1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #include "opt_kern_tls.h" 72 #include "opt_ratelimit.h" 73 #include "opt_route.h" 74 #include "opt_rss.h" 75 #include "opt_sctp.h" 76 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/ktls.h> 80 #include <sys/malloc.h> 81 #include <sys/mbuf.h> 82 #include <sys/errno.h> 83 #include <sys/priv.h> 84 #include <sys/proc.h> 85 #include <sys/protosw.h> 86 #include <sys/socket.h> 87 #include <sys/socketvar.h> 88 #include <sys/syslog.h> 89 #include <sys/ucred.h> 90 91 #include <machine/in_cksum.h> 92 93 #include <net/if.h> 94 #include <net/if_var.h> 95 #include <net/if_private.h> 96 #include <net/if_vlan_var.h> 97 #include <net/if_llatbl.h> 98 #include <net/ethernet.h> 99 #include <net/netisr.h> 100 #include <net/route.h> 101 #include <net/route/nhop.h> 102 #include <net/pfil.h> 103 #include <net/rss_config.h> 104 #include <net/vnet.h> 105 106 #include <netinet/in.h> 107 #include <netinet/in_var.h> 108 #include <netinet/ip_var.h> 109 #include <netinet6/in6_fib.h> 110 #include <netinet6/in6_var.h> 111 #include <netinet/ip6.h> 112 #include <netinet/icmp6.h> 113 #include <netinet6/ip6_var.h> 114 #include <netinet/in_pcb.h> 115 #include <netinet/tcp_var.h> 116 #include <netinet6/nd6.h> 117 #include <netinet6/in6_rss.h> 118 119 #include <netipsec/ipsec_support.h> 120 #if defined(SCTP) || defined(SCTP_SUPPORT) 121 #include <netinet/sctp.h> 122 #include <netinet/sctp_crc32.h> 123 #endif 124 125 #include <netinet6/scope6_var.h> 126 127 extern int in6_mcast_loop; 128 129 struct ip6_exthdrs { 130 struct mbuf *ip6e_ip6; 131 struct mbuf *ip6e_hbh; 132 struct mbuf *ip6e_dest1; 133 struct mbuf *ip6e_rthdr; 134 struct mbuf *ip6e_dest2; 135 }; 136 137 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 138 139 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 140 struct ucred *, int); 141 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 142 struct socket *, struct sockopt *); 143 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 144 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 145 struct ucred *, int, int, int); 146 147 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 148 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 149 struct ip6_frag **); 150 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 151 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 152 static int ip6_getpmtu(struct route_in6 *, int, 153 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 154 u_int); 155 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 156 u_long *, int *, u_int); 157 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 158 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 159 160 /* 161 * Make an extension header from option data. hp is the source, 162 * mp is the destination, and _ol is the optlen. 163 */ 164 #define MAKE_EXTHDR(hp, mp, _ol) \ 165 do { \ 166 if (hp) { \ 167 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 168 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 169 ((eh)->ip6e_len + 1) << 3); \ 170 if (error) \ 171 goto freehdrs; \ 172 (_ol) += (*(mp))->m_len; \ 173 } \ 174 } while (/*CONSTCOND*/ 0) 175 176 /* 177 * Form a chain of extension headers. 178 * m is the extension header mbuf 179 * mp is the previous mbuf in the chain 180 * p is the next header 181 * i is the type of option. 182 */ 183 #define MAKE_CHAIN(m, mp, p, i)\ 184 do {\ 185 if (m) {\ 186 if (!hdrsplit) \ 187 panic("%s:%d: assumption failed: "\ 188 "hdr not split: hdrsplit %d exthdrs %p",\ 189 __func__, __LINE__, hdrsplit, &exthdrs);\ 190 *mtod((m), u_char *) = *(p);\ 191 *(p) = (i);\ 192 p = mtod((m), u_char *);\ 193 (m)->m_next = (mp)->m_next;\ 194 (mp)->m_next = (m);\ 195 (mp) = (m);\ 196 }\ 197 } while (/*CONSTCOND*/ 0) 198 199 void 200 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 201 { 202 u_short csum; 203 204 csum = in_cksum_skip(m, offset + plen, offset); 205 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 206 csum = 0xffff; 207 offset += m->m_pkthdr.csum_data; /* checksum offset */ 208 209 if (offset + sizeof(csum) > m->m_len) 210 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 211 else 212 *(u_short *)mtodo(m, offset) = csum; 213 } 214 215 static void 216 ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags, 217 int plen, int optlen) 218 { 219 220 KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p " 221 "csum_flags %#x", 222 __func__, __LINE__, plen, optlen, m, ifp, csum_flags)); 223 224 if (csum_flags & CSUM_DELAY_DATA_IPV6) { 225 in6_delayed_cksum(m, plen - optlen, 226 sizeof(struct ip6_hdr) + optlen); 227 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 228 } 229 #if defined(SCTP) || defined(SCTP_SUPPORT) 230 if (csum_flags & CSUM_SCTP_IPV6) { 231 sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen); 232 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 233 } 234 #endif 235 } 236 237 int 238 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 239 int fraglen , uint32_t id) 240 { 241 struct mbuf *m, **mnext, *m_frgpart; 242 struct ip6_hdr *ip6, *mhip6; 243 struct ip6_frag *ip6f; 244 int off; 245 int error; 246 int tlen = m0->m_pkthdr.len; 247 248 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 249 250 m = m0; 251 ip6 = mtod(m, struct ip6_hdr *); 252 mnext = &m->m_nextpkt; 253 254 for (off = hlen; off < tlen; off += fraglen) { 255 m = m_gethdr(M_NOWAIT, MT_DATA); 256 if (!m) { 257 IP6STAT_INC(ip6s_odropped); 258 return (ENOBUFS); 259 } 260 261 /* 262 * Make sure the complete packet header gets copied 263 * from the originating mbuf to the newly created 264 * mbuf. This also ensures that existing firewall 265 * classification(s), VLAN tags and so on get copied 266 * to the resulting fragmented packet(s): 267 */ 268 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 269 m_free(m); 270 IP6STAT_INC(ip6s_odropped); 271 return (ENOBUFS); 272 } 273 274 *mnext = m; 275 mnext = &m->m_nextpkt; 276 m->m_data += max_linkhdr; 277 mhip6 = mtod(m, struct ip6_hdr *); 278 *mhip6 = *ip6; 279 m->m_len = sizeof(*mhip6); 280 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 281 if (error) { 282 IP6STAT_INC(ip6s_odropped); 283 return (error); 284 } 285 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 286 if (off + fraglen >= tlen) 287 fraglen = tlen - off; 288 else 289 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 290 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 291 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 292 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 293 IP6STAT_INC(ip6s_odropped); 294 return (ENOBUFS); 295 } 296 m_cat(m, m_frgpart); 297 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 298 ip6f->ip6f_reserved = 0; 299 ip6f->ip6f_ident = id; 300 ip6f->ip6f_nxt = nextproto; 301 IP6STAT_INC(ip6s_ofragments); 302 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 303 } 304 305 return (0); 306 } 307 308 static int 309 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp, 310 struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro, 311 bool stamp_tag) 312 { 313 #ifdef KERN_TLS 314 struct ktls_session *tls = NULL; 315 #endif 316 struct m_snd_tag *mst; 317 int error; 318 319 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 320 mst = NULL; 321 322 #ifdef KERN_TLS 323 /* 324 * If this is an unencrypted TLS record, save a reference to 325 * the record. This local reference is used to call 326 * ktls_output_eagain after the mbuf has been freed (thus 327 * dropping the mbuf's reference) in if_output. 328 */ 329 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 330 tls = ktls_hold(m->m_next->m_epg_tls); 331 mst = tls->snd_tag; 332 333 /* 334 * If a TLS session doesn't have a valid tag, it must 335 * have had an earlier ifp mismatch, so drop this 336 * packet. 337 */ 338 if (mst == NULL) { 339 m_freem(m); 340 error = EAGAIN; 341 goto done; 342 } 343 /* 344 * Always stamp tags that include NIC ktls. 345 */ 346 stamp_tag = true; 347 } 348 #endif 349 #ifdef RATELIMIT 350 if (inp != NULL && mst == NULL) { 351 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 352 (inp->inp_snd_tag != NULL && 353 inp->inp_snd_tag->ifp != ifp)) 354 in_pcboutput_txrtlmt(inp, ifp, m); 355 356 if (inp->inp_snd_tag != NULL) 357 mst = inp->inp_snd_tag; 358 } 359 #endif 360 if (stamp_tag && mst != NULL) { 361 KASSERT(m->m_pkthdr.rcvif == NULL, 362 ("trying to add a send tag to a forwarded packet")); 363 if (mst->ifp != ifp) { 364 m_freem(m); 365 error = EAGAIN; 366 goto done; 367 } 368 369 /* stamp send tag on mbuf */ 370 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 371 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 372 } 373 374 error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); 375 376 done: 377 /* Check for route change invalidating send tags. */ 378 #ifdef KERN_TLS 379 if (tls != NULL) { 380 if (error == EAGAIN) 381 error = ktls_output_eagain(inp, tls); 382 ktls_free(tls); 383 } 384 #endif 385 #ifdef RATELIMIT 386 if (error == EAGAIN) 387 in_pcboutput_eagain(inp); 388 #endif 389 return (error); 390 } 391 392 /* 393 * IP6 output. 394 * The packet in mbuf chain m contains a skeletal IP6 header (with pri, len, 395 * nxt, hlim, src, dst). 396 * This function may modify ver and hlim only. 397 * The mbuf chain containing the packet will be freed. 398 * The mbuf opt, if present, will not be freed. 399 * If route_in6 ro is present and has ro_nh initialized, route lookup would be 400 * skipped and ro->ro_nh would be used. If ro is present but ro->ro_nh is NULL, 401 * then result of route lookup is stored in ro->ro_nh. 402 * 403 * Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu 404 * is uint32_t. So we use u_long to hold largest one, which is rt_mtu. 405 * 406 * ifpp - XXX: just for statistics 407 */ 408 int 409 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 410 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 411 struct ifnet **ifpp, struct inpcb *inp) 412 { 413 struct ip6_hdr *ip6; 414 struct ifnet *ifp, *origifp; 415 struct mbuf *m = m0; 416 struct mbuf *mprev; 417 struct route_in6 *ro_pmtu; 418 struct nhop_object *nh; 419 struct sockaddr_in6 *dst, sin6, src_sa, dst_sa; 420 struct in6_addr odst; 421 u_char *nexthdrp; 422 int tlen, len; 423 int error = 0; 424 int vlan_pcp = -1; 425 struct in6_ifaddr *ia = NULL; 426 u_long mtu; 427 int alwaysfrag, dontfrag; 428 u_int32_t optlen, plen = 0, unfragpartlen; 429 struct ip6_exthdrs exthdrs; 430 struct in6_addr src0, dst0; 431 u_int32_t zone; 432 bool hdrsplit; 433 int sw_csum, tso; 434 int needfiblookup; 435 uint32_t fibnum; 436 struct m_tag *fwd_tag = NULL; 437 uint32_t id; 438 439 NET_EPOCH_ASSERT(); 440 441 if (inp != NULL) { 442 INP_LOCK_ASSERT(inp); 443 M_SETFIB(m, inp->inp_inc.inc_fibnum); 444 if ((flags & IP_NODEFAULTFLOWID) == 0) { 445 /* Unconditionally set flowid. */ 446 m->m_pkthdr.flowid = inp->inp_flowid; 447 M_HASHTYPE_SET(m, inp->inp_flowtype); 448 } 449 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 450 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 451 INP_2PCP_SHIFT; 452 #ifdef NUMA 453 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 454 #endif 455 } 456 457 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 458 /* 459 * IPSec checking which handles several cases. 460 * FAST IPSEC: We re-injected the packet. 461 * XXX: need scope argument. 462 */ 463 if (IPSEC_ENABLED(ipv6)) { 464 m = mb_unmapped_to_ext(m); 465 if (m == NULL) { 466 IP6STAT_INC(ip6s_odropped); 467 error = ENOBUFS; 468 goto bad; 469 } 470 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 471 if (error == EINPROGRESS) 472 error = 0; 473 goto done; 474 } 475 } 476 #endif /* IPSEC */ 477 478 /* Source address validation. */ 479 ip6 = mtod(m, struct ip6_hdr *); 480 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 481 (flags & IPV6_UNSPECSRC) == 0) { 482 error = EOPNOTSUPP; 483 IP6STAT_INC(ip6s_badscope); 484 goto bad; 485 } 486 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 487 error = EOPNOTSUPP; 488 IP6STAT_INC(ip6s_badscope); 489 goto bad; 490 } 491 492 /* 493 * If we are given packet options to add extension headers prepare them. 494 * Calculate the total length of the extension header chain. 495 * Keep the length of the unfragmentable part for fragmentation. 496 */ 497 bzero(&exthdrs, sizeof(exthdrs)); 498 optlen = 0; 499 unfragpartlen = sizeof(struct ip6_hdr); 500 if (opt) { 501 /* Hop-by-Hop options header. */ 502 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen); 503 504 /* Destination options header (1st part). */ 505 if (opt->ip6po_rthdr) { 506 #ifndef RTHDR_SUPPORT_IMPLEMENTED 507 /* 508 * If there is a routing header, discard the packet 509 * right away here. RH0/1 are obsolete and we do not 510 * currently support RH2/3/4. 511 * People trying to use RH253/254 may want to disable 512 * this check. 513 * The moment we do support any routing header (again) 514 * this block should check the routing type more 515 * selectively. 516 */ 517 error = EINVAL; 518 goto bad; 519 #endif 520 521 /* 522 * Destination options header (1st part). 523 * This only makes sense with a routing header. 524 * See Section 9.2 of RFC 3542. 525 * Disabling this part just for MIP6 convenience is 526 * a bad idea. We need to think carefully about a 527 * way to make the advanced API coexist with MIP6 528 * options, which might automatically be inserted in 529 * the kernel. 530 */ 531 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1, 532 optlen); 533 } 534 /* Routing header. */ 535 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen); 536 537 unfragpartlen += optlen; 538 539 /* 540 * NOTE: we don't add AH/ESP length here (done in 541 * ip6_ipsec_output()). 542 */ 543 544 /* Destination options header (2nd part). */ 545 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen); 546 } 547 548 /* 549 * If there is at least one extension header, 550 * separate IP6 header from the payload. 551 */ 552 hdrsplit = false; 553 if (optlen) { 554 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 555 m = NULL; 556 goto freehdrs; 557 } 558 m = exthdrs.ip6e_ip6; 559 ip6 = mtod(m, struct ip6_hdr *); 560 hdrsplit = true; 561 } 562 563 /* Adjust mbuf packet header length. */ 564 m->m_pkthdr.len += optlen; 565 plen = m->m_pkthdr.len - sizeof(*ip6); 566 567 /* If this is a jumbo payload, insert a jumbo payload option. */ 568 if (plen > IPV6_MAXPACKET) { 569 if (!hdrsplit) { 570 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 571 m = NULL; 572 goto freehdrs; 573 } 574 m = exthdrs.ip6e_ip6; 575 ip6 = mtod(m, struct ip6_hdr *); 576 hdrsplit = true; 577 } 578 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 579 goto freehdrs; 580 ip6->ip6_plen = 0; 581 } else 582 ip6->ip6_plen = htons(plen); 583 nexthdrp = &ip6->ip6_nxt; 584 585 if (optlen) { 586 /* 587 * Concatenate headers and fill in next header fields. 588 * Here we have, on "m" 589 * IPv6 payload 590 * and we insert headers accordingly. 591 * Finally, we should be getting: 592 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]. 593 * 594 * During the header composing process "m" points to IPv6 595 * header. "mprev" points to an extension header prior to esp. 596 */ 597 mprev = m; 598 599 /* 600 * We treat dest2 specially. This makes IPsec processing 601 * much easier. The goal here is to make mprev point the 602 * mbuf prior to dest2. 603 * 604 * Result: IPv6 dest2 payload. 605 * m and mprev will point to IPv6 header. 606 */ 607 if (exthdrs.ip6e_dest2) { 608 if (!hdrsplit) 609 panic("%s:%d: assumption failed: " 610 "hdr not split: hdrsplit %d exthdrs %p", 611 __func__, __LINE__, hdrsplit, &exthdrs); 612 exthdrs.ip6e_dest2->m_next = m->m_next; 613 m->m_next = exthdrs.ip6e_dest2; 614 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 615 ip6->ip6_nxt = IPPROTO_DSTOPTS; 616 } 617 618 /* 619 * Result: IPv6 hbh dest1 rthdr dest2 payload. 620 * m will point to IPv6 header. mprev will point to the 621 * extension header prior to dest2 (rthdr in the above case). 622 */ 623 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 624 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 625 IPPROTO_DSTOPTS); 626 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 627 IPPROTO_ROUTING); 628 } 629 630 IP6STAT_INC(ip6s_localout); 631 632 /* Route packet. */ 633 ro_pmtu = ro; 634 if (opt && opt->ip6po_rthdr) 635 ro = &opt->ip6po_route; 636 if (ro != NULL) 637 dst = (struct sockaddr_in6 *)&ro->ro_dst; 638 else 639 dst = &sin6; 640 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 641 642 again: 643 /* 644 * If specified, try to fill in the traffic class field. 645 * Do not override if a non-zero value is already set. 646 * We check the diffserv field and the ECN field separately. 647 */ 648 if (opt && opt->ip6po_tclass >= 0) { 649 int mask = 0; 650 651 if (IPV6_DSCP(ip6) == 0) 652 mask |= 0xfc; 653 if (IPV6_ECN(ip6) == 0) 654 mask |= 0x03; 655 if (mask != 0) 656 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 657 } 658 659 /* Fill in or override the hop limit field, if necessary. */ 660 if (opt && opt->ip6po_hlim != -1) 661 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 662 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 663 if (im6o != NULL) 664 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 665 else 666 ip6->ip6_hlim = V_ip6_defmcasthlim; 667 } 668 669 if (ro == NULL || ro->ro_nh == NULL) { 670 bzero(dst, sizeof(*dst)); 671 dst->sin6_family = AF_INET6; 672 dst->sin6_len = sizeof(*dst); 673 dst->sin6_addr = ip6->ip6_dst; 674 } 675 /* 676 * Validate route against routing table changes. 677 * Make sure that the address family is set in route. 678 */ 679 nh = NULL; 680 ifp = NULL; 681 mtu = 0; 682 if (ro != NULL) { 683 if (ro->ro_nh != NULL && inp != NULL) { 684 ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */ 685 NH_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, 686 fibnum); 687 } 688 if (ro->ro_nh != NULL && fwd_tag == NULL && 689 (!NH_IS_VALID(ro->ro_nh) || 690 ro->ro_dst.sin6_family != AF_INET6 || 691 !IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst))) 692 RO_INVALIDATE_CACHE(ro); 693 694 if (ro->ro_nh != NULL && fwd_tag == NULL && 695 ro->ro_dst.sin6_family == AF_INET6 && 696 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 697 /* Nexthop is valid and contains valid ifp */ 698 nh = ro->ro_nh; 699 } else { 700 if (ro->ro_lle) 701 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 702 ro->ro_lle = NULL; 703 if (fwd_tag == NULL) { 704 bzero(&dst_sa, sizeof(dst_sa)); 705 dst_sa.sin6_family = AF_INET6; 706 dst_sa.sin6_len = sizeof(dst_sa); 707 dst_sa.sin6_addr = ip6->ip6_dst; 708 } 709 error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, 710 &nh, fibnum, m->m_pkthdr.flowid); 711 if (error != 0) { 712 IP6STAT_INC(ip6s_noroute); 713 if (ifp != NULL) 714 in6_ifstat_inc(ifp, ifs6_out_discard); 715 goto bad; 716 } 717 /* 718 * At this point at least @ifp is not NULL 719 * Can be the case when dst is multicast, link-local or 720 * interface is explicitly specificed by the caller. 721 */ 722 } 723 if (nh == NULL) { 724 /* 725 * If in6_selectroute() does not return a nexthop 726 * dst may not have been updated. 727 */ 728 *dst = dst_sa; /* XXX */ 729 origifp = ifp; 730 mtu = ifp->if_mtu; 731 } else { 732 ifp = nh->nh_ifp; 733 origifp = nh->nh_aifp; 734 ia = (struct in6_ifaddr *)(nh->nh_ifa); 735 counter_u64_add(nh->nh_pksent, 1); 736 } 737 } else { 738 struct nhop_object *nh; 739 struct in6_addr kdst; 740 uint32_t scopeid; 741 742 if (fwd_tag == NULL) { 743 bzero(&dst_sa, sizeof(dst_sa)); 744 dst_sa.sin6_family = AF_INET6; 745 dst_sa.sin6_len = sizeof(dst_sa); 746 dst_sa.sin6_addr = ip6->ip6_dst; 747 } 748 749 if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) && 750 im6o != NULL && 751 (ifp = im6o->im6o_multicast_ifp) != NULL) { 752 /* We do not need a route lookup. */ 753 *dst = dst_sa; /* XXX */ 754 origifp = ifp; 755 goto nonh6lookup; 756 } 757 758 in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid); 759 760 if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) || 761 IN6_IS_ADDR_MC_NODELOCAL(&dst_sa.sin6_addr)) { 762 if (scopeid > 0) { 763 ifp = in6_getlinkifnet(scopeid); 764 if (ifp == NULL) { 765 error = EHOSTUNREACH; 766 goto bad; 767 } 768 *dst = dst_sa; /* XXX */ 769 origifp = ifp; 770 goto nonh6lookup; 771 } 772 } 773 774 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 775 m->m_pkthdr.flowid); 776 if (nh == NULL) { 777 IP6STAT_INC(ip6s_noroute); 778 /* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */ 779 error = EHOSTUNREACH; 780 goto bad; 781 } 782 783 ifp = nh->nh_ifp; 784 origifp = nh->nh_aifp; 785 ia = ifatoia6(nh->nh_ifa); 786 if (nh->nh_flags & NHF_GATEWAY) 787 dst->sin6_addr = nh->gw6_sa.sin6_addr; 788 else if (fwd_tag != NULL) 789 dst->sin6_addr = dst_sa.sin6_addr; 790 nonh6lookup: 791 ; 792 } 793 /* 794 * At this point ifp MUST be pointing to the valid transmit ifp. 795 * origifp MUST be valid and pointing to either the same ifp or, 796 * in case of loopback output, to the interface which ip6_src 797 * belongs to. 798 * Examples: 799 * fe80::1%em0 -> fe80::2%em0 -> ifp=em0, origifp=em0 800 * fe80::1%em0 -> fe80::1%em0 -> ifp=lo0, origifp=em0 801 * ::1 -> ::1 -> ifp=lo0, origifp=lo0 802 * 803 * mtu can be 0 and will be refined later. 804 */ 805 KASSERT((ifp != NULL), ("output interface must not be NULL")); 806 KASSERT((origifp != NULL), ("output address interface must not be NULL")); 807 808 if ((flags & IPV6_FORWARDING) == 0) { 809 /* XXX: the FORWARDING flag can be set for mrouting. */ 810 in6_ifstat_inc(ifp, ifs6_out_request); 811 } 812 813 /* Setup data structures for scope ID checks. */ 814 src0 = ip6->ip6_src; 815 bzero(&src_sa, sizeof(src_sa)); 816 src_sa.sin6_family = AF_INET6; 817 src_sa.sin6_len = sizeof(src_sa); 818 src_sa.sin6_addr = ip6->ip6_src; 819 820 dst0 = ip6->ip6_dst; 821 /* Re-initialize to be sure. */ 822 bzero(&dst_sa, sizeof(dst_sa)); 823 dst_sa.sin6_family = AF_INET6; 824 dst_sa.sin6_len = sizeof(dst_sa); 825 dst_sa.sin6_addr = ip6->ip6_dst; 826 827 /* Check for valid scope ID. */ 828 if (in6_setscope(&src0, origifp, &zone) == 0 && 829 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && 830 in6_setscope(&dst0, origifp, &zone) == 0 && 831 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { 832 /* 833 * The outgoing interface is in the zone of the source 834 * and destination addresses. 835 * 836 */ 837 } else if ((origifp->if_flags & IFF_LOOPBACK) == 0 || 838 sa6_recoverscope(&src_sa) != 0 || 839 sa6_recoverscope(&dst_sa) != 0 || 840 dst_sa.sin6_scope_id == 0 || 841 (src_sa.sin6_scope_id != 0 && 842 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || 843 ifnet_byindex(dst_sa.sin6_scope_id) == NULL) { 844 /* 845 * If the destination network interface is not a 846 * loopback interface, or the destination network 847 * address has no scope ID, or the source address has 848 * a scope ID set which is different from the 849 * destination address one, or there is no network 850 * interface representing this scope ID, the address 851 * pair is considered invalid. 852 */ 853 IP6STAT_INC(ip6s_badscope); 854 in6_ifstat_inc(origifp, ifs6_out_discard); 855 if (error == 0) 856 error = EHOSTUNREACH; /* XXX */ 857 goto bad; 858 } 859 /* All scope ID checks are successful. */ 860 861 if (nh && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 862 if (opt && opt->ip6po_nextroute.ro_nh) { 863 /* 864 * The nexthop is explicitly specified by the 865 * application. We assume the next hop is an IPv6 866 * address. 867 */ 868 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 869 } 870 else if ((nh->nh_flags & NHF_GATEWAY)) 871 dst = &nh->gw6_sa; 872 } 873 874 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 875 m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */ 876 } else { 877 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 878 in6_ifstat_inc(ifp, ifs6_out_mcast); 879 880 /* Confirm that the outgoing interface supports multicast. */ 881 if (!(ifp->if_flags & IFF_MULTICAST)) { 882 IP6STAT_INC(ip6s_noroute); 883 in6_ifstat_inc(ifp, ifs6_out_discard); 884 error = ENETUNREACH; 885 goto bad; 886 } 887 if ((im6o == NULL && in6_mcast_loop) || 888 (im6o && im6o->im6o_multicast_loop)) { 889 /* 890 * Loop back multicast datagram if not expressly 891 * forbidden to do so, even if we have not joined 892 * the address; protocols will filter it later, 893 * thus deferring a hash lookup and lock acquisition 894 * at the expense of an m_copym(). 895 */ 896 ip6_mloopback(ifp, m); 897 } else { 898 /* 899 * If we are acting as a multicast router, perform 900 * multicast forwarding as if the packet had just 901 * arrived on the interface to which we are about 902 * to send. The multicast forwarding function 903 * recursively calls this function, using the 904 * IPV6_FORWARDING flag to prevent infinite recursion. 905 * 906 * Multicasts that are looped back by ip6_mloopback(), 907 * above, will be forwarded by the ip6_input() routine, 908 * if necessary. 909 */ 910 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 911 /* 912 * XXX: ip6_mforward expects that rcvif is NULL 913 * when it is called from the originating path. 914 * However, it may not always be the case. 915 */ 916 m->m_pkthdr.rcvif = NULL; 917 if (ip6_mforward(ip6, ifp, m) != 0) { 918 m_freem(m); 919 goto done; 920 } 921 } 922 } 923 /* 924 * Multicasts with a hoplimit of zero may be looped back, 925 * above, but must not be transmitted on a network. 926 * Also, multicasts addressed to the loopback interface 927 * are not sent -- the above call to ip6_mloopback() will 928 * loop back a copy if this host actually belongs to the 929 * destination group on the loopback interface. 930 */ 931 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 932 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 933 m_freem(m); 934 goto done; 935 } 936 } 937 938 /* 939 * Fill the outgoing inteface to tell the upper layer 940 * to increment per-interface statistics. 941 */ 942 if (ifpp) 943 *ifpp = ifp; 944 945 /* Determine path MTU. */ 946 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 947 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 948 goto bad; 949 KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p " 950 "alwaysfrag %d fibnum %u\n", __func__, __LINE__, mtu, ro_pmtu, ro, 951 ifp, alwaysfrag, fibnum)); 952 953 /* 954 * The caller of this function may specify to use the minimum MTU 955 * in some cases. 956 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 957 * setting. The logic is a bit complicated; by default, unicast 958 * packets will follow path MTU while multicast packets will be sent at 959 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 960 * including unicast ones will be sent at the minimum MTU. Multicast 961 * packets will always be sent at the minimum MTU unless 962 * IP6PO_MINMTU_DISABLE is explicitly specified. 963 * See RFC 3542 for more details. 964 */ 965 if (mtu > IPV6_MMTU) { 966 if ((flags & IPV6_MINMTU)) 967 mtu = IPV6_MMTU; 968 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 969 mtu = IPV6_MMTU; 970 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 971 (opt == NULL || 972 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 973 mtu = IPV6_MMTU; 974 } 975 } 976 977 /* 978 * Clear embedded scope identifiers if necessary. 979 * in6_clearscope() will touch the addresses only when necessary. 980 */ 981 in6_clearscope(&ip6->ip6_src); 982 in6_clearscope(&ip6->ip6_dst); 983 984 /* 985 * If the outgoing packet contains a hop-by-hop options header, 986 * it must be examined and processed even by the source node. 987 * (RFC 2460, section 4.) 988 */ 989 if (exthdrs.ip6e_hbh) { 990 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 991 u_int32_t dummy; /* XXX unused */ 992 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 993 994 #ifdef DIAGNOSTIC 995 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 996 panic("ip6e_hbh is not contiguous"); 997 #endif 998 /* 999 * XXX: if we have to send an ICMPv6 error to the sender, 1000 * we need the M_LOOP flag since icmp6_error() expects 1001 * the IPv6 and the hop-by-hop options header are 1002 * contiguous unless the flag is set. 1003 */ 1004 m->m_flags |= M_LOOP; 1005 m->m_pkthdr.rcvif = ifp; 1006 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 1007 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 1008 &dummy, &plen) < 0) { 1009 /* m was already freed at this point. */ 1010 error = EINVAL;/* better error? */ 1011 goto done; 1012 } 1013 m->m_flags &= ~M_LOOP; /* XXX */ 1014 m->m_pkthdr.rcvif = NULL; 1015 } 1016 1017 /* Jump over all PFIL processing if hooks are not active. */ 1018 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head)) 1019 goto passout; 1020 1021 odst = ip6->ip6_dst; 1022 /* Run through list of hooks for output packets. */ 1023 switch (pfil_mbuf_out(V_inet6_pfil_head, &m, ifp, inp)) { 1024 case PFIL_PASS: 1025 ip6 = mtod(m, struct ip6_hdr *); 1026 break; 1027 case PFIL_DROPPED: 1028 error = EACCES; 1029 /* FALLTHROUGH */ 1030 case PFIL_CONSUMED: 1031 goto done; 1032 } 1033 1034 needfiblookup = 0; 1035 /* See if destination IP address was changed by packet filter. */ 1036 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 1037 m->m_flags |= M_SKIP_FIREWALL; 1038 /* If destination is now ourself drop to ip6_input(). */ 1039 if (in6_localip(&ip6->ip6_dst)) { 1040 m->m_flags |= M_FASTFWD_OURS; 1041 if (m->m_pkthdr.rcvif == NULL) 1042 m->m_pkthdr.rcvif = V_loif; 1043 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1044 m->m_pkthdr.csum_flags |= 1045 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1046 m->m_pkthdr.csum_data = 0xffff; 1047 } 1048 #if defined(SCTP) || defined(SCTP_SUPPORT) 1049 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1050 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1051 #endif 1052 error = netisr_queue(NETISR_IPV6, m); 1053 goto done; 1054 } else { 1055 if (ro != NULL) 1056 RO_INVALIDATE_CACHE(ro); 1057 needfiblookup = 1; /* Redo the routing table lookup. */ 1058 } 1059 } 1060 /* See if fib was changed by packet filter. */ 1061 if (fibnum != M_GETFIB(m)) { 1062 m->m_flags |= M_SKIP_FIREWALL; 1063 fibnum = M_GETFIB(m); 1064 if (ro != NULL) 1065 RO_INVALIDATE_CACHE(ro); 1066 needfiblookup = 1; 1067 } 1068 if (needfiblookup) 1069 goto again; 1070 1071 /* See if local, if yes, send it to netisr. */ 1072 if (m->m_flags & M_FASTFWD_OURS) { 1073 if (m->m_pkthdr.rcvif == NULL) 1074 m->m_pkthdr.rcvif = V_loif; 1075 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1076 m->m_pkthdr.csum_flags |= 1077 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1078 m->m_pkthdr.csum_data = 0xffff; 1079 } 1080 #if defined(SCTP) || defined(SCTP_SUPPORT) 1081 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1082 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1083 #endif 1084 error = netisr_queue(NETISR_IPV6, m); 1085 goto done; 1086 } 1087 /* Or forward to some other address? */ 1088 if ((m->m_flags & M_IP6_NEXTHOP) && 1089 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 1090 if (ro != NULL) 1091 dst = (struct sockaddr_in6 *)&ro->ro_dst; 1092 else 1093 dst = &sin6; 1094 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 1095 m->m_flags |= M_SKIP_FIREWALL; 1096 m->m_flags &= ~M_IP6_NEXTHOP; 1097 m_tag_delete(m, fwd_tag); 1098 goto again; 1099 } 1100 1101 passout: 1102 if (vlan_pcp > -1) 1103 EVL_APPLY_PRI(m, vlan_pcp); 1104 1105 /* Ensure the packet data is mapped if the interface requires it. */ 1106 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 1107 m = mb_unmapped_to_ext(m); 1108 if (m == NULL) { 1109 IP6STAT_INC(ip6s_odropped); 1110 return (ENOBUFS); 1111 } 1112 } 1113 1114 /* 1115 * Send the packet to the outgoing interface. 1116 * If necessary, do IPv6 fragmentation before sending. 1117 * 1118 * The logic here is rather complex: 1119 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 1120 * 1-a: send as is if tlen <= path mtu 1121 * 1-b: fragment if tlen > path mtu 1122 * 1123 * 2: if user asks us not to fragment (dontfrag == 1) 1124 * 2-a: send as is if tlen <= interface mtu 1125 * 2-b: error if tlen > interface mtu 1126 * 1127 * 3: if we always need to attach fragment header (alwaysfrag == 1) 1128 * always fragment 1129 * 1130 * 4: if dontfrag == 1 && alwaysfrag == 1 1131 * error, as we cannot handle this conflicting request. 1132 */ 1133 sw_csum = m->m_pkthdr.csum_flags; 1134 if (!hdrsplit) { 1135 tso = ((sw_csum & ifp->if_hwassist & 1136 (CSUM_TSO | CSUM_INNER_TSO)) != 0) ? 1 : 0; 1137 sw_csum &= ~ifp->if_hwassist; 1138 } else 1139 tso = 0; 1140 /* 1141 * If we added extension headers, we will not do TSO and calculate the 1142 * checksums ourselves for now. 1143 * XXX-BZ Need a framework to know when the NIC can handle it, even 1144 * with ext. hdrs. 1145 */ 1146 ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen); 1147 /* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */ 1148 tlen = m->m_pkthdr.len; 1149 1150 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 1151 dontfrag = 1; 1152 else 1153 dontfrag = 0; 1154 if (dontfrag && alwaysfrag) { /* Case 4. */ 1155 /* Conflicting request - can't transmit. */ 1156 error = EMSGSIZE; 1157 goto bad; 1158 } 1159 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* Case 2-b. */ 1160 /* 1161 * Even if the DONTFRAG option is specified, we cannot send the 1162 * packet when the data length is larger than the MTU of the 1163 * outgoing interface. 1164 * Notify the error by sending IPV6_PATHMTU ancillary data if 1165 * application wanted to know the MTU value. Also return an 1166 * error code (this is not described in the API spec). 1167 */ 1168 if (inp != NULL) 1169 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 1170 error = EMSGSIZE; 1171 goto bad; 1172 } 1173 1174 /* Transmit packet without fragmentation. */ 1175 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* Cases 1-a and 2-a. */ 1176 struct in6_ifaddr *ia6; 1177 1178 ip6 = mtod(m, struct ip6_hdr *); 1179 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1180 if (ia6) { 1181 /* Record statistics for this interface address. */ 1182 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 1183 counter_u64_add(ia6->ia_ifa.ifa_obytes, 1184 m->m_pkthdr.len); 1185 } 1186 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1187 (flags & IP_NO_SND_TAG_RL) ? false : true); 1188 goto done; 1189 } 1190 1191 /* Try to fragment the packet. Cases 1-b and 3. */ 1192 if (mtu < IPV6_MMTU) { 1193 /* Path MTU cannot be less than IPV6_MMTU. */ 1194 error = EMSGSIZE; 1195 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1196 goto bad; 1197 } else if (ip6->ip6_plen == 0) { 1198 /* Jumbo payload cannot be fragmented. */ 1199 error = EMSGSIZE; 1200 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1201 goto bad; 1202 } else { 1203 u_char nextproto; 1204 1205 /* 1206 * Too large for the destination or interface; 1207 * fragment if possible. 1208 * Must be able to put at least 8 bytes per fragment. 1209 */ 1210 if (mtu > IPV6_MAXPACKET) 1211 mtu = IPV6_MAXPACKET; 1212 1213 len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7; 1214 if (len < 8) { 1215 error = EMSGSIZE; 1216 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1217 goto bad; 1218 } 1219 1220 /* 1221 * If the interface will not calculate checksums on 1222 * fragmented packets, then do it here. 1223 * XXX-BZ handle the hw offloading case. Need flags. 1224 */ 1225 ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags, plen, 1226 optlen); 1227 1228 /* 1229 * Change the next header field of the last header in the 1230 * unfragmentable part. 1231 */ 1232 if (exthdrs.ip6e_rthdr) { 1233 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1234 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1235 } else if (exthdrs.ip6e_dest1) { 1236 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1237 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1238 } else if (exthdrs.ip6e_hbh) { 1239 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1240 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1241 } else { 1242 ip6 = mtod(m, struct ip6_hdr *); 1243 nextproto = ip6->ip6_nxt; 1244 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1245 } 1246 1247 /* 1248 * Loop through length of segment after first fragment, 1249 * make new header and copy data of each part and link onto 1250 * chain. 1251 */ 1252 m0 = m; 1253 id = htonl(ip6_randomid()); 1254 error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id); 1255 if (error != 0) 1256 goto sendorfree; 1257 1258 in6_ifstat_inc(ifp, ifs6_out_fragok); 1259 } 1260 1261 /* Remove leading garbage. */ 1262 sendorfree: 1263 m = m0->m_nextpkt; 1264 m0->m_nextpkt = 0; 1265 m_freem(m0); 1266 for (; m; m = m0) { 1267 m0 = m->m_nextpkt; 1268 m->m_nextpkt = 0; 1269 if (error == 0) { 1270 /* Record statistics for this interface address. */ 1271 if (ia) { 1272 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1273 counter_u64_add(ia->ia_ifa.ifa_obytes, 1274 m->m_pkthdr.len); 1275 } 1276 if (vlan_pcp > -1) 1277 EVL_APPLY_PRI(m, vlan_pcp); 1278 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1279 true); 1280 } else 1281 m_freem(m); 1282 } 1283 1284 if (error == 0) 1285 IP6STAT_INC(ip6s_fragmented); 1286 1287 done: 1288 return (error); 1289 1290 freehdrs: 1291 m_freem(exthdrs.ip6e_hbh); /* m_freem() checks if mbuf is NULL. */ 1292 m_freem(exthdrs.ip6e_dest1); 1293 m_freem(exthdrs.ip6e_rthdr); 1294 m_freem(exthdrs.ip6e_dest2); 1295 /* FALLTHROUGH */ 1296 bad: 1297 if (m) 1298 m_freem(m); 1299 goto done; 1300 } 1301 1302 static int 1303 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1304 { 1305 struct mbuf *m; 1306 1307 if (hlen > MCLBYTES) 1308 return (ENOBUFS); /* XXX */ 1309 1310 if (hlen > MLEN) 1311 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1312 else 1313 m = m_get(M_NOWAIT, MT_DATA); 1314 if (m == NULL) 1315 return (ENOBUFS); 1316 m->m_len = hlen; 1317 if (hdr) 1318 bcopy(hdr, mtod(m, caddr_t), hlen); 1319 1320 *mp = m; 1321 return (0); 1322 } 1323 1324 /* 1325 * Insert jumbo payload option. 1326 */ 1327 static int 1328 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1329 { 1330 struct mbuf *mopt; 1331 u_char *optbuf; 1332 u_int32_t v; 1333 1334 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1335 1336 /* 1337 * If there is no hop-by-hop options header, allocate new one. 1338 * If there is one but it doesn't have enough space to store the 1339 * jumbo payload option, allocate a cluster to store the whole options. 1340 * Otherwise, use it to store the options. 1341 */ 1342 if (exthdrs->ip6e_hbh == NULL) { 1343 mopt = m_get(M_NOWAIT, MT_DATA); 1344 if (mopt == NULL) 1345 return (ENOBUFS); 1346 mopt->m_len = JUMBOOPTLEN; 1347 optbuf = mtod(mopt, u_char *); 1348 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1349 exthdrs->ip6e_hbh = mopt; 1350 } else { 1351 struct ip6_hbh *hbh; 1352 1353 mopt = exthdrs->ip6e_hbh; 1354 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1355 /* 1356 * XXX assumption: 1357 * - exthdrs->ip6e_hbh is not referenced from places 1358 * other than exthdrs. 1359 * - exthdrs->ip6e_hbh is not an mbuf chain. 1360 */ 1361 int oldoptlen = mopt->m_len; 1362 struct mbuf *n; 1363 1364 /* 1365 * XXX: give up if the whole (new) hbh header does 1366 * not fit even in an mbuf cluster. 1367 */ 1368 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1369 return (ENOBUFS); 1370 1371 /* 1372 * As a consequence, we must always prepare a cluster 1373 * at this point. 1374 */ 1375 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1376 if (n == NULL) 1377 return (ENOBUFS); 1378 n->m_len = oldoptlen + JUMBOOPTLEN; 1379 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1380 oldoptlen); 1381 optbuf = mtod(n, caddr_t) + oldoptlen; 1382 m_freem(mopt); 1383 mopt = exthdrs->ip6e_hbh = n; 1384 } else { 1385 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1386 mopt->m_len += JUMBOOPTLEN; 1387 } 1388 optbuf[0] = IP6OPT_PADN; 1389 optbuf[1] = 1; 1390 1391 /* 1392 * Adjust the header length according to the pad and 1393 * the jumbo payload option. 1394 */ 1395 hbh = mtod(mopt, struct ip6_hbh *); 1396 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1397 } 1398 1399 /* fill in the option. */ 1400 optbuf[2] = IP6OPT_JUMBO; 1401 optbuf[3] = 4; 1402 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1403 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1404 1405 /* finally, adjust the packet header length */ 1406 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1407 1408 return (0); 1409 #undef JUMBOOPTLEN 1410 } 1411 1412 /* 1413 * Insert fragment header and copy unfragmentable header portions. 1414 */ 1415 static int 1416 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1417 struct ip6_frag **frghdrp) 1418 { 1419 struct mbuf *n, *mlast; 1420 1421 if (hlen > sizeof(struct ip6_hdr)) { 1422 n = m_copym(m0, sizeof(struct ip6_hdr), 1423 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1424 if (n == NULL) 1425 return (ENOBUFS); 1426 m->m_next = n; 1427 } else 1428 n = m; 1429 1430 /* Search for the last mbuf of unfragmentable part. */ 1431 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1432 ; 1433 1434 if (M_WRITABLE(mlast) && 1435 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1436 /* use the trailing space of the last mbuf for the fragment hdr */ 1437 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1438 mlast->m_len); 1439 mlast->m_len += sizeof(struct ip6_frag); 1440 m->m_pkthdr.len += sizeof(struct ip6_frag); 1441 } else { 1442 /* allocate a new mbuf for the fragment header */ 1443 struct mbuf *mfrg; 1444 1445 mfrg = m_get(M_NOWAIT, MT_DATA); 1446 if (mfrg == NULL) 1447 return (ENOBUFS); 1448 mfrg->m_len = sizeof(struct ip6_frag); 1449 *frghdrp = mtod(mfrg, struct ip6_frag *); 1450 mlast->m_next = mfrg; 1451 } 1452 1453 return (0); 1454 } 1455 1456 /* 1457 * Calculates IPv6 path mtu for destination @dst. 1458 * Resulting MTU is stored in @mtup. 1459 * 1460 * Returns 0 on success. 1461 */ 1462 static int 1463 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1464 { 1465 struct epoch_tracker et; 1466 struct nhop_object *nh; 1467 struct in6_addr kdst; 1468 uint32_t scopeid; 1469 int error; 1470 1471 in6_splitscope(dst, &kdst, &scopeid); 1472 1473 NET_EPOCH_ENTER(et); 1474 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1475 if (nh != NULL) 1476 error = ip6_calcmtu(nh->nh_ifp, dst, nh->nh_mtu, mtup, NULL, 0); 1477 else 1478 error = EHOSTUNREACH; 1479 NET_EPOCH_EXIT(et); 1480 1481 return (error); 1482 } 1483 1484 /* 1485 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1486 * and cached data in @ro_pmtu. 1487 * MTU from (successful) route lookup is saved (along with dst) 1488 * inside @ro_pmtu to avoid subsequent route lookups after packet 1489 * filter processing. 1490 * 1491 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1492 * Returns 0 on success. 1493 */ 1494 static int 1495 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1496 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1497 int *alwaysfragp, u_int fibnum, u_int proto) 1498 { 1499 struct nhop_object *nh; 1500 struct in6_addr kdst; 1501 uint32_t scopeid; 1502 struct sockaddr_in6 *sa6_dst, sin6; 1503 u_long mtu; 1504 1505 NET_EPOCH_ASSERT(); 1506 1507 mtu = 0; 1508 if (ro_pmtu == NULL || do_lookup) { 1509 /* 1510 * Here ro_pmtu has final destination address, while 1511 * ro might represent immediate destination. 1512 * Use ro_pmtu destination since mtu might differ. 1513 */ 1514 if (ro_pmtu != NULL) { 1515 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1516 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1517 ro_pmtu->ro_mtu = 0; 1518 } else 1519 sa6_dst = &sin6; 1520 1521 if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) { 1522 bzero(sa6_dst, sizeof(*sa6_dst)); 1523 sa6_dst->sin6_family = AF_INET6; 1524 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1525 sa6_dst->sin6_addr = *dst; 1526 1527 in6_splitscope(dst, &kdst, &scopeid); 1528 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1529 if (nh != NULL) { 1530 mtu = nh->nh_mtu; 1531 if (ro_pmtu != NULL) 1532 ro_pmtu->ro_mtu = mtu; 1533 } 1534 } else 1535 mtu = ro_pmtu->ro_mtu; 1536 } 1537 1538 if (ro_pmtu != NULL && ro_pmtu->ro_nh != NULL) 1539 mtu = ro_pmtu->ro_nh->nh_mtu; 1540 1541 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1542 } 1543 1544 /* 1545 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1546 * hostcache data for @dst. 1547 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1548 * 1549 * Returns 0 on success. 1550 */ 1551 static int 1552 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1553 u_long *mtup, int *alwaysfragp, u_int proto) 1554 { 1555 u_long mtu = 0; 1556 int alwaysfrag = 0; 1557 int error = 0; 1558 1559 if (rt_mtu > 0) { 1560 u_int32_t ifmtu; 1561 struct in_conninfo inc; 1562 1563 bzero(&inc, sizeof(inc)); 1564 inc.inc_flags |= INC_ISIPV6; 1565 inc.inc6_faddr = *dst; 1566 1567 ifmtu = IN6_LINKMTU(ifp); 1568 1569 /* TCP is known to react to pmtu changes so skip hc */ 1570 if (proto != IPPROTO_TCP) 1571 mtu = tcp_hc_getmtu(&inc); 1572 1573 if (mtu) 1574 mtu = min(mtu, rt_mtu); 1575 else 1576 mtu = rt_mtu; 1577 if (mtu == 0) 1578 mtu = ifmtu; 1579 else if (mtu < IPV6_MMTU) { 1580 /* 1581 * RFC2460 section 5, last paragraph: 1582 * if we record ICMPv6 too big message with 1583 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1584 * or smaller, with framgent header attached. 1585 * (fragment header is needed regardless from the 1586 * packet size, for translators to identify packets) 1587 */ 1588 alwaysfrag = 1; 1589 mtu = IPV6_MMTU; 1590 } 1591 } else if (ifp) { 1592 mtu = IN6_LINKMTU(ifp); 1593 } else 1594 error = EHOSTUNREACH; /* XXX */ 1595 1596 *mtup = mtu; 1597 if (alwaysfragp) 1598 *alwaysfragp = alwaysfrag; 1599 return (error); 1600 } 1601 1602 /* 1603 * IP6 socket option processing. 1604 */ 1605 int 1606 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1607 { 1608 int optdatalen, uproto; 1609 void *optdata; 1610 struct inpcb *inp = sotoinpcb(so); 1611 int error, optval; 1612 int level, op, optname; 1613 int optlen; 1614 struct thread *td; 1615 #ifdef RSS 1616 uint32_t rss_bucket; 1617 int retval; 1618 #endif 1619 1620 /* 1621 * Don't use more than a quarter of mbuf clusters. N.B.: 1622 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1623 * on LP64 architectures, so cast to u_long to avoid undefined 1624 * behavior. ILP32 architectures cannot have nmbclusters 1625 * large enough to overflow for other reasons. 1626 */ 1627 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1628 1629 level = sopt->sopt_level; 1630 op = sopt->sopt_dir; 1631 optname = sopt->sopt_name; 1632 optlen = sopt->sopt_valsize; 1633 td = sopt->sopt_td; 1634 error = 0; 1635 optval = 0; 1636 uproto = (int)so->so_proto->pr_protocol; 1637 1638 if (level != IPPROTO_IPV6) { 1639 error = EINVAL; 1640 1641 if (sopt->sopt_level == SOL_SOCKET && 1642 sopt->sopt_dir == SOPT_SET) { 1643 switch (sopt->sopt_name) { 1644 case SO_REUSEADDR: 1645 INP_WLOCK(inp); 1646 if ((so->so_options & SO_REUSEADDR) != 0) 1647 inp->inp_flags2 |= INP_REUSEADDR; 1648 else 1649 inp->inp_flags2 &= ~INP_REUSEADDR; 1650 INP_WUNLOCK(inp); 1651 error = 0; 1652 break; 1653 case SO_REUSEPORT: 1654 INP_WLOCK(inp); 1655 if ((so->so_options & SO_REUSEPORT) != 0) 1656 inp->inp_flags2 |= INP_REUSEPORT; 1657 else 1658 inp->inp_flags2 &= ~INP_REUSEPORT; 1659 INP_WUNLOCK(inp); 1660 error = 0; 1661 break; 1662 case SO_REUSEPORT_LB: 1663 INP_WLOCK(inp); 1664 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1665 inp->inp_flags2 |= INP_REUSEPORT_LB; 1666 else 1667 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1668 INP_WUNLOCK(inp); 1669 error = 0; 1670 break; 1671 case SO_SETFIB: 1672 INP_WLOCK(inp); 1673 inp->inp_inc.inc_fibnum = so->so_fibnum; 1674 INP_WUNLOCK(inp); 1675 error = 0; 1676 break; 1677 case SO_MAX_PACING_RATE: 1678 #ifdef RATELIMIT 1679 INP_WLOCK(inp); 1680 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1681 INP_WUNLOCK(inp); 1682 error = 0; 1683 #else 1684 error = EOPNOTSUPP; 1685 #endif 1686 break; 1687 default: 1688 break; 1689 } 1690 } 1691 } else { /* level == IPPROTO_IPV6 */ 1692 switch (op) { 1693 case SOPT_SET: 1694 switch (optname) { 1695 case IPV6_2292PKTOPTIONS: 1696 #ifdef IPV6_PKTOPTIONS 1697 case IPV6_PKTOPTIONS: 1698 #endif 1699 { 1700 struct mbuf *m; 1701 1702 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1703 printf("ip6_ctloutput: mbuf limit hit\n"); 1704 error = ENOBUFS; 1705 break; 1706 } 1707 1708 error = soopt_getm(sopt, &m); /* XXX */ 1709 if (error != 0) 1710 break; 1711 error = soopt_mcopyin(sopt, m); /* XXX */ 1712 if (error != 0) 1713 break; 1714 INP_WLOCK(inp); 1715 error = ip6_pcbopts(&inp->in6p_outputopts, m, 1716 so, sopt); 1717 INP_WUNLOCK(inp); 1718 m_freem(m); /* XXX */ 1719 break; 1720 } 1721 1722 /* 1723 * Use of some Hop-by-Hop options or some 1724 * Destination options, might require special 1725 * privilege. That is, normal applications 1726 * (without special privilege) might be forbidden 1727 * from setting certain options in outgoing packets, 1728 * and might never see certain options in received 1729 * packets. [RFC 2292 Section 6] 1730 * KAME specific note: 1731 * KAME prevents non-privileged users from sending or 1732 * receiving ANY hbh/dst options in order to avoid 1733 * overhead of parsing options in the kernel. 1734 */ 1735 case IPV6_RECVHOPOPTS: 1736 case IPV6_RECVDSTOPTS: 1737 case IPV6_RECVRTHDRDSTOPTS: 1738 if (td != NULL) { 1739 error = priv_check(td, 1740 PRIV_NETINET_SETHDROPTS); 1741 if (error) 1742 break; 1743 } 1744 /* FALLTHROUGH */ 1745 case IPV6_UNICAST_HOPS: 1746 case IPV6_HOPLIMIT: 1747 1748 case IPV6_RECVPKTINFO: 1749 case IPV6_RECVHOPLIMIT: 1750 case IPV6_RECVRTHDR: 1751 case IPV6_RECVPATHMTU: 1752 case IPV6_RECVTCLASS: 1753 case IPV6_RECVFLOWID: 1754 #ifdef RSS 1755 case IPV6_RECVRSSBUCKETID: 1756 #endif 1757 case IPV6_V6ONLY: 1758 case IPV6_AUTOFLOWLABEL: 1759 case IPV6_ORIGDSTADDR: 1760 case IPV6_BINDANY: 1761 case IPV6_VLAN_PCP: 1762 if (optname == IPV6_BINDANY && td != NULL) { 1763 error = priv_check(td, 1764 PRIV_NETINET_BINDANY); 1765 if (error) 1766 break; 1767 } 1768 1769 if (optlen != sizeof(int)) { 1770 error = EINVAL; 1771 break; 1772 } 1773 error = sooptcopyin(sopt, &optval, 1774 sizeof optval, sizeof optval); 1775 if (error) 1776 break; 1777 switch (optname) { 1778 case IPV6_UNICAST_HOPS: 1779 if (optval < -1 || optval >= 256) 1780 error = EINVAL; 1781 else { 1782 /* -1 = kernel default */ 1783 inp->in6p_hops = optval; 1784 if ((inp->inp_vflag & 1785 INP_IPV4) != 0) 1786 inp->inp_ip_ttl = optval; 1787 } 1788 break; 1789 #define OPTSET(bit) \ 1790 do { \ 1791 INP_WLOCK(inp); \ 1792 if (optval) \ 1793 inp->inp_flags |= (bit); \ 1794 else \ 1795 inp->inp_flags &= ~(bit); \ 1796 INP_WUNLOCK(inp); \ 1797 } while (/*CONSTCOND*/ 0) 1798 #define OPTSET2292(bit) \ 1799 do { \ 1800 INP_WLOCK(inp); \ 1801 inp->inp_flags |= IN6P_RFC2292; \ 1802 if (optval) \ 1803 inp->inp_flags |= (bit); \ 1804 else \ 1805 inp->inp_flags &= ~(bit); \ 1806 INP_WUNLOCK(inp); \ 1807 } while (/*CONSTCOND*/ 0) 1808 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1809 1810 #define OPTSET2_N(bit, val) do { \ 1811 if (val) \ 1812 inp->inp_flags2 |= bit; \ 1813 else \ 1814 inp->inp_flags2 &= ~bit; \ 1815 } while (0) 1816 #define OPTSET2(bit, val) do { \ 1817 INP_WLOCK(inp); \ 1818 OPTSET2_N(bit, val); \ 1819 INP_WUNLOCK(inp); \ 1820 } while (0) 1821 #define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0) 1822 #define OPTSET2292_EXCLUSIVE(bit) \ 1823 do { \ 1824 INP_WLOCK(inp); \ 1825 if (OPTBIT(IN6P_RFC2292)) { \ 1826 error = EINVAL; \ 1827 } else { \ 1828 if (optval) \ 1829 inp->inp_flags |= (bit); \ 1830 else \ 1831 inp->inp_flags &= ~(bit); \ 1832 } \ 1833 INP_WUNLOCK(inp); \ 1834 } while (/*CONSTCOND*/ 0) 1835 1836 case IPV6_RECVPKTINFO: 1837 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1838 break; 1839 1840 case IPV6_HOPLIMIT: 1841 { 1842 struct ip6_pktopts **optp; 1843 1844 /* cannot mix with RFC2292 */ 1845 if (OPTBIT(IN6P_RFC2292)) { 1846 error = EINVAL; 1847 break; 1848 } 1849 INP_WLOCK(inp); 1850 if (inp->inp_flags & INP_DROPPED) { 1851 INP_WUNLOCK(inp); 1852 return (ECONNRESET); 1853 } 1854 optp = &inp->in6p_outputopts; 1855 error = ip6_pcbopt(IPV6_HOPLIMIT, 1856 (u_char *)&optval, sizeof(optval), 1857 optp, (td != NULL) ? td->td_ucred : 1858 NULL, uproto); 1859 INP_WUNLOCK(inp); 1860 break; 1861 } 1862 1863 case IPV6_RECVHOPLIMIT: 1864 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1865 break; 1866 1867 case IPV6_RECVHOPOPTS: 1868 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1869 break; 1870 1871 case IPV6_RECVDSTOPTS: 1872 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1873 break; 1874 1875 case IPV6_RECVRTHDRDSTOPTS: 1876 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1877 break; 1878 1879 case IPV6_RECVRTHDR: 1880 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1881 break; 1882 1883 case IPV6_RECVPATHMTU: 1884 /* 1885 * We ignore this option for TCP 1886 * sockets. 1887 * (RFC3542 leaves this case 1888 * unspecified.) 1889 */ 1890 if (uproto != IPPROTO_TCP) 1891 OPTSET(IN6P_MTU); 1892 break; 1893 1894 case IPV6_RECVFLOWID: 1895 OPTSET2(INP_RECVFLOWID, optval); 1896 break; 1897 1898 #ifdef RSS 1899 case IPV6_RECVRSSBUCKETID: 1900 OPTSET2(INP_RECVRSSBUCKETID, optval); 1901 break; 1902 #endif 1903 1904 case IPV6_V6ONLY: 1905 INP_WLOCK(inp); 1906 if (inp->inp_lport || 1907 !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { 1908 /* 1909 * The socket is already bound. 1910 */ 1911 INP_WUNLOCK(inp); 1912 error = EINVAL; 1913 break; 1914 } 1915 if (optval) { 1916 inp->inp_flags |= IN6P_IPV6_V6ONLY; 1917 inp->inp_vflag &= ~INP_IPV4; 1918 } else { 1919 inp->inp_flags &= ~IN6P_IPV6_V6ONLY; 1920 inp->inp_vflag |= INP_IPV4; 1921 } 1922 INP_WUNLOCK(inp); 1923 break; 1924 case IPV6_RECVTCLASS: 1925 /* cannot mix with RFC2292 XXX */ 1926 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1927 break; 1928 case IPV6_AUTOFLOWLABEL: 1929 OPTSET(IN6P_AUTOFLOWLABEL); 1930 break; 1931 1932 case IPV6_ORIGDSTADDR: 1933 OPTSET2(INP_ORIGDSTADDR, optval); 1934 break; 1935 case IPV6_BINDANY: 1936 OPTSET(INP_BINDANY); 1937 break; 1938 case IPV6_VLAN_PCP: 1939 if ((optval >= -1) && (optval <= 1940 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1941 if (optval == -1) { 1942 INP_WLOCK(inp); 1943 inp->inp_flags2 &= 1944 ~(INP_2PCP_SET | 1945 INP_2PCP_MASK); 1946 INP_WUNLOCK(inp); 1947 } else { 1948 INP_WLOCK(inp); 1949 inp->inp_flags2 |= 1950 INP_2PCP_SET; 1951 inp->inp_flags2 &= 1952 ~INP_2PCP_MASK; 1953 inp->inp_flags2 |= 1954 optval << 1955 INP_2PCP_SHIFT; 1956 INP_WUNLOCK(inp); 1957 } 1958 } else 1959 error = EINVAL; 1960 break; 1961 } 1962 break; 1963 1964 case IPV6_TCLASS: 1965 case IPV6_DONTFRAG: 1966 case IPV6_USE_MIN_MTU: 1967 case IPV6_PREFER_TEMPADDR: 1968 if (optlen != sizeof(optval)) { 1969 error = EINVAL; 1970 break; 1971 } 1972 error = sooptcopyin(sopt, &optval, 1973 sizeof optval, sizeof optval); 1974 if (error) 1975 break; 1976 { 1977 struct ip6_pktopts **optp; 1978 INP_WLOCK(inp); 1979 if (inp->inp_flags & INP_DROPPED) { 1980 INP_WUNLOCK(inp); 1981 return (ECONNRESET); 1982 } 1983 optp = &inp->in6p_outputopts; 1984 error = ip6_pcbopt(optname, 1985 (u_char *)&optval, sizeof(optval), 1986 optp, (td != NULL) ? td->td_ucred : 1987 NULL, uproto); 1988 INP_WUNLOCK(inp); 1989 break; 1990 } 1991 1992 case IPV6_2292PKTINFO: 1993 case IPV6_2292HOPLIMIT: 1994 case IPV6_2292HOPOPTS: 1995 case IPV6_2292DSTOPTS: 1996 case IPV6_2292RTHDR: 1997 /* RFC 2292 */ 1998 if (optlen != sizeof(int)) { 1999 error = EINVAL; 2000 break; 2001 } 2002 error = sooptcopyin(sopt, &optval, 2003 sizeof optval, sizeof optval); 2004 if (error) 2005 break; 2006 switch (optname) { 2007 case IPV6_2292PKTINFO: 2008 OPTSET2292(IN6P_PKTINFO); 2009 break; 2010 case IPV6_2292HOPLIMIT: 2011 OPTSET2292(IN6P_HOPLIMIT); 2012 break; 2013 case IPV6_2292HOPOPTS: 2014 /* 2015 * Check super-user privilege. 2016 * See comments for IPV6_RECVHOPOPTS. 2017 */ 2018 if (td != NULL) { 2019 error = priv_check(td, 2020 PRIV_NETINET_SETHDROPTS); 2021 if (error) 2022 return (error); 2023 } 2024 OPTSET2292(IN6P_HOPOPTS); 2025 break; 2026 case IPV6_2292DSTOPTS: 2027 if (td != NULL) { 2028 error = priv_check(td, 2029 PRIV_NETINET_SETHDROPTS); 2030 if (error) 2031 return (error); 2032 } 2033 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 2034 break; 2035 case IPV6_2292RTHDR: 2036 OPTSET2292(IN6P_RTHDR); 2037 break; 2038 } 2039 break; 2040 case IPV6_PKTINFO: 2041 case IPV6_HOPOPTS: 2042 case IPV6_RTHDR: 2043 case IPV6_DSTOPTS: 2044 case IPV6_RTHDRDSTOPTS: 2045 case IPV6_NEXTHOP: 2046 { 2047 /* new advanced API (RFC3542) */ 2048 u_char *optbuf; 2049 u_char optbuf_storage[MCLBYTES]; 2050 int optlen; 2051 struct ip6_pktopts **optp; 2052 2053 /* cannot mix with RFC2292 */ 2054 if (OPTBIT(IN6P_RFC2292)) { 2055 error = EINVAL; 2056 break; 2057 } 2058 2059 /* 2060 * We only ensure valsize is not too large 2061 * here. Further validation will be done 2062 * later. 2063 */ 2064 error = sooptcopyin(sopt, optbuf_storage, 2065 sizeof(optbuf_storage), 0); 2066 if (error) 2067 break; 2068 optlen = sopt->sopt_valsize; 2069 optbuf = optbuf_storage; 2070 INP_WLOCK(inp); 2071 if (inp->inp_flags & INP_DROPPED) { 2072 INP_WUNLOCK(inp); 2073 return (ECONNRESET); 2074 } 2075 optp = &inp->in6p_outputopts; 2076 error = ip6_pcbopt(optname, optbuf, optlen, 2077 optp, (td != NULL) ? td->td_ucred : NULL, 2078 uproto); 2079 INP_WUNLOCK(inp); 2080 break; 2081 } 2082 #undef OPTSET 2083 2084 case IPV6_MULTICAST_IF: 2085 case IPV6_MULTICAST_HOPS: 2086 case IPV6_MULTICAST_LOOP: 2087 case IPV6_JOIN_GROUP: 2088 case IPV6_LEAVE_GROUP: 2089 case IPV6_MSFILTER: 2090 case MCAST_BLOCK_SOURCE: 2091 case MCAST_UNBLOCK_SOURCE: 2092 case MCAST_JOIN_GROUP: 2093 case MCAST_LEAVE_GROUP: 2094 case MCAST_JOIN_SOURCE_GROUP: 2095 case MCAST_LEAVE_SOURCE_GROUP: 2096 error = ip6_setmoptions(inp, sopt); 2097 break; 2098 2099 case IPV6_PORTRANGE: 2100 error = sooptcopyin(sopt, &optval, 2101 sizeof optval, sizeof optval); 2102 if (error) 2103 break; 2104 2105 INP_WLOCK(inp); 2106 switch (optval) { 2107 case IPV6_PORTRANGE_DEFAULT: 2108 inp->inp_flags &= ~(INP_LOWPORT); 2109 inp->inp_flags &= ~(INP_HIGHPORT); 2110 break; 2111 2112 case IPV6_PORTRANGE_HIGH: 2113 inp->inp_flags &= ~(INP_LOWPORT); 2114 inp->inp_flags |= INP_HIGHPORT; 2115 break; 2116 2117 case IPV6_PORTRANGE_LOW: 2118 inp->inp_flags &= ~(INP_HIGHPORT); 2119 inp->inp_flags |= INP_LOWPORT; 2120 break; 2121 2122 default: 2123 error = EINVAL; 2124 break; 2125 } 2126 INP_WUNLOCK(inp); 2127 break; 2128 2129 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2130 case IPV6_IPSEC_POLICY: 2131 if (IPSEC_ENABLED(ipv6)) { 2132 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2133 break; 2134 } 2135 /* FALLTHROUGH */ 2136 #endif /* IPSEC */ 2137 2138 default: 2139 error = ENOPROTOOPT; 2140 break; 2141 } 2142 break; 2143 2144 case SOPT_GET: 2145 switch (optname) { 2146 case IPV6_2292PKTOPTIONS: 2147 #ifdef IPV6_PKTOPTIONS 2148 case IPV6_PKTOPTIONS: 2149 #endif 2150 /* 2151 * RFC3542 (effectively) deprecated the 2152 * semantics of the 2292-style pktoptions. 2153 * Since it was not reliable in nature (i.e., 2154 * applications had to expect the lack of some 2155 * information after all), it would make sense 2156 * to simplify this part by always returning 2157 * empty data. 2158 */ 2159 sopt->sopt_valsize = 0; 2160 break; 2161 2162 case IPV6_RECVHOPOPTS: 2163 case IPV6_RECVDSTOPTS: 2164 case IPV6_RECVRTHDRDSTOPTS: 2165 case IPV6_UNICAST_HOPS: 2166 case IPV6_RECVPKTINFO: 2167 case IPV6_RECVHOPLIMIT: 2168 case IPV6_RECVRTHDR: 2169 case IPV6_RECVPATHMTU: 2170 2171 case IPV6_V6ONLY: 2172 case IPV6_PORTRANGE: 2173 case IPV6_RECVTCLASS: 2174 case IPV6_AUTOFLOWLABEL: 2175 case IPV6_BINDANY: 2176 case IPV6_FLOWID: 2177 case IPV6_FLOWTYPE: 2178 case IPV6_RECVFLOWID: 2179 #ifdef RSS 2180 case IPV6_RSSBUCKETID: 2181 case IPV6_RECVRSSBUCKETID: 2182 #endif 2183 case IPV6_VLAN_PCP: 2184 switch (optname) { 2185 case IPV6_RECVHOPOPTS: 2186 optval = OPTBIT(IN6P_HOPOPTS); 2187 break; 2188 2189 case IPV6_RECVDSTOPTS: 2190 optval = OPTBIT(IN6P_DSTOPTS); 2191 break; 2192 2193 case IPV6_RECVRTHDRDSTOPTS: 2194 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 2195 break; 2196 2197 case IPV6_UNICAST_HOPS: 2198 optval = inp->in6p_hops; 2199 break; 2200 2201 case IPV6_RECVPKTINFO: 2202 optval = OPTBIT(IN6P_PKTINFO); 2203 break; 2204 2205 case IPV6_RECVHOPLIMIT: 2206 optval = OPTBIT(IN6P_HOPLIMIT); 2207 break; 2208 2209 case IPV6_RECVRTHDR: 2210 optval = OPTBIT(IN6P_RTHDR); 2211 break; 2212 2213 case IPV6_RECVPATHMTU: 2214 optval = OPTBIT(IN6P_MTU); 2215 break; 2216 2217 case IPV6_V6ONLY: 2218 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2219 break; 2220 2221 case IPV6_PORTRANGE: 2222 { 2223 int flags; 2224 flags = inp->inp_flags; 2225 if (flags & INP_HIGHPORT) 2226 optval = IPV6_PORTRANGE_HIGH; 2227 else if (flags & INP_LOWPORT) 2228 optval = IPV6_PORTRANGE_LOW; 2229 else 2230 optval = 0; 2231 break; 2232 } 2233 case IPV6_RECVTCLASS: 2234 optval = OPTBIT(IN6P_TCLASS); 2235 break; 2236 2237 case IPV6_AUTOFLOWLABEL: 2238 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2239 break; 2240 2241 case IPV6_ORIGDSTADDR: 2242 optval = OPTBIT2(INP_ORIGDSTADDR); 2243 break; 2244 2245 case IPV6_BINDANY: 2246 optval = OPTBIT(INP_BINDANY); 2247 break; 2248 2249 case IPV6_FLOWID: 2250 optval = inp->inp_flowid; 2251 break; 2252 2253 case IPV6_FLOWTYPE: 2254 optval = inp->inp_flowtype; 2255 break; 2256 2257 case IPV6_RECVFLOWID: 2258 optval = OPTBIT2(INP_RECVFLOWID); 2259 break; 2260 #ifdef RSS 2261 case IPV6_RSSBUCKETID: 2262 retval = 2263 rss_hash2bucket(inp->inp_flowid, 2264 inp->inp_flowtype, 2265 &rss_bucket); 2266 if (retval == 0) 2267 optval = rss_bucket; 2268 else 2269 error = EINVAL; 2270 break; 2271 2272 case IPV6_RECVRSSBUCKETID: 2273 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2274 break; 2275 #endif 2276 2277 2278 case IPV6_VLAN_PCP: 2279 if (OPTBIT2(INP_2PCP_SET)) { 2280 optval = (inp->inp_flags2 & 2281 INP_2PCP_MASK) >> 2282 INP_2PCP_SHIFT; 2283 } else { 2284 optval = -1; 2285 } 2286 break; 2287 } 2288 2289 if (error) 2290 break; 2291 error = sooptcopyout(sopt, &optval, 2292 sizeof optval); 2293 break; 2294 2295 case IPV6_PATHMTU: 2296 { 2297 u_long pmtu = 0; 2298 struct ip6_mtuinfo mtuinfo; 2299 struct in6_addr addr; 2300 2301 if (!(so->so_state & SS_ISCONNECTED)) 2302 return (ENOTCONN); 2303 /* 2304 * XXX: we dot not consider the case of source 2305 * routing, or optional information to specify 2306 * the outgoing interface. 2307 * Copy faddr out of inp to avoid holding lock 2308 * on inp during route lookup. 2309 */ 2310 INP_RLOCK(inp); 2311 bcopy(&inp->in6p_faddr, &addr, sizeof(addr)); 2312 INP_RUNLOCK(inp); 2313 error = ip6_getpmtu_ctl(so->so_fibnum, 2314 &addr, &pmtu); 2315 if (error) 2316 break; 2317 if (pmtu > IPV6_MAXPACKET) 2318 pmtu = IPV6_MAXPACKET; 2319 2320 bzero(&mtuinfo, sizeof(mtuinfo)); 2321 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2322 optdata = (void *)&mtuinfo; 2323 optdatalen = sizeof(mtuinfo); 2324 error = sooptcopyout(sopt, optdata, 2325 optdatalen); 2326 break; 2327 } 2328 2329 case IPV6_2292PKTINFO: 2330 case IPV6_2292HOPLIMIT: 2331 case IPV6_2292HOPOPTS: 2332 case IPV6_2292RTHDR: 2333 case IPV6_2292DSTOPTS: 2334 switch (optname) { 2335 case IPV6_2292PKTINFO: 2336 optval = OPTBIT(IN6P_PKTINFO); 2337 break; 2338 case IPV6_2292HOPLIMIT: 2339 optval = OPTBIT(IN6P_HOPLIMIT); 2340 break; 2341 case IPV6_2292HOPOPTS: 2342 optval = OPTBIT(IN6P_HOPOPTS); 2343 break; 2344 case IPV6_2292RTHDR: 2345 optval = OPTBIT(IN6P_RTHDR); 2346 break; 2347 case IPV6_2292DSTOPTS: 2348 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2349 break; 2350 } 2351 error = sooptcopyout(sopt, &optval, 2352 sizeof optval); 2353 break; 2354 case IPV6_PKTINFO: 2355 case IPV6_HOPOPTS: 2356 case IPV6_RTHDR: 2357 case IPV6_DSTOPTS: 2358 case IPV6_RTHDRDSTOPTS: 2359 case IPV6_NEXTHOP: 2360 case IPV6_TCLASS: 2361 case IPV6_DONTFRAG: 2362 case IPV6_USE_MIN_MTU: 2363 case IPV6_PREFER_TEMPADDR: 2364 error = ip6_getpcbopt(inp, optname, sopt); 2365 break; 2366 2367 case IPV6_MULTICAST_IF: 2368 case IPV6_MULTICAST_HOPS: 2369 case IPV6_MULTICAST_LOOP: 2370 case IPV6_MSFILTER: 2371 error = ip6_getmoptions(inp, sopt); 2372 break; 2373 2374 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2375 case IPV6_IPSEC_POLICY: 2376 if (IPSEC_ENABLED(ipv6)) { 2377 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2378 break; 2379 } 2380 /* FALLTHROUGH */ 2381 #endif /* IPSEC */ 2382 default: 2383 error = ENOPROTOOPT; 2384 break; 2385 } 2386 break; 2387 } 2388 } 2389 return (error); 2390 } 2391 2392 int 2393 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2394 { 2395 int error = 0, optval, optlen; 2396 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2397 struct inpcb *inp = sotoinpcb(so); 2398 int level, op, optname; 2399 2400 level = sopt->sopt_level; 2401 op = sopt->sopt_dir; 2402 optname = sopt->sopt_name; 2403 optlen = sopt->sopt_valsize; 2404 2405 if (level != IPPROTO_IPV6) { 2406 return (EINVAL); 2407 } 2408 2409 switch (optname) { 2410 case IPV6_CHECKSUM: 2411 /* 2412 * For ICMPv6 sockets, no modification allowed for checksum 2413 * offset, permit "no change" values to help existing apps. 2414 * 2415 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2416 * for an ICMPv6 socket will fail." 2417 * The current behavior does not meet RFC3542. 2418 */ 2419 switch (op) { 2420 case SOPT_SET: 2421 if (optlen != sizeof(int)) { 2422 error = EINVAL; 2423 break; 2424 } 2425 error = sooptcopyin(sopt, &optval, sizeof(optval), 2426 sizeof(optval)); 2427 if (error) 2428 break; 2429 if (optval < -1 || (optval % 2) != 0) { 2430 /* 2431 * The API assumes non-negative even offset 2432 * values or -1 as a special value. 2433 */ 2434 error = EINVAL; 2435 } else if (inp->inp_ip_p == IPPROTO_ICMPV6) { 2436 if (optval != icmp6off) 2437 error = EINVAL; 2438 } else 2439 inp->in6p_cksum = optval; 2440 break; 2441 2442 case SOPT_GET: 2443 if (inp->inp_ip_p == IPPROTO_ICMPV6) 2444 optval = icmp6off; 2445 else 2446 optval = inp->in6p_cksum; 2447 2448 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2449 break; 2450 2451 default: 2452 error = EINVAL; 2453 break; 2454 } 2455 break; 2456 2457 default: 2458 error = ENOPROTOOPT; 2459 break; 2460 } 2461 2462 return (error); 2463 } 2464 2465 /* 2466 * Set up IP6 options in pcb for insertion in output packets or 2467 * specifying behavior of outgoing packets. 2468 */ 2469 static int 2470 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2471 struct socket *so, struct sockopt *sopt) 2472 { 2473 struct ip6_pktopts *opt = *pktopt; 2474 int error = 0; 2475 struct thread *td = sopt->sopt_td; 2476 struct epoch_tracker et; 2477 2478 /* turn off any old options. */ 2479 if (opt) { 2480 #ifdef DIAGNOSTIC 2481 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2482 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2483 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2484 printf("ip6_pcbopts: all specified options are cleared.\n"); 2485 #endif 2486 ip6_clearpktopts(opt, -1); 2487 } else { 2488 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2489 if (opt == NULL) 2490 return (ENOMEM); 2491 } 2492 *pktopt = NULL; 2493 2494 if (!m || m->m_len == 0) { 2495 /* 2496 * Only turning off any previous options, regardless of 2497 * whether the opt is just created or given. 2498 */ 2499 free(opt, M_IP6OPT); 2500 return (0); 2501 } 2502 2503 /* set options specified by user. */ 2504 NET_EPOCH_ENTER(et); 2505 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2506 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2507 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2508 free(opt, M_IP6OPT); 2509 NET_EPOCH_EXIT(et); 2510 return (error); 2511 } 2512 NET_EPOCH_EXIT(et); 2513 *pktopt = opt; 2514 return (0); 2515 } 2516 2517 /* 2518 * initialize ip6_pktopts. beware that there are non-zero default values in 2519 * the struct. 2520 */ 2521 void 2522 ip6_initpktopts(struct ip6_pktopts *opt) 2523 { 2524 2525 bzero(opt, sizeof(*opt)); 2526 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2527 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2528 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2529 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2530 } 2531 2532 static int 2533 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2534 struct ucred *cred, int uproto) 2535 { 2536 struct epoch_tracker et; 2537 struct ip6_pktopts *opt; 2538 int ret; 2539 2540 if (*pktopt == NULL) { 2541 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2542 M_NOWAIT); 2543 if (*pktopt == NULL) 2544 return (ENOBUFS); 2545 ip6_initpktopts(*pktopt); 2546 } 2547 opt = *pktopt; 2548 2549 NET_EPOCH_ENTER(et); 2550 ret = ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto); 2551 NET_EPOCH_EXIT(et); 2552 2553 return (ret); 2554 } 2555 2556 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2557 if (pktopt && pktopt->field) { \ 2558 INP_RUNLOCK(inp); \ 2559 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2560 malloc_optdata = true; \ 2561 INP_RLOCK(inp); \ 2562 if (inp->inp_flags & INP_DROPPED) { \ 2563 INP_RUNLOCK(inp); \ 2564 free(optdata, M_TEMP); \ 2565 return (ECONNRESET); \ 2566 } \ 2567 pktopt = inp->in6p_outputopts; \ 2568 if (pktopt && pktopt->field) { \ 2569 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2570 bcopy(pktopt->field, optdata, optdatalen); \ 2571 } else { \ 2572 free(optdata, M_TEMP); \ 2573 optdata = NULL; \ 2574 malloc_optdata = false; \ 2575 } \ 2576 } \ 2577 } while(0) 2578 2579 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2580 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2581 2582 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2583 pktopt->field->sa_len) 2584 2585 static int 2586 ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt) 2587 { 2588 void *optdata = NULL; 2589 bool malloc_optdata = false; 2590 int optdatalen = 0; 2591 int error = 0; 2592 struct in6_pktinfo null_pktinfo; 2593 int deftclass = 0, on; 2594 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2595 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2596 struct ip6_pktopts *pktopt; 2597 2598 INP_RLOCK(inp); 2599 pktopt = inp->in6p_outputopts; 2600 2601 switch (optname) { 2602 case IPV6_PKTINFO: 2603 optdata = (void *)&null_pktinfo; 2604 if (pktopt && pktopt->ip6po_pktinfo) { 2605 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2606 sizeof(null_pktinfo)); 2607 in6_clearscope(&null_pktinfo.ipi6_addr); 2608 } else { 2609 /* XXX: we don't have to do this every time... */ 2610 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2611 } 2612 optdatalen = sizeof(struct in6_pktinfo); 2613 break; 2614 case IPV6_TCLASS: 2615 if (pktopt && pktopt->ip6po_tclass >= 0) 2616 deftclass = pktopt->ip6po_tclass; 2617 optdata = (void *)&deftclass; 2618 optdatalen = sizeof(int); 2619 break; 2620 case IPV6_HOPOPTS: 2621 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2622 break; 2623 case IPV6_RTHDR: 2624 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2625 break; 2626 case IPV6_RTHDRDSTOPTS: 2627 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2628 break; 2629 case IPV6_DSTOPTS: 2630 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2631 break; 2632 case IPV6_NEXTHOP: 2633 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2634 break; 2635 case IPV6_USE_MIN_MTU: 2636 if (pktopt) 2637 defminmtu = pktopt->ip6po_minmtu; 2638 optdata = (void *)&defminmtu; 2639 optdatalen = sizeof(int); 2640 break; 2641 case IPV6_DONTFRAG: 2642 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2643 on = 1; 2644 else 2645 on = 0; 2646 optdata = (void *)&on; 2647 optdatalen = sizeof(on); 2648 break; 2649 case IPV6_PREFER_TEMPADDR: 2650 if (pktopt) 2651 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2652 optdata = (void *)&defpreftemp; 2653 optdatalen = sizeof(int); 2654 break; 2655 default: /* should not happen */ 2656 #ifdef DIAGNOSTIC 2657 panic("ip6_getpcbopt: unexpected option\n"); 2658 #endif 2659 INP_RUNLOCK(inp); 2660 return (ENOPROTOOPT); 2661 } 2662 INP_RUNLOCK(inp); 2663 2664 error = sooptcopyout(sopt, optdata, optdatalen); 2665 if (malloc_optdata) 2666 free(optdata, M_TEMP); 2667 2668 return (error); 2669 } 2670 2671 void 2672 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2673 { 2674 if (pktopt == NULL) 2675 return; 2676 2677 if (optname == -1 || optname == IPV6_PKTINFO) { 2678 if (pktopt->ip6po_pktinfo) 2679 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2680 pktopt->ip6po_pktinfo = NULL; 2681 } 2682 if (optname == -1 || optname == IPV6_HOPLIMIT) 2683 pktopt->ip6po_hlim = -1; 2684 if (optname == -1 || optname == IPV6_TCLASS) 2685 pktopt->ip6po_tclass = -1; 2686 if (optname == -1 || optname == IPV6_NEXTHOP) { 2687 if (pktopt->ip6po_nextroute.ro_nh) { 2688 NH_FREE(pktopt->ip6po_nextroute.ro_nh); 2689 pktopt->ip6po_nextroute.ro_nh = NULL; 2690 } 2691 if (pktopt->ip6po_nexthop) 2692 free(pktopt->ip6po_nexthop, M_IP6OPT); 2693 pktopt->ip6po_nexthop = NULL; 2694 } 2695 if (optname == -1 || optname == IPV6_HOPOPTS) { 2696 if (pktopt->ip6po_hbh) 2697 free(pktopt->ip6po_hbh, M_IP6OPT); 2698 pktopt->ip6po_hbh = NULL; 2699 } 2700 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2701 if (pktopt->ip6po_dest1) 2702 free(pktopt->ip6po_dest1, M_IP6OPT); 2703 pktopt->ip6po_dest1 = NULL; 2704 } 2705 if (optname == -1 || optname == IPV6_RTHDR) { 2706 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2707 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2708 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2709 if (pktopt->ip6po_route.ro_nh) { 2710 NH_FREE(pktopt->ip6po_route.ro_nh); 2711 pktopt->ip6po_route.ro_nh = NULL; 2712 } 2713 } 2714 if (optname == -1 || optname == IPV6_DSTOPTS) { 2715 if (pktopt->ip6po_dest2) 2716 free(pktopt->ip6po_dest2, M_IP6OPT); 2717 pktopt->ip6po_dest2 = NULL; 2718 } 2719 } 2720 2721 #define PKTOPT_EXTHDRCPY(type) \ 2722 do {\ 2723 if (src->type) {\ 2724 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2725 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2726 if (dst->type == NULL)\ 2727 goto bad;\ 2728 bcopy(src->type, dst->type, hlen);\ 2729 }\ 2730 } while (/*CONSTCOND*/ 0) 2731 2732 static int 2733 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2734 { 2735 if (dst == NULL || src == NULL) { 2736 printf("ip6_clearpktopts: invalid argument\n"); 2737 return (EINVAL); 2738 } 2739 2740 dst->ip6po_hlim = src->ip6po_hlim; 2741 dst->ip6po_tclass = src->ip6po_tclass; 2742 dst->ip6po_flags = src->ip6po_flags; 2743 dst->ip6po_minmtu = src->ip6po_minmtu; 2744 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2745 if (src->ip6po_pktinfo) { 2746 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2747 M_IP6OPT, canwait); 2748 if (dst->ip6po_pktinfo == NULL) 2749 goto bad; 2750 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2751 } 2752 if (src->ip6po_nexthop) { 2753 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2754 M_IP6OPT, canwait); 2755 if (dst->ip6po_nexthop == NULL) 2756 goto bad; 2757 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2758 src->ip6po_nexthop->sa_len); 2759 } 2760 PKTOPT_EXTHDRCPY(ip6po_hbh); 2761 PKTOPT_EXTHDRCPY(ip6po_dest1); 2762 PKTOPT_EXTHDRCPY(ip6po_dest2); 2763 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2764 return (0); 2765 2766 bad: 2767 ip6_clearpktopts(dst, -1); 2768 return (ENOBUFS); 2769 } 2770 #undef PKTOPT_EXTHDRCPY 2771 2772 struct ip6_pktopts * 2773 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2774 { 2775 int error; 2776 struct ip6_pktopts *dst; 2777 2778 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2779 if (dst == NULL) 2780 return (NULL); 2781 ip6_initpktopts(dst); 2782 2783 if ((error = copypktopts(dst, src, canwait)) != 0) { 2784 free(dst, M_IP6OPT); 2785 return (NULL); 2786 } 2787 2788 return (dst); 2789 } 2790 2791 void 2792 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2793 { 2794 if (pktopt == NULL) 2795 return; 2796 2797 ip6_clearpktopts(pktopt, -1); 2798 2799 free(pktopt, M_IP6OPT); 2800 } 2801 2802 /* 2803 * Set IPv6 outgoing packet options based on advanced API. 2804 */ 2805 int 2806 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2807 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2808 { 2809 struct cmsghdr *cm = NULL; 2810 2811 if (control == NULL || opt == NULL) 2812 return (EINVAL); 2813 2814 /* 2815 * ip6_setpktopt can call ifnet_byindex(), so it's imperative that we 2816 * are in the network epoch here. 2817 */ 2818 NET_EPOCH_ASSERT(); 2819 2820 ip6_initpktopts(opt); 2821 if (stickyopt) { 2822 int error; 2823 2824 /* 2825 * If stickyopt is provided, make a local copy of the options 2826 * for this particular packet, then override them by ancillary 2827 * objects. 2828 * XXX: copypktopts() does not copy the cached route to a next 2829 * hop (if any). This is not very good in terms of efficiency, 2830 * but we can allow this since this option should be rarely 2831 * used. 2832 */ 2833 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2834 return (error); 2835 } 2836 2837 /* 2838 * XXX: Currently, we assume all the optional information is stored 2839 * in a single mbuf. 2840 */ 2841 if (control->m_next) 2842 return (EINVAL); 2843 2844 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2845 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2846 int error; 2847 2848 if (control->m_len < CMSG_LEN(0)) 2849 return (EINVAL); 2850 2851 cm = mtod(control, struct cmsghdr *); 2852 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2853 return (EINVAL); 2854 if (cm->cmsg_level != IPPROTO_IPV6) 2855 continue; 2856 2857 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2858 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2859 if (error) 2860 return (error); 2861 } 2862 2863 return (0); 2864 } 2865 2866 /* 2867 * Set a particular packet option, as a sticky option or an ancillary data 2868 * item. "len" can be 0 only when it's a sticky option. 2869 * We have 4 cases of combination of "sticky" and "cmsg": 2870 * "sticky=0, cmsg=0": impossible 2871 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2872 * "sticky=1, cmsg=0": RFC3542 socket option 2873 * "sticky=1, cmsg=1": RFC2292 socket option 2874 */ 2875 static int 2876 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2877 struct ucred *cred, int sticky, int cmsg, int uproto) 2878 { 2879 int minmtupolicy, preftemp; 2880 int error; 2881 2882 NET_EPOCH_ASSERT(); 2883 2884 if (!sticky && !cmsg) { 2885 #ifdef DIAGNOSTIC 2886 printf("ip6_setpktopt: impossible case\n"); 2887 #endif 2888 return (EINVAL); 2889 } 2890 2891 /* 2892 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2893 * not be specified in the context of RFC3542. Conversely, 2894 * RFC3542 types should not be specified in the context of RFC2292. 2895 */ 2896 if (!cmsg) { 2897 switch (optname) { 2898 case IPV6_2292PKTINFO: 2899 case IPV6_2292HOPLIMIT: 2900 case IPV6_2292NEXTHOP: 2901 case IPV6_2292HOPOPTS: 2902 case IPV6_2292DSTOPTS: 2903 case IPV6_2292RTHDR: 2904 case IPV6_2292PKTOPTIONS: 2905 return (ENOPROTOOPT); 2906 } 2907 } 2908 if (sticky && cmsg) { 2909 switch (optname) { 2910 case IPV6_PKTINFO: 2911 case IPV6_HOPLIMIT: 2912 case IPV6_NEXTHOP: 2913 case IPV6_HOPOPTS: 2914 case IPV6_DSTOPTS: 2915 case IPV6_RTHDRDSTOPTS: 2916 case IPV6_RTHDR: 2917 case IPV6_USE_MIN_MTU: 2918 case IPV6_DONTFRAG: 2919 case IPV6_TCLASS: 2920 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2921 return (ENOPROTOOPT); 2922 } 2923 } 2924 2925 switch (optname) { 2926 case IPV6_2292PKTINFO: 2927 case IPV6_PKTINFO: 2928 { 2929 struct ifnet *ifp = NULL; 2930 struct in6_pktinfo *pktinfo; 2931 2932 if (len != sizeof(struct in6_pktinfo)) 2933 return (EINVAL); 2934 2935 pktinfo = (struct in6_pktinfo *)buf; 2936 2937 /* 2938 * An application can clear any sticky IPV6_PKTINFO option by 2939 * doing a "regular" setsockopt with ipi6_addr being 2940 * in6addr_any and ipi6_ifindex being zero. 2941 * [RFC 3542, Section 6] 2942 */ 2943 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2944 pktinfo->ipi6_ifindex == 0 && 2945 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2946 ip6_clearpktopts(opt, optname); 2947 break; 2948 } 2949 2950 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2951 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2952 return (EINVAL); 2953 } 2954 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2955 return (EINVAL); 2956 /* validate the interface index if specified. */ 2957 if (pktinfo->ipi6_ifindex) { 2958 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2959 if (ifp == NULL) 2960 return (ENXIO); 2961 } 2962 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2963 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2964 return (ENETDOWN); 2965 2966 if (ifp != NULL && 2967 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2968 struct in6_ifaddr *ia; 2969 2970 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2971 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2972 if (ia == NULL) 2973 return (EADDRNOTAVAIL); 2974 ifa_free(&ia->ia_ifa); 2975 } 2976 /* 2977 * We store the address anyway, and let in6_selectsrc() 2978 * validate the specified address. This is because ipi6_addr 2979 * may not have enough information about its scope zone, and 2980 * we may need additional information (such as outgoing 2981 * interface or the scope zone of a destination address) to 2982 * disambiguate the scope. 2983 * XXX: the delay of the validation may confuse the 2984 * application when it is used as a sticky option. 2985 */ 2986 if (opt->ip6po_pktinfo == NULL) { 2987 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2988 M_IP6OPT, M_NOWAIT); 2989 if (opt->ip6po_pktinfo == NULL) 2990 return (ENOBUFS); 2991 } 2992 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2993 break; 2994 } 2995 2996 case IPV6_2292HOPLIMIT: 2997 case IPV6_HOPLIMIT: 2998 { 2999 int *hlimp; 3000 3001 /* 3002 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 3003 * to simplify the ordering among hoplimit options. 3004 */ 3005 if (optname == IPV6_HOPLIMIT && sticky) 3006 return (ENOPROTOOPT); 3007 3008 if (len != sizeof(int)) 3009 return (EINVAL); 3010 hlimp = (int *)buf; 3011 if (*hlimp < -1 || *hlimp > 255) 3012 return (EINVAL); 3013 3014 opt->ip6po_hlim = *hlimp; 3015 break; 3016 } 3017 3018 case IPV6_TCLASS: 3019 { 3020 int tclass; 3021 3022 if (len != sizeof(int)) 3023 return (EINVAL); 3024 tclass = *(int *)buf; 3025 if (tclass < -1 || tclass > 255) 3026 return (EINVAL); 3027 3028 opt->ip6po_tclass = tclass; 3029 break; 3030 } 3031 3032 case IPV6_2292NEXTHOP: 3033 case IPV6_NEXTHOP: 3034 if (cred != NULL) { 3035 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3036 if (error) 3037 return (error); 3038 } 3039 3040 if (len == 0) { /* just remove the option */ 3041 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3042 break; 3043 } 3044 3045 /* check if cmsg_len is large enough for sa_len */ 3046 if (len < sizeof(struct sockaddr) || len < *buf) 3047 return (EINVAL); 3048 3049 switch (((struct sockaddr *)buf)->sa_family) { 3050 case AF_INET6: 3051 { 3052 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3053 int error; 3054 3055 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3056 return (EINVAL); 3057 3058 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3059 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3060 return (EINVAL); 3061 } 3062 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 3063 != 0) { 3064 return (error); 3065 } 3066 break; 3067 } 3068 case AF_LINK: /* should eventually be supported */ 3069 default: 3070 return (EAFNOSUPPORT); 3071 } 3072 3073 /* turn off the previous option, then set the new option. */ 3074 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3075 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3076 if (opt->ip6po_nexthop == NULL) 3077 return (ENOBUFS); 3078 bcopy(buf, opt->ip6po_nexthop, *buf); 3079 break; 3080 3081 case IPV6_2292HOPOPTS: 3082 case IPV6_HOPOPTS: 3083 { 3084 struct ip6_hbh *hbh; 3085 int hbhlen; 3086 3087 /* 3088 * XXX: We don't allow a non-privileged user to set ANY HbH 3089 * options, since per-option restriction has too much 3090 * overhead. 3091 */ 3092 if (cred != NULL) { 3093 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3094 if (error) 3095 return (error); 3096 } 3097 3098 if (len == 0) { 3099 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3100 break; /* just remove the option */ 3101 } 3102 3103 /* message length validation */ 3104 if (len < sizeof(struct ip6_hbh)) 3105 return (EINVAL); 3106 hbh = (struct ip6_hbh *)buf; 3107 hbhlen = (hbh->ip6h_len + 1) << 3; 3108 if (len != hbhlen) 3109 return (EINVAL); 3110 3111 /* turn off the previous option, then set the new option. */ 3112 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3113 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3114 if (opt->ip6po_hbh == NULL) 3115 return (ENOBUFS); 3116 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3117 3118 break; 3119 } 3120 3121 case IPV6_2292DSTOPTS: 3122 case IPV6_DSTOPTS: 3123 case IPV6_RTHDRDSTOPTS: 3124 { 3125 struct ip6_dest *dest, **newdest = NULL; 3126 int destlen; 3127 3128 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 3129 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3130 if (error) 3131 return (error); 3132 } 3133 3134 if (len == 0) { 3135 ip6_clearpktopts(opt, optname); 3136 break; /* just remove the option */ 3137 } 3138 3139 /* message length validation */ 3140 if (len < sizeof(struct ip6_dest)) 3141 return (EINVAL); 3142 dest = (struct ip6_dest *)buf; 3143 destlen = (dest->ip6d_len + 1) << 3; 3144 if (len != destlen) 3145 return (EINVAL); 3146 3147 /* 3148 * Determine the position that the destination options header 3149 * should be inserted; before or after the routing header. 3150 */ 3151 switch (optname) { 3152 case IPV6_2292DSTOPTS: 3153 /* 3154 * The old advacned API is ambiguous on this point. 3155 * Our approach is to determine the position based 3156 * according to the existence of a routing header. 3157 * Note, however, that this depends on the order of the 3158 * extension headers in the ancillary data; the 1st 3159 * part of the destination options header must appear 3160 * before the routing header in the ancillary data, 3161 * too. 3162 * RFC3542 solved the ambiguity by introducing 3163 * separate ancillary data or option types. 3164 */ 3165 if (opt->ip6po_rthdr == NULL) 3166 newdest = &opt->ip6po_dest1; 3167 else 3168 newdest = &opt->ip6po_dest2; 3169 break; 3170 case IPV6_RTHDRDSTOPTS: 3171 newdest = &opt->ip6po_dest1; 3172 break; 3173 case IPV6_DSTOPTS: 3174 newdest = &opt->ip6po_dest2; 3175 break; 3176 } 3177 3178 /* turn off the previous option, then set the new option. */ 3179 ip6_clearpktopts(opt, optname); 3180 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3181 if (*newdest == NULL) 3182 return (ENOBUFS); 3183 bcopy(dest, *newdest, destlen); 3184 3185 break; 3186 } 3187 3188 case IPV6_2292RTHDR: 3189 case IPV6_RTHDR: 3190 { 3191 struct ip6_rthdr *rth; 3192 int rthlen; 3193 3194 if (len == 0) { 3195 ip6_clearpktopts(opt, IPV6_RTHDR); 3196 break; /* just remove the option */ 3197 } 3198 3199 /* message length validation */ 3200 if (len < sizeof(struct ip6_rthdr)) 3201 return (EINVAL); 3202 rth = (struct ip6_rthdr *)buf; 3203 rthlen = (rth->ip6r_len + 1) << 3; 3204 if (len != rthlen) 3205 return (EINVAL); 3206 3207 switch (rth->ip6r_type) { 3208 case IPV6_RTHDR_TYPE_0: 3209 if (rth->ip6r_len == 0) /* must contain one addr */ 3210 return (EINVAL); 3211 if (rth->ip6r_len % 2) /* length must be even */ 3212 return (EINVAL); 3213 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3214 return (EINVAL); 3215 break; 3216 default: 3217 return (EINVAL); /* not supported */ 3218 } 3219 3220 /* turn off the previous option */ 3221 ip6_clearpktopts(opt, IPV6_RTHDR); 3222 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3223 if (opt->ip6po_rthdr == NULL) 3224 return (ENOBUFS); 3225 bcopy(rth, opt->ip6po_rthdr, rthlen); 3226 3227 break; 3228 } 3229 3230 case IPV6_USE_MIN_MTU: 3231 if (len != sizeof(int)) 3232 return (EINVAL); 3233 minmtupolicy = *(int *)buf; 3234 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3235 minmtupolicy != IP6PO_MINMTU_DISABLE && 3236 minmtupolicy != IP6PO_MINMTU_ALL) { 3237 return (EINVAL); 3238 } 3239 opt->ip6po_minmtu = minmtupolicy; 3240 break; 3241 3242 case IPV6_DONTFRAG: 3243 if (len != sizeof(int)) 3244 return (EINVAL); 3245 3246 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3247 /* 3248 * we ignore this option for TCP sockets. 3249 * (RFC3542 leaves this case unspecified.) 3250 */ 3251 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3252 } else 3253 opt->ip6po_flags |= IP6PO_DONTFRAG; 3254 break; 3255 3256 case IPV6_PREFER_TEMPADDR: 3257 if (len != sizeof(int)) 3258 return (EINVAL); 3259 preftemp = *(int *)buf; 3260 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3261 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3262 preftemp != IP6PO_TEMPADDR_PREFER) { 3263 return (EINVAL); 3264 } 3265 opt->ip6po_prefer_tempaddr = preftemp; 3266 break; 3267 3268 default: 3269 return (ENOPROTOOPT); 3270 } /* end of switch */ 3271 3272 return (0); 3273 } 3274 3275 /* 3276 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3277 * packet to the input queue of a specified interface. Note that this 3278 * calls the output routine of the loopback "driver", but with an interface 3279 * pointer that might NOT be &loif -- easier than replicating that code here. 3280 */ 3281 void 3282 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3283 { 3284 struct mbuf *copym; 3285 struct ip6_hdr *ip6; 3286 3287 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3288 if (copym == NULL) 3289 return; 3290 3291 /* 3292 * Make sure to deep-copy IPv6 header portion in case the data 3293 * is in an mbuf cluster, so that we can safely override the IPv6 3294 * header portion later. 3295 */ 3296 if (!M_WRITABLE(copym) || 3297 copym->m_len < sizeof(struct ip6_hdr)) { 3298 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3299 if (copym == NULL) 3300 return; 3301 } 3302 ip6 = mtod(copym, struct ip6_hdr *); 3303 /* 3304 * clear embedded scope identifiers if necessary. 3305 * in6_clearscope will touch the addresses only when necessary. 3306 */ 3307 in6_clearscope(&ip6->ip6_src); 3308 in6_clearscope(&ip6->ip6_dst); 3309 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3310 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3311 CSUM_PSEUDO_HDR; 3312 copym->m_pkthdr.csum_data = 0xffff; 3313 } 3314 if_simloop(ifp, copym, AF_INET6, 0); 3315 } 3316 3317 /* 3318 * Chop IPv6 header off from the payload. 3319 */ 3320 static int 3321 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3322 { 3323 struct mbuf *mh; 3324 struct ip6_hdr *ip6; 3325 3326 ip6 = mtod(m, struct ip6_hdr *); 3327 if (m->m_len > sizeof(*ip6)) { 3328 mh = m_gethdr(M_NOWAIT, MT_DATA); 3329 if (mh == NULL) { 3330 m_freem(m); 3331 return ENOBUFS; 3332 } 3333 m_move_pkthdr(mh, m); 3334 M_ALIGN(mh, sizeof(*ip6)); 3335 m->m_len -= sizeof(*ip6); 3336 m->m_data += sizeof(*ip6); 3337 mh->m_next = m; 3338 m = mh; 3339 m->m_len = sizeof(*ip6); 3340 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3341 } 3342 exthdrs->ip6e_ip6 = m; 3343 return 0; 3344 } 3345 3346 /* 3347 * Compute IPv6 extension header length. 3348 */ 3349 int 3350 ip6_optlen(struct inpcb *inp) 3351 { 3352 int len; 3353 3354 if (!inp->in6p_outputopts) 3355 return 0; 3356 3357 len = 0; 3358 #define elen(x) \ 3359 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3360 3361 len += elen(inp->in6p_outputopts->ip6po_hbh); 3362 if (inp->in6p_outputopts->ip6po_rthdr) 3363 /* dest1 is valid with rthdr only */ 3364 len += elen(inp->in6p_outputopts->ip6po_dest1); 3365 len += elen(inp->in6p_outputopts->ip6po_rthdr); 3366 len += elen(inp->in6p_outputopts->ip6po_dest2); 3367 return len; 3368 #undef elen 3369 } 3370