1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ipfw.h" 69 #include "opt_ipsec.h" 70 #include "opt_sctp.h" 71 #include "opt_route.h" 72 #include "opt_rss.h" 73 74 #include <sys/param.h> 75 #include <sys/kernel.h> 76 #include <sys/malloc.h> 77 #include <sys/mbuf.h> 78 #include <sys/errno.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/protosw.h> 82 #include <sys/socket.h> 83 #include <sys/socketvar.h> 84 #include <sys/syslog.h> 85 #include <sys/ucred.h> 86 87 #include <machine/in_cksum.h> 88 89 #include <net/if.h> 90 #include <net/if_var.h> 91 #include <net/netisr.h> 92 #include <net/route.h> 93 #include <net/pfil.h> 94 #include <net/vnet.h> 95 96 #include <netinet/in.h> 97 #include <netinet/in_var.h> 98 #include <netinet/ip_var.h> 99 #include <netinet6/in6_var.h> 100 #include <netinet/ip6.h> 101 #include <netinet/icmp6.h> 102 #include <netinet6/ip6_var.h> 103 #include <netinet/in_pcb.h> 104 #include <netinet/tcp_var.h> 105 #include <netinet6/nd6.h> 106 #include <netinet/in_rss.h> 107 108 #ifdef IPSEC 109 #include <netipsec/ipsec.h> 110 #include <netipsec/ipsec6.h> 111 #include <netipsec/key.h> 112 #include <netinet6/ip6_ipsec.h> 113 #endif /* IPSEC */ 114 #ifdef SCTP 115 #include <netinet/sctp.h> 116 #include <netinet/sctp_crc32.h> 117 #endif 118 119 #include <netinet6/ip6protosw.h> 120 #include <netinet6/scope6_var.h> 121 122 #ifdef FLOWTABLE 123 #include <net/flowtable.h> 124 #endif 125 126 extern int in6_mcast_loop; 127 128 struct ip6_exthdrs { 129 struct mbuf *ip6e_ip6; 130 struct mbuf *ip6e_hbh; 131 struct mbuf *ip6e_dest1; 132 struct mbuf *ip6e_rthdr; 133 struct mbuf *ip6e_dest2; 134 }; 135 136 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 137 struct ucred *, int); 138 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 139 struct socket *, struct sockopt *); 140 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 141 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 142 struct ucred *, int, int, int); 143 144 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 145 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 146 struct ip6_frag **); 147 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 148 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 149 static int ip6_getpmtu(struct route_in6 *, struct route_in6 *, 150 struct ifnet *, struct in6_addr *, u_long *, int *, u_int); 151 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 152 153 154 /* 155 * Make an extension header from option data. hp is the source, and 156 * mp is the destination. 157 */ 158 #define MAKE_EXTHDR(hp, mp) \ 159 do { \ 160 if (hp) { \ 161 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 162 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 163 ((eh)->ip6e_len + 1) << 3); \ 164 if (error) \ 165 goto freehdrs; \ 166 } \ 167 } while (/*CONSTCOND*/ 0) 168 169 /* 170 * Form a chain of extension headers. 171 * m is the extension header mbuf 172 * mp is the previous mbuf in the chain 173 * p is the next header 174 * i is the type of option. 175 */ 176 #define MAKE_CHAIN(m, mp, p, i)\ 177 do {\ 178 if (m) {\ 179 if (!hdrsplit) \ 180 panic("assumption failed: hdr not split"); \ 181 *mtod((m), u_char *) = *(p);\ 182 *(p) = (i);\ 183 p = mtod((m), u_char *);\ 184 (m)->m_next = (mp)->m_next;\ 185 (mp)->m_next = (m);\ 186 (mp) = (m);\ 187 }\ 188 } while (/*CONSTCOND*/ 0) 189 190 void 191 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 192 { 193 u_short csum; 194 195 csum = in_cksum_skip(m, offset + plen, offset); 196 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 197 csum = 0xffff; 198 offset += m->m_pkthdr.csum_data; /* checksum offset */ 199 200 if (offset + sizeof(u_short) > m->m_len) { 201 printf("%s: delayed m_pullup, m->len: %d plen %u off %u " 202 "csum_flags=%b\n", __func__, m->m_len, plen, offset, 203 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 204 /* 205 * XXX this should not happen, but if it does, the correct 206 * behavior may be to insert the checksum in the appropriate 207 * next mbuf in the chain. 208 */ 209 return; 210 } 211 *(u_short *)(m->m_data + offset) = csum; 212 } 213 214 /* 215 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 216 * header (with pri, len, nxt, hlim, src, dst). 217 * This function may modify ver and hlim only. 218 * The mbuf chain containing the packet will be freed. 219 * The mbuf opt, if present, will not be freed. 220 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 221 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 222 * then result of route lookup is stored in ro->ro_rt. 223 * 224 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 225 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 226 * which is rt_mtu. 227 * 228 * ifpp - XXX: just for statistics 229 */ 230 /* 231 * XXX TODO: no flowid is assigned for outbound flows? 232 */ 233 int 234 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 235 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 236 struct ifnet **ifpp, struct inpcb *inp) 237 { 238 struct ip6_hdr *ip6, *mhip6; 239 struct ifnet *ifp, *origifp; 240 struct mbuf *m = m0; 241 struct mbuf *mprev = NULL; 242 int hlen, tlen, len, off; 243 struct route_in6 ip6route; 244 struct rtentry *rt = NULL; 245 struct sockaddr_in6 *dst, src_sa, dst_sa; 246 struct in6_addr odst; 247 int error = 0; 248 struct in6_ifaddr *ia = NULL; 249 u_long mtu; 250 int alwaysfrag, dontfrag; 251 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 252 struct ip6_exthdrs exthdrs; 253 struct in6_addr finaldst, src0, dst0; 254 u_int32_t zone; 255 struct route_in6 *ro_pmtu = NULL; 256 int hdrsplit = 0; 257 int sw_csum, tso; 258 int needfiblookup; 259 uint32_t fibnum; 260 struct m_tag *fwd_tag = NULL; 261 262 ip6 = mtod(m, struct ip6_hdr *); 263 if (ip6 == NULL) { 264 printf ("ip6 is NULL"); 265 goto bad; 266 } 267 268 if (inp != NULL) { 269 M_SETFIB(m, inp->inp_inc.inc_fibnum); 270 if (((flags & IP_NODEFAULTFLOWID) == 0) && 271 (inp->inp_flags & (INP_HW_FLOWID|INP_SW_FLOWID))) { 272 m->m_pkthdr.flowid = inp->inp_flowid; 273 m->m_flags |= M_FLOWID; 274 } 275 } 276 277 finaldst = ip6->ip6_dst; 278 bzero(&exthdrs, sizeof(exthdrs)); 279 if (opt) { 280 /* Hop-by-Hop options header */ 281 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 282 /* Destination options header(1st part) */ 283 if (opt->ip6po_rthdr) { 284 /* 285 * Destination options header(1st part) 286 * This only makes sense with a routing header. 287 * See Section 9.2 of RFC 3542. 288 * Disabling this part just for MIP6 convenience is 289 * a bad idea. We need to think carefully about a 290 * way to make the advanced API coexist with MIP6 291 * options, which might automatically be inserted in 292 * the kernel. 293 */ 294 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 295 } 296 /* Routing header */ 297 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 298 /* Destination options header(2nd part) */ 299 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 300 } 301 302 #ifdef IPSEC 303 /* 304 * IPSec checking which handles several cases. 305 * FAST IPSEC: We re-injected the packet. 306 */ 307 switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp)) 308 { 309 case 1: /* Bad packet */ 310 goto freehdrs; 311 case -1: /* IPSec done */ 312 goto done; 313 case 0: /* No IPSec */ 314 default: 315 break; 316 } 317 #endif /* IPSEC */ 318 319 /* 320 * Calculate the total length of the extension header chain. 321 * Keep the length of the unfragmentable part for fragmentation. 322 */ 323 optlen = 0; 324 if (exthdrs.ip6e_hbh) 325 optlen += exthdrs.ip6e_hbh->m_len; 326 if (exthdrs.ip6e_dest1) 327 optlen += exthdrs.ip6e_dest1->m_len; 328 if (exthdrs.ip6e_rthdr) 329 optlen += exthdrs.ip6e_rthdr->m_len; 330 unfragpartlen = optlen + sizeof(struct ip6_hdr); 331 332 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 333 if (exthdrs.ip6e_dest2) 334 optlen += exthdrs.ip6e_dest2->m_len; 335 336 /* 337 * If there is at least one extension header, 338 * separate IP6 header from the payload. 339 */ 340 if (optlen && !hdrsplit) { 341 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 342 m = NULL; 343 goto freehdrs; 344 } 345 m = exthdrs.ip6e_ip6; 346 hdrsplit++; 347 } 348 349 /* adjust pointer */ 350 ip6 = mtod(m, struct ip6_hdr *); 351 352 /* adjust mbuf packet header length */ 353 m->m_pkthdr.len += optlen; 354 plen = m->m_pkthdr.len - sizeof(*ip6); 355 356 /* If this is a jumbo payload, insert a jumbo payload option. */ 357 if (plen > IPV6_MAXPACKET) { 358 if (!hdrsplit) { 359 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 360 m = NULL; 361 goto freehdrs; 362 } 363 m = exthdrs.ip6e_ip6; 364 hdrsplit++; 365 } 366 /* adjust pointer */ 367 ip6 = mtod(m, struct ip6_hdr *); 368 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 369 goto freehdrs; 370 ip6->ip6_plen = 0; 371 } else 372 ip6->ip6_plen = htons(plen); 373 374 /* 375 * Concatenate headers and fill in next header fields. 376 * Here we have, on "m" 377 * IPv6 payload 378 * and we insert headers accordingly. Finally, we should be getting: 379 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 380 * 381 * during the header composing process, "m" points to IPv6 header. 382 * "mprev" points to an extension header prior to esp. 383 */ 384 u_char *nexthdrp = &ip6->ip6_nxt; 385 mprev = m; 386 387 /* 388 * we treat dest2 specially. this makes IPsec processing 389 * much easier. the goal here is to make mprev point the 390 * mbuf prior to dest2. 391 * 392 * result: IPv6 dest2 payload 393 * m and mprev will point to IPv6 header. 394 */ 395 if (exthdrs.ip6e_dest2) { 396 if (!hdrsplit) 397 panic("assumption failed: hdr not split"); 398 exthdrs.ip6e_dest2->m_next = m->m_next; 399 m->m_next = exthdrs.ip6e_dest2; 400 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 401 ip6->ip6_nxt = IPPROTO_DSTOPTS; 402 } 403 404 /* 405 * result: IPv6 hbh dest1 rthdr dest2 payload 406 * m will point to IPv6 header. mprev will point to the 407 * extension header prior to dest2 (rthdr in the above case). 408 */ 409 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 410 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 411 IPPROTO_DSTOPTS); 412 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 413 IPPROTO_ROUTING); 414 415 /* 416 * If there is a routing header, discard the packet. 417 */ 418 if (exthdrs.ip6e_rthdr) { 419 error = EINVAL; 420 goto bad; 421 } 422 423 /* Source address validation */ 424 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 425 (flags & IPV6_UNSPECSRC) == 0) { 426 error = EOPNOTSUPP; 427 IP6STAT_INC(ip6s_badscope); 428 goto bad; 429 } 430 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 431 error = EOPNOTSUPP; 432 IP6STAT_INC(ip6s_badscope); 433 goto bad; 434 } 435 436 IP6STAT_INC(ip6s_localout); 437 438 /* 439 * Route packet. 440 */ 441 if (ro == 0) { 442 ro = &ip6route; 443 bzero((caddr_t)ro, sizeof(*ro)); 444 } 445 ro_pmtu = ro; 446 if (opt && opt->ip6po_rthdr) 447 ro = &opt->ip6po_route; 448 dst = (struct sockaddr_in6 *)&ro->ro_dst; 449 #ifdef FLOWTABLE 450 if (ro->ro_rt == NULL) 451 (void )flowtable_lookup(AF_INET6, m, (struct route *)ro); 452 #endif 453 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 454 again: 455 /* 456 * if specified, try to fill in the traffic class field. 457 * do not override if a non-zero value is already set. 458 * we check the diffserv field and the ecn field separately. 459 */ 460 if (opt && opt->ip6po_tclass >= 0) { 461 int mask = 0; 462 463 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 464 mask |= 0xfc; 465 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 466 mask |= 0x03; 467 if (mask != 0) 468 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 469 } 470 471 /* fill in or override the hop limit field, if necessary. */ 472 if (opt && opt->ip6po_hlim != -1) 473 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 474 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 475 if (im6o != NULL) 476 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 477 else 478 ip6->ip6_hlim = V_ip6_defmcasthlim; 479 } 480 481 /* adjust pointer */ 482 ip6 = mtod(m, struct ip6_hdr *); 483 484 if (ro->ro_rt && fwd_tag == NULL) { 485 rt = ro->ro_rt; 486 ifp = ro->ro_rt->rt_ifp; 487 } else { 488 if (fwd_tag == NULL) { 489 bzero(&dst_sa, sizeof(dst_sa)); 490 dst_sa.sin6_family = AF_INET6; 491 dst_sa.sin6_len = sizeof(dst_sa); 492 dst_sa.sin6_addr = ip6->ip6_dst; 493 } 494 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 495 &rt, fibnum); 496 if (error != 0) { 497 if (ifp != NULL) 498 in6_ifstat_inc(ifp, ifs6_out_discard); 499 goto bad; 500 } 501 } 502 if (rt == NULL) { 503 /* 504 * If in6_selectroute() does not return a route entry, 505 * dst may not have been updated. 506 */ 507 *dst = dst_sa; /* XXX */ 508 } 509 510 /* 511 * then rt (for unicast) and ifp must be non-NULL valid values. 512 */ 513 if ((flags & IPV6_FORWARDING) == 0) { 514 /* XXX: the FORWARDING flag can be set for mrouting. */ 515 in6_ifstat_inc(ifp, ifs6_out_request); 516 } 517 if (rt != NULL) { 518 ia = (struct in6_ifaddr *)(rt->rt_ifa); 519 counter_u64_add(rt->rt_pksent, 1); 520 } 521 522 523 /* 524 * The outgoing interface must be in the zone of source and 525 * destination addresses. 526 */ 527 origifp = ifp; 528 529 src0 = ip6->ip6_src; 530 if (in6_setscope(&src0, origifp, &zone)) 531 goto badscope; 532 bzero(&src_sa, sizeof(src_sa)); 533 src_sa.sin6_family = AF_INET6; 534 src_sa.sin6_len = sizeof(src_sa); 535 src_sa.sin6_addr = ip6->ip6_src; 536 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 537 goto badscope; 538 539 dst0 = ip6->ip6_dst; 540 if (in6_setscope(&dst0, origifp, &zone)) 541 goto badscope; 542 /* re-initialize to be sure */ 543 bzero(&dst_sa, sizeof(dst_sa)); 544 dst_sa.sin6_family = AF_INET6; 545 dst_sa.sin6_len = sizeof(dst_sa); 546 dst_sa.sin6_addr = ip6->ip6_dst; 547 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 548 goto badscope; 549 } 550 551 /* We should use ia_ifp to support the case of 552 * sending packets to an address of our own. 553 */ 554 if (ia != NULL && ia->ia_ifp) 555 ifp = ia->ia_ifp; 556 557 /* scope check is done. */ 558 goto routefound; 559 560 badscope: 561 IP6STAT_INC(ip6s_badscope); 562 in6_ifstat_inc(origifp, ifs6_out_discard); 563 if (error == 0) 564 error = EHOSTUNREACH; /* XXX */ 565 goto bad; 566 567 routefound: 568 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 569 if (opt && opt->ip6po_nextroute.ro_rt) { 570 /* 571 * The nexthop is explicitly specified by the 572 * application. We assume the next hop is an IPv6 573 * address. 574 */ 575 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 576 } 577 else if ((rt->rt_flags & RTF_GATEWAY)) 578 dst = (struct sockaddr_in6 *)rt->rt_gateway; 579 } 580 581 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 582 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 583 } else { 584 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 585 in6_ifstat_inc(ifp, ifs6_out_mcast); 586 /* 587 * Confirm that the outgoing interface supports multicast. 588 */ 589 if (!(ifp->if_flags & IFF_MULTICAST)) { 590 IP6STAT_INC(ip6s_noroute); 591 in6_ifstat_inc(ifp, ifs6_out_discard); 592 error = ENETUNREACH; 593 goto bad; 594 } 595 if ((im6o == NULL && in6_mcast_loop) || 596 (im6o && im6o->im6o_multicast_loop)) { 597 /* 598 * Loop back multicast datagram if not expressly 599 * forbidden to do so, even if we have not joined 600 * the address; protocols will filter it later, 601 * thus deferring a hash lookup and lock acquisition 602 * at the expense of an m_copym(). 603 */ 604 ip6_mloopback(ifp, m, dst); 605 } else { 606 /* 607 * If we are acting as a multicast router, perform 608 * multicast forwarding as if the packet had just 609 * arrived on the interface to which we are about 610 * to send. The multicast forwarding function 611 * recursively calls this function, using the 612 * IPV6_FORWARDING flag to prevent infinite recursion. 613 * 614 * Multicasts that are looped back by ip6_mloopback(), 615 * above, will be forwarded by the ip6_input() routine, 616 * if necessary. 617 */ 618 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 619 /* 620 * XXX: ip6_mforward expects that rcvif is NULL 621 * when it is called from the originating path. 622 * However, it may not always be the case. 623 */ 624 m->m_pkthdr.rcvif = NULL; 625 if (ip6_mforward(ip6, ifp, m) != 0) { 626 m_freem(m); 627 goto done; 628 } 629 } 630 } 631 /* 632 * Multicasts with a hoplimit of zero may be looped back, 633 * above, but must not be transmitted on a network. 634 * Also, multicasts addressed to the loopback interface 635 * are not sent -- the above call to ip6_mloopback() will 636 * loop back a copy if this host actually belongs to the 637 * destination group on the loopback interface. 638 */ 639 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 640 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 641 m_freem(m); 642 goto done; 643 } 644 } 645 646 /* 647 * Fill the outgoing inteface to tell the upper layer 648 * to increment per-interface statistics. 649 */ 650 if (ifpp) 651 *ifpp = ifp; 652 653 /* Determine path MTU. */ 654 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 655 &alwaysfrag, fibnum)) != 0) 656 goto bad; 657 658 /* 659 * The caller of this function may specify to use the minimum MTU 660 * in some cases. 661 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 662 * setting. The logic is a bit complicated; by default, unicast 663 * packets will follow path MTU while multicast packets will be sent at 664 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 665 * including unicast ones will be sent at the minimum MTU. Multicast 666 * packets will always be sent at the minimum MTU unless 667 * IP6PO_MINMTU_DISABLE is explicitly specified. 668 * See RFC 3542 for more details. 669 */ 670 if (mtu > IPV6_MMTU) { 671 if ((flags & IPV6_MINMTU)) 672 mtu = IPV6_MMTU; 673 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 674 mtu = IPV6_MMTU; 675 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 676 (opt == NULL || 677 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 678 mtu = IPV6_MMTU; 679 } 680 } 681 682 /* 683 * clear embedded scope identifiers if necessary. 684 * in6_clearscope will touch the addresses only when necessary. 685 */ 686 in6_clearscope(&ip6->ip6_src); 687 in6_clearscope(&ip6->ip6_dst); 688 689 /* 690 * If the outgoing packet contains a hop-by-hop options header, 691 * it must be examined and processed even by the source node. 692 * (RFC 2460, section 4.) 693 */ 694 if (exthdrs.ip6e_hbh) { 695 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 696 u_int32_t dummy; /* XXX unused */ 697 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 698 699 #ifdef DIAGNOSTIC 700 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 701 panic("ip6e_hbh is not contiguous"); 702 #endif 703 /* 704 * XXX: if we have to send an ICMPv6 error to the sender, 705 * we need the M_LOOP flag since icmp6_error() expects 706 * the IPv6 and the hop-by-hop options header are 707 * contiguous unless the flag is set. 708 */ 709 m->m_flags |= M_LOOP; 710 m->m_pkthdr.rcvif = ifp; 711 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 712 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 713 &dummy, &plen) < 0) { 714 /* m was already freed at this point */ 715 error = EINVAL;/* better error? */ 716 goto done; 717 } 718 m->m_flags &= ~M_LOOP; /* XXX */ 719 m->m_pkthdr.rcvif = NULL; 720 } 721 722 /* Jump over all PFIL processing if hooks are not active. */ 723 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 724 goto passout; 725 726 odst = ip6->ip6_dst; 727 /* Run through list of hooks for output packets. */ 728 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 729 if (error != 0 || m == NULL) 730 goto done; 731 ip6 = mtod(m, struct ip6_hdr *); 732 733 needfiblookup = 0; 734 /* See if destination IP address was changed by packet filter. */ 735 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 736 m->m_flags |= M_SKIP_FIREWALL; 737 /* If destination is now ourself drop to ip6_input(). */ 738 if (in6_localip(&ip6->ip6_dst)) { 739 m->m_flags |= M_FASTFWD_OURS; 740 if (m->m_pkthdr.rcvif == NULL) 741 m->m_pkthdr.rcvif = V_loif; 742 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 743 m->m_pkthdr.csum_flags |= 744 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 745 m->m_pkthdr.csum_data = 0xffff; 746 } 747 #ifdef SCTP 748 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 749 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 750 #endif 751 error = netisr_queue(NETISR_IPV6, m); 752 goto done; 753 } else 754 needfiblookup = 1; /* Redo the routing table lookup. */ 755 } 756 /* See if fib was changed by packet filter. */ 757 if (fibnum != M_GETFIB(m)) { 758 m->m_flags |= M_SKIP_FIREWALL; 759 fibnum = M_GETFIB(m); 760 RO_RTFREE(ro); 761 needfiblookup = 1; 762 } 763 if (needfiblookup) 764 goto again; 765 766 /* See if local, if yes, send it to netisr. */ 767 if (m->m_flags & M_FASTFWD_OURS) { 768 if (m->m_pkthdr.rcvif == NULL) 769 m->m_pkthdr.rcvif = V_loif; 770 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 771 m->m_pkthdr.csum_flags |= 772 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 773 m->m_pkthdr.csum_data = 0xffff; 774 } 775 #ifdef SCTP 776 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 777 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 778 #endif 779 error = netisr_queue(NETISR_IPV6, m); 780 goto done; 781 } 782 /* Or forward to some other address? */ 783 if ((m->m_flags & M_IP6_NEXTHOP) && 784 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 785 dst = (struct sockaddr_in6 *)&ro->ro_dst; 786 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 787 m->m_flags |= M_SKIP_FIREWALL; 788 m->m_flags &= ~M_IP6_NEXTHOP; 789 m_tag_delete(m, fwd_tag); 790 goto again; 791 } 792 793 passout: 794 /* 795 * Send the packet to the outgoing interface. 796 * If necessary, do IPv6 fragmentation before sending. 797 * 798 * the logic here is rather complex: 799 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 800 * 1-a: send as is if tlen <= path mtu 801 * 1-b: fragment if tlen > path mtu 802 * 803 * 2: if user asks us not to fragment (dontfrag == 1) 804 * 2-a: send as is if tlen <= interface mtu 805 * 2-b: error if tlen > interface mtu 806 * 807 * 3: if we always need to attach fragment header (alwaysfrag == 1) 808 * always fragment 809 * 810 * 4: if dontfrag == 1 && alwaysfrag == 1 811 * error, as we cannot handle this conflicting request 812 */ 813 sw_csum = m->m_pkthdr.csum_flags; 814 if (!hdrsplit) { 815 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 816 sw_csum &= ~ifp->if_hwassist; 817 } else 818 tso = 0; 819 /* 820 * If we added extension headers, we will not do TSO and calculate the 821 * checksums ourselves for now. 822 * XXX-BZ Need a framework to know when the NIC can handle it, even 823 * with ext. hdrs. 824 */ 825 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 826 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 827 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 828 } 829 #ifdef SCTP 830 if (sw_csum & CSUM_SCTP_IPV6) { 831 sw_csum &= ~CSUM_SCTP_IPV6; 832 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 833 } 834 #endif 835 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 836 tlen = m->m_pkthdr.len; 837 838 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 839 dontfrag = 1; 840 else 841 dontfrag = 0; 842 if (dontfrag && alwaysfrag) { /* case 4 */ 843 /* conflicting request - can't transmit */ 844 error = EMSGSIZE; 845 goto bad; 846 } 847 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 848 /* 849 * Even if the DONTFRAG option is specified, we cannot send the 850 * packet when the data length is larger than the MTU of the 851 * outgoing interface. 852 * Notify the error by sending IPV6_PATHMTU ancillary data as 853 * well as returning an error code (the latter is not described 854 * in the API spec.) 855 */ 856 u_int32_t mtu32; 857 struct ip6ctlparam ip6cp; 858 859 mtu32 = (u_int32_t)mtu; 860 bzero(&ip6cp, sizeof(ip6cp)); 861 ip6cp.ip6c_cmdarg = (void *)&mtu32; 862 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 863 (void *)&ip6cp); 864 865 error = EMSGSIZE; 866 goto bad; 867 } 868 869 /* 870 * transmit packet without fragmentation 871 */ 872 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 873 struct in6_ifaddr *ia6; 874 875 ip6 = mtod(m, struct ip6_hdr *); 876 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 877 if (ia6) { 878 /* Record statistics for this interface address. */ 879 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 880 counter_u64_add(ia6->ia_ifa.ifa_obytes, 881 m->m_pkthdr.len); 882 ifa_free(&ia6->ia_ifa); 883 } 884 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 885 goto done; 886 } 887 888 /* 889 * try to fragment the packet. case 1-b and 3 890 */ 891 if (mtu < IPV6_MMTU) { 892 /* path MTU cannot be less than IPV6_MMTU */ 893 error = EMSGSIZE; 894 in6_ifstat_inc(ifp, ifs6_out_fragfail); 895 goto bad; 896 } else if (ip6->ip6_plen == 0) { 897 /* jumbo payload cannot be fragmented */ 898 error = EMSGSIZE; 899 in6_ifstat_inc(ifp, ifs6_out_fragfail); 900 goto bad; 901 } else { 902 struct mbuf **mnext, *m_frgpart; 903 struct ip6_frag *ip6f; 904 u_int32_t id = htonl(ip6_randomid()); 905 u_char nextproto; 906 907 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len; 908 909 /* 910 * Too large for the destination or interface; 911 * fragment if possible. 912 * Must be able to put at least 8 bytes per fragment. 913 */ 914 hlen = unfragpartlen; 915 if (mtu > IPV6_MAXPACKET) 916 mtu = IPV6_MAXPACKET; 917 918 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 919 if (len < 8) { 920 error = EMSGSIZE; 921 in6_ifstat_inc(ifp, ifs6_out_fragfail); 922 goto bad; 923 } 924 925 /* 926 * Verify that we have any chance at all of being able to queue 927 * the packet or packet fragments 928 */ 929 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen) 930 < tlen /* - hlen */)) { 931 error = ENOBUFS; 932 IP6STAT_INC(ip6s_odropped); 933 goto bad; 934 } 935 936 937 /* 938 * If the interface will not calculate checksums on 939 * fragmented packets, then do it here. 940 * XXX-BZ handle the hw offloading case. Need flags. 941 */ 942 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 943 in6_delayed_cksum(m, plen, hlen); 944 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 945 } 946 #ifdef SCTP 947 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 948 sctp_delayed_cksum(m, hlen); 949 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 950 } 951 #endif 952 mnext = &m->m_nextpkt; 953 954 /* 955 * Change the next header field of the last header in the 956 * unfragmentable part. 957 */ 958 if (exthdrs.ip6e_rthdr) { 959 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 960 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 961 } else if (exthdrs.ip6e_dest1) { 962 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 963 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 964 } else if (exthdrs.ip6e_hbh) { 965 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 966 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 967 } else { 968 nextproto = ip6->ip6_nxt; 969 ip6->ip6_nxt = IPPROTO_FRAGMENT; 970 } 971 972 /* 973 * Loop through length of segment after first fragment, 974 * make new header and copy data of each part and link onto 975 * chain. 976 */ 977 m0 = m; 978 for (off = hlen; off < tlen; off += len) { 979 m = m_gethdr(M_NOWAIT, MT_DATA); 980 if (!m) { 981 error = ENOBUFS; 982 IP6STAT_INC(ip6s_odropped); 983 goto sendorfree; 984 } 985 m->m_flags = m0->m_flags & M_COPYFLAGS; 986 *mnext = m; 987 mnext = &m->m_nextpkt; 988 m->m_data += max_linkhdr; 989 mhip6 = mtod(m, struct ip6_hdr *); 990 *mhip6 = *ip6; 991 m->m_len = sizeof(*mhip6); 992 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 993 if (error) { 994 IP6STAT_INC(ip6s_odropped); 995 goto sendorfree; 996 } 997 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 998 if (off + len >= tlen) 999 len = tlen - off; 1000 else 1001 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1002 mhip6->ip6_plen = htons((u_short)(len + hlen + 1003 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1004 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1005 error = ENOBUFS; 1006 IP6STAT_INC(ip6s_odropped); 1007 goto sendorfree; 1008 } 1009 m_cat(m, m_frgpart); 1010 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1011 m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; 1012 m->m_pkthdr.rcvif = NULL; 1013 ip6f->ip6f_reserved = 0; 1014 ip6f->ip6f_ident = id; 1015 ip6f->ip6f_nxt = nextproto; 1016 IP6STAT_INC(ip6s_ofragments); 1017 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1018 } 1019 1020 in6_ifstat_inc(ifp, ifs6_out_fragok); 1021 } 1022 1023 /* 1024 * Remove leading garbages. 1025 */ 1026 sendorfree: 1027 m = m0->m_nextpkt; 1028 m0->m_nextpkt = 0; 1029 m_freem(m0); 1030 for (m0 = m; m; m = m0) { 1031 m0 = m->m_nextpkt; 1032 m->m_nextpkt = 0; 1033 if (error == 0) { 1034 /* Record statistics for this interface address. */ 1035 if (ia) { 1036 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1037 counter_u64_add(ia->ia_ifa.ifa_obytes, 1038 m->m_pkthdr.len); 1039 } 1040 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1041 } else 1042 m_freem(m); 1043 } 1044 1045 if (error == 0) 1046 IP6STAT_INC(ip6s_fragmented); 1047 1048 done: 1049 if (ro == &ip6route) 1050 RO_RTFREE(ro); 1051 if (ro_pmtu == &ip6route) 1052 RO_RTFREE(ro_pmtu); 1053 return (error); 1054 1055 freehdrs: 1056 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1057 m_freem(exthdrs.ip6e_dest1); 1058 m_freem(exthdrs.ip6e_rthdr); 1059 m_freem(exthdrs.ip6e_dest2); 1060 /* FALLTHROUGH */ 1061 bad: 1062 if (m) 1063 m_freem(m); 1064 goto done; 1065 } 1066 1067 static int 1068 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1069 { 1070 struct mbuf *m; 1071 1072 if (hlen > MCLBYTES) 1073 return (ENOBUFS); /* XXX */ 1074 1075 if (hlen > MLEN) 1076 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1077 else 1078 m = m_get(M_NOWAIT, MT_DATA); 1079 if (m == NULL) 1080 return (ENOBUFS); 1081 m->m_len = hlen; 1082 if (hdr) 1083 bcopy(hdr, mtod(m, caddr_t), hlen); 1084 1085 *mp = m; 1086 return (0); 1087 } 1088 1089 /* 1090 * Insert jumbo payload option. 1091 */ 1092 static int 1093 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1094 { 1095 struct mbuf *mopt; 1096 u_char *optbuf; 1097 u_int32_t v; 1098 1099 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1100 1101 /* 1102 * If there is no hop-by-hop options header, allocate new one. 1103 * If there is one but it doesn't have enough space to store the 1104 * jumbo payload option, allocate a cluster to store the whole options. 1105 * Otherwise, use it to store the options. 1106 */ 1107 if (exthdrs->ip6e_hbh == 0) { 1108 mopt = m_get(M_NOWAIT, MT_DATA); 1109 if (mopt == NULL) 1110 return (ENOBUFS); 1111 mopt->m_len = JUMBOOPTLEN; 1112 optbuf = mtod(mopt, u_char *); 1113 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1114 exthdrs->ip6e_hbh = mopt; 1115 } else { 1116 struct ip6_hbh *hbh; 1117 1118 mopt = exthdrs->ip6e_hbh; 1119 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1120 /* 1121 * XXX assumption: 1122 * - exthdrs->ip6e_hbh is not referenced from places 1123 * other than exthdrs. 1124 * - exthdrs->ip6e_hbh is not an mbuf chain. 1125 */ 1126 int oldoptlen = mopt->m_len; 1127 struct mbuf *n; 1128 1129 /* 1130 * XXX: give up if the whole (new) hbh header does 1131 * not fit even in an mbuf cluster. 1132 */ 1133 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1134 return (ENOBUFS); 1135 1136 /* 1137 * As a consequence, we must always prepare a cluster 1138 * at this point. 1139 */ 1140 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1141 if (n == NULL) 1142 return (ENOBUFS); 1143 n->m_len = oldoptlen + JUMBOOPTLEN; 1144 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1145 oldoptlen); 1146 optbuf = mtod(n, caddr_t) + oldoptlen; 1147 m_freem(mopt); 1148 mopt = exthdrs->ip6e_hbh = n; 1149 } else { 1150 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1151 mopt->m_len += JUMBOOPTLEN; 1152 } 1153 optbuf[0] = IP6OPT_PADN; 1154 optbuf[1] = 1; 1155 1156 /* 1157 * Adjust the header length according to the pad and 1158 * the jumbo payload option. 1159 */ 1160 hbh = mtod(mopt, struct ip6_hbh *); 1161 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1162 } 1163 1164 /* fill in the option. */ 1165 optbuf[2] = IP6OPT_JUMBO; 1166 optbuf[3] = 4; 1167 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1168 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1169 1170 /* finally, adjust the packet header length */ 1171 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1172 1173 return (0); 1174 #undef JUMBOOPTLEN 1175 } 1176 1177 /* 1178 * Insert fragment header and copy unfragmentable header portions. 1179 */ 1180 static int 1181 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1182 struct ip6_frag **frghdrp) 1183 { 1184 struct mbuf *n, *mlast; 1185 1186 if (hlen > sizeof(struct ip6_hdr)) { 1187 n = m_copym(m0, sizeof(struct ip6_hdr), 1188 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1189 if (n == 0) 1190 return (ENOBUFS); 1191 m->m_next = n; 1192 } else 1193 n = m; 1194 1195 /* Search for the last mbuf of unfragmentable part. */ 1196 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1197 ; 1198 1199 if (M_WRITABLE(mlast) && 1200 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1201 /* use the trailing space of the last mbuf for the fragment hdr */ 1202 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1203 mlast->m_len); 1204 mlast->m_len += sizeof(struct ip6_frag); 1205 m->m_pkthdr.len += sizeof(struct ip6_frag); 1206 } else { 1207 /* allocate a new mbuf for the fragment header */ 1208 struct mbuf *mfrg; 1209 1210 mfrg = m_get(M_NOWAIT, MT_DATA); 1211 if (mfrg == NULL) 1212 return (ENOBUFS); 1213 mfrg->m_len = sizeof(struct ip6_frag); 1214 *frghdrp = mtod(mfrg, struct ip6_frag *); 1215 mlast->m_next = mfrg; 1216 } 1217 1218 return (0); 1219 } 1220 1221 static int 1222 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, 1223 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, 1224 int *alwaysfragp, u_int fibnum) 1225 { 1226 u_int32_t mtu = 0; 1227 int alwaysfrag = 0; 1228 int error = 0; 1229 1230 if (ro_pmtu != ro) { 1231 /* The first hop and the final destination may differ. */ 1232 struct sockaddr_in6 *sa6_dst = 1233 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1234 if (ro_pmtu->ro_rt && 1235 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1236 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1237 RTFREE(ro_pmtu->ro_rt); 1238 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1239 } 1240 if (ro_pmtu->ro_rt == NULL) { 1241 bzero(sa6_dst, sizeof(*sa6_dst)); 1242 sa6_dst->sin6_family = AF_INET6; 1243 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1244 sa6_dst->sin6_addr = *dst; 1245 1246 in6_rtalloc(ro_pmtu, fibnum); 1247 } 1248 } 1249 if (ro_pmtu->ro_rt) { 1250 u_int32_t ifmtu; 1251 struct in_conninfo inc; 1252 1253 bzero(&inc, sizeof(inc)); 1254 inc.inc_flags |= INC_ISIPV6; 1255 inc.inc6_faddr = *dst; 1256 1257 if (ifp == NULL) 1258 ifp = ro_pmtu->ro_rt->rt_ifp; 1259 ifmtu = IN6_LINKMTU(ifp); 1260 mtu = tcp_hc_getmtu(&inc); 1261 if (mtu) 1262 mtu = min(mtu, ro_pmtu->ro_rt->rt_mtu); 1263 else 1264 mtu = ro_pmtu->ro_rt->rt_mtu; 1265 if (mtu == 0) 1266 mtu = ifmtu; 1267 else if (mtu < IPV6_MMTU) { 1268 /* 1269 * RFC2460 section 5, last paragraph: 1270 * if we record ICMPv6 too big message with 1271 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1272 * or smaller, with framgent header attached. 1273 * (fragment header is needed regardless from the 1274 * packet size, for translators to identify packets) 1275 */ 1276 alwaysfrag = 1; 1277 mtu = IPV6_MMTU; 1278 } 1279 } else if (ifp) { 1280 mtu = IN6_LINKMTU(ifp); 1281 } else 1282 error = EHOSTUNREACH; /* XXX */ 1283 1284 *mtup = mtu; 1285 if (alwaysfragp) 1286 *alwaysfragp = alwaysfrag; 1287 return (error); 1288 } 1289 1290 /* 1291 * IP6 socket option processing. 1292 */ 1293 int 1294 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1295 { 1296 int optdatalen, uproto; 1297 void *optdata; 1298 struct inpcb *in6p = sotoinpcb(so); 1299 int error, optval; 1300 int level, op, optname; 1301 int optlen; 1302 struct thread *td; 1303 #ifdef RSS 1304 uint32_t rss_bucket; 1305 int retval; 1306 #endif 1307 1308 level = sopt->sopt_level; 1309 op = sopt->sopt_dir; 1310 optname = sopt->sopt_name; 1311 optlen = sopt->sopt_valsize; 1312 td = sopt->sopt_td; 1313 error = 0; 1314 optval = 0; 1315 uproto = (int)so->so_proto->pr_protocol; 1316 1317 if (level != IPPROTO_IPV6) { 1318 error = EINVAL; 1319 1320 if (sopt->sopt_level == SOL_SOCKET && 1321 sopt->sopt_dir == SOPT_SET) { 1322 switch (sopt->sopt_name) { 1323 case SO_REUSEADDR: 1324 INP_WLOCK(in6p); 1325 if ((so->so_options & SO_REUSEADDR) != 0) 1326 in6p->inp_flags2 |= INP_REUSEADDR; 1327 else 1328 in6p->inp_flags2 &= ~INP_REUSEADDR; 1329 INP_WUNLOCK(in6p); 1330 error = 0; 1331 break; 1332 case SO_REUSEPORT: 1333 INP_WLOCK(in6p); 1334 if ((so->so_options & SO_REUSEPORT) != 0) 1335 in6p->inp_flags2 |= INP_REUSEPORT; 1336 else 1337 in6p->inp_flags2 &= ~INP_REUSEPORT; 1338 INP_WUNLOCK(in6p); 1339 error = 0; 1340 break; 1341 case SO_SETFIB: 1342 INP_WLOCK(in6p); 1343 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1344 INP_WUNLOCK(in6p); 1345 error = 0; 1346 break; 1347 default: 1348 break; 1349 } 1350 } 1351 } else { /* level == IPPROTO_IPV6 */ 1352 switch (op) { 1353 1354 case SOPT_SET: 1355 switch (optname) { 1356 case IPV6_2292PKTOPTIONS: 1357 #ifdef IPV6_PKTOPTIONS 1358 case IPV6_PKTOPTIONS: 1359 #endif 1360 { 1361 struct mbuf *m; 1362 1363 error = soopt_getm(sopt, &m); /* XXX */ 1364 if (error != 0) 1365 break; 1366 error = soopt_mcopyin(sopt, m); /* XXX */ 1367 if (error != 0) 1368 break; 1369 error = ip6_pcbopts(&in6p->in6p_outputopts, 1370 m, so, sopt); 1371 m_freem(m); /* XXX */ 1372 break; 1373 } 1374 1375 /* 1376 * Use of some Hop-by-Hop options or some 1377 * Destination options, might require special 1378 * privilege. That is, normal applications 1379 * (without special privilege) might be forbidden 1380 * from setting certain options in outgoing packets, 1381 * and might never see certain options in received 1382 * packets. [RFC 2292 Section 6] 1383 * KAME specific note: 1384 * KAME prevents non-privileged users from sending or 1385 * receiving ANY hbh/dst options in order to avoid 1386 * overhead of parsing options in the kernel. 1387 */ 1388 case IPV6_RECVHOPOPTS: 1389 case IPV6_RECVDSTOPTS: 1390 case IPV6_RECVRTHDRDSTOPTS: 1391 if (td != NULL) { 1392 error = priv_check(td, 1393 PRIV_NETINET_SETHDROPTS); 1394 if (error) 1395 break; 1396 } 1397 /* FALLTHROUGH */ 1398 case IPV6_UNICAST_HOPS: 1399 case IPV6_HOPLIMIT: 1400 1401 case IPV6_RECVPKTINFO: 1402 case IPV6_RECVHOPLIMIT: 1403 case IPV6_RECVRTHDR: 1404 case IPV6_RECVPATHMTU: 1405 case IPV6_RECVTCLASS: 1406 case IPV6_V6ONLY: 1407 case IPV6_AUTOFLOWLABEL: 1408 case IPV6_BINDANY: 1409 case IPV6_BINDMULTI: 1410 #ifdef RSS 1411 case IPV6_RSS_LISTEN_BUCKET: 1412 #endif 1413 if (optname == IPV6_BINDANY && td != NULL) { 1414 error = priv_check(td, 1415 PRIV_NETINET_BINDANY); 1416 if (error) 1417 break; 1418 } 1419 1420 if (optlen != sizeof(int)) { 1421 error = EINVAL; 1422 break; 1423 } 1424 error = sooptcopyin(sopt, &optval, 1425 sizeof optval, sizeof optval); 1426 if (error) 1427 break; 1428 switch (optname) { 1429 1430 case IPV6_UNICAST_HOPS: 1431 if (optval < -1 || optval >= 256) 1432 error = EINVAL; 1433 else { 1434 /* -1 = kernel default */ 1435 in6p->in6p_hops = optval; 1436 if ((in6p->inp_vflag & 1437 INP_IPV4) != 0) 1438 in6p->inp_ip_ttl = optval; 1439 } 1440 break; 1441 #define OPTSET(bit) \ 1442 do { \ 1443 INP_WLOCK(in6p); \ 1444 if (optval) \ 1445 in6p->inp_flags |= (bit); \ 1446 else \ 1447 in6p->inp_flags &= ~(bit); \ 1448 INP_WUNLOCK(in6p); \ 1449 } while (/*CONSTCOND*/ 0) 1450 #define OPTSET2292(bit) \ 1451 do { \ 1452 INP_WLOCK(in6p); \ 1453 in6p->inp_flags |= IN6P_RFC2292; \ 1454 if (optval) \ 1455 in6p->inp_flags |= (bit); \ 1456 else \ 1457 in6p->inp_flags &= ~(bit); \ 1458 INP_WUNLOCK(in6p); \ 1459 } while (/*CONSTCOND*/ 0) 1460 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1461 1462 #define OPTSET2(bit, val) do { \ 1463 INP_WLOCK(in6p); \ 1464 if (val) \ 1465 in6p->inp_flags2 |= bit; \ 1466 else \ 1467 in6p->inp_flags2 &= ~bit; \ 1468 INP_WUNLOCK(in6p); \ 1469 } while (0) 1470 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) 1471 1472 case IPV6_RECVPKTINFO: 1473 /* cannot mix with RFC2292 */ 1474 if (OPTBIT(IN6P_RFC2292)) { 1475 error = EINVAL; 1476 break; 1477 } 1478 OPTSET(IN6P_PKTINFO); 1479 break; 1480 1481 case IPV6_HOPLIMIT: 1482 { 1483 struct ip6_pktopts **optp; 1484 1485 /* cannot mix with RFC2292 */ 1486 if (OPTBIT(IN6P_RFC2292)) { 1487 error = EINVAL; 1488 break; 1489 } 1490 optp = &in6p->in6p_outputopts; 1491 error = ip6_pcbopt(IPV6_HOPLIMIT, 1492 (u_char *)&optval, sizeof(optval), 1493 optp, (td != NULL) ? td->td_ucred : 1494 NULL, uproto); 1495 break; 1496 } 1497 1498 case IPV6_RECVHOPLIMIT: 1499 /* cannot mix with RFC2292 */ 1500 if (OPTBIT(IN6P_RFC2292)) { 1501 error = EINVAL; 1502 break; 1503 } 1504 OPTSET(IN6P_HOPLIMIT); 1505 break; 1506 1507 case IPV6_RECVHOPOPTS: 1508 /* cannot mix with RFC2292 */ 1509 if (OPTBIT(IN6P_RFC2292)) { 1510 error = EINVAL; 1511 break; 1512 } 1513 OPTSET(IN6P_HOPOPTS); 1514 break; 1515 1516 case IPV6_RECVDSTOPTS: 1517 /* cannot mix with RFC2292 */ 1518 if (OPTBIT(IN6P_RFC2292)) { 1519 error = EINVAL; 1520 break; 1521 } 1522 OPTSET(IN6P_DSTOPTS); 1523 break; 1524 1525 case IPV6_RECVRTHDRDSTOPTS: 1526 /* cannot mix with RFC2292 */ 1527 if (OPTBIT(IN6P_RFC2292)) { 1528 error = EINVAL; 1529 break; 1530 } 1531 OPTSET(IN6P_RTHDRDSTOPTS); 1532 break; 1533 1534 case IPV6_RECVRTHDR: 1535 /* cannot mix with RFC2292 */ 1536 if (OPTBIT(IN6P_RFC2292)) { 1537 error = EINVAL; 1538 break; 1539 } 1540 OPTSET(IN6P_RTHDR); 1541 break; 1542 1543 case IPV6_RECVPATHMTU: 1544 /* 1545 * We ignore this option for TCP 1546 * sockets. 1547 * (RFC3542 leaves this case 1548 * unspecified.) 1549 */ 1550 if (uproto != IPPROTO_TCP) 1551 OPTSET(IN6P_MTU); 1552 break; 1553 1554 case IPV6_V6ONLY: 1555 /* 1556 * make setsockopt(IPV6_V6ONLY) 1557 * available only prior to bind(2). 1558 * see ipng mailing list, Jun 22 2001. 1559 */ 1560 if (in6p->inp_lport || 1561 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1562 error = EINVAL; 1563 break; 1564 } 1565 OPTSET(IN6P_IPV6_V6ONLY); 1566 if (optval) 1567 in6p->inp_vflag &= ~INP_IPV4; 1568 else 1569 in6p->inp_vflag |= INP_IPV4; 1570 break; 1571 case IPV6_RECVTCLASS: 1572 /* cannot mix with RFC2292 XXX */ 1573 if (OPTBIT(IN6P_RFC2292)) { 1574 error = EINVAL; 1575 break; 1576 } 1577 OPTSET(IN6P_TCLASS); 1578 break; 1579 case IPV6_AUTOFLOWLABEL: 1580 OPTSET(IN6P_AUTOFLOWLABEL); 1581 break; 1582 1583 case IPV6_BINDANY: 1584 OPTSET(INP_BINDANY); 1585 break; 1586 1587 case IPV6_BINDMULTI: 1588 OPTSET2(INP_BINDMULTI, optval); 1589 break; 1590 #ifdef RSS 1591 case IPV6_RSS_LISTEN_BUCKET: 1592 if ((optval >= 0) && 1593 (optval < rss_getnumbuckets())) { 1594 in6p->inp_rss_listen_bucket = optval; 1595 OPTSET2(INP_RSS_BUCKET_SET, 1); 1596 } else { 1597 error = EINVAL; 1598 } 1599 break; 1600 #endif 1601 } 1602 break; 1603 1604 case IPV6_TCLASS: 1605 case IPV6_DONTFRAG: 1606 case IPV6_USE_MIN_MTU: 1607 case IPV6_PREFER_TEMPADDR: 1608 if (optlen != sizeof(optval)) { 1609 error = EINVAL; 1610 break; 1611 } 1612 error = sooptcopyin(sopt, &optval, 1613 sizeof optval, sizeof optval); 1614 if (error) 1615 break; 1616 { 1617 struct ip6_pktopts **optp; 1618 optp = &in6p->in6p_outputopts; 1619 error = ip6_pcbopt(optname, 1620 (u_char *)&optval, sizeof(optval), 1621 optp, (td != NULL) ? td->td_ucred : 1622 NULL, uproto); 1623 break; 1624 } 1625 1626 case IPV6_2292PKTINFO: 1627 case IPV6_2292HOPLIMIT: 1628 case IPV6_2292HOPOPTS: 1629 case IPV6_2292DSTOPTS: 1630 case IPV6_2292RTHDR: 1631 /* RFC 2292 */ 1632 if (optlen != sizeof(int)) { 1633 error = EINVAL; 1634 break; 1635 } 1636 error = sooptcopyin(sopt, &optval, 1637 sizeof optval, sizeof optval); 1638 if (error) 1639 break; 1640 switch (optname) { 1641 case IPV6_2292PKTINFO: 1642 OPTSET2292(IN6P_PKTINFO); 1643 break; 1644 case IPV6_2292HOPLIMIT: 1645 OPTSET2292(IN6P_HOPLIMIT); 1646 break; 1647 case IPV6_2292HOPOPTS: 1648 /* 1649 * Check super-user privilege. 1650 * See comments for IPV6_RECVHOPOPTS. 1651 */ 1652 if (td != NULL) { 1653 error = priv_check(td, 1654 PRIV_NETINET_SETHDROPTS); 1655 if (error) 1656 return (error); 1657 } 1658 OPTSET2292(IN6P_HOPOPTS); 1659 break; 1660 case IPV6_2292DSTOPTS: 1661 if (td != NULL) { 1662 error = priv_check(td, 1663 PRIV_NETINET_SETHDROPTS); 1664 if (error) 1665 return (error); 1666 } 1667 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1668 break; 1669 case IPV6_2292RTHDR: 1670 OPTSET2292(IN6P_RTHDR); 1671 break; 1672 } 1673 break; 1674 case IPV6_PKTINFO: 1675 case IPV6_HOPOPTS: 1676 case IPV6_RTHDR: 1677 case IPV6_DSTOPTS: 1678 case IPV6_RTHDRDSTOPTS: 1679 case IPV6_NEXTHOP: 1680 { 1681 /* new advanced API (RFC3542) */ 1682 u_char *optbuf; 1683 u_char optbuf_storage[MCLBYTES]; 1684 int optlen; 1685 struct ip6_pktopts **optp; 1686 1687 /* cannot mix with RFC2292 */ 1688 if (OPTBIT(IN6P_RFC2292)) { 1689 error = EINVAL; 1690 break; 1691 } 1692 1693 /* 1694 * We only ensure valsize is not too large 1695 * here. Further validation will be done 1696 * later. 1697 */ 1698 error = sooptcopyin(sopt, optbuf_storage, 1699 sizeof(optbuf_storage), 0); 1700 if (error) 1701 break; 1702 optlen = sopt->sopt_valsize; 1703 optbuf = optbuf_storage; 1704 optp = &in6p->in6p_outputopts; 1705 error = ip6_pcbopt(optname, optbuf, optlen, 1706 optp, (td != NULL) ? td->td_ucred : NULL, 1707 uproto); 1708 break; 1709 } 1710 #undef OPTSET 1711 1712 case IPV6_MULTICAST_IF: 1713 case IPV6_MULTICAST_HOPS: 1714 case IPV6_MULTICAST_LOOP: 1715 case IPV6_JOIN_GROUP: 1716 case IPV6_LEAVE_GROUP: 1717 case IPV6_MSFILTER: 1718 case MCAST_BLOCK_SOURCE: 1719 case MCAST_UNBLOCK_SOURCE: 1720 case MCAST_JOIN_GROUP: 1721 case MCAST_LEAVE_GROUP: 1722 case MCAST_JOIN_SOURCE_GROUP: 1723 case MCAST_LEAVE_SOURCE_GROUP: 1724 error = ip6_setmoptions(in6p, sopt); 1725 break; 1726 1727 case IPV6_PORTRANGE: 1728 error = sooptcopyin(sopt, &optval, 1729 sizeof optval, sizeof optval); 1730 if (error) 1731 break; 1732 1733 INP_WLOCK(in6p); 1734 switch (optval) { 1735 case IPV6_PORTRANGE_DEFAULT: 1736 in6p->inp_flags &= ~(INP_LOWPORT); 1737 in6p->inp_flags &= ~(INP_HIGHPORT); 1738 break; 1739 1740 case IPV6_PORTRANGE_HIGH: 1741 in6p->inp_flags &= ~(INP_LOWPORT); 1742 in6p->inp_flags |= INP_HIGHPORT; 1743 break; 1744 1745 case IPV6_PORTRANGE_LOW: 1746 in6p->inp_flags &= ~(INP_HIGHPORT); 1747 in6p->inp_flags |= INP_LOWPORT; 1748 break; 1749 1750 default: 1751 error = EINVAL; 1752 break; 1753 } 1754 INP_WUNLOCK(in6p); 1755 break; 1756 1757 #ifdef IPSEC 1758 case IPV6_IPSEC_POLICY: 1759 { 1760 caddr_t req; 1761 struct mbuf *m; 1762 1763 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1764 break; 1765 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1766 break; 1767 req = mtod(m, caddr_t); 1768 error = ipsec_set_policy(in6p, optname, req, 1769 m->m_len, (sopt->sopt_td != NULL) ? 1770 sopt->sopt_td->td_ucred : NULL); 1771 m_freem(m); 1772 break; 1773 } 1774 #endif /* IPSEC */ 1775 1776 default: 1777 error = ENOPROTOOPT; 1778 break; 1779 } 1780 break; 1781 1782 case SOPT_GET: 1783 switch (optname) { 1784 1785 case IPV6_2292PKTOPTIONS: 1786 #ifdef IPV6_PKTOPTIONS 1787 case IPV6_PKTOPTIONS: 1788 #endif 1789 /* 1790 * RFC3542 (effectively) deprecated the 1791 * semantics of the 2292-style pktoptions. 1792 * Since it was not reliable in nature (i.e., 1793 * applications had to expect the lack of some 1794 * information after all), it would make sense 1795 * to simplify this part by always returning 1796 * empty data. 1797 */ 1798 sopt->sopt_valsize = 0; 1799 break; 1800 1801 case IPV6_RECVHOPOPTS: 1802 case IPV6_RECVDSTOPTS: 1803 case IPV6_RECVRTHDRDSTOPTS: 1804 case IPV6_UNICAST_HOPS: 1805 case IPV6_RECVPKTINFO: 1806 case IPV6_RECVHOPLIMIT: 1807 case IPV6_RECVRTHDR: 1808 case IPV6_RECVPATHMTU: 1809 1810 case IPV6_V6ONLY: 1811 case IPV6_PORTRANGE: 1812 case IPV6_RECVTCLASS: 1813 case IPV6_AUTOFLOWLABEL: 1814 case IPV6_BINDANY: 1815 case IPV6_FLOWID: 1816 case IPV6_FLOWTYPE: 1817 #ifdef RSS 1818 case IPV6_RSSBUCKETID: 1819 #endif 1820 switch (optname) { 1821 1822 case IPV6_RECVHOPOPTS: 1823 optval = OPTBIT(IN6P_HOPOPTS); 1824 break; 1825 1826 case IPV6_RECVDSTOPTS: 1827 optval = OPTBIT(IN6P_DSTOPTS); 1828 break; 1829 1830 case IPV6_RECVRTHDRDSTOPTS: 1831 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1832 break; 1833 1834 case IPV6_UNICAST_HOPS: 1835 optval = in6p->in6p_hops; 1836 break; 1837 1838 case IPV6_RECVPKTINFO: 1839 optval = OPTBIT(IN6P_PKTINFO); 1840 break; 1841 1842 case IPV6_RECVHOPLIMIT: 1843 optval = OPTBIT(IN6P_HOPLIMIT); 1844 break; 1845 1846 case IPV6_RECVRTHDR: 1847 optval = OPTBIT(IN6P_RTHDR); 1848 break; 1849 1850 case IPV6_RECVPATHMTU: 1851 optval = OPTBIT(IN6P_MTU); 1852 break; 1853 1854 case IPV6_V6ONLY: 1855 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1856 break; 1857 1858 case IPV6_PORTRANGE: 1859 { 1860 int flags; 1861 flags = in6p->inp_flags; 1862 if (flags & INP_HIGHPORT) 1863 optval = IPV6_PORTRANGE_HIGH; 1864 else if (flags & INP_LOWPORT) 1865 optval = IPV6_PORTRANGE_LOW; 1866 else 1867 optval = 0; 1868 break; 1869 } 1870 case IPV6_RECVTCLASS: 1871 optval = OPTBIT(IN6P_TCLASS); 1872 break; 1873 1874 case IPV6_AUTOFLOWLABEL: 1875 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1876 break; 1877 1878 case IPV6_BINDANY: 1879 optval = OPTBIT(INP_BINDANY); 1880 break; 1881 1882 case IPV6_FLOWID: 1883 optval = in6p->inp_flowid; 1884 break; 1885 1886 case IPV6_FLOWTYPE: 1887 optval = in6p->inp_flowtype; 1888 break; 1889 #ifdef RSS 1890 case IPV6_RSSBUCKETID: 1891 retval = 1892 rss_hash2bucket(in6p->inp_flowid, 1893 in6p->inp_flowtype, 1894 &rss_bucket); 1895 if (retval == 0) 1896 optval = rss_bucket; 1897 else 1898 error = EINVAL; 1899 break; 1900 #endif 1901 1902 case IPV6_BINDMULTI: 1903 optval = OPTBIT2(INP_BINDMULTI); 1904 break; 1905 1906 } 1907 if (error) 1908 break; 1909 error = sooptcopyout(sopt, &optval, 1910 sizeof optval); 1911 break; 1912 1913 case IPV6_PATHMTU: 1914 { 1915 u_long pmtu = 0; 1916 struct ip6_mtuinfo mtuinfo; 1917 struct route_in6 sro; 1918 1919 bzero(&sro, sizeof(sro)); 1920 1921 if (!(so->so_state & SS_ISCONNECTED)) 1922 return (ENOTCONN); 1923 /* 1924 * XXX: we dot not consider the case of source 1925 * routing, or optional information to specify 1926 * the outgoing interface. 1927 */ 1928 error = ip6_getpmtu(&sro, NULL, NULL, 1929 &in6p->in6p_faddr, &pmtu, NULL, 1930 so->so_fibnum); 1931 if (sro.ro_rt) 1932 RTFREE(sro.ro_rt); 1933 if (error) 1934 break; 1935 if (pmtu > IPV6_MAXPACKET) 1936 pmtu = IPV6_MAXPACKET; 1937 1938 bzero(&mtuinfo, sizeof(mtuinfo)); 1939 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1940 optdata = (void *)&mtuinfo; 1941 optdatalen = sizeof(mtuinfo); 1942 error = sooptcopyout(sopt, optdata, 1943 optdatalen); 1944 break; 1945 } 1946 1947 case IPV6_2292PKTINFO: 1948 case IPV6_2292HOPLIMIT: 1949 case IPV6_2292HOPOPTS: 1950 case IPV6_2292RTHDR: 1951 case IPV6_2292DSTOPTS: 1952 switch (optname) { 1953 case IPV6_2292PKTINFO: 1954 optval = OPTBIT(IN6P_PKTINFO); 1955 break; 1956 case IPV6_2292HOPLIMIT: 1957 optval = OPTBIT(IN6P_HOPLIMIT); 1958 break; 1959 case IPV6_2292HOPOPTS: 1960 optval = OPTBIT(IN6P_HOPOPTS); 1961 break; 1962 case IPV6_2292RTHDR: 1963 optval = OPTBIT(IN6P_RTHDR); 1964 break; 1965 case IPV6_2292DSTOPTS: 1966 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1967 break; 1968 } 1969 error = sooptcopyout(sopt, &optval, 1970 sizeof optval); 1971 break; 1972 case IPV6_PKTINFO: 1973 case IPV6_HOPOPTS: 1974 case IPV6_RTHDR: 1975 case IPV6_DSTOPTS: 1976 case IPV6_RTHDRDSTOPTS: 1977 case IPV6_NEXTHOP: 1978 case IPV6_TCLASS: 1979 case IPV6_DONTFRAG: 1980 case IPV6_USE_MIN_MTU: 1981 case IPV6_PREFER_TEMPADDR: 1982 error = ip6_getpcbopt(in6p->in6p_outputopts, 1983 optname, sopt); 1984 break; 1985 1986 case IPV6_MULTICAST_IF: 1987 case IPV6_MULTICAST_HOPS: 1988 case IPV6_MULTICAST_LOOP: 1989 case IPV6_MSFILTER: 1990 error = ip6_getmoptions(in6p, sopt); 1991 break; 1992 1993 #ifdef IPSEC 1994 case IPV6_IPSEC_POLICY: 1995 { 1996 caddr_t req = NULL; 1997 size_t len = 0; 1998 struct mbuf *m = NULL; 1999 struct mbuf **mp = &m; 2000 size_t ovalsize = sopt->sopt_valsize; 2001 caddr_t oval = (caddr_t)sopt->sopt_val; 2002 2003 error = soopt_getm(sopt, &m); /* XXX */ 2004 if (error != 0) 2005 break; 2006 error = soopt_mcopyin(sopt, m); /* XXX */ 2007 if (error != 0) 2008 break; 2009 sopt->sopt_valsize = ovalsize; 2010 sopt->sopt_val = oval; 2011 if (m) { 2012 req = mtod(m, caddr_t); 2013 len = m->m_len; 2014 } 2015 error = ipsec_get_policy(in6p, req, len, mp); 2016 if (error == 0) 2017 error = soopt_mcopyout(sopt, m); /* XXX */ 2018 if (error == 0 && m) 2019 m_freem(m); 2020 break; 2021 } 2022 #endif /* IPSEC */ 2023 2024 default: 2025 error = ENOPROTOOPT; 2026 break; 2027 } 2028 break; 2029 } 2030 } 2031 return (error); 2032 } 2033 2034 int 2035 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2036 { 2037 int error = 0, optval, optlen; 2038 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2039 struct inpcb *in6p = sotoinpcb(so); 2040 int level, op, optname; 2041 2042 level = sopt->sopt_level; 2043 op = sopt->sopt_dir; 2044 optname = sopt->sopt_name; 2045 optlen = sopt->sopt_valsize; 2046 2047 if (level != IPPROTO_IPV6) { 2048 return (EINVAL); 2049 } 2050 2051 switch (optname) { 2052 case IPV6_CHECKSUM: 2053 /* 2054 * For ICMPv6 sockets, no modification allowed for checksum 2055 * offset, permit "no change" values to help existing apps. 2056 * 2057 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2058 * for an ICMPv6 socket will fail." 2059 * The current behavior does not meet RFC3542. 2060 */ 2061 switch (op) { 2062 case SOPT_SET: 2063 if (optlen != sizeof(int)) { 2064 error = EINVAL; 2065 break; 2066 } 2067 error = sooptcopyin(sopt, &optval, sizeof(optval), 2068 sizeof(optval)); 2069 if (error) 2070 break; 2071 if ((optval % 2) != 0) { 2072 /* the API assumes even offset values */ 2073 error = EINVAL; 2074 } else if (so->so_proto->pr_protocol == 2075 IPPROTO_ICMPV6) { 2076 if (optval != icmp6off) 2077 error = EINVAL; 2078 } else 2079 in6p->in6p_cksum = optval; 2080 break; 2081 2082 case SOPT_GET: 2083 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2084 optval = icmp6off; 2085 else 2086 optval = in6p->in6p_cksum; 2087 2088 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2089 break; 2090 2091 default: 2092 error = EINVAL; 2093 break; 2094 } 2095 break; 2096 2097 default: 2098 error = ENOPROTOOPT; 2099 break; 2100 } 2101 2102 return (error); 2103 } 2104 2105 /* 2106 * Set up IP6 options in pcb for insertion in output packets or 2107 * specifying behavior of outgoing packets. 2108 */ 2109 static int 2110 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2111 struct socket *so, struct sockopt *sopt) 2112 { 2113 struct ip6_pktopts *opt = *pktopt; 2114 int error = 0; 2115 struct thread *td = sopt->sopt_td; 2116 2117 /* turn off any old options. */ 2118 if (opt) { 2119 #ifdef DIAGNOSTIC 2120 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2121 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2122 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2123 printf("ip6_pcbopts: all specified options are cleared.\n"); 2124 #endif 2125 ip6_clearpktopts(opt, -1); 2126 } else 2127 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2128 *pktopt = NULL; 2129 2130 if (!m || m->m_len == 0) { 2131 /* 2132 * Only turning off any previous options, regardless of 2133 * whether the opt is just created or given. 2134 */ 2135 free(opt, M_IP6OPT); 2136 return (0); 2137 } 2138 2139 /* set options specified by user. */ 2140 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2141 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2142 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2143 free(opt, M_IP6OPT); 2144 return (error); 2145 } 2146 *pktopt = opt; 2147 return (0); 2148 } 2149 2150 /* 2151 * initialize ip6_pktopts. beware that there are non-zero default values in 2152 * the struct. 2153 */ 2154 void 2155 ip6_initpktopts(struct ip6_pktopts *opt) 2156 { 2157 2158 bzero(opt, sizeof(*opt)); 2159 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2160 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2161 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2162 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2163 } 2164 2165 static int 2166 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2167 struct ucred *cred, int uproto) 2168 { 2169 struct ip6_pktopts *opt; 2170 2171 if (*pktopt == NULL) { 2172 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2173 M_WAITOK); 2174 ip6_initpktopts(*pktopt); 2175 } 2176 opt = *pktopt; 2177 2178 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2179 } 2180 2181 static int 2182 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2183 { 2184 void *optdata = NULL; 2185 int optdatalen = 0; 2186 struct ip6_ext *ip6e; 2187 int error = 0; 2188 struct in6_pktinfo null_pktinfo; 2189 int deftclass = 0, on; 2190 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2191 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2192 2193 switch (optname) { 2194 case IPV6_PKTINFO: 2195 if (pktopt && pktopt->ip6po_pktinfo) 2196 optdata = (void *)pktopt->ip6po_pktinfo; 2197 else { 2198 /* XXX: we don't have to do this every time... */ 2199 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2200 optdata = (void *)&null_pktinfo; 2201 } 2202 optdatalen = sizeof(struct in6_pktinfo); 2203 break; 2204 case IPV6_TCLASS: 2205 if (pktopt && pktopt->ip6po_tclass >= 0) 2206 optdata = (void *)&pktopt->ip6po_tclass; 2207 else 2208 optdata = (void *)&deftclass; 2209 optdatalen = sizeof(int); 2210 break; 2211 case IPV6_HOPOPTS: 2212 if (pktopt && pktopt->ip6po_hbh) { 2213 optdata = (void *)pktopt->ip6po_hbh; 2214 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2215 optdatalen = (ip6e->ip6e_len + 1) << 3; 2216 } 2217 break; 2218 case IPV6_RTHDR: 2219 if (pktopt && pktopt->ip6po_rthdr) { 2220 optdata = (void *)pktopt->ip6po_rthdr; 2221 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2222 optdatalen = (ip6e->ip6e_len + 1) << 3; 2223 } 2224 break; 2225 case IPV6_RTHDRDSTOPTS: 2226 if (pktopt && pktopt->ip6po_dest1) { 2227 optdata = (void *)pktopt->ip6po_dest1; 2228 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2229 optdatalen = (ip6e->ip6e_len + 1) << 3; 2230 } 2231 break; 2232 case IPV6_DSTOPTS: 2233 if (pktopt && pktopt->ip6po_dest2) { 2234 optdata = (void *)pktopt->ip6po_dest2; 2235 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2236 optdatalen = (ip6e->ip6e_len + 1) << 3; 2237 } 2238 break; 2239 case IPV6_NEXTHOP: 2240 if (pktopt && pktopt->ip6po_nexthop) { 2241 optdata = (void *)pktopt->ip6po_nexthop; 2242 optdatalen = pktopt->ip6po_nexthop->sa_len; 2243 } 2244 break; 2245 case IPV6_USE_MIN_MTU: 2246 if (pktopt) 2247 optdata = (void *)&pktopt->ip6po_minmtu; 2248 else 2249 optdata = (void *)&defminmtu; 2250 optdatalen = sizeof(int); 2251 break; 2252 case IPV6_DONTFRAG: 2253 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2254 on = 1; 2255 else 2256 on = 0; 2257 optdata = (void *)&on; 2258 optdatalen = sizeof(on); 2259 break; 2260 case IPV6_PREFER_TEMPADDR: 2261 if (pktopt) 2262 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2263 else 2264 optdata = (void *)&defpreftemp; 2265 optdatalen = sizeof(int); 2266 break; 2267 default: /* should not happen */ 2268 #ifdef DIAGNOSTIC 2269 panic("ip6_getpcbopt: unexpected option\n"); 2270 #endif 2271 return (ENOPROTOOPT); 2272 } 2273 2274 error = sooptcopyout(sopt, optdata, optdatalen); 2275 2276 return (error); 2277 } 2278 2279 void 2280 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2281 { 2282 if (pktopt == NULL) 2283 return; 2284 2285 if (optname == -1 || optname == IPV6_PKTINFO) { 2286 if (pktopt->ip6po_pktinfo) 2287 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2288 pktopt->ip6po_pktinfo = NULL; 2289 } 2290 if (optname == -1 || optname == IPV6_HOPLIMIT) 2291 pktopt->ip6po_hlim = -1; 2292 if (optname == -1 || optname == IPV6_TCLASS) 2293 pktopt->ip6po_tclass = -1; 2294 if (optname == -1 || optname == IPV6_NEXTHOP) { 2295 if (pktopt->ip6po_nextroute.ro_rt) { 2296 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2297 pktopt->ip6po_nextroute.ro_rt = NULL; 2298 } 2299 if (pktopt->ip6po_nexthop) 2300 free(pktopt->ip6po_nexthop, M_IP6OPT); 2301 pktopt->ip6po_nexthop = NULL; 2302 } 2303 if (optname == -1 || optname == IPV6_HOPOPTS) { 2304 if (pktopt->ip6po_hbh) 2305 free(pktopt->ip6po_hbh, M_IP6OPT); 2306 pktopt->ip6po_hbh = NULL; 2307 } 2308 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2309 if (pktopt->ip6po_dest1) 2310 free(pktopt->ip6po_dest1, M_IP6OPT); 2311 pktopt->ip6po_dest1 = NULL; 2312 } 2313 if (optname == -1 || optname == IPV6_RTHDR) { 2314 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2315 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2316 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2317 if (pktopt->ip6po_route.ro_rt) { 2318 RTFREE(pktopt->ip6po_route.ro_rt); 2319 pktopt->ip6po_route.ro_rt = NULL; 2320 } 2321 } 2322 if (optname == -1 || optname == IPV6_DSTOPTS) { 2323 if (pktopt->ip6po_dest2) 2324 free(pktopt->ip6po_dest2, M_IP6OPT); 2325 pktopt->ip6po_dest2 = NULL; 2326 } 2327 } 2328 2329 #define PKTOPT_EXTHDRCPY(type) \ 2330 do {\ 2331 if (src->type) {\ 2332 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2333 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2334 if (dst->type == NULL && canwait == M_NOWAIT)\ 2335 goto bad;\ 2336 bcopy(src->type, dst->type, hlen);\ 2337 }\ 2338 } while (/*CONSTCOND*/ 0) 2339 2340 static int 2341 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2342 { 2343 if (dst == NULL || src == NULL) { 2344 printf("ip6_clearpktopts: invalid argument\n"); 2345 return (EINVAL); 2346 } 2347 2348 dst->ip6po_hlim = src->ip6po_hlim; 2349 dst->ip6po_tclass = src->ip6po_tclass; 2350 dst->ip6po_flags = src->ip6po_flags; 2351 dst->ip6po_minmtu = src->ip6po_minmtu; 2352 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2353 if (src->ip6po_pktinfo) { 2354 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2355 M_IP6OPT, canwait); 2356 if (dst->ip6po_pktinfo == NULL) 2357 goto bad; 2358 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2359 } 2360 if (src->ip6po_nexthop) { 2361 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2362 M_IP6OPT, canwait); 2363 if (dst->ip6po_nexthop == NULL) 2364 goto bad; 2365 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2366 src->ip6po_nexthop->sa_len); 2367 } 2368 PKTOPT_EXTHDRCPY(ip6po_hbh); 2369 PKTOPT_EXTHDRCPY(ip6po_dest1); 2370 PKTOPT_EXTHDRCPY(ip6po_dest2); 2371 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2372 return (0); 2373 2374 bad: 2375 ip6_clearpktopts(dst, -1); 2376 return (ENOBUFS); 2377 } 2378 #undef PKTOPT_EXTHDRCPY 2379 2380 struct ip6_pktopts * 2381 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2382 { 2383 int error; 2384 struct ip6_pktopts *dst; 2385 2386 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2387 if (dst == NULL) 2388 return (NULL); 2389 ip6_initpktopts(dst); 2390 2391 if ((error = copypktopts(dst, src, canwait)) != 0) { 2392 free(dst, M_IP6OPT); 2393 return (NULL); 2394 } 2395 2396 return (dst); 2397 } 2398 2399 void 2400 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2401 { 2402 if (pktopt == NULL) 2403 return; 2404 2405 ip6_clearpktopts(pktopt, -1); 2406 2407 free(pktopt, M_IP6OPT); 2408 } 2409 2410 /* 2411 * Set IPv6 outgoing packet options based on advanced API. 2412 */ 2413 int 2414 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2415 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2416 { 2417 struct cmsghdr *cm = 0; 2418 2419 if (control == NULL || opt == NULL) 2420 return (EINVAL); 2421 2422 ip6_initpktopts(opt); 2423 if (stickyopt) { 2424 int error; 2425 2426 /* 2427 * If stickyopt is provided, make a local copy of the options 2428 * for this particular packet, then override them by ancillary 2429 * objects. 2430 * XXX: copypktopts() does not copy the cached route to a next 2431 * hop (if any). This is not very good in terms of efficiency, 2432 * but we can allow this since this option should be rarely 2433 * used. 2434 */ 2435 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2436 return (error); 2437 } 2438 2439 /* 2440 * XXX: Currently, we assume all the optional information is stored 2441 * in a single mbuf. 2442 */ 2443 if (control->m_next) 2444 return (EINVAL); 2445 2446 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2447 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2448 int error; 2449 2450 if (control->m_len < CMSG_LEN(0)) 2451 return (EINVAL); 2452 2453 cm = mtod(control, struct cmsghdr *); 2454 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2455 return (EINVAL); 2456 if (cm->cmsg_level != IPPROTO_IPV6) 2457 continue; 2458 2459 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2460 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2461 if (error) 2462 return (error); 2463 } 2464 2465 return (0); 2466 } 2467 2468 /* 2469 * Set a particular packet option, as a sticky option or an ancillary data 2470 * item. "len" can be 0 only when it's a sticky option. 2471 * We have 4 cases of combination of "sticky" and "cmsg": 2472 * "sticky=0, cmsg=0": impossible 2473 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2474 * "sticky=1, cmsg=0": RFC3542 socket option 2475 * "sticky=1, cmsg=1": RFC2292 socket option 2476 */ 2477 static int 2478 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2479 struct ucred *cred, int sticky, int cmsg, int uproto) 2480 { 2481 int minmtupolicy, preftemp; 2482 int error; 2483 2484 if (!sticky && !cmsg) { 2485 #ifdef DIAGNOSTIC 2486 printf("ip6_setpktopt: impossible case\n"); 2487 #endif 2488 return (EINVAL); 2489 } 2490 2491 /* 2492 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2493 * not be specified in the context of RFC3542. Conversely, 2494 * RFC3542 types should not be specified in the context of RFC2292. 2495 */ 2496 if (!cmsg) { 2497 switch (optname) { 2498 case IPV6_2292PKTINFO: 2499 case IPV6_2292HOPLIMIT: 2500 case IPV6_2292NEXTHOP: 2501 case IPV6_2292HOPOPTS: 2502 case IPV6_2292DSTOPTS: 2503 case IPV6_2292RTHDR: 2504 case IPV6_2292PKTOPTIONS: 2505 return (ENOPROTOOPT); 2506 } 2507 } 2508 if (sticky && cmsg) { 2509 switch (optname) { 2510 case IPV6_PKTINFO: 2511 case IPV6_HOPLIMIT: 2512 case IPV6_NEXTHOP: 2513 case IPV6_HOPOPTS: 2514 case IPV6_DSTOPTS: 2515 case IPV6_RTHDRDSTOPTS: 2516 case IPV6_RTHDR: 2517 case IPV6_USE_MIN_MTU: 2518 case IPV6_DONTFRAG: 2519 case IPV6_TCLASS: 2520 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2521 return (ENOPROTOOPT); 2522 } 2523 } 2524 2525 switch (optname) { 2526 case IPV6_2292PKTINFO: 2527 case IPV6_PKTINFO: 2528 { 2529 struct ifnet *ifp = NULL; 2530 struct in6_pktinfo *pktinfo; 2531 2532 if (len != sizeof(struct in6_pktinfo)) 2533 return (EINVAL); 2534 2535 pktinfo = (struct in6_pktinfo *)buf; 2536 2537 /* 2538 * An application can clear any sticky IPV6_PKTINFO option by 2539 * doing a "regular" setsockopt with ipi6_addr being 2540 * in6addr_any and ipi6_ifindex being zero. 2541 * [RFC 3542, Section 6] 2542 */ 2543 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2544 pktinfo->ipi6_ifindex == 0 && 2545 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2546 ip6_clearpktopts(opt, optname); 2547 break; 2548 } 2549 2550 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2551 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2552 return (EINVAL); 2553 } 2554 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2555 return (EINVAL); 2556 /* validate the interface index if specified. */ 2557 if (pktinfo->ipi6_ifindex > V_if_index) 2558 return (ENXIO); 2559 if (pktinfo->ipi6_ifindex) { 2560 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2561 if (ifp == NULL) 2562 return (ENXIO); 2563 } 2564 if (ifp != NULL && ( 2565 ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) 2566 return (ENETDOWN); 2567 2568 if (ifp != NULL && 2569 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2570 struct in6_ifaddr *ia; 2571 2572 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2573 if (ia == NULL) 2574 return (EADDRNOTAVAIL); 2575 ifa_free(&ia->ia_ifa); 2576 } 2577 /* 2578 * We store the address anyway, and let in6_selectsrc() 2579 * validate the specified address. This is because ipi6_addr 2580 * may not have enough information about its scope zone, and 2581 * we may need additional information (such as outgoing 2582 * interface or the scope zone of a destination address) to 2583 * disambiguate the scope. 2584 * XXX: the delay of the validation may confuse the 2585 * application when it is used as a sticky option. 2586 */ 2587 if (opt->ip6po_pktinfo == NULL) { 2588 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2589 M_IP6OPT, M_NOWAIT); 2590 if (opt->ip6po_pktinfo == NULL) 2591 return (ENOBUFS); 2592 } 2593 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2594 break; 2595 } 2596 2597 case IPV6_2292HOPLIMIT: 2598 case IPV6_HOPLIMIT: 2599 { 2600 int *hlimp; 2601 2602 /* 2603 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2604 * to simplify the ordering among hoplimit options. 2605 */ 2606 if (optname == IPV6_HOPLIMIT && sticky) 2607 return (ENOPROTOOPT); 2608 2609 if (len != sizeof(int)) 2610 return (EINVAL); 2611 hlimp = (int *)buf; 2612 if (*hlimp < -1 || *hlimp > 255) 2613 return (EINVAL); 2614 2615 opt->ip6po_hlim = *hlimp; 2616 break; 2617 } 2618 2619 case IPV6_TCLASS: 2620 { 2621 int tclass; 2622 2623 if (len != sizeof(int)) 2624 return (EINVAL); 2625 tclass = *(int *)buf; 2626 if (tclass < -1 || tclass > 255) 2627 return (EINVAL); 2628 2629 opt->ip6po_tclass = tclass; 2630 break; 2631 } 2632 2633 case IPV6_2292NEXTHOP: 2634 case IPV6_NEXTHOP: 2635 if (cred != NULL) { 2636 error = priv_check_cred(cred, 2637 PRIV_NETINET_SETHDROPTS, 0); 2638 if (error) 2639 return (error); 2640 } 2641 2642 if (len == 0) { /* just remove the option */ 2643 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2644 break; 2645 } 2646 2647 /* check if cmsg_len is large enough for sa_len */ 2648 if (len < sizeof(struct sockaddr) || len < *buf) 2649 return (EINVAL); 2650 2651 switch (((struct sockaddr *)buf)->sa_family) { 2652 case AF_INET6: 2653 { 2654 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2655 int error; 2656 2657 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2658 return (EINVAL); 2659 2660 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2661 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2662 return (EINVAL); 2663 } 2664 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2665 != 0) { 2666 return (error); 2667 } 2668 break; 2669 } 2670 case AF_LINK: /* should eventually be supported */ 2671 default: 2672 return (EAFNOSUPPORT); 2673 } 2674 2675 /* turn off the previous option, then set the new option. */ 2676 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2677 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2678 if (opt->ip6po_nexthop == NULL) 2679 return (ENOBUFS); 2680 bcopy(buf, opt->ip6po_nexthop, *buf); 2681 break; 2682 2683 case IPV6_2292HOPOPTS: 2684 case IPV6_HOPOPTS: 2685 { 2686 struct ip6_hbh *hbh; 2687 int hbhlen; 2688 2689 /* 2690 * XXX: We don't allow a non-privileged user to set ANY HbH 2691 * options, since per-option restriction has too much 2692 * overhead. 2693 */ 2694 if (cred != NULL) { 2695 error = priv_check_cred(cred, 2696 PRIV_NETINET_SETHDROPTS, 0); 2697 if (error) 2698 return (error); 2699 } 2700 2701 if (len == 0) { 2702 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2703 break; /* just remove the option */ 2704 } 2705 2706 /* message length validation */ 2707 if (len < sizeof(struct ip6_hbh)) 2708 return (EINVAL); 2709 hbh = (struct ip6_hbh *)buf; 2710 hbhlen = (hbh->ip6h_len + 1) << 3; 2711 if (len != hbhlen) 2712 return (EINVAL); 2713 2714 /* turn off the previous option, then set the new option. */ 2715 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2716 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2717 if (opt->ip6po_hbh == NULL) 2718 return (ENOBUFS); 2719 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2720 2721 break; 2722 } 2723 2724 case IPV6_2292DSTOPTS: 2725 case IPV6_DSTOPTS: 2726 case IPV6_RTHDRDSTOPTS: 2727 { 2728 struct ip6_dest *dest, **newdest = NULL; 2729 int destlen; 2730 2731 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2732 error = priv_check_cred(cred, 2733 PRIV_NETINET_SETHDROPTS, 0); 2734 if (error) 2735 return (error); 2736 } 2737 2738 if (len == 0) { 2739 ip6_clearpktopts(opt, optname); 2740 break; /* just remove the option */ 2741 } 2742 2743 /* message length validation */ 2744 if (len < sizeof(struct ip6_dest)) 2745 return (EINVAL); 2746 dest = (struct ip6_dest *)buf; 2747 destlen = (dest->ip6d_len + 1) << 3; 2748 if (len != destlen) 2749 return (EINVAL); 2750 2751 /* 2752 * Determine the position that the destination options header 2753 * should be inserted; before or after the routing header. 2754 */ 2755 switch (optname) { 2756 case IPV6_2292DSTOPTS: 2757 /* 2758 * The old advacned API is ambiguous on this point. 2759 * Our approach is to determine the position based 2760 * according to the existence of a routing header. 2761 * Note, however, that this depends on the order of the 2762 * extension headers in the ancillary data; the 1st 2763 * part of the destination options header must appear 2764 * before the routing header in the ancillary data, 2765 * too. 2766 * RFC3542 solved the ambiguity by introducing 2767 * separate ancillary data or option types. 2768 */ 2769 if (opt->ip6po_rthdr == NULL) 2770 newdest = &opt->ip6po_dest1; 2771 else 2772 newdest = &opt->ip6po_dest2; 2773 break; 2774 case IPV6_RTHDRDSTOPTS: 2775 newdest = &opt->ip6po_dest1; 2776 break; 2777 case IPV6_DSTOPTS: 2778 newdest = &opt->ip6po_dest2; 2779 break; 2780 } 2781 2782 /* turn off the previous option, then set the new option. */ 2783 ip6_clearpktopts(opt, optname); 2784 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2785 if (*newdest == NULL) 2786 return (ENOBUFS); 2787 bcopy(dest, *newdest, destlen); 2788 2789 break; 2790 } 2791 2792 case IPV6_2292RTHDR: 2793 case IPV6_RTHDR: 2794 { 2795 struct ip6_rthdr *rth; 2796 int rthlen; 2797 2798 if (len == 0) { 2799 ip6_clearpktopts(opt, IPV6_RTHDR); 2800 break; /* just remove the option */ 2801 } 2802 2803 /* message length validation */ 2804 if (len < sizeof(struct ip6_rthdr)) 2805 return (EINVAL); 2806 rth = (struct ip6_rthdr *)buf; 2807 rthlen = (rth->ip6r_len + 1) << 3; 2808 if (len != rthlen) 2809 return (EINVAL); 2810 2811 switch (rth->ip6r_type) { 2812 case IPV6_RTHDR_TYPE_0: 2813 if (rth->ip6r_len == 0) /* must contain one addr */ 2814 return (EINVAL); 2815 if (rth->ip6r_len % 2) /* length must be even */ 2816 return (EINVAL); 2817 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2818 return (EINVAL); 2819 break; 2820 default: 2821 return (EINVAL); /* not supported */ 2822 } 2823 2824 /* turn off the previous option */ 2825 ip6_clearpktopts(opt, IPV6_RTHDR); 2826 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2827 if (opt->ip6po_rthdr == NULL) 2828 return (ENOBUFS); 2829 bcopy(rth, opt->ip6po_rthdr, rthlen); 2830 2831 break; 2832 } 2833 2834 case IPV6_USE_MIN_MTU: 2835 if (len != sizeof(int)) 2836 return (EINVAL); 2837 minmtupolicy = *(int *)buf; 2838 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2839 minmtupolicy != IP6PO_MINMTU_DISABLE && 2840 minmtupolicy != IP6PO_MINMTU_ALL) { 2841 return (EINVAL); 2842 } 2843 opt->ip6po_minmtu = minmtupolicy; 2844 break; 2845 2846 case IPV6_DONTFRAG: 2847 if (len != sizeof(int)) 2848 return (EINVAL); 2849 2850 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2851 /* 2852 * we ignore this option for TCP sockets. 2853 * (RFC3542 leaves this case unspecified.) 2854 */ 2855 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2856 } else 2857 opt->ip6po_flags |= IP6PO_DONTFRAG; 2858 break; 2859 2860 case IPV6_PREFER_TEMPADDR: 2861 if (len != sizeof(int)) 2862 return (EINVAL); 2863 preftemp = *(int *)buf; 2864 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 2865 preftemp != IP6PO_TEMPADDR_NOTPREFER && 2866 preftemp != IP6PO_TEMPADDR_PREFER) { 2867 return (EINVAL); 2868 } 2869 opt->ip6po_prefer_tempaddr = preftemp; 2870 break; 2871 2872 default: 2873 return (ENOPROTOOPT); 2874 } /* end of switch */ 2875 2876 return (0); 2877 } 2878 2879 /* 2880 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2881 * packet to the input queue of a specified interface. Note that this 2882 * calls the output routine of the loopback "driver", but with an interface 2883 * pointer that might NOT be &loif -- easier than replicating that code here. 2884 */ 2885 void 2886 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 2887 { 2888 struct mbuf *copym; 2889 struct ip6_hdr *ip6; 2890 2891 copym = m_copy(m, 0, M_COPYALL); 2892 if (copym == NULL) 2893 return; 2894 2895 /* 2896 * Make sure to deep-copy IPv6 header portion in case the data 2897 * is in an mbuf cluster, so that we can safely override the IPv6 2898 * header portion later. 2899 */ 2900 if (!M_WRITABLE(copym) || 2901 copym->m_len < sizeof(struct ip6_hdr)) { 2902 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2903 if (copym == NULL) 2904 return; 2905 } 2906 2907 #ifdef DIAGNOSTIC 2908 if (copym->m_len < sizeof(*ip6)) { 2909 m_freem(copym); 2910 return; 2911 } 2912 #endif 2913 2914 ip6 = mtod(copym, struct ip6_hdr *); 2915 /* 2916 * clear embedded scope identifiers if necessary. 2917 * in6_clearscope will touch the addresses only when necessary. 2918 */ 2919 in6_clearscope(&ip6->ip6_src); 2920 in6_clearscope(&ip6->ip6_dst); 2921 2922 (void)if_simloop(ifp, copym, dst->sin6_family, 0); 2923 } 2924 2925 /* 2926 * Chop IPv6 header off from the payload. 2927 */ 2928 static int 2929 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 2930 { 2931 struct mbuf *mh; 2932 struct ip6_hdr *ip6; 2933 2934 ip6 = mtod(m, struct ip6_hdr *); 2935 if (m->m_len > sizeof(*ip6)) { 2936 mh = m_gethdr(M_NOWAIT, MT_DATA); 2937 if (mh == NULL) { 2938 m_freem(m); 2939 return ENOBUFS; 2940 } 2941 m_move_pkthdr(mh, m); 2942 MH_ALIGN(mh, sizeof(*ip6)); 2943 m->m_len -= sizeof(*ip6); 2944 m->m_data += sizeof(*ip6); 2945 mh->m_next = m; 2946 m = mh; 2947 m->m_len = sizeof(*ip6); 2948 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2949 } 2950 exthdrs->ip6e_ip6 = m; 2951 return 0; 2952 } 2953 2954 /* 2955 * Compute IPv6 extension header length. 2956 */ 2957 int 2958 ip6_optlen(struct inpcb *in6p) 2959 { 2960 int len; 2961 2962 if (!in6p->in6p_outputopts) 2963 return 0; 2964 2965 len = 0; 2966 #define elen(x) \ 2967 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2968 2969 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2970 if (in6p->in6p_outputopts->ip6po_rthdr) 2971 /* dest1 is valid with rthdr only */ 2972 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2973 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2974 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2975 return len; 2976 #undef elen 2977 } 2978