1 /* $FreeBSD$ */ 2 /* $KAME: ip6_output.c,v 1.115 2000/07/03 13:23:28 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Berkeley and its contributors. 49 * 4. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 66 */ 67 68 #include "opt_ip6fw.h" 69 #include "opt_inet.h" 70 #include "opt_inet6.h" 71 #include "opt_ipsec.h" 72 #include "opt_pfil_hooks.h" 73 74 #include <sys/param.h> 75 #include <sys/malloc.h> 76 #include <sys/mbuf.h> 77 #include <sys/errno.h> 78 #include <sys/protosw.h> 79 #include <sys/socket.h> 80 #include <sys/socketvar.h> 81 #include <sys/systm.h> 82 #include <sys/kernel.h> 83 84 #include <net/if.h> 85 #include <net/route.h> 86 #ifdef PFIL_HOOKS 87 #include <net/pfil.h> 88 #endif 89 90 #include <netinet/in.h> 91 #include <netinet/in_var.h> 92 #include <netinet/ip6.h> 93 #include <netinet/icmp6.h> 94 #include <netinet6/ip6_var.h> 95 #include <netinet/in_pcb.h> 96 #include <netinet6/nd6.h> 97 98 #ifdef IPSEC 99 #include <netinet6/ipsec.h> 100 #ifdef INET6 101 #include <netinet6/ipsec6.h> 102 #endif 103 #include <netkey/key.h> 104 #endif /* IPSEC */ 105 106 #include <net/net_osdep.h> 107 108 #include <netinet6/ip6_fw.h> 109 110 #include <netinet6/ip6protosw.h> 111 112 static MALLOC_DEFINE(M_IPMOPTS, "ip6_moptions", "internet multicast options"); 113 114 struct ip6_exthdrs { 115 struct mbuf *ip6e_ip6; 116 struct mbuf *ip6e_hbh; 117 struct mbuf *ip6e_dest1; 118 struct mbuf *ip6e_rthdr; 119 struct mbuf *ip6e_dest2; 120 }; 121 122 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 123 struct socket *, struct sockopt *sopt)); 124 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *)); 125 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **)); 126 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int)); 127 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 128 struct ip6_frag **)); 129 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t)); 130 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *)); 131 132 extern struct ip6protosw inet6sw[]; 133 extern u_char ip6_protox[IPPROTO_MAX]; 134 135 /* 136 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 137 * header (with pri, len, nxt, hlim, src, dst). 138 * This function may modify ver and hlim only. 139 * The mbuf chain containing the packet will be freed. 140 * The mbuf opt, if present, will not be freed. 141 */ 142 int 143 ip6_output(m0, opt, ro, flags, im6o, ifpp) 144 struct mbuf *m0; 145 struct ip6_pktopts *opt; 146 struct route_in6 *ro; 147 int flags; 148 struct ip6_moptions *im6o; 149 struct ifnet **ifpp; /* XXX: just for statistics */ 150 { 151 struct ip6_hdr *ip6, *mhip6; 152 struct ifnet *ifp, *origifp; 153 struct mbuf *m = m0; 154 int hlen, tlen, len, off; 155 struct route_in6 ip6route; 156 struct sockaddr_in6 *dst; 157 int error = 0; 158 struct in6_ifaddr *ia = NULL; 159 u_long mtu; 160 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 161 struct ip6_exthdrs exthdrs; 162 struct in6_addr finaldst; 163 struct route_in6 *ro_pmtu = NULL; 164 int hdrsplit = 0; 165 int needipsec = 0; 166 #ifdef PFIL_HOOKS 167 struct packet_filter_hook *pfh; 168 struct mbuf *m1; 169 int rv; 170 #endif /* PFIL_HOOKS */ 171 #ifdef IPSEC 172 int needipsectun = 0; 173 struct socket *so; 174 struct secpolicy *sp = NULL; 175 176 /* for AH processing. stupid to have "socket" variable in IP layer... */ 177 so = ipsec_getsocket(m); 178 ipsec_setsocket(m, NULL); 179 ip6 = mtod(m, struct ip6_hdr *); 180 #endif /* IPSEC */ 181 182 #define MAKE_EXTHDR(hp, mp) \ 183 do { \ 184 if (hp) { \ 185 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 186 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 187 ((eh)->ip6e_len + 1) << 3); \ 188 if (error) \ 189 goto freehdrs; \ 190 } \ 191 } while (0) 192 193 bzero(&exthdrs, sizeof(exthdrs)); 194 195 if (opt) { 196 /* Hop-by-Hop options header */ 197 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 198 /* Destination options header(1st part) */ 199 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 200 /* Routing header */ 201 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 202 /* Destination options header(2nd part) */ 203 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 204 } 205 206 #ifdef IPSEC 207 /* get a security policy for this packet */ 208 if (so == NULL) 209 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 210 else 211 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 212 213 if (sp == NULL) { 214 ipsec6stat.out_inval++; 215 goto freehdrs; 216 } 217 218 error = 0; 219 220 /* check policy */ 221 switch (sp->policy) { 222 case IPSEC_POLICY_DISCARD: 223 /* 224 * This packet is just discarded. 225 */ 226 ipsec6stat.out_polvio++; 227 goto freehdrs; 228 229 case IPSEC_POLICY_BYPASS: 230 case IPSEC_POLICY_NONE: 231 /* no need to do IPsec. */ 232 needipsec = 0; 233 break; 234 235 case IPSEC_POLICY_IPSEC: 236 if (sp->req == NULL) { 237 /* acquire a policy */ 238 error = key_spdacquire(sp); 239 goto freehdrs; 240 } 241 needipsec = 1; 242 break; 243 244 case IPSEC_POLICY_ENTRUST: 245 default: 246 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 247 } 248 #endif /* IPSEC */ 249 250 /* 251 * Calculate the total length of the extension header chain. 252 * Keep the length of the unfragmentable part for fragmentation. 253 */ 254 optlen = 0; 255 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 256 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 257 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 258 unfragpartlen = optlen + sizeof(struct ip6_hdr); 259 /* NOTE: we don't add AH/ESP length here. do that later. */ 260 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 261 262 /* 263 * If we need IPsec, or there is at least one extension header, 264 * separate IP6 header from the payload. 265 */ 266 if ((needipsec || optlen) && !hdrsplit) { 267 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 268 m = NULL; 269 goto freehdrs; 270 } 271 m = exthdrs.ip6e_ip6; 272 hdrsplit++; 273 } 274 275 /* adjust pointer */ 276 ip6 = mtod(m, struct ip6_hdr *); 277 278 /* adjust mbuf packet header length */ 279 m->m_pkthdr.len += optlen; 280 plen = m->m_pkthdr.len - sizeof(*ip6); 281 282 /* If this is a jumbo payload, insert a jumbo payload option. */ 283 if (plen > IPV6_MAXPACKET) { 284 if (!hdrsplit) { 285 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 286 m = NULL; 287 goto freehdrs; 288 } 289 m = exthdrs.ip6e_ip6; 290 hdrsplit++; 291 } 292 /* adjust pointer */ 293 ip6 = mtod(m, struct ip6_hdr *); 294 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 295 goto freehdrs; 296 ip6->ip6_plen = 0; 297 } else 298 ip6->ip6_plen = htons(plen); 299 300 /* 301 * Concatenate headers and fill in next header fields. 302 * Here we have, on "m" 303 * IPv6 payload 304 * and we insert headers accordingly. Finally, we should be getting: 305 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 306 * 307 * during the header composing process, "m" points to IPv6 header. 308 * "mprev" points to an extension header prior to esp. 309 */ 310 { 311 u_char *nexthdrp = &ip6->ip6_nxt; 312 struct mbuf *mprev = m; 313 314 /* 315 * we treat dest2 specially. this makes IPsec processing 316 * much easier. 317 * 318 * result: IPv6 dest2 payload 319 * m and mprev will point to IPv6 header. 320 */ 321 if (exthdrs.ip6e_dest2) { 322 if (!hdrsplit) 323 panic("assumption failed: hdr not split"); 324 exthdrs.ip6e_dest2->m_next = m->m_next; 325 m->m_next = exthdrs.ip6e_dest2; 326 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 327 ip6->ip6_nxt = IPPROTO_DSTOPTS; 328 } 329 330 #define MAKE_CHAIN(m, mp, p, i)\ 331 do {\ 332 if (m) {\ 333 if (!hdrsplit) \ 334 panic("assumption failed: hdr not split"); \ 335 *mtod((m), u_char *) = *(p);\ 336 *(p) = (i);\ 337 p = mtod((m), u_char *);\ 338 (m)->m_next = (mp)->m_next;\ 339 (mp)->m_next = (m);\ 340 (mp) = (m);\ 341 }\ 342 } while (0) 343 /* 344 * result: IPv6 hbh dest1 rthdr dest2 payload 345 * m will point to IPv6 header. mprev will point to the 346 * extension header prior to dest2 (rthdr in the above case). 347 */ 348 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, 349 nexthdrp, IPPROTO_HOPOPTS); 350 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, 351 nexthdrp, IPPROTO_DSTOPTS); 352 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, 353 nexthdrp, IPPROTO_ROUTING); 354 355 #ifdef IPSEC 356 if (!needipsec) 357 goto skip_ipsec2; 358 359 /* 360 * pointers after IPsec headers are not valid any more. 361 * other pointers need a great care too. 362 * (IPsec routines should not mangle mbufs prior to AH/ESP) 363 */ 364 exthdrs.ip6e_dest2 = NULL; 365 366 { 367 struct ip6_rthdr *rh = NULL; 368 int segleft_org = 0; 369 struct ipsec_output_state state; 370 371 if (exthdrs.ip6e_rthdr) { 372 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 373 segleft_org = rh->ip6r_segleft; 374 rh->ip6r_segleft = 0; 375 } 376 377 bzero(&state, sizeof(state)); 378 state.m = m; 379 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 380 &needipsectun); 381 m = state.m; 382 if (error) { 383 /* mbuf is already reclaimed in ipsec6_output_trans. */ 384 m = NULL; 385 switch (error) { 386 case EHOSTUNREACH: 387 case ENETUNREACH: 388 case EMSGSIZE: 389 case ENOBUFS: 390 case ENOMEM: 391 break; 392 default: 393 printf("ip6_output (ipsec): error code %d\n", error); 394 /*fall through*/ 395 case ENOENT: 396 /* don't show these error codes to the user */ 397 error = 0; 398 break; 399 } 400 goto bad; 401 } 402 if (exthdrs.ip6e_rthdr) { 403 /* ah6_output doesn't modify mbuf chain */ 404 rh->ip6r_segleft = segleft_org; 405 } 406 } 407 skip_ipsec2:; 408 #endif 409 } 410 411 /* 412 * If there is a routing header, replace destination address field 413 * with the first hop of the routing header. 414 */ 415 if (exthdrs.ip6e_rthdr) { 416 struct ip6_rthdr *rh = 417 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 418 struct ip6_rthdr *)); 419 struct ip6_rthdr0 *rh0; 420 421 finaldst = ip6->ip6_dst; 422 switch(rh->ip6r_type) { 423 case IPV6_RTHDR_TYPE_0: 424 rh0 = (struct ip6_rthdr0 *)rh; 425 ip6->ip6_dst = rh0->ip6r0_addr[0]; 426 bcopy((caddr_t)&rh0->ip6r0_addr[1], 427 (caddr_t)&rh0->ip6r0_addr[0], 428 sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1) 429 ); 430 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst; 431 break; 432 default: /* is it possible? */ 433 error = EINVAL; 434 goto bad; 435 } 436 } 437 438 /* Source address validation */ 439 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 440 (flags & IPV6_DADOUTPUT) == 0) { 441 error = EOPNOTSUPP; 442 ip6stat.ip6s_badscope++; 443 goto bad; 444 } 445 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 446 error = EOPNOTSUPP; 447 ip6stat.ip6s_badscope++; 448 goto bad; 449 } 450 451 ip6stat.ip6s_localout++; 452 453 /* 454 * Route packet. 455 */ 456 if (ro == 0) { 457 ro = &ip6route; 458 bzero((caddr_t)ro, sizeof(*ro)); 459 } 460 ro_pmtu = ro; 461 if (opt && opt->ip6po_rthdr) 462 ro = &opt->ip6po_route; 463 dst = (struct sockaddr_in6 *)&ro->ro_dst; 464 /* 465 * If there is a cached route, 466 * check that it is to the same destination 467 * and is still up. If not, free it and try again. 468 */ 469 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 470 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 471 RTFREE(ro->ro_rt); 472 ro->ro_rt = (struct rtentry *)0; 473 } 474 if (ro->ro_rt == 0) { 475 bzero(dst, sizeof(*dst)); 476 dst->sin6_family = AF_INET6; 477 dst->sin6_len = sizeof(struct sockaddr_in6); 478 dst->sin6_addr = ip6->ip6_dst; 479 #ifdef SCOPEDROUTING 480 /* XXX: sin6_scope_id should already be fixed at this point */ 481 if (IN6_IS_SCOPE_LINKLOCAL(&dst->sin6_addr)) 482 dst->sin6_scope_id = ntohs(dst->sin6_addr.s6_addr16[1]); 483 #endif 484 } 485 #ifdef IPSEC 486 if (needipsec && needipsectun) { 487 struct ipsec_output_state state; 488 489 /* 490 * All the extension headers will become inaccessible 491 * (since they can be encrypted). 492 * Don't panic, we need no more updates to extension headers 493 * on inner IPv6 packet (since they are now encapsulated). 494 * 495 * IPv6 [ESP|AH] IPv6 [extension headers] payload 496 */ 497 bzero(&exthdrs, sizeof(exthdrs)); 498 exthdrs.ip6e_ip6 = m; 499 500 bzero(&state, sizeof(state)); 501 state.m = m; 502 state.ro = (struct route *)ro; 503 state.dst = (struct sockaddr *)dst; 504 505 error = ipsec6_output_tunnel(&state, sp, flags); 506 507 m = state.m; 508 ro = (struct route_in6 *)state.ro; 509 dst = (struct sockaddr_in6 *)state.dst; 510 if (error) { 511 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 512 m0 = m = NULL; 513 m = NULL; 514 switch (error) { 515 case EHOSTUNREACH: 516 case ENETUNREACH: 517 case EMSGSIZE: 518 case ENOBUFS: 519 case ENOMEM: 520 break; 521 default: 522 printf("ip6_output (ipsec): error code %d\n", error); 523 /*fall through*/ 524 case ENOENT: 525 /* don't show these error codes to the user */ 526 error = 0; 527 break; 528 } 529 goto bad; 530 } 531 532 exthdrs.ip6e_ip6 = m; 533 } 534 #endif /*IPSEC*/ 535 536 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 537 /* Unicast */ 538 539 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 540 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 541 /* xxx 542 * interface selection comes here 543 * if an interface is specified from an upper layer, 544 * ifp must point it. 545 */ 546 if (ro->ro_rt == 0) { 547 /* 548 * non-bsdi always clone routes, if parent is 549 * PRF_CLONING. 550 */ 551 rtalloc((struct route *)ro); 552 } 553 if (ro->ro_rt == 0) { 554 ip6stat.ip6s_noroute++; 555 error = EHOSTUNREACH; 556 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 557 goto bad; 558 } 559 ia = ifatoia6(ro->ro_rt->rt_ifa); 560 ifp = ro->ro_rt->rt_ifp; 561 ro->ro_rt->rt_use++; 562 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 563 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 564 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 565 566 in6_ifstat_inc(ifp, ifs6_out_request); 567 568 /* 569 * Check if the outgoing interface conflicts with 570 * the interface specified by ifi6_ifindex (if specified). 571 * Note that loopback interface is always okay. 572 * (this may happen when we are sending a packet to one of 573 * our own addresses.) 574 */ 575 if (opt && opt->ip6po_pktinfo 576 && opt->ip6po_pktinfo->ipi6_ifindex) { 577 if (!(ifp->if_flags & IFF_LOOPBACK) 578 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 579 ip6stat.ip6s_noroute++; 580 in6_ifstat_inc(ifp, ifs6_out_discard); 581 error = EHOSTUNREACH; 582 goto bad; 583 } 584 } 585 586 if (opt && opt->ip6po_hlim != -1) 587 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 588 } else { 589 /* Multicast */ 590 struct in6_multi *in6m; 591 592 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 593 594 /* 595 * See if the caller provided any multicast options 596 */ 597 ifp = NULL; 598 if (im6o != NULL) { 599 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 600 if (im6o->im6o_multicast_ifp != NULL) 601 ifp = im6o->im6o_multicast_ifp; 602 } else 603 ip6->ip6_hlim = ip6_defmcasthlim; 604 605 /* 606 * See if the caller provided the outgoing interface 607 * as an ancillary data. 608 * Boundary check for ifindex is assumed to be already done. 609 */ 610 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 611 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex]; 612 613 /* 614 * If the destination is a node-local scope multicast, 615 * the packet should be loop-backed only. 616 */ 617 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) { 618 /* 619 * If the outgoing interface is already specified, 620 * it should be a loopback interface. 621 */ 622 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) { 623 ip6stat.ip6s_badscope++; 624 error = ENETUNREACH; /* XXX: better error? */ 625 /* XXX correct ifp? */ 626 in6_ifstat_inc(ifp, ifs6_out_discard); 627 goto bad; 628 } else { 629 ifp = &loif[0]; 630 } 631 } 632 633 if (opt && opt->ip6po_hlim != -1) 634 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 635 636 /* 637 * If caller did not provide an interface lookup a 638 * default in the routing table. This is either a 639 * default for the speicfied group (i.e. a host 640 * route), or a multicast default (a route for the 641 * ``net'' ff00::/8). 642 */ 643 if (ifp == NULL) { 644 if (ro->ro_rt == 0) { 645 ro->ro_rt = rtalloc1((struct sockaddr *) 646 &ro->ro_dst, 0, 0UL); 647 } 648 if (ro->ro_rt == 0) { 649 ip6stat.ip6s_noroute++; 650 error = EHOSTUNREACH; 651 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 652 goto bad; 653 } 654 ia = ifatoia6(ro->ro_rt->rt_ifa); 655 ifp = ro->ro_rt->rt_ifp; 656 ro->ro_rt->rt_use++; 657 } 658 659 if ((flags & IPV6_FORWARDING) == 0) 660 in6_ifstat_inc(ifp, ifs6_out_request); 661 in6_ifstat_inc(ifp, ifs6_out_mcast); 662 663 /* 664 * Confirm that the outgoing interface supports multicast. 665 */ 666 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 667 ip6stat.ip6s_noroute++; 668 in6_ifstat_inc(ifp, ifs6_out_discard); 669 error = ENETUNREACH; 670 goto bad; 671 } 672 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 673 if (in6m != NULL && 674 (im6o == NULL || im6o->im6o_multicast_loop)) { 675 /* 676 * If we belong to the destination multicast group 677 * on the outgoing interface, and the caller did not 678 * forbid loopback, loop back a copy. 679 */ 680 ip6_mloopback(ifp, m, dst); 681 } else { 682 /* 683 * If we are acting as a multicast router, perform 684 * multicast forwarding as if the packet had just 685 * arrived on the interface to which we are about 686 * to send. The multicast forwarding function 687 * recursively calls this function, using the 688 * IPV6_FORWARDING flag to prevent infinite recursion. 689 * 690 * Multicasts that are looped back by ip6_mloopback(), 691 * above, will be forwarded by the ip6_input() routine, 692 * if necessary. 693 */ 694 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 695 if (ip6_mforward(ip6, ifp, m) != 0) { 696 m_freem(m); 697 goto done; 698 } 699 } 700 } 701 /* 702 * Multicasts with a hoplimit of zero may be looped back, 703 * above, but must not be transmitted on a network. 704 * Also, multicasts addressed to the loopback interface 705 * are not sent -- the above call to ip6_mloopback() will 706 * loop back a copy if this host actually belongs to the 707 * destination group on the loopback interface. 708 */ 709 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) { 710 m_freem(m); 711 goto done; 712 } 713 } 714 715 /* 716 * Fill the outgoing inteface to tell the upper layer 717 * to increment per-interface statistics. 718 */ 719 if (ifpp) 720 *ifpp = ifp; 721 722 /* 723 * Determine path MTU. 724 */ 725 if (ro_pmtu != ro) { 726 /* The first hop and the final destination may differ. */ 727 struct sockaddr_in6 *sin6_fin = 728 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 729 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 730 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr, 731 &finaldst))) { 732 RTFREE(ro_pmtu->ro_rt); 733 ro_pmtu->ro_rt = (struct rtentry *)0; 734 } 735 if (ro_pmtu->ro_rt == 0) { 736 bzero(sin6_fin, sizeof(*sin6_fin)); 737 sin6_fin->sin6_family = AF_INET6; 738 sin6_fin->sin6_len = sizeof(struct sockaddr_in6); 739 sin6_fin->sin6_addr = finaldst; 740 741 rtalloc((struct route *)ro_pmtu); 742 } 743 } 744 if (ro_pmtu->ro_rt != NULL) { 745 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu; 746 747 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 748 if (mtu > ifmtu) { 749 /* 750 * The MTU on the route is larger than the MTU on 751 * the interface! This shouldn't happen, unless the 752 * MTU of the interface has been changed after the 753 * interface was brought up. Change the MTU in the 754 * route to match the interface MTU (as long as the 755 * field isn't locked). 756 */ 757 mtu = ifmtu; 758 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0) 759 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */ 760 } 761 } else { 762 mtu = nd_ifinfo[ifp->if_index].linkmtu; 763 } 764 765 /* Fake scoped addresses */ 766 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 767 /* 768 * If source or destination address is a scoped address, and 769 * the packet is going to be sent to a loopback interface, 770 * we should keep the original interface. 771 */ 772 773 /* 774 * XXX: this is a very experimental and temporary solution. 775 * We eventually have sockaddr_in6 and use the sin6_scope_id 776 * field of the structure here. 777 * We rely on the consistency between two scope zone ids 778 * of source add destination, which should already be assured 779 * Larger scopes than link will be supported in the near 780 * future. 781 */ 782 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 783 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])]; 784 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 785 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])]; 786 else 787 origifp = ifp; 788 } 789 else 790 origifp = ifp; 791 #ifndef FAKE_LOOPBACK_IF 792 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 793 #else 794 if (1) 795 #endif 796 { 797 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 798 ip6->ip6_src.s6_addr16[1] = 0; 799 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 800 ip6->ip6_dst.s6_addr16[1] = 0; 801 } 802 803 /* 804 * Check with the firewall... 805 */ 806 if (ip6_fw_enable && ip6_fw_chk_ptr) { 807 u_short port = 0; 808 m->m_pkthdr.rcvif = NULL; /*XXX*/ 809 /* If ipfw says divert, we have to just drop packet */ 810 if ((*ip6_fw_chk_ptr)(&ip6, ifp, &port, &m)) { 811 m_freem(m); 812 goto done; 813 } 814 if (!m) { 815 error = EACCES; 816 goto done; 817 } 818 } 819 820 /* 821 * If the outgoing packet contains a hop-by-hop options header, 822 * it must be examined and processed even by the source node. 823 * (RFC 2460, section 4.) 824 */ 825 if (exthdrs.ip6e_hbh) { 826 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, 827 struct ip6_hbh *); 828 u_int32_t dummy1; /* XXX unused */ 829 u_int32_t dummy2; /* XXX unused */ 830 831 /* 832 * XXX: if we have to send an ICMPv6 error to the sender, 833 * we need the M_LOOP flag since icmp6_error() expects 834 * the IPv6 and the hop-by-hop options header are 835 * continuous unless the flag is set. 836 */ 837 m->m_flags |= M_LOOP; 838 m->m_pkthdr.rcvif = ifp; 839 if (ip6_process_hopopts(m, 840 (u_int8_t *)(hbh + 1), 841 ((hbh->ip6h_len + 1) << 3) - 842 sizeof(struct ip6_hbh), 843 &dummy1, &dummy2) < 0) { 844 /* m was already freed at this point */ 845 error = EINVAL;/* better error? */ 846 goto done; 847 } 848 m->m_flags &= ~M_LOOP; /* XXX */ 849 m->m_pkthdr.rcvif = NULL; 850 } 851 852 #ifdef PFIL_HOOKS 853 /* 854 * Run through list of hooks for output packets. 855 */ 856 m1 = m; 857 pfh = pfil_hook_get(PFIL_OUT, &inet6sw[ip6_protox[IPPROTO_IPV6]].pr_pfh); 858 for (; pfh; pfh = pfh->pfil_link.tqe_next) 859 if (pfh->pfil_func) { 860 rv = pfh->pfil_func(ip6, sizeof(*ip6), ifp, 1, &m1); 861 if (rv) { 862 error = EHOSTUNREACH; 863 goto done; 864 } 865 m = m1; 866 if (m == NULL) 867 goto done; 868 ip6 = mtod(m, struct ip6_hdr *); 869 } 870 #endif /* PFIL_HOOKS */ 871 /* 872 * Send the packet to the outgoing interface. 873 * If necessary, do IPv6 fragmentation before sending. 874 */ 875 tlen = m->m_pkthdr.len; 876 if (tlen <= mtu 877 #ifdef notyet 878 /* 879 * On any link that cannot convey a 1280-octet packet in one piece, 880 * link-specific fragmentation and reassembly must be provided at 881 * a layer below IPv6. [RFC 2460, sec.5] 882 * Thus if the interface has ability of link-level fragmentation, 883 * we can just send the packet even if the packet size is 884 * larger than the link's MTU. 885 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet... 886 */ 887 888 || ifp->if_flags & IFF_FRAGMENTABLE 889 #endif 890 ) 891 { 892 /* Record statistics for this interface address. */ 893 if (ia && !(flags & IPV6_FORWARDING)) { 894 ia->ia_ifa.if_opackets++; 895 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 896 } 897 898 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 899 goto done; 900 } else if (mtu < IPV6_MMTU) { 901 /* 902 * note that path MTU is never less than IPV6_MMTU 903 * (see icmp6_input). 904 */ 905 error = EMSGSIZE; 906 in6_ifstat_inc(ifp, ifs6_out_fragfail); 907 goto bad; 908 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ 909 error = EMSGSIZE; 910 in6_ifstat_inc(ifp, ifs6_out_fragfail); 911 goto bad; 912 } else { 913 struct mbuf **mnext, *m_frgpart; 914 struct ip6_frag *ip6f; 915 u_int32_t id = htonl(ip6_id++); 916 u_char nextproto; 917 918 /* 919 * Too large for the destination or interface; 920 * fragment if possible. 921 * Must be able to put at least 8 bytes per fragment. 922 */ 923 hlen = unfragpartlen; 924 if (mtu > IPV6_MAXPACKET) 925 mtu = IPV6_MAXPACKET; 926 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 927 if (len < 8) { 928 error = EMSGSIZE; 929 in6_ifstat_inc(ifp, ifs6_out_fragfail); 930 goto bad; 931 } 932 933 mnext = &m->m_nextpkt; 934 935 /* 936 * Change the next header field of the last header in the 937 * unfragmentable part. 938 */ 939 if (exthdrs.ip6e_rthdr) { 940 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 941 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 942 } else if (exthdrs.ip6e_dest1) { 943 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 944 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 945 } else if (exthdrs.ip6e_hbh) { 946 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 947 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 948 } else { 949 nextproto = ip6->ip6_nxt; 950 ip6->ip6_nxt = IPPROTO_FRAGMENT; 951 } 952 953 /* 954 * Loop through length of segment after first fragment, 955 * make new header and copy data of each part and link onto chain. 956 */ 957 m0 = m; 958 for (off = hlen; off < tlen; off += len) { 959 MGETHDR(m, M_DONTWAIT, MT_HEADER); 960 if (!m) { 961 error = ENOBUFS; 962 ip6stat.ip6s_odropped++; 963 goto sendorfree; 964 } 965 m->m_flags = m0->m_flags & M_COPYFLAGS; 966 *mnext = m; 967 mnext = &m->m_nextpkt; 968 m->m_data += max_linkhdr; 969 mhip6 = mtod(m, struct ip6_hdr *); 970 *mhip6 = *ip6; 971 m->m_len = sizeof(*mhip6); 972 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 973 if (error) { 974 ip6stat.ip6s_odropped++; 975 goto sendorfree; 976 } 977 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 978 if (off + len >= tlen) 979 len = tlen - off; 980 else 981 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 982 mhip6->ip6_plen = htons((u_short)(len + hlen + 983 sizeof(*ip6f) - 984 sizeof(struct ip6_hdr))); 985 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 986 error = ENOBUFS; 987 ip6stat.ip6s_odropped++; 988 goto sendorfree; 989 } 990 m_cat(m, m_frgpart); 991 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 992 m->m_pkthdr.rcvif = (struct ifnet *)0; 993 ip6f->ip6f_reserved = 0; 994 ip6f->ip6f_ident = id; 995 ip6f->ip6f_nxt = nextproto; 996 ip6stat.ip6s_ofragments++; 997 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 998 } 999 1000 in6_ifstat_inc(ifp, ifs6_out_fragok); 1001 } 1002 1003 /* 1004 * Remove leading garbages. 1005 */ 1006 sendorfree: 1007 m = m0->m_nextpkt; 1008 m0->m_nextpkt = 0; 1009 m_freem(m0); 1010 for (m0 = m; m; m = m0) { 1011 m0 = m->m_nextpkt; 1012 m->m_nextpkt = 0; 1013 if (error == 0) { 1014 /* Record statistics for this interface address. */ 1015 if (ia) { 1016 ia->ia_ifa.if_opackets++; 1017 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 1018 } 1019 1020 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1021 } else 1022 m_freem(m); 1023 } 1024 1025 if (error == 0) 1026 ip6stat.ip6s_fragmented++; 1027 1028 done: 1029 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1030 RTFREE(ro->ro_rt); 1031 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1032 RTFREE(ro_pmtu->ro_rt); 1033 } 1034 1035 #ifdef IPSEC 1036 if (sp != NULL) 1037 key_freesp(sp); 1038 #endif /* IPSEC */ 1039 1040 return(error); 1041 1042 freehdrs: 1043 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1044 m_freem(exthdrs.ip6e_dest1); 1045 m_freem(exthdrs.ip6e_rthdr); 1046 m_freem(exthdrs.ip6e_dest2); 1047 /* fall through */ 1048 bad: 1049 m_freem(m); 1050 goto done; 1051 } 1052 1053 static int 1054 ip6_copyexthdr(mp, hdr, hlen) 1055 struct mbuf **mp; 1056 caddr_t hdr; 1057 int hlen; 1058 { 1059 struct mbuf *m; 1060 1061 if (hlen > MCLBYTES) 1062 return(ENOBUFS); /* XXX */ 1063 1064 MGET(m, M_DONTWAIT, MT_DATA); 1065 if (!m) 1066 return(ENOBUFS); 1067 1068 if (hlen > MLEN) { 1069 MCLGET(m, M_DONTWAIT); 1070 if ((m->m_flags & M_EXT) == 0) { 1071 m_free(m); 1072 return(ENOBUFS); 1073 } 1074 } 1075 m->m_len = hlen; 1076 if (hdr) 1077 bcopy(hdr, mtod(m, caddr_t), hlen); 1078 1079 *mp = m; 1080 return(0); 1081 } 1082 1083 /* 1084 * Insert jumbo payload option. 1085 */ 1086 static int 1087 ip6_insert_jumboopt(exthdrs, plen) 1088 struct ip6_exthdrs *exthdrs; 1089 u_int32_t plen; 1090 { 1091 struct mbuf *mopt; 1092 u_char *optbuf; 1093 1094 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1095 1096 /* 1097 * If there is no hop-by-hop options header, allocate new one. 1098 * If there is one but it doesn't have enough space to store the 1099 * jumbo payload option, allocate a cluster to store the whole options. 1100 * Otherwise, use it to store the options. 1101 */ 1102 if (exthdrs->ip6e_hbh == 0) { 1103 MGET(mopt, M_DONTWAIT, MT_DATA); 1104 if (mopt == 0) 1105 return(ENOBUFS); 1106 mopt->m_len = JUMBOOPTLEN; 1107 optbuf = mtod(mopt, u_char *); 1108 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1109 exthdrs->ip6e_hbh = mopt; 1110 } else { 1111 struct ip6_hbh *hbh; 1112 1113 mopt = exthdrs->ip6e_hbh; 1114 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1115 caddr_t oldoptp = mtod(mopt, caddr_t); 1116 int oldoptlen = mopt->m_len; 1117 1118 if (mopt->m_flags & M_EXT) 1119 return(ENOBUFS); /* XXX */ 1120 MCLGET(mopt, M_DONTWAIT); 1121 if ((mopt->m_flags & M_EXT) == 0) 1122 return(ENOBUFS); 1123 1124 bcopy(oldoptp, mtod(mopt, caddr_t), oldoptlen); 1125 optbuf = mtod(mopt, caddr_t) + oldoptlen; 1126 mopt->m_len = oldoptlen + JUMBOOPTLEN; 1127 } else { 1128 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1129 mopt->m_len += JUMBOOPTLEN; 1130 } 1131 optbuf[0] = IP6OPT_PADN; 1132 optbuf[1] = 1; 1133 1134 /* 1135 * Adjust the header length according to the pad and 1136 * the jumbo payload option. 1137 */ 1138 hbh = mtod(mopt, struct ip6_hbh *); 1139 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1140 } 1141 1142 /* fill in the option. */ 1143 optbuf[2] = IP6OPT_JUMBO; 1144 optbuf[3] = 4; 1145 *(u_int32_t *)&optbuf[4] = htonl(plen + JUMBOOPTLEN); 1146 1147 /* finally, adjust the packet header length */ 1148 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1149 1150 return(0); 1151 #undef JUMBOOPTLEN 1152 } 1153 1154 /* 1155 * Insert fragment header and copy unfragmentable header portions. 1156 */ 1157 static int 1158 ip6_insertfraghdr(m0, m, hlen, frghdrp) 1159 struct mbuf *m0, *m; 1160 int hlen; 1161 struct ip6_frag **frghdrp; 1162 { 1163 struct mbuf *n, *mlast; 1164 1165 if (hlen > sizeof(struct ip6_hdr)) { 1166 n = m_copym(m0, sizeof(struct ip6_hdr), 1167 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1168 if (n == 0) 1169 return(ENOBUFS); 1170 m->m_next = n; 1171 } else 1172 n = m; 1173 1174 /* Search for the last mbuf of unfragmentable part. */ 1175 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1176 ; 1177 1178 if ((mlast->m_flags & M_EXT) == 0 && 1179 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1180 /* use the trailing space of the last mbuf for the fragment hdr */ 1181 *frghdrp = 1182 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); 1183 mlast->m_len += sizeof(struct ip6_frag); 1184 m->m_pkthdr.len += sizeof(struct ip6_frag); 1185 } else { 1186 /* allocate a new mbuf for the fragment header */ 1187 struct mbuf *mfrg; 1188 1189 MGET(mfrg, M_DONTWAIT, MT_DATA); 1190 if (mfrg == 0) 1191 return(ENOBUFS); 1192 mfrg->m_len = sizeof(struct ip6_frag); 1193 *frghdrp = mtod(mfrg, struct ip6_frag *); 1194 mlast->m_next = mfrg; 1195 } 1196 1197 return(0); 1198 } 1199 1200 /* 1201 * IP6 socket option processing. 1202 */ 1203 int 1204 ip6_ctloutput(so, sopt) 1205 struct socket *so; 1206 struct sockopt *sopt; 1207 { 1208 int privileged; 1209 register struct inpcb *in6p = sotoinpcb(so); 1210 int error, optval; 1211 int level, op, optname; 1212 int optlen; 1213 struct proc *p; 1214 1215 if (sopt) { 1216 level = sopt->sopt_level; 1217 op = sopt->sopt_dir; 1218 optname = sopt->sopt_name; 1219 optlen = sopt->sopt_valsize; 1220 p = sopt->sopt_p; 1221 } else { 1222 panic("ip6_ctloutput: arg soopt is NULL"); 1223 } 1224 error = optval = 0; 1225 1226 privileged = (p == 0 || suser(p)) ? 0 : 1; 1227 1228 if (level == IPPROTO_IPV6) { 1229 switch (op) { 1230 case SOPT_SET: 1231 switch (optname) { 1232 case IPV6_PKTOPTIONS: 1233 { 1234 struct mbuf *m; 1235 1236 error = soopt_getm(sopt, &m); /* XXX */ 1237 if (error != 0) 1238 break; 1239 error = soopt_mcopyin(sopt, m); /* XXX */ 1240 if (error != 0) 1241 break; 1242 return (ip6_pcbopts(&in6p->in6p_outputopts, 1243 m, so, sopt)); 1244 } 1245 case IPV6_HOPOPTS: 1246 case IPV6_DSTOPTS: 1247 if (!privileged) { 1248 error = EPERM; 1249 break; 1250 } 1251 /* fall through */ 1252 case IPV6_UNICAST_HOPS: 1253 case IPV6_PKTINFO: 1254 case IPV6_HOPLIMIT: 1255 case IPV6_RTHDR: 1256 case IPV6_CHECKSUM: 1257 case IPV6_FAITH: 1258 case IPV6_BINDV6ONLY: 1259 if (optlen != sizeof(int)) 1260 error = EINVAL; 1261 else { 1262 error = sooptcopyin(sopt, &optval, 1263 sizeof optval, sizeof optval); 1264 if (error) 1265 break; 1266 switch (optname) { 1267 1268 case IPV6_UNICAST_HOPS: 1269 if (optval < -1 || optval >= 256) 1270 error = EINVAL; 1271 else { 1272 /* -1 = kernel default */ 1273 in6p->in6p_hops = optval; 1274 if ((in6p->in6p_vflag & 1275 INP_IPV4) != 0) 1276 in6p->inp_ip_ttl = optval; 1277 } 1278 break; 1279 #define OPTSET(bit) \ 1280 if (optval) \ 1281 in6p->in6p_flags |= bit; \ 1282 else \ 1283 in6p->in6p_flags &= ~bit; 1284 1285 case IPV6_PKTINFO: 1286 OPTSET(IN6P_PKTINFO); 1287 break; 1288 1289 case IPV6_HOPLIMIT: 1290 OPTSET(IN6P_HOPLIMIT); 1291 break; 1292 1293 case IPV6_HOPOPTS: 1294 OPTSET(IN6P_HOPOPTS); 1295 break; 1296 1297 case IPV6_DSTOPTS: 1298 OPTSET(IN6P_DSTOPTS); 1299 break; 1300 1301 case IPV6_RTHDR: 1302 OPTSET(IN6P_RTHDR); 1303 break; 1304 1305 case IPV6_CHECKSUM: 1306 in6p->in6p_cksum = optval; 1307 break; 1308 1309 case IPV6_FAITH: 1310 OPTSET(IN6P_FAITH); 1311 break; 1312 1313 case IPV6_BINDV6ONLY: 1314 OPTSET(IN6P_BINDV6ONLY); 1315 break; 1316 } 1317 } 1318 break; 1319 #undef OPTSET 1320 1321 case IPV6_MULTICAST_IF: 1322 case IPV6_MULTICAST_HOPS: 1323 case IPV6_MULTICAST_LOOP: 1324 case IPV6_JOIN_GROUP: 1325 case IPV6_LEAVE_GROUP: 1326 { 1327 struct mbuf *m; 1328 if (sopt->sopt_valsize > MLEN) { 1329 error = EMSGSIZE; 1330 break; 1331 } 1332 /* XXX */ 1333 MGET(m, sopt->sopt_p ? M_WAIT : M_DONTWAIT, MT_HEADER); 1334 if (m == 0) { 1335 error = ENOBUFS; 1336 break; 1337 } 1338 m->m_len = sopt->sopt_valsize; 1339 error = sooptcopyin(sopt, mtod(m, char *), 1340 m->m_len, m->m_len); 1341 error = ip6_setmoptions(sopt->sopt_name, 1342 &in6p->in6p_moptions, 1343 m); 1344 (void)m_free(m); 1345 } 1346 break; 1347 1348 case IPV6_PORTRANGE: 1349 error = sooptcopyin(sopt, &optval, 1350 sizeof optval, sizeof optval); 1351 if (error) 1352 break; 1353 1354 switch (optval) { 1355 case IPV6_PORTRANGE_DEFAULT: 1356 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1357 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1358 break; 1359 1360 case IPV6_PORTRANGE_HIGH: 1361 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1362 in6p->in6p_flags |= IN6P_HIGHPORT; 1363 break; 1364 1365 case IPV6_PORTRANGE_LOW: 1366 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1367 in6p->in6p_flags |= IN6P_LOWPORT; 1368 break; 1369 1370 default: 1371 error = EINVAL; 1372 break; 1373 } 1374 break; 1375 1376 #ifdef IPSEC 1377 case IPV6_IPSEC_POLICY: 1378 { 1379 caddr_t req = NULL; 1380 size_t len = 0; 1381 struct mbuf *m; 1382 1383 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1384 break; 1385 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1386 break; 1387 if (m) { 1388 req = mtod(m, caddr_t); 1389 len = m->m_len; 1390 } 1391 error = ipsec6_set_policy(in6p, optname, req, 1392 len, privileged); 1393 m_freem(m); 1394 } 1395 break; 1396 #endif /* IPSEC */ 1397 1398 case IPV6_FW_ADD: 1399 case IPV6_FW_DEL: 1400 case IPV6_FW_FLUSH: 1401 case IPV6_FW_ZERO: 1402 { 1403 struct mbuf *m; 1404 struct mbuf **mp = &m; 1405 1406 if (ip6_fw_ctl_ptr == NULL) 1407 return EINVAL; 1408 if ((error = soopt_getm(sopt, &m)) 1409 != 0) /* XXX */ 1410 break; 1411 if ((error = soopt_mcopyin(sopt, m)) 1412 != 0) /* XXX */ 1413 break; 1414 error = (*ip6_fw_ctl_ptr)(optname, mp); 1415 m = *mp; 1416 } 1417 break; 1418 1419 default: 1420 error = ENOPROTOOPT; 1421 break; 1422 } 1423 break; 1424 1425 case SOPT_GET: 1426 switch (optname) { 1427 1428 case IPV6_PKTOPTIONS: 1429 if (in6p->in6p_options) { 1430 error = soopt_mcopyout(sopt, 1431 in6p->in6p_options); 1432 } else 1433 sopt->sopt_valsize = 0; 1434 break; 1435 1436 case IPV6_HOPOPTS: 1437 case IPV6_DSTOPTS: 1438 if (!privileged) { 1439 error = EPERM; 1440 break; 1441 } 1442 /* fall through */ 1443 case IPV6_UNICAST_HOPS: 1444 case IPV6_PKTINFO: 1445 case IPV6_HOPLIMIT: 1446 case IPV6_RTHDR: 1447 case IPV6_CHECKSUM: 1448 case IPV6_FAITH: 1449 case IPV6_BINDV6ONLY: 1450 case IPV6_PORTRANGE: 1451 switch (optname) { 1452 1453 case IPV6_UNICAST_HOPS: 1454 optval = in6p->in6p_hops; 1455 break; 1456 1457 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0) 1458 1459 case IPV6_PKTINFO: 1460 optval = OPTBIT(IN6P_PKTINFO); 1461 break; 1462 1463 case IPV6_HOPLIMIT: 1464 optval = OPTBIT(IN6P_HOPLIMIT); 1465 break; 1466 1467 case IPV6_HOPOPTS: 1468 optval = OPTBIT(IN6P_HOPOPTS); 1469 break; 1470 1471 case IPV6_DSTOPTS: 1472 optval = OPTBIT(IN6P_DSTOPTS); 1473 break; 1474 1475 case IPV6_RTHDR: 1476 optval = OPTBIT(IN6P_RTHDR); 1477 break; 1478 1479 case IPV6_CHECKSUM: 1480 optval = in6p->in6p_cksum; 1481 break; 1482 1483 case IPV6_FAITH: 1484 optval = OPTBIT(IN6P_FAITH); 1485 break; 1486 1487 case IPV6_BINDV6ONLY: 1488 optval = OPTBIT(IN6P_BINDV6ONLY); 1489 break; 1490 1491 case IPV6_PORTRANGE: 1492 { 1493 int flags; 1494 1495 flags = in6p->in6p_flags; 1496 if (flags & IN6P_HIGHPORT) 1497 optval = IPV6_PORTRANGE_HIGH; 1498 else if (flags & IN6P_LOWPORT) 1499 optval = IPV6_PORTRANGE_LOW; 1500 else 1501 optval = 0; 1502 break; 1503 } 1504 } 1505 error = sooptcopyout(sopt, &optval, 1506 sizeof optval); 1507 break; 1508 1509 case IPV6_MULTICAST_IF: 1510 case IPV6_MULTICAST_HOPS: 1511 case IPV6_MULTICAST_LOOP: 1512 case IPV6_JOIN_GROUP: 1513 case IPV6_LEAVE_GROUP: 1514 { 1515 struct mbuf *m; 1516 error = ip6_getmoptions(sopt->sopt_name, 1517 in6p->in6p_moptions, &m); 1518 if (error == 0) 1519 error = sooptcopyout(sopt, 1520 mtod(m, char *), m->m_len); 1521 m_freem(m); 1522 } 1523 break; 1524 1525 #ifdef IPSEC 1526 case IPV6_IPSEC_POLICY: 1527 { 1528 caddr_t req = NULL; 1529 size_t len = 0; 1530 struct mbuf *m = NULL; 1531 struct mbuf **mp = &m; 1532 1533 error = soopt_getm(sopt, &m); /* XXX */ 1534 if (error != NULL) 1535 break; 1536 error = soopt_mcopyin(sopt, m); /* XXX */ 1537 if (error != NULL) 1538 break; 1539 if (m) { 1540 req = mtod(m, caddr_t); 1541 len = m->m_len; 1542 } 1543 error = ipsec6_get_policy(in6p, req, len, mp); 1544 if (error == 0) 1545 error = soopt_mcopyout(sopt, m); /*XXX*/ 1546 m_freem(m); 1547 break; 1548 } 1549 #endif /* IPSEC */ 1550 1551 case IPV6_FW_GET: 1552 { 1553 struct mbuf *m; 1554 struct mbuf **mp = &m; 1555 1556 if (ip6_fw_ctl_ptr == NULL) 1557 { 1558 return EINVAL; 1559 } 1560 error = (*ip6_fw_ctl_ptr)(optname, mp); 1561 if (error == 0) 1562 error = soopt_mcopyout(sopt, m); /* XXX */ 1563 if (m) 1564 m_freem(m); 1565 } 1566 break; 1567 1568 default: 1569 error = ENOPROTOOPT; 1570 break; 1571 } 1572 break; 1573 } 1574 } else { 1575 error = EINVAL; 1576 } 1577 return(error); 1578 } 1579 1580 /* 1581 * Set up IP6 options in pcb for insertion in output packets. 1582 * Store in mbuf with pointer in pcbopt, adding pseudo-option 1583 * with destination address if source routed. 1584 */ 1585 static int 1586 ip6_pcbopts(pktopt, m, so, sopt) 1587 struct ip6_pktopts **pktopt; 1588 register struct mbuf *m; 1589 struct socket *so; 1590 struct sockopt *sopt; 1591 { 1592 register struct ip6_pktopts *opt = *pktopt; 1593 int error = 0; 1594 struct proc *p = sopt->sopt_p; 1595 int priv = 0; 1596 1597 /* turn off any old options. */ 1598 if (opt) { 1599 if (opt->ip6po_m) 1600 (void)m_free(opt->ip6po_m); 1601 } else 1602 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 1603 *pktopt = 0; 1604 1605 if (!m || m->m_len == 0) { 1606 /* 1607 * Only turning off any previous options. 1608 */ 1609 if (opt) 1610 free(opt, M_IP6OPT); 1611 if (m) 1612 (void)m_free(m); 1613 return(0); 1614 } 1615 1616 /* set options specified by user. */ 1617 if (p && !suser(p)) 1618 priv = 1; 1619 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) { 1620 (void)m_free(m); 1621 return(error); 1622 } 1623 *pktopt = opt; 1624 return(0); 1625 } 1626 1627 /* 1628 * Set the IP6 multicast options in response to user setsockopt(). 1629 */ 1630 static int 1631 ip6_setmoptions(optname, im6op, m) 1632 int optname; 1633 struct ip6_moptions **im6op; 1634 struct mbuf *m; 1635 { 1636 int error = 0; 1637 u_int loop, ifindex; 1638 struct ipv6_mreq *mreq; 1639 struct ifnet *ifp; 1640 struct ip6_moptions *im6o = *im6op; 1641 struct route_in6 ro; 1642 struct sockaddr_in6 *dst; 1643 struct in6_multi_mship *imm; 1644 struct proc *p = curproc; /* XXX */ 1645 1646 if (im6o == NULL) { 1647 /* 1648 * No multicast option buffer attached to the pcb; 1649 * allocate one and initialize to default values. 1650 */ 1651 im6o = (struct ip6_moptions *) 1652 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1653 1654 if (im6o == NULL) 1655 return(ENOBUFS); 1656 *im6op = im6o; 1657 im6o->im6o_multicast_ifp = NULL; 1658 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1659 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1660 LIST_INIT(&im6o->im6o_memberships); 1661 } 1662 1663 switch (optname) { 1664 1665 case IPV6_MULTICAST_IF: 1666 /* 1667 * Select the interface for outgoing multicast packets. 1668 */ 1669 if (m == NULL || m->m_len != sizeof(u_int)) { 1670 error = EINVAL; 1671 break; 1672 } 1673 ifindex = *(mtod(m, u_int *)); 1674 if (ifindex < 0 || if_index < ifindex) { 1675 error = ENXIO; /* XXX EINVAL? */ 1676 break; 1677 } 1678 ifp = ifindex2ifnet[ifindex]; 1679 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1680 error = EADDRNOTAVAIL; 1681 break; 1682 } 1683 im6o->im6o_multicast_ifp = ifp; 1684 break; 1685 1686 case IPV6_MULTICAST_HOPS: 1687 { 1688 /* 1689 * Set the IP6 hoplimit for outgoing multicast packets. 1690 */ 1691 int optval; 1692 if (m == NULL || m->m_len != sizeof(int)) { 1693 error = EINVAL; 1694 break; 1695 } 1696 optval = *(mtod(m, u_int *)); 1697 if (optval < -1 || optval >= 256) 1698 error = EINVAL; 1699 else if (optval == -1) 1700 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1701 else 1702 im6o->im6o_multicast_hlim = optval; 1703 break; 1704 } 1705 1706 case IPV6_MULTICAST_LOOP: 1707 /* 1708 * Set the loopback flag for outgoing multicast packets. 1709 * Must be zero or one. 1710 */ 1711 if (m == NULL || m->m_len != sizeof(u_int) || 1712 (loop = *(mtod(m, u_int *))) > 1) { 1713 error = EINVAL; 1714 break; 1715 } 1716 im6o->im6o_multicast_loop = loop; 1717 break; 1718 1719 case IPV6_JOIN_GROUP: 1720 /* 1721 * Add a multicast group membership. 1722 * Group must be a valid IP6 multicast address. 1723 */ 1724 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1725 error = EINVAL; 1726 break; 1727 } 1728 mreq = mtod(m, struct ipv6_mreq *); 1729 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1730 /* 1731 * We use the unspecified address to specify to accept 1732 * all multicast addresses. Only super user is allowed 1733 * to do this. 1734 */ 1735 if (suser(p)) 1736 { 1737 error = EACCES; 1738 break; 1739 } 1740 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1741 error = EINVAL; 1742 break; 1743 } 1744 1745 /* 1746 * If the interface is specified, validate it. 1747 */ 1748 if (mreq->ipv6mr_interface < 0 1749 || if_index < mreq->ipv6mr_interface) { 1750 error = ENXIO; /* XXX EINVAL? */ 1751 break; 1752 } 1753 /* 1754 * If no interface was explicitly specified, choose an 1755 * appropriate one according to the given multicast address. 1756 */ 1757 if (mreq->ipv6mr_interface == 0) { 1758 /* 1759 * If the multicast address is in node-local scope, 1760 * the interface should be a loopback interface. 1761 * Otherwise, look up the routing table for the 1762 * address, and choose the outgoing interface. 1763 * XXX: is it a good approach? 1764 */ 1765 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) { 1766 ifp = &loif[0]; 1767 } else { 1768 ro.ro_rt = NULL; 1769 dst = (struct sockaddr_in6 *)&ro.ro_dst; 1770 bzero(dst, sizeof(*dst)); 1771 dst->sin6_len = sizeof(struct sockaddr_in6); 1772 dst->sin6_family = AF_INET6; 1773 dst->sin6_addr = mreq->ipv6mr_multiaddr; 1774 rtalloc((struct route *)&ro); 1775 if (ro.ro_rt == NULL) { 1776 error = EADDRNOTAVAIL; 1777 break; 1778 } 1779 ifp = ro.ro_rt->rt_ifp; 1780 rtfree(ro.ro_rt); 1781 } 1782 } else 1783 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1784 1785 /* 1786 * See if we found an interface, and confirm that it 1787 * supports multicast 1788 */ 1789 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1790 error = EADDRNOTAVAIL; 1791 break; 1792 } 1793 /* 1794 * Put interface index into the multicast address, 1795 * if the address has link-local scope. 1796 */ 1797 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1798 mreq->ipv6mr_multiaddr.s6_addr16[1] 1799 = htons(mreq->ipv6mr_interface); 1800 } 1801 /* 1802 * See if the membership already exists. 1803 */ 1804 for (imm = im6o->im6o_memberships.lh_first; 1805 imm != NULL; imm = imm->i6mm_chain.le_next) 1806 if (imm->i6mm_maddr->in6m_ifp == ifp && 1807 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1808 &mreq->ipv6mr_multiaddr)) 1809 break; 1810 if (imm != NULL) { 1811 error = EADDRINUSE; 1812 break; 1813 } 1814 /* 1815 * Everything looks good; add a new record to the multicast 1816 * address list for the given interface. 1817 */ 1818 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK); 1819 if (imm == NULL) { 1820 error = ENOBUFS; 1821 break; 1822 } 1823 if ((imm->i6mm_maddr = 1824 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) { 1825 free(imm, M_IPMADDR); 1826 break; 1827 } 1828 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 1829 break; 1830 1831 case IPV6_LEAVE_GROUP: 1832 /* 1833 * Drop a multicast group membership. 1834 * Group must be a valid IP6 multicast address. 1835 */ 1836 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1837 error = EINVAL; 1838 break; 1839 } 1840 mreq = mtod(m, struct ipv6_mreq *); 1841 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1842 if (suser(p)) { 1843 error = EACCES; 1844 break; 1845 } 1846 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1847 error = EINVAL; 1848 break; 1849 } 1850 /* 1851 * If an interface address was specified, get a pointer 1852 * to its ifnet structure. 1853 */ 1854 if (mreq->ipv6mr_interface < 0 1855 || if_index < mreq->ipv6mr_interface) { 1856 error = ENXIO; /* XXX EINVAL? */ 1857 break; 1858 } 1859 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1860 /* 1861 * Put interface index into the multicast address, 1862 * if the address has link-local scope. 1863 */ 1864 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1865 mreq->ipv6mr_multiaddr.s6_addr16[1] 1866 = htons(mreq->ipv6mr_interface); 1867 } 1868 /* 1869 * Find the membership in the membership list. 1870 */ 1871 for (imm = im6o->im6o_memberships.lh_first; 1872 imm != NULL; imm = imm->i6mm_chain.le_next) { 1873 if ((ifp == NULL || 1874 imm->i6mm_maddr->in6m_ifp == ifp) && 1875 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1876 &mreq->ipv6mr_multiaddr)) 1877 break; 1878 } 1879 if (imm == NULL) { 1880 /* Unable to resolve interface */ 1881 error = EADDRNOTAVAIL; 1882 break; 1883 } 1884 /* 1885 * Give up the multicast address record to which the 1886 * membership points. 1887 */ 1888 LIST_REMOVE(imm, i6mm_chain); 1889 in6_delmulti(imm->i6mm_maddr); 1890 free(imm, M_IPMADDR); 1891 break; 1892 1893 default: 1894 error = EOPNOTSUPP; 1895 break; 1896 } 1897 1898 /* 1899 * If all options have default values, no need to keep the mbuf. 1900 */ 1901 if (im6o->im6o_multicast_ifp == NULL && 1902 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 1903 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 1904 im6o->im6o_memberships.lh_first == NULL) { 1905 free(*im6op, M_IPMOPTS); 1906 *im6op = NULL; 1907 } 1908 1909 return(error); 1910 } 1911 1912 /* 1913 * Return the IP6 multicast options in response to user getsockopt(). 1914 */ 1915 static int 1916 ip6_getmoptions(optname, im6o, mp) 1917 int optname; 1918 register struct ip6_moptions *im6o; 1919 register struct mbuf **mp; 1920 { 1921 u_int *hlim, *loop, *ifindex; 1922 1923 *mp = m_get(M_WAIT, MT_HEADER); /*XXX*/ 1924 1925 switch (optname) { 1926 1927 case IPV6_MULTICAST_IF: 1928 ifindex = mtod(*mp, u_int *); 1929 (*mp)->m_len = sizeof(u_int); 1930 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 1931 *ifindex = 0; 1932 else 1933 *ifindex = im6o->im6o_multicast_ifp->if_index; 1934 return(0); 1935 1936 case IPV6_MULTICAST_HOPS: 1937 hlim = mtod(*mp, u_int *); 1938 (*mp)->m_len = sizeof(u_int); 1939 if (im6o == NULL) 1940 *hlim = ip6_defmcasthlim; 1941 else 1942 *hlim = im6o->im6o_multicast_hlim; 1943 return(0); 1944 1945 case IPV6_MULTICAST_LOOP: 1946 loop = mtod(*mp, u_int *); 1947 (*mp)->m_len = sizeof(u_int); 1948 if (im6o == NULL) 1949 *loop = ip6_defmcasthlim; 1950 else 1951 *loop = im6o->im6o_multicast_loop; 1952 return(0); 1953 1954 default: 1955 return(EOPNOTSUPP); 1956 } 1957 } 1958 1959 /* 1960 * Discard the IP6 multicast options. 1961 */ 1962 void 1963 ip6_freemoptions(im6o) 1964 register struct ip6_moptions *im6o; 1965 { 1966 struct in6_multi_mship *imm; 1967 1968 if (im6o == NULL) 1969 return; 1970 1971 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 1972 LIST_REMOVE(imm, i6mm_chain); 1973 if (imm->i6mm_maddr) 1974 in6_delmulti(imm->i6mm_maddr); 1975 free(imm, M_IPMADDR); 1976 } 1977 free(im6o, M_IPMOPTS); 1978 } 1979 1980 /* 1981 * Set IPv6 outgoing packet options based on advanced API. 1982 */ 1983 int 1984 ip6_setpktoptions(control, opt, priv) 1985 struct mbuf *control; 1986 struct ip6_pktopts *opt; 1987 int priv; 1988 { 1989 register struct cmsghdr *cm = 0; 1990 1991 if (control == 0 || opt == 0) 1992 return(EINVAL); 1993 1994 bzero(opt, sizeof(*opt)); 1995 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */ 1996 1997 /* 1998 * XXX: Currently, we assume all the optional information is stored 1999 * in a single mbuf. 2000 */ 2001 if (control->m_next) 2002 return(EINVAL); 2003 2004 for (; control->m_len; control->m_data += ALIGN(cm->cmsg_len), 2005 control->m_len -= ALIGN(cm->cmsg_len)) { 2006 cm = mtod(control, struct cmsghdr *); 2007 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2008 return(EINVAL); 2009 if (cm->cmsg_level != IPPROTO_IPV6) 2010 continue; 2011 2012 switch(cm->cmsg_type) { 2013 case IPV6_PKTINFO: 2014 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo))) 2015 return(EINVAL); 2016 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 2017 if (opt->ip6po_pktinfo->ipi6_ifindex && 2018 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr)) 2019 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] = 2020 htons(opt->ip6po_pktinfo->ipi6_ifindex); 2021 2022 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index 2023 || opt->ip6po_pktinfo->ipi6_ifindex < 0) { 2024 return(ENXIO); 2025 } 2026 2027 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) { 2028 struct ifaddr *ia; 2029 struct sockaddr_in6 sin6; 2030 2031 bzero(&sin6, sizeof(sin6)); 2032 sin6.sin6_len = sizeof(sin6); 2033 sin6.sin6_family = AF_INET6; 2034 sin6.sin6_addr = 2035 opt->ip6po_pktinfo->ipi6_addr; 2036 ia = ifa_ifwithaddr(sin6tosa(&sin6)); 2037 if (ia == NULL || 2038 (opt->ip6po_pktinfo->ipi6_ifindex && 2039 (ia->ifa_ifp->if_index != 2040 opt->ip6po_pktinfo->ipi6_ifindex))) { 2041 return(EADDRNOTAVAIL); 2042 } 2043 /* 2044 * Check if the requested source address is 2045 * indeed a unicast address assigned to the 2046 * node. 2047 */ 2048 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr)) 2049 return(EADDRNOTAVAIL); 2050 } 2051 break; 2052 2053 case IPV6_HOPLIMIT: 2054 if (cm->cmsg_len != CMSG_LEN(sizeof(int))) 2055 return(EINVAL); 2056 2057 opt->ip6po_hlim = *(int *)CMSG_DATA(cm); 2058 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255) 2059 return(EINVAL); 2060 break; 2061 2062 case IPV6_NEXTHOP: 2063 if (!priv) 2064 return(EPERM); 2065 if (cm->cmsg_len < sizeof(u_char) || 2066 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm))) 2067 return(EINVAL); 2068 2069 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm); 2070 2071 break; 2072 2073 case IPV6_HOPOPTS: 2074 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh))) 2075 return(EINVAL); 2076 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm); 2077 if (cm->cmsg_len != 2078 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3)) 2079 return(EINVAL); 2080 break; 2081 2082 case IPV6_DSTOPTS: 2083 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest))) 2084 return(EINVAL); 2085 2086 /* 2087 * If there is no routing header yet, the destination 2088 * options header should be put on the 1st part. 2089 * Otherwise, the header should be on the 2nd part. 2090 * (See RFC 2460, section 4.1) 2091 */ 2092 if (opt->ip6po_rthdr == NULL) { 2093 opt->ip6po_dest1 = 2094 (struct ip6_dest *)CMSG_DATA(cm); 2095 if (cm->cmsg_len != 2096 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1) 2097 << 3)) 2098 return(EINVAL); 2099 } else { 2100 opt->ip6po_dest2 = 2101 (struct ip6_dest *)CMSG_DATA(cm); 2102 if (cm->cmsg_len != 2103 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) 2104 << 3)) 2105 return(EINVAL); 2106 } 2107 break; 2108 2109 case IPV6_RTHDR: 2110 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr))) 2111 return(EINVAL); 2112 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm); 2113 if (cm->cmsg_len != 2114 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3)) 2115 return(EINVAL); 2116 switch(opt->ip6po_rthdr->ip6r_type) { 2117 case IPV6_RTHDR_TYPE_0: 2118 if (opt->ip6po_rthdr->ip6r_segleft == 0) 2119 return(EINVAL); 2120 break; 2121 default: 2122 return(EINVAL); 2123 } 2124 break; 2125 2126 default: 2127 return(ENOPROTOOPT); 2128 } 2129 } 2130 2131 return(0); 2132 } 2133 2134 /* 2135 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2136 * packet to the input queue of a specified interface. Note that this 2137 * calls the output routine of the loopback "driver", but with an interface 2138 * pointer that might NOT be &loif -- easier than replicating that code here. 2139 */ 2140 void 2141 ip6_mloopback(ifp, m, dst) 2142 struct ifnet *ifp; 2143 register struct mbuf *m; 2144 register struct sockaddr_in6 *dst; 2145 { 2146 struct mbuf *copym; 2147 struct ip6_hdr *ip6; 2148 2149 copym = m_copy(m, 0, M_COPYALL); 2150 if (copym == NULL) 2151 return; 2152 2153 /* 2154 * Make sure to deep-copy IPv6 header portion in case the data 2155 * is in an mbuf cluster, so that we can safely override the IPv6 2156 * header portion later. 2157 */ 2158 if ((copym->m_flags & M_EXT) != 0 || 2159 copym->m_len < sizeof(struct ip6_hdr)) { 2160 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2161 if (copym == NULL) 2162 return; 2163 } 2164 2165 #ifdef DIAGNOSTIC 2166 if (copym->m_len < sizeof(*ip6)) { 2167 m_freem(copym); 2168 return; 2169 } 2170 #endif 2171 2172 #ifndef FAKE_LOOPBACK_IF 2173 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2174 #else 2175 if (1) 2176 #endif 2177 { 2178 ip6 = mtod(copym, struct ip6_hdr *); 2179 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 2180 ip6->ip6_src.s6_addr16[1] = 0; 2181 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 2182 ip6->ip6_dst.s6_addr16[1] = 0; 2183 } 2184 2185 (void)if_simloop(ifp, copym, dst->sin6_family, NULL); 2186 } 2187 2188 /* 2189 * Chop IPv6 header off from the payload. 2190 */ 2191 static int 2192 ip6_splithdr(m, exthdrs) 2193 struct mbuf *m; 2194 struct ip6_exthdrs *exthdrs; 2195 { 2196 struct mbuf *mh; 2197 struct ip6_hdr *ip6; 2198 2199 ip6 = mtod(m, struct ip6_hdr *); 2200 if (m->m_len > sizeof(*ip6)) { 2201 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 2202 if (mh == 0) { 2203 m_freem(m); 2204 return ENOBUFS; 2205 } 2206 M_COPY_PKTHDR(mh, m); 2207 MH_ALIGN(mh, sizeof(*ip6)); 2208 m->m_flags &= ~M_PKTHDR; 2209 m->m_len -= sizeof(*ip6); 2210 m->m_data += sizeof(*ip6); 2211 mh->m_next = m; 2212 m = mh; 2213 m->m_len = sizeof(*ip6); 2214 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2215 } 2216 exthdrs->ip6e_ip6 = m; 2217 return 0; 2218 } 2219 2220 /* 2221 * Compute IPv6 extension header length. 2222 */ 2223 int 2224 ip6_optlen(in6p) 2225 struct in6pcb *in6p; 2226 { 2227 int len; 2228 2229 if (!in6p->in6p_outputopts) 2230 return 0; 2231 2232 len = 0; 2233 #define elen(x) \ 2234 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2235 2236 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2237 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2238 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2239 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2240 return len; 2241 #undef elen 2242 } 2243 2244