1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ratelimit.h" 71 #include "opt_ipsec.h" 72 #include "opt_sctp.h" 73 #include "opt_route.h" 74 #include "opt_rss.h" 75 76 #include <sys/param.h> 77 #include <sys/kernel.h> 78 #include <sys/malloc.h> 79 #include <sys/mbuf.h> 80 #include <sys/errno.h> 81 #include <sys/priv.h> 82 #include <sys/proc.h> 83 #include <sys/protosw.h> 84 #include <sys/socket.h> 85 #include <sys/socketvar.h> 86 #include <sys/syslog.h> 87 #include <sys/ucred.h> 88 89 #include <machine/in_cksum.h> 90 91 #include <net/if.h> 92 #include <net/if_var.h> 93 #include <net/if_llatbl.h> 94 #include <net/netisr.h> 95 #include <net/route.h> 96 #include <net/pfil.h> 97 #include <net/rss_config.h> 98 #include <net/vnet.h> 99 100 #include <netinet/in.h> 101 #include <netinet/in_var.h> 102 #include <netinet/ip_var.h> 103 #include <netinet6/in6_fib.h> 104 #include <netinet6/in6_var.h> 105 #include <netinet/ip6.h> 106 #include <netinet/icmp6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet/in_pcb.h> 109 #include <netinet/tcp_var.h> 110 #include <netinet6/nd6.h> 111 #include <netinet6/in6_rss.h> 112 113 #include <netipsec/ipsec_support.h> 114 #ifdef SCTP 115 #include <netinet/sctp.h> 116 #include <netinet/sctp_crc32.h> 117 #endif 118 119 #include <netinet6/ip6protosw.h> 120 #include <netinet6/scope6_var.h> 121 122 extern int in6_mcast_loop; 123 124 struct ip6_exthdrs { 125 struct mbuf *ip6e_ip6; 126 struct mbuf *ip6e_hbh; 127 struct mbuf *ip6e_dest1; 128 struct mbuf *ip6e_rthdr; 129 struct mbuf *ip6e_dest2; 130 }; 131 132 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 133 134 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 135 struct ucred *, int); 136 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 137 struct socket *, struct sockopt *); 138 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 139 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 140 struct ucred *, int, int, int); 141 142 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 143 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 144 struct ip6_frag **); 145 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 146 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 147 static int ip6_getpmtu(struct route_in6 *, int, 148 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 149 u_int); 150 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 151 u_long *, int *, u_int); 152 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 153 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 154 155 156 /* 157 * Make an extension header from option data. hp is the source, and 158 * mp is the destination. 159 */ 160 #define MAKE_EXTHDR(hp, mp) \ 161 do { \ 162 if (hp) { \ 163 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 164 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 165 ((eh)->ip6e_len + 1) << 3); \ 166 if (error) \ 167 goto freehdrs; \ 168 } \ 169 } while (/*CONSTCOND*/ 0) 170 171 /* 172 * Form a chain of extension headers. 173 * m is the extension header mbuf 174 * mp is the previous mbuf in the chain 175 * p is the next header 176 * i is the type of option. 177 */ 178 #define MAKE_CHAIN(m, mp, p, i)\ 179 do {\ 180 if (m) {\ 181 if (!hdrsplit) \ 182 panic("assumption failed: hdr not split"); \ 183 *mtod((m), u_char *) = *(p);\ 184 *(p) = (i);\ 185 p = mtod((m), u_char *);\ 186 (m)->m_next = (mp)->m_next;\ 187 (mp)->m_next = (m);\ 188 (mp) = (m);\ 189 }\ 190 } while (/*CONSTCOND*/ 0) 191 192 void 193 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 194 { 195 u_short csum; 196 197 csum = in_cksum_skip(m, offset + plen, offset); 198 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 199 csum = 0xffff; 200 offset += m->m_pkthdr.csum_data; /* checksum offset */ 201 202 if (offset + sizeof(u_short) > m->m_len) { 203 printf("%s: delayed m_pullup, m->len: %d plen %u off %u " 204 "csum_flags=%b\n", __func__, m->m_len, plen, offset, 205 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 206 /* 207 * XXX this should not happen, but if it does, the correct 208 * behavior may be to insert the checksum in the appropriate 209 * next mbuf in the chain. 210 */ 211 return; 212 } 213 *(u_short *)(m->m_data + offset) = csum; 214 } 215 216 int 217 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 218 int fraglen , uint32_t id) 219 { 220 struct mbuf *m, **mnext, *m_frgpart; 221 struct ip6_hdr *ip6, *mhip6; 222 struct ip6_frag *ip6f; 223 int off; 224 int error; 225 int tlen = m0->m_pkthdr.len; 226 227 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 228 229 m = m0; 230 ip6 = mtod(m, struct ip6_hdr *); 231 mnext = &m->m_nextpkt; 232 233 for (off = hlen; off < tlen; off += fraglen) { 234 m = m_gethdr(M_NOWAIT, MT_DATA); 235 if (!m) { 236 IP6STAT_INC(ip6s_odropped); 237 return (ENOBUFS); 238 } 239 m->m_flags = m0->m_flags & M_COPYFLAGS; 240 *mnext = m; 241 mnext = &m->m_nextpkt; 242 m->m_data += max_linkhdr; 243 mhip6 = mtod(m, struct ip6_hdr *); 244 *mhip6 = *ip6; 245 m->m_len = sizeof(*mhip6); 246 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 247 if (error) { 248 IP6STAT_INC(ip6s_odropped); 249 return (error); 250 } 251 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 252 if (off + fraglen >= tlen) 253 fraglen = tlen - off; 254 else 255 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 256 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 257 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 258 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 259 IP6STAT_INC(ip6s_odropped); 260 return (ENOBUFS); 261 } 262 m_cat(m, m_frgpart); 263 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 264 m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; 265 m->m_pkthdr.rcvif = NULL; 266 ip6f->ip6f_reserved = 0; 267 ip6f->ip6f_ident = id; 268 ip6f->ip6f_nxt = nextproto; 269 IP6STAT_INC(ip6s_ofragments); 270 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 271 } 272 273 return (0); 274 } 275 276 /* 277 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 278 * header (with pri, len, nxt, hlim, src, dst). 279 * This function may modify ver and hlim only. 280 * The mbuf chain containing the packet will be freed. 281 * The mbuf opt, if present, will not be freed. 282 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 283 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 284 * then result of route lookup is stored in ro->ro_rt. 285 * 286 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 287 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 288 * which is rt_mtu. 289 * 290 * ifpp - XXX: just for statistics 291 */ 292 /* 293 * XXX TODO: no flowid is assigned for outbound flows? 294 */ 295 int 296 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 297 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 298 struct ifnet **ifpp, struct inpcb *inp) 299 { 300 struct ip6_hdr *ip6; 301 struct ifnet *ifp, *origifp; 302 struct mbuf *m = m0; 303 struct mbuf *mprev = NULL; 304 int hlen, tlen, len; 305 struct route_in6 ip6route; 306 struct rtentry *rt = NULL; 307 struct sockaddr_in6 *dst, src_sa, dst_sa; 308 struct in6_addr odst; 309 int error = 0; 310 struct in6_ifaddr *ia = NULL; 311 u_long mtu; 312 int alwaysfrag, dontfrag; 313 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 314 struct ip6_exthdrs exthdrs; 315 struct in6_addr src0, dst0; 316 u_int32_t zone; 317 struct route_in6 *ro_pmtu = NULL; 318 int hdrsplit = 0; 319 int sw_csum, tso; 320 int needfiblookup; 321 uint32_t fibnum; 322 struct m_tag *fwd_tag = NULL; 323 uint32_t id; 324 325 if (inp != NULL) { 326 INP_LOCK_ASSERT(inp); 327 M_SETFIB(m, inp->inp_inc.inc_fibnum); 328 if ((flags & IP_NODEFAULTFLOWID) == 0) { 329 /* unconditionally set flowid */ 330 m->m_pkthdr.flowid = inp->inp_flowid; 331 M_HASHTYPE_SET(m, inp->inp_flowtype); 332 } 333 } 334 335 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 336 /* 337 * IPSec checking which handles several cases. 338 * FAST IPSEC: We re-injected the packet. 339 * XXX: need scope argument. 340 */ 341 if (IPSEC_ENABLED(ipv6)) { 342 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 343 if (error == EINPROGRESS) 344 error = 0; 345 goto done; 346 } 347 } 348 #endif /* IPSEC */ 349 350 bzero(&exthdrs, sizeof(exthdrs)); 351 if (opt) { 352 /* Hop-by-Hop options header */ 353 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 354 /* Destination options header(1st part) */ 355 if (opt->ip6po_rthdr) { 356 /* 357 * Destination options header(1st part) 358 * This only makes sense with a routing header. 359 * See Section 9.2 of RFC 3542. 360 * Disabling this part just for MIP6 convenience is 361 * a bad idea. We need to think carefully about a 362 * way to make the advanced API coexist with MIP6 363 * options, which might automatically be inserted in 364 * the kernel. 365 */ 366 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 367 } 368 /* Routing header */ 369 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 370 /* Destination options header(2nd part) */ 371 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 372 } 373 374 /* 375 * Calculate the total length of the extension header chain. 376 * Keep the length of the unfragmentable part for fragmentation. 377 */ 378 optlen = 0; 379 if (exthdrs.ip6e_hbh) 380 optlen += exthdrs.ip6e_hbh->m_len; 381 if (exthdrs.ip6e_dest1) 382 optlen += exthdrs.ip6e_dest1->m_len; 383 if (exthdrs.ip6e_rthdr) 384 optlen += exthdrs.ip6e_rthdr->m_len; 385 unfragpartlen = optlen + sizeof(struct ip6_hdr); 386 387 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 388 if (exthdrs.ip6e_dest2) 389 optlen += exthdrs.ip6e_dest2->m_len; 390 391 /* 392 * If there is at least one extension header, 393 * separate IP6 header from the payload. 394 */ 395 if (optlen && !hdrsplit) { 396 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 397 m = NULL; 398 goto freehdrs; 399 } 400 m = exthdrs.ip6e_ip6; 401 hdrsplit++; 402 } 403 404 ip6 = mtod(m, struct ip6_hdr *); 405 406 /* adjust mbuf packet header length */ 407 m->m_pkthdr.len += optlen; 408 plen = m->m_pkthdr.len - sizeof(*ip6); 409 410 /* If this is a jumbo payload, insert a jumbo payload option. */ 411 if (plen > IPV6_MAXPACKET) { 412 if (!hdrsplit) { 413 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 414 m = NULL; 415 goto freehdrs; 416 } 417 m = exthdrs.ip6e_ip6; 418 hdrsplit++; 419 } 420 /* adjust pointer */ 421 ip6 = mtod(m, struct ip6_hdr *); 422 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 423 goto freehdrs; 424 ip6->ip6_plen = 0; 425 } else 426 ip6->ip6_plen = htons(plen); 427 428 /* 429 * Concatenate headers and fill in next header fields. 430 * Here we have, on "m" 431 * IPv6 payload 432 * and we insert headers accordingly. Finally, we should be getting: 433 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 434 * 435 * during the header composing process, "m" points to IPv6 header. 436 * "mprev" points to an extension header prior to esp. 437 */ 438 u_char *nexthdrp = &ip6->ip6_nxt; 439 mprev = m; 440 441 /* 442 * we treat dest2 specially. this makes IPsec processing 443 * much easier. the goal here is to make mprev point the 444 * mbuf prior to dest2. 445 * 446 * result: IPv6 dest2 payload 447 * m and mprev will point to IPv6 header. 448 */ 449 if (exthdrs.ip6e_dest2) { 450 if (!hdrsplit) 451 panic("assumption failed: hdr not split"); 452 exthdrs.ip6e_dest2->m_next = m->m_next; 453 m->m_next = exthdrs.ip6e_dest2; 454 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 455 ip6->ip6_nxt = IPPROTO_DSTOPTS; 456 } 457 458 /* 459 * result: IPv6 hbh dest1 rthdr dest2 payload 460 * m will point to IPv6 header. mprev will point to the 461 * extension header prior to dest2 (rthdr in the above case). 462 */ 463 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 464 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 465 IPPROTO_DSTOPTS); 466 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 467 IPPROTO_ROUTING); 468 469 /* 470 * If there is a routing header, discard the packet. 471 */ 472 if (exthdrs.ip6e_rthdr) { 473 error = EINVAL; 474 goto bad; 475 } 476 477 /* Source address validation */ 478 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 479 (flags & IPV6_UNSPECSRC) == 0) { 480 error = EOPNOTSUPP; 481 IP6STAT_INC(ip6s_badscope); 482 goto bad; 483 } 484 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 485 error = EOPNOTSUPP; 486 IP6STAT_INC(ip6s_badscope); 487 goto bad; 488 } 489 490 IP6STAT_INC(ip6s_localout); 491 492 /* 493 * Route packet. 494 */ 495 if (ro == NULL) { 496 ro = &ip6route; 497 bzero((caddr_t)ro, sizeof(*ro)); 498 } 499 ro_pmtu = ro; 500 if (opt && opt->ip6po_rthdr) 501 ro = &opt->ip6po_route; 502 dst = (struct sockaddr_in6 *)&ro->ro_dst; 503 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 504 again: 505 /* 506 * if specified, try to fill in the traffic class field. 507 * do not override if a non-zero value is already set. 508 * we check the diffserv field and the ecn field separately. 509 */ 510 if (opt && opt->ip6po_tclass >= 0) { 511 int mask = 0; 512 513 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 514 mask |= 0xfc; 515 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 516 mask |= 0x03; 517 if (mask != 0) 518 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 519 } 520 521 /* fill in or override the hop limit field, if necessary. */ 522 if (opt && opt->ip6po_hlim != -1) 523 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 524 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 525 if (im6o != NULL) 526 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 527 else 528 ip6->ip6_hlim = V_ip6_defmcasthlim; 529 } 530 /* 531 * Validate route against routing table additions; 532 * a better/more specific route might have been added. 533 * Make sure address family is set in route. 534 */ 535 if (inp) { 536 ro->ro_dst.sin6_family = AF_INET6; 537 RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, fibnum); 538 } 539 if (ro->ro_rt && fwd_tag == NULL && (ro->ro_rt->rt_flags & RTF_UP) && 540 ro->ro_dst.sin6_family == AF_INET6 && 541 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 542 rt = ro->ro_rt; 543 ifp = ro->ro_rt->rt_ifp; 544 } else { 545 if (ro->ro_lle) 546 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 547 ro->ro_lle = NULL; 548 if (fwd_tag == NULL) { 549 bzero(&dst_sa, sizeof(dst_sa)); 550 dst_sa.sin6_family = AF_INET6; 551 dst_sa.sin6_len = sizeof(dst_sa); 552 dst_sa.sin6_addr = ip6->ip6_dst; 553 } 554 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 555 &rt, fibnum); 556 if (error != 0) { 557 if (ifp != NULL) 558 in6_ifstat_inc(ifp, ifs6_out_discard); 559 goto bad; 560 } 561 } 562 if (rt == NULL) { 563 /* 564 * If in6_selectroute() does not return a route entry, 565 * dst may not have been updated. 566 */ 567 *dst = dst_sa; /* XXX */ 568 } 569 570 /* 571 * then rt (for unicast) and ifp must be non-NULL valid values. 572 */ 573 if ((flags & IPV6_FORWARDING) == 0) { 574 /* XXX: the FORWARDING flag can be set for mrouting. */ 575 in6_ifstat_inc(ifp, ifs6_out_request); 576 } 577 if (rt != NULL) { 578 ia = (struct in6_ifaddr *)(rt->rt_ifa); 579 counter_u64_add(rt->rt_pksent, 1); 580 } 581 582 583 /* 584 * The outgoing interface must be in the zone of source and 585 * destination addresses. 586 */ 587 origifp = ifp; 588 589 src0 = ip6->ip6_src; 590 if (in6_setscope(&src0, origifp, &zone)) 591 goto badscope; 592 bzero(&src_sa, sizeof(src_sa)); 593 src_sa.sin6_family = AF_INET6; 594 src_sa.sin6_len = sizeof(src_sa); 595 src_sa.sin6_addr = ip6->ip6_src; 596 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 597 goto badscope; 598 599 dst0 = ip6->ip6_dst; 600 if (in6_setscope(&dst0, origifp, &zone)) 601 goto badscope; 602 /* re-initialize to be sure */ 603 bzero(&dst_sa, sizeof(dst_sa)); 604 dst_sa.sin6_family = AF_INET6; 605 dst_sa.sin6_len = sizeof(dst_sa); 606 dst_sa.sin6_addr = ip6->ip6_dst; 607 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 608 goto badscope; 609 } 610 611 /* We should use ia_ifp to support the case of 612 * sending packets to an address of our own. 613 */ 614 if (ia != NULL && ia->ia_ifp) 615 ifp = ia->ia_ifp; 616 617 /* scope check is done. */ 618 goto routefound; 619 620 badscope: 621 IP6STAT_INC(ip6s_badscope); 622 in6_ifstat_inc(origifp, ifs6_out_discard); 623 if (error == 0) 624 error = EHOSTUNREACH; /* XXX */ 625 goto bad; 626 627 routefound: 628 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 629 if (opt && opt->ip6po_nextroute.ro_rt) { 630 /* 631 * The nexthop is explicitly specified by the 632 * application. We assume the next hop is an IPv6 633 * address. 634 */ 635 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 636 } 637 else if ((rt->rt_flags & RTF_GATEWAY)) 638 dst = (struct sockaddr_in6 *)rt->rt_gateway; 639 } 640 641 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 642 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 643 } else { 644 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 645 in6_ifstat_inc(ifp, ifs6_out_mcast); 646 /* 647 * Confirm that the outgoing interface supports multicast. 648 */ 649 if (!(ifp->if_flags & IFF_MULTICAST)) { 650 IP6STAT_INC(ip6s_noroute); 651 in6_ifstat_inc(ifp, ifs6_out_discard); 652 error = ENETUNREACH; 653 goto bad; 654 } 655 if ((im6o == NULL && in6_mcast_loop) || 656 (im6o && im6o->im6o_multicast_loop)) { 657 /* 658 * Loop back multicast datagram if not expressly 659 * forbidden to do so, even if we have not joined 660 * the address; protocols will filter it later, 661 * thus deferring a hash lookup and lock acquisition 662 * at the expense of an m_copym(). 663 */ 664 ip6_mloopback(ifp, m); 665 } else { 666 /* 667 * If we are acting as a multicast router, perform 668 * multicast forwarding as if the packet had just 669 * arrived on the interface to which we are about 670 * to send. The multicast forwarding function 671 * recursively calls this function, using the 672 * IPV6_FORWARDING flag to prevent infinite recursion. 673 * 674 * Multicasts that are looped back by ip6_mloopback(), 675 * above, will be forwarded by the ip6_input() routine, 676 * if necessary. 677 */ 678 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 679 /* 680 * XXX: ip6_mforward expects that rcvif is NULL 681 * when it is called from the originating path. 682 * However, it may not always be the case. 683 */ 684 m->m_pkthdr.rcvif = NULL; 685 if (ip6_mforward(ip6, ifp, m) != 0) { 686 m_freem(m); 687 goto done; 688 } 689 } 690 } 691 /* 692 * Multicasts with a hoplimit of zero may be looped back, 693 * above, but must not be transmitted on a network. 694 * Also, multicasts addressed to the loopback interface 695 * are not sent -- the above call to ip6_mloopback() will 696 * loop back a copy if this host actually belongs to the 697 * destination group on the loopback interface. 698 */ 699 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 700 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 701 m_freem(m); 702 goto done; 703 } 704 } 705 706 /* 707 * Fill the outgoing inteface to tell the upper layer 708 * to increment per-interface statistics. 709 */ 710 if (ifpp) 711 *ifpp = ifp; 712 713 /* Determine path MTU. */ 714 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 715 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 716 goto bad; 717 718 /* 719 * The caller of this function may specify to use the minimum MTU 720 * in some cases. 721 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 722 * setting. The logic is a bit complicated; by default, unicast 723 * packets will follow path MTU while multicast packets will be sent at 724 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 725 * including unicast ones will be sent at the minimum MTU. Multicast 726 * packets will always be sent at the minimum MTU unless 727 * IP6PO_MINMTU_DISABLE is explicitly specified. 728 * See RFC 3542 for more details. 729 */ 730 if (mtu > IPV6_MMTU) { 731 if ((flags & IPV6_MINMTU)) 732 mtu = IPV6_MMTU; 733 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 734 mtu = IPV6_MMTU; 735 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 736 (opt == NULL || 737 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 738 mtu = IPV6_MMTU; 739 } 740 } 741 742 /* 743 * clear embedded scope identifiers if necessary. 744 * in6_clearscope will touch the addresses only when necessary. 745 */ 746 in6_clearscope(&ip6->ip6_src); 747 in6_clearscope(&ip6->ip6_dst); 748 749 /* 750 * If the outgoing packet contains a hop-by-hop options header, 751 * it must be examined and processed even by the source node. 752 * (RFC 2460, section 4.) 753 */ 754 if (exthdrs.ip6e_hbh) { 755 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 756 u_int32_t dummy; /* XXX unused */ 757 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 758 759 #ifdef DIAGNOSTIC 760 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 761 panic("ip6e_hbh is not contiguous"); 762 #endif 763 /* 764 * XXX: if we have to send an ICMPv6 error to the sender, 765 * we need the M_LOOP flag since icmp6_error() expects 766 * the IPv6 and the hop-by-hop options header are 767 * contiguous unless the flag is set. 768 */ 769 m->m_flags |= M_LOOP; 770 m->m_pkthdr.rcvif = ifp; 771 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 772 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 773 &dummy, &plen) < 0) { 774 /* m was already freed at this point */ 775 error = EINVAL;/* better error? */ 776 goto done; 777 } 778 m->m_flags &= ~M_LOOP; /* XXX */ 779 m->m_pkthdr.rcvif = NULL; 780 } 781 782 /* Jump over all PFIL processing if hooks are not active. */ 783 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 784 goto passout; 785 786 odst = ip6->ip6_dst; 787 /* Run through list of hooks for output packets. */ 788 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, 0, inp); 789 if (error != 0 || m == NULL) 790 goto done; 791 /* adjust pointer */ 792 ip6 = mtod(m, struct ip6_hdr *); 793 794 needfiblookup = 0; 795 /* See if destination IP address was changed by packet filter. */ 796 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 797 m->m_flags |= M_SKIP_FIREWALL; 798 /* If destination is now ourself drop to ip6_input(). */ 799 if (in6_localip(&ip6->ip6_dst)) { 800 m->m_flags |= M_FASTFWD_OURS; 801 if (m->m_pkthdr.rcvif == NULL) 802 m->m_pkthdr.rcvif = V_loif; 803 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 804 m->m_pkthdr.csum_flags |= 805 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 806 m->m_pkthdr.csum_data = 0xffff; 807 } 808 #ifdef SCTP 809 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 810 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 811 #endif 812 error = netisr_queue(NETISR_IPV6, m); 813 goto done; 814 } else { 815 RO_RTFREE(ro); 816 needfiblookup = 1; /* Redo the routing table lookup. */ 817 if (ro->ro_lle) 818 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 819 ro->ro_lle = NULL; 820 } 821 } 822 /* See if fib was changed by packet filter. */ 823 if (fibnum != M_GETFIB(m)) { 824 m->m_flags |= M_SKIP_FIREWALL; 825 fibnum = M_GETFIB(m); 826 RO_RTFREE(ro); 827 needfiblookup = 1; 828 if (ro->ro_lle) 829 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 830 ro->ro_lle = NULL; 831 } 832 if (needfiblookup) 833 goto again; 834 835 /* See if local, if yes, send it to netisr. */ 836 if (m->m_flags & M_FASTFWD_OURS) { 837 if (m->m_pkthdr.rcvif == NULL) 838 m->m_pkthdr.rcvif = V_loif; 839 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 840 m->m_pkthdr.csum_flags |= 841 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 842 m->m_pkthdr.csum_data = 0xffff; 843 } 844 #ifdef SCTP 845 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 846 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 847 #endif 848 error = netisr_queue(NETISR_IPV6, m); 849 goto done; 850 } 851 /* Or forward to some other address? */ 852 if ((m->m_flags & M_IP6_NEXTHOP) && 853 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 854 dst = (struct sockaddr_in6 *)&ro->ro_dst; 855 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 856 m->m_flags |= M_SKIP_FIREWALL; 857 m->m_flags &= ~M_IP6_NEXTHOP; 858 m_tag_delete(m, fwd_tag); 859 goto again; 860 } 861 862 passout: 863 /* 864 * Send the packet to the outgoing interface. 865 * If necessary, do IPv6 fragmentation before sending. 866 * 867 * the logic here is rather complex: 868 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 869 * 1-a: send as is if tlen <= path mtu 870 * 1-b: fragment if tlen > path mtu 871 * 872 * 2: if user asks us not to fragment (dontfrag == 1) 873 * 2-a: send as is if tlen <= interface mtu 874 * 2-b: error if tlen > interface mtu 875 * 876 * 3: if we always need to attach fragment header (alwaysfrag == 1) 877 * always fragment 878 * 879 * 4: if dontfrag == 1 && alwaysfrag == 1 880 * error, as we cannot handle this conflicting request 881 */ 882 sw_csum = m->m_pkthdr.csum_flags; 883 if (!hdrsplit) { 884 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 885 sw_csum &= ~ifp->if_hwassist; 886 } else 887 tso = 0; 888 /* 889 * If we added extension headers, we will not do TSO and calculate the 890 * checksums ourselves for now. 891 * XXX-BZ Need a framework to know when the NIC can handle it, even 892 * with ext. hdrs. 893 */ 894 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 895 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 896 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 897 } 898 #ifdef SCTP 899 if (sw_csum & CSUM_SCTP_IPV6) { 900 sw_csum &= ~CSUM_SCTP_IPV6; 901 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 902 } 903 #endif 904 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 905 tlen = m->m_pkthdr.len; 906 907 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 908 dontfrag = 1; 909 else 910 dontfrag = 0; 911 if (dontfrag && alwaysfrag) { /* case 4 */ 912 /* conflicting request - can't transmit */ 913 error = EMSGSIZE; 914 goto bad; 915 } 916 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 917 /* 918 * Even if the DONTFRAG option is specified, we cannot send the 919 * packet when the data length is larger than the MTU of the 920 * outgoing interface. 921 * Notify the error by sending IPV6_PATHMTU ancillary data if 922 * application wanted to know the MTU value. Also return an 923 * error code (this is not described in the API spec). 924 */ 925 if (inp != NULL) 926 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 927 error = EMSGSIZE; 928 goto bad; 929 } 930 931 /* 932 * transmit packet without fragmentation 933 */ 934 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 935 struct in6_ifaddr *ia6; 936 937 ip6 = mtod(m, struct ip6_hdr *); 938 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 939 if (ia6) { 940 /* Record statistics for this interface address. */ 941 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 942 counter_u64_add(ia6->ia_ifa.ifa_obytes, 943 m->m_pkthdr.len); 944 ifa_free(&ia6->ia_ifa); 945 } 946 #ifdef RATELIMIT 947 if (inp != NULL) { 948 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 949 in_pcboutput_txrtlmt(inp, ifp, m); 950 /* stamp send tag on mbuf */ 951 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 952 } else { 953 m->m_pkthdr.snd_tag = NULL; 954 } 955 #endif 956 error = nd6_output_ifp(ifp, origifp, m, dst, 957 (struct route *)ro); 958 #ifdef RATELIMIT 959 /* check for route change */ 960 if (error == EAGAIN) 961 in_pcboutput_eagain(inp); 962 #endif 963 goto done; 964 } 965 966 /* 967 * try to fragment the packet. case 1-b and 3 968 */ 969 if (mtu < IPV6_MMTU) { 970 /* path MTU cannot be less than IPV6_MMTU */ 971 error = EMSGSIZE; 972 in6_ifstat_inc(ifp, ifs6_out_fragfail); 973 goto bad; 974 } else if (ip6->ip6_plen == 0) { 975 /* jumbo payload cannot be fragmented */ 976 error = EMSGSIZE; 977 in6_ifstat_inc(ifp, ifs6_out_fragfail); 978 goto bad; 979 } else { 980 u_char nextproto; 981 982 /* 983 * Too large for the destination or interface; 984 * fragment if possible. 985 * Must be able to put at least 8 bytes per fragment. 986 */ 987 hlen = unfragpartlen; 988 if (mtu > IPV6_MAXPACKET) 989 mtu = IPV6_MAXPACKET; 990 991 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 992 if (len < 8) { 993 error = EMSGSIZE; 994 in6_ifstat_inc(ifp, ifs6_out_fragfail); 995 goto bad; 996 } 997 998 /* 999 * If the interface will not calculate checksums on 1000 * fragmented packets, then do it here. 1001 * XXX-BZ handle the hw offloading case. Need flags. 1002 */ 1003 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1004 in6_delayed_cksum(m, plen, hlen); 1005 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 1006 } 1007 #ifdef SCTP 1008 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 1009 sctp_delayed_cksum(m, hlen); 1010 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 1011 } 1012 #endif 1013 /* 1014 * Change the next header field of the last header in the 1015 * unfragmentable part. 1016 */ 1017 if (exthdrs.ip6e_rthdr) { 1018 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1019 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1020 } else if (exthdrs.ip6e_dest1) { 1021 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1022 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1023 } else if (exthdrs.ip6e_hbh) { 1024 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1025 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1026 } else { 1027 nextproto = ip6->ip6_nxt; 1028 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1029 } 1030 1031 /* 1032 * Loop through length of segment after first fragment, 1033 * make new header and copy data of each part and link onto 1034 * chain. 1035 */ 1036 m0 = m; 1037 id = htonl(ip6_randomid()); 1038 if ((error = ip6_fragment(ifp, m, hlen, nextproto, len, id))) 1039 goto sendorfree; 1040 1041 in6_ifstat_inc(ifp, ifs6_out_fragok); 1042 } 1043 1044 /* 1045 * Remove leading garbages. 1046 */ 1047 sendorfree: 1048 m = m0->m_nextpkt; 1049 m0->m_nextpkt = 0; 1050 m_freem(m0); 1051 for (; m; m = m0) { 1052 m0 = m->m_nextpkt; 1053 m->m_nextpkt = 0; 1054 if (error == 0) { 1055 /* Record statistics for this interface address. */ 1056 if (ia) { 1057 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1058 counter_u64_add(ia->ia_ifa.ifa_obytes, 1059 m->m_pkthdr.len); 1060 } 1061 #ifdef RATELIMIT 1062 if (inp != NULL) { 1063 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 1064 in_pcboutput_txrtlmt(inp, ifp, m); 1065 /* stamp send tag on mbuf */ 1066 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 1067 } else { 1068 m->m_pkthdr.snd_tag = NULL; 1069 } 1070 #endif 1071 error = nd6_output_ifp(ifp, origifp, m, dst, 1072 (struct route *)ro); 1073 #ifdef RATELIMIT 1074 /* check for route change */ 1075 if (error == EAGAIN) 1076 in_pcboutput_eagain(inp); 1077 #endif 1078 } else 1079 m_freem(m); 1080 } 1081 1082 if (error == 0) 1083 IP6STAT_INC(ip6s_fragmented); 1084 1085 done: 1086 if (ro == &ip6route) 1087 RO_RTFREE(ro); 1088 return (error); 1089 1090 freehdrs: 1091 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1092 m_freem(exthdrs.ip6e_dest1); 1093 m_freem(exthdrs.ip6e_rthdr); 1094 m_freem(exthdrs.ip6e_dest2); 1095 /* FALLTHROUGH */ 1096 bad: 1097 if (m) 1098 m_freem(m); 1099 goto done; 1100 } 1101 1102 static int 1103 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1104 { 1105 struct mbuf *m; 1106 1107 if (hlen > MCLBYTES) 1108 return (ENOBUFS); /* XXX */ 1109 1110 if (hlen > MLEN) 1111 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1112 else 1113 m = m_get(M_NOWAIT, MT_DATA); 1114 if (m == NULL) 1115 return (ENOBUFS); 1116 m->m_len = hlen; 1117 if (hdr) 1118 bcopy(hdr, mtod(m, caddr_t), hlen); 1119 1120 *mp = m; 1121 return (0); 1122 } 1123 1124 /* 1125 * Insert jumbo payload option. 1126 */ 1127 static int 1128 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1129 { 1130 struct mbuf *mopt; 1131 u_char *optbuf; 1132 u_int32_t v; 1133 1134 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1135 1136 /* 1137 * If there is no hop-by-hop options header, allocate new one. 1138 * If there is one but it doesn't have enough space to store the 1139 * jumbo payload option, allocate a cluster to store the whole options. 1140 * Otherwise, use it to store the options. 1141 */ 1142 if (exthdrs->ip6e_hbh == NULL) { 1143 mopt = m_get(M_NOWAIT, MT_DATA); 1144 if (mopt == NULL) 1145 return (ENOBUFS); 1146 mopt->m_len = JUMBOOPTLEN; 1147 optbuf = mtod(mopt, u_char *); 1148 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1149 exthdrs->ip6e_hbh = mopt; 1150 } else { 1151 struct ip6_hbh *hbh; 1152 1153 mopt = exthdrs->ip6e_hbh; 1154 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1155 /* 1156 * XXX assumption: 1157 * - exthdrs->ip6e_hbh is not referenced from places 1158 * other than exthdrs. 1159 * - exthdrs->ip6e_hbh is not an mbuf chain. 1160 */ 1161 int oldoptlen = mopt->m_len; 1162 struct mbuf *n; 1163 1164 /* 1165 * XXX: give up if the whole (new) hbh header does 1166 * not fit even in an mbuf cluster. 1167 */ 1168 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1169 return (ENOBUFS); 1170 1171 /* 1172 * As a consequence, we must always prepare a cluster 1173 * at this point. 1174 */ 1175 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1176 if (n == NULL) 1177 return (ENOBUFS); 1178 n->m_len = oldoptlen + JUMBOOPTLEN; 1179 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1180 oldoptlen); 1181 optbuf = mtod(n, caddr_t) + oldoptlen; 1182 m_freem(mopt); 1183 mopt = exthdrs->ip6e_hbh = n; 1184 } else { 1185 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1186 mopt->m_len += JUMBOOPTLEN; 1187 } 1188 optbuf[0] = IP6OPT_PADN; 1189 optbuf[1] = 1; 1190 1191 /* 1192 * Adjust the header length according to the pad and 1193 * the jumbo payload option. 1194 */ 1195 hbh = mtod(mopt, struct ip6_hbh *); 1196 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1197 } 1198 1199 /* fill in the option. */ 1200 optbuf[2] = IP6OPT_JUMBO; 1201 optbuf[3] = 4; 1202 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1203 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1204 1205 /* finally, adjust the packet header length */ 1206 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1207 1208 return (0); 1209 #undef JUMBOOPTLEN 1210 } 1211 1212 /* 1213 * Insert fragment header and copy unfragmentable header portions. 1214 */ 1215 static int 1216 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1217 struct ip6_frag **frghdrp) 1218 { 1219 struct mbuf *n, *mlast; 1220 1221 if (hlen > sizeof(struct ip6_hdr)) { 1222 n = m_copym(m0, sizeof(struct ip6_hdr), 1223 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1224 if (n == NULL) 1225 return (ENOBUFS); 1226 m->m_next = n; 1227 } else 1228 n = m; 1229 1230 /* Search for the last mbuf of unfragmentable part. */ 1231 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1232 ; 1233 1234 if (M_WRITABLE(mlast) && 1235 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1236 /* use the trailing space of the last mbuf for the fragment hdr */ 1237 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1238 mlast->m_len); 1239 mlast->m_len += sizeof(struct ip6_frag); 1240 m->m_pkthdr.len += sizeof(struct ip6_frag); 1241 } else { 1242 /* allocate a new mbuf for the fragment header */ 1243 struct mbuf *mfrg; 1244 1245 mfrg = m_get(M_NOWAIT, MT_DATA); 1246 if (mfrg == NULL) 1247 return (ENOBUFS); 1248 mfrg->m_len = sizeof(struct ip6_frag); 1249 *frghdrp = mtod(mfrg, struct ip6_frag *); 1250 mlast->m_next = mfrg; 1251 } 1252 1253 return (0); 1254 } 1255 1256 /* 1257 * Calculates IPv6 path mtu for destination @dst. 1258 * Resulting MTU is stored in @mtup. 1259 * 1260 * Returns 0 on success. 1261 */ 1262 static int 1263 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1264 { 1265 struct nhop6_extended nh6; 1266 struct in6_addr kdst; 1267 uint32_t scopeid; 1268 struct ifnet *ifp; 1269 u_long mtu; 1270 int error; 1271 1272 in6_splitscope(dst, &kdst, &scopeid); 1273 if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0) 1274 return (EHOSTUNREACH); 1275 1276 ifp = nh6.nh_ifp; 1277 mtu = nh6.nh_mtu; 1278 1279 error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL, 0); 1280 fib6_free_nh_ext(fibnum, &nh6); 1281 1282 return (error); 1283 } 1284 1285 /* 1286 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1287 * and cached data in @ro_pmtu. 1288 * MTU from (successful) route lookup is saved (along with dst) 1289 * inside @ro_pmtu to avoid subsequent route lookups after packet 1290 * filter processing. 1291 * 1292 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1293 * Returns 0 on success. 1294 */ 1295 static int 1296 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1297 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1298 int *alwaysfragp, u_int fibnum, u_int proto) 1299 { 1300 struct nhop6_basic nh6; 1301 struct in6_addr kdst; 1302 uint32_t scopeid; 1303 struct sockaddr_in6 *sa6_dst; 1304 u_long mtu; 1305 1306 mtu = 0; 1307 if (do_lookup) { 1308 1309 /* 1310 * Here ro_pmtu has final destination address, while 1311 * ro might represent immediate destination. 1312 * Use ro_pmtu destination since mtu might differ. 1313 */ 1314 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1315 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1316 ro_pmtu->ro_mtu = 0; 1317 1318 if (ro_pmtu->ro_mtu == 0) { 1319 bzero(sa6_dst, sizeof(*sa6_dst)); 1320 sa6_dst->sin6_family = AF_INET6; 1321 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1322 sa6_dst->sin6_addr = *dst; 1323 1324 in6_splitscope(dst, &kdst, &scopeid); 1325 if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0, 1326 &nh6) == 0) 1327 ro_pmtu->ro_mtu = nh6.nh_mtu; 1328 } 1329 1330 mtu = ro_pmtu->ro_mtu; 1331 } 1332 1333 if (ro_pmtu->ro_rt) 1334 mtu = ro_pmtu->ro_rt->rt_mtu; 1335 1336 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1337 } 1338 1339 /* 1340 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1341 * hostcache data for @dst. 1342 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1343 * 1344 * Returns 0 on success. 1345 */ 1346 static int 1347 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1348 u_long *mtup, int *alwaysfragp, u_int proto) 1349 { 1350 u_long mtu = 0; 1351 int alwaysfrag = 0; 1352 int error = 0; 1353 1354 if (rt_mtu > 0) { 1355 u_int32_t ifmtu; 1356 struct in_conninfo inc; 1357 1358 bzero(&inc, sizeof(inc)); 1359 inc.inc_flags |= INC_ISIPV6; 1360 inc.inc6_faddr = *dst; 1361 1362 ifmtu = IN6_LINKMTU(ifp); 1363 1364 /* TCP is known to react to pmtu changes so skip hc */ 1365 if (proto != IPPROTO_TCP) 1366 mtu = tcp_hc_getmtu(&inc); 1367 1368 if (mtu) 1369 mtu = min(mtu, rt_mtu); 1370 else 1371 mtu = rt_mtu; 1372 if (mtu == 0) 1373 mtu = ifmtu; 1374 else if (mtu < IPV6_MMTU) { 1375 /* 1376 * RFC2460 section 5, last paragraph: 1377 * if we record ICMPv6 too big message with 1378 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1379 * or smaller, with framgent header attached. 1380 * (fragment header is needed regardless from the 1381 * packet size, for translators to identify packets) 1382 */ 1383 alwaysfrag = 1; 1384 mtu = IPV6_MMTU; 1385 } 1386 } else if (ifp) { 1387 mtu = IN6_LINKMTU(ifp); 1388 } else 1389 error = EHOSTUNREACH; /* XXX */ 1390 1391 *mtup = mtu; 1392 if (alwaysfragp) 1393 *alwaysfragp = alwaysfrag; 1394 return (error); 1395 } 1396 1397 /* 1398 * IP6 socket option processing. 1399 */ 1400 int 1401 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1402 { 1403 int optdatalen, uproto; 1404 void *optdata; 1405 struct inpcb *in6p = sotoinpcb(so); 1406 int error, optval; 1407 int level, op, optname; 1408 int optlen; 1409 struct thread *td; 1410 #ifdef RSS 1411 uint32_t rss_bucket; 1412 int retval; 1413 #endif 1414 1415 /* 1416 * Don't use more than a quarter of mbuf clusters. N.B.: 1417 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1418 * on LP64 architectures, so cast to u_long to avoid undefined 1419 * behavior. ILP32 architectures cannot have nmbclusters 1420 * large enough to overflow for other reasons. 1421 */ 1422 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1423 1424 level = sopt->sopt_level; 1425 op = sopt->sopt_dir; 1426 optname = sopt->sopt_name; 1427 optlen = sopt->sopt_valsize; 1428 td = sopt->sopt_td; 1429 error = 0; 1430 optval = 0; 1431 uproto = (int)so->so_proto->pr_protocol; 1432 1433 if (level != IPPROTO_IPV6) { 1434 error = EINVAL; 1435 1436 if (sopt->sopt_level == SOL_SOCKET && 1437 sopt->sopt_dir == SOPT_SET) { 1438 switch (sopt->sopt_name) { 1439 case SO_REUSEADDR: 1440 INP_WLOCK(in6p); 1441 if ((so->so_options & SO_REUSEADDR) != 0) 1442 in6p->inp_flags2 |= INP_REUSEADDR; 1443 else 1444 in6p->inp_flags2 &= ~INP_REUSEADDR; 1445 INP_WUNLOCK(in6p); 1446 error = 0; 1447 break; 1448 case SO_REUSEPORT: 1449 INP_WLOCK(in6p); 1450 if ((so->so_options & SO_REUSEPORT) != 0) 1451 in6p->inp_flags2 |= INP_REUSEPORT; 1452 else 1453 in6p->inp_flags2 &= ~INP_REUSEPORT; 1454 INP_WUNLOCK(in6p); 1455 error = 0; 1456 break; 1457 case SO_SETFIB: 1458 INP_WLOCK(in6p); 1459 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1460 INP_WUNLOCK(in6p); 1461 error = 0; 1462 break; 1463 case SO_MAX_PACING_RATE: 1464 #ifdef RATELIMIT 1465 INP_WLOCK(in6p); 1466 in6p->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1467 INP_WUNLOCK(in6p); 1468 error = 0; 1469 #else 1470 error = EOPNOTSUPP; 1471 #endif 1472 break; 1473 default: 1474 break; 1475 } 1476 } 1477 } else { /* level == IPPROTO_IPV6 */ 1478 switch (op) { 1479 1480 case SOPT_SET: 1481 switch (optname) { 1482 case IPV6_2292PKTOPTIONS: 1483 #ifdef IPV6_PKTOPTIONS 1484 case IPV6_PKTOPTIONS: 1485 #endif 1486 { 1487 struct mbuf *m; 1488 1489 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1490 printf("ip6_ctloutput: mbuf limit hit\n"); 1491 error = ENOBUFS; 1492 break; 1493 } 1494 1495 error = soopt_getm(sopt, &m); /* XXX */ 1496 if (error != 0) 1497 break; 1498 error = soopt_mcopyin(sopt, m); /* XXX */ 1499 if (error != 0) 1500 break; 1501 error = ip6_pcbopts(&in6p->in6p_outputopts, 1502 m, so, sopt); 1503 m_freem(m); /* XXX */ 1504 break; 1505 } 1506 1507 /* 1508 * Use of some Hop-by-Hop options or some 1509 * Destination options, might require special 1510 * privilege. That is, normal applications 1511 * (without special privilege) might be forbidden 1512 * from setting certain options in outgoing packets, 1513 * and might never see certain options in received 1514 * packets. [RFC 2292 Section 6] 1515 * KAME specific note: 1516 * KAME prevents non-privileged users from sending or 1517 * receiving ANY hbh/dst options in order to avoid 1518 * overhead of parsing options in the kernel. 1519 */ 1520 case IPV6_RECVHOPOPTS: 1521 case IPV6_RECVDSTOPTS: 1522 case IPV6_RECVRTHDRDSTOPTS: 1523 if (td != NULL) { 1524 error = priv_check(td, 1525 PRIV_NETINET_SETHDROPTS); 1526 if (error) 1527 break; 1528 } 1529 /* FALLTHROUGH */ 1530 case IPV6_UNICAST_HOPS: 1531 case IPV6_HOPLIMIT: 1532 1533 case IPV6_RECVPKTINFO: 1534 case IPV6_RECVHOPLIMIT: 1535 case IPV6_RECVRTHDR: 1536 case IPV6_RECVPATHMTU: 1537 case IPV6_RECVTCLASS: 1538 case IPV6_RECVFLOWID: 1539 #ifdef RSS 1540 case IPV6_RECVRSSBUCKETID: 1541 #endif 1542 case IPV6_V6ONLY: 1543 case IPV6_AUTOFLOWLABEL: 1544 case IPV6_ORIGDSTADDR: 1545 case IPV6_BINDANY: 1546 case IPV6_BINDMULTI: 1547 #ifdef RSS 1548 case IPV6_RSS_LISTEN_BUCKET: 1549 #endif 1550 if (optname == IPV6_BINDANY && td != NULL) { 1551 error = priv_check(td, 1552 PRIV_NETINET_BINDANY); 1553 if (error) 1554 break; 1555 } 1556 1557 if (optlen != sizeof(int)) { 1558 error = EINVAL; 1559 break; 1560 } 1561 error = sooptcopyin(sopt, &optval, 1562 sizeof optval, sizeof optval); 1563 if (error) 1564 break; 1565 switch (optname) { 1566 1567 case IPV6_UNICAST_HOPS: 1568 if (optval < -1 || optval >= 256) 1569 error = EINVAL; 1570 else { 1571 /* -1 = kernel default */ 1572 in6p->in6p_hops = optval; 1573 if ((in6p->inp_vflag & 1574 INP_IPV4) != 0) 1575 in6p->inp_ip_ttl = optval; 1576 } 1577 break; 1578 #define OPTSET(bit) \ 1579 do { \ 1580 INP_WLOCK(in6p); \ 1581 if (optval) \ 1582 in6p->inp_flags |= (bit); \ 1583 else \ 1584 in6p->inp_flags &= ~(bit); \ 1585 INP_WUNLOCK(in6p); \ 1586 } while (/*CONSTCOND*/ 0) 1587 #define OPTSET2292(bit) \ 1588 do { \ 1589 INP_WLOCK(in6p); \ 1590 in6p->inp_flags |= IN6P_RFC2292; \ 1591 if (optval) \ 1592 in6p->inp_flags |= (bit); \ 1593 else \ 1594 in6p->inp_flags &= ~(bit); \ 1595 INP_WUNLOCK(in6p); \ 1596 } while (/*CONSTCOND*/ 0) 1597 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1598 1599 #define OPTSET2_N(bit, val) do { \ 1600 if (val) \ 1601 in6p->inp_flags2 |= bit; \ 1602 else \ 1603 in6p->inp_flags2 &= ~bit; \ 1604 } while (0) 1605 #define OPTSET2(bit, val) do { \ 1606 INP_WLOCK(in6p); \ 1607 OPTSET2_N(bit, val); \ 1608 INP_WUNLOCK(in6p); \ 1609 } while (0) 1610 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) 1611 #define OPTSET2292_EXCLUSIVE(bit) \ 1612 do { \ 1613 INP_WLOCK(in6p); \ 1614 if (OPTBIT(IN6P_RFC2292)) { \ 1615 error = EINVAL; \ 1616 } else { \ 1617 if (optval) \ 1618 in6p->inp_flags |= (bit); \ 1619 else \ 1620 in6p->inp_flags &= ~(bit); \ 1621 } \ 1622 INP_WUNLOCK(in6p); \ 1623 } while (/*CONSTCOND*/ 0) 1624 1625 case IPV6_RECVPKTINFO: 1626 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1627 break; 1628 1629 case IPV6_HOPLIMIT: 1630 { 1631 struct ip6_pktopts **optp; 1632 1633 /* cannot mix with RFC2292 */ 1634 if (OPTBIT(IN6P_RFC2292)) { 1635 error = EINVAL; 1636 break; 1637 } 1638 optp = &in6p->in6p_outputopts; 1639 error = ip6_pcbopt(IPV6_HOPLIMIT, 1640 (u_char *)&optval, sizeof(optval), 1641 optp, (td != NULL) ? td->td_ucred : 1642 NULL, uproto); 1643 break; 1644 } 1645 1646 case IPV6_RECVHOPLIMIT: 1647 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1648 break; 1649 1650 case IPV6_RECVHOPOPTS: 1651 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1652 break; 1653 1654 case IPV6_RECVDSTOPTS: 1655 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1656 break; 1657 1658 case IPV6_RECVRTHDRDSTOPTS: 1659 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1660 break; 1661 1662 case IPV6_RECVRTHDR: 1663 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1664 break; 1665 1666 case IPV6_RECVPATHMTU: 1667 /* 1668 * We ignore this option for TCP 1669 * sockets. 1670 * (RFC3542 leaves this case 1671 * unspecified.) 1672 */ 1673 if (uproto != IPPROTO_TCP) 1674 OPTSET(IN6P_MTU); 1675 break; 1676 1677 case IPV6_RECVFLOWID: 1678 OPTSET2(INP_RECVFLOWID, optval); 1679 break; 1680 1681 #ifdef RSS 1682 case IPV6_RECVRSSBUCKETID: 1683 OPTSET2(INP_RECVRSSBUCKETID, optval); 1684 break; 1685 #endif 1686 1687 case IPV6_V6ONLY: 1688 /* 1689 * make setsockopt(IPV6_V6ONLY) 1690 * available only prior to bind(2). 1691 * see ipng mailing list, Jun 22 2001. 1692 */ 1693 if (in6p->inp_lport || 1694 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1695 error = EINVAL; 1696 break; 1697 } 1698 OPTSET(IN6P_IPV6_V6ONLY); 1699 if (optval) 1700 in6p->inp_vflag &= ~INP_IPV4; 1701 else 1702 in6p->inp_vflag |= INP_IPV4; 1703 break; 1704 case IPV6_RECVTCLASS: 1705 /* cannot mix with RFC2292 XXX */ 1706 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1707 break; 1708 case IPV6_AUTOFLOWLABEL: 1709 OPTSET(IN6P_AUTOFLOWLABEL); 1710 break; 1711 1712 case IPV6_ORIGDSTADDR: 1713 OPTSET2(INP_ORIGDSTADDR, optval); 1714 break; 1715 case IPV6_BINDANY: 1716 OPTSET(INP_BINDANY); 1717 break; 1718 1719 case IPV6_BINDMULTI: 1720 OPTSET2(INP_BINDMULTI, optval); 1721 break; 1722 #ifdef RSS 1723 case IPV6_RSS_LISTEN_BUCKET: 1724 if ((optval >= 0) && 1725 (optval < rss_getnumbuckets())) { 1726 INP_WLOCK(in6p); 1727 in6p->inp_rss_listen_bucket = optval; 1728 OPTSET2_N(INP_RSS_BUCKET_SET, 1); 1729 INP_WUNLOCK(in6p); 1730 } else { 1731 error = EINVAL; 1732 } 1733 break; 1734 #endif 1735 } 1736 break; 1737 1738 case IPV6_TCLASS: 1739 case IPV6_DONTFRAG: 1740 case IPV6_USE_MIN_MTU: 1741 case IPV6_PREFER_TEMPADDR: 1742 if (optlen != sizeof(optval)) { 1743 error = EINVAL; 1744 break; 1745 } 1746 error = sooptcopyin(sopt, &optval, 1747 sizeof optval, sizeof optval); 1748 if (error) 1749 break; 1750 { 1751 struct ip6_pktopts **optp; 1752 optp = &in6p->in6p_outputopts; 1753 error = ip6_pcbopt(optname, 1754 (u_char *)&optval, sizeof(optval), 1755 optp, (td != NULL) ? td->td_ucred : 1756 NULL, uproto); 1757 break; 1758 } 1759 1760 case IPV6_2292PKTINFO: 1761 case IPV6_2292HOPLIMIT: 1762 case IPV6_2292HOPOPTS: 1763 case IPV6_2292DSTOPTS: 1764 case IPV6_2292RTHDR: 1765 /* RFC 2292 */ 1766 if (optlen != sizeof(int)) { 1767 error = EINVAL; 1768 break; 1769 } 1770 error = sooptcopyin(sopt, &optval, 1771 sizeof optval, sizeof optval); 1772 if (error) 1773 break; 1774 switch (optname) { 1775 case IPV6_2292PKTINFO: 1776 OPTSET2292(IN6P_PKTINFO); 1777 break; 1778 case IPV6_2292HOPLIMIT: 1779 OPTSET2292(IN6P_HOPLIMIT); 1780 break; 1781 case IPV6_2292HOPOPTS: 1782 /* 1783 * Check super-user privilege. 1784 * See comments for IPV6_RECVHOPOPTS. 1785 */ 1786 if (td != NULL) { 1787 error = priv_check(td, 1788 PRIV_NETINET_SETHDROPTS); 1789 if (error) 1790 return (error); 1791 } 1792 OPTSET2292(IN6P_HOPOPTS); 1793 break; 1794 case IPV6_2292DSTOPTS: 1795 if (td != NULL) { 1796 error = priv_check(td, 1797 PRIV_NETINET_SETHDROPTS); 1798 if (error) 1799 return (error); 1800 } 1801 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1802 break; 1803 case IPV6_2292RTHDR: 1804 OPTSET2292(IN6P_RTHDR); 1805 break; 1806 } 1807 break; 1808 case IPV6_PKTINFO: 1809 case IPV6_HOPOPTS: 1810 case IPV6_RTHDR: 1811 case IPV6_DSTOPTS: 1812 case IPV6_RTHDRDSTOPTS: 1813 case IPV6_NEXTHOP: 1814 { 1815 /* new advanced API (RFC3542) */ 1816 u_char *optbuf; 1817 u_char optbuf_storage[MCLBYTES]; 1818 int optlen; 1819 struct ip6_pktopts **optp; 1820 1821 /* cannot mix with RFC2292 */ 1822 if (OPTBIT(IN6P_RFC2292)) { 1823 error = EINVAL; 1824 break; 1825 } 1826 1827 /* 1828 * We only ensure valsize is not too large 1829 * here. Further validation will be done 1830 * later. 1831 */ 1832 error = sooptcopyin(sopt, optbuf_storage, 1833 sizeof(optbuf_storage), 0); 1834 if (error) 1835 break; 1836 optlen = sopt->sopt_valsize; 1837 optbuf = optbuf_storage; 1838 optp = &in6p->in6p_outputopts; 1839 error = ip6_pcbopt(optname, optbuf, optlen, 1840 optp, (td != NULL) ? td->td_ucred : NULL, 1841 uproto); 1842 break; 1843 } 1844 #undef OPTSET 1845 1846 case IPV6_MULTICAST_IF: 1847 case IPV6_MULTICAST_HOPS: 1848 case IPV6_MULTICAST_LOOP: 1849 case IPV6_JOIN_GROUP: 1850 case IPV6_LEAVE_GROUP: 1851 case IPV6_MSFILTER: 1852 case MCAST_BLOCK_SOURCE: 1853 case MCAST_UNBLOCK_SOURCE: 1854 case MCAST_JOIN_GROUP: 1855 case MCAST_LEAVE_GROUP: 1856 case MCAST_JOIN_SOURCE_GROUP: 1857 case MCAST_LEAVE_SOURCE_GROUP: 1858 error = ip6_setmoptions(in6p, sopt); 1859 break; 1860 1861 case IPV6_PORTRANGE: 1862 error = sooptcopyin(sopt, &optval, 1863 sizeof optval, sizeof optval); 1864 if (error) 1865 break; 1866 1867 INP_WLOCK(in6p); 1868 switch (optval) { 1869 case IPV6_PORTRANGE_DEFAULT: 1870 in6p->inp_flags &= ~(INP_LOWPORT); 1871 in6p->inp_flags &= ~(INP_HIGHPORT); 1872 break; 1873 1874 case IPV6_PORTRANGE_HIGH: 1875 in6p->inp_flags &= ~(INP_LOWPORT); 1876 in6p->inp_flags |= INP_HIGHPORT; 1877 break; 1878 1879 case IPV6_PORTRANGE_LOW: 1880 in6p->inp_flags &= ~(INP_HIGHPORT); 1881 in6p->inp_flags |= INP_LOWPORT; 1882 break; 1883 1884 default: 1885 error = EINVAL; 1886 break; 1887 } 1888 INP_WUNLOCK(in6p); 1889 break; 1890 1891 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1892 case IPV6_IPSEC_POLICY: 1893 if (IPSEC_ENABLED(ipv6)) { 1894 error = IPSEC_PCBCTL(ipv6, in6p, sopt); 1895 break; 1896 } 1897 /* FALLTHROUGH */ 1898 #endif /* IPSEC */ 1899 1900 default: 1901 error = ENOPROTOOPT; 1902 break; 1903 } 1904 break; 1905 1906 case SOPT_GET: 1907 switch (optname) { 1908 1909 case IPV6_2292PKTOPTIONS: 1910 #ifdef IPV6_PKTOPTIONS 1911 case IPV6_PKTOPTIONS: 1912 #endif 1913 /* 1914 * RFC3542 (effectively) deprecated the 1915 * semantics of the 2292-style pktoptions. 1916 * Since it was not reliable in nature (i.e., 1917 * applications had to expect the lack of some 1918 * information after all), it would make sense 1919 * to simplify this part by always returning 1920 * empty data. 1921 */ 1922 sopt->sopt_valsize = 0; 1923 break; 1924 1925 case IPV6_RECVHOPOPTS: 1926 case IPV6_RECVDSTOPTS: 1927 case IPV6_RECVRTHDRDSTOPTS: 1928 case IPV6_UNICAST_HOPS: 1929 case IPV6_RECVPKTINFO: 1930 case IPV6_RECVHOPLIMIT: 1931 case IPV6_RECVRTHDR: 1932 case IPV6_RECVPATHMTU: 1933 1934 case IPV6_V6ONLY: 1935 case IPV6_PORTRANGE: 1936 case IPV6_RECVTCLASS: 1937 case IPV6_AUTOFLOWLABEL: 1938 case IPV6_BINDANY: 1939 case IPV6_FLOWID: 1940 case IPV6_FLOWTYPE: 1941 case IPV6_RECVFLOWID: 1942 #ifdef RSS 1943 case IPV6_RSSBUCKETID: 1944 case IPV6_RECVRSSBUCKETID: 1945 #endif 1946 case IPV6_BINDMULTI: 1947 switch (optname) { 1948 1949 case IPV6_RECVHOPOPTS: 1950 optval = OPTBIT(IN6P_HOPOPTS); 1951 break; 1952 1953 case IPV6_RECVDSTOPTS: 1954 optval = OPTBIT(IN6P_DSTOPTS); 1955 break; 1956 1957 case IPV6_RECVRTHDRDSTOPTS: 1958 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1959 break; 1960 1961 case IPV6_UNICAST_HOPS: 1962 optval = in6p->in6p_hops; 1963 break; 1964 1965 case IPV6_RECVPKTINFO: 1966 optval = OPTBIT(IN6P_PKTINFO); 1967 break; 1968 1969 case IPV6_RECVHOPLIMIT: 1970 optval = OPTBIT(IN6P_HOPLIMIT); 1971 break; 1972 1973 case IPV6_RECVRTHDR: 1974 optval = OPTBIT(IN6P_RTHDR); 1975 break; 1976 1977 case IPV6_RECVPATHMTU: 1978 optval = OPTBIT(IN6P_MTU); 1979 break; 1980 1981 case IPV6_V6ONLY: 1982 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1983 break; 1984 1985 case IPV6_PORTRANGE: 1986 { 1987 int flags; 1988 flags = in6p->inp_flags; 1989 if (flags & INP_HIGHPORT) 1990 optval = IPV6_PORTRANGE_HIGH; 1991 else if (flags & INP_LOWPORT) 1992 optval = IPV6_PORTRANGE_LOW; 1993 else 1994 optval = 0; 1995 break; 1996 } 1997 case IPV6_RECVTCLASS: 1998 optval = OPTBIT(IN6P_TCLASS); 1999 break; 2000 2001 case IPV6_AUTOFLOWLABEL: 2002 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2003 break; 2004 2005 case IPV6_ORIGDSTADDR: 2006 optval = OPTBIT2(INP_ORIGDSTADDR); 2007 break; 2008 2009 case IPV6_BINDANY: 2010 optval = OPTBIT(INP_BINDANY); 2011 break; 2012 2013 case IPV6_FLOWID: 2014 optval = in6p->inp_flowid; 2015 break; 2016 2017 case IPV6_FLOWTYPE: 2018 optval = in6p->inp_flowtype; 2019 break; 2020 2021 case IPV6_RECVFLOWID: 2022 optval = OPTBIT2(INP_RECVFLOWID); 2023 break; 2024 #ifdef RSS 2025 case IPV6_RSSBUCKETID: 2026 retval = 2027 rss_hash2bucket(in6p->inp_flowid, 2028 in6p->inp_flowtype, 2029 &rss_bucket); 2030 if (retval == 0) 2031 optval = rss_bucket; 2032 else 2033 error = EINVAL; 2034 break; 2035 2036 case IPV6_RECVRSSBUCKETID: 2037 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2038 break; 2039 #endif 2040 2041 case IPV6_BINDMULTI: 2042 optval = OPTBIT2(INP_BINDMULTI); 2043 break; 2044 2045 } 2046 if (error) 2047 break; 2048 error = sooptcopyout(sopt, &optval, 2049 sizeof optval); 2050 break; 2051 2052 case IPV6_PATHMTU: 2053 { 2054 u_long pmtu = 0; 2055 struct ip6_mtuinfo mtuinfo; 2056 struct in6_addr addr; 2057 2058 if (!(so->so_state & SS_ISCONNECTED)) 2059 return (ENOTCONN); 2060 /* 2061 * XXX: we dot not consider the case of source 2062 * routing, or optional information to specify 2063 * the outgoing interface. 2064 * Copy faddr out of in6p to avoid holding lock 2065 * on inp during route lookup. 2066 */ 2067 INP_RLOCK(in6p); 2068 bcopy(&in6p->in6p_faddr, &addr, sizeof(addr)); 2069 INP_RUNLOCK(in6p); 2070 error = ip6_getpmtu_ctl(so->so_fibnum, 2071 &addr, &pmtu); 2072 if (error) 2073 break; 2074 if (pmtu > IPV6_MAXPACKET) 2075 pmtu = IPV6_MAXPACKET; 2076 2077 bzero(&mtuinfo, sizeof(mtuinfo)); 2078 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2079 optdata = (void *)&mtuinfo; 2080 optdatalen = sizeof(mtuinfo); 2081 error = sooptcopyout(sopt, optdata, 2082 optdatalen); 2083 break; 2084 } 2085 2086 case IPV6_2292PKTINFO: 2087 case IPV6_2292HOPLIMIT: 2088 case IPV6_2292HOPOPTS: 2089 case IPV6_2292RTHDR: 2090 case IPV6_2292DSTOPTS: 2091 switch (optname) { 2092 case IPV6_2292PKTINFO: 2093 optval = OPTBIT(IN6P_PKTINFO); 2094 break; 2095 case IPV6_2292HOPLIMIT: 2096 optval = OPTBIT(IN6P_HOPLIMIT); 2097 break; 2098 case IPV6_2292HOPOPTS: 2099 optval = OPTBIT(IN6P_HOPOPTS); 2100 break; 2101 case IPV6_2292RTHDR: 2102 optval = OPTBIT(IN6P_RTHDR); 2103 break; 2104 case IPV6_2292DSTOPTS: 2105 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2106 break; 2107 } 2108 error = sooptcopyout(sopt, &optval, 2109 sizeof optval); 2110 break; 2111 case IPV6_PKTINFO: 2112 case IPV6_HOPOPTS: 2113 case IPV6_RTHDR: 2114 case IPV6_DSTOPTS: 2115 case IPV6_RTHDRDSTOPTS: 2116 case IPV6_NEXTHOP: 2117 case IPV6_TCLASS: 2118 case IPV6_DONTFRAG: 2119 case IPV6_USE_MIN_MTU: 2120 case IPV6_PREFER_TEMPADDR: 2121 error = ip6_getpcbopt(in6p, optname, sopt); 2122 break; 2123 2124 case IPV6_MULTICAST_IF: 2125 case IPV6_MULTICAST_HOPS: 2126 case IPV6_MULTICAST_LOOP: 2127 case IPV6_MSFILTER: 2128 error = ip6_getmoptions(in6p, sopt); 2129 break; 2130 2131 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2132 case IPV6_IPSEC_POLICY: 2133 if (IPSEC_ENABLED(ipv6)) { 2134 error = IPSEC_PCBCTL(ipv6, in6p, sopt); 2135 break; 2136 } 2137 /* FALLTHROUGH */ 2138 #endif /* IPSEC */ 2139 default: 2140 error = ENOPROTOOPT; 2141 break; 2142 } 2143 break; 2144 } 2145 } 2146 return (error); 2147 } 2148 2149 int 2150 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2151 { 2152 int error = 0, optval, optlen; 2153 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2154 struct inpcb *in6p = sotoinpcb(so); 2155 int level, op, optname; 2156 2157 level = sopt->sopt_level; 2158 op = sopt->sopt_dir; 2159 optname = sopt->sopt_name; 2160 optlen = sopt->sopt_valsize; 2161 2162 if (level != IPPROTO_IPV6) { 2163 return (EINVAL); 2164 } 2165 2166 switch (optname) { 2167 case IPV6_CHECKSUM: 2168 /* 2169 * For ICMPv6 sockets, no modification allowed for checksum 2170 * offset, permit "no change" values to help existing apps. 2171 * 2172 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2173 * for an ICMPv6 socket will fail." 2174 * The current behavior does not meet RFC3542. 2175 */ 2176 switch (op) { 2177 case SOPT_SET: 2178 if (optlen != sizeof(int)) { 2179 error = EINVAL; 2180 break; 2181 } 2182 error = sooptcopyin(sopt, &optval, sizeof(optval), 2183 sizeof(optval)); 2184 if (error) 2185 break; 2186 if ((optval % 2) != 0) { 2187 /* the API assumes even offset values */ 2188 error = EINVAL; 2189 } else if (so->so_proto->pr_protocol == 2190 IPPROTO_ICMPV6) { 2191 if (optval != icmp6off) 2192 error = EINVAL; 2193 } else 2194 in6p->in6p_cksum = optval; 2195 break; 2196 2197 case SOPT_GET: 2198 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2199 optval = icmp6off; 2200 else 2201 optval = in6p->in6p_cksum; 2202 2203 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2204 break; 2205 2206 default: 2207 error = EINVAL; 2208 break; 2209 } 2210 break; 2211 2212 default: 2213 error = ENOPROTOOPT; 2214 break; 2215 } 2216 2217 return (error); 2218 } 2219 2220 /* 2221 * Set up IP6 options in pcb for insertion in output packets or 2222 * specifying behavior of outgoing packets. 2223 */ 2224 static int 2225 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2226 struct socket *so, struct sockopt *sopt) 2227 { 2228 struct ip6_pktopts *opt = *pktopt; 2229 int error = 0; 2230 struct thread *td = sopt->sopt_td; 2231 2232 /* turn off any old options. */ 2233 if (opt) { 2234 #ifdef DIAGNOSTIC 2235 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2236 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2237 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2238 printf("ip6_pcbopts: all specified options are cleared.\n"); 2239 #endif 2240 ip6_clearpktopts(opt, -1); 2241 } else 2242 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2243 *pktopt = NULL; 2244 2245 if (!m || m->m_len == 0) { 2246 /* 2247 * Only turning off any previous options, regardless of 2248 * whether the opt is just created or given. 2249 */ 2250 free(opt, M_IP6OPT); 2251 return (0); 2252 } 2253 2254 /* set options specified by user. */ 2255 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2256 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2257 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2258 free(opt, M_IP6OPT); 2259 return (error); 2260 } 2261 *pktopt = opt; 2262 return (0); 2263 } 2264 2265 /* 2266 * initialize ip6_pktopts. beware that there are non-zero default values in 2267 * the struct. 2268 */ 2269 void 2270 ip6_initpktopts(struct ip6_pktopts *opt) 2271 { 2272 2273 bzero(opt, sizeof(*opt)); 2274 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2275 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2276 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2277 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2278 } 2279 2280 static int 2281 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2282 struct ucred *cred, int uproto) 2283 { 2284 struct ip6_pktopts *opt; 2285 2286 if (*pktopt == NULL) { 2287 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2288 M_WAITOK); 2289 ip6_initpktopts(*pktopt); 2290 } 2291 opt = *pktopt; 2292 2293 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2294 } 2295 2296 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2297 if (pktopt && pktopt->field) { \ 2298 INP_RUNLOCK(in6p); \ 2299 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2300 malloc_optdata = true; \ 2301 INP_RLOCK(in6p); \ 2302 if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ 2303 INP_RUNLOCK(in6p); \ 2304 free(optdata, M_TEMP); \ 2305 return (ECONNRESET); \ 2306 } \ 2307 pktopt = in6p->in6p_outputopts; \ 2308 if (pktopt && pktopt->field) { \ 2309 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2310 bcopy(&pktopt->field, optdata, optdatalen); \ 2311 } else { \ 2312 free(optdata, M_TEMP); \ 2313 optdata = NULL; \ 2314 malloc_optdata = false; \ 2315 } \ 2316 } \ 2317 } while(0) 2318 2319 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2320 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2321 2322 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2323 pktopt->field->sa_len) 2324 2325 static int 2326 ip6_getpcbopt(struct inpcb *in6p, int optname, struct sockopt *sopt) 2327 { 2328 void *optdata = NULL; 2329 bool malloc_optdata = false; 2330 int optdatalen = 0; 2331 int error = 0; 2332 struct in6_pktinfo null_pktinfo; 2333 int deftclass = 0, on; 2334 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2335 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2336 struct ip6_pktopts *pktopt; 2337 2338 INP_RLOCK(in6p); 2339 pktopt = in6p->in6p_outputopts; 2340 2341 switch (optname) { 2342 case IPV6_PKTINFO: 2343 optdata = (void *)&null_pktinfo; 2344 if (pktopt && pktopt->ip6po_pktinfo) { 2345 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2346 sizeof(null_pktinfo)); 2347 in6_clearscope(&null_pktinfo.ipi6_addr); 2348 } else { 2349 /* XXX: we don't have to do this every time... */ 2350 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2351 } 2352 optdatalen = sizeof(struct in6_pktinfo); 2353 break; 2354 case IPV6_TCLASS: 2355 if (pktopt && pktopt->ip6po_tclass >= 0) 2356 deftclass = pktopt->ip6po_tclass; 2357 optdata = (void *)&deftclass; 2358 optdatalen = sizeof(int); 2359 break; 2360 case IPV6_HOPOPTS: 2361 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2362 break; 2363 case IPV6_RTHDR: 2364 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2365 break; 2366 case IPV6_RTHDRDSTOPTS: 2367 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2368 break; 2369 case IPV6_DSTOPTS: 2370 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2371 break; 2372 case IPV6_NEXTHOP: 2373 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2374 break; 2375 case IPV6_USE_MIN_MTU: 2376 if (pktopt) 2377 defminmtu = pktopt->ip6po_minmtu; 2378 optdata = (void *)&defminmtu; 2379 optdatalen = sizeof(int); 2380 break; 2381 case IPV6_DONTFRAG: 2382 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2383 on = 1; 2384 else 2385 on = 0; 2386 optdata = (void *)&on; 2387 optdatalen = sizeof(on); 2388 break; 2389 case IPV6_PREFER_TEMPADDR: 2390 if (pktopt) 2391 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2392 optdata = (void *)&defpreftemp; 2393 optdatalen = sizeof(int); 2394 break; 2395 default: /* should not happen */ 2396 #ifdef DIAGNOSTIC 2397 panic("ip6_getpcbopt: unexpected option\n"); 2398 #endif 2399 INP_RUNLOCK(in6p); 2400 return (ENOPROTOOPT); 2401 } 2402 INP_RUNLOCK(in6p); 2403 2404 error = sooptcopyout(sopt, optdata, optdatalen); 2405 if (malloc_optdata) 2406 free(optdata, M_TEMP); 2407 2408 return (error); 2409 } 2410 2411 void 2412 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2413 { 2414 if (pktopt == NULL) 2415 return; 2416 2417 if (optname == -1 || optname == IPV6_PKTINFO) { 2418 if (pktopt->ip6po_pktinfo) 2419 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2420 pktopt->ip6po_pktinfo = NULL; 2421 } 2422 if (optname == -1 || optname == IPV6_HOPLIMIT) 2423 pktopt->ip6po_hlim = -1; 2424 if (optname == -1 || optname == IPV6_TCLASS) 2425 pktopt->ip6po_tclass = -1; 2426 if (optname == -1 || optname == IPV6_NEXTHOP) { 2427 if (pktopt->ip6po_nextroute.ro_rt) { 2428 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2429 pktopt->ip6po_nextroute.ro_rt = NULL; 2430 } 2431 if (pktopt->ip6po_nexthop) 2432 free(pktopt->ip6po_nexthop, M_IP6OPT); 2433 pktopt->ip6po_nexthop = NULL; 2434 } 2435 if (optname == -1 || optname == IPV6_HOPOPTS) { 2436 if (pktopt->ip6po_hbh) 2437 free(pktopt->ip6po_hbh, M_IP6OPT); 2438 pktopt->ip6po_hbh = NULL; 2439 } 2440 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2441 if (pktopt->ip6po_dest1) 2442 free(pktopt->ip6po_dest1, M_IP6OPT); 2443 pktopt->ip6po_dest1 = NULL; 2444 } 2445 if (optname == -1 || optname == IPV6_RTHDR) { 2446 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2447 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2448 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2449 if (pktopt->ip6po_route.ro_rt) { 2450 RTFREE(pktopt->ip6po_route.ro_rt); 2451 pktopt->ip6po_route.ro_rt = NULL; 2452 } 2453 } 2454 if (optname == -1 || optname == IPV6_DSTOPTS) { 2455 if (pktopt->ip6po_dest2) 2456 free(pktopt->ip6po_dest2, M_IP6OPT); 2457 pktopt->ip6po_dest2 = NULL; 2458 } 2459 } 2460 2461 #define PKTOPT_EXTHDRCPY(type) \ 2462 do {\ 2463 if (src->type) {\ 2464 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2465 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2466 if (dst->type == NULL)\ 2467 goto bad;\ 2468 bcopy(src->type, dst->type, hlen);\ 2469 }\ 2470 } while (/*CONSTCOND*/ 0) 2471 2472 static int 2473 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2474 { 2475 if (dst == NULL || src == NULL) { 2476 printf("ip6_clearpktopts: invalid argument\n"); 2477 return (EINVAL); 2478 } 2479 2480 dst->ip6po_hlim = src->ip6po_hlim; 2481 dst->ip6po_tclass = src->ip6po_tclass; 2482 dst->ip6po_flags = src->ip6po_flags; 2483 dst->ip6po_minmtu = src->ip6po_minmtu; 2484 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2485 if (src->ip6po_pktinfo) { 2486 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2487 M_IP6OPT, canwait); 2488 if (dst->ip6po_pktinfo == NULL) 2489 goto bad; 2490 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2491 } 2492 if (src->ip6po_nexthop) { 2493 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2494 M_IP6OPT, canwait); 2495 if (dst->ip6po_nexthop == NULL) 2496 goto bad; 2497 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2498 src->ip6po_nexthop->sa_len); 2499 } 2500 PKTOPT_EXTHDRCPY(ip6po_hbh); 2501 PKTOPT_EXTHDRCPY(ip6po_dest1); 2502 PKTOPT_EXTHDRCPY(ip6po_dest2); 2503 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2504 return (0); 2505 2506 bad: 2507 ip6_clearpktopts(dst, -1); 2508 return (ENOBUFS); 2509 } 2510 #undef PKTOPT_EXTHDRCPY 2511 2512 struct ip6_pktopts * 2513 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2514 { 2515 int error; 2516 struct ip6_pktopts *dst; 2517 2518 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2519 if (dst == NULL) 2520 return (NULL); 2521 ip6_initpktopts(dst); 2522 2523 if ((error = copypktopts(dst, src, canwait)) != 0) { 2524 free(dst, M_IP6OPT); 2525 return (NULL); 2526 } 2527 2528 return (dst); 2529 } 2530 2531 void 2532 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2533 { 2534 if (pktopt == NULL) 2535 return; 2536 2537 ip6_clearpktopts(pktopt, -1); 2538 2539 free(pktopt, M_IP6OPT); 2540 } 2541 2542 /* 2543 * Set IPv6 outgoing packet options based on advanced API. 2544 */ 2545 int 2546 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2547 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2548 { 2549 struct cmsghdr *cm = NULL; 2550 2551 if (control == NULL || opt == NULL) 2552 return (EINVAL); 2553 2554 ip6_initpktopts(opt); 2555 if (stickyopt) { 2556 int error; 2557 2558 /* 2559 * If stickyopt is provided, make a local copy of the options 2560 * for this particular packet, then override them by ancillary 2561 * objects. 2562 * XXX: copypktopts() does not copy the cached route to a next 2563 * hop (if any). This is not very good in terms of efficiency, 2564 * but we can allow this since this option should be rarely 2565 * used. 2566 */ 2567 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2568 return (error); 2569 } 2570 2571 /* 2572 * XXX: Currently, we assume all the optional information is stored 2573 * in a single mbuf. 2574 */ 2575 if (control->m_next) 2576 return (EINVAL); 2577 2578 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2579 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2580 int error; 2581 2582 if (control->m_len < CMSG_LEN(0)) 2583 return (EINVAL); 2584 2585 cm = mtod(control, struct cmsghdr *); 2586 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2587 return (EINVAL); 2588 if (cm->cmsg_level != IPPROTO_IPV6) 2589 continue; 2590 2591 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2592 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2593 if (error) 2594 return (error); 2595 } 2596 2597 return (0); 2598 } 2599 2600 /* 2601 * Set a particular packet option, as a sticky option or an ancillary data 2602 * item. "len" can be 0 only when it's a sticky option. 2603 * We have 4 cases of combination of "sticky" and "cmsg": 2604 * "sticky=0, cmsg=0": impossible 2605 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2606 * "sticky=1, cmsg=0": RFC3542 socket option 2607 * "sticky=1, cmsg=1": RFC2292 socket option 2608 */ 2609 static int 2610 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2611 struct ucred *cred, int sticky, int cmsg, int uproto) 2612 { 2613 int minmtupolicy, preftemp; 2614 int error; 2615 2616 if (!sticky && !cmsg) { 2617 #ifdef DIAGNOSTIC 2618 printf("ip6_setpktopt: impossible case\n"); 2619 #endif 2620 return (EINVAL); 2621 } 2622 2623 /* 2624 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2625 * not be specified in the context of RFC3542. Conversely, 2626 * RFC3542 types should not be specified in the context of RFC2292. 2627 */ 2628 if (!cmsg) { 2629 switch (optname) { 2630 case IPV6_2292PKTINFO: 2631 case IPV6_2292HOPLIMIT: 2632 case IPV6_2292NEXTHOP: 2633 case IPV6_2292HOPOPTS: 2634 case IPV6_2292DSTOPTS: 2635 case IPV6_2292RTHDR: 2636 case IPV6_2292PKTOPTIONS: 2637 return (ENOPROTOOPT); 2638 } 2639 } 2640 if (sticky && cmsg) { 2641 switch (optname) { 2642 case IPV6_PKTINFO: 2643 case IPV6_HOPLIMIT: 2644 case IPV6_NEXTHOP: 2645 case IPV6_HOPOPTS: 2646 case IPV6_DSTOPTS: 2647 case IPV6_RTHDRDSTOPTS: 2648 case IPV6_RTHDR: 2649 case IPV6_USE_MIN_MTU: 2650 case IPV6_DONTFRAG: 2651 case IPV6_TCLASS: 2652 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2653 return (ENOPROTOOPT); 2654 } 2655 } 2656 2657 switch (optname) { 2658 case IPV6_2292PKTINFO: 2659 case IPV6_PKTINFO: 2660 { 2661 struct ifnet *ifp = NULL; 2662 struct in6_pktinfo *pktinfo; 2663 2664 if (len != sizeof(struct in6_pktinfo)) 2665 return (EINVAL); 2666 2667 pktinfo = (struct in6_pktinfo *)buf; 2668 2669 /* 2670 * An application can clear any sticky IPV6_PKTINFO option by 2671 * doing a "regular" setsockopt with ipi6_addr being 2672 * in6addr_any and ipi6_ifindex being zero. 2673 * [RFC 3542, Section 6] 2674 */ 2675 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2676 pktinfo->ipi6_ifindex == 0 && 2677 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2678 ip6_clearpktopts(opt, optname); 2679 break; 2680 } 2681 2682 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2683 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2684 return (EINVAL); 2685 } 2686 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2687 return (EINVAL); 2688 /* validate the interface index if specified. */ 2689 if (pktinfo->ipi6_ifindex > V_if_index) 2690 return (ENXIO); 2691 if (pktinfo->ipi6_ifindex) { 2692 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2693 if (ifp == NULL) 2694 return (ENXIO); 2695 } 2696 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2697 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2698 return (ENETDOWN); 2699 2700 if (ifp != NULL && 2701 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2702 struct in6_ifaddr *ia; 2703 2704 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2705 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2706 if (ia == NULL) 2707 return (EADDRNOTAVAIL); 2708 ifa_free(&ia->ia_ifa); 2709 } 2710 /* 2711 * We store the address anyway, and let in6_selectsrc() 2712 * validate the specified address. This is because ipi6_addr 2713 * may not have enough information about its scope zone, and 2714 * we may need additional information (such as outgoing 2715 * interface or the scope zone of a destination address) to 2716 * disambiguate the scope. 2717 * XXX: the delay of the validation may confuse the 2718 * application when it is used as a sticky option. 2719 */ 2720 if (opt->ip6po_pktinfo == NULL) { 2721 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2722 M_IP6OPT, M_NOWAIT); 2723 if (opt->ip6po_pktinfo == NULL) 2724 return (ENOBUFS); 2725 } 2726 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2727 break; 2728 } 2729 2730 case IPV6_2292HOPLIMIT: 2731 case IPV6_HOPLIMIT: 2732 { 2733 int *hlimp; 2734 2735 /* 2736 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2737 * to simplify the ordering among hoplimit options. 2738 */ 2739 if (optname == IPV6_HOPLIMIT && sticky) 2740 return (ENOPROTOOPT); 2741 2742 if (len != sizeof(int)) 2743 return (EINVAL); 2744 hlimp = (int *)buf; 2745 if (*hlimp < -1 || *hlimp > 255) 2746 return (EINVAL); 2747 2748 opt->ip6po_hlim = *hlimp; 2749 break; 2750 } 2751 2752 case IPV6_TCLASS: 2753 { 2754 int tclass; 2755 2756 if (len != sizeof(int)) 2757 return (EINVAL); 2758 tclass = *(int *)buf; 2759 if (tclass < -1 || tclass > 255) 2760 return (EINVAL); 2761 2762 opt->ip6po_tclass = tclass; 2763 break; 2764 } 2765 2766 case IPV6_2292NEXTHOP: 2767 case IPV6_NEXTHOP: 2768 if (cred != NULL) { 2769 error = priv_check_cred(cred, 2770 PRIV_NETINET_SETHDROPTS, 0); 2771 if (error) 2772 return (error); 2773 } 2774 2775 if (len == 0) { /* just remove the option */ 2776 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2777 break; 2778 } 2779 2780 /* check if cmsg_len is large enough for sa_len */ 2781 if (len < sizeof(struct sockaddr) || len < *buf) 2782 return (EINVAL); 2783 2784 switch (((struct sockaddr *)buf)->sa_family) { 2785 case AF_INET6: 2786 { 2787 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2788 int error; 2789 2790 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2791 return (EINVAL); 2792 2793 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2794 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2795 return (EINVAL); 2796 } 2797 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2798 != 0) { 2799 return (error); 2800 } 2801 break; 2802 } 2803 case AF_LINK: /* should eventually be supported */ 2804 default: 2805 return (EAFNOSUPPORT); 2806 } 2807 2808 /* turn off the previous option, then set the new option. */ 2809 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2810 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2811 if (opt->ip6po_nexthop == NULL) 2812 return (ENOBUFS); 2813 bcopy(buf, opt->ip6po_nexthop, *buf); 2814 break; 2815 2816 case IPV6_2292HOPOPTS: 2817 case IPV6_HOPOPTS: 2818 { 2819 struct ip6_hbh *hbh; 2820 int hbhlen; 2821 2822 /* 2823 * XXX: We don't allow a non-privileged user to set ANY HbH 2824 * options, since per-option restriction has too much 2825 * overhead. 2826 */ 2827 if (cred != NULL) { 2828 error = priv_check_cred(cred, 2829 PRIV_NETINET_SETHDROPTS, 0); 2830 if (error) 2831 return (error); 2832 } 2833 2834 if (len == 0) { 2835 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2836 break; /* just remove the option */ 2837 } 2838 2839 /* message length validation */ 2840 if (len < sizeof(struct ip6_hbh)) 2841 return (EINVAL); 2842 hbh = (struct ip6_hbh *)buf; 2843 hbhlen = (hbh->ip6h_len + 1) << 3; 2844 if (len != hbhlen) 2845 return (EINVAL); 2846 2847 /* turn off the previous option, then set the new option. */ 2848 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2849 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2850 if (opt->ip6po_hbh == NULL) 2851 return (ENOBUFS); 2852 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2853 2854 break; 2855 } 2856 2857 case IPV6_2292DSTOPTS: 2858 case IPV6_DSTOPTS: 2859 case IPV6_RTHDRDSTOPTS: 2860 { 2861 struct ip6_dest *dest, **newdest = NULL; 2862 int destlen; 2863 2864 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2865 error = priv_check_cred(cred, 2866 PRIV_NETINET_SETHDROPTS, 0); 2867 if (error) 2868 return (error); 2869 } 2870 2871 if (len == 0) { 2872 ip6_clearpktopts(opt, optname); 2873 break; /* just remove the option */ 2874 } 2875 2876 /* message length validation */ 2877 if (len < sizeof(struct ip6_dest)) 2878 return (EINVAL); 2879 dest = (struct ip6_dest *)buf; 2880 destlen = (dest->ip6d_len + 1) << 3; 2881 if (len != destlen) 2882 return (EINVAL); 2883 2884 /* 2885 * Determine the position that the destination options header 2886 * should be inserted; before or after the routing header. 2887 */ 2888 switch (optname) { 2889 case IPV6_2292DSTOPTS: 2890 /* 2891 * The old advacned API is ambiguous on this point. 2892 * Our approach is to determine the position based 2893 * according to the existence of a routing header. 2894 * Note, however, that this depends on the order of the 2895 * extension headers in the ancillary data; the 1st 2896 * part of the destination options header must appear 2897 * before the routing header in the ancillary data, 2898 * too. 2899 * RFC3542 solved the ambiguity by introducing 2900 * separate ancillary data or option types. 2901 */ 2902 if (opt->ip6po_rthdr == NULL) 2903 newdest = &opt->ip6po_dest1; 2904 else 2905 newdest = &opt->ip6po_dest2; 2906 break; 2907 case IPV6_RTHDRDSTOPTS: 2908 newdest = &opt->ip6po_dest1; 2909 break; 2910 case IPV6_DSTOPTS: 2911 newdest = &opt->ip6po_dest2; 2912 break; 2913 } 2914 2915 /* turn off the previous option, then set the new option. */ 2916 ip6_clearpktopts(opt, optname); 2917 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2918 if (*newdest == NULL) 2919 return (ENOBUFS); 2920 bcopy(dest, *newdest, destlen); 2921 2922 break; 2923 } 2924 2925 case IPV6_2292RTHDR: 2926 case IPV6_RTHDR: 2927 { 2928 struct ip6_rthdr *rth; 2929 int rthlen; 2930 2931 if (len == 0) { 2932 ip6_clearpktopts(opt, IPV6_RTHDR); 2933 break; /* just remove the option */ 2934 } 2935 2936 /* message length validation */ 2937 if (len < sizeof(struct ip6_rthdr)) 2938 return (EINVAL); 2939 rth = (struct ip6_rthdr *)buf; 2940 rthlen = (rth->ip6r_len + 1) << 3; 2941 if (len != rthlen) 2942 return (EINVAL); 2943 2944 switch (rth->ip6r_type) { 2945 case IPV6_RTHDR_TYPE_0: 2946 if (rth->ip6r_len == 0) /* must contain one addr */ 2947 return (EINVAL); 2948 if (rth->ip6r_len % 2) /* length must be even */ 2949 return (EINVAL); 2950 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2951 return (EINVAL); 2952 break; 2953 default: 2954 return (EINVAL); /* not supported */ 2955 } 2956 2957 /* turn off the previous option */ 2958 ip6_clearpktopts(opt, IPV6_RTHDR); 2959 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2960 if (opt->ip6po_rthdr == NULL) 2961 return (ENOBUFS); 2962 bcopy(rth, opt->ip6po_rthdr, rthlen); 2963 2964 break; 2965 } 2966 2967 case IPV6_USE_MIN_MTU: 2968 if (len != sizeof(int)) 2969 return (EINVAL); 2970 minmtupolicy = *(int *)buf; 2971 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2972 minmtupolicy != IP6PO_MINMTU_DISABLE && 2973 minmtupolicy != IP6PO_MINMTU_ALL) { 2974 return (EINVAL); 2975 } 2976 opt->ip6po_minmtu = minmtupolicy; 2977 break; 2978 2979 case IPV6_DONTFRAG: 2980 if (len != sizeof(int)) 2981 return (EINVAL); 2982 2983 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2984 /* 2985 * we ignore this option for TCP sockets. 2986 * (RFC3542 leaves this case unspecified.) 2987 */ 2988 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2989 } else 2990 opt->ip6po_flags |= IP6PO_DONTFRAG; 2991 break; 2992 2993 case IPV6_PREFER_TEMPADDR: 2994 if (len != sizeof(int)) 2995 return (EINVAL); 2996 preftemp = *(int *)buf; 2997 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 2998 preftemp != IP6PO_TEMPADDR_NOTPREFER && 2999 preftemp != IP6PO_TEMPADDR_PREFER) { 3000 return (EINVAL); 3001 } 3002 opt->ip6po_prefer_tempaddr = preftemp; 3003 break; 3004 3005 default: 3006 return (ENOPROTOOPT); 3007 } /* end of switch */ 3008 3009 return (0); 3010 } 3011 3012 /* 3013 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3014 * packet to the input queue of a specified interface. Note that this 3015 * calls the output routine of the loopback "driver", but with an interface 3016 * pointer that might NOT be &loif -- easier than replicating that code here. 3017 */ 3018 void 3019 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3020 { 3021 struct mbuf *copym; 3022 struct ip6_hdr *ip6; 3023 3024 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3025 if (copym == NULL) 3026 return; 3027 3028 /* 3029 * Make sure to deep-copy IPv6 header portion in case the data 3030 * is in an mbuf cluster, so that we can safely override the IPv6 3031 * header portion later. 3032 */ 3033 if (!M_WRITABLE(copym) || 3034 copym->m_len < sizeof(struct ip6_hdr)) { 3035 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3036 if (copym == NULL) 3037 return; 3038 } 3039 ip6 = mtod(copym, struct ip6_hdr *); 3040 /* 3041 * clear embedded scope identifiers if necessary. 3042 * in6_clearscope will touch the addresses only when necessary. 3043 */ 3044 in6_clearscope(&ip6->ip6_src); 3045 in6_clearscope(&ip6->ip6_dst); 3046 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3047 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3048 CSUM_PSEUDO_HDR; 3049 copym->m_pkthdr.csum_data = 0xffff; 3050 } 3051 if_simloop(ifp, copym, AF_INET6, 0); 3052 } 3053 3054 /* 3055 * Chop IPv6 header off from the payload. 3056 */ 3057 static int 3058 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3059 { 3060 struct mbuf *mh; 3061 struct ip6_hdr *ip6; 3062 3063 ip6 = mtod(m, struct ip6_hdr *); 3064 if (m->m_len > sizeof(*ip6)) { 3065 mh = m_gethdr(M_NOWAIT, MT_DATA); 3066 if (mh == NULL) { 3067 m_freem(m); 3068 return ENOBUFS; 3069 } 3070 m_move_pkthdr(mh, m); 3071 M_ALIGN(mh, sizeof(*ip6)); 3072 m->m_len -= sizeof(*ip6); 3073 m->m_data += sizeof(*ip6); 3074 mh->m_next = m; 3075 m = mh; 3076 m->m_len = sizeof(*ip6); 3077 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3078 } 3079 exthdrs->ip6e_ip6 = m; 3080 return 0; 3081 } 3082 3083 /* 3084 * Compute IPv6 extension header length. 3085 */ 3086 int 3087 ip6_optlen(struct inpcb *in6p) 3088 { 3089 int len; 3090 3091 if (!in6p->in6p_outputopts) 3092 return 0; 3093 3094 len = 0; 3095 #define elen(x) \ 3096 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3097 3098 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3099 if (in6p->in6p_outputopts->ip6po_rthdr) 3100 /* dest1 is valid with rthdr only */ 3101 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3102 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3103 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3104 return len; 3105 #undef elen 3106 } 3107