1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #include "opt_kern_tls.h" 72 #include "opt_ratelimit.h" 73 #include "opt_route.h" 74 #include "opt_rss.h" 75 #include "opt_sctp.h" 76 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/ktls.h> 80 #include <sys/malloc.h> 81 #include <sys/mbuf.h> 82 #include <sys/errno.h> 83 #include <sys/priv.h> 84 #include <sys/proc.h> 85 #include <sys/protosw.h> 86 #include <sys/socket.h> 87 #include <sys/socketvar.h> 88 #include <sys/syslog.h> 89 #include <sys/ucred.h> 90 91 #include <machine/in_cksum.h> 92 93 #include <net/if.h> 94 #include <net/if_var.h> 95 #include <net/if_vlan_var.h> 96 #include <net/if_llatbl.h> 97 #include <net/ethernet.h> 98 #include <net/netisr.h> 99 #include <net/route.h> 100 #include <net/route/nhop.h> 101 #include <net/pfil.h> 102 #include <net/rss_config.h> 103 #include <net/vnet.h> 104 105 #include <netinet/in.h> 106 #include <netinet/in_var.h> 107 #include <netinet/ip_var.h> 108 #include <netinet6/in6_fib.h> 109 #include <netinet6/in6_var.h> 110 #include <netinet/ip6.h> 111 #include <netinet/icmp6.h> 112 #include <netinet6/ip6_var.h> 113 #include <netinet/in_pcb.h> 114 #include <netinet/tcp_var.h> 115 #include <netinet6/nd6.h> 116 #include <netinet6/in6_rss.h> 117 118 #include <netipsec/ipsec_support.h> 119 #if defined(SCTP) || defined(SCTP_SUPPORT) 120 #include <netinet/sctp.h> 121 #include <netinet/sctp_crc32.h> 122 #endif 123 124 #include <netinet6/ip6protosw.h> 125 #include <netinet6/scope6_var.h> 126 127 extern int in6_mcast_loop; 128 129 struct ip6_exthdrs { 130 struct mbuf *ip6e_ip6; 131 struct mbuf *ip6e_hbh; 132 struct mbuf *ip6e_dest1; 133 struct mbuf *ip6e_rthdr; 134 struct mbuf *ip6e_dest2; 135 }; 136 137 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 138 139 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 140 struct ucred *, int); 141 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 142 struct socket *, struct sockopt *); 143 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 144 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 145 struct ucred *, int, int, int); 146 147 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 148 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 149 struct ip6_frag **); 150 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 151 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 152 static int ip6_getpmtu(struct route_in6 *, int, 153 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 154 u_int); 155 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 156 u_long *, int *, u_int); 157 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 158 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 159 160 /* 161 * Make an extension header from option data. hp is the source, 162 * mp is the destination, and _ol is the optlen. 163 */ 164 #define MAKE_EXTHDR(hp, mp, _ol) \ 165 do { \ 166 if (hp) { \ 167 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 168 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 169 ((eh)->ip6e_len + 1) << 3); \ 170 if (error) \ 171 goto freehdrs; \ 172 (_ol) += (*(mp))->m_len; \ 173 } \ 174 } while (/*CONSTCOND*/ 0) 175 176 /* 177 * Form a chain of extension headers. 178 * m is the extension header mbuf 179 * mp is the previous mbuf in the chain 180 * p is the next header 181 * i is the type of option. 182 */ 183 #define MAKE_CHAIN(m, mp, p, i)\ 184 do {\ 185 if (m) {\ 186 if (!hdrsplit) \ 187 panic("%s:%d: assumption failed: "\ 188 "hdr not split: hdrsplit %d exthdrs %p",\ 189 __func__, __LINE__, hdrsplit, &exthdrs);\ 190 *mtod((m), u_char *) = *(p);\ 191 *(p) = (i);\ 192 p = mtod((m), u_char *);\ 193 (m)->m_next = (mp)->m_next;\ 194 (mp)->m_next = (m);\ 195 (mp) = (m);\ 196 }\ 197 } while (/*CONSTCOND*/ 0) 198 199 void 200 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 201 { 202 u_short csum; 203 204 csum = in_cksum_skip(m, offset + plen, offset); 205 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 206 csum = 0xffff; 207 offset += m->m_pkthdr.csum_data; /* checksum offset */ 208 209 if (offset + sizeof(csum) > m->m_len) 210 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 211 else 212 *(u_short *)mtodo(m, offset) = csum; 213 } 214 215 static int 216 ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags, 217 int plen, int optlen, bool frag) 218 { 219 220 KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p " 221 "csum_flags %#x frag %d\n", 222 __func__, __LINE__, plen, optlen, m, ifp, csum_flags, frag)); 223 224 if ((csum_flags & CSUM_DELAY_DATA_IPV6) || 225 #if defined(SCTP) || defined(SCTP_SUPPORT) 226 (csum_flags & CSUM_SCTP_IPV6) || 227 #endif 228 (!frag && (ifp->if_capenable & IFCAP_MEXTPG) == 0)) { 229 m = mb_unmapped_to_ext(m); 230 if (m == NULL) { 231 if (frag) 232 in6_ifstat_inc(ifp, ifs6_out_fragfail); 233 else 234 IP6STAT_INC(ip6s_odropped); 235 return (ENOBUFS); 236 } 237 if (csum_flags & CSUM_DELAY_DATA_IPV6) { 238 in6_delayed_cksum(m, plen - optlen, 239 sizeof(struct ip6_hdr) + optlen); 240 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 241 } 242 #if defined(SCTP) || defined(SCTP_SUPPORT) 243 if (csum_flags & CSUM_SCTP_IPV6) { 244 sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen); 245 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 246 } 247 #endif 248 } 249 250 return (0); 251 } 252 253 int 254 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 255 int fraglen , uint32_t id) 256 { 257 struct mbuf *m, **mnext, *m_frgpart; 258 struct ip6_hdr *ip6, *mhip6; 259 struct ip6_frag *ip6f; 260 int off; 261 int error; 262 int tlen = m0->m_pkthdr.len; 263 264 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 265 266 m = m0; 267 ip6 = mtod(m, struct ip6_hdr *); 268 mnext = &m->m_nextpkt; 269 270 for (off = hlen; off < tlen; off += fraglen) { 271 m = m_gethdr(M_NOWAIT, MT_DATA); 272 if (!m) { 273 IP6STAT_INC(ip6s_odropped); 274 return (ENOBUFS); 275 } 276 277 /* 278 * Make sure the complete packet header gets copied 279 * from the originating mbuf to the newly created 280 * mbuf. This also ensures that existing firewall 281 * classification(s), VLAN tags and so on get copied 282 * to the resulting fragmented packet(s): 283 */ 284 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 285 m_free(m); 286 IP6STAT_INC(ip6s_odropped); 287 return (ENOBUFS); 288 } 289 290 *mnext = m; 291 mnext = &m->m_nextpkt; 292 m->m_data += max_linkhdr; 293 mhip6 = mtod(m, struct ip6_hdr *); 294 *mhip6 = *ip6; 295 m->m_len = sizeof(*mhip6); 296 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 297 if (error) { 298 IP6STAT_INC(ip6s_odropped); 299 return (error); 300 } 301 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 302 if (off + fraglen >= tlen) 303 fraglen = tlen - off; 304 else 305 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 306 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 307 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 308 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 309 IP6STAT_INC(ip6s_odropped); 310 return (ENOBUFS); 311 } 312 m_cat(m, m_frgpart); 313 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 314 ip6f->ip6f_reserved = 0; 315 ip6f->ip6f_ident = id; 316 ip6f->ip6f_nxt = nextproto; 317 IP6STAT_INC(ip6s_ofragments); 318 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 319 } 320 321 return (0); 322 } 323 324 static int 325 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp, 326 struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro, 327 bool stamp_tag) 328 { 329 #ifdef KERN_TLS 330 struct ktls_session *tls = NULL; 331 #endif 332 struct m_snd_tag *mst; 333 int error; 334 335 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 336 mst = NULL; 337 338 #ifdef KERN_TLS 339 /* 340 * If this is an unencrypted TLS record, save a reference to 341 * the record. This local reference is used to call 342 * ktls_output_eagain after the mbuf has been freed (thus 343 * dropping the mbuf's reference) in if_output. 344 */ 345 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 346 tls = ktls_hold(m->m_next->m_epg_tls); 347 mst = tls->snd_tag; 348 349 /* 350 * If a TLS session doesn't have a valid tag, it must 351 * have had an earlier ifp mismatch, so drop this 352 * packet. 353 */ 354 if (mst == NULL) { 355 error = EAGAIN; 356 goto done; 357 } 358 /* 359 * Always stamp tags that include NIC ktls. 360 */ 361 stamp_tag = true; 362 } 363 #endif 364 #ifdef RATELIMIT 365 if (inp != NULL && mst == NULL) { 366 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 367 (inp->inp_snd_tag != NULL && 368 inp->inp_snd_tag->ifp != ifp)) 369 in_pcboutput_txrtlmt(inp, ifp, m); 370 371 if (inp->inp_snd_tag != NULL) 372 mst = inp->inp_snd_tag; 373 } 374 #endif 375 if (stamp_tag && mst != NULL) { 376 KASSERT(m->m_pkthdr.rcvif == NULL, 377 ("trying to add a send tag to a forwarded packet")); 378 if (mst->ifp != ifp) { 379 error = EAGAIN; 380 goto done; 381 } 382 383 /* stamp send tag on mbuf */ 384 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 385 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 386 } 387 388 error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); 389 390 done: 391 /* Check for route change invalidating send tags. */ 392 #ifdef KERN_TLS 393 if (tls != NULL) { 394 if (error == EAGAIN) 395 error = ktls_output_eagain(inp, tls); 396 ktls_free(tls); 397 } 398 #endif 399 #ifdef RATELIMIT 400 if (error == EAGAIN) 401 in_pcboutput_eagain(inp); 402 #endif 403 return (error); 404 } 405 406 /* 407 * IP6 output. 408 * The packet in mbuf chain m contains a skeletal IP6 header (with pri, len, 409 * nxt, hlim, src, dst). 410 * This function may modify ver and hlim only. 411 * The mbuf chain containing the packet will be freed. 412 * The mbuf opt, if present, will not be freed. 413 * If route_in6 ro is present and has ro_nh initialized, route lookup would be 414 * skipped and ro->ro_nh would be used. If ro is present but ro->ro_nh is NULL, 415 * then result of route lookup is stored in ro->ro_nh. 416 * 417 * Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu 418 * is uint32_t. So we use u_long to hold largest one, which is rt_mtu. 419 * 420 * ifpp - XXX: just for statistics 421 */ 422 int 423 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 424 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 425 struct ifnet **ifpp, struct inpcb *inp) 426 { 427 struct ip6_hdr *ip6; 428 struct ifnet *ifp, *origifp; 429 struct mbuf *m = m0; 430 struct mbuf *mprev; 431 struct route_in6 *ro_pmtu; 432 struct nhop_object *nh; 433 struct sockaddr_in6 *dst, sin6, src_sa, dst_sa; 434 struct in6_addr odst; 435 u_char *nexthdrp; 436 int tlen, len; 437 int error = 0; 438 int vlan_pcp = -1; 439 struct in6_ifaddr *ia = NULL; 440 u_long mtu; 441 int alwaysfrag, dontfrag; 442 u_int32_t optlen, plen = 0, unfragpartlen; 443 struct ip6_exthdrs exthdrs; 444 struct in6_addr src0, dst0; 445 u_int32_t zone; 446 bool hdrsplit; 447 int sw_csum, tso; 448 int needfiblookup; 449 uint32_t fibnum; 450 struct m_tag *fwd_tag = NULL; 451 uint32_t id; 452 453 NET_EPOCH_ASSERT(); 454 455 if (inp != NULL) { 456 INP_LOCK_ASSERT(inp); 457 M_SETFIB(m, inp->inp_inc.inc_fibnum); 458 if ((flags & IP_NODEFAULTFLOWID) == 0) { 459 /* Unconditionally set flowid. */ 460 m->m_pkthdr.flowid = inp->inp_flowid; 461 M_HASHTYPE_SET(m, inp->inp_flowtype); 462 } 463 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 464 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 465 INP_2PCP_SHIFT; 466 #ifdef NUMA 467 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 468 #endif 469 } 470 471 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 472 /* 473 * IPSec checking which handles several cases. 474 * FAST IPSEC: We re-injected the packet. 475 * XXX: need scope argument. 476 */ 477 if (IPSEC_ENABLED(ipv6)) { 478 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 479 if (error == EINPROGRESS) 480 error = 0; 481 goto done; 482 } 483 } 484 #endif /* IPSEC */ 485 486 /* Source address validation. */ 487 ip6 = mtod(m, struct ip6_hdr *); 488 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 489 (flags & IPV6_UNSPECSRC) == 0) { 490 error = EOPNOTSUPP; 491 IP6STAT_INC(ip6s_badscope); 492 goto bad; 493 } 494 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 495 error = EOPNOTSUPP; 496 IP6STAT_INC(ip6s_badscope); 497 goto bad; 498 } 499 500 /* 501 * If we are given packet options to add extension headers prepare them. 502 * Calculate the total length of the extension header chain. 503 * Keep the length of the unfragmentable part for fragmentation. 504 */ 505 bzero(&exthdrs, sizeof(exthdrs)); 506 optlen = 0; 507 unfragpartlen = sizeof(struct ip6_hdr); 508 if (opt) { 509 /* Hop-by-Hop options header. */ 510 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen); 511 512 /* Destination options header (1st part). */ 513 if (opt->ip6po_rthdr) { 514 #ifndef RTHDR_SUPPORT_IMPLEMENTED 515 /* 516 * If there is a routing header, discard the packet 517 * right away here. RH0/1 are obsolete and we do not 518 * currently support RH2/3/4. 519 * People trying to use RH253/254 may want to disable 520 * this check. 521 * The moment we do support any routing header (again) 522 * this block should check the routing type more 523 * selectively. 524 */ 525 error = EINVAL; 526 goto bad; 527 #endif 528 529 /* 530 * Destination options header (1st part). 531 * This only makes sense with a routing header. 532 * See Section 9.2 of RFC 3542. 533 * Disabling this part just for MIP6 convenience is 534 * a bad idea. We need to think carefully about a 535 * way to make the advanced API coexist with MIP6 536 * options, which might automatically be inserted in 537 * the kernel. 538 */ 539 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1, 540 optlen); 541 } 542 /* Routing header. */ 543 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen); 544 545 unfragpartlen += optlen; 546 547 /* 548 * NOTE: we don't add AH/ESP length here (done in 549 * ip6_ipsec_output()). 550 */ 551 552 /* Destination options header (2nd part). */ 553 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen); 554 } 555 556 /* 557 * If there is at least one extension header, 558 * separate IP6 header from the payload. 559 */ 560 hdrsplit = false; 561 if (optlen) { 562 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 563 m = NULL; 564 goto freehdrs; 565 } 566 m = exthdrs.ip6e_ip6; 567 ip6 = mtod(m, struct ip6_hdr *); 568 hdrsplit = true; 569 } 570 571 /* Adjust mbuf packet header length. */ 572 m->m_pkthdr.len += optlen; 573 plen = m->m_pkthdr.len - sizeof(*ip6); 574 575 /* If this is a jumbo payload, insert a jumbo payload option. */ 576 if (plen > IPV6_MAXPACKET) { 577 if (!hdrsplit) { 578 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 579 m = NULL; 580 goto freehdrs; 581 } 582 m = exthdrs.ip6e_ip6; 583 ip6 = mtod(m, struct ip6_hdr *); 584 hdrsplit = true; 585 } 586 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 587 goto freehdrs; 588 ip6->ip6_plen = 0; 589 } else 590 ip6->ip6_plen = htons(plen); 591 nexthdrp = &ip6->ip6_nxt; 592 593 if (optlen) { 594 /* 595 * Concatenate headers and fill in next header fields. 596 * Here we have, on "m" 597 * IPv6 payload 598 * and we insert headers accordingly. 599 * Finally, we should be getting: 600 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]. 601 * 602 * During the header composing process "m" points to IPv6 603 * header. "mprev" points to an extension header prior to esp. 604 */ 605 mprev = m; 606 607 /* 608 * We treat dest2 specially. This makes IPsec processing 609 * much easier. The goal here is to make mprev point the 610 * mbuf prior to dest2. 611 * 612 * Result: IPv6 dest2 payload. 613 * m and mprev will point to IPv6 header. 614 */ 615 if (exthdrs.ip6e_dest2) { 616 if (!hdrsplit) 617 panic("%s:%d: assumption failed: " 618 "hdr not split: hdrsplit %d exthdrs %p", 619 __func__, __LINE__, hdrsplit, &exthdrs); 620 exthdrs.ip6e_dest2->m_next = m->m_next; 621 m->m_next = exthdrs.ip6e_dest2; 622 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 623 ip6->ip6_nxt = IPPROTO_DSTOPTS; 624 } 625 626 /* 627 * Result: IPv6 hbh dest1 rthdr dest2 payload. 628 * m will point to IPv6 header. mprev will point to the 629 * extension header prior to dest2 (rthdr in the above case). 630 */ 631 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 632 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 633 IPPROTO_DSTOPTS); 634 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 635 IPPROTO_ROUTING); 636 } 637 638 IP6STAT_INC(ip6s_localout); 639 640 /* Route packet. */ 641 ro_pmtu = ro; 642 if (opt && opt->ip6po_rthdr) 643 ro = &opt->ip6po_route; 644 if (ro != NULL) 645 dst = (struct sockaddr_in6 *)&ro->ro_dst; 646 else 647 dst = &sin6; 648 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 649 650 again: 651 /* 652 * If specified, try to fill in the traffic class field. 653 * Do not override if a non-zero value is already set. 654 * We check the diffserv field and the ECN field separately. 655 */ 656 if (opt && opt->ip6po_tclass >= 0) { 657 int mask = 0; 658 659 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 660 mask |= 0xfc; 661 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 662 mask |= 0x03; 663 if (mask != 0) 664 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 665 } 666 667 /* Fill in or override the hop limit field, if necessary. */ 668 if (opt && opt->ip6po_hlim != -1) 669 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 670 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 671 if (im6o != NULL) 672 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 673 else 674 ip6->ip6_hlim = V_ip6_defmcasthlim; 675 } 676 677 if (ro == NULL || ro->ro_nh == NULL) { 678 bzero(dst, sizeof(*dst)); 679 dst->sin6_family = AF_INET6; 680 dst->sin6_len = sizeof(*dst); 681 dst->sin6_addr = ip6->ip6_dst; 682 } 683 /* 684 * Validate route against routing table changes. 685 * Make sure that the address family is set in route. 686 */ 687 nh = NULL; 688 ifp = NULL; 689 mtu = 0; 690 if (ro != NULL) { 691 if (ro->ro_nh != NULL && inp != NULL) { 692 ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */ 693 NH_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, 694 fibnum); 695 } 696 if (ro->ro_nh != NULL && fwd_tag == NULL && 697 (!NH_IS_VALID(ro->ro_nh) || 698 ro->ro_dst.sin6_family != AF_INET6 || 699 !IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst))) 700 RO_INVALIDATE_CACHE(ro); 701 702 if (ro->ro_nh != NULL && fwd_tag == NULL && 703 ro->ro_dst.sin6_family == AF_INET6 && 704 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 705 nh = ro->ro_nh; 706 ifp = nh->nh_ifp; 707 } else { 708 if (ro->ro_lle) 709 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 710 ro->ro_lle = NULL; 711 if (fwd_tag == NULL) { 712 bzero(&dst_sa, sizeof(dst_sa)); 713 dst_sa.sin6_family = AF_INET6; 714 dst_sa.sin6_len = sizeof(dst_sa); 715 dst_sa.sin6_addr = ip6->ip6_dst; 716 } 717 error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, 718 &nh, fibnum, m->m_pkthdr.flowid); 719 if (error != 0) { 720 IP6STAT_INC(ip6s_noroute); 721 if (ifp != NULL) 722 in6_ifstat_inc(ifp, ifs6_out_discard); 723 goto bad; 724 } 725 if (ifp != NULL) 726 mtu = ifp->if_mtu; 727 } 728 if (nh == NULL) { 729 /* 730 * If in6_selectroute() does not return a nexthop 731 * dst may not have been updated. 732 */ 733 *dst = dst_sa; /* XXX */ 734 } else { 735 if (nh->nh_flags & NHF_HOST) 736 mtu = nh->nh_mtu; 737 ia = (struct in6_ifaddr *)(nh->nh_ifa); 738 counter_u64_add(nh->nh_pksent, 1); 739 } 740 } else { 741 struct nhop_object *nh; 742 struct in6_addr kdst; 743 uint32_t scopeid; 744 745 if (fwd_tag == NULL) { 746 bzero(&dst_sa, sizeof(dst_sa)); 747 dst_sa.sin6_family = AF_INET6; 748 dst_sa.sin6_len = sizeof(dst_sa); 749 dst_sa.sin6_addr = ip6->ip6_dst; 750 } 751 752 if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) && 753 im6o != NULL && 754 (ifp = im6o->im6o_multicast_ifp) != NULL) { 755 /* We do not need a route lookup. */ 756 *dst = dst_sa; /* XXX */ 757 goto nonh6lookup; 758 } 759 760 in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid); 761 762 if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) || 763 IN6_IS_ADDR_MC_NODELOCAL(&dst_sa.sin6_addr)) { 764 if (scopeid > 0) { 765 ifp = in6_getlinkifnet(scopeid); 766 if (ifp == NULL) { 767 error = EHOSTUNREACH; 768 goto bad; 769 } 770 *dst = dst_sa; /* XXX */ 771 goto nonh6lookup; 772 } 773 } 774 775 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 776 m->m_pkthdr.flowid); 777 if (nh == NULL) { 778 IP6STAT_INC(ip6s_noroute); 779 /* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */ 780 error = EHOSTUNREACH;; 781 goto bad; 782 } 783 784 ifp = nh->nh_ifp; 785 mtu = nh->nh_mtu; 786 ia = ifatoia6(nh->nh_ifa); 787 if (nh->nh_flags & NHF_GATEWAY) 788 dst->sin6_addr = nh->gw6_sa.sin6_addr; 789 nonh6lookup: 790 ; 791 } 792 793 /* Then nh (for unicast) and ifp must be non-NULL valid values. */ 794 if ((flags & IPV6_FORWARDING) == 0) { 795 /* XXX: the FORWARDING flag can be set for mrouting. */ 796 in6_ifstat_inc(ifp, ifs6_out_request); 797 } 798 799 /* Setup data structures for scope ID checks. */ 800 src0 = ip6->ip6_src; 801 bzero(&src_sa, sizeof(src_sa)); 802 src_sa.sin6_family = AF_INET6; 803 src_sa.sin6_len = sizeof(src_sa); 804 src_sa.sin6_addr = ip6->ip6_src; 805 806 dst0 = ip6->ip6_dst; 807 /* Re-initialize to be sure. */ 808 bzero(&dst_sa, sizeof(dst_sa)); 809 dst_sa.sin6_family = AF_INET6; 810 dst_sa.sin6_len = sizeof(dst_sa); 811 dst_sa.sin6_addr = ip6->ip6_dst; 812 813 /* Check for valid scope ID. */ 814 if (in6_setscope(&src0, ifp, &zone) == 0 && 815 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && 816 in6_setscope(&dst0, ifp, &zone) == 0 && 817 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { 818 /* 819 * The outgoing interface is in the zone of the source 820 * and destination addresses. 821 * 822 * Because the loopback interface cannot receive 823 * packets with a different scope ID than its own, 824 * there is a trick to pretend the outgoing packet 825 * was received by the real network interface, by 826 * setting "origifp" different from "ifp". This is 827 * only allowed when "ifp" is a loopback network 828 * interface. Refer to code in nd6_output_ifp() for 829 * more details. 830 */ 831 origifp = ifp; 832 833 /* 834 * We should use ia_ifp to support the case of sending 835 * packets to an address of our own. 836 */ 837 if (ia != NULL && ia->ia_ifp) 838 ifp = ia->ia_ifp; 839 840 } else if ((ifp->if_flags & IFF_LOOPBACK) == 0 || 841 sa6_recoverscope(&src_sa) != 0 || 842 sa6_recoverscope(&dst_sa) != 0 || 843 dst_sa.sin6_scope_id == 0 || 844 (src_sa.sin6_scope_id != 0 && 845 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || 846 (origifp = ifnet_byindex(dst_sa.sin6_scope_id)) == NULL) { 847 /* 848 * If the destination network interface is not a 849 * loopback interface, or the destination network 850 * address has no scope ID, or the source address has 851 * a scope ID set which is different from the 852 * destination address one, or there is no network 853 * interface representing this scope ID, the address 854 * pair is considered invalid. 855 */ 856 IP6STAT_INC(ip6s_badscope); 857 in6_ifstat_inc(ifp, ifs6_out_discard); 858 if (error == 0) 859 error = EHOSTUNREACH; /* XXX */ 860 goto bad; 861 } 862 /* All scope ID checks are successful. */ 863 864 if (nh && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 865 if (opt && opt->ip6po_nextroute.ro_nh) { 866 /* 867 * The nexthop is explicitly specified by the 868 * application. We assume the next hop is an IPv6 869 * address. 870 */ 871 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 872 } 873 else if ((nh->nh_flags & NHF_GATEWAY)) 874 dst = &nh->gw6_sa; 875 } 876 877 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 878 m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */ 879 } else { 880 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 881 in6_ifstat_inc(ifp, ifs6_out_mcast); 882 883 /* Confirm that the outgoing interface supports multicast. */ 884 if (!(ifp->if_flags & IFF_MULTICAST)) { 885 IP6STAT_INC(ip6s_noroute); 886 in6_ifstat_inc(ifp, ifs6_out_discard); 887 error = ENETUNREACH; 888 goto bad; 889 } 890 if ((im6o == NULL && in6_mcast_loop) || 891 (im6o && im6o->im6o_multicast_loop)) { 892 /* 893 * Loop back multicast datagram if not expressly 894 * forbidden to do so, even if we have not joined 895 * the address; protocols will filter it later, 896 * thus deferring a hash lookup and lock acquisition 897 * at the expense of an m_copym(). 898 */ 899 ip6_mloopback(ifp, m); 900 } else { 901 /* 902 * If we are acting as a multicast router, perform 903 * multicast forwarding as if the packet had just 904 * arrived on the interface to which we are about 905 * to send. The multicast forwarding function 906 * recursively calls this function, using the 907 * IPV6_FORWARDING flag to prevent infinite recursion. 908 * 909 * Multicasts that are looped back by ip6_mloopback(), 910 * above, will be forwarded by the ip6_input() routine, 911 * if necessary. 912 */ 913 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 914 /* 915 * XXX: ip6_mforward expects that rcvif is NULL 916 * when it is called from the originating path. 917 * However, it may not always be the case. 918 */ 919 m->m_pkthdr.rcvif = NULL; 920 if (ip6_mforward(ip6, ifp, m) != 0) { 921 m_freem(m); 922 goto done; 923 } 924 } 925 } 926 /* 927 * Multicasts with a hoplimit of zero may be looped back, 928 * above, but must not be transmitted on a network. 929 * Also, multicasts addressed to the loopback interface 930 * are not sent -- the above call to ip6_mloopback() will 931 * loop back a copy if this host actually belongs to the 932 * destination group on the loopback interface. 933 */ 934 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 935 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 936 m_freem(m); 937 goto done; 938 } 939 } 940 941 /* 942 * Fill the outgoing inteface to tell the upper layer 943 * to increment per-interface statistics. 944 */ 945 if (ifpp) 946 *ifpp = ifp; 947 948 /* Determine path MTU. */ 949 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 950 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 951 goto bad; 952 KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p " 953 "alwaysfrag %d fibnum %u\n", __func__, __LINE__, mtu, ro_pmtu, ro, 954 ifp, alwaysfrag, fibnum)); 955 956 /* 957 * The caller of this function may specify to use the minimum MTU 958 * in some cases. 959 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 960 * setting. The logic is a bit complicated; by default, unicast 961 * packets will follow path MTU while multicast packets will be sent at 962 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 963 * including unicast ones will be sent at the minimum MTU. Multicast 964 * packets will always be sent at the minimum MTU unless 965 * IP6PO_MINMTU_DISABLE is explicitly specified. 966 * See RFC 3542 for more details. 967 */ 968 if (mtu > IPV6_MMTU) { 969 if ((flags & IPV6_MINMTU)) 970 mtu = IPV6_MMTU; 971 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 972 mtu = IPV6_MMTU; 973 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 974 (opt == NULL || 975 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 976 mtu = IPV6_MMTU; 977 } 978 } 979 980 /* 981 * Clear embedded scope identifiers if necessary. 982 * in6_clearscope() will touch the addresses only when necessary. 983 */ 984 in6_clearscope(&ip6->ip6_src); 985 in6_clearscope(&ip6->ip6_dst); 986 987 /* 988 * If the outgoing packet contains a hop-by-hop options header, 989 * it must be examined and processed even by the source node. 990 * (RFC 2460, section 4.) 991 */ 992 if (exthdrs.ip6e_hbh) { 993 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 994 u_int32_t dummy; /* XXX unused */ 995 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 996 997 #ifdef DIAGNOSTIC 998 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 999 panic("ip6e_hbh is not contiguous"); 1000 #endif 1001 /* 1002 * XXX: if we have to send an ICMPv6 error to the sender, 1003 * we need the M_LOOP flag since icmp6_error() expects 1004 * the IPv6 and the hop-by-hop options header are 1005 * contiguous unless the flag is set. 1006 */ 1007 m->m_flags |= M_LOOP; 1008 m->m_pkthdr.rcvif = ifp; 1009 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 1010 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 1011 &dummy, &plen) < 0) { 1012 /* m was already freed at this point. */ 1013 error = EINVAL;/* better error? */ 1014 goto done; 1015 } 1016 m->m_flags &= ~M_LOOP; /* XXX */ 1017 m->m_pkthdr.rcvif = NULL; 1018 } 1019 1020 /* Jump over all PFIL processing if hooks are not active. */ 1021 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head)) 1022 goto passout; 1023 1024 odst = ip6->ip6_dst; 1025 /* Run through list of hooks for output packets. */ 1026 switch (pfil_run_hooks(V_inet6_pfil_head, &m, ifp, PFIL_OUT, inp)) { 1027 case PFIL_PASS: 1028 ip6 = mtod(m, struct ip6_hdr *); 1029 break; 1030 case PFIL_DROPPED: 1031 error = EACCES; 1032 /* FALLTHROUGH */ 1033 case PFIL_CONSUMED: 1034 goto done; 1035 } 1036 1037 needfiblookup = 0; 1038 /* See if destination IP address was changed by packet filter. */ 1039 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 1040 m->m_flags |= M_SKIP_FIREWALL; 1041 /* If destination is now ourself drop to ip6_input(). */ 1042 if (in6_localip(&ip6->ip6_dst)) { 1043 m->m_flags |= M_FASTFWD_OURS; 1044 if (m->m_pkthdr.rcvif == NULL) 1045 m->m_pkthdr.rcvif = V_loif; 1046 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1047 m->m_pkthdr.csum_flags |= 1048 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1049 m->m_pkthdr.csum_data = 0xffff; 1050 } 1051 #if defined(SCTP) || defined(SCTP_SUPPORT) 1052 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1053 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1054 #endif 1055 error = netisr_queue(NETISR_IPV6, m); 1056 goto done; 1057 } else { 1058 if (ro != NULL) 1059 RO_INVALIDATE_CACHE(ro); 1060 needfiblookup = 1; /* Redo the routing table lookup. */ 1061 } 1062 } 1063 /* See if fib was changed by packet filter. */ 1064 if (fibnum != M_GETFIB(m)) { 1065 m->m_flags |= M_SKIP_FIREWALL; 1066 fibnum = M_GETFIB(m); 1067 if (ro != NULL) 1068 RO_INVALIDATE_CACHE(ro); 1069 needfiblookup = 1; 1070 } 1071 if (needfiblookup) 1072 goto again; 1073 1074 /* See if local, if yes, send it to netisr. */ 1075 if (m->m_flags & M_FASTFWD_OURS) { 1076 if (m->m_pkthdr.rcvif == NULL) 1077 m->m_pkthdr.rcvif = V_loif; 1078 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1079 m->m_pkthdr.csum_flags |= 1080 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1081 m->m_pkthdr.csum_data = 0xffff; 1082 } 1083 #if defined(SCTP) || defined(SCTP_SUPPORT) 1084 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1085 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1086 #endif 1087 error = netisr_queue(NETISR_IPV6, m); 1088 goto done; 1089 } 1090 /* Or forward to some other address? */ 1091 if ((m->m_flags & M_IP6_NEXTHOP) && 1092 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 1093 if (ro != NULL) 1094 dst = (struct sockaddr_in6 *)&ro->ro_dst; 1095 else 1096 dst = &sin6; 1097 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 1098 m->m_flags |= M_SKIP_FIREWALL; 1099 m->m_flags &= ~M_IP6_NEXTHOP; 1100 m_tag_delete(m, fwd_tag); 1101 goto again; 1102 } 1103 1104 passout: 1105 if (vlan_pcp > -1) 1106 EVL_APPLY_PRI(m, vlan_pcp); 1107 /* 1108 * Send the packet to the outgoing interface. 1109 * If necessary, do IPv6 fragmentation before sending. 1110 * 1111 * The logic here is rather complex: 1112 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 1113 * 1-a: send as is if tlen <= path mtu 1114 * 1-b: fragment if tlen > path mtu 1115 * 1116 * 2: if user asks us not to fragment (dontfrag == 1) 1117 * 2-a: send as is if tlen <= interface mtu 1118 * 2-b: error if tlen > interface mtu 1119 * 1120 * 3: if we always need to attach fragment header (alwaysfrag == 1) 1121 * always fragment 1122 * 1123 * 4: if dontfrag == 1 && alwaysfrag == 1 1124 * error, as we cannot handle this conflicting request. 1125 */ 1126 sw_csum = m->m_pkthdr.csum_flags; 1127 if (!hdrsplit) { 1128 tso = ((sw_csum & ifp->if_hwassist & 1129 (CSUM_TSO | CSUM_INNER_TSO)) != 0) ? 1 : 0; 1130 sw_csum &= ~ifp->if_hwassist; 1131 } else 1132 tso = 0; 1133 /* 1134 * If we added extension headers, we will not do TSO and calculate the 1135 * checksums ourselves for now. 1136 * XXX-BZ Need a framework to know when the NIC can handle it, even 1137 * with ext. hdrs. 1138 */ 1139 error = ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen, false); 1140 if (error != 0) 1141 goto bad; 1142 /* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */ 1143 tlen = m->m_pkthdr.len; 1144 1145 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 1146 dontfrag = 1; 1147 else 1148 dontfrag = 0; 1149 if (dontfrag && alwaysfrag) { /* Case 4. */ 1150 /* Conflicting request - can't transmit. */ 1151 error = EMSGSIZE; 1152 goto bad; 1153 } 1154 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* Case 2-b. */ 1155 /* 1156 * Even if the DONTFRAG option is specified, we cannot send the 1157 * packet when the data length is larger than the MTU of the 1158 * outgoing interface. 1159 * Notify the error by sending IPV6_PATHMTU ancillary data if 1160 * application wanted to know the MTU value. Also return an 1161 * error code (this is not described in the API spec). 1162 */ 1163 if (inp != NULL) 1164 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 1165 error = EMSGSIZE; 1166 goto bad; 1167 } 1168 1169 /* Transmit packet without fragmentation. */ 1170 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* Cases 1-a and 2-a. */ 1171 struct in6_ifaddr *ia6; 1172 1173 ip6 = mtod(m, struct ip6_hdr *); 1174 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1175 if (ia6) { 1176 /* Record statistics for this interface address. */ 1177 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 1178 counter_u64_add(ia6->ia_ifa.ifa_obytes, 1179 m->m_pkthdr.len); 1180 ifa_free(&ia6->ia_ifa); 1181 } 1182 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1183 (flags & IP_NO_SND_TAG_RL) ? false : true); 1184 goto done; 1185 } 1186 1187 /* Try to fragment the packet. Cases 1-b and 3. */ 1188 if (mtu < IPV6_MMTU) { 1189 /* Path MTU cannot be less than IPV6_MMTU. */ 1190 error = EMSGSIZE; 1191 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1192 goto bad; 1193 } else if (ip6->ip6_plen == 0) { 1194 /* Jumbo payload cannot be fragmented. */ 1195 error = EMSGSIZE; 1196 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1197 goto bad; 1198 } else { 1199 u_char nextproto; 1200 1201 /* 1202 * Too large for the destination or interface; 1203 * fragment if possible. 1204 * Must be able to put at least 8 bytes per fragment. 1205 */ 1206 if (mtu > IPV6_MAXPACKET) 1207 mtu = IPV6_MAXPACKET; 1208 1209 len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7; 1210 if (len < 8) { 1211 error = EMSGSIZE; 1212 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1213 goto bad; 1214 } 1215 1216 /* 1217 * If the interface will not calculate checksums on 1218 * fragmented packets, then do it here. 1219 * XXX-BZ handle the hw offloading case. Need flags. 1220 */ 1221 error = ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags, 1222 plen, optlen, true); 1223 if (error != 0) 1224 goto bad; 1225 1226 /* 1227 * Change the next header field of the last header in the 1228 * unfragmentable part. 1229 */ 1230 if (exthdrs.ip6e_rthdr) { 1231 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1232 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1233 } else if (exthdrs.ip6e_dest1) { 1234 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1235 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1236 } else if (exthdrs.ip6e_hbh) { 1237 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1238 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1239 } else { 1240 ip6 = mtod(m, struct ip6_hdr *); 1241 nextproto = ip6->ip6_nxt; 1242 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1243 } 1244 1245 /* 1246 * Loop through length of segment after first fragment, 1247 * make new header and copy data of each part and link onto 1248 * chain. 1249 */ 1250 m0 = m; 1251 id = htonl(ip6_randomid()); 1252 error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id); 1253 if (error != 0) 1254 goto sendorfree; 1255 1256 in6_ifstat_inc(ifp, ifs6_out_fragok); 1257 } 1258 1259 /* Remove leading garbage. */ 1260 sendorfree: 1261 m = m0->m_nextpkt; 1262 m0->m_nextpkt = 0; 1263 m_freem(m0); 1264 for (; m; m = m0) { 1265 m0 = m->m_nextpkt; 1266 m->m_nextpkt = 0; 1267 if (error == 0) { 1268 /* Record statistics for this interface address. */ 1269 if (ia) { 1270 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1271 counter_u64_add(ia->ia_ifa.ifa_obytes, 1272 m->m_pkthdr.len); 1273 } 1274 if (vlan_pcp > -1) 1275 EVL_APPLY_PRI(m, vlan_pcp); 1276 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1277 true); 1278 } else 1279 m_freem(m); 1280 } 1281 1282 if (error == 0) 1283 IP6STAT_INC(ip6s_fragmented); 1284 1285 done: 1286 return (error); 1287 1288 freehdrs: 1289 m_freem(exthdrs.ip6e_hbh); /* m_freem() checks if mbuf is NULL. */ 1290 m_freem(exthdrs.ip6e_dest1); 1291 m_freem(exthdrs.ip6e_rthdr); 1292 m_freem(exthdrs.ip6e_dest2); 1293 /* FALLTHROUGH */ 1294 bad: 1295 if (m) 1296 m_freem(m); 1297 goto done; 1298 } 1299 1300 static int 1301 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1302 { 1303 struct mbuf *m; 1304 1305 if (hlen > MCLBYTES) 1306 return (ENOBUFS); /* XXX */ 1307 1308 if (hlen > MLEN) 1309 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1310 else 1311 m = m_get(M_NOWAIT, MT_DATA); 1312 if (m == NULL) 1313 return (ENOBUFS); 1314 m->m_len = hlen; 1315 if (hdr) 1316 bcopy(hdr, mtod(m, caddr_t), hlen); 1317 1318 *mp = m; 1319 return (0); 1320 } 1321 1322 /* 1323 * Insert jumbo payload option. 1324 */ 1325 static int 1326 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1327 { 1328 struct mbuf *mopt; 1329 u_char *optbuf; 1330 u_int32_t v; 1331 1332 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1333 1334 /* 1335 * If there is no hop-by-hop options header, allocate new one. 1336 * If there is one but it doesn't have enough space to store the 1337 * jumbo payload option, allocate a cluster to store the whole options. 1338 * Otherwise, use it to store the options. 1339 */ 1340 if (exthdrs->ip6e_hbh == NULL) { 1341 mopt = m_get(M_NOWAIT, MT_DATA); 1342 if (mopt == NULL) 1343 return (ENOBUFS); 1344 mopt->m_len = JUMBOOPTLEN; 1345 optbuf = mtod(mopt, u_char *); 1346 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1347 exthdrs->ip6e_hbh = mopt; 1348 } else { 1349 struct ip6_hbh *hbh; 1350 1351 mopt = exthdrs->ip6e_hbh; 1352 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1353 /* 1354 * XXX assumption: 1355 * - exthdrs->ip6e_hbh is not referenced from places 1356 * other than exthdrs. 1357 * - exthdrs->ip6e_hbh is not an mbuf chain. 1358 */ 1359 int oldoptlen = mopt->m_len; 1360 struct mbuf *n; 1361 1362 /* 1363 * XXX: give up if the whole (new) hbh header does 1364 * not fit even in an mbuf cluster. 1365 */ 1366 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1367 return (ENOBUFS); 1368 1369 /* 1370 * As a consequence, we must always prepare a cluster 1371 * at this point. 1372 */ 1373 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1374 if (n == NULL) 1375 return (ENOBUFS); 1376 n->m_len = oldoptlen + JUMBOOPTLEN; 1377 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1378 oldoptlen); 1379 optbuf = mtod(n, caddr_t) + oldoptlen; 1380 m_freem(mopt); 1381 mopt = exthdrs->ip6e_hbh = n; 1382 } else { 1383 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1384 mopt->m_len += JUMBOOPTLEN; 1385 } 1386 optbuf[0] = IP6OPT_PADN; 1387 optbuf[1] = 1; 1388 1389 /* 1390 * Adjust the header length according to the pad and 1391 * the jumbo payload option. 1392 */ 1393 hbh = mtod(mopt, struct ip6_hbh *); 1394 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1395 } 1396 1397 /* fill in the option. */ 1398 optbuf[2] = IP6OPT_JUMBO; 1399 optbuf[3] = 4; 1400 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1401 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1402 1403 /* finally, adjust the packet header length */ 1404 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1405 1406 return (0); 1407 #undef JUMBOOPTLEN 1408 } 1409 1410 /* 1411 * Insert fragment header and copy unfragmentable header portions. 1412 */ 1413 static int 1414 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1415 struct ip6_frag **frghdrp) 1416 { 1417 struct mbuf *n, *mlast; 1418 1419 if (hlen > sizeof(struct ip6_hdr)) { 1420 n = m_copym(m0, sizeof(struct ip6_hdr), 1421 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1422 if (n == NULL) 1423 return (ENOBUFS); 1424 m->m_next = n; 1425 } else 1426 n = m; 1427 1428 /* Search for the last mbuf of unfragmentable part. */ 1429 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1430 ; 1431 1432 if (M_WRITABLE(mlast) && 1433 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1434 /* use the trailing space of the last mbuf for the fragment hdr */ 1435 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1436 mlast->m_len); 1437 mlast->m_len += sizeof(struct ip6_frag); 1438 m->m_pkthdr.len += sizeof(struct ip6_frag); 1439 } else { 1440 /* allocate a new mbuf for the fragment header */ 1441 struct mbuf *mfrg; 1442 1443 mfrg = m_get(M_NOWAIT, MT_DATA); 1444 if (mfrg == NULL) 1445 return (ENOBUFS); 1446 mfrg->m_len = sizeof(struct ip6_frag); 1447 *frghdrp = mtod(mfrg, struct ip6_frag *); 1448 mlast->m_next = mfrg; 1449 } 1450 1451 return (0); 1452 } 1453 1454 /* 1455 * Calculates IPv6 path mtu for destination @dst. 1456 * Resulting MTU is stored in @mtup. 1457 * 1458 * Returns 0 on success. 1459 */ 1460 static int 1461 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1462 { 1463 struct epoch_tracker et; 1464 struct nhop_object *nh; 1465 struct in6_addr kdst; 1466 uint32_t scopeid; 1467 int error; 1468 1469 in6_splitscope(dst, &kdst, &scopeid); 1470 1471 NET_EPOCH_ENTER(et); 1472 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1473 if (nh != NULL) 1474 error = ip6_calcmtu(nh->nh_ifp, dst, nh->nh_mtu, mtup, NULL, 0); 1475 else 1476 error = EHOSTUNREACH; 1477 NET_EPOCH_EXIT(et); 1478 1479 return (error); 1480 } 1481 1482 /* 1483 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1484 * and cached data in @ro_pmtu. 1485 * MTU from (successful) route lookup is saved (along with dst) 1486 * inside @ro_pmtu to avoid subsequent route lookups after packet 1487 * filter processing. 1488 * 1489 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1490 * Returns 0 on success. 1491 */ 1492 static int 1493 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1494 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1495 int *alwaysfragp, u_int fibnum, u_int proto) 1496 { 1497 struct nhop_object *nh; 1498 struct in6_addr kdst; 1499 uint32_t scopeid; 1500 struct sockaddr_in6 *sa6_dst, sin6; 1501 u_long mtu; 1502 1503 NET_EPOCH_ASSERT(); 1504 1505 mtu = 0; 1506 if (ro_pmtu == NULL || do_lookup) { 1507 /* 1508 * Here ro_pmtu has final destination address, while 1509 * ro might represent immediate destination. 1510 * Use ro_pmtu destination since mtu might differ. 1511 */ 1512 if (ro_pmtu != NULL) { 1513 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1514 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1515 ro_pmtu->ro_mtu = 0; 1516 } else 1517 sa6_dst = &sin6; 1518 1519 if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) { 1520 bzero(sa6_dst, sizeof(*sa6_dst)); 1521 sa6_dst->sin6_family = AF_INET6; 1522 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1523 sa6_dst->sin6_addr = *dst; 1524 1525 in6_splitscope(dst, &kdst, &scopeid); 1526 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1527 if (nh != NULL) { 1528 mtu = nh->nh_mtu; 1529 if (ro_pmtu != NULL) 1530 ro_pmtu->ro_mtu = mtu; 1531 } 1532 } else 1533 mtu = ro_pmtu->ro_mtu; 1534 } 1535 1536 if (ro_pmtu != NULL && ro_pmtu->ro_nh != NULL) 1537 mtu = ro_pmtu->ro_nh->nh_mtu; 1538 1539 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1540 } 1541 1542 /* 1543 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1544 * hostcache data for @dst. 1545 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1546 * 1547 * Returns 0 on success. 1548 */ 1549 static int 1550 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1551 u_long *mtup, int *alwaysfragp, u_int proto) 1552 { 1553 u_long mtu = 0; 1554 int alwaysfrag = 0; 1555 int error = 0; 1556 1557 if (rt_mtu > 0) { 1558 u_int32_t ifmtu; 1559 struct in_conninfo inc; 1560 1561 bzero(&inc, sizeof(inc)); 1562 inc.inc_flags |= INC_ISIPV6; 1563 inc.inc6_faddr = *dst; 1564 1565 ifmtu = IN6_LINKMTU(ifp); 1566 1567 /* TCP is known to react to pmtu changes so skip hc */ 1568 if (proto != IPPROTO_TCP) 1569 mtu = tcp_hc_getmtu(&inc); 1570 1571 if (mtu) 1572 mtu = min(mtu, rt_mtu); 1573 else 1574 mtu = rt_mtu; 1575 if (mtu == 0) 1576 mtu = ifmtu; 1577 else if (mtu < IPV6_MMTU) { 1578 /* 1579 * RFC2460 section 5, last paragraph: 1580 * if we record ICMPv6 too big message with 1581 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1582 * or smaller, with framgent header attached. 1583 * (fragment header is needed regardless from the 1584 * packet size, for translators to identify packets) 1585 */ 1586 alwaysfrag = 1; 1587 mtu = IPV6_MMTU; 1588 } 1589 } else if (ifp) { 1590 mtu = IN6_LINKMTU(ifp); 1591 } else 1592 error = EHOSTUNREACH; /* XXX */ 1593 1594 *mtup = mtu; 1595 if (alwaysfragp) 1596 *alwaysfragp = alwaysfrag; 1597 return (error); 1598 } 1599 1600 /* 1601 * IP6 socket option processing. 1602 */ 1603 int 1604 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1605 { 1606 int optdatalen, uproto; 1607 void *optdata; 1608 struct inpcb *inp = sotoinpcb(so); 1609 int error, optval; 1610 int level, op, optname; 1611 int optlen; 1612 struct thread *td; 1613 #ifdef RSS 1614 uint32_t rss_bucket; 1615 int retval; 1616 #endif 1617 1618 /* 1619 * Don't use more than a quarter of mbuf clusters. N.B.: 1620 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1621 * on LP64 architectures, so cast to u_long to avoid undefined 1622 * behavior. ILP32 architectures cannot have nmbclusters 1623 * large enough to overflow for other reasons. 1624 */ 1625 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1626 1627 level = sopt->sopt_level; 1628 op = sopt->sopt_dir; 1629 optname = sopt->sopt_name; 1630 optlen = sopt->sopt_valsize; 1631 td = sopt->sopt_td; 1632 error = 0; 1633 optval = 0; 1634 uproto = (int)so->so_proto->pr_protocol; 1635 1636 if (level != IPPROTO_IPV6) { 1637 error = EINVAL; 1638 1639 if (sopt->sopt_level == SOL_SOCKET && 1640 sopt->sopt_dir == SOPT_SET) { 1641 switch (sopt->sopt_name) { 1642 case SO_REUSEADDR: 1643 INP_WLOCK(inp); 1644 if ((so->so_options & SO_REUSEADDR) != 0) 1645 inp->inp_flags2 |= INP_REUSEADDR; 1646 else 1647 inp->inp_flags2 &= ~INP_REUSEADDR; 1648 INP_WUNLOCK(inp); 1649 error = 0; 1650 break; 1651 case SO_REUSEPORT: 1652 INP_WLOCK(inp); 1653 if ((so->so_options & SO_REUSEPORT) != 0) 1654 inp->inp_flags2 |= INP_REUSEPORT; 1655 else 1656 inp->inp_flags2 &= ~INP_REUSEPORT; 1657 INP_WUNLOCK(inp); 1658 error = 0; 1659 break; 1660 case SO_REUSEPORT_LB: 1661 INP_WLOCK(inp); 1662 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1663 inp->inp_flags2 |= INP_REUSEPORT_LB; 1664 else 1665 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1666 INP_WUNLOCK(inp); 1667 error = 0; 1668 break; 1669 case SO_SETFIB: 1670 INP_WLOCK(inp); 1671 inp->inp_inc.inc_fibnum = so->so_fibnum; 1672 INP_WUNLOCK(inp); 1673 error = 0; 1674 break; 1675 case SO_MAX_PACING_RATE: 1676 #ifdef RATELIMIT 1677 INP_WLOCK(inp); 1678 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1679 INP_WUNLOCK(inp); 1680 error = 0; 1681 #else 1682 error = EOPNOTSUPP; 1683 #endif 1684 break; 1685 default: 1686 break; 1687 } 1688 } 1689 } else { /* level == IPPROTO_IPV6 */ 1690 switch (op) { 1691 case SOPT_SET: 1692 switch (optname) { 1693 case IPV6_2292PKTOPTIONS: 1694 #ifdef IPV6_PKTOPTIONS 1695 case IPV6_PKTOPTIONS: 1696 #endif 1697 { 1698 struct mbuf *m; 1699 1700 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1701 printf("ip6_ctloutput: mbuf limit hit\n"); 1702 error = ENOBUFS; 1703 break; 1704 } 1705 1706 error = soopt_getm(sopt, &m); /* XXX */ 1707 if (error != 0) 1708 break; 1709 error = soopt_mcopyin(sopt, m); /* XXX */ 1710 if (error != 0) 1711 break; 1712 INP_WLOCK(inp); 1713 error = ip6_pcbopts(&inp->in6p_outputopts, m, 1714 so, sopt); 1715 INP_WUNLOCK(inp); 1716 m_freem(m); /* XXX */ 1717 break; 1718 } 1719 1720 /* 1721 * Use of some Hop-by-Hop options or some 1722 * Destination options, might require special 1723 * privilege. That is, normal applications 1724 * (without special privilege) might be forbidden 1725 * from setting certain options in outgoing packets, 1726 * and might never see certain options in received 1727 * packets. [RFC 2292 Section 6] 1728 * KAME specific note: 1729 * KAME prevents non-privileged users from sending or 1730 * receiving ANY hbh/dst options in order to avoid 1731 * overhead of parsing options in the kernel. 1732 */ 1733 case IPV6_RECVHOPOPTS: 1734 case IPV6_RECVDSTOPTS: 1735 case IPV6_RECVRTHDRDSTOPTS: 1736 if (td != NULL) { 1737 error = priv_check(td, 1738 PRIV_NETINET_SETHDROPTS); 1739 if (error) 1740 break; 1741 } 1742 /* FALLTHROUGH */ 1743 case IPV6_UNICAST_HOPS: 1744 case IPV6_HOPLIMIT: 1745 1746 case IPV6_RECVPKTINFO: 1747 case IPV6_RECVHOPLIMIT: 1748 case IPV6_RECVRTHDR: 1749 case IPV6_RECVPATHMTU: 1750 case IPV6_RECVTCLASS: 1751 case IPV6_RECVFLOWID: 1752 #ifdef RSS 1753 case IPV6_RECVRSSBUCKETID: 1754 #endif 1755 case IPV6_V6ONLY: 1756 case IPV6_AUTOFLOWLABEL: 1757 case IPV6_ORIGDSTADDR: 1758 case IPV6_BINDANY: 1759 case IPV6_BINDMULTI: 1760 #ifdef RSS 1761 case IPV6_RSS_LISTEN_BUCKET: 1762 #endif 1763 case IPV6_VLAN_PCP: 1764 if (optname == IPV6_BINDANY && td != NULL) { 1765 error = priv_check(td, 1766 PRIV_NETINET_BINDANY); 1767 if (error) 1768 break; 1769 } 1770 1771 if (optlen != sizeof(int)) { 1772 error = EINVAL; 1773 break; 1774 } 1775 error = sooptcopyin(sopt, &optval, 1776 sizeof optval, sizeof optval); 1777 if (error) 1778 break; 1779 switch (optname) { 1780 case IPV6_UNICAST_HOPS: 1781 if (optval < -1 || optval >= 256) 1782 error = EINVAL; 1783 else { 1784 /* -1 = kernel default */ 1785 inp->in6p_hops = optval; 1786 if ((inp->inp_vflag & 1787 INP_IPV4) != 0) 1788 inp->inp_ip_ttl = optval; 1789 } 1790 break; 1791 #define OPTSET(bit) \ 1792 do { \ 1793 INP_WLOCK(inp); \ 1794 if (optval) \ 1795 inp->inp_flags |= (bit); \ 1796 else \ 1797 inp->inp_flags &= ~(bit); \ 1798 INP_WUNLOCK(inp); \ 1799 } while (/*CONSTCOND*/ 0) 1800 #define OPTSET2292(bit) \ 1801 do { \ 1802 INP_WLOCK(inp); \ 1803 inp->inp_flags |= IN6P_RFC2292; \ 1804 if (optval) \ 1805 inp->inp_flags |= (bit); \ 1806 else \ 1807 inp->inp_flags &= ~(bit); \ 1808 INP_WUNLOCK(inp); \ 1809 } while (/*CONSTCOND*/ 0) 1810 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1811 1812 #define OPTSET2_N(bit, val) do { \ 1813 if (val) \ 1814 inp->inp_flags2 |= bit; \ 1815 else \ 1816 inp->inp_flags2 &= ~bit; \ 1817 } while (0) 1818 #define OPTSET2(bit, val) do { \ 1819 INP_WLOCK(inp); \ 1820 OPTSET2_N(bit, val); \ 1821 INP_WUNLOCK(inp); \ 1822 } while (0) 1823 #define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0) 1824 #define OPTSET2292_EXCLUSIVE(bit) \ 1825 do { \ 1826 INP_WLOCK(inp); \ 1827 if (OPTBIT(IN6P_RFC2292)) { \ 1828 error = EINVAL; \ 1829 } else { \ 1830 if (optval) \ 1831 inp->inp_flags |= (bit); \ 1832 else \ 1833 inp->inp_flags &= ~(bit); \ 1834 } \ 1835 INP_WUNLOCK(inp); \ 1836 } while (/*CONSTCOND*/ 0) 1837 1838 case IPV6_RECVPKTINFO: 1839 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1840 break; 1841 1842 case IPV6_HOPLIMIT: 1843 { 1844 struct ip6_pktopts **optp; 1845 1846 /* cannot mix with RFC2292 */ 1847 if (OPTBIT(IN6P_RFC2292)) { 1848 error = EINVAL; 1849 break; 1850 } 1851 INP_WLOCK(inp); 1852 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1853 INP_WUNLOCK(inp); 1854 return (ECONNRESET); 1855 } 1856 optp = &inp->in6p_outputopts; 1857 error = ip6_pcbopt(IPV6_HOPLIMIT, 1858 (u_char *)&optval, sizeof(optval), 1859 optp, (td != NULL) ? td->td_ucred : 1860 NULL, uproto); 1861 INP_WUNLOCK(inp); 1862 break; 1863 } 1864 1865 case IPV6_RECVHOPLIMIT: 1866 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1867 break; 1868 1869 case IPV6_RECVHOPOPTS: 1870 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1871 break; 1872 1873 case IPV6_RECVDSTOPTS: 1874 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1875 break; 1876 1877 case IPV6_RECVRTHDRDSTOPTS: 1878 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1879 break; 1880 1881 case IPV6_RECVRTHDR: 1882 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1883 break; 1884 1885 case IPV6_RECVPATHMTU: 1886 /* 1887 * We ignore this option for TCP 1888 * sockets. 1889 * (RFC3542 leaves this case 1890 * unspecified.) 1891 */ 1892 if (uproto != IPPROTO_TCP) 1893 OPTSET(IN6P_MTU); 1894 break; 1895 1896 case IPV6_RECVFLOWID: 1897 OPTSET2(INP_RECVFLOWID, optval); 1898 break; 1899 1900 #ifdef RSS 1901 case IPV6_RECVRSSBUCKETID: 1902 OPTSET2(INP_RECVRSSBUCKETID, optval); 1903 break; 1904 #endif 1905 1906 case IPV6_V6ONLY: 1907 INP_WLOCK(inp); 1908 if (inp->inp_lport || 1909 !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { 1910 /* 1911 * The socket is already bound. 1912 */ 1913 INP_WUNLOCK(inp); 1914 error = EINVAL; 1915 break; 1916 } 1917 if (optval) { 1918 inp->inp_flags |= IN6P_IPV6_V6ONLY; 1919 inp->inp_vflag &= ~INP_IPV4; 1920 } else { 1921 inp->inp_flags &= ~IN6P_IPV6_V6ONLY; 1922 inp->inp_vflag |= INP_IPV4; 1923 } 1924 INP_WUNLOCK(inp); 1925 break; 1926 case IPV6_RECVTCLASS: 1927 /* cannot mix with RFC2292 XXX */ 1928 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1929 break; 1930 case IPV6_AUTOFLOWLABEL: 1931 OPTSET(IN6P_AUTOFLOWLABEL); 1932 break; 1933 1934 case IPV6_ORIGDSTADDR: 1935 OPTSET2(INP_ORIGDSTADDR, optval); 1936 break; 1937 case IPV6_BINDANY: 1938 OPTSET(INP_BINDANY); 1939 break; 1940 1941 case IPV6_BINDMULTI: 1942 OPTSET2(INP_BINDMULTI, optval); 1943 break; 1944 #ifdef RSS 1945 case IPV6_RSS_LISTEN_BUCKET: 1946 if ((optval >= 0) && 1947 (optval < rss_getnumbuckets())) { 1948 INP_WLOCK(inp); 1949 inp->inp_rss_listen_bucket = optval; 1950 OPTSET2_N(INP_RSS_BUCKET_SET, 1); 1951 INP_WUNLOCK(inp); 1952 } else { 1953 error = EINVAL; 1954 } 1955 break; 1956 #endif 1957 case IPV6_VLAN_PCP: 1958 if ((optval >= -1) && (optval <= 1959 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1960 if (optval == -1) { 1961 INP_WLOCK(inp); 1962 inp->inp_flags2 &= 1963 ~(INP_2PCP_SET | 1964 INP_2PCP_MASK); 1965 INP_WUNLOCK(inp); 1966 } else { 1967 INP_WLOCK(inp); 1968 inp->inp_flags2 |= 1969 INP_2PCP_SET; 1970 inp->inp_flags2 &= 1971 ~INP_2PCP_MASK; 1972 inp->inp_flags2 |= 1973 optval << 1974 INP_2PCP_SHIFT; 1975 INP_WUNLOCK(inp); 1976 } 1977 } else 1978 error = EINVAL; 1979 break; 1980 } 1981 break; 1982 1983 case IPV6_TCLASS: 1984 case IPV6_DONTFRAG: 1985 case IPV6_USE_MIN_MTU: 1986 case IPV6_PREFER_TEMPADDR: 1987 if (optlen != sizeof(optval)) { 1988 error = EINVAL; 1989 break; 1990 } 1991 error = sooptcopyin(sopt, &optval, 1992 sizeof optval, sizeof optval); 1993 if (error) 1994 break; 1995 { 1996 struct ip6_pktopts **optp; 1997 INP_WLOCK(inp); 1998 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1999 INP_WUNLOCK(inp); 2000 return (ECONNRESET); 2001 } 2002 optp = &inp->in6p_outputopts; 2003 error = ip6_pcbopt(optname, 2004 (u_char *)&optval, sizeof(optval), 2005 optp, (td != NULL) ? td->td_ucred : 2006 NULL, uproto); 2007 INP_WUNLOCK(inp); 2008 break; 2009 } 2010 2011 case IPV6_2292PKTINFO: 2012 case IPV6_2292HOPLIMIT: 2013 case IPV6_2292HOPOPTS: 2014 case IPV6_2292DSTOPTS: 2015 case IPV6_2292RTHDR: 2016 /* RFC 2292 */ 2017 if (optlen != sizeof(int)) { 2018 error = EINVAL; 2019 break; 2020 } 2021 error = sooptcopyin(sopt, &optval, 2022 sizeof optval, sizeof optval); 2023 if (error) 2024 break; 2025 switch (optname) { 2026 case IPV6_2292PKTINFO: 2027 OPTSET2292(IN6P_PKTINFO); 2028 break; 2029 case IPV6_2292HOPLIMIT: 2030 OPTSET2292(IN6P_HOPLIMIT); 2031 break; 2032 case IPV6_2292HOPOPTS: 2033 /* 2034 * Check super-user privilege. 2035 * See comments for IPV6_RECVHOPOPTS. 2036 */ 2037 if (td != NULL) { 2038 error = priv_check(td, 2039 PRIV_NETINET_SETHDROPTS); 2040 if (error) 2041 return (error); 2042 } 2043 OPTSET2292(IN6P_HOPOPTS); 2044 break; 2045 case IPV6_2292DSTOPTS: 2046 if (td != NULL) { 2047 error = priv_check(td, 2048 PRIV_NETINET_SETHDROPTS); 2049 if (error) 2050 return (error); 2051 } 2052 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 2053 break; 2054 case IPV6_2292RTHDR: 2055 OPTSET2292(IN6P_RTHDR); 2056 break; 2057 } 2058 break; 2059 case IPV6_PKTINFO: 2060 case IPV6_HOPOPTS: 2061 case IPV6_RTHDR: 2062 case IPV6_DSTOPTS: 2063 case IPV6_RTHDRDSTOPTS: 2064 case IPV6_NEXTHOP: 2065 { 2066 /* new advanced API (RFC3542) */ 2067 u_char *optbuf; 2068 u_char optbuf_storage[MCLBYTES]; 2069 int optlen; 2070 struct ip6_pktopts **optp; 2071 2072 /* cannot mix with RFC2292 */ 2073 if (OPTBIT(IN6P_RFC2292)) { 2074 error = EINVAL; 2075 break; 2076 } 2077 2078 /* 2079 * We only ensure valsize is not too large 2080 * here. Further validation will be done 2081 * later. 2082 */ 2083 error = sooptcopyin(sopt, optbuf_storage, 2084 sizeof(optbuf_storage), 0); 2085 if (error) 2086 break; 2087 optlen = sopt->sopt_valsize; 2088 optbuf = optbuf_storage; 2089 INP_WLOCK(inp); 2090 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 2091 INP_WUNLOCK(inp); 2092 return (ECONNRESET); 2093 } 2094 optp = &inp->in6p_outputopts; 2095 error = ip6_pcbopt(optname, optbuf, optlen, 2096 optp, (td != NULL) ? td->td_ucred : NULL, 2097 uproto); 2098 INP_WUNLOCK(inp); 2099 break; 2100 } 2101 #undef OPTSET 2102 2103 case IPV6_MULTICAST_IF: 2104 case IPV6_MULTICAST_HOPS: 2105 case IPV6_MULTICAST_LOOP: 2106 case IPV6_JOIN_GROUP: 2107 case IPV6_LEAVE_GROUP: 2108 case IPV6_MSFILTER: 2109 case MCAST_BLOCK_SOURCE: 2110 case MCAST_UNBLOCK_SOURCE: 2111 case MCAST_JOIN_GROUP: 2112 case MCAST_LEAVE_GROUP: 2113 case MCAST_JOIN_SOURCE_GROUP: 2114 case MCAST_LEAVE_SOURCE_GROUP: 2115 error = ip6_setmoptions(inp, sopt); 2116 break; 2117 2118 case IPV6_PORTRANGE: 2119 error = sooptcopyin(sopt, &optval, 2120 sizeof optval, sizeof optval); 2121 if (error) 2122 break; 2123 2124 INP_WLOCK(inp); 2125 switch (optval) { 2126 case IPV6_PORTRANGE_DEFAULT: 2127 inp->inp_flags &= ~(INP_LOWPORT); 2128 inp->inp_flags &= ~(INP_HIGHPORT); 2129 break; 2130 2131 case IPV6_PORTRANGE_HIGH: 2132 inp->inp_flags &= ~(INP_LOWPORT); 2133 inp->inp_flags |= INP_HIGHPORT; 2134 break; 2135 2136 case IPV6_PORTRANGE_LOW: 2137 inp->inp_flags &= ~(INP_HIGHPORT); 2138 inp->inp_flags |= INP_LOWPORT; 2139 break; 2140 2141 default: 2142 error = EINVAL; 2143 break; 2144 } 2145 INP_WUNLOCK(inp); 2146 break; 2147 2148 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2149 case IPV6_IPSEC_POLICY: 2150 if (IPSEC_ENABLED(ipv6)) { 2151 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2152 break; 2153 } 2154 /* FALLTHROUGH */ 2155 #endif /* IPSEC */ 2156 2157 default: 2158 error = ENOPROTOOPT; 2159 break; 2160 } 2161 break; 2162 2163 case SOPT_GET: 2164 switch (optname) { 2165 case IPV6_2292PKTOPTIONS: 2166 #ifdef IPV6_PKTOPTIONS 2167 case IPV6_PKTOPTIONS: 2168 #endif 2169 /* 2170 * RFC3542 (effectively) deprecated the 2171 * semantics of the 2292-style pktoptions. 2172 * Since it was not reliable in nature (i.e., 2173 * applications had to expect the lack of some 2174 * information after all), it would make sense 2175 * to simplify this part by always returning 2176 * empty data. 2177 */ 2178 sopt->sopt_valsize = 0; 2179 break; 2180 2181 case IPV6_RECVHOPOPTS: 2182 case IPV6_RECVDSTOPTS: 2183 case IPV6_RECVRTHDRDSTOPTS: 2184 case IPV6_UNICAST_HOPS: 2185 case IPV6_RECVPKTINFO: 2186 case IPV6_RECVHOPLIMIT: 2187 case IPV6_RECVRTHDR: 2188 case IPV6_RECVPATHMTU: 2189 2190 case IPV6_V6ONLY: 2191 case IPV6_PORTRANGE: 2192 case IPV6_RECVTCLASS: 2193 case IPV6_AUTOFLOWLABEL: 2194 case IPV6_BINDANY: 2195 case IPV6_FLOWID: 2196 case IPV6_FLOWTYPE: 2197 case IPV6_RECVFLOWID: 2198 #ifdef RSS 2199 case IPV6_RSSBUCKETID: 2200 case IPV6_RECVRSSBUCKETID: 2201 #endif 2202 case IPV6_BINDMULTI: 2203 case IPV6_VLAN_PCP: 2204 switch (optname) { 2205 case IPV6_RECVHOPOPTS: 2206 optval = OPTBIT(IN6P_HOPOPTS); 2207 break; 2208 2209 case IPV6_RECVDSTOPTS: 2210 optval = OPTBIT(IN6P_DSTOPTS); 2211 break; 2212 2213 case IPV6_RECVRTHDRDSTOPTS: 2214 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 2215 break; 2216 2217 case IPV6_UNICAST_HOPS: 2218 optval = inp->in6p_hops; 2219 break; 2220 2221 case IPV6_RECVPKTINFO: 2222 optval = OPTBIT(IN6P_PKTINFO); 2223 break; 2224 2225 case IPV6_RECVHOPLIMIT: 2226 optval = OPTBIT(IN6P_HOPLIMIT); 2227 break; 2228 2229 case IPV6_RECVRTHDR: 2230 optval = OPTBIT(IN6P_RTHDR); 2231 break; 2232 2233 case IPV6_RECVPATHMTU: 2234 optval = OPTBIT(IN6P_MTU); 2235 break; 2236 2237 case IPV6_V6ONLY: 2238 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2239 break; 2240 2241 case IPV6_PORTRANGE: 2242 { 2243 int flags; 2244 flags = inp->inp_flags; 2245 if (flags & INP_HIGHPORT) 2246 optval = IPV6_PORTRANGE_HIGH; 2247 else if (flags & INP_LOWPORT) 2248 optval = IPV6_PORTRANGE_LOW; 2249 else 2250 optval = 0; 2251 break; 2252 } 2253 case IPV6_RECVTCLASS: 2254 optval = OPTBIT(IN6P_TCLASS); 2255 break; 2256 2257 case IPV6_AUTOFLOWLABEL: 2258 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2259 break; 2260 2261 case IPV6_ORIGDSTADDR: 2262 optval = OPTBIT2(INP_ORIGDSTADDR); 2263 break; 2264 2265 case IPV6_BINDANY: 2266 optval = OPTBIT(INP_BINDANY); 2267 break; 2268 2269 case IPV6_FLOWID: 2270 optval = inp->inp_flowid; 2271 break; 2272 2273 case IPV6_FLOWTYPE: 2274 optval = inp->inp_flowtype; 2275 break; 2276 2277 case IPV6_RECVFLOWID: 2278 optval = OPTBIT2(INP_RECVFLOWID); 2279 break; 2280 #ifdef RSS 2281 case IPV6_RSSBUCKETID: 2282 retval = 2283 rss_hash2bucket(inp->inp_flowid, 2284 inp->inp_flowtype, 2285 &rss_bucket); 2286 if (retval == 0) 2287 optval = rss_bucket; 2288 else 2289 error = EINVAL; 2290 break; 2291 2292 case IPV6_RECVRSSBUCKETID: 2293 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2294 break; 2295 #endif 2296 2297 case IPV6_BINDMULTI: 2298 optval = OPTBIT2(INP_BINDMULTI); 2299 break; 2300 2301 case IPV6_VLAN_PCP: 2302 if (OPTBIT2(INP_2PCP_SET)) { 2303 optval = (inp->inp_flags2 & 2304 INP_2PCP_MASK) >> 2305 INP_2PCP_SHIFT; 2306 } else { 2307 optval = -1; 2308 } 2309 break; 2310 } 2311 2312 if (error) 2313 break; 2314 error = sooptcopyout(sopt, &optval, 2315 sizeof optval); 2316 break; 2317 2318 case IPV6_PATHMTU: 2319 { 2320 u_long pmtu = 0; 2321 struct ip6_mtuinfo mtuinfo; 2322 struct in6_addr addr; 2323 2324 if (!(so->so_state & SS_ISCONNECTED)) 2325 return (ENOTCONN); 2326 /* 2327 * XXX: we dot not consider the case of source 2328 * routing, or optional information to specify 2329 * the outgoing interface. 2330 * Copy faddr out of inp to avoid holding lock 2331 * on inp during route lookup. 2332 */ 2333 INP_RLOCK(inp); 2334 bcopy(&inp->in6p_faddr, &addr, sizeof(addr)); 2335 INP_RUNLOCK(inp); 2336 error = ip6_getpmtu_ctl(so->so_fibnum, 2337 &addr, &pmtu); 2338 if (error) 2339 break; 2340 if (pmtu > IPV6_MAXPACKET) 2341 pmtu = IPV6_MAXPACKET; 2342 2343 bzero(&mtuinfo, sizeof(mtuinfo)); 2344 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2345 optdata = (void *)&mtuinfo; 2346 optdatalen = sizeof(mtuinfo); 2347 error = sooptcopyout(sopt, optdata, 2348 optdatalen); 2349 break; 2350 } 2351 2352 case IPV6_2292PKTINFO: 2353 case IPV6_2292HOPLIMIT: 2354 case IPV6_2292HOPOPTS: 2355 case IPV6_2292RTHDR: 2356 case IPV6_2292DSTOPTS: 2357 switch (optname) { 2358 case IPV6_2292PKTINFO: 2359 optval = OPTBIT(IN6P_PKTINFO); 2360 break; 2361 case IPV6_2292HOPLIMIT: 2362 optval = OPTBIT(IN6P_HOPLIMIT); 2363 break; 2364 case IPV6_2292HOPOPTS: 2365 optval = OPTBIT(IN6P_HOPOPTS); 2366 break; 2367 case IPV6_2292RTHDR: 2368 optval = OPTBIT(IN6P_RTHDR); 2369 break; 2370 case IPV6_2292DSTOPTS: 2371 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2372 break; 2373 } 2374 error = sooptcopyout(sopt, &optval, 2375 sizeof optval); 2376 break; 2377 case IPV6_PKTINFO: 2378 case IPV6_HOPOPTS: 2379 case IPV6_RTHDR: 2380 case IPV6_DSTOPTS: 2381 case IPV6_RTHDRDSTOPTS: 2382 case IPV6_NEXTHOP: 2383 case IPV6_TCLASS: 2384 case IPV6_DONTFRAG: 2385 case IPV6_USE_MIN_MTU: 2386 case IPV6_PREFER_TEMPADDR: 2387 error = ip6_getpcbopt(inp, optname, sopt); 2388 break; 2389 2390 case IPV6_MULTICAST_IF: 2391 case IPV6_MULTICAST_HOPS: 2392 case IPV6_MULTICAST_LOOP: 2393 case IPV6_MSFILTER: 2394 error = ip6_getmoptions(inp, sopt); 2395 break; 2396 2397 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2398 case IPV6_IPSEC_POLICY: 2399 if (IPSEC_ENABLED(ipv6)) { 2400 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2401 break; 2402 } 2403 /* FALLTHROUGH */ 2404 #endif /* IPSEC */ 2405 default: 2406 error = ENOPROTOOPT; 2407 break; 2408 } 2409 break; 2410 } 2411 } 2412 return (error); 2413 } 2414 2415 int 2416 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2417 { 2418 int error = 0, optval, optlen; 2419 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2420 struct inpcb *inp = sotoinpcb(so); 2421 int level, op, optname; 2422 2423 level = sopt->sopt_level; 2424 op = sopt->sopt_dir; 2425 optname = sopt->sopt_name; 2426 optlen = sopt->sopt_valsize; 2427 2428 if (level != IPPROTO_IPV6) { 2429 return (EINVAL); 2430 } 2431 2432 switch (optname) { 2433 case IPV6_CHECKSUM: 2434 /* 2435 * For ICMPv6 sockets, no modification allowed for checksum 2436 * offset, permit "no change" values to help existing apps. 2437 * 2438 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2439 * for an ICMPv6 socket will fail." 2440 * The current behavior does not meet RFC3542. 2441 */ 2442 switch (op) { 2443 case SOPT_SET: 2444 if (optlen != sizeof(int)) { 2445 error = EINVAL; 2446 break; 2447 } 2448 error = sooptcopyin(sopt, &optval, sizeof(optval), 2449 sizeof(optval)); 2450 if (error) 2451 break; 2452 if (optval < -1 || (optval % 2) != 0) { 2453 /* 2454 * The API assumes non-negative even offset 2455 * values or -1 as a special value. 2456 */ 2457 error = EINVAL; 2458 } else if (so->so_proto->pr_protocol == 2459 IPPROTO_ICMPV6) { 2460 if (optval != icmp6off) 2461 error = EINVAL; 2462 } else 2463 inp->in6p_cksum = optval; 2464 break; 2465 2466 case SOPT_GET: 2467 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2468 optval = icmp6off; 2469 else 2470 optval = inp->in6p_cksum; 2471 2472 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2473 break; 2474 2475 default: 2476 error = EINVAL; 2477 break; 2478 } 2479 break; 2480 2481 default: 2482 error = ENOPROTOOPT; 2483 break; 2484 } 2485 2486 return (error); 2487 } 2488 2489 /* 2490 * Set up IP6 options in pcb for insertion in output packets or 2491 * specifying behavior of outgoing packets. 2492 */ 2493 static int 2494 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2495 struct socket *so, struct sockopt *sopt) 2496 { 2497 struct ip6_pktopts *opt = *pktopt; 2498 int error = 0; 2499 struct thread *td = sopt->sopt_td; 2500 2501 /* turn off any old options. */ 2502 if (opt) { 2503 #ifdef DIAGNOSTIC 2504 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2505 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2506 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2507 printf("ip6_pcbopts: all specified options are cleared.\n"); 2508 #endif 2509 ip6_clearpktopts(opt, -1); 2510 } else { 2511 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2512 if (opt == NULL) 2513 return (ENOMEM); 2514 } 2515 *pktopt = NULL; 2516 2517 if (!m || m->m_len == 0) { 2518 /* 2519 * Only turning off any previous options, regardless of 2520 * whether the opt is just created or given. 2521 */ 2522 free(opt, M_IP6OPT); 2523 return (0); 2524 } 2525 2526 /* set options specified by user. */ 2527 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2528 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2529 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2530 free(opt, M_IP6OPT); 2531 return (error); 2532 } 2533 *pktopt = opt; 2534 return (0); 2535 } 2536 2537 /* 2538 * initialize ip6_pktopts. beware that there are non-zero default values in 2539 * the struct. 2540 */ 2541 void 2542 ip6_initpktopts(struct ip6_pktopts *opt) 2543 { 2544 2545 bzero(opt, sizeof(*opt)); 2546 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2547 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2548 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2549 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2550 } 2551 2552 static int 2553 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2554 struct ucred *cred, int uproto) 2555 { 2556 struct ip6_pktopts *opt; 2557 2558 if (*pktopt == NULL) { 2559 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2560 M_NOWAIT); 2561 if (*pktopt == NULL) 2562 return (ENOBUFS); 2563 ip6_initpktopts(*pktopt); 2564 } 2565 opt = *pktopt; 2566 2567 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2568 } 2569 2570 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2571 if (pktopt && pktopt->field) { \ 2572 INP_RUNLOCK(inp); \ 2573 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2574 malloc_optdata = true; \ 2575 INP_RLOCK(inp); \ 2576 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ 2577 INP_RUNLOCK(inp); \ 2578 free(optdata, M_TEMP); \ 2579 return (ECONNRESET); \ 2580 } \ 2581 pktopt = inp->in6p_outputopts; \ 2582 if (pktopt && pktopt->field) { \ 2583 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2584 bcopy(&pktopt->field, optdata, optdatalen); \ 2585 } else { \ 2586 free(optdata, M_TEMP); \ 2587 optdata = NULL; \ 2588 malloc_optdata = false; \ 2589 } \ 2590 } \ 2591 } while(0) 2592 2593 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2594 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2595 2596 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2597 pktopt->field->sa_len) 2598 2599 static int 2600 ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt) 2601 { 2602 void *optdata = NULL; 2603 bool malloc_optdata = false; 2604 int optdatalen = 0; 2605 int error = 0; 2606 struct in6_pktinfo null_pktinfo; 2607 int deftclass = 0, on; 2608 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2609 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2610 struct ip6_pktopts *pktopt; 2611 2612 INP_RLOCK(inp); 2613 pktopt = inp->in6p_outputopts; 2614 2615 switch (optname) { 2616 case IPV6_PKTINFO: 2617 optdata = (void *)&null_pktinfo; 2618 if (pktopt && pktopt->ip6po_pktinfo) { 2619 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2620 sizeof(null_pktinfo)); 2621 in6_clearscope(&null_pktinfo.ipi6_addr); 2622 } else { 2623 /* XXX: we don't have to do this every time... */ 2624 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2625 } 2626 optdatalen = sizeof(struct in6_pktinfo); 2627 break; 2628 case IPV6_TCLASS: 2629 if (pktopt && pktopt->ip6po_tclass >= 0) 2630 deftclass = pktopt->ip6po_tclass; 2631 optdata = (void *)&deftclass; 2632 optdatalen = sizeof(int); 2633 break; 2634 case IPV6_HOPOPTS: 2635 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2636 break; 2637 case IPV6_RTHDR: 2638 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2639 break; 2640 case IPV6_RTHDRDSTOPTS: 2641 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2642 break; 2643 case IPV6_DSTOPTS: 2644 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2645 break; 2646 case IPV6_NEXTHOP: 2647 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2648 break; 2649 case IPV6_USE_MIN_MTU: 2650 if (pktopt) 2651 defminmtu = pktopt->ip6po_minmtu; 2652 optdata = (void *)&defminmtu; 2653 optdatalen = sizeof(int); 2654 break; 2655 case IPV6_DONTFRAG: 2656 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2657 on = 1; 2658 else 2659 on = 0; 2660 optdata = (void *)&on; 2661 optdatalen = sizeof(on); 2662 break; 2663 case IPV6_PREFER_TEMPADDR: 2664 if (pktopt) 2665 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2666 optdata = (void *)&defpreftemp; 2667 optdatalen = sizeof(int); 2668 break; 2669 default: /* should not happen */ 2670 #ifdef DIAGNOSTIC 2671 panic("ip6_getpcbopt: unexpected option\n"); 2672 #endif 2673 INP_RUNLOCK(inp); 2674 return (ENOPROTOOPT); 2675 } 2676 INP_RUNLOCK(inp); 2677 2678 error = sooptcopyout(sopt, optdata, optdatalen); 2679 if (malloc_optdata) 2680 free(optdata, M_TEMP); 2681 2682 return (error); 2683 } 2684 2685 void 2686 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2687 { 2688 if (pktopt == NULL) 2689 return; 2690 2691 if (optname == -1 || optname == IPV6_PKTINFO) { 2692 if (pktopt->ip6po_pktinfo) 2693 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2694 pktopt->ip6po_pktinfo = NULL; 2695 } 2696 if (optname == -1 || optname == IPV6_HOPLIMIT) 2697 pktopt->ip6po_hlim = -1; 2698 if (optname == -1 || optname == IPV6_TCLASS) 2699 pktopt->ip6po_tclass = -1; 2700 if (optname == -1 || optname == IPV6_NEXTHOP) { 2701 if (pktopt->ip6po_nextroute.ro_nh) { 2702 NH_FREE(pktopt->ip6po_nextroute.ro_nh); 2703 pktopt->ip6po_nextroute.ro_nh = NULL; 2704 } 2705 if (pktopt->ip6po_nexthop) 2706 free(pktopt->ip6po_nexthop, M_IP6OPT); 2707 pktopt->ip6po_nexthop = NULL; 2708 } 2709 if (optname == -1 || optname == IPV6_HOPOPTS) { 2710 if (pktopt->ip6po_hbh) 2711 free(pktopt->ip6po_hbh, M_IP6OPT); 2712 pktopt->ip6po_hbh = NULL; 2713 } 2714 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2715 if (pktopt->ip6po_dest1) 2716 free(pktopt->ip6po_dest1, M_IP6OPT); 2717 pktopt->ip6po_dest1 = NULL; 2718 } 2719 if (optname == -1 || optname == IPV6_RTHDR) { 2720 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2721 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2722 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2723 if (pktopt->ip6po_route.ro_nh) { 2724 NH_FREE(pktopt->ip6po_route.ro_nh); 2725 pktopt->ip6po_route.ro_nh = NULL; 2726 } 2727 } 2728 if (optname == -1 || optname == IPV6_DSTOPTS) { 2729 if (pktopt->ip6po_dest2) 2730 free(pktopt->ip6po_dest2, M_IP6OPT); 2731 pktopt->ip6po_dest2 = NULL; 2732 } 2733 } 2734 2735 #define PKTOPT_EXTHDRCPY(type) \ 2736 do {\ 2737 if (src->type) {\ 2738 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2739 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2740 if (dst->type == NULL)\ 2741 goto bad;\ 2742 bcopy(src->type, dst->type, hlen);\ 2743 }\ 2744 } while (/*CONSTCOND*/ 0) 2745 2746 static int 2747 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2748 { 2749 if (dst == NULL || src == NULL) { 2750 printf("ip6_clearpktopts: invalid argument\n"); 2751 return (EINVAL); 2752 } 2753 2754 dst->ip6po_hlim = src->ip6po_hlim; 2755 dst->ip6po_tclass = src->ip6po_tclass; 2756 dst->ip6po_flags = src->ip6po_flags; 2757 dst->ip6po_minmtu = src->ip6po_minmtu; 2758 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2759 if (src->ip6po_pktinfo) { 2760 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2761 M_IP6OPT, canwait); 2762 if (dst->ip6po_pktinfo == NULL) 2763 goto bad; 2764 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2765 } 2766 if (src->ip6po_nexthop) { 2767 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2768 M_IP6OPT, canwait); 2769 if (dst->ip6po_nexthop == NULL) 2770 goto bad; 2771 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2772 src->ip6po_nexthop->sa_len); 2773 } 2774 PKTOPT_EXTHDRCPY(ip6po_hbh); 2775 PKTOPT_EXTHDRCPY(ip6po_dest1); 2776 PKTOPT_EXTHDRCPY(ip6po_dest2); 2777 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2778 return (0); 2779 2780 bad: 2781 ip6_clearpktopts(dst, -1); 2782 return (ENOBUFS); 2783 } 2784 #undef PKTOPT_EXTHDRCPY 2785 2786 struct ip6_pktopts * 2787 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2788 { 2789 int error; 2790 struct ip6_pktopts *dst; 2791 2792 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2793 if (dst == NULL) 2794 return (NULL); 2795 ip6_initpktopts(dst); 2796 2797 if ((error = copypktopts(dst, src, canwait)) != 0) { 2798 free(dst, M_IP6OPT); 2799 return (NULL); 2800 } 2801 2802 return (dst); 2803 } 2804 2805 void 2806 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2807 { 2808 if (pktopt == NULL) 2809 return; 2810 2811 ip6_clearpktopts(pktopt, -1); 2812 2813 free(pktopt, M_IP6OPT); 2814 } 2815 2816 /* 2817 * Set IPv6 outgoing packet options based on advanced API. 2818 */ 2819 int 2820 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2821 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2822 { 2823 struct cmsghdr *cm = NULL; 2824 2825 if (control == NULL || opt == NULL) 2826 return (EINVAL); 2827 2828 ip6_initpktopts(opt); 2829 if (stickyopt) { 2830 int error; 2831 2832 /* 2833 * If stickyopt is provided, make a local copy of the options 2834 * for this particular packet, then override them by ancillary 2835 * objects. 2836 * XXX: copypktopts() does not copy the cached route to a next 2837 * hop (if any). This is not very good in terms of efficiency, 2838 * but we can allow this since this option should be rarely 2839 * used. 2840 */ 2841 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2842 return (error); 2843 } 2844 2845 /* 2846 * XXX: Currently, we assume all the optional information is stored 2847 * in a single mbuf. 2848 */ 2849 if (control->m_next) 2850 return (EINVAL); 2851 2852 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2853 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2854 int error; 2855 2856 if (control->m_len < CMSG_LEN(0)) 2857 return (EINVAL); 2858 2859 cm = mtod(control, struct cmsghdr *); 2860 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2861 return (EINVAL); 2862 if (cm->cmsg_level != IPPROTO_IPV6) 2863 continue; 2864 2865 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2866 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2867 if (error) 2868 return (error); 2869 } 2870 2871 return (0); 2872 } 2873 2874 /* 2875 * Set a particular packet option, as a sticky option or an ancillary data 2876 * item. "len" can be 0 only when it's a sticky option. 2877 * We have 4 cases of combination of "sticky" and "cmsg": 2878 * "sticky=0, cmsg=0": impossible 2879 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2880 * "sticky=1, cmsg=0": RFC3542 socket option 2881 * "sticky=1, cmsg=1": RFC2292 socket option 2882 */ 2883 static int 2884 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2885 struct ucred *cred, int sticky, int cmsg, int uproto) 2886 { 2887 int minmtupolicy, preftemp; 2888 int error; 2889 2890 if (!sticky && !cmsg) { 2891 #ifdef DIAGNOSTIC 2892 printf("ip6_setpktopt: impossible case\n"); 2893 #endif 2894 return (EINVAL); 2895 } 2896 2897 /* 2898 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2899 * not be specified in the context of RFC3542. Conversely, 2900 * RFC3542 types should not be specified in the context of RFC2292. 2901 */ 2902 if (!cmsg) { 2903 switch (optname) { 2904 case IPV6_2292PKTINFO: 2905 case IPV6_2292HOPLIMIT: 2906 case IPV6_2292NEXTHOP: 2907 case IPV6_2292HOPOPTS: 2908 case IPV6_2292DSTOPTS: 2909 case IPV6_2292RTHDR: 2910 case IPV6_2292PKTOPTIONS: 2911 return (ENOPROTOOPT); 2912 } 2913 } 2914 if (sticky && cmsg) { 2915 switch (optname) { 2916 case IPV6_PKTINFO: 2917 case IPV6_HOPLIMIT: 2918 case IPV6_NEXTHOP: 2919 case IPV6_HOPOPTS: 2920 case IPV6_DSTOPTS: 2921 case IPV6_RTHDRDSTOPTS: 2922 case IPV6_RTHDR: 2923 case IPV6_USE_MIN_MTU: 2924 case IPV6_DONTFRAG: 2925 case IPV6_TCLASS: 2926 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2927 return (ENOPROTOOPT); 2928 } 2929 } 2930 2931 switch (optname) { 2932 case IPV6_2292PKTINFO: 2933 case IPV6_PKTINFO: 2934 { 2935 struct ifnet *ifp = NULL; 2936 struct in6_pktinfo *pktinfo; 2937 2938 if (len != sizeof(struct in6_pktinfo)) 2939 return (EINVAL); 2940 2941 pktinfo = (struct in6_pktinfo *)buf; 2942 2943 /* 2944 * An application can clear any sticky IPV6_PKTINFO option by 2945 * doing a "regular" setsockopt with ipi6_addr being 2946 * in6addr_any and ipi6_ifindex being zero. 2947 * [RFC 3542, Section 6] 2948 */ 2949 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2950 pktinfo->ipi6_ifindex == 0 && 2951 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2952 ip6_clearpktopts(opt, optname); 2953 break; 2954 } 2955 2956 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2957 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2958 return (EINVAL); 2959 } 2960 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2961 return (EINVAL); 2962 /* validate the interface index if specified. */ 2963 if (pktinfo->ipi6_ifindex > V_if_index) 2964 return (ENXIO); 2965 if (pktinfo->ipi6_ifindex) { 2966 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2967 if (ifp == NULL) 2968 return (ENXIO); 2969 } 2970 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2971 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2972 return (ENETDOWN); 2973 2974 if (ifp != NULL && 2975 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2976 struct in6_ifaddr *ia; 2977 2978 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2979 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2980 if (ia == NULL) 2981 return (EADDRNOTAVAIL); 2982 ifa_free(&ia->ia_ifa); 2983 } 2984 /* 2985 * We store the address anyway, and let in6_selectsrc() 2986 * validate the specified address. This is because ipi6_addr 2987 * may not have enough information about its scope zone, and 2988 * we may need additional information (such as outgoing 2989 * interface or the scope zone of a destination address) to 2990 * disambiguate the scope. 2991 * XXX: the delay of the validation may confuse the 2992 * application when it is used as a sticky option. 2993 */ 2994 if (opt->ip6po_pktinfo == NULL) { 2995 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2996 M_IP6OPT, M_NOWAIT); 2997 if (opt->ip6po_pktinfo == NULL) 2998 return (ENOBUFS); 2999 } 3000 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 3001 break; 3002 } 3003 3004 case IPV6_2292HOPLIMIT: 3005 case IPV6_HOPLIMIT: 3006 { 3007 int *hlimp; 3008 3009 /* 3010 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 3011 * to simplify the ordering among hoplimit options. 3012 */ 3013 if (optname == IPV6_HOPLIMIT && sticky) 3014 return (ENOPROTOOPT); 3015 3016 if (len != sizeof(int)) 3017 return (EINVAL); 3018 hlimp = (int *)buf; 3019 if (*hlimp < -1 || *hlimp > 255) 3020 return (EINVAL); 3021 3022 opt->ip6po_hlim = *hlimp; 3023 break; 3024 } 3025 3026 case IPV6_TCLASS: 3027 { 3028 int tclass; 3029 3030 if (len != sizeof(int)) 3031 return (EINVAL); 3032 tclass = *(int *)buf; 3033 if (tclass < -1 || tclass > 255) 3034 return (EINVAL); 3035 3036 opt->ip6po_tclass = tclass; 3037 break; 3038 } 3039 3040 case IPV6_2292NEXTHOP: 3041 case IPV6_NEXTHOP: 3042 if (cred != NULL) { 3043 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3044 if (error) 3045 return (error); 3046 } 3047 3048 if (len == 0) { /* just remove the option */ 3049 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3050 break; 3051 } 3052 3053 /* check if cmsg_len is large enough for sa_len */ 3054 if (len < sizeof(struct sockaddr) || len < *buf) 3055 return (EINVAL); 3056 3057 switch (((struct sockaddr *)buf)->sa_family) { 3058 case AF_INET6: 3059 { 3060 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3061 int error; 3062 3063 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3064 return (EINVAL); 3065 3066 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3067 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3068 return (EINVAL); 3069 } 3070 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 3071 != 0) { 3072 return (error); 3073 } 3074 break; 3075 } 3076 case AF_LINK: /* should eventually be supported */ 3077 default: 3078 return (EAFNOSUPPORT); 3079 } 3080 3081 /* turn off the previous option, then set the new option. */ 3082 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3083 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3084 if (opt->ip6po_nexthop == NULL) 3085 return (ENOBUFS); 3086 bcopy(buf, opt->ip6po_nexthop, *buf); 3087 break; 3088 3089 case IPV6_2292HOPOPTS: 3090 case IPV6_HOPOPTS: 3091 { 3092 struct ip6_hbh *hbh; 3093 int hbhlen; 3094 3095 /* 3096 * XXX: We don't allow a non-privileged user to set ANY HbH 3097 * options, since per-option restriction has too much 3098 * overhead. 3099 */ 3100 if (cred != NULL) { 3101 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3102 if (error) 3103 return (error); 3104 } 3105 3106 if (len == 0) { 3107 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3108 break; /* just remove the option */ 3109 } 3110 3111 /* message length validation */ 3112 if (len < sizeof(struct ip6_hbh)) 3113 return (EINVAL); 3114 hbh = (struct ip6_hbh *)buf; 3115 hbhlen = (hbh->ip6h_len + 1) << 3; 3116 if (len != hbhlen) 3117 return (EINVAL); 3118 3119 /* turn off the previous option, then set the new option. */ 3120 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3121 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3122 if (opt->ip6po_hbh == NULL) 3123 return (ENOBUFS); 3124 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3125 3126 break; 3127 } 3128 3129 case IPV6_2292DSTOPTS: 3130 case IPV6_DSTOPTS: 3131 case IPV6_RTHDRDSTOPTS: 3132 { 3133 struct ip6_dest *dest, **newdest = NULL; 3134 int destlen; 3135 3136 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 3137 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3138 if (error) 3139 return (error); 3140 } 3141 3142 if (len == 0) { 3143 ip6_clearpktopts(opt, optname); 3144 break; /* just remove the option */ 3145 } 3146 3147 /* message length validation */ 3148 if (len < sizeof(struct ip6_dest)) 3149 return (EINVAL); 3150 dest = (struct ip6_dest *)buf; 3151 destlen = (dest->ip6d_len + 1) << 3; 3152 if (len != destlen) 3153 return (EINVAL); 3154 3155 /* 3156 * Determine the position that the destination options header 3157 * should be inserted; before or after the routing header. 3158 */ 3159 switch (optname) { 3160 case IPV6_2292DSTOPTS: 3161 /* 3162 * The old advacned API is ambiguous on this point. 3163 * Our approach is to determine the position based 3164 * according to the existence of a routing header. 3165 * Note, however, that this depends on the order of the 3166 * extension headers in the ancillary data; the 1st 3167 * part of the destination options header must appear 3168 * before the routing header in the ancillary data, 3169 * too. 3170 * RFC3542 solved the ambiguity by introducing 3171 * separate ancillary data or option types. 3172 */ 3173 if (opt->ip6po_rthdr == NULL) 3174 newdest = &opt->ip6po_dest1; 3175 else 3176 newdest = &opt->ip6po_dest2; 3177 break; 3178 case IPV6_RTHDRDSTOPTS: 3179 newdest = &opt->ip6po_dest1; 3180 break; 3181 case IPV6_DSTOPTS: 3182 newdest = &opt->ip6po_dest2; 3183 break; 3184 } 3185 3186 /* turn off the previous option, then set the new option. */ 3187 ip6_clearpktopts(opt, optname); 3188 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3189 if (*newdest == NULL) 3190 return (ENOBUFS); 3191 bcopy(dest, *newdest, destlen); 3192 3193 break; 3194 } 3195 3196 case IPV6_2292RTHDR: 3197 case IPV6_RTHDR: 3198 { 3199 struct ip6_rthdr *rth; 3200 int rthlen; 3201 3202 if (len == 0) { 3203 ip6_clearpktopts(opt, IPV6_RTHDR); 3204 break; /* just remove the option */ 3205 } 3206 3207 /* message length validation */ 3208 if (len < sizeof(struct ip6_rthdr)) 3209 return (EINVAL); 3210 rth = (struct ip6_rthdr *)buf; 3211 rthlen = (rth->ip6r_len + 1) << 3; 3212 if (len != rthlen) 3213 return (EINVAL); 3214 3215 switch (rth->ip6r_type) { 3216 case IPV6_RTHDR_TYPE_0: 3217 if (rth->ip6r_len == 0) /* must contain one addr */ 3218 return (EINVAL); 3219 if (rth->ip6r_len % 2) /* length must be even */ 3220 return (EINVAL); 3221 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3222 return (EINVAL); 3223 break; 3224 default: 3225 return (EINVAL); /* not supported */ 3226 } 3227 3228 /* turn off the previous option */ 3229 ip6_clearpktopts(opt, IPV6_RTHDR); 3230 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3231 if (opt->ip6po_rthdr == NULL) 3232 return (ENOBUFS); 3233 bcopy(rth, opt->ip6po_rthdr, rthlen); 3234 3235 break; 3236 } 3237 3238 case IPV6_USE_MIN_MTU: 3239 if (len != sizeof(int)) 3240 return (EINVAL); 3241 minmtupolicy = *(int *)buf; 3242 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3243 minmtupolicy != IP6PO_MINMTU_DISABLE && 3244 minmtupolicy != IP6PO_MINMTU_ALL) { 3245 return (EINVAL); 3246 } 3247 opt->ip6po_minmtu = minmtupolicy; 3248 break; 3249 3250 case IPV6_DONTFRAG: 3251 if (len != sizeof(int)) 3252 return (EINVAL); 3253 3254 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3255 /* 3256 * we ignore this option for TCP sockets. 3257 * (RFC3542 leaves this case unspecified.) 3258 */ 3259 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3260 } else 3261 opt->ip6po_flags |= IP6PO_DONTFRAG; 3262 break; 3263 3264 case IPV6_PREFER_TEMPADDR: 3265 if (len != sizeof(int)) 3266 return (EINVAL); 3267 preftemp = *(int *)buf; 3268 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3269 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3270 preftemp != IP6PO_TEMPADDR_PREFER) { 3271 return (EINVAL); 3272 } 3273 opt->ip6po_prefer_tempaddr = preftemp; 3274 break; 3275 3276 default: 3277 return (ENOPROTOOPT); 3278 } /* end of switch */ 3279 3280 return (0); 3281 } 3282 3283 /* 3284 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3285 * packet to the input queue of a specified interface. Note that this 3286 * calls the output routine of the loopback "driver", but with an interface 3287 * pointer that might NOT be &loif -- easier than replicating that code here. 3288 */ 3289 void 3290 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3291 { 3292 struct mbuf *copym; 3293 struct ip6_hdr *ip6; 3294 3295 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3296 if (copym == NULL) 3297 return; 3298 3299 /* 3300 * Make sure to deep-copy IPv6 header portion in case the data 3301 * is in an mbuf cluster, so that we can safely override the IPv6 3302 * header portion later. 3303 */ 3304 if (!M_WRITABLE(copym) || 3305 copym->m_len < sizeof(struct ip6_hdr)) { 3306 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3307 if (copym == NULL) 3308 return; 3309 } 3310 ip6 = mtod(copym, struct ip6_hdr *); 3311 /* 3312 * clear embedded scope identifiers if necessary. 3313 * in6_clearscope will touch the addresses only when necessary. 3314 */ 3315 in6_clearscope(&ip6->ip6_src); 3316 in6_clearscope(&ip6->ip6_dst); 3317 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3318 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3319 CSUM_PSEUDO_HDR; 3320 copym->m_pkthdr.csum_data = 0xffff; 3321 } 3322 if_simloop(ifp, copym, AF_INET6, 0); 3323 } 3324 3325 /* 3326 * Chop IPv6 header off from the payload. 3327 */ 3328 static int 3329 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3330 { 3331 struct mbuf *mh; 3332 struct ip6_hdr *ip6; 3333 3334 ip6 = mtod(m, struct ip6_hdr *); 3335 if (m->m_len > sizeof(*ip6)) { 3336 mh = m_gethdr(M_NOWAIT, MT_DATA); 3337 if (mh == NULL) { 3338 m_freem(m); 3339 return ENOBUFS; 3340 } 3341 m_move_pkthdr(mh, m); 3342 M_ALIGN(mh, sizeof(*ip6)); 3343 m->m_len -= sizeof(*ip6); 3344 m->m_data += sizeof(*ip6); 3345 mh->m_next = m; 3346 m = mh; 3347 m->m_len = sizeof(*ip6); 3348 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3349 } 3350 exthdrs->ip6e_ip6 = m; 3351 return 0; 3352 } 3353 3354 /* 3355 * Compute IPv6 extension header length. 3356 */ 3357 int 3358 ip6_optlen(struct inpcb *inp) 3359 { 3360 int len; 3361 3362 if (!inp->in6p_outputopts) 3363 return 0; 3364 3365 len = 0; 3366 #define elen(x) \ 3367 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3368 3369 len += elen(inp->in6p_outputopts->ip6po_hbh); 3370 if (inp->in6p_outputopts->ip6po_rthdr) 3371 /* dest1 is valid with rthdr only */ 3372 len += elen(inp->in6p_outputopts->ip6po_dest1); 3373 len += elen(inp->in6p_outputopts->ip6po_rthdr); 3374 len += elen(inp->in6p_outputopts->ip6po_dest2); 3375 return len; 3376 #undef elen 3377 } 3378