1 /* $FreeBSD$ */ 2 /* $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 4. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include "opt_ip6fw.h" 65 #include "opt_inet.h" 66 #include "opt_inet6.h" 67 #include "opt_ipsec.h" 68 #include "opt_pfil_hooks.h" 69 #include "opt_random_ip_id.h" 70 71 #include <sys/param.h> 72 #include <sys/malloc.h> 73 #include <sys/mbuf.h> 74 #include <sys/proc.h> 75 #include <sys/errno.h> 76 #include <sys/protosw.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/systm.h> 80 #include <sys/kernel.h> 81 82 #include <net/if.h> 83 #include <net/route.h> 84 #ifdef PFIL_HOOKS 85 #include <net/pfil.h> 86 #endif 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet6/in6_var.h> 91 #include <netinet/ip6.h> 92 #include <netinet/icmp6.h> 93 #include <netinet6/ip6_var.h> 94 #include <netinet/in_pcb.h> 95 #include <netinet/tcp_var.h> 96 #include <netinet6/nd6.h> 97 98 #ifdef IPSEC 99 #include <netinet6/ipsec.h> 100 #ifdef INET6 101 #include <netinet6/ipsec6.h> 102 #endif 103 #include <netkey/key.h> 104 #endif /* IPSEC */ 105 106 #ifdef FAST_IPSEC 107 #include <netipsec/ipsec.h> 108 #include <netipsec/ipsec6.h> 109 #include <netipsec/key.h> 110 #endif /* FAST_IPSEC */ 111 112 #include <netinet6/ip6_fw.h> 113 114 #include <net/net_osdep.h> 115 116 #include <netinet6/ip6protosw.h> 117 118 static MALLOC_DEFINE(M_IPMOPTS, "ip6_moptions", "internet multicast options"); 119 120 struct ip6_exthdrs { 121 struct mbuf *ip6e_ip6; 122 struct mbuf *ip6e_hbh; 123 struct mbuf *ip6e_dest1; 124 struct mbuf *ip6e_rthdr; 125 struct mbuf *ip6e_dest2; 126 }; 127 128 static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **, 129 int, int)); 130 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 131 struct socket *, struct sockopt *)); 132 static int ip6_getpcbopt __P((struct ip6_pktopts *, int, struct sockopt *)); 133 static int ip6_setpktoption __P((int, u_char *, int, struct ip6_pktopts *, int, 134 int, int, int)); 135 136 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *)); 137 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **)); 138 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int)); 139 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 140 struct ip6_frag **)); 141 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t)); 142 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *)); 143 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *, 144 struct ifnet *, struct in6_addr *, u_long *, int *)); 145 146 147 /* 148 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 149 * header (with pri, len, nxt, hlim, src, dst). 150 * This function may modify ver and hlim only. 151 * The mbuf chain containing the packet will be freed. 152 * The mbuf opt, if present, will not be freed. 153 * 154 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 155 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 156 * which is rt_rmx.rmx_mtu. 157 */ 158 int 159 ip6_output(m0, opt, ro, flags, im6o, ifpp, inp) 160 struct mbuf *m0; 161 struct ip6_pktopts *opt; 162 struct route_in6 *ro; 163 int flags; 164 struct ip6_moptions *im6o; 165 struct ifnet **ifpp; /* XXX: just for statistics */ 166 struct inpcb *inp; 167 { 168 struct ip6_hdr *ip6, *mhip6; 169 struct ifnet *ifp, *origifp; 170 struct mbuf *m = m0; 171 int hlen, tlen, len, off; 172 struct route_in6 ip6route; 173 struct sockaddr_in6 *dst; 174 int error = 0; 175 struct in6_ifaddr *ia = NULL; 176 u_long mtu; 177 int alwaysfrag, dontfrag; 178 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 179 struct ip6_exthdrs exthdrs; 180 struct in6_addr finaldst; 181 struct route_in6 *ro_pmtu = NULL; 182 int hdrsplit = 0; 183 int needipsec = 0; 184 #if defined(IPSEC) || defined(FAST_IPSEC) 185 int needipsectun = 0; 186 struct secpolicy *sp = NULL; 187 #endif /*IPSEC || FAST_IPSEC*/ 188 189 ip6 = mtod(m, struct ip6_hdr *); 190 finaldst = ip6->ip6_dst; 191 192 #define MAKE_EXTHDR(hp, mp) \ 193 do { \ 194 if (hp) { \ 195 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 196 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 197 ((eh)->ip6e_len + 1) << 3); \ 198 if (error) \ 199 goto freehdrs; \ 200 } \ 201 } while (/*CONSTCOND*/ 0) 202 203 bzero(&exthdrs, sizeof(exthdrs)); 204 205 if (opt) { 206 /* Hop-by-Hop options header */ 207 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 208 /* Destination options header(1st part) */ 209 if (opt->ip6po_rthdr) { 210 /* 211 * Destination options header(1st part) 212 * This only makes sence with a routing header. 213 * See Section 9.2 of RFC 3542. 214 * Disabling this part just for MIP6 convenience is 215 * a bad idea. We need to think carefully about a 216 * way to make the advanced API coexist with MIP6 217 * options, which might automatically be inserted in 218 * the kernel. 219 */ 220 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 221 } 222 /* Routing header */ 223 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 224 /* Destination options header(2nd part) */ 225 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 226 } 227 228 #ifdef IPSEC 229 /* get a security policy for this packet */ 230 if (inp == NULL) 231 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 232 else 233 sp = ipsec6_getpolicybypcb(m, IPSEC_DIR_OUTBOUND, inp, &error); 234 235 if (sp == NULL) { 236 ipsec6stat.out_inval++; 237 goto freehdrs; 238 } 239 240 error = 0; 241 242 /* check policy */ 243 switch (sp->policy) { 244 case IPSEC_POLICY_DISCARD: 245 /* 246 * This packet is just discarded. 247 */ 248 ipsec6stat.out_polvio++; 249 goto freehdrs; 250 251 case IPSEC_POLICY_BYPASS: 252 case IPSEC_POLICY_NONE: 253 /* no need to do IPsec. */ 254 needipsec = 0; 255 break; 256 257 case IPSEC_POLICY_IPSEC: 258 if (sp->req == NULL) { 259 /* acquire a policy */ 260 error = key_spdacquire(sp); 261 goto freehdrs; 262 } 263 needipsec = 1; 264 break; 265 266 case IPSEC_POLICY_ENTRUST: 267 default: 268 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 269 } 270 #endif /* IPSEC */ 271 #ifdef FAST_IPSEC 272 /* get a security policy for this packet */ 273 if (inp == NULL) 274 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 275 else 276 sp = ipsec_getpolicybysock(m, IPSEC_DIR_OUTBOUND, inp, &error); 277 278 if (sp == NULL) { 279 newipsecstat.ips_out_inval++; 280 goto freehdrs; 281 } 282 283 error = 0; 284 285 /* check policy */ 286 switch (sp->policy) { 287 case IPSEC_POLICY_DISCARD: 288 /* 289 * This packet is just discarded. 290 */ 291 newipsecstat.ips_out_polvio++; 292 goto freehdrs; 293 294 case IPSEC_POLICY_BYPASS: 295 case IPSEC_POLICY_NONE: 296 /* no need to do IPsec. */ 297 needipsec = 0; 298 break; 299 300 case IPSEC_POLICY_IPSEC: 301 if (sp->req == NULL) { 302 /* acquire a policy */ 303 error = key_spdacquire(sp); 304 goto freehdrs; 305 } 306 needipsec = 1; 307 break; 308 309 case IPSEC_POLICY_ENTRUST: 310 default: 311 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 312 } 313 #endif /* FAST_IPSEC */ 314 315 /* 316 * Calculate the total length of the extension header chain. 317 * Keep the length of the unfragmentable part for fragmentation. 318 */ 319 optlen = 0; 320 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 321 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 322 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 323 unfragpartlen = optlen + sizeof(struct ip6_hdr); 324 /* NOTE: we don't add AH/ESP length here. do that later. */ 325 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 326 327 /* 328 * If we need IPsec, or there is at least one extension header, 329 * separate IP6 header from the payload. 330 */ 331 if ((needipsec || optlen) && !hdrsplit) { 332 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 333 m = NULL; 334 goto freehdrs; 335 } 336 m = exthdrs.ip6e_ip6; 337 hdrsplit++; 338 } 339 340 /* adjust pointer */ 341 ip6 = mtod(m, struct ip6_hdr *); 342 343 /* adjust mbuf packet header length */ 344 m->m_pkthdr.len += optlen; 345 plen = m->m_pkthdr.len - sizeof(*ip6); 346 347 /* If this is a jumbo payload, insert a jumbo payload option. */ 348 if (plen > IPV6_MAXPACKET) { 349 if (!hdrsplit) { 350 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 351 m = NULL; 352 goto freehdrs; 353 } 354 m = exthdrs.ip6e_ip6; 355 hdrsplit++; 356 } 357 /* adjust pointer */ 358 ip6 = mtod(m, struct ip6_hdr *); 359 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 360 goto freehdrs; 361 ip6->ip6_plen = 0; 362 } else 363 ip6->ip6_plen = htons(plen); 364 365 /* 366 * Concatenate headers and fill in next header fields. 367 * Here we have, on "m" 368 * IPv6 payload 369 * and we insert headers accordingly. Finally, we should be getting: 370 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 371 * 372 * during the header composing process, "m" points to IPv6 header. 373 * "mprev" points to an extension header prior to esp. 374 */ 375 { 376 u_char *nexthdrp = &ip6->ip6_nxt; 377 struct mbuf *mprev = m; 378 379 /* 380 * we treat dest2 specially. this makes IPsec processing 381 * much easier. the goal here is to make mprev point the 382 * mbuf prior to dest2. 383 * 384 * result: IPv6 dest2 payload 385 * m and mprev will point to IPv6 header. 386 */ 387 if (exthdrs.ip6e_dest2) { 388 if (!hdrsplit) 389 panic("assumption failed: hdr not split"); 390 exthdrs.ip6e_dest2->m_next = m->m_next; 391 m->m_next = exthdrs.ip6e_dest2; 392 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 393 ip6->ip6_nxt = IPPROTO_DSTOPTS; 394 } 395 396 #define MAKE_CHAIN(m, mp, p, i)\ 397 do {\ 398 if (m) {\ 399 if (!hdrsplit) \ 400 panic("assumption failed: hdr not split"); \ 401 *mtod((m), u_char *) = *(p);\ 402 *(p) = (i);\ 403 p = mtod((m), u_char *);\ 404 (m)->m_next = (mp)->m_next;\ 405 (mp)->m_next = (m);\ 406 (mp) = (m);\ 407 }\ 408 } while (/*CONSTCOND*/ 0) 409 /* 410 * result: IPv6 hbh dest1 rthdr dest2 payload 411 * m will point to IPv6 header. mprev will point to the 412 * extension header prior to dest2 (rthdr in the above case). 413 */ 414 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 415 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 416 IPPROTO_DSTOPTS); 417 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 418 IPPROTO_ROUTING); 419 420 #if defined(IPSEC) || defined(FAST_IPSEC) 421 if (!needipsec) 422 goto skip_ipsec2; 423 424 /* 425 * pointers after IPsec headers are not valid any more. 426 * other pointers need a great care too. 427 * (IPsec routines should not mangle mbufs prior to AH/ESP) 428 */ 429 exthdrs.ip6e_dest2 = NULL; 430 431 { 432 struct ip6_rthdr *rh = NULL; 433 int segleft_org = 0; 434 struct ipsec_output_state state; 435 436 if (exthdrs.ip6e_rthdr) { 437 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 438 segleft_org = rh->ip6r_segleft; 439 rh->ip6r_segleft = 0; 440 } 441 442 bzero(&state, sizeof(state)); 443 state.m = m; 444 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 445 &needipsectun); 446 m = state.m; 447 if (error) { 448 /* mbuf is already reclaimed in ipsec6_output_trans. */ 449 m = NULL; 450 switch (error) { 451 case EHOSTUNREACH: 452 case ENETUNREACH: 453 case EMSGSIZE: 454 case ENOBUFS: 455 case ENOMEM: 456 break; 457 default: 458 printf("ip6_output (ipsec): error code %d\n", error); 459 /* FALLTHROUGH */ 460 case ENOENT: 461 /* don't show these error codes to the user */ 462 error = 0; 463 break; 464 } 465 goto bad; 466 } 467 if (exthdrs.ip6e_rthdr) { 468 /* ah6_output doesn't modify mbuf chain */ 469 rh->ip6r_segleft = segleft_org; 470 } 471 } 472 skip_ipsec2:; 473 #endif 474 } 475 476 /* 477 * If there is a routing header, replace the destination address field 478 * with the first hop of the routing header. 479 */ 480 if (exthdrs.ip6e_rthdr) { 481 struct ip6_rthdr *rh = 482 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 483 struct ip6_rthdr *)); 484 struct ip6_rthdr0 *rh0; 485 struct in6_addr *addrs; 486 487 switch (rh->ip6r_type) { 488 case IPV6_RTHDR_TYPE_0: 489 rh0 = (struct ip6_rthdr0 *)rh; 490 addrs = (struct in6_addr *)(rh0 + 1); 491 492 ip6->ip6_dst = *addrs; 493 bcopy((caddr_t)(addrs + 1), (caddr_t)addrs, 494 sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1) 495 ); 496 *(addrs + rh0->ip6r0_segleft - 1) = finaldst; 497 break; 498 default: /* is it possible? */ 499 error = EINVAL; 500 goto bad; 501 } 502 } 503 504 /* Source address validation */ 505 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 506 (flags & IPV6_DADOUTPUT) == 0) { 507 error = EOPNOTSUPP; 508 ip6stat.ip6s_badscope++; 509 goto bad; 510 } 511 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 512 error = EOPNOTSUPP; 513 ip6stat.ip6s_badscope++; 514 goto bad; 515 } 516 517 ip6stat.ip6s_localout++; 518 519 /* 520 * Route packet. 521 */ 522 if (ro == 0) { 523 ro = &ip6route; 524 bzero((caddr_t)ro, sizeof(*ro)); 525 } 526 ro_pmtu = ro; 527 if (opt && opt->ip6po_rthdr) 528 ro = &opt->ip6po_route; 529 dst = (struct sockaddr_in6 *)&ro->ro_dst; 530 531 /* 532 * If there is a cached route, 533 * check that it is to the same destination 534 * and is still up. If not, free it and try again. 535 */ 536 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 537 dst->sin6_family != AF_INET6 || 538 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 539 RTFREE(ro->ro_rt); 540 ro->ro_rt = (struct rtentry *)0; 541 } 542 if (ro->ro_rt == 0) { 543 bzero(dst, sizeof(*dst)); 544 dst->sin6_family = AF_INET6; 545 dst->sin6_len = sizeof(struct sockaddr_in6); 546 dst->sin6_addr = ip6->ip6_dst; 547 } 548 549 /* 550 * if specified, try to fill in the traffic class field. 551 * do not override if a non-zero value is already set. 552 * we check the diffserv field and the ecn field separately. 553 */ 554 if (opt && opt->ip6po_tclass >= 0) { 555 int mask = 0; 556 557 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 558 mask |= 0xfc; 559 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 560 mask |= 0x03; 561 if (mask != 0) 562 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 563 } 564 565 /* fill in or override the hop limit field, if necessary. */ 566 if (opt && opt->ip6po_hlim != -1) 567 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 568 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 569 if (im6o != NULL) 570 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 571 else 572 ip6->ip6_hlim = ip6_defmcasthlim; 573 } 574 575 #if defined(IPSEC) || defined(FAST_IPSEC) 576 if (needipsec && needipsectun) { 577 struct ipsec_output_state state; 578 579 /* 580 * All the extension headers will become inaccessible 581 * (since they can be encrypted). 582 * Don't panic, we need no more updates to extension headers 583 * on inner IPv6 packet (since they are now encapsulated). 584 * 585 * IPv6 [ESP|AH] IPv6 [extension headers] payload 586 */ 587 bzero(&exthdrs, sizeof(exthdrs)); 588 exthdrs.ip6e_ip6 = m; 589 590 bzero(&state, sizeof(state)); 591 state.m = m; 592 state.ro = (struct route *)ro; 593 state.dst = (struct sockaddr *)dst; 594 595 error = ipsec6_output_tunnel(&state, sp, flags); 596 597 m = state.m; 598 ro = (struct route_in6 *)state.ro; 599 dst = (struct sockaddr_in6 *)state.dst; 600 if (error) { 601 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 602 m0 = m = NULL; 603 m = NULL; 604 switch (error) { 605 case EHOSTUNREACH: 606 case ENETUNREACH: 607 case EMSGSIZE: 608 case ENOBUFS: 609 case ENOMEM: 610 break; 611 default: 612 printf("ip6_output (ipsec): error code %d\n", error); 613 /* FALLTHROUGH */ 614 case ENOENT: 615 /* don't show these error codes to the user */ 616 error = 0; 617 break; 618 } 619 goto bad; 620 } 621 622 exthdrs.ip6e_ip6 = m; 623 } 624 #endif /* IPSEC */ 625 626 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 627 /* Unicast */ 628 629 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 630 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 631 /* xxx 632 * interface selection comes here 633 * if an interface is specified from an upper layer, 634 * ifp must point it. 635 */ 636 if (ro->ro_rt == 0) { 637 /* 638 * non-bsdi always clone routes, if parent is 639 * PRF_CLONING. 640 */ 641 rtalloc((struct route *)ro); 642 } 643 if (ro->ro_rt == 0) { 644 ip6stat.ip6s_noroute++; 645 error = EHOSTUNREACH; 646 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 647 goto bad; 648 } 649 /* XXX rt not locked */ 650 ia = ifatoia6(ro->ro_rt->rt_ifa); 651 ifp = ro->ro_rt->rt_ifp; 652 ro->ro_rt->rt_rmx.rmx_pksent++; 653 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 654 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 655 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 656 657 in6_ifstat_inc(ifp, ifs6_out_request); 658 659 /* 660 * Check if the outgoing interface conflicts with 661 * the interface specified by ifi6_ifindex (if specified). 662 * Note that loopback interface is always okay. 663 * (this may happen when we are sending a packet to one of 664 * our own addresses.) 665 */ 666 if (opt && opt->ip6po_pktinfo 667 && opt->ip6po_pktinfo->ipi6_ifindex) { 668 if (!(ifp->if_flags & IFF_LOOPBACK) 669 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 670 ip6stat.ip6s_noroute++; 671 in6_ifstat_inc(ifp, ifs6_out_discard); 672 error = EHOSTUNREACH; 673 goto bad; 674 } 675 } 676 677 if (opt && opt->ip6po_hlim != -1) 678 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 679 } else { 680 /* Multicast */ 681 struct in6_multi *in6m; 682 683 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 684 685 /* 686 * See if the caller provided any multicast options 687 */ 688 ifp = NULL; 689 if (im6o != NULL) { 690 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 691 if (im6o->im6o_multicast_ifp != NULL) 692 ifp = im6o->im6o_multicast_ifp; 693 } else 694 ip6->ip6_hlim = ip6_defmcasthlim; 695 696 /* 697 * See if the caller provided the outgoing interface 698 * as an ancillary data. 699 * Boundary check for ifindex is assumed to be already done. 700 */ 701 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 702 ifp = ifnet_byindex(opt->ip6po_pktinfo->ipi6_ifindex); 703 704 /* 705 * If the destination is a node-local scope multicast, 706 * the packet should be loop-backed only. 707 */ 708 if (IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 709 /* 710 * If the outgoing interface is already specified, 711 * it should be a loopback interface. 712 */ 713 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) { 714 ip6stat.ip6s_badscope++; 715 error = ENETUNREACH; /* XXX: better error? */ 716 /* XXX correct ifp? */ 717 in6_ifstat_inc(ifp, ifs6_out_discard); 718 goto bad; 719 } else { 720 ifp = &loif[0]; 721 } 722 } 723 724 if (opt && opt->ip6po_hlim != -1) 725 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 726 727 /* 728 * If caller did not provide an interface lookup a 729 * default in the routing table. This is either a 730 * default for the speicfied group (i.e. a host 731 * route), or a multicast default (a route for the 732 * ``net'' ff00::/8). 733 */ 734 if (ifp == NULL) { 735 if (ro->ro_rt == 0) 736 ro->ro_rt = rtalloc1((struct sockaddr *) 737 &ro->ro_dst, 0, 0UL); 738 else 739 RT_LOCK(ro->ro_rt); 740 if (ro->ro_rt == 0) { 741 ip6stat.ip6s_noroute++; 742 error = EHOSTUNREACH; 743 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 744 goto bad; 745 } 746 ia = ifatoia6(ro->ro_rt->rt_ifa); 747 ifp = ro->ro_rt->rt_ifp; 748 ro->ro_rt->rt_rmx.rmx_pksent++; 749 RT_UNLOCK(ro->ro_rt); 750 } 751 752 if ((flags & IPV6_FORWARDING) == 0) 753 in6_ifstat_inc(ifp, ifs6_out_request); 754 in6_ifstat_inc(ifp, ifs6_out_mcast); 755 756 /* 757 * Confirm that the outgoing interface supports multicast. 758 */ 759 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 760 ip6stat.ip6s_noroute++; 761 in6_ifstat_inc(ifp, ifs6_out_discard); 762 error = ENETUNREACH; 763 goto bad; 764 } 765 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 766 if (in6m != NULL && 767 (im6o == NULL || im6o->im6o_multicast_loop)) { 768 /* 769 * If we belong to the destination multicast group 770 * on the outgoing interface, and the caller did not 771 * forbid loopback, loop back a copy. 772 */ 773 ip6_mloopback(ifp, m, dst); 774 } else { 775 /* 776 * If we are acting as a multicast router, perform 777 * multicast forwarding as if the packet had just 778 * arrived on the interface to which we are about 779 * to send. The multicast forwarding function 780 * recursively calls this function, using the 781 * IPV6_FORWARDING flag to prevent infinite recursion. 782 * 783 * Multicasts that are looped back by ip6_mloopback(), 784 * above, will be forwarded by the ip6_input() routine, 785 * if necessary. 786 */ 787 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 788 if (ip6_mforward(ip6, ifp, m) != 0) { 789 m_freem(m); 790 goto done; 791 } 792 } 793 } 794 /* 795 * Multicasts with a hoplimit of zero may be looped back, 796 * above, but must not be transmitted on a network. 797 * Also, multicasts addressed to the loopback interface 798 * are not sent -- the above call to ip6_mloopback() will 799 * loop back a copy if this host actually belongs to the 800 * destination group on the loopback interface. 801 */ 802 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 803 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 804 m_freem(m); 805 goto done; 806 } 807 } 808 809 /* 810 * Fill the outgoing inteface to tell the upper layer 811 * to increment per-interface statistics. 812 */ 813 if (ifpp) 814 *ifpp = ifp; 815 816 /* Determine path MTU. */ 817 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 818 &alwaysfrag)) != 0) 819 goto bad; 820 821 /* 822 * The caller of this function may specify to use the minimum MTU 823 * in some cases. 824 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 825 * setting. The logic is a bit complicated; by default, unicast 826 * packets will follow path MTU while multicast packets will be sent at 827 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 828 * including unicast ones will be sent at the minimum MTU. Multicast 829 * packets will always be sent at the minimum MTU unless 830 * IP6PO_MINMTU_DISABLE is explicitly specified. 831 * See RFC 3542 for more details. 832 */ 833 if (mtu > IPV6_MMTU) { 834 if ((flags & IPV6_MINMTU)) 835 mtu = IPV6_MMTU; 836 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 837 mtu = IPV6_MMTU; 838 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 839 (opt == NULL || 840 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 841 mtu = IPV6_MMTU; 842 } 843 } 844 845 /* Fake scoped addresses */ 846 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 847 /* 848 * If source or destination address is a scoped address, and 849 * the packet is going to be sent to a loopback interface, 850 * we should keep the original interface. 851 */ 852 853 /* 854 * XXX: this is a very experimental and temporary solution. 855 * We eventually have sockaddr_in6 and use the sin6_scope_id 856 * field of the structure here. 857 * We rely on the consistency between two scope zone ids 858 * of source and destination, which should already be assured. 859 * Larger scopes than link will be supported in the future. 860 */ 861 origifp = NULL; 862 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 863 origifp = ifnet_byindex(ntohs(ip6->ip6_src.s6_addr16[1])); 864 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 865 origifp = ifnet_byindex(ntohs(ip6->ip6_dst.s6_addr16[1])); 866 /* 867 * XXX: origifp can be NULL even in those two cases above. 868 * For example, if we remove the (only) link-local address 869 * from the loopback interface, and try to send a link-local 870 * address without link-id information. Then the source 871 * address is ::1, and the destination address is the 872 * link-local address with its s6_addr16[1] being zero. 873 * What is worse, if the packet goes to the loopback interface 874 * by a default rejected route, the null pointer would be 875 * passed to looutput, and the kernel would hang. 876 * The following last resort would prevent such disaster. 877 */ 878 if (origifp == NULL) 879 origifp = ifp; 880 } 881 else 882 origifp = ifp; 883 /* 884 * clear embedded scope identifiers if necessary. 885 * in6_clearscope will touch the addresses only when necessary. 886 */ 887 in6_clearscope(&ip6->ip6_src); 888 in6_clearscope(&ip6->ip6_dst); 889 890 /* 891 * Check with the firewall... 892 */ 893 if (ip6_fw_enable && ip6_fw_chk_ptr) { 894 u_short port = 0; 895 m->m_pkthdr.rcvif = NULL; /* XXX */ 896 /* If ipfw says divert, we have to just drop packet */ 897 if ((*ip6_fw_chk_ptr)(&ip6, ifp, &port, &m)) { 898 m_freem(m); 899 goto done; 900 } 901 if (!m) { 902 error = EACCES; 903 goto done; 904 } 905 } 906 907 /* 908 * If the outgoing packet contains a hop-by-hop options header, 909 * it must be examined and processed even by the source node. 910 * (RFC 2460, section 4.) 911 */ 912 if (exthdrs.ip6e_hbh) { 913 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 914 u_int32_t dummy1; /* XXX unused */ 915 u_int32_t dummy2; /* XXX unused */ 916 917 #ifdef DIAGNOSTIC 918 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 919 panic("ip6e_hbh is not continuous"); 920 #endif 921 /* 922 * XXX: if we have to send an ICMPv6 error to the sender, 923 * we need the M_LOOP flag since icmp6_error() expects 924 * the IPv6 and the hop-by-hop options header are 925 * continuous unless the flag is set. 926 */ 927 m->m_flags |= M_LOOP; 928 m->m_pkthdr.rcvif = ifp; 929 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 930 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 931 &dummy1, &dummy2) < 0) { 932 /* m was already freed at this point */ 933 error = EINVAL;/* better error? */ 934 goto done; 935 } 936 m->m_flags &= ~M_LOOP; /* XXX */ 937 m->m_pkthdr.rcvif = NULL; 938 } 939 940 #ifdef PFIL_HOOKS 941 /* 942 * Run through list of hooks for output packets. 943 */ 944 error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT); 945 if (error != 0 || m == NULL) 946 goto done; 947 ip6 = mtod(m, struct ip6_hdr *); 948 #endif /* PFIL_HOOKS */ 949 950 /* 951 * Send the packet to the outgoing interface. 952 * If necessary, do IPv6 fragmentation before sending. 953 * 954 * the logic here is rather complex: 955 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 956 * 1-a: send as is if tlen <= path mtu 957 * 1-b: fragment if tlen > path mtu 958 * 959 * 2: if user asks us not to fragment (dontfrag == 1) 960 * 2-a: send as is if tlen <= interface mtu 961 * 2-b: error if tlen > interface mtu 962 * 963 * 3: if we always need to attach fragment header (alwaysfrag == 1) 964 * always fragment 965 * 966 * 4: if dontfrag == 1 && alwaysfrag == 1 967 * error, as we cannot handle this conflicting request 968 */ 969 tlen = m->m_pkthdr.len; 970 971 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 972 dontfrag = 1; 973 else 974 dontfrag = 0; 975 if (dontfrag && alwaysfrag) { /* case 4 */ 976 /* conflicting request - can't transmit */ 977 error = EMSGSIZE; 978 goto bad; 979 } 980 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */ 981 /* 982 * Even if the DONTFRAG option is specified, we cannot send the 983 * packet when the data length is larger than the MTU of the 984 * outgoing interface. 985 * Notify the error by sending IPV6_PATHMTU ancillary data as 986 * well as returning an error code (the latter is not described 987 * in the API spec.) 988 */ 989 u_int32_t mtu32; 990 struct ip6ctlparam ip6cp; 991 992 mtu32 = (u_int32_t)mtu; 993 bzero(&ip6cp, sizeof(ip6cp)); 994 ip6cp.ip6c_cmdarg = (void *)&mtu32; 995 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 996 (void *)&ip6cp); 997 998 error = EMSGSIZE; 999 goto bad; 1000 } 1001 1002 /* 1003 * transmit packet without fragmentation 1004 */ 1005 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 1006 struct in6_ifaddr *ia6; 1007 1008 ip6 = mtod(m, struct ip6_hdr *); 1009 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1010 if (ia6) { 1011 /* Record statistics for this interface address. */ 1012 ia6->ia_ifa.if_opackets++; 1013 ia6->ia_ifa.if_obytes += m->m_pkthdr.len; 1014 } 1015 #ifdef IPSEC 1016 /* clean ipsec history once it goes out of the node */ 1017 ipsec_delaux(m); 1018 #endif 1019 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1020 goto done; 1021 } 1022 1023 /* 1024 * try to fragment the packet. case 1-b and 3 1025 */ 1026 if (mtu < IPV6_MMTU) { 1027 /* path MTU cannot be less than IPV6_MMTU */ 1028 error = EMSGSIZE; 1029 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1030 goto bad; 1031 } else if (ip6->ip6_plen == 0) { 1032 /* jumbo payload cannot be fragmented */ 1033 error = EMSGSIZE; 1034 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1035 goto bad; 1036 } else { 1037 struct mbuf **mnext, *m_frgpart; 1038 struct ip6_frag *ip6f; 1039 #ifdef RANDOM_IP_ID 1040 u_int32_t id = htonl(ip6_randomid()); 1041 #else 1042 u_int32_t id = htonl(ip6_id++); 1043 #endif 1044 u_char nextproto; 1045 struct ip6ctlparam ip6cp; 1046 u_int32_t mtu32; 1047 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len; 1048 1049 /* 1050 * Too large for the destination or interface; 1051 * fragment if possible. 1052 * Must be able to put at least 8 bytes per fragment. 1053 */ 1054 hlen = unfragpartlen; 1055 if (mtu > IPV6_MAXPACKET) 1056 mtu = IPV6_MAXPACKET; 1057 1058 /* Notify a proper path MTU to applications. */ 1059 mtu32 = (u_int32_t)mtu; 1060 bzero(&ip6cp, sizeof(ip6cp)); 1061 ip6cp.ip6c_cmdarg = (void *)&mtu32; 1062 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 1063 (void *)&ip6cp); 1064 1065 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 1066 if (len < 8) { 1067 error = EMSGSIZE; 1068 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1069 goto bad; 1070 } 1071 1072 /* 1073 * Verify that we have any chance at all of being able to queue 1074 * the packet or packet fragments 1075 */ 1076 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen) 1077 < tlen /* - hlen */)) { 1078 error = ENOBUFS; 1079 ip6stat.ip6s_odropped++; 1080 goto bad; 1081 } 1082 1083 mnext = &m->m_nextpkt; 1084 1085 /* 1086 * Change the next header field of the last header in the 1087 * unfragmentable part. 1088 */ 1089 if (exthdrs.ip6e_rthdr) { 1090 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1091 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1092 } else if (exthdrs.ip6e_dest1) { 1093 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1094 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1095 } else if (exthdrs.ip6e_hbh) { 1096 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1097 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1098 } else { 1099 nextproto = ip6->ip6_nxt; 1100 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1101 } 1102 1103 /* 1104 * Loop through length of segment after first fragment, 1105 * make new header and copy data of each part and link onto 1106 * chain. 1107 */ 1108 m0 = m; 1109 for (off = hlen; off < tlen; off += len) { 1110 MGETHDR(m, M_DONTWAIT, MT_HEADER); 1111 if (!m) { 1112 error = ENOBUFS; 1113 ip6stat.ip6s_odropped++; 1114 goto sendorfree; 1115 } 1116 m->m_pkthdr.rcvif = NULL; 1117 m->m_flags = m0->m_flags & M_COPYFLAGS; 1118 *mnext = m; 1119 mnext = &m->m_nextpkt; 1120 m->m_data += max_linkhdr; 1121 mhip6 = mtod(m, struct ip6_hdr *); 1122 *mhip6 = *ip6; 1123 m->m_len = sizeof(*mhip6); 1124 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1125 if (error) { 1126 ip6stat.ip6s_odropped++; 1127 goto sendorfree; 1128 } 1129 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 1130 if (off + len >= tlen) 1131 len = tlen - off; 1132 else 1133 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1134 mhip6->ip6_plen = htons((u_short)(len + hlen + 1135 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1136 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1137 error = ENOBUFS; 1138 ip6stat.ip6s_odropped++; 1139 goto sendorfree; 1140 } 1141 m_cat(m, m_frgpart); 1142 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1143 m->m_pkthdr.rcvif = (struct ifnet *)0; 1144 ip6f->ip6f_reserved = 0; 1145 ip6f->ip6f_ident = id; 1146 ip6f->ip6f_nxt = nextproto; 1147 ip6stat.ip6s_ofragments++; 1148 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1149 } 1150 1151 in6_ifstat_inc(ifp, ifs6_out_fragok); 1152 } 1153 1154 /* 1155 * Remove leading garbages. 1156 */ 1157 sendorfree: 1158 m = m0->m_nextpkt; 1159 m0->m_nextpkt = 0; 1160 m_freem(m0); 1161 for (m0 = m; m; m = m0) { 1162 m0 = m->m_nextpkt; 1163 m->m_nextpkt = 0; 1164 if (error == 0) { 1165 /* Record statistics for this interface address. */ 1166 if (ia) { 1167 ia->ia_ifa.if_opackets++; 1168 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 1169 } 1170 #ifdef IPSEC 1171 /* clean ipsec history once it goes out of the node */ 1172 ipsec_delaux(m); 1173 #endif 1174 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1175 } else 1176 m_freem(m); 1177 } 1178 1179 if (error == 0) 1180 ip6stat.ip6s_fragmented++; 1181 1182 done: 1183 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1184 RTFREE(ro->ro_rt); 1185 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1186 RTFREE(ro_pmtu->ro_rt); 1187 } 1188 1189 #ifdef IPSEC 1190 if (sp != NULL) 1191 key_freesp(sp); 1192 #endif /* IPSEC */ 1193 #ifdef FAST_IPSEC 1194 if (sp != NULL) 1195 KEY_FREESP(&sp); 1196 #endif /* FAST_IPSEC */ 1197 1198 return (error); 1199 1200 freehdrs: 1201 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1202 m_freem(exthdrs.ip6e_dest1); 1203 m_freem(exthdrs.ip6e_rthdr); 1204 m_freem(exthdrs.ip6e_dest2); 1205 /* FALLTHROUGH */ 1206 bad: 1207 m_freem(m); 1208 goto done; 1209 } 1210 1211 static int 1212 ip6_copyexthdr(mp, hdr, hlen) 1213 struct mbuf **mp; 1214 caddr_t hdr; 1215 int hlen; 1216 { 1217 struct mbuf *m; 1218 1219 if (hlen > MCLBYTES) 1220 return (ENOBUFS); /* XXX */ 1221 1222 MGET(m, M_DONTWAIT, MT_DATA); 1223 if (!m) 1224 return (ENOBUFS); 1225 1226 if (hlen > MLEN) { 1227 MCLGET(m, M_DONTWAIT); 1228 if ((m->m_flags & M_EXT) == 0) { 1229 m_free(m); 1230 return (ENOBUFS); 1231 } 1232 } 1233 m->m_len = hlen; 1234 if (hdr) 1235 bcopy(hdr, mtod(m, caddr_t), hlen); 1236 1237 *mp = m; 1238 return (0); 1239 } 1240 1241 /* 1242 * Insert jumbo payload option. 1243 */ 1244 static int 1245 ip6_insert_jumboopt(exthdrs, plen) 1246 struct ip6_exthdrs *exthdrs; 1247 u_int32_t plen; 1248 { 1249 struct mbuf *mopt; 1250 u_char *optbuf; 1251 u_int32_t v; 1252 1253 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1254 1255 /* 1256 * If there is no hop-by-hop options header, allocate new one. 1257 * If there is one but it doesn't have enough space to store the 1258 * jumbo payload option, allocate a cluster to store the whole options. 1259 * Otherwise, use it to store the options. 1260 */ 1261 if (exthdrs->ip6e_hbh == 0) { 1262 MGET(mopt, M_DONTWAIT, MT_DATA); 1263 if (mopt == 0) 1264 return (ENOBUFS); 1265 mopt->m_len = JUMBOOPTLEN; 1266 optbuf = mtod(mopt, u_char *); 1267 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1268 exthdrs->ip6e_hbh = mopt; 1269 } else { 1270 struct ip6_hbh *hbh; 1271 1272 mopt = exthdrs->ip6e_hbh; 1273 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1274 /* 1275 * XXX assumption: 1276 * - exthdrs->ip6e_hbh is not referenced from places 1277 * other than exthdrs. 1278 * - exthdrs->ip6e_hbh is not an mbuf chain. 1279 */ 1280 int oldoptlen = mopt->m_len; 1281 struct mbuf *n; 1282 1283 /* 1284 * XXX: give up if the whole (new) hbh header does 1285 * not fit even in an mbuf cluster. 1286 */ 1287 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1288 return (ENOBUFS); 1289 1290 /* 1291 * As a consequence, we must always prepare a cluster 1292 * at this point. 1293 */ 1294 MGET(n, M_DONTWAIT, MT_DATA); 1295 if (n) { 1296 MCLGET(n, M_DONTWAIT); 1297 if ((n->m_flags & M_EXT) == 0) { 1298 m_freem(n); 1299 n = NULL; 1300 } 1301 } 1302 if (!n) 1303 return (ENOBUFS); 1304 n->m_len = oldoptlen + JUMBOOPTLEN; 1305 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1306 oldoptlen); 1307 optbuf = mtod(n, caddr_t) + oldoptlen; 1308 m_freem(mopt); 1309 mopt = exthdrs->ip6e_hbh = n; 1310 } else { 1311 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1312 mopt->m_len += JUMBOOPTLEN; 1313 } 1314 optbuf[0] = IP6OPT_PADN; 1315 optbuf[1] = 1; 1316 1317 /* 1318 * Adjust the header length according to the pad and 1319 * the jumbo payload option. 1320 */ 1321 hbh = mtod(mopt, struct ip6_hbh *); 1322 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1323 } 1324 1325 /* fill in the option. */ 1326 optbuf[2] = IP6OPT_JUMBO; 1327 optbuf[3] = 4; 1328 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1329 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1330 1331 /* finally, adjust the packet header length */ 1332 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1333 1334 return (0); 1335 #undef JUMBOOPTLEN 1336 } 1337 1338 /* 1339 * Insert fragment header and copy unfragmentable header portions. 1340 */ 1341 static int 1342 ip6_insertfraghdr(m0, m, hlen, frghdrp) 1343 struct mbuf *m0, *m; 1344 int hlen; 1345 struct ip6_frag **frghdrp; 1346 { 1347 struct mbuf *n, *mlast; 1348 1349 if (hlen > sizeof(struct ip6_hdr)) { 1350 n = m_copym(m0, sizeof(struct ip6_hdr), 1351 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1352 if (n == 0) 1353 return (ENOBUFS); 1354 m->m_next = n; 1355 } else 1356 n = m; 1357 1358 /* Search for the last mbuf of unfragmentable part. */ 1359 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1360 ; 1361 1362 if ((mlast->m_flags & M_EXT) == 0 && 1363 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1364 /* use the trailing space of the last mbuf for the fragment hdr */ 1365 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1366 mlast->m_len); 1367 mlast->m_len += sizeof(struct ip6_frag); 1368 m->m_pkthdr.len += sizeof(struct ip6_frag); 1369 } else { 1370 /* allocate a new mbuf for the fragment header */ 1371 struct mbuf *mfrg; 1372 1373 MGET(mfrg, M_DONTWAIT, MT_DATA); 1374 if (mfrg == 0) 1375 return (ENOBUFS); 1376 mfrg->m_len = sizeof(struct ip6_frag); 1377 *frghdrp = mtod(mfrg, struct ip6_frag *); 1378 mlast->m_next = mfrg; 1379 } 1380 1381 return (0); 1382 } 1383 1384 static int 1385 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup, alwaysfragp) 1386 struct route_in6 *ro_pmtu, *ro; 1387 struct ifnet *ifp; 1388 struct in6_addr *dst; 1389 u_long *mtup; 1390 int *alwaysfragp; 1391 { 1392 u_int32_t mtu = 0; 1393 int alwaysfrag = 0; 1394 int error = 0; 1395 1396 if (ro_pmtu != ro) { 1397 /* The first hop and the final destination may differ. */ 1398 struct sockaddr_in6 *sa6_dst = 1399 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1400 if (ro_pmtu->ro_rt && 1401 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1402 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1403 RTFREE(ro_pmtu->ro_rt); 1404 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1405 } 1406 if (ro_pmtu->ro_rt == NULL) { 1407 bzero(sa6_dst, sizeof(*sa6_dst)); 1408 sa6_dst->sin6_family = AF_INET6; 1409 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1410 sa6_dst->sin6_addr = *dst; 1411 1412 rtalloc((struct route *)ro_pmtu); 1413 } 1414 } 1415 if (ro_pmtu->ro_rt) { 1416 u_int32_t ifmtu; 1417 struct in_conninfo inc; 1418 1419 bzero(&inc, sizeof(inc)); 1420 inc.inc_flags = 1; /* IPv6 */ 1421 inc.inc6_faddr = *dst; 1422 1423 if (ifp == NULL) 1424 ifp = ro_pmtu->ro_rt->rt_ifp; 1425 ifmtu = IN6_LINKMTU(ifp); 1426 mtu = tcp_hc_getmtu(&inc); 1427 if (mtu) 1428 mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu); 1429 else 1430 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 1431 if (mtu == 0) 1432 mtu = ifmtu; 1433 else if (mtu < IPV6_MMTU) { 1434 /* 1435 * RFC2460 section 5, last paragraph: 1436 * if we record ICMPv6 too big message with 1437 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1438 * or smaller, with framgent header attached. 1439 * (fragment header is needed regardless from the 1440 * packet size, for translators to identify packets) 1441 */ 1442 alwaysfrag = 1; 1443 mtu = IPV6_MMTU; 1444 } else if (mtu > ifmtu) { 1445 /* 1446 * The MTU on the route is larger than the MTU on 1447 * the interface! This shouldn't happen, unless the 1448 * MTU of the interface has been changed after the 1449 * interface was brought up. Change the MTU in the 1450 * route to match the interface MTU (as long as the 1451 * field isn't locked). 1452 */ 1453 mtu = ifmtu; 1454 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; 1455 } 1456 } else if (ifp) { 1457 mtu = IN6_LINKMTU(ifp); 1458 } else 1459 error = EHOSTUNREACH; /* XXX */ 1460 1461 *mtup = mtu; 1462 if (alwaysfragp) 1463 *alwaysfragp = alwaysfrag; 1464 return (error); 1465 } 1466 1467 /* 1468 * IP6 socket option processing. 1469 */ 1470 int 1471 ip6_ctloutput(so, sopt) 1472 struct socket *so; 1473 struct sockopt *sopt; 1474 { 1475 int privileged, optdatalen, uproto; 1476 void *optdata; 1477 struct inpcb *in6p = sotoinpcb(so); 1478 int error, optval; 1479 int level, op, optname; 1480 int optlen; 1481 struct thread *td; 1482 1483 if (sopt) { 1484 level = sopt->sopt_level; 1485 op = sopt->sopt_dir; 1486 optname = sopt->sopt_name; 1487 optlen = sopt->sopt_valsize; 1488 td = sopt->sopt_td; 1489 } else { 1490 panic("ip6_ctloutput: arg soopt is NULL"); 1491 } 1492 error = optval = 0; 1493 1494 privileged = (td == 0 || suser(td)) ? 0 : 1; 1495 uproto = (int)so->so_proto->pr_protocol; 1496 1497 if (level == IPPROTO_IPV6) { 1498 switch (op) { 1499 1500 case SOPT_SET: 1501 switch (optname) { 1502 case IPV6_2292PKTOPTIONS: 1503 #ifdef IPV6_PKTOPTIONS 1504 case IPV6_PKTOPTIONS: 1505 #endif 1506 { 1507 struct mbuf *m; 1508 1509 error = soopt_getm(sopt, &m); /* XXX */ 1510 if (error != 0) 1511 break; 1512 error = soopt_mcopyin(sopt, m); /* XXX */ 1513 if (error != 0) 1514 break; 1515 error = ip6_pcbopts(&in6p->in6p_outputopts, 1516 m, so, sopt); 1517 m_freem(m); /* XXX */ 1518 break; 1519 } 1520 1521 /* 1522 * Use of some Hop-by-Hop options or some 1523 * Destination options, might require special 1524 * privilege. That is, normal applications 1525 * (without special privilege) might be forbidden 1526 * from setting certain options in outgoing packets, 1527 * and might never see certain options in received 1528 * packets. [RFC 2292 Section 6] 1529 * KAME specific note: 1530 * KAME prevents non-privileged users from sending or 1531 * receiving ANY hbh/dst options in order to avoid 1532 * overhead of parsing options in the kernel. 1533 */ 1534 case IPV6_RECVHOPOPTS: 1535 case IPV6_RECVDSTOPTS: 1536 case IPV6_RECVRTHDRDSTOPTS: 1537 if (!privileged) { 1538 error = EPERM; 1539 break; 1540 } 1541 /* FALLTHROUGH */ 1542 case IPV6_UNICAST_HOPS: 1543 case IPV6_HOPLIMIT: 1544 case IPV6_FAITH: 1545 1546 case IPV6_RECVPKTINFO: 1547 case IPV6_RECVHOPLIMIT: 1548 case IPV6_RECVRTHDR: 1549 case IPV6_RECVPATHMTU: 1550 case IPV6_RECVTCLASS: 1551 case IPV6_V6ONLY: 1552 case IPV6_AUTOFLOWLABEL: 1553 if (optlen != sizeof(int)) { 1554 error = EINVAL; 1555 break; 1556 } 1557 error = sooptcopyin(sopt, &optval, 1558 sizeof optval, sizeof optval); 1559 if (error) 1560 break; 1561 switch (optname) { 1562 1563 case IPV6_UNICAST_HOPS: 1564 if (optval < -1 || optval >= 256) 1565 error = EINVAL; 1566 else { 1567 /* -1 = kernel default */ 1568 in6p->in6p_hops = optval; 1569 if ((in6p->in6p_vflag & 1570 INP_IPV4) != 0) 1571 in6p->inp_ip_ttl = optval; 1572 } 1573 break; 1574 #define OPTSET(bit) \ 1575 do { \ 1576 if (optval) \ 1577 in6p->in6p_flags |= (bit); \ 1578 else \ 1579 in6p->in6p_flags &= ~(bit); \ 1580 } while (/*CONSTCOND*/ 0) 1581 #define OPTSET2292(bit) \ 1582 do { \ 1583 in6p->in6p_flags |= IN6P_RFC2292; \ 1584 if (optval) \ 1585 in6p->in6p_flags |= (bit); \ 1586 else \ 1587 in6p->in6p_flags &= ~(bit); \ 1588 } while (/*CONSTCOND*/ 0) 1589 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1590 1591 case IPV6_RECVPKTINFO: 1592 /* cannot mix with RFC2292 */ 1593 if (OPTBIT(IN6P_RFC2292)) { 1594 error = EINVAL; 1595 break; 1596 } 1597 OPTSET(IN6P_PKTINFO); 1598 break; 1599 1600 case IPV6_HOPLIMIT: 1601 { 1602 struct ip6_pktopts **optp; 1603 1604 /* cannot mix with RFC2292 */ 1605 if (OPTBIT(IN6P_RFC2292)) { 1606 error = EINVAL; 1607 break; 1608 } 1609 optp = &in6p->in6p_outputopts; 1610 error = ip6_pcbopt(IPV6_HOPLIMIT, 1611 (u_char *)&optval, 1612 sizeof(optval), 1613 optp, 1614 privileged, uproto); 1615 break; 1616 } 1617 1618 case IPV6_RECVHOPLIMIT: 1619 /* cannot mix with RFC2292 */ 1620 if (OPTBIT(IN6P_RFC2292)) { 1621 error = EINVAL; 1622 break; 1623 } 1624 OPTSET(IN6P_HOPLIMIT); 1625 break; 1626 1627 case IPV6_RECVHOPOPTS: 1628 /* cannot mix with RFC2292 */ 1629 if (OPTBIT(IN6P_RFC2292)) { 1630 error = EINVAL; 1631 break; 1632 } 1633 OPTSET(IN6P_HOPOPTS); 1634 break; 1635 1636 case IPV6_RECVDSTOPTS: 1637 /* cannot mix with RFC2292 */ 1638 if (OPTBIT(IN6P_RFC2292)) { 1639 error = EINVAL; 1640 break; 1641 } 1642 OPTSET(IN6P_DSTOPTS); 1643 break; 1644 1645 case IPV6_RECVRTHDRDSTOPTS: 1646 /* cannot mix with RFC2292 */ 1647 if (OPTBIT(IN6P_RFC2292)) { 1648 error = EINVAL; 1649 break; 1650 } 1651 OPTSET(IN6P_RTHDRDSTOPTS); 1652 break; 1653 1654 case IPV6_RECVRTHDR: 1655 /* cannot mix with RFC2292 */ 1656 if (OPTBIT(IN6P_RFC2292)) { 1657 error = EINVAL; 1658 break; 1659 } 1660 OPTSET(IN6P_RTHDR); 1661 break; 1662 1663 case IPV6_FAITH: 1664 OPTSET(IN6P_FAITH); 1665 break; 1666 1667 case IPV6_RECVPATHMTU: 1668 /* 1669 * We ignore this option for TCP 1670 * sockets. 1671 * (rfc2292bis leaves this case 1672 * unspecified.) 1673 */ 1674 if (uproto != IPPROTO_TCP) 1675 OPTSET(IN6P_MTU); 1676 break; 1677 1678 case IPV6_V6ONLY: 1679 /* 1680 * make setsockopt(IPV6_V6ONLY) 1681 * available only prior to bind(2). 1682 * see ipng mailing list, Jun 22 2001. 1683 */ 1684 if (in6p->in6p_lport || 1685 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1686 error = EINVAL; 1687 break; 1688 } 1689 OPTSET(IN6P_IPV6_V6ONLY); 1690 if (optval) 1691 in6p->in6p_vflag &= ~INP_IPV4; 1692 else 1693 in6p->in6p_vflag |= INP_IPV4; 1694 break; 1695 case IPV6_RECVTCLASS: 1696 /* cannot mix with RFC2292 XXX */ 1697 if (OPTBIT(IN6P_RFC2292)) { 1698 error = EINVAL; 1699 break; 1700 } 1701 OPTSET(IN6P_TCLASS); 1702 break; 1703 case IPV6_AUTOFLOWLABEL: 1704 OPTSET(IN6P_AUTOFLOWLABEL); 1705 break; 1706 1707 } 1708 break; 1709 1710 case IPV6_TCLASS: 1711 case IPV6_DONTFRAG: 1712 case IPV6_USE_MIN_MTU: 1713 case IPV6_PREFER_TEMPADDR: 1714 if (optlen != sizeof(optval)) { 1715 error = EINVAL; 1716 break; 1717 } 1718 error = sooptcopyin(sopt, &optval, 1719 sizeof optval, sizeof optval); 1720 if (error) 1721 break; 1722 { 1723 struct ip6_pktopts **optp; 1724 optp = &in6p->in6p_outputopts; 1725 error = ip6_pcbopt(optname, 1726 (u_char *)&optval, 1727 sizeof(optval), 1728 optp, 1729 privileged, uproto); 1730 break; 1731 } 1732 1733 case IPV6_2292PKTINFO: 1734 case IPV6_2292HOPLIMIT: 1735 case IPV6_2292HOPOPTS: 1736 case IPV6_2292DSTOPTS: 1737 case IPV6_2292RTHDR: 1738 /* RFC 2292 */ 1739 if (optlen != sizeof(int)) { 1740 error = EINVAL; 1741 break; 1742 } 1743 error = sooptcopyin(sopt, &optval, 1744 sizeof optval, sizeof optval); 1745 if (error) 1746 break; 1747 switch (optname) { 1748 case IPV6_2292PKTINFO: 1749 OPTSET2292(IN6P_PKTINFO); 1750 break; 1751 case IPV6_2292HOPLIMIT: 1752 OPTSET2292(IN6P_HOPLIMIT); 1753 break; 1754 case IPV6_2292HOPOPTS: 1755 /* 1756 * Check super-user privilege. 1757 * See comments for IPV6_RECVHOPOPTS. 1758 */ 1759 if (!privileged) 1760 return (EPERM); 1761 OPTSET2292(IN6P_HOPOPTS); 1762 break; 1763 case IPV6_2292DSTOPTS: 1764 if (!privileged) 1765 return (EPERM); 1766 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1767 break; 1768 case IPV6_2292RTHDR: 1769 OPTSET2292(IN6P_RTHDR); 1770 break; 1771 } 1772 break; 1773 case IPV6_PKTINFO: 1774 case IPV6_HOPOPTS: 1775 case IPV6_RTHDR: 1776 case IPV6_DSTOPTS: 1777 case IPV6_RTHDRDSTOPTS: 1778 case IPV6_NEXTHOP: 1779 { 1780 /* new advanced API (2292bis) */ 1781 u_char *optbuf; 1782 int optlen; 1783 struct ip6_pktopts **optp; 1784 1785 /* cannot mix with RFC2292 */ 1786 if (OPTBIT(IN6P_RFC2292)) { 1787 error = EINVAL; 1788 break; 1789 } 1790 1791 switch (optname) { 1792 case IPV6_HOPOPTS: 1793 case IPV6_DSTOPTS: 1794 case IPV6_RTHDRDSTOPTS: 1795 case IPV6_NEXTHOP: 1796 if (!privileged) 1797 error = EPERM; 1798 break; 1799 } 1800 if (error) 1801 break; 1802 1803 switch (optname) { 1804 case IPV6_PKTINFO: 1805 optlen = sizeof(struct in6_pktinfo); 1806 break; 1807 case IPV6_NEXTHOP: 1808 optlen = SOCK_MAXADDRLEN; 1809 break; 1810 default: 1811 optlen = IPV6_MAXOPTHDR; 1812 break; 1813 } 1814 if (sopt->sopt_valsize > optlen) { 1815 error = EINVAL; 1816 break; 1817 } 1818 1819 optlen = sopt->sopt_valsize; 1820 optbuf = malloc(optlen, M_TEMP, M_WAITOK); 1821 error = sooptcopyin(sopt, optbuf, optlen, 1822 optlen); 1823 if (error) { 1824 free(optbuf, M_TEMP); 1825 break; 1826 } 1827 1828 optp = &in6p->in6p_outputopts; 1829 error = ip6_pcbopt(optname, 1830 optbuf, optlen, 1831 optp, privileged, uproto); 1832 free(optbuf, M_TEMP); 1833 break; 1834 } 1835 #undef OPTSET 1836 1837 case IPV6_MULTICAST_IF: 1838 case IPV6_MULTICAST_HOPS: 1839 case IPV6_MULTICAST_LOOP: 1840 case IPV6_JOIN_GROUP: 1841 case IPV6_LEAVE_GROUP: 1842 { 1843 if (sopt->sopt_valsize > MLEN) { 1844 error = EMSGSIZE; 1845 break; 1846 } 1847 /* XXX */ 1848 } 1849 /* FALLTHROUGH */ 1850 { 1851 struct mbuf *m; 1852 1853 if (sopt->sopt_valsize > MCLBYTES) { 1854 error = EMSGSIZE; 1855 break; 1856 } 1857 /* XXX */ 1858 MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_HEADER); 1859 if (m == 0) { 1860 error = ENOBUFS; 1861 break; 1862 } 1863 if (sopt->sopt_valsize > MLEN) { 1864 MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT); 1865 if ((m->m_flags & M_EXT) == 0) { 1866 m_free(m); 1867 error = ENOBUFS; 1868 break; 1869 } 1870 } 1871 m->m_len = sopt->sopt_valsize; 1872 error = sooptcopyin(sopt, mtod(m, char *), 1873 m->m_len, m->m_len); 1874 if (error) { 1875 (void)m_free(m); 1876 break; 1877 } 1878 error = ip6_setmoptions(sopt->sopt_name, 1879 &in6p->in6p_moptions, 1880 m); 1881 (void)m_free(m); 1882 } 1883 break; 1884 1885 case IPV6_PORTRANGE: 1886 error = sooptcopyin(sopt, &optval, 1887 sizeof optval, sizeof optval); 1888 if (error) 1889 break; 1890 1891 switch (optval) { 1892 case IPV6_PORTRANGE_DEFAULT: 1893 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1894 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1895 break; 1896 1897 case IPV6_PORTRANGE_HIGH: 1898 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1899 in6p->in6p_flags |= IN6P_HIGHPORT; 1900 break; 1901 1902 case IPV6_PORTRANGE_LOW: 1903 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1904 in6p->in6p_flags |= IN6P_LOWPORT; 1905 break; 1906 1907 default: 1908 error = EINVAL; 1909 break; 1910 } 1911 break; 1912 1913 #if defined(IPSEC) || defined(FAST_IPSEC) 1914 case IPV6_IPSEC_POLICY: 1915 { 1916 caddr_t req = NULL; 1917 size_t len = 0; 1918 struct mbuf *m; 1919 1920 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1921 break; 1922 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1923 break; 1924 if (m) { 1925 req = mtod(m, caddr_t); 1926 len = m->m_len; 1927 } 1928 error = ipsec6_set_policy(in6p, optname, req, 1929 len, privileged); 1930 m_freem(m); 1931 } 1932 break; 1933 #endif /* KAME IPSEC */ 1934 1935 case IPV6_FW_ADD: 1936 case IPV6_FW_DEL: 1937 case IPV6_FW_FLUSH: 1938 case IPV6_FW_ZERO: 1939 { 1940 struct mbuf *m; 1941 struct mbuf **mp = &m; 1942 1943 if (ip6_fw_ctl_ptr == NULL) 1944 return EINVAL; 1945 /* XXX */ 1946 if ((error = soopt_getm(sopt, &m)) != 0) 1947 break; 1948 /* XXX */ 1949 if ((error = soopt_mcopyin(sopt, m)) != 0) 1950 break; 1951 error = (*ip6_fw_ctl_ptr)(optname, mp); 1952 m = *mp; 1953 } 1954 break; 1955 1956 default: 1957 error = ENOPROTOOPT; 1958 break; 1959 } 1960 break; 1961 1962 case SOPT_GET: 1963 switch (optname) { 1964 1965 case IPV6_2292PKTOPTIONS: 1966 #ifdef IPV6_PKTOPTIONS 1967 case IPV6_PKTOPTIONS: 1968 #endif 1969 /* 1970 * RFC3542 (effectively) deprecated the 1971 * semantics of the 2292-style pktoptions. 1972 * Since it was not reliable in nature (i.e., 1973 * applications had to expect the lack of some 1974 * information after all), it would make sense 1975 * to simplify this part by always returning 1976 * empty data. 1977 */ 1978 sopt->sopt_valsize = 0; 1979 break; 1980 1981 case IPV6_RECVHOPOPTS: 1982 case IPV6_RECVDSTOPTS: 1983 case IPV6_RECVRTHDRDSTOPTS: 1984 case IPV6_UNICAST_HOPS: 1985 case IPV6_RECVPKTINFO: 1986 case IPV6_RECVHOPLIMIT: 1987 case IPV6_RECVRTHDR: 1988 case IPV6_RECVPATHMTU: 1989 1990 case IPV6_FAITH: 1991 case IPV6_V6ONLY: 1992 case IPV6_PORTRANGE: 1993 case IPV6_RECVTCLASS: 1994 case IPV6_AUTOFLOWLABEL: 1995 switch (optname) { 1996 1997 case IPV6_RECVHOPOPTS: 1998 optval = OPTBIT(IN6P_HOPOPTS); 1999 break; 2000 2001 case IPV6_RECVDSTOPTS: 2002 optval = OPTBIT(IN6P_DSTOPTS); 2003 break; 2004 2005 case IPV6_RECVRTHDRDSTOPTS: 2006 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 2007 break; 2008 2009 case IPV6_UNICAST_HOPS: 2010 optval = in6p->in6p_hops; 2011 break; 2012 2013 case IPV6_RECVPKTINFO: 2014 optval = OPTBIT(IN6P_PKTINFO); 2015 break; 2016 2017 case IPV6_RECVHOPLIMIT: 2018 optval = OPTBIT(IN6P_HOPLIMIT); 2019 break; 2020 2021 case IPV6_RECVRTHDR: 2022 optval = OPTBIT(IN6P_RTHDR); 2023 break; 2024 2025 case IPV6_RECVPATHMTU: 2026 optval = OPTBIT(IN6P_MTU); 2027 break; 2028 2029 case IPV6_FAITH: 2030 optval = OPTBIT(IN6P_FAITH); 2031 break; 2032 2033 case IPV6_V6ONLY: 2034 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2035 break; 2036 2037 case IPV6_PORTRANGE: 2038 { 2039 int flags; 2040 flags = in6p->in6p_flags; 2041 if (flags & IN6P_HIGHPORT) 2042 optval = IPV6_PORTRANGE_HIGH; 2043 else if (flags & IN6P_LOWPORT) 2044 optval = IPV6_PORTRANGE_LOW; 2045 else 2046 optval = 0; 2047 break; 2048 } 2049 case IPV6_RECVTCLASS: 2050 optval = OPTBIT(IN6P_TCLASS); 2051 break; 2052 2053 case IPV6_AUTOFLOWLABEL: 2054 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2055 break; 2056 } 2057 if (error) 2058 break; 2059 error = sooptcopyout(sopt, &optval, 2060 sizeof optval); 2061 break; 2062 2063 case IPV6_PATHMTU: 2064 { 2065 u_long pmtu = 0; 2066 struct ip6_mtuinfo mtuinfo; 2067 struct route_in6 sro; 2068 2069 bzero(&sro, sizeof(sro)); 2070 2071 if (!(so->so_state & SS_ISCONNECTED)) 2072 return (ENOTCONN); 2073 /* 2074 * XXX: we dot not consider the case of source 2075 * routing, or optional information to specify 2076 * the outgoing interface. 2077 */ 2078 error = ip6_getpmtu(&sro, NULL, NULL, 2079 &in6p->in6p_faddr, &pmtu, NULL); 2080 if (sro.ro_rt) 2081 RTFREE(sro.ro_rt); 2082 if (error) 2083 break; 2084 if (pmtu > IPV6_MAXPACKET) 2085 pmtu = IPV6_MAXPACKET; 2086 2087 bzero(&mtuinfo, sizeof(mtuinfo)); 2088 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2089 optdata = (void *)&mtuinfo; 2090 optdatalen = sizeof(mtuinfo); 2091 error = sooptcopyout(sopt, optdata, 2092 optdatalen); 2093 break; 2094 } 2095 2096 case IPV6_2292PKTINFO: 2097 case IPV6_2292HOPLIMIT: 2098 case IPV6_2292HOPOPTS: 2099 case IPV6_2292RTHDR: 2100 case IPV6_2292DSTOPTS: 2101 switch (optname) { 2102 case IPV6_2292PKTINFO: 2103 optval = OPTBIT(IN6P_PKTINFO); 2104 break; 2105 case IPV6_2292HOPLIMIT: 2106 optval = OPTBIT(IN6P_HOPLIMIT); 2107 break; 2108 case IPV6_2292HOPOPTS: 2109 optval = OPTBIT(IN6P_HOPOPTS); 2110 break; 2111 case IPV6_2292RTHDR: 2112 optval = OPTBIT(IN6P_RTHDR); 2113 break; 2114 case IPV6_2292DSTOPTS: 2115 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2116 break; 2117 } 2118 error = sooptcopyout(sopt, &optval, 2119 sizeof optval); 2120 break; 2121 case IPV6_PKTINFO: 2122 case IPV6_HOPOPTS: 2123 case IPV6_RTHDR: 2124 case IPV6_DSTOPTS: 2125 case IPV6_RTHDRDSTOPTS: 2126 case IPV6_NEXTHOP: 2127 case IPV6_TCLASS: 2128 case IPV6_DONTFRAG: 2129 case IPV6_USE_MIN_MTU: 2130 case IPV6_PREFER_TEMPADDR: 2131 error = ip6_getpcbopt(in6p->in6p_outputopts, 2132 optname, sopt); 2133 break; 2134 2135 case IPV6_MULTICAST_IF: 2136 case IPV6_MULTICAST_HOPS: 2137 case IPV6_MULTICAST_LOOP: 2138 case IPV6_JOIN_GROUP: 2139 case IPV6_LEAVE_GROUP: 2140 { 2141 struct mbuf *m; 2142 error = ip6_getmoptions(sopt->sopt_name, 2143 in6p->in6p_moptions, &m); 2144 if (error == 0) 2145 error = sooptcopyout(sopt, 2146 mtod(m, char *), m->m_len); 2147 m_freem(m); 2148 } 2149 break; 2150 2151 #if defined(IPSEC) || defined(FAST_IPSEC) 2152 case IPV6_IPSEC_POLICY: 2153 { 2154 caddr_t req = NULL; 2155 size_t len = 0; 2156 struct mbuf *m = NULL; 2157 struct mbuf **mp = &m; 2158 size_t ovalsize = sopt->sopt_valsize; 2159 caddr_t oval = (caddr_t)sopt->sopt_val; 2160 2161 error = soopt_getm(sopt, &m); /* XXX */ 2162 if (error != 0) 2163 break; 2164 error = soopt_mcopyin(sopt, m); /* XXX */ 2165 if (error != 0) 2166 break; 2167 sopt->sopt_valsize = ovalsize; 2168 sopt->sopt_val = oval; 2169 if (m) { 2170 req = mtod(m, caddr_t); 2171 len = m->m_len; 2172 } 2173 error = ipsec6_get_policy(in6p, req, len, mp); 2174 if (error == 0) 2175 error = soopt_mcopyout(sopt, m); /* XXX */ 2176 if (error == 0 && m) 2177 m_freem(m); 2178 break; 2179 } 2180 #endif /* KAME IPSEC */ 2181 2182 case IPV6_FW_GET: 2183 { 2184 struct mbuf *m; 2185 struct mbuf **mp = &m; 2186 2187 if (ip6_fw_ctl_ptr == NULL) 2188 { 2189 return EINVAL; 2190 } 2191 error = (*ip6_fw_ctl_ptr)(optname, mp); 2192 if (error == 0) 2193 error = soopt_mcopyout(sopt, m); /* XXX */ 2194 if (error == 0 && m) 2195 m_freem(m); 2196 } 2197 break; 2198 2199 default: 2200 error = ENOPROTOOPT; 2201 break; 2202 } 2203 break; 2204 } 2205 } else { /* level != IPPROTO_IPV6 */ 2206 error = EINVAL; 2207 } 2208 return (error); 2209 } 2210 2211 int 2212 ip6_raw_ctloutput(so, sopt) 2213 struct socket *so; 2214 struct sockopt *sopt; 2215 { 2216 int error = 0, optval, optlen; 2217 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2218 struct in6pcb *in6p = sotoin6pcb(so); 2219 int level, op, optname; 2220 2221 if (sopt) { 2222 level = sopt->sopt_level; 2223 op = sopt->sopt_dir; 2224 optname = sopt->sopt_name; 2225 optlen = sopt->sopt_valsize; 2226 } else 2227 panic("ip6_raw_ctloutput: arg soopt is NULL"); 2228 2229 if (level != IPPROTO_IPV6) { 2230 return (EINVAL); 2231 } 2232 2233 switch (optname) { 2234 case IPV6_CHECKSUM: 2235 /* 2236 * For ICMPv6 sockets, no modification allowed for checksum 2237 * offset, permit "no change" values to help existing apps. 2238 * 2239 * XXX 2292bis says: "An attempt to set IPV6_CHECKSUM 2240 * for an ICMPv6 socket will fail." 2241 * The current behavior does not meet 2292bis. 2242 */ 2243 switch (op) { 2244 case SOPT_SET: 2245 if (optlen != sizeof(int)) { 2246 error = EINVAL; 2247 break; 2248 } 2249 error = sooptcopyin(sopt, &optval, sizeof(optval), 2250 sizeof(optval)); 2251 if (error) 2252 break; 2253 if ((optval % 2) != 0) { 2254 /* the API assumes even offset values */ 2255 error = EINVAL; 2256 } else if (so->so_proto->pr_protocol == 2257 IPPROTO_ICMPV6) { 2258 if (optval != icmp6off) 2259 error = EINVAL; 2260 } else 2261 in6p->in6p_cksum = optval; 2262 break; 2263 2264 case SOPT_GET: 2265 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2266 optval = icmp6off; 2267 else 2268 optval = in6p->in6p_cksum; 2269 2270 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2271 break; 2272 2273 default: 2274 error = EINVAL; 2275 break; 2276 } 2277 break; 2278 2279 default: 2280 error = ENOPROTOOPT; 2281 break; 2282 } 2283 2284 return (error); 2285 } 2286 2287 /* 2288 * Set up IP6 options in pcb for insertion in output packets or 2289 * specifying behavior of outgoing packets. 2290 */ 2291 static int 2292 ip6_pcbopts(pktopt, m, so, sopt) 2293 struct ip6_pktopts **pktopt; 2294 struct mbuf *m; 2295 struct socket *so; 2296 struct sockopt *sopt; 2297 { 2298 struct ip6_pktopts *opt = *pktopt; 2299 int error = 0; 2300 struct thread *td = sopt->sopt_td; 2301 int priv = 0; 2302 2303 /* turn off any old options. */ 2304 if (opt) { 2305 #ifdef DIAGNOSTIC 2306 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2307 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2308 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2309 printf("ip6_pcbopts: all specified options are cleared.\n"); 2310 #endif 2311 ip6_clearpktopts(opt, -1); 2312 } else 2313 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2314 *pktopt = NULL; 2315 2316 if (!m || m->m_len == 0) { 2317 /* 2318 * Only turning off any previous options, regardless of 2319 * whether the opt is just created or given. 2320 */ 2321 free(opt, M_IP6OPT); 2322 return (0); 2323 } 2324 2325 /* set options specified by user. */ 2326 if (td && !suser(td)) 2327 priv = 1; 2328 if ((error = ip6_setpktoptions(m, opt, NULL, priv, 1, 2329 so->so_proto->pr_protocol)) != 0) { 2330 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2331 free(opt, M_IP6OPT); 2332 return (error); 2333 } 2334 *pktopt = opt; 2335 return (0); 2336 } 2337 2338 /* 2339 * initialize ip6_pktopts. beware that there are non-zero default values in 2340 * the struct. 2341 */ 2342 void 2343 init_ip6pktopts(opt) 2344 struct ip6_pktopts *opt; 2345 { 2346 2347 bzero(opt, sizeof(*opt)); 2348 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2349 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2350 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2351 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2352 } 2353 2354 static int 2355 ip6_pcbopt(optname, buf, len, pktopt, priv, uproto) 2356 int optname, len, priv; 2357 u_char *buf; 2358 struct ip6_pktopts **pktopt; 2359 int uproto; 2360 { 2361 struct ip6_pktopts *opt; 2362 2363 if (*pktopt == NULL) { 2364 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2365 M_WAITOK); 2366 init_ip6pktopts(*pktopt); 2367 (*pktopt)->needfree = 1; 2368 } 2369 opt = *pktopt; 2370 2371 return (ip6_setpktoption(optname, buf, len, opt, priv, 1, 0, uproto)); 2372 } 2373 2374 static int 2375 ip6_getpcbopt(pktopt, optname, sopt) 2376 struct ip6_pktopts *pktopt; 2377 struct sockopt *sopt; 2378 int optname; 2379 { 2380 void *optdata = NULL; 2381 int optdatalen = 0; 2382 struct ip6_ext *ip6e; 2383 int error = 0; 2384 struct in6_pktinfo null_pktinfo; 2385 int deftclass = 0, on; 2386 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2387 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2388 2389 switch (optname) { 2390 case IPV6_PKTINFO: 2391 if (pktopt && pktopt->ip6po_pktinfo) 2392 optdata = (void *)pktopt->ip6po_pktinfo; 2393 else { 2394 /* XXX: we don't have to do this every time... */ 2395 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2396 optdata = (void *)&null_pktinfo; 2397 } 2398 optdatalen = sizeof(struct in6_pktinfo); 2399 break; 2400 case IPV6_TCLASS: 2401 if (pktopt && pktopt->ip6po_tclass >= 0) 2402 optdata = (void *)&pktopt->ip6po_tclass; 2403 else 2404 optdata = (void *)&deftclass; 2405 optdatalen = sizeof(int); 2406 break; 2407 case IPV6_HOPOPTS: 2408 if (pktopt && pktopt->ip6po_hbh) { 2409 optdata = (void *)pktopt->ip6po_hbh; 2410 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2411 optdatalen = (ip6e->ip6e_len + 1) << 3; 2412 } 2413 break; 2414 case IPV6_RTHDR: 2415 if (pktopt && pktopt->ip6po_rthdr) { 2416 optdata = (void *)pktopt->ip6po_rthdr; 2417 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2418 optdatalen = (ip6e->ip6e_len + 1) << 3; 2419 } 2420 break; 2421 case IPV6_RTHDRDSTOPTS: 2422 if (pktopt && pktopt->ip6po_dest1) { 2423 optdata = (void *)pktopt->ip6po_dest1; 2424 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2425 optdatalen = (ip6e->ip6e_len + 1) << 3; 2426 } 2427 break; 2428 case IPV6_DSTOPTS: 2429 if (pktopt && pktopt->ip6po_dest2) { 2430 optdata = (void *)pktopt->ip6po_dest2; 2431 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2432 optdatalen = (ip6e->ip6e_len + 1) << 3; 2433 } 2434 break; 2435 case IPV6_NEXTHOP: 2436 if (pktopt && pktopt->ip6po_nexthop) { 2437 optdata = (void *)pktopt->ip6po_nexthop; 2438 optdatalen = pktopt->ip6po_nexthop->sa_len; 2439 } 2440 break; 2441 case IPV6_USE_MIN_MTU: 2442 if (pktopt) 2443 optdata = (void *)&pktopt->ip6po_minmtu; 2444 else 2445 optdata = (void *)&defminmtu; 2446 optdatalen = sizeof(int); 2447 break; 2448 case IPV6_DONTFRAG: 2449 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2450 on = 1; 2451 else 2452 on = 0; 2453 optdata = (void *)&on; 2454 optdatalen = sizeof(on); 2455 break; 2456 case IPV6_PREFER_TEMPADDR: 2457 if (pktopt) 2458 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2459 else 2460 optdata = (void *)&defpreftemp; 2461 optdatalen = sizeof(int); 2462 break; 2463 default: /* should not happen */ 2464 #ifdef DIAGNOSTIC 2465 panic("ip6_getpcbopt: unexpected option\n"); 2466 #endif 2467 return (ENOPROTOOPT); 2468 } 2469 2470 error = sooptcopyout(sopt, optdata, optdatalen); 2471 2472 return (error); 2473 } 2474 2475 void 2476 ip6_clearpktopts(pktopt, optname) 2477 struct ip6_pktopts *pktopt; 2478 int optname; 2479 { 2480 int needfree; 2481 2482 if (pktopt == NULL) 2483 return; 2484 2485 needfree = pktopt->needfree; 2486 2487 if (optname == -1 || optname == IPV6_PKTINFO) { 2488 if (needfree && pktopt->ip6po_pktinfo) 2489 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2490 pktopt->ip6po_pktinfo = NULL; 2491 } 2492 if (optname == -1 || optname == IPV6_HOPLIMIT) 2493 pktopt->ip6po_hlim = -1; 2494 if (optname == -1 || optname == IPV6_TCLASS) 2495 pktopt->ip6po_tclass = -1; 2496 if (optname == -1 || optname == IPV6_NEXTHOP) { 2497 if (pktopt->ip6po_nextroute.ro_rt) { 2498 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2499 pktopt->ip6po_nextroute.ro_rt = NULL; 2500 } 2501 if (needfree && pktopt->ip6po_nexthop) 2502 free(pktopt->ip6po_nexthop, M_IP6OPT); 2503 pktopt->ip6po_nexthop = NULL; 2504 } 2505 if (optname == -1 || optname == IPV6_HOPOPTS) { 2506 if (needfree && pktopt->ip6po_hbh) 2507 free(pktopt->ip6po_hbh, M_IP6OPT); 2508 pktopt->ip6po_hbh = NULL; 2509 } 2510 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2511 if (needfree && pktopt->ip6po_dest1) 2512 free(pktopt->ip6po_dest1, M_IP6OPT); 2513 pktopt->ip6po_dest1 = NULL; 2514 } 2515 if (optname == -1 || optname == IPV6_RTHDR) { 2516 if (needfree && pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2517 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2518 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2519 if (pktopt->ip6po_route.ro_rt) { 2520 RTFREE(pktopt->ip6po_route.ro_rt); 2521 pktopt->ip6po_route.ro_rt = NULL; 2522 } 2523 } 2524 if (optname == -1 || optname == IPV6_DSTOPTS) { 2525 if (needfree && pktopt->ip6po_dest2) 2526 free(pktopt->ip6po_dest2, M_IP6OPT); 2527 pktopt->ip6po_dest2 = NULL; 2528 } 2529 } 2530 2531 #define PKTOPT_EXTHDRCPY(type) \ 2532 do {\ 2533 if (src->type) {\ 2534 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2535 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2536 if (dst->type == NULL && canwait == M_NOWAIT)\ 2537 goto bad;\ 2538 bcopy(src->type, dst->type, hlen);\ 2539 }\ 2540 } while (/*CONSTCOND*/ 0) 2541 2542 struct ip6_pktopts * 2543 ip6_copypktopts(src, canwait) 2544 struct ip6_pktopts *src; 2545 int canwait; 2546 { 2547 struct ip6_pktopts *dst; 2548 2549 if (src == NULL) { 2550 printf("ip6_clearpktopts: invalid argument\n"); 2551 return (NULL); 2552 } 2553 2554 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2555 if (dst == NULL && canwait == M_NOWAIT) 2556 return (NULL); 2557 bzero(dst, sizeof(*dst)); 2558 dst->needfree = 1; 2559 2560 dst->ip6po_hlim = src->ip6po_hlim; 2561 dst->ip6po_tclass = src->ip6po_tclass; 2562 dst->ip6po_flags = src->ip6po_flags; 2563 if (src->ip6po_pktinfo) { 2564 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2565 M_IP6OPT, canwait); 2566 if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT) 2567 goto bad; 2568 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2569 } 2570 if (src->ip6po_nexthop) { 2571 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2572 M_IP6OPT, canwait); 2573 if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT) 2574 goto bad; 2575 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2576 src->ip6po_nexthop->sa_len); 2577 } 2578 PKTOPT_EXTHDRCPY(ip6po_hbh); 2579 PKTOPT_EXTHDRCPY(ip6po_dest1); 2580 PKTOPT_EXTHDRCPY(ip6po_dest2); 2581 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2582 return (dst); 2583 2584 bad: 2585 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); 2586 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); 2587 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); 2588 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); 2589 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); 2590 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); 2591 free(dst, M_IP6OPT); 2592 return (NULL); 2593 } 2594 #undef PKTOPT_EXTHDRCPY 2595 2596 void 2597 ip6_freepcbopts(pktopt) 2598 struct ip6_pktopts *pktopt; 2599 { 2600 if (pktopt == NULL) 2601 return; 2602 2603 ip6_clearpktopts(pktopt, -1); 2604 2605 free(pktopt, M_IP6OPT); 2606 } 2607 2608 /* 2609 * Set the IP6 multicast options in response to user setsockopt(). 2610 */ 2611 static int 2612 ip6_setmoptions(optname, im6op, m) 2613 int optname; 2614 struct ip6_moptions **im6op; 2615 struct mbuf *m; 2616 { 2617 int error = 0; 2618 u_int loop, ifindex; 2619 struct ipv6_mreq *mreq; 2620 struct ifnet *ifp; 2621 struct ip6_moptions *im6o = *im6op; 2622 struct route_in6 ro; 2623 struct sockaddr_in6 *dst; 2624 struct in6_multi_mship *imm; 2625 struct thread *td = curthread; 2626 2627 if (im6o == NULL) { 2628 /* 2629 * No multicast option buffer attached to the pcb; 2630 * allocate one and initialize to default values. 2631 */ 2632 im6o = (struct ip6_moptions *) 2633 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 2634 2635 if (im6o == NULL) 2636 return (ENOBUFS); 2637 *im6op = im6o; 2638 im6o->im6o_multicast_ifp = NULL; 2639 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2640 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2641 LIST_INIT(&im6o->im6o_memberships); 2642 } 2643 2644 switch (optname) { 2645 2646 case IPV6_MULTICAST_IF: 2647 /* 2648 * Select the interface for outgoing multicast packets. 2649 */ 2650 if (m == NULL || m->m_len != sizeof(u_int)) { 2651 error = EINVAL; 2652 break; 2653 } 2654 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 2655 if (ifindex < 0 || if_index < ifindex) { 2656 error = ENXIO; /* XXX EINVAL? */ 2657 break; 2658 } 2659 ifp = ifnet_byindex(ifindex); 2660 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2661 error = EADDRNOTAVAIL; 2662 break; 2663 } 2664 im6o->im6o_multicast_ifp = ifp; 2665 break; 2666 2667 case IPV6_MULTICAST_HOPS: 2668 { 2669 /* 2670 * Set the IP6 hoplimit for outgoing multicast packets. 2671 */ 2672 int optval; 2673 if (m == NULL || m->m_len != sizeof(int)) { 2674 error = EINVAL; 2675 break; 2676 } 2677 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 2678 if (optval < -1 || optval >= 256) 2679 error = EINVAL; 2680 else if (optval == -1) 2681 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2682 else 2683 im6o->im6o_multicast_hlim = optval; 2684 break; 2685 } 2686 2687 case IPV6_MULTICAST_LOOP: 2688 /* 2689 * Set the loopback flag for outgoing multicast packets. 2690 * Must be zero or one. 2691 */ 2692 if (m == NULL || m->m_len != sizeof(u_int)) { 2693 error = EINVAL; 2694 break; 2695 } 2696 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 2697 if (loop > 1) { 2698 error = EINVAL; 2699 break; 2700 } 2701 im6o->im6o_multicast_loop = loop; 2702 break; 2703 2704 case IPV6_JOIN_GROUP: 2705 /* 2706 * Add a multicast group membership. 2707 * Group must be a valid IP6 multicast address. 2708 */ 2709 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2710 error = EINVAL; 2711 break; 2712 } 2713 mreq = mtod(m, struct ipv6_mreq *); 2714 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2715 /* 2716 * We use the unspecified address to specify to accept 2717 * all multicast addresses. Only super user is allowed 2718 * to do this. 2719 */ 2720 if (suser(td)) { 2721 error = EACCES; 2722 break; 2723 } 2724 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2725 error = EINVAL; 2726 break; 2727 } 2728 2729 /* 2730 * If the interface is specified, validate it. 2731 */ 2732 if (mreq->ipv6mr_interface < 0 || 2733 if_index < mreq->ipv6mr_interface) { 2734 error = ENXIO; /* XXX EINVAL? */ 2735 break; 2736 } 2737 /* 2738 * If no interface was explicitly specified, choose an 2739 * appropriate one according to the given multicast address. 2740 */ 2741 if (mreq->ipv6mr_interface == 0) { 2742 /* 2743 * If the multicast address is in node-local scope, 2744 * the interface should be a loopback interface. 2745 * Otherwise, look up the routing table for the 2746 * address, and choose the outgoing interface. 2747 * XXX: is it a good approach? 2748 */ 2749 if (IN6_IS_ADDR_MC_INTFACELOCAL(&mreq->ipv6mr_multiaddr)) { 2750 ifp = &loif[0]; 2751 } else { 2752 ro.ro_rt = NULL; 2753 dst = (struct sockaddr_in6 *)&ro.ro_dst; 2754 bzero(dst, sizeof(*dst)); 2755 dst->sin6_len = sizeof(struct sockaddr_in6); 2756 dst->sin6_family = AF_INET6; 2757 dst->sin6_addr = mreq->ipv6mr_multiaddr; 2758 rtalloc((struct route *)&ro); 2759 if (ro.ro_rt == NULL) { 2760 error = EADDRNOTAVAIL; 2761 break; 2762 } 2763 ifp = ro.ro_rt->rt_ifp; 2764 RTFREE(ro.ro_rt); 2765 } 2766 } else 2767 ifp = ifnet_byindex(mreq->ipv6mr_interface); 2768 2769 /* 2770 * See if we found an interface, and confirm that it 2771 * supports multicast 2772 */ 2773 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2774 error = EADDRNOTAVAIL; 2775 break; 2776 } 2777 /* 2778 * Put interface index into the multicast address, 2779 * if the address has link-local scope. 2780 */ 2781 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2782 mreq->ipv6mr_multiaddr.s6_addr16[1] = 2783 htons(ifp->if_index); 2784 } 2785 /* 2786 * See if the membership already exists. 2787 */ 2788 for (imm = im6o->im6o_memberships.lh_first; 2789 imm != NULL; imm = imm->i6mm_chain.le_next) 2790 if (imm->i6mm_maddr->in6m_ifp == ifp && 2791 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2792 &mreq->ipv6mr_multiaddr)) 2793 break; 2794 if (imm != NULL) { 2795 error = EADDRINUSE; 2796 break; 2797 } 2798 /* 2799 * Everything looks good; add a new record to the multicast 2800 * address list for the given interface. 2801 */ 2802 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK); 2803 if (imm == NULL) { 2804 error = ENOBUFS; 2805 break; 2806 } 2807 if ((imm->i6mm_maddr = 2808 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) { 2809 free(imm, M_IPMADDR); 2810 break; 2811 } 2812 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2813 break; 2814 2815 case IPV6_LEAVE_GROUP: 2816 /* 2817 * Drop a multicast group membership. 2818 * Group must be a valid IP6 multicast address. 2819 */ 2820 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2821 error = EINVAL; 2822 break; 2823 } 2824 mreq = mtod(m, struct ipv6_mreq *); 2825 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2826 if (suser(td)) { 2827 error = EACCES; 2828 break; 2829 } 2830 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2831 error = EINVAL; 2832 break; 2833 } 2834 /* 2835 * If an interface address was specified, get a pointer 2836 * to its ifnet structure. 2837 */ 2838 if (mreq->ipv6mr_interface < 0 2839 || if_index < mreq->ipv6mr_interface) { 2840 error = ENXIO; /* XXX EINVAL? */ 2841 break; 2842 } 2843 ifp = ifnet_byindex(mreq->ipv6mr_interface); 2844 /* 2845 * Put interface index into the multicast address, 2846 * if the address has link-local scope. 2847 */ 2848 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2849 mreq->ipv6mr_multiaddr.s6_addr16[1] 2850 = htons(mreq->ipv6mr_interface); 2851 } 2852 2853 /* 2854 * Find the membership in the membership list. 2855 */ 2856 for (imm = im6o->im6o_memberships.lh_first; 2857 imm != NULL; imm = imm->i6mm_chain.le_next) { 2858 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2859 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2860 &mreq->ipv6mr_multiaddr)) 2861 break; 2862 } 2863 if (imm == NULL) { 2864 /* Unable to resolve interface */ 2865 error = EADDRNOTAVAIL; 2866 break; 2867 } 2868 /* 2869 * Give up the multicast address record to which the 2870 * membership points. 2871 */ 2872 LIST_REMOVE(imm, i6mm_chain); 2873 in6_delmulti(imm->i6mm_maddr); 2874 free(imm, M_IPMADDR); 2875 break; 2876 2877 default: 2878 error = EOPNOTSUPP; 2879 break; 2880 } 2881 2882 /* 2883 * If all options have default values, no need to keep the mbuf. 2884 */ 2885 if (im6o->im6o_multicast_ifp == NULL && 2886 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2887 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2888 im6o->im6o_memberships.lh_first == NULL) { 2889 free(*im6op, M_IPMOPTS); 2890 *im6op = NULL; 2891 } 2892 2893 return (error); 2894 } 2895 2896 /* 2897 * Return the IP6 multicast options in response to user getsockopt(). 2898 */ 2899 static int 2900 ip6_getmoptions(optname, im6o, mp) 2901 int optname; 2902 struct ip6_moptions *im6o; 2903 struct mbuf **mp; 2904 { 2905 u_int *hlim, *loop, *ifindex; 2906 2907 *mp = m_get(M_TRYWAIT, MT_HEADER); /* XXX */ 2908 2909 switch (optname) { 2910 2911 case IPV6_MULTICAST_IF: 2912 ifindex = mtod(*mp, u_int *); 2913 (*mp)->m_len = sizeof(u_int); 2914 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2915 *ifindex = 0; 2916 else 2917 *ifindex = im6o->im6o_multicast_ifp->if_index; 2918 return (0); 2919 2920 case IPV6_MULTICAST_HOPS: 2921 hlim = mtod(*mp, u_int *); 2922 (*mp)->m_len = sizeof(u_int); 2923 if (im6o == NULL) 2924 *hlim = ip6_defmcasthlim; 2925 else 2926 *hlim = im6o->im6o_multicast_hlim; 2927 return (0); 2928 2929 case IPV6_MULTICAST_LOOP: 2930 loop = mtod(*mp, u_int *); 2931 (*mp)->m_len = sizeof(u_int); 2932 if (im6o == NULL) 2933 *loop = ip6_defmcasthlim; 2934 else 2935 *loop = im6o->im6o_multicast_loop; 2936 return (0); 2937 2938 default: 2939 return (EOPNOTSUPP); 2940 } 2941 } 2942 2943 /* 2944 * Discard the IP6 multicast options. 2945 */ 2946 void 2947 ip6_freemoptions(im6o) 2948 struct ip6_moptions *im6o; 2949 { 2950 struct in6_multi_mship *imm; 2951 2952 if (im6o == NULL) 2953 return; 2954 2955 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2956 LIST_REMOVE(imm, i6mm_chain); 2957 if (imm->i6mm_maddr) 2958 in6_delmulti(imm->i6mm_maddr); 2959 free(imm, M_IPMADDR); 2960 } 2961 free(im6o, M_IPMOPTS); 2962 } 2963 2964 /* 2965 * Set IPv6 outgoing packet options based on advanced API. 2966 */ 2967 int 2968 ip6_setpktoptions(control, opt, stickyopt, priv, needcopy, uproto) 2969 struct mbuf *control; 2970 struct ip6_pktopts *opt, *stickyopt; 2971 int priv, needcopy, uproto; 2972 { 2973 struct cmsghdr *cm = 0; 2974 2975 if (control == 0 || opt == 0) 2976 return (EINVAL); 2977 2978 if (stickyopt) { 2979 /* 2980 * If stickyopt is provided, make a local copy of the options 2981 * for this particular packet, then override them by ancillary 2982 * objects. 2983 * XXX: need to gain a reference for the cached route of the 2984 * next hop in case of the overriding. 2985 */ 2986 *opt = *stickyopt; 2987 if (opt->ip6po_nextroute.ro_rt) { 2988 RT_LOCK(opt->ip6po_nextroute.ro_rt); 2989 RT_ADDREF(opt->ip6po_nextroute.ro_rt); 2990 RT_UNLOCK(opt->ip6po_nextroute.ro_rt); 2991 } 2992 } else 2993 init_ip6pktopts(opt); 2994 opt->needfree = needcopy; 2995 2996 /* 2997 * XXX: Currently, we assume all the optional information is stored 2998 * in a single mbuf. 2999 */ 3000 if (control->m_next) 3001 return (EINVAL); 3002 3003 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 3004 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 3005 int error; 3006 3007 if (control->m_len < CMSG_LEN(0)) 3008 return (EINVAL); 3009 3010 cm = mtod(control, struct cmsghdr *); 3011 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 3012 return (EINVAL); 3013 if (cm->cmsg_level != IPPROTO_IPV6) 3014 continue; 3015 3016 error = ip6_setpktoption(cm->cmsg_type, CMSG_DATA(cm), 3017 cm->cmsg_len - CMSG_LEN(0), opt, priv, needcopy, 1, uproto); 3018 if (error) 3019 return (error); 3020 } 3021 3022 return (0); 3023 } 3024 3025 /* 3026 * Set a particular packet option, as a sticky option or an ancillary data 3027 * item. "len" can be 0 only when it's a sticky option. 3028 * We have 4 cases of combination of "sticky" and "cmsg": 3029 * "sticky=0, cmsg=0": impossible 3030 * "sticky=0, cmsg=1": RFC2292 or rfc2292bis ancillary data 3031 * "sticky=1, cmsg=0": rfc2292bis socket option 3032 * "sticky=1, cmsg=1": RFC2292 socket option 3033 */ 3034 static int 3035 ip6_setpktoption(optname, buf, len, opt, priv, sticky, cmsg, uproto) 3036 int optname, len, priv, sticky, cmsg, uproto; 3037 u_char *buf; 3038 struct ip6_pktopts *opt; 3039 { 3040 int minmtupolicy, preftemp; 3041 3042 if (!sticky && !cmsg) { 3043 #ifdef DIAGNOSTIC 3044 printf("ip6_setpktoption: impossible case\n"); 3045 #endif 3046 return (EINVAL); 3047 } 3048 3049 /* 3050 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 3051 * not be specified in the context of rfc2292bis. Conversely, 3052 * rfc2292bis types should not be specified in the context of RFC2292. 3053 */ 3054 if (!cmsg) { 3055 switch (optname) { 3056 case IPV6_2292PKTINFO: 3057 case IPV6_2292HOPLIMIT: 3058 case IPV6_2292NEXTHOP: 3059 case IPV6_2292HOPOPTS: 3060 case IPV6_2292DSTOPTS: 3061 case IPV6_2292RTHDR: 3062 case IPV6_2292PKTOPTIONS: 3063 return (ENOPROTOOPT); 3064 } 3065 } 3066 if (sticky && cmsg) { 3067 switch (optname) { 3068 case IPV6_PKTINFO: 3069 case IPV6_HOPLIMIT: 3070 case IPV6_NEXTHOP: 3071 case IPV6_HOPOPTS: 3072 case IPV6_DSTOPTS: 3073 case IPV6_RTHDRDSTOPTS: 3074 case IPV6_RTHDR: 3075 case IPV6_USE_MIN_MTU: 3076 case IPV6_DONTFRAG: 3077 case IPV6_TCLASS: 3078 case IPV6_PREFER_TEMPADDR: /* XXX: not an rfc2292bis option */ 3079 return (ENOPROTOOPT); 3080 } 3081 } 3082 3083 switch (optname) { 3084 case IPV6_2292PKTINFO: 3085 case IPV6_PKTINFO: 3086 { 3087 struct ifnet *ifp = NULL; 3088 struct in6_pktinfo *pktinfo; 3089 3090 if (len != sizeof(struct in6_pktinfo)) 3091 return (EINVAL); 3092 3093 pktinfo = (struct in6_pktinfo *)buf; 3094 3095 /* 3096 * An application can clear any sticky IPV6_PKTINFO option by 3097 * doing a "regular" setsockopt with ipi6_addr being 3098 * in6addr_any and ipi6_ifindex being zero. 3099 * [RFC 3542, Section 6] 3100 */ 3101 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 3102 pktinfo->ipi6_ifindex == 0 && 3103 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 3104 ip6_clearpktopts(opt, optname); 3105 break; 3106 } 3107 3108 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 3109 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 3110 return (EINVAL); 3111 } 3112 3113 /* validate the interface index if specified. */ 3114 if (pktinfo->ipi6_ifindex > if_index || 3115 pktinfo->ipi6_ifindex < 0) { 3116 return (ENXIO); 3117 } 3118 if (pktinfo->ipi6_ifindex) { 3119 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 3120 if (ifp == NULL) 3121 return (ENXIO); 3122 } 3123 3124 /* 3125 * We store the address anyway, and let in6_selectsrc() 3126 * validate the specified address. This is because ipi6_addr 3127 * may not have enough information about its scope zone, and 3128 * we may need additional information (such as outgoing 3129 * interface or the scope zone of a destination address) to 3130 * disambiguate the scope. 3131 * XXX: the delay of the validation may confuse the 3132 * application when it is used as a sticky option. 3133 */ 3134 if (sticky) { 3135 if (opt->ip6po_pktinfo == NULL) { 3136 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 3137 M_IP6OPT, M_WAITOK); 3138 } 3139 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 3140 } else 3141 opt->ip6po_pktinfo = pktinfo; 3142 break; 3143 } 3144 3145 case IPV6_2292HOPLIMIT: 3146 case IPV6_HOPLIMIT: 3147 { 3148 int *hlimp; 3149 3150 /* 3151 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 3152 * to simplify the ordering among hoplimit options. 3153 */ 3154 if (optname == IPV6_HOPLIMIT && sticky) 3155 return (ENOPROTOOPT); 3156 3157 if (len != sizeof(int)) 3158 return (EINVAL); 3159 hlimp = (int *)buf; 3160 if (*hlimp < -1 || *hlimp > 255) 3161 return (EINVAL); 3162 3163 opt->ip6po_hlim = *hlimp; 3164 break; 3165 } 3166 3167 case IPV6_TCLASS: 3168 { 3169 int tclass; 3170 3171 if (len != sizeof(int)) 3172 return (EINVAL); 3173 tclass = *(int *)buf; 3174 if (tclass < -1 || tclass > 255) 3175 return (EINVAL); 3176 3177 opt->ip6po_tclass = tclass; 3178 break; 3179 } 3180 3181 case IPV6_2292NEXTHOP: 3182 case IPV6_NEXTHOP: 3183 if (!priv) 3184 return (EPERM); 3185 3186 if (len == 0) { /* just remove the option */ 3187 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3188 break; 3189 } 3190 3191 /* check if cmsg_len is large enough for sa_len */ 3192 if (len < sizeof(struct sockaddr) || len < *buf) 3193 return (EINVAL); 3194 3195 switch (((struct sockaddr *)buf)->sa_family) { 3196 case AF_INET6: 3197 { 3198 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3199 #if 0 3200 int error; 3201 #endif 3202 3203 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3204 return (EINVAL); 3205 3206 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3207 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3208 return (EINVAL); 3209 } 3210 #if 0 3211 if ((error = scope6_check_id(sa6, ip6_use_defzone)) 3212 != 0) { 3213 return (error); 3214 } 3215 #endif 3216 sa6->sin6_scope_id = 0; /* XXX */ 3217 break; 3218 } 3219 case AF_LINK: /* should eventually be supported */ 3220 default: 3221 return (EAFNOSUPPORT); 3222 } 3223 3224 /* turn off the previous option, then set the new option. */ 3225 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3226 if (sticky) { 3227 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_WAITOK); 3228 bcopy(buf, opt->ip6po_nexthop, *buf); 3229 } else 3230 opt->ip6po_nexthop = (struct sockaddr *)buf; 3231 break; 3232 3233 case IPV6_2292HOPOPTS: 3234 case IPV6_HOPOPTS: 3235 { 3236 struct ip6_hbh *hbh; 3237 int hbhlen; 3238 3239 /* 3240 * XXX: We don't allow a non-privileged user to set ANY HbH 3241 * options, since per-option restriction has too much 3242 * overhead. 3243 */ 3244 if (!priv) 3245 return (EPERM); 3246 3247 if (len == 0) { 3248 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3249 break; /* just remove the option */ 3250 } 3251 3252 /* message length validation */ 3253 if (len < sizeof(struct ip6_hbh)) 3254 return (EINVAL); 3255 hbh = (struct ip6_hbh *)buf; 3256 hbhlen = (hbh->ip6h_len + 1) << 3; 3257 if (len != hbhlen) 3258 return (EINVAL); 3259 3260 /* turn off the previous option, then set the new option. */ 3261 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3262 if (sticky) { 3263 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_WAITOK); 3264 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3265 } else 3266 opt->ip6po_hbh = hbh; 3267 3268 break; 3269 } 3270 3271 case IPV6_2292DSTOPTS: 3272 case IPV6_DSTOPTS: 3273 case IPV6_RTHDRDSTOPTS: 3274 { 3275 struct ip6_dest *dest, **newdest = NULL; 3276 int destlen; 3277 3278 if (!priv) /* XXX: see the comment for IPV6_HOPOPTS */ 3279 return (EPERM); 3280 3281 if (len == 0) { 3282 ip6_clearpktopts(opt, optname); 3283 break; /* just remove the option */ 3284 } 3285 3286 /* message length validation */ 3287 if (len < sizeof(struct ip6_dest)) 3288 return (EINVAL); 3289 dest = (struct ip6_dest *)buf; 3290 destlen = (dest->ip6d_len + 1) << 3; 3291 if (len != destlen) 3292 return (EINVAL); 3293 3294 /* 3295 * Determine the position that the destination options header 3296 * should be inserted; before or after the routing header. 3297 */ 3298 switch (optname) { 3299 case IPV6_2292DSTOPTS: 3300 /* 3301 * The old advacned API is ambiguous on this point. 3302 * Our approach is to determine the position based 3303 * according to the existence of a routing header. 3304 * Note, however, that this depends on the order of the 3305 * extension headers in the ancillary data; the 1st 3306 * part of the destination options header must appear 3307 * before the routing header in the ancillary data, 3308 * too. 3309 * RFC2292bis solved the ambiguity by introducing 3310 * separate ancillary data or option types. 3311 */ 3312 if (opt->ip6po_rthdr == NULL) 3313 newdest = &opt->ip6po_dest1; 3314 else 3315 newdest = &opt->ip6po_dest2; 3316 break; 3317 case IPV6_RTHDRDSTOPTS: 3318 newdest = &opt->ip6po_dest1; 3319 break; 3320 case IPV6_DSTOPTS: 3321 newdest = &opt->ip6po_dest2; 3322 break; 3323 } 3324 3325 /* turn off the previous option, then set the new option. */ 3326 ip6_clearpktopts(opt, optname); 3327 if (sticky) { 3328 *newdest = malloc(destlen, M_IP6OPT, M_WAITOK); 3329 bcopy(dest, *newdest, destlen); 3330 } else 3331 *newdest = dest; 3332 3333 break; 3334 } 3335 3336 case IPV6_2292RTHDR: 3337 case IPV6_RTHDR: 3338 { 3339 struct ip6_rthdr *rth; 3340 int rthlen; 3341 3342 if (len == 0) { 3343 ip6_clearpktopts(opt, IPV6_RTHDR); 3344 break; /* just remove the option */ 3345 } 3346 3347 /* message length validation */ 3348 if (len < sizeof(struct ip6_rthdr)) 3349 return (EINVAL); 3350 rth = (struct ip6_rthdr *)buf; 3351 rthlen = (rth->ip6r_len + 1) << 3; 3352 if (len != rthlen) 3353 return (EINVAL); 3354 3355 switch (rth->ip6r_type) { 3356 case IPV6_RTHDR_TYPE_0: 3357 if (rth->ip6r_len == 0) /* must contain one addr */ 3358 return (EINVAL); 3359 if (rth->ip6r_len % 2) /* length must be even */ 3360 return (EINVAL); 3361 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3362 return (EINVAL); 3363 break; 3364 default: 3365 return (EINVAL); /* not supported */ 3366 } 3367 3368 /* turn off the previous option */ 3369 ip6_clearpktopts(opt, IPV6_RTHDR); 3370 if (sticky) { 3371 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_WAITOK); 3372 bcopy(rth, opt->ip6po_rthdr, rthlen); 3373 } else 3374 opt->ip6po_rthdr = rth; 3375 3376 break; 3377 } 3378 3379 case IPV6_USE_MIN_MTU: 3380 if (len != sizeof(int)) 3381 return (EINVAL); 3382 minmtupolicy = *(int *)buf; 3383 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3384 minmtupolicy != IP6PO_MINMTU_DISABLE && 3385 minmtupolicy != IP6PO_MINMTU_ALL) { 3386 return (EINVAL); 3387 } 3388 opt->ip6po_minmtu = minmtupolicy; 3389 break; 3390 3391 case IPV6_DONTFRAG: 3392 if (len != sizeof(int)) 3393 return (EINVAL); 3394 3395 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3396 /* 3397 * we ignore this option for TCP sockets. 3398 * (rfc2292bis leaves this case unspecified.) 3399 */ 3400 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3401 } else 3402 opt->ip6po_flags |= IP6PO_DONTFRAG; 3403 break; 3404 3405 case IPV6_PREFER_TEMPADDR: 3406 if (len != sizeof(int)) 3407 return (EINVAL); 3408 preftemp = *(int *)buf; 3409 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3410 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3411 preftemp != IP6PO_TEMPADDR_PREFER) { 3412 return (EINVAL); 3413 } 3414 opt->ip6po_prefer_tempaddr = preftemp; 3415 break; 3416 3417 default: 3418 return (ENOPROTOOPT); 3419 } /* end of switch */ 3420 3421 return (0); 3422 } 3423 3424 /* 3425 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3426 * packet to the input queue of a specified interface. Note that this 3427 * calls the output routine of the loopback "driver", but with an interface 3428 * pointer that might NOT be &loif -- easier than replicating that code here. 3429 */ 3430 void 3431 ip6_mloopback(ifp, m, dst) 3432 struct ifnet *ifp; 3433 struct mbuf *m; 3434 struct sockaddr_in6 *dst; 3435 { 3436 struct mbuf *copym; 3437 struct ip6_hdr *ip6; 3438 3439 copym = m_copy(m, 0, M_COPYALL); 3440 if (copym == NULL) 3441 return; 3442 3443 /* 3444 * Make sure to deep-copy IPv6 header portion in case the data 3445 * is in an mbuf cluster, so that we can safely override the IPv6 3446 * header portion later. 3447 */ 3448 if ((copym->m_flags & M_EXT) != 0 || 3449 copym->m_len < sizeof(struct ip6_hdr)) { 3450 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3451 if (copym == NULL) 3452 return; 3453 } 3454 3455 #ifdef DIAGNOSTIC 3456 if (copym->m_len < sizeof(*ip6)) { 3457 m_freem(copym); 3458 return; 3459 } 3460 #endif 3461 3462 ip6 = mtod(copym, struct ip6_hdr *); 3463 /* 3464 * clear embedded scope identifiers if necessary. 3465 * in6_clearscope will touch the addresses only when necessary. 3466 */ 3467 in6_clearscope(&ip6->ip6_src); 3468 in6_clearscope(&ip6->ip6_dst); 3469 3470 (void)if_simloop(ifp, copym, dst->sin6_family, 0); 3471 } 3472 3473 /* 3474 * Chop IPv6 header off from the payload. 3475 */ 3476 static int 3477 ip6_splithdr(m, exthdrs) 3478 struct mbuf *m; 3479 struct ip6_exthdrs *exthdrs; 3480 { 3481 struct mbuf *mh; 3482 struct ip6_hdr *ip6; 3483 3484 ip6 = mtod(m, struct ip6_hdr *); 3485 if (m->m_len > sizeof(*ip6)) { 3486 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3487 if (mh == 0) { 3488 m_freem(m); 3489 return ENOBUFS; 3490 } 3491 M_MOVE_PKTHDR(mh, m); 3492 MH_ALIGN(mh, sizeof(*ip6)); 3493 m->m_len -= sizeof(*ip6); 3494 m->m_data += sizeof(*ip6); 3495 mh->m_next = m; 3496 m = mh; 3497 m->m_len = sizeof(*ip6); 3498 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3499 } 3500 exthdrs->ip6e_ip6 = m; 3501 return 0; 3502 } 3503 3504 /* 3505 * Compute IPv6 extension header length. 3506 */ 3507 int 3508 ip6_optlen(in6p) 3509 struct in6pcb *in6p; 3510 { 3511 int len; 3512 3513 if (!in6p->in6p_outputopts) 3514 return 0; 3515 3516 len = 0; 3517 #define elen(x) \ 3518 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3519 3520 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3521 if (in6p->in6p_outputopts->ip6po_rthdr) 3522 /* dest1 is valid with rthdr only */ 3523 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3524 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3525 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3526 return len; 3527 #undef elen 3528 } 3529