPORT)) != 0) 1500 in6p->inp_flags2 |= INP_REUSEPORT; 1501 else 1502 in6p->inp_flags2 &= ~INP_REUSEPORT; 1503 } 1504 INP_WUNLOCK(in6p); 1505 error = 0; 1506 break; 1507 case SO_REUSEPORT: 1508 INP_WLOCK(in6p); 1509 if ((so->so_options & SO_REUSEPORT) != 0) 1510 in6p->inp_flags2 |= INP_REUSEPORT; 1511 else 1512 in6p->inp_flags2 &= ~INP_REUSEPORT; 1513 INP_WUNLOCK(in6p); 1514 error = 0; 1515 break; 1516 case SO_SETFIB: 1517 INP_WLOCK(in6p); 1518 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1519 INP_WUNLOCK(in6p); 1520 error = 0; 1521 break; 1522 default: 1523 break; 1524 } 1525 } 1526 } else { /* level == IPPROTO_IPV6 */ 1527 switch (op) { 1528 1529 case SOPT_SET: 1530 switch (optname) { 1531 case IPV6_2292PKTOPTIONS: 1532 #ifdef IPV6_PKTOPTIONS 1533 case IPV6_PKTOPTIONS: 1534 #endif 1535 { 1536 struct mbuf *m; 1537 1538 error = soopt_getm(sopt, &m); /* XXX */ 1539 if (error != 0) 1540 break; 1541 error = soopt_mcopyin(sopt, m); /* XXX */ 1542 if (error != 0) 1543 break; 1544 error = ip6_pcbopts(&in6p->in6p_outputopts, 1545 m, so, sopt); 1546 m_freem(m); /* XXX */ 1547 break; 1548 } 1549 1550 /* 1551 * Use of some Hop-by-Hop options or some 1552 * Destination options, might require special 1553 * privilege. That is, normal applications 1554 * (without special privilege) might be forbidden 1555 * from setting certain options in outgoing packets, 1556 * and might never see certain options in received 1557 * packets. [RFC 2292 Section 6] 1558 * KAME specific note: 1559 * KAME prevents non-privileged users from sending or 1560 * receiving ANY hbh/dst options in order to avoid 1561 * overhead of parsing options in the kernel. 1562 */ 1563 case IPV6_RECVHOPOPTS: 1564 case IPV6_RECVDSTOPTS: 1565 case IPV6_RECVRTHDRDSTOPTS: 1566 if (td != NULL) { 1567 error = priv_check(td, 1568 PRIV_NETINET_SETHDROPTS); 1569 if (error) 1570 break; 1571 } 1572 /* FALLTHROUGH */ 1573 case IPV6_UNICAST_HOPS: 1574 case IPV6_HOPLIMIT: 1575 case IPV6_FAITH: 1576 1577 case IPV6_RECVPKTINFO: 1578 case IPV6_RECVHOPLIMIT: 1579 case IPV6_RECVRTHDR: 1580 case IPV6_RECVPATHMTU: 1581 case IPV6_RECVTCLASS: 1582 case IPV6_V6ONLY: 1583 case IPV6_AUTOFLOWLABEL: 1584 case IPV6_BINDANY: 1585 if (optname == IPV6_BINDANY && td != NULL) { 1586 error = priv_check(td, 1587 PRIV_NETINET_BINDANY); 1588 if (error) 1589 break; 1590 } 1591 1592 if (optlen != sizeof(int)) { 1593 error = EINVAL; 1594 break; 1595 } 1596 error = sooptcopyin(sopt, &optval, 1597 sizeof optval, sizeof optval); 1598 if (error) 1599 break; 1600 switch (optname) { 1601 1602 case IPV6_UNICAST_HOPS: 1603 if (optval < -1 || optval >= 256) 1604 error = EINVAL; 1605 else { 1606 /* -1 = kernel default */ 1607 in6p->in6p_hops = optval; 1608 if ((in6p->inp_vflag & 1609 INP_IPV4) != 0) 1610 in6p->inp_ip_ttl = optval; 1611 } 1612 break; 1613 #define OPTSET(bit) \ 1614 do { \ 1615 INP_WLOCK(in6p); \ 1616 if (optval) \ 1617 in6p->inp_flags |= (bit); \ 1618 else \ 1619 in6p->inp_flags &= ~(bit); \ 1620 INP_WUNLOCK(in6p); \ 1621 } while (/*CONSTCOND*/ 0) 1622 #define OPTSET2292(bit) \ 1623 do { \ 1624 INP_WLOCK(in6p); \ 1625 in6p->inp_flags |= IN6P_RFC2292; \ 1626 if (optval) \ 1627 in6p->inp_flags |= (bit); \ 1628 else \ 1629 in6p->inp_flags &= ~(bit); \ 1630 INP_WUNLOCK(in6p); \ 1631 } while (/*CONSTCOND*/ 0) 1632 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1633 1634 case IPV6_RECVPKTINFO: 1635 /* cannot mix with RFC2292 */ 1636 if (OPTBIT(IN6P_RFC2292)) { 1637 error = EINVAL; 1638 break; 1639 } 1640 OPTSET(IN6P_PKTINFO); 1641 break; 1642 1643 case IPV6_HOPLIMIT: 1644 { 1645 struct ip6_pktopts **optp; 1646 1647 /* cannot mix with RFC2292 */ 1648 if (OPTBIT(IN6P_RFC2292)) { 1649 error = EINVAL; 1650 break; 1651 } 1652 optp = &in6p->in6p_outputopts; 1653 error = ip6_pcbopt(IPV6_HOPLIMIT, 1654 (u_char *)&optval, sizeof(optval), 1655 optp, (td != NULL) ? td->td_ucred : 1656 NULL, uproto); 1657 break; 1658 } 1659 1660 case IPV6_RECVHOPLIMIT: 1661 /* cannot mix with RFC2292 */ 1662 if (OPTBIT(IN6P_RFC2292)) { 1663 error = EINVAL; 1664 break; 1665 } 1666 OPTSET(IN6P_HOPLIMIT); 1667 break; 1668 1669 case IPV6_RECVHOPOPTS: 1670 /* cannot mix with RFC2292 */ 1671 if (OPTBIT(IN6P_RFC2292)) { 1672 error = EINVAL; 1673 break; 1674 } 1675 OPTSET(IN6P_HOPOPTS); 1676 break; 1677 1678 case IPV6_RECVDSTOPTS: 1679 /* cannot mix with RFC2292 */ 1680 if (OPTBIT(IN6P_RFC2292)) { 1681 error = EINVAL; 1682 break; 1683 } 1684 OPTSET(IN6P_DSTOPTS); 1685 break; 1686 1687 case IPV6_RECVRTHDRDSTOPTS: 1688 /* cannot mix with RFC2292 */ 1689 if (OPTBIT(IN6P_RFC2292)) { 1690 error = EINVAL; 1691 break; 1692 } 1693 OPTSET(IN6P_RTHDRDSTOPTS); 1694 break; 1695 1696 case IPV6_RECVRTHDR: 1697 /* cannot mix with RFC2292 */ 1698 if (OPTBIT(IN6P_RFC2292)) { 1699 error = EINVAL; 1700 break; 1701 } 1702 OPTSET(IN6P_RTHDR); 1703 break; 1704 1705 case IPV6_FAITH: 1706 OPTSET(INP_FAITH); 1707 break; 1708 1709 case IPV6_RECVPATHMTU: 1710 /* 1711 * We ignore this option for TCP 1712 * sockets. 1713 * (RFC3542 leaves this case 1714 * unspecified.) 1715 */ 1716 if (uproto != IPPROTO_TCP) 1717 OPTSET(IN6P_MTU); 1718 break; 1719 1720 case IPV6_V6ONLY: 1721 /* 1722 * make setsockopt(IPV6_V6ONLY) 1723 * available only prior to bind(2). 1724 * see ipng mailing list, Jun 22 2001. 1725 */ 1726 if (in6p->inp_lport || 1727 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1728 error = EINVAL; 1729 break; 1730 } 1731 OPTSET(IN6P_IPV6_V6ONLY); 1732 if (optval) 1733 in6p->inp_vflag &= ~INP_IPV4; 1734 else 1735 in6p->inp_vflag |= INP_IPV4; 1736 break; 1737 case IPV6_RECVTCLASS: 1738 /* cannot mix with RFC2292 XXX */ 1739 if (OPTBIT(IN6P_RFC2292)) { 1740 error = EINVAL; 1741 break; 1742 } 1743 OPTSET(IN6P_TCLASS); 1744 break; 1745 case IPV6_AUTOFLOWLABEL: 1746 OPTSET(IN6P_AUTOFLOWLABEL); 1747 break; 1748 1749 case IPV6_BINDANY: 1750 OPTSET(INP_BINDANY); 1751 break; 1752 } 1753 break; 1754 1755 case IPV6_TCLASS: 1756 case IPV6_DONTFRAG: 1757 case IPV6_USE_MIN_MTU: 1758 case IPV6_PREFER_TEMPADDR: 1759 if (optlen != sizeof(optval)) { 1760 error = EINVAL; 1761 break; 1762 } 1763 error = sooptcopyin(sopt, &optval, 1764 sizeof optval, sizeof optval); 1765 if (error) 1766 break; 1767 { 1768 struct ip6_pktopts **optp; 1769 optp = &in6p->in6p_outputopts; 1770 error = ip6_pcbopt(optname, 1771 (u_char *)&optval, sizeof(optval), 1772 optp, (td != NULL) ? td->td_ucred : 1773 NULL, uproto); 1774 break; 1775 } 1776 1777 case IPV6_2292PKTINFO: 1778 case IPV6_2292HOPLIMIT: 1779 case IPV6_2292HOPOPTS: 1780 case IPV6_2292DSTOPTS: 1781 case IPV6_2292RTHDR: 1782 /* RFC 2292 */ 1783 if (optlen != sizeof(int)) { 1784 error = EINVAL; 1785 break; 1786 } 1787 error = sooptcopyin(sopt, &optval, 1788 sizeof optval, sizeof optval); 1789 if (error) 1790 break; 1791 switch (optname) { 1792 case IPV6_2292PKTINFO: 1793 OPTSET2292(IN6P_PKTINFO); 1794 break; 1795 case IPV6_2292HOPLIMIT: 1796 OPTSET2292(IN6P_HOPLIMIT); 1797 break; 1798 case IPV6_2292HOPOPTS: 1799 /* 1800 * Check super-user privilege. 1801 * See comments for IPV6_RECVHOPOPTS. 1802 */ 1803 if (td != NULL) { 1804 error = priv_check(td, 1805 PRIV_NETINET_SETHDROPTS); 1806 if (error) 1807 return (error); 1808 } 1809 OPTSET2292(IN6P_HOPOPTS); 1810 break; 1811 case IPV6_2292DSTOPTS: 1812 if (td != NULL) { 1813 error = priv_check(td, 1814 PRIV_NETINET_SETHDROPTS); 1815 if (error) 1816 return (error); 1817 } 1818 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1819 break; 1820 case IPV6_2292RTHDR: 1821 OPTSET2292(IN6P_RTHDR); 1822 break; 1823 } 1824 break; 1825 case IPV6_PKTINFO: 1826 case IPV6_HOPOPTS: 1827 case IPV6_RTHDR: 1828 case IPV6_DSTOPTS: 1829 case IPV6_RTHDRDSTOPTS: 1830 case IPV6_NEXTHOP: 1831 { 1832 /* new advanced API (RFC3542) */ 1833 u_char *optbuf; 1834 u_char optbuf_storage[MCLBYTES]; 1835 int optlen; 1836 struct ip6_pktopts **optp; 1837 1838 /* cannot mix with RFC2292 */ 1839 if (OPTBIT(IN6P_RFC2292)) { 1840 error = EINVAL; 1841 break; 1842 } 1843 1844 /* 1845 * We only ensure valsize is not too large 1846 * here. Further validation will be done 1847 * later. 1848 */ 1849 error = sooptcopyin(sopt, optbuf_storage, 1850 sizeof(optbuf_storage), 0); 1851 if (error) 1852 break; 1853 optlen = sopt->sopt_valsize; 1854 optbuf = optbuf_storage; 1855 optp = &in6p->in6p_outputopts; 1856 error = ip6_pcbopt(optname, optbuf, optlen, 1857 optp, (td != NULL) ? td->td_ucred : NULL, 1858 uproto); 1859 break; 1860 } 1861 #undef OPTSET 1862 1863 case IPV6_MULTICAST_IF: 1864 case IPV6_MULTICAST_HOPS: 1865 case IPV6_MULTICAST_LOOP: 1866 case IPV6_JOIN_GROUP: 1867 case IPV6_LEAVE_GROUP: 1868 case IPV6_MSFILTER: 1869 case MCAST_BLOCK_SOURCE: 1870 case MCAST_UNBLOCK_SOURCE: 1871 case MCAST_JOIN_GROUP: 1872 case MCAST_LEAVE_GROUP: 1873 case MCAST_JOIN_SOURCE_GROUP: 1874 case MCAST_LEAVE_SOURCE_GROUP: 1875 error = ip6_setmoptions(in6p, sopt); 1876 break; 1877 1878 case IPV6_PORTRANGE: 1879 error = sooptcopyin(sopt, &optval, 1880 sizeof optval, sizeof optval); 1881 if (error) 1882 break; 1883 1884 INP_WLOCK(in6p); 1885 switch (optval) { 1886 case IPV6_PORTRANGE_DEFAULT: 1887 in6p->inp_flags &= ~(INP_LOWPORT); 1888 in6p->inp_flags &= ~(INP_HIGHPORT); 1889 break; 1890 1891 case IPV6_PORTRANGE_HIGH: 1892 in6p->inp_flags &= ~(INP_LOWPORT); 1893 in6p->inp_flags |= INP_HIGHPORT; 1894 break; 1895 1896 case IPV6_PORTRANGE_LOW: 1897 in6p->inp_flags &= ~(INP_HIGHPORT); 1898 in6p->inp_flags |= INP_LOWPORT; 1899 break; 1900 1901 default: 1902 error = EINVAL; 1903 break; 1904 } 1905 INP_WUNLOCK(in6p); 1906 break; 1907 1908 #ifdef IPSEC 1909 case IPV6_IPSEC_POLICY: 1910 { 1911 caddr_t req; 1912 struct mbuf *m; 1913 1914 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1915 break; 1916 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1917 break; 1918 req = mtod(m, caddr_t); 1919 error = ipsec_set_policy(in6p, optname, req, 1920 m->m_len, (sopt->sopt_td != NULL) ? 1921 sopt->sopt_td->td_ucred : NULL); 1922 m_freem(m); 1923 break; 1924 } 1925 #endif /* IPSEC */ 1926 1927 default: 1928 error = ENOPROTOOPT; 1929 break; 1930 } 1931 break; 1932 1933 case SOPT_GET: 1934 switch (optname) { 1935 1936 case IPV6_2292PKTOPTIONS: 1937 #ifdef IPV6_PKTOPTIONS 1938 case IPV6_PKTOPTIONS: 1939 #endif 1940 /* 1941 * RFC3542 (effectively) deprecated the 1942 * semantics of the 2292-style pktoptions. 1943 * Since it was not reliable in nature (i.e., 1944 * applications had to expect the lack of some 1945 * information after all), it would make sense 1946 * to simplify this part by always returning 1947 * empty data. 1948 */ 1949 sopt->sopt_valsize = 0; 1950 break; 1951 1952 case IPV6_RECVHOPOPTS: 1953 case IPV6_RECVDSTOPTS: 1954 case IPV6_RECVRTHDRDSTOPTS: 1955 case IPV6_UNICAST_HOPS: 1956 case IPV6_RECVPKTINFO: 1957 case IPV6_RECVHOPLIMIT: 1958 case IPV6_RECVRTHDR: 1959 case IPV6_RECVPATHMTU: 1960 1961 case IPV6_FAITH: 1962 case IPV6_V6ONLY: 1963 case IPV6_PORTRANGE: 1964 case IPV6_RECVTCLASS: 1965 case IPV6_AUTOFLOWLABEL: 1966 case IPV6_BINDANY: 1967 switch (optname) { 1968 1969 case IPV6_RECVHOPOPTS: 1970 optval = OPTBIT(IN6P_HOPOPTS); 1971 break; 1972 1973 case IPV6_RECVDSTOPTS: 1974 optval = OPTBIT(IN6P_DSTOPTS); 1975 break; 1976 1977 case IPV6_RECVRTHDRDSTOPTS: 1978 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1979 break; 1980 1981 case IPV6_UNICAST_HOPS: 1982 optval = in6p->in6p_hops; 1983 break; 1984 1985 case IPV6_RECVPKTINFO: 1986 optval = OPTBIT(IN6P_PKTINFO); 1987 break; 1988 1989 case IPV6_RECVHOPLIMIT: 1990 optval = OPTBIT(IN6P_HOPLIMIT); 1991 break; 1992 1993 case IPV6_RECVRTHDR: 1994 optval = OPTBIT(IN6P_RTHDR); 1995 break; 1996 1997 case IPV6_RECVPATHMTU: 1998 optval = OPTBIT(IN6P_MTU); 1999 break; 2000 2001 case IPV6_FAITH: 2002 optval = OPTBIT(INP_FAITH); 2003 break; 2004 2005 case IPV6_V6ONLY: 2006 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2007 break; 2008 2009 case IPV6_PORTRANGE: 2010 { 2011 int flags; 2012 flags = in6p->inp_flags; 2013 if (flags & INP_HIGHPORT) 2014 optval = IPV6_PORTRANGE_HIGH; 2015 else if (flags & INP_LOWPORT) 2016 optval = IPV6_PORTRANGE_LOW; 2017 else 2018 optval = 0; 2019 break; 2020 } 2021 case IPV6_RECVTCLASS: 2022 optval = OPTBIT(IN6P_TCLASS); 2023 break; 2024 2025 case IPV6_AUTOFLOWLABEL: 2026 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2027 break; 2028 2029 case IPV6_BINDANY: 2030 optval = OPTBIT(INP_BINDANY); 2031 break; 2032 } 2033 if (error) 2034 break; 2035 error = sooptcopyout(sopt, &optval, 2036 sizeof optval); 2037 break; 2038 2039 case IPV6_PATHMTU: 2040 { 2041 u_long pmtu = 0; 2042 struct ip6_mtuinfo mtuinfo; 2043 struct route_in6 sro; 2044 2045 bzero(&sro, sizeof(sro)); 2046 2047 if (!(so->so_state & SS_ISCONNECTED)) 2048 return (ENOTCONN); 2049 /* 2050 * XXX: we dot not consider the case of source 2051 * routing, or optional information to specify 2052 * the outgoing interface. 2053 */ 2054 error = ip6_getpmtu(&sro, NULL, NULL, 2055 &in6p->in6p_faddr, &pmtu, NULL, 2056 so->so_fibnum); 2057 if (sro.ro_rt) 2058 RTFREE(sro.ro_rt); 2059 if (error) 2060 break; 2061 if (pmtu > IPV6_MAXPACKET) 2062 pmtu = IPV6_MAXPACKET; 2063 2064 bzero(&mtuinfo, sizeof(mtuinfo)); 2065 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2066 optdata = (void *)&mtuinfo; 2067 optdatalen = sizeof(mtuinfo); 2068 error = sooptcopyout(sopt, optdata, 2069 optdatalen); 2070 break; 2071 } 2072 2073 case IPV6_2292PKTINFO: 2074 case IPV6_2292HOPLIMIT: 2075 case IPV6_2292HOPOPTS: 2076 case IPV6_2292RTHDR: 2077 case IPV6_2292DSTOPTS: 2078 switch (optname) { 2079 case IPV6_2292PKTINFO: 2080 optval = OPTBIT(IN6P_PKTINFO); 2081 break; 2082 case IPV6_2292HOPLIMIT: 2083 optval = OPTBIT(IN6P_HOPLIMIT); 2084 break; 2085 case IPV6_2292HOPOPTS: 2086 optval = OPTBIT(IN6P_HOPOPTS); 2087 break; 2088 case IPV6_2292RTHDR: 2089 optval = OPTBIT(IN6P_RTHDR); 2090 break; 2091 case IPV6_2292DSTOPTS: 2092 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2093 break; 2094 } 2095 error = sooptcopyout(sopt, &optval, 2096 sizeof optval); 2097 break; 2098 case IPV6_PKTINFO: 2099 case IPV6_HOPOPTS: 2100 case IPV6_RTHDR: 2101 case IPV6_DSTOPTS: 2102 case IPV6_RTHDRDSTOPTS: 2103 case IPV6_NEXTHOP: 2104 case IPV6_TCLASS: 2105 case IPV6_DONTFRAG: 2106 case IPV6_USE_MIN_MTU: 2107 case IPV6_PREFER_TEMPADDR: 2108 error = ip6_getpcbopt(in6p->in6p_outputopts, 2109 optname, sopt); 2110 break; 2111 2112 case IPV6_MULTICAST_IF: 2113 case IPV6_MULTICAST_HOPS: 2114 case IPV6_MULTICAST_LOOP: 2115 case IPV6_MSFILTER: 2116 error = ip6_getmoptions(in6p, sopt); 2117 break; 2118 2119 #ifdef IPSEC 2120 case IPV6_IPSEC_POLICY: 2121 { 2122 caddr_t req = NULL; 2123 size_t len = 0; 2124 struct mbuf *m = NULL; 2125 struct mbuf **mp = &m; 2126 size_t ovalsize = sopt->sopt_valsize; 2127 caddr_t oval = (caddr_t)sopt->sopt_val; 2128 2129 error = soopt_getm(sopt, &m); /* XXX */ 2130 if (error != 0) 2131 break; 2132 error = soopt_mcopyin(sopt, m); /* XXX */ 2133 if (error != 0) 2134 break; 2135 sopt->sopt_valsize = ovalsize; 2136 sopt->sopt_val = oval; 2137 if (m) { 2138 req = mtod(m, caddr_t); 2139 len = m->m_len; 2140 } 2141 error = ipsec_get_policy(in6p, req, len, mp); 2142 if (error == 0) 2143 error = soopt_mcopyout(sopt, m); /* XXX */ 2144 if (error == 0 && m) 2145 m_freem(m); 2146 break; 2147 } 2148 #endif /* IPSEC */ 2149 2150 default: 2151 error = ENOPROTOOPT; 2152 break; 2153 } 2154 break; 2155 } 2156 } 2157 return (error); 2158 } 2159 2160 int 2161 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2162 { 2163 int error = 0, optval, optlen; 2164 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2165 struct inpcb *in6p = sotoinpcb(so); 2166 int level, op, optname; 2167 2168 level = sopt->sopt_level; 2169 op = sopt->sopt_dir; 2170 optname = sopt->sopt_name; 2171 optlen = sopt->sopt_valsize; 2172 2173 if (level != IPPROTO_IPV6) { 2174 return (EINVAL); 2175 } 2176 2177 switch (optname) { 2178 case IPV6_CHECKSUM: 2179 /* 2180 * For ICMPv6 sockets, no modification allowed for checksum 2181 * offset, permit "no change" values to help existing apps. 2182 * 2183 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2184 * for an ICMPv6 socket will fail." 2185 * The current behavior does not meet RFC3542. 2186 */ 2187 switch (op) { 2188 case SOPT_SET: 2189 if (optlen != sizeof(int)) { 2190 error = EINVAL; 2191 break; 2192 } 2193 error = sooptcopyin(sopt, &optval, sizeof(optval), 2194 sizeof(optval)); 2195 if (error) 2196 break; 2197 if ((optval % 2) != 0) { 2198 /* the API assumes even offset values */ 2199 error = EINVAL; 2200 } else if (so->so_proto->pr_protocol == 2201 IPPROTO_ICMPV6) { 2202 if (optval != icmp6off) 2203 error = EINVAL; 2204 } else 2205 in6p->in6p_cksum = optval; 2206 break; 2207 2208 case SOPT_GET: 2209 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2210 optval = icmp6off; 2211 else 2212 optval = in6p->in6p_cksum; 2213 2214 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2215 break; 2216 2217 default: 2218 error = EINVAL; 2219 break; 2220 } 2221 break; 2222 2223 default: 2224 error = ENOPROTOOPT; 2225 break; 2226 } 2227 2228 return (error); 2229 } 2230 2231 /* 2232 * Set up IP6 options in pcb for insertion in output packets or 2233 * specifying behavior of outgoing packets. 2234 */ 2235 static int 2236 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2237 struct socket *so, struct sockopt *sopt) 2238 { 2239 struct ip6_pktopts *opt = *pktopt; 2240 int error = 0; 2241 struct thread *td = sopt->sopt_td; 2242 2243 /* turn off any old options. */ 2244 if (opt) { 2245 #ifdef DIAGNOSTIC 2246 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2247 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2248 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2249 printf("ip6_pcbopts: all specified options are cleared.\n"); 2250 #endif 2251 ip6_clearpktopts(opt, -1); 2252 } else 2253 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2254 *pktopt = NULL; 2255 2256 if (!m || m->m_len == 0) { 2257 /* 2258 * Only turning off any previous options, regardless of 2259 * whether the opt is just created or given. 2260 */ 2261 free(opt, M_IP6OPT); 2262 return (0); 2263 } 2264 2265 /* set options specified by user. */ 2266 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2267 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2268 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2269 free(opt, M_IP6OPT); 2270 return (error); 2271 } 2272 *pktopt = opt; 2273 return (0); 2274 } 2275 2276 /* 2277 * initialize ip6_pktopts. beware that there are non-zero default values in 2278 * the struct. 2279 */ 2280 void 2281 ip6_initpktopts(struct ip6_pktopts *opt) 2282 { 2283 2284 bzero(opt, sizeof(*opt)); 2285 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2286 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2287 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2288 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2289 } 2290 2291 static int 2292 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2293 struct ucred *cred, int uproto) 2294 { 2295 struct ip6_pktopts *opt; 2296 2297 if (*pktopt == NULL) { 2298 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2299 M_WAITOK); 2300 ip6_initpktopts(*pktopt); 2301 } 2302 opt = *pktopt; 2303 2304 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2305 } 2306 2307 static int 2308 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2309 { 2310 void *optdata = NULL; 2311 int optdatalen = 0; 2312 struct ip6_ext *ip6e; 2313 int error = 0; 2314 struct in6_pktinfo null_pktinfo; 2315 int deftclass = 0, on; 2316 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2317 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2318 2319 switch (optname) { 2320 case IPV6_PKTINFO: 2321 if (pktopt && pktopt->ip6po_pktinfo) 2322 optdata = (void *)pktopt->ip6po_pktinfo; 2323 else { 2324 /* XXX: we don't have to do this every time... */ 2325 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2326 optdata = (void *)&null_pktinfo; 2327 } 2328 optdatalen = sizeof(struct in6_pktinfo); 2329 break; 2330 case IPV6_TCLASS: 2331 if (pktopt && pktopt->ip6po_tclass >= 0) 2332 optdata = (void *)&pktopt->ip6po_tclass; 2333 else 2334 optdata = (void *)&deftclass; 2335 optdatalen = sizeof(int); 2336 break; 2337 case IPV6_HOPOPTS: 2338 if (pktopt && pktopt->ip6po_hbh) { 2339 optdata = (void *)pktopt->ip6po_hbh; 2340 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2341 optdatalen = (ip6e->ip6e_len + 1) << 3; 2342 } 2343 break; 2344 case IPV6_RTHDR: 2345 if (pktopt && pktopt->ip6po_rthdr) { 2346 optdata = (void *)pktopt->ip6po_rthdr; 2347 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2348 optdatalen = (ip6e->ip6e_len + 1) << 3; 2349 } 2350 break; 2351 case IPV6_RTHDRDSTOPTS: 2352 if (pktopt && pktopt->ip6po_dest1) { 2353 optdata = (void *)pktopt->ip6po_dest1; 2354 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2355 optdatalen = (ip6e->ip6e_len + 1) << 3; 2356 } 2357 break; 2358 case IPV6_DSTOPTS: 2359 if (pktopt && pktopt->ip6po_dest2) { 2360 optdata = (void *)pktopt->ip6po_dest2; 2361 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2362 optdatalen = (ip6e->ip6e_len + 1) << 3; 2363 } 2364 break; 2365 case IPV6_NEXTHOP: 2366 if (pktopt && pktopt->ip6po_nexthop) { 2367 optdata = (void *)pktopt->ip6po_nexthop; 2368 optdatalen = pktopt->ip6po_nexthop->sa_len; 2369 } 2370 break; 2371 case IPV6_USE_MIN_MTU: 2372 if (pktopt) 2373 optdata = (void *)&pktopt->ip6po_minmtu; 2374 else 2375 optdata = (void *)&defminmtu; 2376 optdatalen = sizeof(int); 2377 break; 2378 case IPV6_DONTFRAG: 2379 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2380 on = 1; 2381 else 2382 on = 0; 2383 optdata = (void *)&on; 2384 optdatalen = sizeof(on); 2385 break; 2386 case IPV6_PREFER_TEMPADDR: 2387 if (pktopt) 2388 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2389 else 2390 optdata = (void *)&defpreftemp; 2391 optdatalen = sizeof(int); 2392 break; 2393 default: /* should not happen */ 2394 #ifdef DIAGNOSTIC 2395 panic("ip6_getpcbopt: unexpected option\n"); 2396 #endif 2397 return (ENOPROTOOPT); 2398 } 2399 2400 error = sooptcopyout(sopt, optdata, optdatalen); 2401 2402 return (error); 2403 } 2404 2405 void 2406 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2407 { 2408 if (pktopt == NULL) 2409 return; 2410 2411 if (optname == -1 || optname == IPV6_PKTINFO) { 2412 if (pktopt->ip6po_pktinfo) 2413 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2414 pktopt->ip6po_pktinfo = NULL; 2415 } 2416 if (optname == -1 || optname == IPV6_HOPLIMIT) 2417 pktopt->ip6po_hlim = -1; 2418 if (optname == -1 || optname == IPV6_TCLASS) 2419 pktopt->ip6po_tclass = -1; 2420 if (optname == -1 || optname == IPV6_NEXTHOP) { 2421 if (pktopt->ip6po_nextroute.ro_rt) { 2422 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2423 pktopt->ip6po_nextroute.ro_rt = NULL; 2424 } 2425 if (pktopt->ip6po_nexthop) 2426 free(pktopt->ip6po_nexthop, M_IP6OPT); 2427 pktopt->ip6po_nexthop = NULL; 2428 } 2429 if (optname == -1 || optname == IPV6_HOPOPTS) { 2430 if (pktopt->ip6po_hbh) 2431 free(pktopt->ip6po_hbh, M_IP6OPT); 2432 pktopt->ip6po_hbh = NULL; 2433 } 2434 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2435 if (pktopt->ip6po_dest1) 2436 free(pktopt->ip6po_dest1, M_IP6OPT); 2437 pktopt->ip6po_dest1 = NULL; 2438 } 2439 if (optname == -1 || optname == IPV6_RTHDR) { 2440 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2441 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2442 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2443 if (pktopt->ip6po_route.ro_rt) { 2444 RTFREE(pktopt->ip6po_route.ro_rt); 2445 pktopt->ip6po_route.ro_rt = NULL; 2446 } 2447 } 2448 if (optname == -1 || optname == IPV6_DSTOPTS) { 2449 if (pktopt->ip6po_dest2) 2450 free(pktopt->ip6po_dest2, M_IP6OPT); 2451 pktopt->ip6po_dest2 = NULL; 2452 } 2453 } 2454 2455 #define PKTOPT_EXTHDRCPY(type) \ 2456 do {\ 2457 if (src->type) {\ 2458 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2459 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2460 if (dst->type == NULL && canwait == M_NOWAIT)\ 2461 goto bad;\ 2462 bcopy(src->type, dst->type, hlen);\ 2463 }\ 2464 } while (/*CONSTCOND*/ 0) 2465 2466 static int 2467 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2468 { 2469 if (dst == NULL || src == NULL) { 2470 printf("ip6_clearpktopts: invalid argument\n"); 2471 return (EINVAL); 2472 } 2473 2474 dst->ip6po_hlim = src->ip6po_hlim; 2475 dst->ip6po_tclass = src->ip6po_tclass; 2476 dst->ip6po_flags = src->ip6po_flags; 2477 dst->ip6po_minmtu = src->ip6po_minmtu; 2478 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2479 if (src->ip6po_pktinfo) { 2480 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2481 M_IP6OPT, canwait); 2482 if (dst->ip6po_pktinfo == NULL) 2483 goto bad; 2484 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2485 } 2486 if (src->ip6po_nexthop) { 2487 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2488 M_IP6OPT, canwait); 2489 if (dst->ip6po_nexthop == NULL) 2490 goto bad; 2491 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2492 src->ip6po_nexthop->sa_len); 2493 } 2494 PKTOPT_EXTHDRCPY(ip6po_hbh); 2495 PKTOPT_EXTHDRCPY(ip6po_dest1); 2496 PKTOPT_EXTHDRCPY(ip6po_dest2); 2497 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2498 return (0); 2499 2500 bad: 2501 ip6_clearpktopts(dst, -1); 2502 return (ENOBUFS); 2503 } 2504 #undef PKTOPT_EXTHDRCPY 2505 2506 struct ip6_pktopts * 2507 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2508 { 2509 int error; 2510 struct ip6_pktopts *dst; 2511 2512 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2513 if (dst == NULL) 2514 return (NULL); 2515 ip6_initpktopts(dst); 2516 2517 if ((error = copypktopts(dst, src, canwait)) != 0) { 2518 free(dst, M_IP6OPT); 2519 return (NULL); 2520 } 2521 2522 return (dst); 2523 } 2524 2525 void 2526 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2527 { 2528 if (pktopt == NULL) 2529 return; 2530 2531 ip6_clearpktopts(pktopt, -1); 2532 2533 free(pktopt, M_IP6OPT); 2534 } 2535 2536 /* 2537 * Set IPv6 outgoing packet options based on advanced API. 2538 */ 2539 int 2540 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2541 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2542 { 2543 struct cmsghdr *cm = 0; 2544 2545 if (control == NULL || opt == NULL) 2546 return (EINVAL); 2547 2548 ip6_initpktopts(opt); 2549 if (stickyopt) { 2550 int error; 2551 2552 /* 2553 * If stickyopt is provided, make a local copy of the options 2554 * for this particular packet, then override them by ancillary 2555 * objects. 2556 * XXX: copypktopts() does not copy the cached route to a next 2557 * hop (if any). This is not very good in terms of efficiency, 2558 * but we can allow this since this option should be rarely 2559 * used. 2560 */ 2561 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2562 return (error); 2563 } 2564 2565 /* 2566 * XXX: Currently, we assume all the optional information is stored 2567 * in a single mbuf. 2568 */ 2569 if (control->m_next) 2570 return (EINVAL); 2571 2572 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2573 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2574 int error; 2575 2576 if (control->m_len < CMSG_LEN(0)) 2577 return (EINVAL); 2578 2579 cm = mtod(control, struct cmsghdr *); 2580 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2581 return (EINVAL); 2582 if (cm->cmsg_level != IPPROTO_IPV6) 2583 continue; 2584 2585 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2586 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2587 if (error) 2588 return (error); 2589 } 2590 2591 return (0); 2592 } 2593 2594 /* 2595 * Set a particular packet option, as a sticky option or an ancillary data 2596 * item. "len" can be 0 only when it's a sticky option. 2597 * We have 4 cases of combination of "sticky" and "cmsg": 2598 * "sticky=0, cmsg=0": impossible 2599 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2600 * "sticky=1, cmsg=0": RFC3542 socket option 2601 * "sticky=1, cmsg=1": RFC2292 socket option 2602 */ 2603 static int 2604 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2605 struct ucred *cred, int sticky, int cmsg, int uproto) 2606 { 2607 int minmtupolicy, preftemp; 2608 int error; 2609 2610 if (!sticky && !cmsg) { 2611 #ifdef DIAGNOSTIC 2612 printf("ip6_setpktopt: impossible case\n"); 2613 #endif 2614 return (EINVAL); 2615 } 2616 2617 /* 2618 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2619 * not be specified in the context of RFC3542. Conversely, 2620 * RFC3542 types should not be specified in the context of RFC2292. 2621 */ 2622 if (!cmsg) { 2623 switch (optname) { 2624 case IPV6_2292PKTINFO: 2625 case IPV6_2292HOPLIMIT: 2626 case IPV6_2292NEXTHOP: 2627 case IPV6_2292HOPOPTS: 2628 case IPV6_2292DSTOPTS: 2629 case IPV6_2292RTHDR: 2630 case IPV6_2292PKTOPTIONS: 2631 return (ENOPROTOOPT); 2632 } 2633 } 2634 if (sticky && cmsg) { 2635 switch (optname) { 2636 case IPV6_PKTINFO: 2637 case IPV6_HOPLIMIT: 2638 case IPV6_NEXTHOP: 2639 case IPV6_HOPOPTS: 2640 case IPV6_DSTOPTS: 2641 case IPV6_RTHDRDSTOPTS: 2642 case IPV6_RTHDR: 2643 case IPV6_USE_MIN_MTU: 2644 case IPV6_DONTFRAG: 2645 case IPV6_TCLASS: 2646 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2647 return (ENOPROTOOPT); 2648 } 2649 } 2650 2651 switch (optname) { 2652 case IPV6_2292PKTINFO: 2653 case IPV6_PKTINFO: 2654 { 2655 struct ifnet *ifp = NULL; 2656 struct in6_pktinfo *pktinfo; 2657 2658 if (len != sizeof(struct in6_pktinfo)) 2659 return (EINVAL); 2660 2661 pktinfo = (struct in6_pktinfo *)buf; 2662 2663 /* 2664 * An application can clear any sticky IPV6_PKTINFO option by 2665 * doing a "regular" setsockopt with ipi6_addr being 2666 * in6addr_any and ipi6_ifindex being zero. 2667 * [RFC 3542, Section 6] 2668 */ 2669 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2670 pktinfo->ipi6_ifindex == 0 && 2671 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2672 ip6_clearpktopts(opt, optname); 2673 break; 2674 } 2675 2676 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2677 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2678 return (EINVAL); 2679 } 2680 2681 /* validate the interface index if specified. */ 2682 if (pktinfo->ipi6_ifindex > V_if_index || 2683 pktinfo->ipi6_ifindex < 0) { 2684 return (ENXIO); 2685 } 2686 if (pktinfo->ipi6_ifindex) { 2687 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2688 if (ifp == NULL) 2689 return (ENXIO); 2690 } 2691 2692 /* 2693 * We store the address anyway, and let in6_selectsrc() 2694 * validate the specified address. This is because ipi6_addr 2695 * may not have enough information about its scope zone, and 2696 * we may need additional information (such as outgoing 2697 * interface or the scope zone of a destination address) to 2698 * disambiguate the scope. 2699 * XXX: the delay of the validation may confuse the 2700 * application when it is used as a sticky option. 2701 */ 2702 if (opt->ip6po_pktinfo == NULL) { 2703 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2704 M_IP6OPT, M_NOWAIT); 2705 if (opt->ip6po_pktinfo == NULL) 2706 return (ENOBUFS); 2707 } 2708 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2709 break; 2710 } 2711 2712 case IPV6_2292HOPLIMIT: 2713 case IPV6_HOPLIMIT: 2714 { 2715 int *hlimp; 2716 2717 /* 2718 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2719 * to simplify the ordering among hoplimit options. 2720 */ 2721 if (optname == IPV6_HOPLIMIT && sticky) 2722 return (ENOPROTOOPT); 2723 2724 if (len != sizeof(int)) 2725 return (EINVAL); 2726 hlimp = (int *)buf; 2727 if (*hlimp < -1 || *hlimp > 255) 2728 return (EINVAL); 2729 2730 opt->ip6po_hlim = *hlimp; 2731 break; 2732 } 2733 2734 case IPV6_TCLASS: 2735 { 2736 int tclass; 2737 2738 if (len != sizeof(int)) 2739 return (EINVAL); 2740 tclass = *(int *)buf; 2741 if (tclass < -1 || tclass > 255) 2742 return (EINVAL); 2743 2744 opt->ip6po_tclass = tclass; 2745 break; 2746 } 2747 2748 case IPV6_2292NEXTHOP: 2749 case IPV6_NEXTHOP: 2750 if (cred != NULL) { 2751 error = priv_check_cred(cred, 2752 PRIV_NETINET_SETHDROPTS, 0); 2753 if (error) 2754 return (error); 2755 } 2756 2757 if (len == 0) { /* just remove the option */ 2758 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2759 break; 2760 } 2761 2762 /* check if cmsg_len is large enough for sa_len */ 2763 if (len < sizeof(struct sockaddr) || len < *buf) 2764 return (EINVAL); 2765 2766 switch (((struct sockaddr *)buf)->sa_family) { 2767 case AF_INET6: 2768 { 2769 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2770 int error; 2771 2772 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2773 return (EINVAL); 2774 2775 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2776 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2777 return (EINVAL); 2778 } 2779 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2780 != 0) { 2781 return (error); 2782 } 2783 break; 2784 } 2785 case AF_LINK: /* should eventually be supported */ 2786 default: 2787 return (EAFNOSUPPORT); 2788 } 2789 2790 /* turn off the previous option, then set the new option. */ 2791 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2792 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2793 if (opt->ip6po_nexthop == NULL) 2794 return (ENOBUFS); 2795 bcopy(buf, opt->ip6po_nexthop, *buf); 2796 break; 2797 2798 case IPV6_2292HOPOPTS: 2799 case IPV6_HOPOPTS: 2800 { 2801 struct ip6_hbh *hbh; 2802 int hbhlen; 2803 2804 /* 2805 * XXX: We don't allow a non-privileged user to set ANY HbH 2806 * options, since per-option restriction has too much 2807 * overhead. 2808 */ 2809 if (cred != NULL) { 2810 error = priv_check_cred(cred, 2811 PRIV_NETINET_SETHDROPTS, 0); 2812 if (error) 2813 return (error); 2814 } 2815 2816 if (len == 0) { 2817 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2818 break; /* just remove the option */ 2819 } 2820 2821 /* message length validation */ 2822 if (len < sizeof(struct ip6_hbh)) 2823 return (EINVAL); 2824 hbh = (struct ip6_hbh *)buf; 2825 hbhlen = (hbh->ip6h_len + 1) << 3; 2826 if (len != hbhlen) 2827 return (EINVAL); 2828 2829 /* turn off the previous option, then set the new option. */ 2830 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2831 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2832 if (opt->ip6po_hbh == NULL) 2833 return (ENOBUFS); 2834 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2835 2836 break; 2837 } 2838 2839 case IPV6_2292DSTOPTS: 2840 case IPV6_DSTOPTS: 2841 case IPV6_RTHDRDSTOPTS: 2842 { 2843 struct ip6_dest *dest, **newdest = NULL; 2844 int destlen; 2845 2846 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2847 error = priv_check_cred(cred, 2848 PRIV_NETINET_SETHDROPTS, 0); 2849 if (error) 2850 return (error); 2851 } 2852 2853 if (len == 0) { 2854 ip6_clearpktopts(opt, optname); 2855 break; /* just remove the option */ 2856 } 2857 2858 /* message length validation */ 2859 if (len < sizeof(struct ip6_dest)) 2860 return (EINVAL); 2861 dest = (struct ip6_dest *)buf; 2862 destlen = (dest->ip6d_len + 1) << 3; 2863 if (len != destlen) 2864 return (EINVAL); 2865 2866 /* 2867 * Determine the position that the destination options header 2868 * should be inserted; before or after the routing header. 2869 */ 2870 switch (optname) { 2871 case IPV6_2292DSTOPTS: 2872 /* 2873 * The old advacned API is ambiguous on this point. 2874 * Our approach is to determine the position based 2875 * according to the existence of a routing header. 2876 * Note, however, that this depends on the order of the 2877 * extension headers in the ancillary data; the 1st 2878 * part of the destination options header must appear 2879 * before the routing header in the ancillary data, 2880 * too. 2881 * RFC3542 solved the ambiguity by introducing 2882 * separate ancillary data or option types. 2883 */ 2884 if (opt->ip6po_rthdr == NULL) 2885 newdest = &opt->ip6po_dest1; 2886 else 2887 newdest = &opt->ip6po_dest2; 2888 break; 2889 case IPV6_RTHDRDSTOPTS: 2890 newdest = &opt->ip6po_dest1; 2891 break; 2892 case IPV6_DSTOPTS: 2893 newdest = &opt->ip6po_dest2; 2894 break; 2895 } 2896 2897 /* turn off the previous option, then set the new option. */ 2898 ip6_clearpktopts(opt, optname); 2899 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2900 if (*newdest == NULL) 2901 return (ENOBUFS); 2902 bcopy(dest, *newdest, destlen); 2903 2904 break; 2905 } 2906 2907 case IPV6_2292RTHDR: 2908 case IPV6_RTHDR: 2909 { 2910 struct ip6_rthdr *rth; 2911 int rthlen; 2912 2913 if (len == 0) { 2914 ip6_clearpktopts(opt, IPV6_RTHDR); 2915 break; /* just remove the option */ 2916 } 2917 2918 /* message length validation */ 2919 if (len < sizeof(struct ip6_rthdr)) 2920 return (EINVAL); 2921 rth = (struct ip6_rthdr *)buf; 2922 rthlen = (rth->ip6r_len + 1) << 3; 2923 if (len != rthlen) 2924 return (EINVAL); 2925 2926 switch (rth->ip6r_type) { 2927 case IPV6_RTHDR_TYPE_0: 2928 if (rth->ip6r_len == 0) /* must contain one addr */ 2929 return (EINVAL); 2930 if (rth->ip6r_len % 2) /* length must be even */ 2931 return (EINVAL); 2932 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2933 return (EINVAL); 2934 break; 2935 default: 2936 return (EINVAL); /* not supported */ 2937 } 2938 2939 /* turn off the previous option */ 2940 ip6_clearpktopts(opt, IPV6_RTHDR); 2941 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2942 if (opt->ip6po_rthdr == NULL) 2943 return (ENOBUFS); 2944 bcopy(rth, opt->ip6po_rthdr, rthlen); 2945 2946 break; 2947 } 2948 2949 case IPV6_USE_MIN_MTU: 2950 if (len != sizeof(int)) 2951 return (EINVAL); 2952 minmtupolicy = *(int *)buf; 2953 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2954 minmtupolicy != IP6PO_MINMTU_DISABLE && 2955 minmtupolicy != IP6PO_MINMTU_ALL) { 2956 return (EINVAL); 2957 } 2958 opt->ip6po_minmtu = minmtupolicy; 2959 break; 2960 2961 case IPV6_DONTFRAG: 2962 if (len != sizeof(int)) 2963 return (EINVAL); 2964 2965 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2966 /* 2967 * we ignore this option for TCP sockets. 2968 * (RFC3542 leaves this case unspecified.) 2969 */ 2970 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2971 } else 2972 opt->ip6po_flags |= IP6PO_DONTFRAG; 2973 break; 2974 2975 case IPV6_PREFER_TEMPADDR: 2976 if (len != sizeof(int)) 2977 return (EINVAL); 2978 preftemp = *(int *)buf; 2979 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 2980 preftemp != IP6PO_TEMPADDR_NOTPREFER && 2981 preftemp != IP6PO_TEMPADDR_PREFER) { 2982 return (EINVAL); 2983 } 2984 opt->ip6po_prefer_tempaddr = preftemp; 2985 break; 2986 2987 default: 2988 return (ENOPROTOOPT); 2989 } /* end of switch */ 2990 2991 return (0); 2992 } 2993 2994 /* 2995 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2996 * packet to the input queue of a specified interface. Note that this 2997 * calls the output routine of the loopback "driver", but with an interface 2998 * pointer that might NOT be &loif -- easier than replicating that code here. 2999 */ 3000 void 3001 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 3002 { 3003 struct mbuf *copym; 3004 struct ip6_hdr *ip6; 3005 3006 copym = m_copy(m, 0, M_COPYALL); 3007 if (copym == NULL) 3008 return; 3009 3010 /* 3011 * Make sure to deep-copy IPv6 header portion in case the data 3012 * is in an mbuf cluster, so that we can safely override the IPv6 3013 * header portion later. 3014 */ 3015 if ((copym->m_flags & M_EXT) != 0 || 3016 copym->m_len < sizeof(struct ip6_hdr)) { 3017 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3018 if (copym == NULL) 3019 return; 3020 } 3021 3022 #ifdef DIAGNOSTIC 3023 if (copym->m_len < sizeof(*ip6)) { 3024 m_freem(copym); 3025 return; 3026 } 3027 #endif 3028 3029 ip6 = mtod(copym, struct ip6_hdr *); 3030 /* 3031 * clear embedded scope identifiers if necessary. 3032 * in6_clearscope will touch the addresses only when necessary. 3033 */ 3034 in6_clearscope(&ip6->ip6_src); 3035 in6_clearscope(&ip6->ip6_dst); 3036 3037 (void)if_simloop(ifp, copym, dst->sin6_family, 0); 3038 } 3039 3040 /* 3041 * Chop IPv6 header off from the payload. 3042 */ 3043 static int 3044 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3045 { 3046 struct mbuf *mh; 3047 struct ip6_hdr *ip6; 3048 3049 ip6 = mtod(m, struct ip6_hdr *); 3050 if (m->m_len > sizeof(*ip6)) { 3051 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3052 if (mh == 0) { 3053 m_freem(m); 3054 return ENOBUFS; 3055 } 3056 M_MOVE_PKTHDR(mh, m); 3057 MH_ALIGN(mh, sizeof(*ip6)); 3058 m->m_len -= sizeof(*ip6); 3059 m->m_data += sizeof(*ip6); 3060 mh->m_next = m; 3061 m = mh; 3062 m->m_len = sizeof(*ip6); 3063 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3064 } 3065 exthdrs->ip6e_ip6 = m; 3066 return 0; 3067 } 3068 3069 /* 3070 * Compute IPv6 extension header length. 3071 */ 3072 int 3073 ip6_optlen(struct inpcb *in6p) 3074 { 3075 int len; 3076 3077 if (!in6p->in6p_outputopts) 3078 return 0; 3079 3080 len = 0; 3081 #define elen(x) \ 3082 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3083 3084 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3085 if (in6p->in6p_outputopts->ip6po_rthdr) 3086 /* dest1 is valid with rthdr only */ 3087 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3088 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3089 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3090 return len; 3091 #undef elen 3092 } 3093