xref: /freebsd/sys/netinet6/ip6_output.c (revision 6871d4882591c9a8fcab24d084c93f0a2972e1af)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	$KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $
32  */
33 
34 /*-
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include "opt_inet.h"
69 #include "opt_inet6.h"
70 #include "opt_ratelimit.h"
71 #include "opt_ipsec.h"
72 #include "opt_sctp.h"
73 #include "opt_route.h"
74 #include "opt_rss.h"
75 
76 #include <sys/param.h>
77 #include <sys/kernel.h>
78 #include <sys/malloc.h>
79 #include <sys/mbuf.h>
80 #include <sys/errno.h>
81 #include <sys/priv.h>
82 #include <sys/proc.h>
83 #include <sys/protosw.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/syslog.h>
87 #include <sys/ucred.h>
88 
89 #include <machine/in_cksum.h>
90 
91 #include <net/if.h>
92 #include <net/if_var.h>
93 #include <net/if_llatbl.h>
94 #include <net/netisr.h>
95 #include <net/route.h>
96 #include <net/pfil.h>
97 #include <net/rss_config.h>
98 #include <net/vnet.h>
99 
100 #include <netinet/in.h>
101 #include <netinet/in_var.h>
102 #include <netinet/ip_var.h>
103 #include <netinet6/in6_fib.h>
104 #include <netinet6/in6_var.h>
105 #include <netinet/ip6.h>
106 #include <netinet/icmp6.h>
107 #include <netinet6/ip6_var.h>
108 #include <netinet/in_pcb.h>
109 #include <netinet/tcp_var.h>
110 #include <netinet6/nd6.h>
111 #include <netinet6/in6_rss.h>
112 
113 #include <netipsec/ipsec_support.h>
114 #ifdef SCTP
115 #include <netinet/sctp.h>
116 #include <netinet/sctp_crc32.h>
117 #endif
118 
119 #include <netinet6/ip6protosw.h>
120 #include <netinet6/scope6_var.h>
121 
122 extern int in6_mcast_loop;
123 
124 struct ip6_exthdrs {
125 	struct mbuf *ip6e_ip6;
126 	struct mbuf *ip6e_hbh;
127 	struct mbuf *ip6e_dest1;
128 	struct mbuf *ip6e_rthdr;
129 	struct mbuf *ip6e_dest2;
130 };
131 
132 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
133 
134 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
135 			   struct ucred *, int);
136 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *,
137 	struct socket *, struct sockopt *);
138 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *);
139 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *,
140 	struct ucred *, int, int, int);
141 
142 static int ip6_copyexthdr(struct mbuf **, caddr_t, int);
143 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
144 	struct ip6_frag **);
145 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
146 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
147 static int ip6_getpmtu(struct route_in6 *, int,
148 	struct ifnet *, const struct in6_addr *, u_long *, int *, u_int,
149 	u_int);
150 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long,
151 	u_long *, int *, u_int);
152 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *);
153 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
154 
155 
156 /*
157  * Make an extension header from option data.  hp is the source, and
158  * mp is the destination.
159  */
160 #define MAKE_EXTHDR(hp, mp)						\
161     do {								\
162 	if (hp) {							\
163 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
164 		error = ip6_copyexthdr((mp), (caddr_t)(hp),		\
165 		    ((eh)->ip6e_len + 1) << 3);				\
166 		if (error)						\
167 			goto freehdrs;					\
168 	}								\
169     } while (/*CONSTCOND*/ 0)
170 
171 /*
172  * Form a chain of extension headers.
173  * m is the extension header mbuf
174  * mp is the previous mbuf in the chain
175  * p is the next header
176  * i is the type of option.
177  */
178 #define MAKE_CHAIN(m, mp, p, i)\
179     do {\
180 	if (m) {\
181 		if (!hdrsplit) \
182 			panic("assumption failed: hdr not split"); \
183 		*mtod((m), u_char *) = *(p);\
184 		*(p) = (i);\
185 		p = mtod((m), u_char *);\
186 		(m)->m_next = (mp)->m_next;\
187 		(mp)->m_next = (m);\
188 		(mp) = (m);\
189 	}\
190     } while (/*CONSTCOND*/ 0)
191 
192 void
193 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset)
194 {
195 	u_short csum;
196 
197 	csum = in_cksum_skip(m, offset + plen, offset);
198 	if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0)
199 		csum = 0xffff;
200 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
201 
202 	if (offset + sizeof(csum) > m->m_len)
203 		m_copyback(m, offset, sizeof(csum), (caddr_t)&csum);
204 	else
205 		*(u_short *)mtodo(m, offset) = csum;
206 }
207 
208 int
209 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto,
210     int fraglen , uint32_t id)
211 {
212 	struct mbuf *m, **mnext, *m_frgpart;
213 	struct ip6_hdr *ip6, *mhip6;
214 	struct ip6_frag *ip6f;
215 	int off;
216 	int error;
217 	int tlen = m0->m_pkthdr.len;
218 
219 	KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8"));
220 
221 	m = m0;
222 	ip6 = mtod(m, struct ip6_hdr *);
223 	mnext = &m->m_nextpkt;
224 
225 	for (off = hlen; off < tlen; off += fraglen) {
226 		m = m_gethdr(M_NOWAIT, MT_DATA);
227 		if (!m) {
228 			IP6STAT_INC(ip6s_odropped);
229 			return (ENOBUFS);
230 		}
231 		m->m_flags = m0->m_flags & M_COPYFLAGS;
232 		*mnext = m;
233 		mnext = &m->m_nextpkt;
234 		m->m_data += max_linkhdr;
235 		mhip6 = mtod(m, struct ip6_hdr *);
236 		*mhip6 = *ip6;
237 		m->m_len = sizeof(*mhip6);
238 		error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
239 		if (error) {
240 			IP6STAT_INC(ip6s_odropped);
241 			return (error);
242 		}
243 		ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
244 		if (off + fraglen >= tlen)
245 			fraglen = tlen - off;
246 		else
247 			ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
248 		mhip6->ip6_plen = htons((u_short)(fraglen + hlen +
249 		    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
250 		if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) {
251 			IP6STAT_INC(ip6s_odropped);
252 			return (ENOBUFS);
253 		}
254 		m_cat(m, m_frgpart);
255 		m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f);
256 		m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum;
257 		m->m_pkthdr.rcvif = NULL;
258 		ip6f->ip6f_reserved = 0;
259 		ip6f->ip6f_ident = id;
260 		ip6f->ip6f_nxt = nextproto;
261 		IP6STAT_INC(ip6s_ofragments);
262 		in6_ifstat_inc(ifp, ifs6_out_fragcreat);
263 	}
264 
265 	return (0);
266 }
267 
268 /*
269  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
270  * header (with pri, len, nxt, hlim, src, dst).
271  * This function may modify ver and hlim only.
272  * The mbuf chain containing the packet will be freed.
273  * The mbuf opt, if present, will not be freed.
274  * If route_in6 ro is present and has ro_rt initialized, route lookup would be
275  * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
276  * then result of route lookup is stored in ro->ro_rt.
277  *
278  * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and
279  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
280  * which is rt_mtu.
281  *
282  * ifpp - XXX: just for statistics
283  */
284 /*
285  * XXX TODO: no flowid is assigned for outbound flows?
286  */
287 int
288 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt,
289     struct route_in6 *ro, int flags, struct ip6_moptions *im6o,
290     struct ifnet **ifpp, struct inpcb *inp)
291 {
292 	struct ip6_hdr *ip6;
293 	struct ifnet *ifp, *origifp;
294 	struct mbuf *m = m0;
295 	struct mbuf *mprev = NULL;
296 	int hlen, tlen, len;
297 	struct route_in6 ip6route;
298 	struct rtentry *rt = NULL;
299 	struct sockaddr_in6 *dst, src_sa, dst_sa;
300 	struct in6_addr odst;
301 	int error = 0;
302 	struct in6_ifaddr *ia = NULL;
303 	u_long mtu;
304 	int alwaysfrag, dontfrag;
305 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
306 	struct ip6_exthdrs exthdrs;
307 	struct in6_addr src0, dst0;
308 	u_int32_t zone;
309 	struct route_in6 *ro_pmtu = NULL;
310 	int hdrsplit = 0;
311 	int sw_csum, tso;
312 	int needfiblookup;
313 	uint32_t fibnum;
314 	struct m_tag *fwd_tag = NULL;
315 	uint32_t id;
316 
317 	if (inp != NULL) {
318 		INP_LOCK_ASSERT(inp);
319 		M_SETFIB(m, inp->inp_inc.inc_fibnum);
320 		if ((flags & IP_NODEFAULTFLOWID) == 0) {
321 			/* unconditionally set flowid */
322 			m->m_pkthdr.flowid = inp->inp_flowid;
323 			M_HASHTYPE_SET(m, inp->inp_flowtype);
324 		}
325 	}
326 
327 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
328 	/*
329 	 * IPSec checking which handles several cases.
330 	 * FAST IPSEC: We re-injected the packet.
331 	 * XXX: need scope argument.
332 	 */
333 	if (IPSEC_ENABLED(ipv6)) {
334 		if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) {
335 			if (error == EINPROGRESS)
336 				error = 0;
337 			goto done;
338 		}
339 	}
340 #endif /* IPSEC */
341 
342 	bzero(&exthdrs, sizeof(exthdrs));
343 	if (opt) {
344 		/* Hop-by-Hop options header */
345 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
346 		/* Destination options header(1st part) */
347 		if (opt->ip6po_rthdr) {
348 			/*
349 			 * Destination options header(1st part)
350 			 * This only makes sense with a routing header.
351 			 * See Section 9.2 of RFC 3542.
352 			 * Disabling this part just for MIP6 convenience is
353 			 * a bad idea.  We need to think carefully about a
354 			 * way to make the advanced API coexist with MIP6
355 			 * options, which might automatically be inserted in
356 			 * the kernel.
357 			 */
358 			MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
359 		}
360 		/* Routing header */
361 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
362 		/* Destination options header(2nd part) */
363 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
364 	}
365 
366 	/*
367 	 * Calculate the total length of the extension header chain.
368 	 * Keep the length of the unfragmentable part for fragmentation.
369 	 */
370 	optlen = 0;
371 	if (exthdrs.ip6e_hbh)
372 		optlen += exthdrs.ip6e_hbh->m_len;
373 	if (exthdrs.ip6e_dest1)
374 		optlen += exthdrs.ip6e_dest1->m_len;
375 	if (exthdrs.ip6e_rthdr)
376 		optlen += exthdrs.ip6e_rthdr->m_len;
377 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
378 
379 	/* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */
380 	if (exthdrs.ip6e_dest2)
381 		optlen += exthdrs.ip6e_dest2->m_len;
382 
383 	/*
384 	 * If there is at least one extension header,
385 	 * separate IP6 header from the payload.
386 	 */
387 	if (optlen && !hdrsplit) {
388 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
389 			m = NULL;
390 			goto freehdrs;
391 		}
392 		m = exthdrs.ip6e_ip6;
393 		hdrsplit++;
394 	}
395 
396 	ip6 = mtod(m, struct ip6_hdr *);
397 
398 	/* adjust mbuf packet header length */
399 	m->m_pkthdr.len += optlen;
400 	plen = m->m_pkthdr.len - sizeof(*ip6);
401 
402 	/* If this is a jumbo payload, insert a jumbo payload option. */
403 	if (plen > IPV6_MAXPACKET) {
404 		if (!hdrsplit) {
405 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
406 				m = NULL;
407 				goto freehdrs;
408 			}
409 			m = exthdrs.ip6e_ip6;
410 			hdrsplit++;
411 		}
412 		/* adjust pointer */
413 		ip6 = mtod(m, struct ip6_hdr *);
414 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
415 			goto freehdrs;
416 		ip6->ip6_plen = 0;
417 	} else
418 		ip6->ip6_plen = htons(plen);
419 
420 	/*
421 	 * Concatenate headers and fill in next header fields.
422 	 * Here we have, on "m"
423 	 *	IPv6 payload
424 	 * and we insert headers accordingly.  Finally, we should be getting:
425 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
426 	 *
427 	 * during the header composing process, "m" points to IPv6 header.
428 	 * "mprev" points to an extension header prior to esp.
429 	 */
430 	u_char *nexthdrp = &ip6->ip6_nxt;
431 	mprev = m;
432 
433 	/*
434 	 * we treat dest2 specially.  this makes IPsec processing
435 	 * much easier.  the goal here is to make mprev point the
436 	 * mbuf prior to dest2.
437 	 *
438 	 * result: IPv6 dest2 payload
439 	 * m and mprev will point to IPv6 header.
440 	 */
441 	if (exthdrs.ip6e_dest2) {
442 		if (!hdrsplit)
443 			panic("assumption failed: hdr not split");
444 		exthdrs.ip6e_dest2->m_next = m->m_next;
445 		m->m_next = exthdrs.ip6e_dest2;
446 		*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
447 		ip6->ip6_nxt = IPPROTO_DSTOPTS;
448 	}
449 
450 	/*
451 	 * result: IPv6 hbh dest1 rthdr dest2 payload
452 	 * m will point to IPv6 header.  mprev will point to the
453 	 * extension header prior to dest2 (rthdr in the above case).
454 	 */
455 	MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
456 	MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
457 		   IPPROTO_DSTOPTS);
458 	MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
459 		   IPPROTO_ROUTING);
460 
461 	/*
462 	 * If there is a routing header, discard the packet.
463 	 */
464 	if (exthdrs.ip6e_rthdr) {
465 		 error = EINVAL;
466 		 goto bad;
467 	}
468 
469 	/* Source address validation */
470 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
471 	    (flags & IPV6_UNSPECSRC) == 0) {
472 		error = EOPNOTSUPP;
473 		IP6STAT_INC(ip6s_badscope);
474 		goto bad;
475 	}
476 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
477 		error = EOPNOTSUPP;
478 		IP6STAT_INC(ip6s_badscope);
479 		goto bad;
480 	}
481 
482 	IP6STAT_INC(ip6s_localout);
483 
484 	/*
485 	 * Route packet.
486 	 */
487 	if (ro == NULL) {
488 		ro = &ip6route;
489 		bzero((caddr_t)ro, sizeof(*ro));
490 	}
491 	ro_pmtu = ro;
492 	if (opt && opt->ip6po_rthdr)
493 		ro = &opt->ip6po_route;
494 	dst = (struct sockaddr_in6 *)&ro->ro_dst;
495 	fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m);
496 again:
497 	/*
498 	 * if specified, try to fill in the traffic class field.
499 	 * do not override if a non-zero value is already set.
500 	 * we check the diffserv field and the ecn field separately.
501 	 */
502 	if (opt && opt->ip6po_tclass >= 0) {
503 		int mask = 0;
504 
505 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
506 			mask |= 0xfc;
507 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
508 			mask |= 0x03;
509 		if (mask != 0)
510 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
511 	}
512 
513 	/* fill in or override the hop limit field, if necessary. */
514 	if (opt && opt->ip6po_hlim != -1)
515 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
516 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
517 		if (im6o != NULL)
518 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
519 		else
520 			ip6->ip6_hlim = V_ip6_defmcasthlim;
521 	}
522 	/*
523 	 * Validate route against routing table additions;
524 	 * a better/more specific route might have been added.
525 	 * Make sure address family is set in route.
526 	 */
527 	if (inp) {
528 		ro->ro_dst.sin6_family = AF_INET6;
529 		RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, fibnum);
530 	}
531 	if (ro->ro_rt && fwd_tag == NULL && (ro->ro_rt->rt_flags & RTF_UP) &&
532 	    ro->ro_dst.sin6_family == AF_INET6 &&
533 	    IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) {
534 		rt = ro->ro_rt;
535 		ifp = ro->ro_rt->rt_ifp;
536 	} else {
537 		if (ro->ro_lle)
538 			LLE_FREE(ro->ro_lle);	/* zeros ro_lle */
539 		ro->ro_lle = NULL;
540 		if (fwd_tag == NULL) {
541 			bzero(&dst_sa, sizeof(dst_sa));
542 			dst_sa.sin6_family = AF_INET6;
543 			dst_sa.sin6_len = sizeof(dst_sa);
544 			dst_sa.sin6_addr = ip6->ip6_dst;
545 		}
546 		error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp,
547 		    &rt, fibnum);
548 		if (error != 0) {
549 			if (ifp != NULL)
550 				in6_ifstat_inc(ifp, ifs6_out_discard);
551 			goto bad;
552 		}
553 	}
554 	if (rt == NULL) {
555 		/*
556 		 * If in6_selectroute() does not return a route entry,
557 		 * dst may not have been updated.
558 		 */
559 		*dst = dst_sa;	/* XXX */
560 	}
561 
562 	/*
563 	 * then rt (for unicast) and ifp must be non-NULL valid values.
564 	 */
565 	if ((flags & IPV6_FORWARDING) == 0) {
566 		/* XXX: the FORWARDING flag can be set for mrouting. */
567 		in6_ifstat_inc(ifp, ifs6_out_request);
568 	}
569 	if (rt != NULL) {
570 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
571 		counter_u64_add(rt->rt_pksent, 1);
572 	}
573 
574 
575 	/*
576 	 * The outgoing interface must be in the zone of source and
577 	 * destination addresses.
578 	 */
579 	origifp = ifp;
580 
581 	src0 = ip6->ip6_src;
582 	if (in6_setscope(&src0, origifp, &zone))
583 		goto badscope;
584 	bzero(&src_sa, sizeof(src_sa));
585 	src_sa.sin6_family = AF_INET6;
586 	src_sa.sin6_len = sizeof(src_sa);
587 	src_sa.sin6_addr = ip6->ip6_src;
588 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
589 		goto badscope;
590 
591 	dst0 = ip6->ip6_dst;
592 	if (in6_setscope(&dst0, origifp, &zone))
593 		goto badscope;
594 	/* re-initialize to be sure */
595 	bzero(&dst_sa, sizeof(dst_sa));
596 	dst_sa.sin6_family = AF_INET6;
597 	dst_sa.sin6_len = sizeof(dst_sa);
598 	dst_sa.sin6_addr = ip6->ip6_dst;
599 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) {
600 		goto badscope;
601 	}
602 
603 	/* We should use ia_ifp to support the case of
604 	 * sending packets to an address of our own.
605 	 */
606 	if (ia != NULL && ia->ia_ifp)
607 		ifp = ia->ia_ifp;
608 
609 	/* scope check is done. */
610 	goto routefound;
611 
612   badscope:
613 	IP6STAT_INC(ip6s_badscope);
614 	in6_ifstat_inc(origifp, ifs6_out_discard);
615 	if (error == 0)
616 		error = EHOSTUNREACH; /* XXX */
617 	goto bad;
618 
619   routefound:
620 	if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
621 		if (opt && opt->ip6po_nextroute.ro_rt) {
622 			/*
623 			 * The nexthop is explicitly specified by the
624 			 * application.  We assume the next hop is an IPv6
625 			 * address.
626 			 */
627 			dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
628 		}
629 		else if ((rt->rt_flags & RTF_GATEWAY))
630 			dst = (struct sockaddr_in6 *)rt->rt_gateway;
631 	}
632 
633 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
634 		m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
635 	} else {
636 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
637 		in6_ifstat_inc(ifp, ifs6_out_mcast);
638 		/*
639 		 * Confirm that the outgoing interface supports multicast.
640 		 */
641 		if (!(ifp->if_flags & IFF_MULTICAST)) {
642 			IP6STAT_INC(ip6s_noroute);
643 			in6_ifstat_inc(ifp, ifs6_out_discard);
644 			error = ENETUNREACH;
645 			goto bad;
646 		}
647 		if ((im6o == NULL && in6_mcast_loop) ||
648 		    (im6o && im6o->im6o_multicast_loop)) {
649 			/*
650 			 * Loop back multicast datagram if not expressly
651 			 * forbidden to do so, even if we have not joined
652 			 * the address; protocols will filter it later,
653 			 * thus deferring a hash lookup and lock acquisition
654 			 * at the expense of an m_copym().
655 			 */
656 			ip6_mloopback(ifp, m);
657 		} else {
658 			/*
659 			 * If we are acting as a multicast router, perform
660 			 * multicast forwarding as if the packet had just
661 			 * arrived on the interface to which we are about
662 			 * to send.  The multicast forwarding function
663 			 * recursively calls this function, using the
664 			 * IPV6_FORWARDING flag to prevent infinite recursion.
665 			 *
666 			 * Multicasts that are looped back by ip6_mloopback(),
667 			 * above, will be forwarded by the ip6_input() routine,
668 			 * if necessary.
669 			 */
670 			if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
671 				/*
672 				 * XXX: ip6_mforward expects that rcvif is NULL
673 				 * when it is called from the originating path.
674 				 * However, it may not always be the case.
675 				 */
676 				m->m_pkthdr.rcvif = NULL;
677 				if (ip6_mforward(ip6, ifp, m) != 0) {
678 					m_freem(m);
679 					goto done;
680 				}
681 			}
682 		}
683 		/*
684 		 * Multicasts with a hoplimit of zero may be looped back,
685 		 * above, but must not be transmitted on a network.
686 		 * Also, multicasts addressed to the loopback interface
687 		 * are not sent -- the above call to ip6_mloopback() will
688 		 * loop back a copy if this host actually belongs to the
689 		 * destination group on the loopback interface.
690 		 */
691 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
692 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
693 			m_freem(m);
694 			goto done;
695 		}
696 	}
697 
698 	/*
699 	 * Fill the outgoing inteface to tell the upper layer
700 	 * to increment per-interface statistics.
701 	 */
702 	if (ifpp)
703 		*ifpp = ifp;
704 
705 	/* Determine path MTU. */
706 	if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst,
707 		    &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0)
708 		goto bad;
709 
710 	/*
711 	 * The caller of this function may specify to use the minimum MTU
712 	 * in some cases.
713 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
714 	 * setting.  The logic is a bit complicated; by default, unicast
715 	 * packets will follow path MTU while multicast packets will be sent at
716 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
717 	 * including unicast ones will be sent at the minimum MTU.  Multicast
718 	 * packets will always be sent at the minimum MTU unless
719 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
720 	 * See RFC 3542 for more details.
721 	 */
722 	if (mtu > IPV6_MMTU) {
723 		if ((flags & IPV6_MINMTU))
724 			mtu = IPV6_MMTU;
725 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
726 			mtu = IPV6_MMTU;
727 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
728 			 (opt == NULL ||
729 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
730 			mtu = IPV6_MMTU;
731 		}
732 	}
733 
734 	/*
735 	 * clear embedded scope identifiers if necessary.
736 	 * in6_clearscope will touch the addresses only when necessary.
737 	 */
738 	in6_clearscope(&ip6->ip6_src);
739 	in6_clearscope(&ip6->ip6_dst);
740 
741 	/*
742 	 * If the outgoing packet contains a hop-by-hop options header,
743 	 * it must be examined and processed even by the source node.
744 	 * (RFC 2460, section 4.)
745 	 */
746 	if (exthdrs.ip6e_hbh) {
747 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
748 		u_int32_t dummy; /* XXX unused */
749 		u_int32_t plen = 0; /* XXX: ip6_process will check the value */
750 
751 #ifdef DIAGNOSTIC
752 		if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
753 			panic("ip6e_hbh is not contiguous");
754 #endif
755 		/*
756 		 *  XXX: if we have to send an ICMPv6 error to the sender,
757 		 *       we need the M_LOOP flag since icmp6_error() expects
758 		 *       the IPv6 and the hop-by-hop options header are
759 		 *       contiguous unless the flag is set.
760 		 */
761 		m->m_flags |= M_LOOP;
762 		m->m_pkthdr.rcvif = ifp;
763 		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
764 		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
765 		    &dummy, &plen) < 0) {
766 			/* m was already freed at this point */
767 			error = EINVAL;/* better error? */
768 			goto done;
769 		}
770 		m->m_flags &= ~M_LOOP; /* XXX */
771 		m->m_pkthdr.rcvif = NULL;
772 	}
773 
774 	/* Jump over all PFIL processing if hooks are not active. */
775 	if (!PFIL_HOOKED(&V_inet6_pfil_hook))
776 		goto passout;
777 
778 	odst = ip6->ip6_dst;
779 	/* Run through list of hooks for output packets. */
780 	error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, 0, inp);
781 	if (error != 0 || m == NULL)
782 		goto done;
783 	/* adjust pointer */
784 	ip6 = mtod(m, struct ip6_hdr *);
785 
786 	needfiblookup = 0;
787 	/* See if destination IP address was changed by packet filter. */
788 	if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) {
789 		m->m_flags |= M_SKIP_FIREWALL;
790 		/* If destination is now ourself drop to ip6_input(). */
791 		if (in6_localip(&ip6->ip6_dst)) {
792 			m->m_flags |= M_FASTFWD_OURS;
793 			if (m->m_pkthdr.rcvif == NULL)
794 				m->m_pkthdr.rcvif = V_loif;
795 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
796 				m->m_pkthdr.csum_flags |=
797 				    CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
798 				m->m_pkthdr.csum_data = 0xffff;
799 			}
800 #ifdef SCTP
801 			if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
802 				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
803 #endif
804 			error = netisr_queue(NETISR_IPV6, m);
805 			goto done;
806 		} else {
807 			RO_INVALIDATE_CACHE(ro);
808 			needfiblookup = 1; /* Redo the routing table lookup. */
809 		}
810 	}
811 	/* See if fib was changed by packet filter. */
812 	if (fibnum != M_GETFIB(m)) {
813 		m->m_flags |= M_SKIP_FIREWALL;
814 		fibnum = M_GETFIB(m);
815 		RO_INVALIDATE_CACHE(ro);
816 		needfiblookup = 1;
817 	}
818 	if (needfiblookup)
819 		goto again;
820 
821 	/* See if local, if yes, send it to netisr. */
822 	if (m->m_flags & M_FASTFWD_OURS) {
823 		if (m->m_pkthdr.rcvif == NULL)
824 			m->m_pkthdr.rcvif = V_loif;
825 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
826 			m->m_pkthdr.csum_flags |=
827 			    CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
828 			m->m_pkthdr.csum_data = 0xffff;
829 		}
830 #ifdef SCTP
831 		if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
832 			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
833 #endif
834 		error = netisr_queue(NETISR_IPV6, m);
835 		goto done;
836 	}
837 	/* Or forward to some other address? */
838 	if ((m->m_flags & M_IP6_NEXTHOP) &&
839 	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
840 		dst = (struct sockaddr_in6 *)&ro->ro_dst;
841 		bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6));
842 		m->m_flags |= M_SKIP_FIREWALL;
843 		m->m_flags &= ~M_IP6_NEXTHOP;
844 		m_tag_delete(m, fwd_tag);
845 		goto again;
846 	}
847 
848 passout:
849 	/*
850 	 * Send the packet to the outgoing interface.
851 	 * If necessary, do IPv6 fragmentation before sending.
852 	 *
853 	 * the logic here is rather complex:
854 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
855 	 * 1-a:	send as is if tlen <= path mtu
856 	 * 1-b:	fragment if tlen > path mtu
857 	 *
858 	 * 2: if user asks us not to fragment (dontfrag == 1)
859 	 * 2-a:	send as is if tlen <= interface mtu
860 	 * 2-b:	error if tlen > interface mtu
861 	 *
862 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
863 	 *	always fragment
864 	 *
865 	 * 4: if dontfrag == 1 && alwaysfrag == 1
866 	 *	error, as we cannot handle this conflicting request
867 	 */
868 	sw_csum = m->m_pkthdr.csum_flags;
869 	if (!hdrsplit) {
870 		tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0;
871 		sw_csum &= ~ifp->if_hwassist;
872 	} else
873 		tso = 0;
874 	/*
875 	 * If we added extension headers, we will not do TSO and calculate the
876 	 * checksums ourselves for now.
877 	 * XXX-BZ  Need a framework to know when the NIC can handle it, even
878 	 * with ext. hdrs.
879 	 */
880 	if (sw_csum & CSUM_DELAY_DATA_IPV6) {
881 		sw_csum &= ~CSUM_DELAY_DATA_IPV6;
882 		in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr));
883 	}
884 #ifdef SCTP
885 	if (sw_csum & CSUM_SCTP_IPV6) {
886 		sw_csum &= ~CSUM_SCTP_IPV6;
887 		sctp_delayed_cksum(m, sizeof(struct ip6_hdr));
888 	}
889 #endif
890 	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
891 	tlen = m->m_pkthdr.len;
892 
893 	if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso)
894 		dontfrag = 1;
895 	else
896 		dontfrag = 0;
897 	if (dontfrag && alwaysfrag) {	/* case 4 */
898 		/* conflicting request - can't transmit */
899 		error = EMSGSIZE;
900 		goto bad;
901 	}
902 	if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) {	/* case 2-b */
903 		/*
904 		 * Even if the DONTFRAG option is specified, we cannot send the
905 		 * packet when the data length is larger than the MTU of the
906 		 * outgoing interface.
907 		 * Notify the error by sending IPV6_PATHMTU ancillary data if
908 		 * application wanted to know the MTU value. Also return an
909 		 * error code (this is not described in the API spec).
910 		 */
911 		if (inp != NULL)
912 			ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu);
913 		error = EMSGSIZE;
914 		goto bad;
915 	}
916 
917 	/*
918 	 * transmit packet without fragmentation
919 	 */
920 	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
921 		struct in6_ifaddr *ia6;
922 
923 		ip6 = mtod(m, struct ip6_hdr *);
924 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
925 		if (ia6) {
926 			/* Record statistics for this interface address. */
927 			counter_u64_add(ia6->ia_ifa.ifa_opackets, 1);
928 			counter_u64_add(ia6->ia_ifa.ifa_obytes,
929 			    m->m_pkthdr.len);
930 			ifa_free(&ia6->ia_ifa);
931 		}
932 #ifdef RATELIMIT
933 		if (inp != NULL) {
934 			if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED)
935 				in_pcboutput_txrtlmt(inp, ifp, m);
936 			/* stamp send tag on mbuf */
937 			m->m_pkthdr.snd_tag = inp->inp_snd_tag;
938 		} else {
939 			m->m_pkthdr.snd_tag = NULL;
940 		}
941 #endif
942 		error = nd6_output_ifp(ifp, origifp, m, dst,
943 		    (struct route *)ro);
944 #ifdef RATELIMIT
945 		/* check for route change */
946 		if (error == EAGAIN)
947 			in_pcboutput_eagain(inp);
948 #endif
949 		goto done;
950 	}
951 
952 	/*
953 	 * try to fragment the packet.  case 1-b and 3
954 	 */
955 	if (mtu < IPV6_MMTU) {
956 		/* path MTU cannot be less than IPV6_MMTU */
957 		error = EMSGSIZE;
958 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
959 		goto bad;
960 	} else if (ip6->ip6_plen == 0) {
961 		/* jumbo payload cannot be fragmented */
962 		error = EMSGSIZE;
963 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
964 		goto bad;
965 	} else {
966 		u_char nextproto;
967 
968 		/*
969 		 * Too large for the destination or interface;
970 		 * fragment if possible.
971 		 * Must be able to put at least 8 bytes per fragment.
972 		 */
973 		hlen = unfragpartlen;
974 		if (mtu > IPV6_MAXPACKET)
975 			mtu = IPV6_MAXPACKET;
976 
977 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
978 		if (len < 8) {
979 			error = EMSGSIZE;
980 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
981 			goto bad;
982 		}
983 
984 		/*
985 		 * If the interface will not calculate checksums on
986 		 * fragmented packets, then do it here.
987 		 * XXX-BZ handle the hw offloading case.  Need flags.
988 		 */
989 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
990 			in6_delayed_cksum(m, plen, hlen);
991 			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
992 		}
993 #ifdef SCTP
994 		if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) {
995 			sctp_delayed_cksum(m, hlen);
996 			m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6;
997 		}
998 #endif
999 		/*
1000 		 * Change the next header field of the last header in the
1001 		 * unfragmentable part.
1002 		 */
1003 		if (exthdrs.ip6e_rthdr) {
1004 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
1005 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
1006 		} else if (exthdrs.ip6e_dest1) {
1007 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
1008 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
1009 		} else if (exthdrs.ip6e_hbh) {
1010 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
1011 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
1012 		} else {
1013 			nextproto = ip6->ip6_nxt;
1014 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
1015 		}
1016 
1017 		/*
1018 		 * Loop through length of segment after first fragment,
1019 		 * make new header and copy data of each part and link onto
1020 		 * chain.
1021 		 */
1022 		m0 = m;
1023 		id = htonl(ip6_randomid());
1024 		if ((error = ip6_fragment(ifp, m, hlen, nextproto, len, id)))
1025 			goto sendorfree;
1026 
1027 		in6_ifstat_inc(ifp, ifs6_out_fragok);
1028 	}
1029 
1030 	/*
1031 	 * Remove leading garbages.
1032 	 */
1033 sendorfree:
1034 	m = m0->m_nextpkt;
1035 	m0->m_nextpkt = 0;
1036 	m_freem(m0);
1037 	for (; m; m = m0) {
1038 		m0 = m->m_nextpkt;
1039 		m->m_nextpkt = 0;
1040 		if (error == 0) {
1041 			/* Record statistics for this interface address. */
1042 			if (ia) {
1043 				counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
1044 				counter_u64_add(ia->ia_ifa.ifa_obytes,
1045 				    m->m_pkthdr.len);
1046 			}
1047 #ifdef RATELIMIT
1048 			if (inp != NULL) {
1049 				if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED)
1050 					in_pcboutput_txrtlmt(inp, ifp, m);
1051 				/* stamp send tag on mbuf */
1052 				m->m_pkthdr.snd_tag = inp->inp_snd_tag;
1053 			} else {
1054 				m->m_pkthdr.snd_tag = NULL;
1055 			}
1056 #endif
1057 			error = nd6_output_ifp(ifp, origifp, m, dst,
1058 			    (struct route *)ro);
1059 #ifdef RATELIMIT
1060 			/* check for route change */
1061 			if (error == EAGAIN)
1062 				in_pcboutput_eagain(inp);
1063 #endif
1064 		} else
1065 			m_freem(m);
1066 	}
1067 
1068 	if (error == 0)
1069 		IP6STAT_INC(ip6s_fragmented);
1070 
1071 done:
1072 	if (ro == &ip6route)
1073 		RO_RTFREE(ro);
1074 	return (error);
1075 
1076 freehdrs:
1077 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
1078 	m_freem(exthdrs.ip6e_dest1);
1079 	m_freem(exthdrs.ip6e_rthdr);
1080 	m_freem(exthdrs.ip6e_dest2);
1081 	/* FALLTHROUGH */
1082 bad:
1083 	if (m)
1084 		m_freem(m);
1085 	goto done;
1086 }
1087 
1088 static int
1089 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
1090 {
1091 	struct mbuf *m;
1092 
1093 	if (hlen > MCLBYTES)
1094 		return (ENOBUFS); /* XXX */
1095 
1096 	if (hlen > MLEN)
1097 		m = m_getcl(M_NOWAIT, MT_DATA, 0);
1098 	else
1099 		m = m_get(M_NOWAIT, MT_DATA);
1100 	if (m == NULL)
1101 		return (ENOBUFS);
1102 	m->m_len = hlen;
1103 	if (hdr)
1104 		bcopy(hdr, mtod(m, caddr_t), hlen);
1105 
1106 	*mp = m;
1107 	return (0);
1108 }
1109 
1110 /*
1111  * Insert jumbo payload option.
1112  */
1113 static int
1114 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1115 {
1116 	struct mbuf *mopt;
1117 	u_char *optbuf;
1118 	u_int32_t v;
1119 
1120 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
1121 
1122 	/*
1123 	 * If there is no hop-by-hop options header, allocate new one.
1124 	 * If there is one but it doesn't have enough space to store the
1125 	 * jumbo payload option, allocate a cluster to store the whole options.
1126 	 * Otherwise, use it to store the options.
1127 	 */
1128 	if (exthdrs->ip6e_hbh == NULL) {
1129 		mopt = m_get(M_NOWAIT, MT_DATA);
1130 		if (mopt == NULL)
1131 			return (ENOBUFS);
1132 		mopt->m_len = JUMBOOPTLEN;
1133 		optbuf = mtod(mopt, u_char *);
1134 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
1135 		exthdrs->ip6e_hbh = mopt;
1136 	} else {
1137 		struct ip6_hbh *hbh;
1138 
1139 		mopt = exthdrs->ip6e_hbh;
1140 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1141 			/*
1142 			 * XXX assumption:
1143 			 * - exthdrs->ip6e_hbh is not referenced from places
1144 			 *   other than exthdrs.
1145 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
1146 			 */
1147 			int oldoptlen = mopt->m_len;
1148 			struct mbuf *n;
1149 
1150 			/*
1151 			 * XXX: give up if the whole (new) hbh header does
1152 			 * not fit even in an mbuf cluster.
1153 			 */
1154 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1155 				return (ENOBUFS);
1156 
1157 			/*
1158 			 * As a consequence, we must always prepare a cluster
1159 			 * at this point.
1160 			 */
1161 			n = m_getcl(M_NOWAIT, MT_DATA, 0);
1162 			if (n == NULL)
1163 				return (ENOBUFS);
1164 			n->m_len = oldoptlen + JUMBOOPTLEN;
1165 			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1166 			    oldoptlen);
1167 			optbuf = mtod(n, caddr_t) + oldoptlen;
1168 			m_freem(mopt);
1169 			mopt = exthdrs->ip6e_hbh = n;
1170 		} else {
1171 			optbuf = mtod(mopt, u_char *) + mopt->m_len;
1172 			mopt->m_len += JUMBOOPTLEN;
1173 		}
1174 		optbuf[0] = IP6OPT_PADN;
1175 		optbuf[1] = 1;
1176 
1177 		/*
1178 		 * Adjust the header length according to the pad and
1179 		 * the jumbo payload option.
1180 		 */
1181 		hbh = mtod(mopt, struct ip6_hbh *);
1182 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1183 	}
1184 
1185 	/* fill in the option. */
1186 	optbuf[2] = IP6OPT_JUMBO;
1187 	optbuf[3] = 4;
1188 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1189 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1190 
1191 	/* finally, adjust the packet header length */
1192 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1193 
1194 	return (0);
1195 #undef JUMBOOPTLEN
1196 }
1197 
1198 /*
1199  * Insert fragment header and copy unfragmentable header portions.
1200  */
1201 static int
1202 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1203     struct ip6_frag **frghdrp)
1204 {
1205 	struct mbuf *n, *mlast;
1206 
1207 	if (hlen > sizeof(struct ip6_hdr)) {
1208 		n = m_copym(m0, sizeof(struct ip6_hdr),
1209 		    hlen - sizeof(struct ip6_hdr), M_NOWAIT);
1210 		if (n == NULL)
1211 			return (ENOBUFS);
1212 		m->m_next = n;
1213 	} else
1214 		n = m;
1215 
1216 	/* Search for the last mbuf of unfragmentable part. */
1217 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1218 		;
1219 
1220 	if (M_WRITABLE(mlast) &&
1221 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1222 		/* use the trailing space of the last mbuf for the fragment hdr */
1223 		*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1224 		    mlast->m_len);
1225 		mlast->m_len += sizeof(struct ip6_frag);
1226 		m->m_pkthdr.len += sizeof(struct ip6_frag);
1227 	} else {
1228 		/* allocate a new mbuf for the fragment header */
1229 		struct mbuf *mfrg;
1230 
1231 		mfrg = m_get(M_NOWAIT, MT_DATA);
1232 		if (mfrg == NULL)
1233 			return (ENOBUFS);
1234 		mfrg->m_len = sizeof(struct ip6_frag);
1235 		*frghdrp = mtod(mfrg, struct ip6_frag *);
1236 		mlast->m_next = mfrg;
1237 	}
1238 
1239 	return (0);
1240 }
1241 
1242 /*
1243  * Calculates IPv6 path mtu for destination @dst.
1244  * Resulting MTU is stored in @mtup.
1245  *
1246  * Returns 0 on success.
1247  */
1248 static int
1249 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup)
1250 {
1251 	struct nhop6_extended nh6;
1252 	struct in6_addr kdst;
1253 	uint32_t scopeid;
1254 	struct ifnet *ifp;
1255 	u_long mtu;
1256 	int error;
1257 
1258 	in6_splitscope(dst, &kdst, &scopeid);
1259 	if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0)
1260 		return (EHOSTUNREACH);
1261 
1262 	ifp = nh6.nh_ifp;
1263 	mtu = nh6.nh_mtu;
1264 
1265 	error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL, 0);
1266 	fib6_free_nh_ext(fibnum, &nh6);
1267 
1268 	return (error);
1269 }
1270 
1271 /*
1272  * Calculates IPv6 path MTU for @dst based on transmit @ifp,
1273  * and cached data in @ro_pmtu.
1274  * MTU from (successful) route lookup is saved (along with dst)
1275  * inside @ro_pmtu to avoid subsequent route lookups after packet
1276  * filter processing.
1277  *
1278  * Stores mtu and always-frag value into @mtup and @alwaysfragp.
1279  * Returns 0 on success.
1280  */
1281 static int
1282 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup,
1283     struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup,
1284     int *alwaysfragp, u_int fibnum, u_int proto)
1285 {
1286 	struct nhop6_basic nh6;
1287 	struct in6_addr kdst;
1288 	uint32_t scopeid;
1289 	struct sockaddr_in6 *sa6_dst;
1290 	u_long mtu;
1291 
1292 	mtu = 0;
1293 	if (do_lookup) {
1294 
1295 		/*
1296 		 * Here ro_pmtu has final destination address, while
1297 		 * ro might represent immediate destination.
1298 		 * Use ro_pmtu destination since mtu might differ.
1299 		 */
1300 		sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1301 		if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))
1302 			ro_pmtu->ro_mtu = 0;
1303 
1304 		if (ro_pmtu->ro_mtu == 0) {
1305 			bzero(sa6_dst, sizeof(*sa6_dst));
1306 			sa6_dst->sin6_family = AF_INET6;
1307 			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1308 			sa6_dst->sin6_addr = *dst;
1309 
1310 			in6_splitscope(dst, &kdst, &scopeid);
1311 			if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0,
1312 			    &nh6) == 0)
1313 				ro_pmtu->ro_mtu = nh6.nh_mtu;
1314 		}
1315 
1316 		mtu = ro_pmtu->ro_mtu;
1317 	}
1318 
1319 	if (ro_pmtu->ro_rt)
1320 		mtu = ro_pmtu->ro_rt->rt_mtu;
1321 
1322 	return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto));
1323 }
1324 
1325 /*
1326  * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and
1327  * hostcache data for @dst.
1328  * Stores mtu and always-frag value into @mtup and @alwaysfragp.
1329  *
1330  * Returns 0 on success.
1331  */
1332 static int
1333 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu,
1334     u_long *mtup, int *alwaysfragp, u_int proto)
1335 {
1336 	u_long mtu = 0;
1337 	int alwaysfrag = 0;
1338 	int error = 0;
1339 
1340 	if (rt_mtu > 0) {
1341 		u_int32_t ifmtu;
1342 		struct in_conninfo inc;
1343 
1344 		bzero(&inc, sizeof(inc));
1345 		inc.inc_flags |= INC_ISIPV6;
1346 		inc.inc6_faddr = *dst;
1347 
1348 		ifmtu = IN6_LINKMTU(ifp);
1349 
1350 		/* TCP is known to react to pmtu changes so skip hc */
1351 		if (proto != IPPROTO_TCP)
1352 			mtu = tcp_hc_getmtu(&inc);
1353 
1354 		if (mtu)
1355 			mtu = min(mtu, rt_mtu);
1356 		else
1357 			mtu = rt_mtu;
1358 		if (mtu == 0)
1359 			mtu = ifmtu;
1360 		else if (mtu < IPV6_MMTU) {
1361 			/*
1362 			 * RFC2460 section 5, last paragraph:
1363 			 * if we record ICMPv6 too big message with
1364 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1365 			 * or smaller, with framgent header attached.
1366 			 * (fragment header is needed regardless from the
1367 			 * packet size, for translators to identify packets)
1368 			 */
1369 			alwaysfrag = 1;
1370 			mtu = IPV6_MMTU;
1371 		}
1372 	} else if (ifp) {
1373 		mtu = IN6_LINKMTU(ifp);
1374 	} else
1375 		error = EHOSTUNREACH; /* XXX */
1376 
1377 	*mtup = mtu;
1378 	if (alwaysfragp)
1379 		*alwaysfragp = alwaysfrag;
1380 	return (error);
1381 }
1382 
1383 /*
1384  * IP6 socket option processing.
1385  */
1386 int
1387 ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1388 {
1389 	int optdatalen, uproto;
1390 	void *optdata;
1391 	struct inpcb *in6p = sotoinpcb(so);
1392 	int error, optval;
1393 	int level, op, optname;
1394 	int optlen;
1395 	struct thread *td;
1396 #ifdef	RSS
1397 	uint32_t rss_bucket;
1398 	int retval;
1399 #endif
1400 
1401 /*
1402  * Don't use more than a quarter of mbuf clusters.  N.B.:
1403  * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow
1404  * on LP64 architectures, so cast to u_long to avoid undefined
1405  * behavior.  ILP32 architectures cannot have nmbclusters
1406  * large enough to overflow for other reasons.
1407  */
1408 #define IPV6_PKTOPTIONS_MBUF_LIMIT	((u_long)nmbclusters * MCLBYTES / 4)
1409 
1410 	level = sopt->sopt_level;
1411 	op = sopt->sopt_dir;
1412 	optname = sopt->sopt_name;
1413 	optlen = sopt->sopt_valsize;
1414 	td = sopt->sopt_td;
1415 	error = 0;
1416 	optval = 0;
1417 	uproto = (int)so->so_proto->pr_protocol;
1418 
1419 	if (level != IPPROTO_IPV6) {
1420 		error = EINVAL;
1421 
1422 		if (sopt->sopt_level == SOL_SOCKET &&
1423 		    sopt->sopt_dir == SOPT_SET) {
1424 			switch (sopt->sopt_name) {
1425 			case SO_REUSEADDR:
1426 				INP_WLOCK(in6p);
1427 				if ((so->so_options & SO_REUSEADDR) != 0)
1428 					in6p->inp_flags2 |= INP_REUSEADDR;
1429 				else
1430 					in6p->inp_flags2 &= ~INP_REUSEADDR;
1431 				INP_WUNLOCK(in6p);
1432 				error = 0;
1433 				break;
1434 			case SO_REUSEPORT:
1435 				INP_WLOCK(in6p);
1436 				if ((so->so_options & SO_REUSEPORT) != 0)
1437 					in6p->inp_flags2 |= INP_REUSEPORT;
1438 				else
1439 					in6p->inp_flags2 &= ~INP_REUSEPORT;
1440 				INP_WUNLOCK(in6p);
1441 				error = 0;
1442 				break;
1443 			case SO_REUSEPORT_LB:
1444 				INP_WLOCK(in6p);
1445 				if ((so->so_options & SO_REUSEPORT_LB) != 0)
1446 					in6p->inp_flags2 |= INP_REUSEPORT_LB;
1447 				else
1448 					in6p->inp_flags2 &= ~INP_REUSEPORT_LB;
1449 				INP_WUNLOCK(in6p);
1450 				error = 0;
1451 				break;
1452 			case SO_SETFIB:
1453 				INP_WLOCK(in6p);
1454 				in6p->inp_inc.inc_fibnum = so->so_fibnum;
1455 				INP_WUNLOCK(in6p);
1456 				error = 0;
1457 				break;
1458 			case SO_MAX_PACING_RATE:
1459 #ifdef RATELIMIT
1460 				INP_WLOCK(in6p);
1461 				in6p->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
1462 				INP_WUNLOCK(in6p);
1463 				error = 0;
1464 #else
1465 				error = EOPNOTSUPP;
1466 #endif
1467 				break;
1468 			default:
1469 				break;
1470 			}
1471 		}
1472 	} else {		/* level == IPPROTO_IPV6 */
1473 		switch (op) {
1474 
1475 		case SOPT_SET:
1476 			switch (optname) {
1477 			case IPV6_2292PKTOPTIONS:
1478 #ifdef IPV6_PKTOPTIONS
1479 			case IPV6_PKTOPTIONS:
1480 #endif
1481 			{
1482 				struct mbuf *m;
1483 
1484 				if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) {
1485 					printf("ip6_ctloutput: mbuf limit hit\n");
1486 					error = ENOBUFS;
1487 					break;
1488 				}
1489 
1490 				error = soopt_getm(sopt, &m); /* XXX */
1491 				if (error != 0)
1492 					break;
1493 				error = soopt_mcopyin(sopt, m); /* XXX */
1494 				if (error != 0)
1495 					break;
1496 				error = ip6_pcbopts(&in6p->in6p_outputopts,
1497 						    m, so, sopt);
1498 				m_freem(m); /* XXX */
1499 				break;
1500 			}
1501 
1502 			/*
1503 			 * Use of some Hop-by-Hop options or some
1504 			 * Destination options, might require special
1505 			 * privilege.  That is, normal applications
1506 			 * (without special privilege) might be forbidden
1507 			 * from setting certain options in outgoing packets,
1508 			 * and might never see certain options in received
1509 			 * packets. [RFC 2292 Section 6]
1510 			 * KAME specific note:
1511 			 *  KAME prevents non-privileged users from sending or
1512 			 *  receiving ANY hbh/dst options in order to avoid
1513 			 *  overhead of parsing options in the kernel.
1514 			 */
1515 			case IPV6_RECVHOPOPTS:
1516 			case IPV6_RECVDSTOPTS:
1517 			case IPV6_RECVRTHDRDSTOPTS:
1518 				if (td != NULL) {
1519 					error = priv_check(td,
1520 					    PRIV_NETINET_SETHDROPTS);
1521 					if (error)
1522 						break;
1523 				}
1524 				/* FALLTHROUGH */
1525 			case IPV6_UNICAST_HOPS:
1526 			case IPV6_HOPLIMIT:
1527 
1528 			case IPV6_RECVPKTINFO:
1529 			case IPV6_RECVHOPLIMIT:
1530 			case IPV6_RECVRTHDR:
1531 			case IPV6_RECVPATHMTU:
1532 			case IPV6_RECVTCLASS:
1533 			case IPV6_RECVFLOWID:
1534 #ifdef	RSS
1535 			case IPV6_RECVRSSBUCKETID:
1536 #endif
1537 			case IPV6_V6ONLY:
1538 			case IPV6_AUTOFLOWLABEL:
1539 			case IPV6_ORIGDSTADDR:
1540 			case IPV6_BINDANY:
1541 			case IPV6_BINDMULTI:
1542 #ifdef	RSS
1543 			case IPV6_RSS_LISTEN_BUCKET:
1544 #endif
1545 				if (optname == IPV6_BINDANY && td != NULL) {
1546 					error = priv_check(td,
1547 					    PRIV_NETINET_BINDANY);
1548 					if (error)
1549 						break;
1550 				}
1551 
1552 				if (optlen != sizeof(int)) {
1553 					error = EINVAL;
1554 					break;
1555 				}
1556 				error = sooptcopyin(sopt, &optval,
1557 					sizeof optval, sizeof optval);
1558 				if (error)
1559 					break;
1560 				switch (optname) {
1561 
1562 				case IPV6_UNICAST_HOPS:
1563 					if (optval < -1 || optval >= 256)
1564 						error = EINVAL;
1565 					else {
1566 						/* -1 = kernel default */
1567 						in6p->in6p_hops = optval;
1568 						if ((in6p->inp_vflag &
1569 						     INP_IPV4) != 0)
1570 							in6p->inp_ip_ttl = optval;
1571 					}
1572 					break;
1573 #define OPTSET(bit) \
1574 do { \
1575 	INP_WLOCK(in6p); \
1576 	if (optval) \
1577 		in6p->inp_flags |= (bit); \
1578 	else \
1579 		in6p->inp_flags &= ~(bit); \
1580 	INP_WUNLOCK(in6p); \
1581 } while (/*CONSTCOND*/ 0)
1582 #define OPTSET2292(bit) \
1583 do { \
1584 	INP_WLOCK(in6p); \
1585 	in6p->inp_flags |= IN6P_RFC2292; \
1586 	if (optval) \
1587 		in6p->inp_flags |= (bit); \
1588 	else \
1589 		in6p->inp_flags &= ~(bit); \
1590 	INP_WUNLOCK(in6p); \
1591 } while (/*CONSTCOND*/ 0)
1592 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0)
1593 
1594 #define OPTSET2_N(bit, val) do {					\
1595 	if (val)							\
1596 		in6p->inp_flags2 |= bit;				\
1597 	else								\
1598 		in6p->inp_flags2 &= ~bit;				\
1599 } while (0)
1600 #define OPTSET2(bit, val) do {						\
1601 	INP_WLOCK(in6p);						\
1602 	OPTSET2_N(bit, val);						\
1603 	INP_WUNLOCK(in6p);						\
1604 } while (0)
1605 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0)
1606 #define OPTSET2292_EXCLUSIVE(bit)					\
1607 do {									\
1608 	INP_WLOCK(in6p);						\
1609 	if (OPTBIT(IN6P_RFC2292)) {					\
1610 		error = EINVAL;						\
1611 	} else {							\
1612 		if (optval)						\
1613 			in6p->inp_flags |= (bit);			\
1614 		else							\
1615 			in6p->inp_flags &= ~(bit);			\
1616 	}								\
1617 	INP_WUNLOCK(in6p);						\
1618 } while (/*CONSTCOND*/ 0)
1619 
1620 				case IPV6_RECVPKTINFO:
1621 					OPTSET2292_EXCLUSIVE(IN6P_PKTINFO);
1622 					break;
1623 
1624 				case IPV6_HOPLIMIT:
1625 				{
1626 					struct ip6_pktopts **optp;
1627 
1628 					/* cannot mix with RFC2292 */
1629 					if (OPTBIT(IN6P_RFC2292)) {
1630 						error = EINVAL;
1631 						break;
1632 					}
1633 					INP_WLOCK(in6p);
1634 					if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
1635 						INP_WUNLOCK(in6p);
1636 						return (ECONNRESET);
1637 					}
1638 					optp = &in6p->in6p_outputopts;
1639 					error = ip6_pcbopt(IPV6_HOPLIMIT,
1640 					    (u_char *)&optval, sizeof(optval),
1641 					    optp, (td != NULL) ? td->td_ucred :
1642 					    NULL, uproto);
1643 					INP_WUNLOCK(in6p);
1644 					break;
1645 				}
1646 
1647 				case IPV6_RECVHOPLIMIT:
1648 					OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT);
1649 					break;
1650 
1651 				case IPV6_RECVHOPOPTS:
1652 					OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS);
1653 					break;
1654 
1655 				case IPV6_RECVDSTOPTS:
1656 					OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS);
1657 					break;
1658 
1659 				case IPV6_RECVRTHDRDSTOPTS:
1660 					OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS);
1661 					break;
1662 
1663 				case IPV6_RECVRTHDR:
1664 					OPTSET2292_EXCLUSIVE(IN6P_RTHDR);
1665 					break;
1666 
1667 				case IPV6_RECVPATHMTU:
1668 					/*
1669 					 * We ignore this option for TCP
1670 					 * sockets.
1671 					 * (RFC3542 leaves this case
1672 					 * unspecified.)
1673 					 */
1674 					if (uproto != IPPROTO_TCP)
1675 						OPTSET(IN6P_MTU);
1676 					break;
1677 
1678 				case IPV6_RECVFLOWID:
1679 					OPTSET2(INP_RECVFLOWID, optval);
1680 					break;
1681 
1682 #ifdef	RSS
1683 				case IPV6_RECVRSSBUCKETID:
1684 					OPTSET2(INP_RECVRSSBUCKETID, optval);
1685 					break;
1686 #endif
1687 
1688 				case IPV6_V6ONLY:
1689 					/*
1690 					 * make setsockopt(IPV6_V6ONLY)
1691 					 * available only prior to bind(2).
1692 					 * see ipng mailing list, Jun 22 2001.
1693 					 */
1694 					if (in6p->inp_lport ||
1695 					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1696 						error = EINVAL;
1697 						break;
1698 					}
1699 					OPTSET(IN6P_IPV6_V6ONLY);
1700 					if (optval)
1701 						in6p->inp_vflag &= ~INP_IPV4;
1702 					else
1703 						in6p->inp_vflag |= INP_IPV4;
1704 					break;
1705 				case IPV6_RECVTCLASS:
1706 					/* cannot mix with RFC2292 XXX */
1707 					OPTSET2292_EXCLUSIVE(IN6P_TCLASS);
1708 					break;
1709 				case IPV6_AUTOFLOWLABEL:
1710 					OPTSET(IN6P_AUTOFLOWLABEL);
1711 					break;
1712 
1713 				case IPV6_ORIGDSTADDR:
1714 					OPTSET2(INP_ORIGDSTADDR, optval);
1715 					break;
1716 				case IPV6_BINDANY:
1717 					OPTSET(INP_BINDANY);
1718 					break;
1719 
1720 				case IPV6_BINDMULTI:
1721 					OPTSET2(INP_BINDMULTI, optval);
1722 					break;
1723 #ifdef	RSS
1724 				case IPV6_RSS_LISTEN_BUCKET:
1725 					if ((optval >= 0) &&
1726 					    (optval < rss_getnumbuckets())) {
1727 						INP_WLOCK(in6p);
1728 						in6p->inp_rss_listen_bucket = optval;
1729 						OPTSET2_N(INP_RSS_BUCKET_SET, 1);
1730 						INP_WUNLOCK(in6p);
1731 					} else {
1732 						error = EINVAL;
1733 					}
1734 					break;
1735 #endif
1736 				}
1737 				break;
1738 
1739 			case IPV6_TCLASS:
1740 			case IPV6_DONTFRAG:
1741 			case IPV6_USE_MIN_MTU:
1742 			case IPV6_PREFER_TEMPADDR:
1743 				if (optlen != sizeof(optval)) {
1744 					error = EINVAL;
1745 					break;
1746 				}
1747 				error = sooptcopyin(sopt, &optval,
1748 					sizeof optval, sizeof optval);
1749 				if (error)
1750 					break;
1751 				{
1752 					struct ip6_pktopts **optp;
1753 					INP_WLOCK(in6p);
1754 					if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
1755 						INP_WUNLOCK(in6p);
1756 						return (ECONNRESET);
1757 					}
1758 					optp = &in6p->in6p_outputopts;
1759 					error = ip6_pcbopt(optname,
1760 					    (u_char *)&optval, sizeof(optval),
1761 					    optp, (td != NULL) ? td->td_ucred :
1762 					    NULL, uproto);
1763 					INP_WUNLOCK(in6p);
1764 					break;
1765 				}
1766 
1767 			case IPV6_2292PKTINFO:
1768 			case IPV6_2292HOPLIMIT:
1769 			case IPV6_2292HOPOPTS:
1770 			case IPV6_2292DSTOPTS:
1771 			case IPV6_2292RTHDR:
1772 				/* RFC 2292 */
1773 				if (optlen != sizeof(int)) {
1774 					error = EINVAL;
1775 					break;
1776 				}
1777 				error = sooptcopyin(sopt, &optval,
1778 					sizeof optval, sizeof optval);
1779 				if (error)
1780 					break;
1781 				switch (optname) {
1782 				case IPV6_2292PKTINFO:
1783 					OPTSET2292(IN6P_PKTINFO);
1784 					break;
1785 				case IPV6_2292HOPLIMIT:
1786 					OPTSET2292(IN6P_HOPLIMIT);
1787 					break;
1788 				case IPV6_2292HOPOPTS:
1789 					/*
1790 					 * Check super-user privilege.
1791 					 * See comments for IPV6_RECVHOPOPTS.
1792 					 */
1793 					if (td != NULL) {
1794 						error = priv_check(td,
1795 						    PRIV_NETINET_SETHDROPTS);
1796 						if (error)
1797 							return (error);
1798 					}
1799 					OPTSET2292(IN6P_HOPOPTS);
1800 					break;
1801 				case IPV6_2292DSTOPTS:
1802 					if (td != NULL) {
1803 						error = priv_check(td,
1804 						    PRIV_NETINET_SETHDROPTS);
1805 						if (error)
1806 							return (error);
1807 					}
1808 					OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1809 					break;
1810 				case IPV6_2292RTHDR:
1811 					OPTSET2292(IN6P_RTHDR);
1812 					break;
1813 				}
1814 				break;
1815 			case IPV6_PKTINFO:
1816 			case IPV6_HOPOPTS:
1817 			case IPV6_RTHDR:
1818 			case IPV6_DSTOPTS:
1819 			case IPV6_RTHDRDSTOPTS:
1820 			case IPV6_NEXTHOP:
1821 			{
1822 				/* new advanced API (RFC3542) */
1823 				u_char *optbuf;
1824 				u_char optbuf_storage[MCLBYTES];
1825 				int optlen;
1826 				struct ip6_pktopts **optp;
1827 
1828 				/* cannot mix with RFC2292 */
1829 				if (OPTBIT(IN6P_RFC2292)) {
1830 					error = EINVAL;
1831 					break;
1832 				}
1833 
1834 				/*
1835 				 * We only ensure valsize is not too large
1836 				 * here.  Further validation will be done
1837 				 * later.
1838 				 */
1839 				error = sooptcopyin(sopt, optbuf_storage,
1840 				    sizeof(optbuf_storage), 0);
1841 				if (error)
1842 					break;
1843 				optlen = sopt->sopt_valsize;
1844 				optbuf = optbuf_storage;
1845 				INP_WLOCK(in6p);
1846 				if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
1847 					INP_WUNLOCK(in6p);
1848 					return (ECONNRESET);
1849 				}
1850 				optp = &in6p->in6p_outputopts;
1851 				error = ip6_pcbopt(optname, optbuf, optlen,
1852 				    optp, (td != NULL) ? td->td_ucred : NULL,
1853 				    uproto);
1854 				INP_WUNLOCK(in6p);
1855 				break;
1856 			}
1857 #undef OPTSET
1858 
1859 			case IPV6_MULTICAST_IF:
1860 			case IPV6_MULTICAST_HOPS:
1861 			case IPV6_MULTICAST_LOOP:
1862 			case IPV6_JOIN_GROUP:
1863 			case IPV6_LEAVE_GROUP:
1864 			case IPV6_MSFILTER:
1865 			case MCAST_BLOCK_SOURCE:
1866 			case MCAST_UNBLOCK_SOURCE:
1867 			case MCAST_JOIN_GROUP:
1868 			case MCAST_LEAVE_GROUP:
1869 			case MCAST_JOIN_SOURCE_GROUP:
1870 			case MCAST_LEAVE_SOURCE_GROUP:
1871 				error = ip6_setmoptions(in6p, sopt);
1872 				break;
1873 
1874 			case IPV6_PORTRANGE:
1875 				error = sooptcopyin(sopt, &optval,
1876 				    sizeof optval, sizeof optval);
1877 				if (error)
1878 					break;
1879 
1880 				INP_WLOCK(in6p);
1881 				switch (optval) {
1882 				case IPV6_PORTRANGE_DEFAULT:
1883 					in6p->inp_flags &= ~(INP_LOWPORT);
1884 					in6p->inp_flags &= ~(INP_HIGHPORT);
1885 					break;
1886 
1887 				case IPV6_PORTRANGE_HIGH:
1888 					in6p->inp_flags &= ~(INP_LOWPORT);
1889 					in6p->inp_flags |= INP_HIGHPORT;
1890 					break;
1891 
1892 				case IPV6_PORTRANGE_LOW:
1893 					in6p->inp_flags &= ~(INP_HIGHPORT);
1894 					in6p->inp_flags |= INP_LOWPORT;
1895 					break;
1896 
1897 				default:
1898 					error = EINVAL;
1899 					break;
1900 				}
1901 				INP_WUNLOCK(in6p);
1902 				break;
1903 
1904 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1905 			case IPV6_IPSEC_POLICY:
1906 				if (IPSEC_ENABLED(ipv6)) {
1907 					error = IPSEC_PCBCTL(ipv6, in6p, sopt);
1908 					break;
1909 				}
1910 				/* FALLTHROUGH */
1911 #endif /* IPSEC */
1912 
1913 			default:
1914 				error = ENOPROTOOPT;
1915 				break;
1916 			}
1917 			break;
1918 
1919 		case SOPT_GET:
1920 			switch (optname) {
1921 
1922 			case IPV6_2292PKTOPTIONS:
1923 #ifdef IPV6_PKTOPTIONS
1924 			case IPV6_PKTOPTIONS:
1925 #endif
1926 				/*
1927 				 * RFC3542 (effectively) deprecated the
1928 				 * semantics of the 2292-style pktoptions.
1929 				 * Since it was not reliable in nature (i.e.,
1930 				 * applications had to expect the lack of some
1931 				 * information after all), it would make sense
1932 				 * to simplify this part by always returning
1933 				 * empty data.
1934 				 */
1935 				sopt->sopt_valsize = 0;
1936 				break;
1937 
1938 			case IPV6_RECVHOPOPTS:
1939 			case IPV6_RECVDSTOPTS:
1940 			case IPV6_RECVRTHDRDSTOPTS:
1941 			case IPV6_UNICAST_HOPS:
1942 			case IPV6_RECVPKTINFO:
1943 			case IPV6_RECVHOPLIMIT:
1944 			case IPV6_RECVRTHDR:
1945 			case IPV6_RECVPATHMTU:
1946 
1947 			case IPV6_V6ONLY:
1948 			case IPV6_PORTRANGE:
1949 			case IPV6_RECVTCLASS:
1950 			case IPV6_AUTOFLOWLABEL:
1951 			case IPV6_BINDANY:
1952 			case IPV6_FLOWID:
1953 			case IPV6_FLOWTYPE:
1954 			case IPV6_RECVFLOWID:
1955 #ifdef	RSS
1956 			case IPV6_RSSBUCKETID:
1957 			case IPV6_RECVRSSBUCKETID:
1958 #endif
1959 			case IPV6_BINDMULTI:
1960 				switch (optname) {
1961 
1962 				case IPV6_RECVHOPOPTS:
1963 					optval = OPTBIT(IN6P_HOPOPTS);
1964 					break;
1965 
1966 				case IPV6_RECVDSTOPTS:
1967 					optval = OPTBIT(IN6P_DSTOPTS);
1968 					break;
1969 
1970 				case IPV6_RECVRTHDRDSTOPTS:
1971 					optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1972 					break;
1973 
1974 				case IPV6_UNICAST_HOPS:
1975 					optval = in6p->in6p_hops;
1976 					break;
1977 
1978 				case IPV6_RECVPKTINFO:
1979 					optval = OPTBIT(IN6P_PKTINFO);
1980 					break;
1981 
1982 				case IPV6_RECVHOPLIMIT:
1983 					optval = OPTBIT(IN6P_HOPLIMIT);
1984 					break;
1985 
1986 				case IPV6_RECVRTHDR:
1987 					optval = OPTBIT(IN6P_RTHDR);
1988 					break;
1989 
1990 				case IPV6_RECVPATHMTU:
1991 					optval = OPTBIT(IN6P_MTU);
1992 					break;
1993 
1994 				case IPV6_V6ONLY:
1995 					optval = OPTBIT(IN6P_IPV6_V6ONLY);
1996 					break;
1997 
1998 				case IPV6_PORTRANGE:
1999 				    {
2000 					int flags;
2001 					flags = in6p->inp_flags;
2002 					if (flags & INP_HIGHPORT)
2003 						optval = IPV6_PORTRANGE_HIGH;
2004 					else if (flags & INP_LOWPORT)
2005 						optval = IPV6_PORTRANGE_LOW;
2006 					else
2007 						optval = 0;
2008 					break;
2009 				    }
2010 				case IPV6_RECVTCLASS:
2011 					optval = OPTBIT(IN6P_TCLASS);
2012 					break;
2013 
2014 				case IPV6_AUTOFLOWLABEL:
2015 					optval = OPTBIT(IN6P_AUTOFLOWLABEL);
2016 					break;
2017 
2018 				case IPV6_ORIGDSTADDR:
2019 					optval = OPTBIT2(INP_ORIGDSTADDR);
2020 					break;
2021 
2022 				case IPV6_BINDANY:
2023 					optval = OPTBIT(INP_BINDANY);
2024 					break;
2025 
2026 				case IPV6_FLOWID:
2027 					optval = in6p->inp_flowid;
2028 					break;
2029 
2030 				case IPV6_FLOWTYPE:
2031 					optval = in6p->inp_flowtype;
2032 					break;
2033 
2034 				case IPV6_RECVFLOWID:
2035 					optval = OPTBIT2(INP_RECVFLOWID);
2036 					break;
2037 #ifdef	RSS
2038 				case IPV6_RSSBUCKETID:
2039 					retval =
2040 					    rss_hash2bucket(in6p->inp_flowid,
2041 					    in6p->inp_flowtype,
2042 					    &rss_bucket);
2043 					if (retval == 0)
2044 						optval = rss_bucket;
2045 					else
2046 						error = EINVAL;
2047 					break;
2048 
2049 				case IPV6_RECVRSSBUCKETID:
2050 					optval = OPTBIT2(INP_RECVRSSBUCKETID);
2051 					break;
2052 #endif
2053 
2054 				case IPV6_BINDMULTI:
2055 					optval = OPTBIT2(INP_BINDMULTI);
2056 					break;
2057 
2058 				}
2059 				if (error)
2060 					break;
2061 				error = sooptcopyout(sopt, &optval,
2062 					sizeof optval);
2063 				break;
2064 
2065 			case IPV6_PATHMTU:
2066 			{
2067 				u_long pmtu = 0;
2068 				struct ip6_mtuinfo mtuinfo;
2069 				struct in6_addr addr;
2070 
2071 				if (!(so->so_state & SS_ISCONNECTED))
2072 					return (ENOTCONN);
2073 				/*
2074 				 * XXX: we dot not consider the case of source
2075 				 * routing, or optional information to specify
2076 				 * the outgoing interface.
2077 				 * Copy faddr out of in6p to avoid holding lock
2078 				 * on inp during route lookup.
2079 				 */
2080 				INP_RLOCK(in6p);
2081 				bcopy(&in6p->in6p_faddr, &addr, sizeof(addr));
2082 				INP_RUNLOCK(in6p);
2083 				error = ip6_getpmtu_ctl(so->so_fibnum,
2084 				    &addr, &pmtu);
2085 				if (error)
2086 					break;
2087 				if (pmtu > IPV6_MAXPACKET)
2088 					pmtu = IPV6_MAXPACKET;
2089 
2090 				bzero(&mtuinfo, sizeof(mtuinfo));
2091 				mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
2092 				optdata = (void *)&mtuinfo;
2093 				optdatalen = sizeof(mtuinfo);
2094 				error = sooptcopyout(sopt, optdata,
2095 				    optdatalen);
2096 				break;
2097 			}
2098 
2099 			case IPV6_2292PKTINFO:
2100 			case IPV6_2292HOPLIMIT:
2101 			case IPV6_2292HOPOPTS:
2102 			case IPV6_2292RTHDR:
2103 			case IPV6_2292DSTOPTS:
2104 				switch (optname) {
2105 				case IPV6_2292PKTINFO:
2106 					optval = OPTBIT(IN6P_PKTINFO);
2107 					break;
2108 				case IPV6_2292HOPLIMIT:
2109 					optval = OPTBIT(IN6P_HOPLIMIT);
2110 					break;
2111 				case IPV6_2292HOPOPTS:
2112 					optval = OPTBIT(IN6P_HOPOPTS);
2113 					break;
2114 				case IPV6_2292RTHDR:
2115 					optval = OPTBIT(IN6P_RTHDR);
2116 					break;
2117 				case IPV6_2292DSTOPTS:
2118 					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
2119 					break;
2120 				}
2121 				error = sooptcopyout(sopt, &optval,
2122 				    sizeof optval);
2123 				break;
2124 			case IPV6_PKTINFO:
2125 			case IPV6_HOPOPTS:
2126 			case IPV6_RTHDR:
2127 			case IPV6_DSTOPTS:
2128 			case IPV6_RTHDRDSTOPTS:
2129 			case IPV6_NEXTHOP:
2130 			case IPV6_TCLASS:
2131 			case IPV6_DONTFRAG:
2132 			case IPV6_USE_MIN_MTU:
2133 			case IPV6_PREFER_TEMPADDR:
2134 				error = ip6_getpcbopt(in6p, optname, sopt);
2135 				break;
2136 
2137 			case IPV6_MULTICAST_IF:
2138 			case IPV6_MULTICAST_HOPS:
2139 			case IPV6_MULTICAST_LOOP:
2140 			case IPV6_MSFILTER:
2141 				error = ip6_getmoptions(in6p, sopt);
2142 				break;
2143 
2144 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
2145 			case IPV6_IPSEC_POLICY:
2146 				if (IPSEC_ENABLED(ipv6)) {
2147 					error = IPSEC_PCBCTL(ipv6, in6p, sopt);
2148 					break;
2149 				}
2150 				/* FALLTHROUGH */
2151 #endif /* IPSEC */
2152 			default:
2153 				error = ENOPROTOOPT;
2154 				break;
2155 			}
2156 			break;
2157 		}
2158 	}
2159 	return (error);
2160 }
2161 
2162 int
2163 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
2164 {
2165 	int error = 0, optval, optlen;
2166 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2167 	struct inpcb *in6p = sotoinpcb(so);
2168 	int level, op, optname;
2169 
2170 	level = sopt->sopt_level;
2171 	op = sopt->sopt_dir;
2172 	optname = sopt->sopt_name;
2173 	optlen = sopt->sopt_valsize;
2174 
2175 	if (level != IPPROTO_IPV6) {
2176 		return (EINVAL);
2177 	}
2178 
2179 	switch (optname) {
2180 	case IPV6_CHECKSUM:
2181 		/*
2182 		 * For ICMPv6 sockets, no modification allowed for checksum
2183 		 * offset, permit "no change" values to help existing apps.
2184 		 *
2185 		 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
2186 		 * for an ICMPv6 socket will fail."
2187 		 * The current behavior does not meet RFC3542.
2188 		 */
2189 		switch (op) {
2190 		case SOPT_SET:
2191 			if (optlen != sizeof(int)) {
2192 				error = EINVAL;
2193 				break;
2194 			}
2195 			error = sooptcopyin(sopt, &optval, sizeof(optval),
2196 					    sizeof(optval));
2197 			if (error)
2198 				break;
2199 			if ((optval % 2) != 0) {
2200 				/* the API assumes even offset values */
2201 				error = EINVAL;
2202 			} else if (so->so_proto->pr_protocol ==
2203 			    IPPROTO_ICMPV6) {
2204 				if (optval != icmp6off)
2205 					error = EINVAL;
2206 			} else
2207 				in6p->in6p_cksum = optval;
2208 			break;
2209 
2210 		case SOPT_GET:
2211 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2212 				optval = icmp6off;
2213 			else
2214 				optval = in6p->in6p_cksum;
2215 
2216 			error = sooptcopyout(sopt, &optval, sizeof(optval));
2217 			break;
2218 
2219 		default:
2220 			error = EINVAL;
2221 			break;
2222 		}
2223 		break;
2224 
2225 	default:
2226 		error = ENOPROTOOPT;
2227 		break;
2228 	}
2229 
2230 	return (error);
2231 }
2232 
2233 /*
2234  * Set up IP6 options in pcb for insertion in output packets or
2235  * specifying behavior of outgoing packets.
2236  */
2237 static int
2238 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
2239     struct socket *so, struct sockopt *sopt)
2240 {
2241 	struct ip6_pktopts *opt = *pktopt;
2242 	int error = 0;
2243 	struct thread *td = sopt->sopt_td;
2244 
2245 	/* turn off any old options. */
2246 	if (opt) {
2247 #ifdef DIAGNOSTIC
2248 		if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2249 		    opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2250 		    opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2251 			printf("ip6_pcbopts: all specified options are cleared.\n");
2252 #endif
2253 		ip6_clearpktopts(opt, -1);
2254 	} else
2255 		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2256 	*pktopt = NULL;
2257 
2258 	if (!m || m->m_len == 0) {
2259 		/*
2260 		 * Only turning off any previous options, regardless of
2261 		 * whether the opt is just created or given.
2262 		 */
2263 		free(opt, M_IP6OPT);
2264 		return (0);
2265 	}
2266 
2267 	/*  set options specified by user. */
2268 	if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ?
2269 	    td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) {
2270 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2271 		free(opt, M_IP6OPT);
2272 		return (error);
2273 	}
2274 	*pktopt = opt;
2275 	return (0);
2276 }
2277 
2278 /*
2279  * initialize ip6_pktopts.  beware that there are non-zero default values in
2280  * the struct.
2281  */
2282 void
2283 ip6_initpktopts(struct ip6_pktopts *opt)
2284 {
2285 
2286 	bzero(opt, sizeof(*opt));
2287 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
2288 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
2289 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2290 	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2291 }
2292 
2293 static int
2294 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2295     struct ucred *cred, int uproto)
2296 {
2297 	struct ip6_pktopts *opt;
2298 
2299 	if (*pktopt == NULL) {
2300 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2301 		    M_NOWAIT);
2302 		if (*pktopt == NULL)
2303 			return (ENOBUFS);
2304 		ip6_initpktopts(*pktopt);
2305 	}
2306 	opt = *pktopt;
2307 
2308 	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2309 }
2310 
2311 #define GET_PKTOPT_VAR(field, lenexpr) do {					\
2312 	if (pktopt && pktopt->field) {						\
2313 		INP_RUNLOCK(in6p);						\
2314 		optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK);		\
2315 		malloc_optdata = true;						\
2316 		INP_RLOCK(in6p);						\
2317 		if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {		\
2318 			INP_RUNLOCK(in6p);					\
2319 			free(optdata, M_TEMP);					\
2320 			return (ECONNRESET);					\
2321 		}								\
2322 		pktopt = in6p->in6p_outputopts;					\
2323 		if (pktopt && pktopt->field) {					\
2324 			optdatalen = min(lenexpr, sopt->sopt_valsize);		\
2325 			bcopy(&pktopt->field, optdata, optdatalen);		\
2326 		} else {							\
2327 			free(optdata, M_TEMP);					\
2328 			optdata = NULL;						\
2329 			malloc_optdata = false;					\
2330 		}								\
2331 	}									\
2332 } while(0)
2333 
2334 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field,				\
2335 	(((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3)
2336 
2337 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field,			\
2338 	pktopt->field->sa_len)
2339 
2340 static int
2341 ip6_getpcbopt(struct inpcb *in6p, int optname, struct sockopt *sopt)
2342 {
2343 	void *optdata = NULL;
2344 	bool malloc_optdata = false;
2345 	int optdatalen = 0;
2346 	int error = 0;
2347 	struct in6_pktinfo null_pktinfo;
2348 	int deftclass = 0, on;
2349 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
2350 	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2351 	struct ip6_pktopts *pktopt;
2352 
2353 	INP_RLOCK(in6p);
2354 	pktopt = in6p->in6p_outputopts;
2355 
2356 	switch (optname) {
2357 	case IPV6_PKTINFO:
2358 		optdata = (void *)&null_pktinfo;
2359 		if (pktopt && pktopt->ip6po_pktinfo) {
2360 			bcopy(pktopt->ip6po_pktinfo, &null_pktinfo,
2361 			    sizeof(null_pktinfo));
2362 			in6_clearscope(&null_pktinfo.ipi6_addr);
2363 		} else {
2364 			/* XXX: we don't have to do this every time... */
2365 			bzero(&null_pktinfo, sizeof(null_pktinfo));
2366 		}
2367 		optdatalen = sizeof(struct in6_pktinfo);
2368 		break;
2369 	case IPV6_TCLASS:
2370 		if (pktopt && pktopt->ip6po_tclass >= 0)
2371 			deftclass = pktopt->ip6po_tclass;
2372 		optdata = (void *)&deftclass;
2373 		optdatalen = sizeof(int);
2374 		break;
2375 	case IPV6_HOPOPTS:
2376 		GET_PKTOPT_EXT_HDR(ip6po_hbh);
2377 		break;
2378 	case IPV6_RTHDR:
2379 		GET_PKTOPT_EXT_HDR(ip6po_rthdr);
2380 		break;
2381 	case IPV6_RTHDRDSTOPTS:
2382 		GET_PKTOPT_EXT_HDR(ip6po_dest1);
2383 		break;
2384 	case IPV6_DSTOPTS:
2385 		GET_PKTOPT_EXT_HDR(ip6po_dest2);
2386 		break;
2387 	case IPV6_NEXTHOP:
2388 		GET_PKTOPT_SOCKADDR(ip6po_nexthop);
2389 		break;
2390 	case IPV6_USE_MIN_MTU:
2391 		if (pktopt)
2392 			defminmtu = pktopt->ip6po_minmtu;
2393 		optdata = (void *)&defminmtu;
2394 		optdatalen = sizeof(int);
2395 		break;
2396 	case IPV6_DONTFRAG:
2397 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2398 			on = 1;
2399 		else
2400 			on = 0;
2401 		optdata = (void *)&on;
2402 		optdatalen = sizeof(on);
2403 		break;
2404 	case IPV6_PREFER_TEMPADDR:
2405 		if (pktopt)
2406 			defpreftemp = pktopt->ip6po_prefer_tempaddr;
2407 		optdata = (void *)&defpreftemp;
2408 		optdatalen = sizeof(int);
2409 		break;
2410 	default:		/* should not happen */
2411 #ifdef DIAGNOSTIC
2412 		panic("ip6_getpcbopt: unexpected option\n");
2413 #endif
2414 		INP_RUNLOCK(in6p);
2415 		return (ENOPROTOOPT);
2416 	}
2417 	INP_RUNLOCK(in6p);
2418 
2419 	error = sooptcopyout(sopt, optdata, optdatalen);
2420 	if (malloc_optdata)
2421 		free(optdata, M_TEMP);
2422 
2423 	return (error);
2424 }
2425 
2426 void
2427 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2428 {
2429 	if (pktopt == NULL)
2430 		return;
2431 
2432 	if (optname == -1 || optname == IPV6_PKTINFO) {
2433 		if (pktopt->ip6po_pktinfo)
2434 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
2435 		pktopt->ip6po_pktinfo = NULL;
2436 	}
2437 	if (optname == -1 || optname == IPV6_HOPLIMIT)
2438 		pktopt->ip6po_hlim = -1;
2439 	if (optname == -1 || optname == IPV6_TCLASS)
2440 		pktopt->ip6po_tclass = -1;
2441 	if (optname == -1 || optname == IPV6_NEXTHOP) {
2442 		if (pktopt->ip6po_nextroute.ro_rt) {
2443 			RTFREE(pktopt->ip6po_nextroute.ro_rt);
2444 			pktopt->ip6po_nextroute.ro_rt = NULL;
2445 		}
2446 		if (pktopt->ip6po_nexthop)
2447 			free(pktopt->ip6po_nexthop, M_IP6OPT);
2448 		pktopt->ip6po_nexthop = NULL;
2449 	}
2450 	if (optname == -1 || optname == IPV6_HOPOPTS) {
2451 		if (pktopt->ip6po_hbh)
2452 			free(pktopt->ip6po_hbh, M_IP6OPT);
2453 		pktopt->ip6po_hbh = NULL;
2454 	}
2455 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2456 		if (pktopt->ip6po_dest1)
2457 			free(pktopt->ip6po_dest1, M_IP6OPT);
2458 		pktopt->ip6po_dest1 = NULL;
2459 	}
2460 	if (optname == -1 || optname == IPV6_RTHDR) {
2461 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2462 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2463 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2464 		if (pktopt->ip6po_route.ro_rt) {
2465 			RTFREE(pktopt->ip6po_route.ro_rt);
2466 			pktopt->ip6po_route.ro_rt = NULL;
2467 		}
2468 	}
2469 	if (optname == -1 || optname == IPV6_DSTOPTS) {
2470 		if (pktopt->ip6po_dest2)
2471 			free(pktopt->ip6po_dest2, M_IP6OPT);
2472 		pktopt->ip6po_dest2 = NULL;
2473 	}
2474 }
2475 
2476 #define PKTOPT_EXTHDRCPY(type) \
2477 do {\
2478 	if (src->type) {\
2479 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2480 		dst->type = malloc(hlen, M_IP6OPT, canwait);\
2481 		if (dst->type == NULL)\
2482 			goto bad;\
2483 		bcopy(src->type, dst->type, hlen);\
2484 	}\
2485 } while (/*CONSTCOND*/ 0)
2486 
2487 static int
2488 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2489 {
2490 	if (dst == NULL || src == NULL)  {
2491 		printf("ip6_clearpktopts: invalid argument\n");
2492 		return (EINVAL);
2493 	}
2494 
2495 	dst->ip6po_hlim = src->ip6po_hlim;
2496 	dst->ip6po_tclass = src->ip6po_tclass;
2497 	dst->ip6po_flags = src->ip6po_flags;
2498 	dst->ip6po_minmtu = src->ip6po_minmtu;
2499 	dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2500 	if (src->ip6po_pktinfo) {
2501 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2502 		    M_IP6OPT, canwait);
2503 		if (dst->ip6po_pktinfo == NULL)
2504 			goto bad;
2505 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2506 	}
2507 	if (src->ip6po_nexthop) {
2508 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2509 		    M_IP6OPT, canwait);
2510 		if (dst->ip6po_nexthop == NULL)
2511 			goto bad;
2512 		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2513 		    src->ip6po_nexthop->sa_len);
2514 	}
2515 	PKTOPT_EXTHDRCPY(ip6po_hbh);
2516 	PKTOPT_EXTHDRCPY(ip6po_dest1);
2517 	PKTOPT_EXTHDRCPY(ip6po_dest2);
2518 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2519 	return (0);
2520 
2521   bad:
2522 	ip6_clearpktopts(dst, -1);
2523 	return (ENOBUFS);
2524 }
2525 #undef PKTOPT_EXTHDRCPY
2526 
2527 struct ip6_pktopts *
2528 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2529 {
2530 	int error;
2531 	struct ip6_pktopts *dst;
2532 
2533 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2534 	if (dst == NULL)
2535 		return (NULL);
2536 	ip6_initpktopts(dst);
2537 
2538 	if ((error = copypktopts(dst, src, canwait)) != 0) {
2539 		free(dst, M_IP6OPT);
2540 		return (NULL);
2541 	}
2542 
2543 	return (dst);
2544 }
2545 
2546 void
2547 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2548 {
2549 	if (pktopt == NULL)
2550 		return;
2551 
2552 	ip6_clearpktopts(pktopt, -1);
2553 
2554 	free(pktopt, M_IP6OPT);
2555 }
2556 
2557 /*
2558  * Set IPv6 outgoing packet options based on advanced API.
2559  */
2560 int
2561 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2562     struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto)
2563 {
2564 	struct cmsghdr *cm = NULL;
2565 
2566 	if (control == NULL || opt == NULL)
2567 		return (EINVAL);
2568 
2569 	ip6_initpktopts(opt);
2570 	if (stickyopt) {
2571 		int error;
2572 
2573 		/*
2574 		 * If stickyopt is provided, make a local copy of the options
2575 		 * for this particular packet, then override them by ancillary
2576 		 * objects.
2577 		 * XXX: copypktopts() does not copy the cached route to a next
2578 		 * hop (if any).  This is not very good in terms of efficiency,
2579 		 * but we can allow this since this option should be rarely
2580 		 * used.
2581 		 */
2582 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2583 			return (error);
2584 	}
2585 
2586 	/*
2587 	 * XXX: Currently, we assume all the optional information is stored
2588 	 * in a single mbuf.
2589 	 */
2590 	if (control->m_next)
2591 		return (EINVAL);
2592 
2593 	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2594 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2595 		int error;
2596 
2597 		if (control->m_len < CMSG_LEN(0))
2598 			return (EINVAL);
2599 
2600 		cm = mtod(control, struct cmsghdr *);
2601 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2602 			return (EINVAL);
2603 		if (cm->cmsg_level != IPPROTO_IPV6)
2604 			continue;
2605 
2606 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2607 		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2608 		if (error)
2609 			return (error);
2610 	}
2611 
2612 	return (0);
2613 }
2614 
2615 /*
2616  * Set a particular packet option, as a sticky option or an ancillary data
2617  * item.  "len" can be 0 only when it's a sticky option.
2618  * We have 4 cases of combination of "sticky" and "cmsg":
2619  * "sticky=0, cmsg=0": impossible
2620  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2621  * "sticky=1, cmsg=0": RFC3542 socket option
2622  * "sticky=1, cmsg=1": RFC2292 socket option
2623  */
2624 static int
2625 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2626     struct ucred *cred, int sticky, int cmsg, int uproto)
2627 {
2628 	int minmtupolicy, preftemp;
2629 	int error;
2630 
2631 	if (!sticky && !cmsg) {
2632 #ifdef DIAGNOSTIC
2633 		printf("ip6_setpktopt: impossible case\n");
2634 #endif
2635 		return (EINVAL);
2636 	}
2637 
2638 	/*
2639 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2640 	 * not be specified in the context of RFC3542.  Conversely,
2641 	 * RFC3542 types should not be specified in the context of RFC2292.
2642 	 */
2643 	if (!cmsg) {
2644 		switch (optname) {
2645 		case IPV6_2292PKTINFO:
2646 		case IPV6_2292HOPLIMIT:
2647 		case IPV6_2292NEXTHOP:
2648 		case IPV6_2292HOPOPTS:
2649 		case IPV6_2292DSTOPTS:
2650 		case IPV6_2292RTHDR:
2651 		case IPV6_2292PKTOPTIONS:
2652 			return (ENOPROTOOPT);
2653 		}
2654 	}
2655 	if (sticky && cmsg) {
2656 		switch (optname) {
2657 		case IPV6_PKTINFO:
2658 		case IPV6_HOPLIMIT:
2659 		case IPV6_NEXTHOP:
2660 		case IPV6_HOPOPTS:
2661 		case IPV6_DSTOPTS:
2662 		case IPV6_RTHDRDSTOPTS:
2663 		case IPV6_RTHDR:
2664 		case IPV6_USE_MIN_MTU:
2665 		case IPV6_DONTFRAG:
2666 		case IPV6_TCLASS:
2667 		case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2668 			return (ENOPROTOOPT);
2669 		}
2670 	}
2671 
2672 	switch (optname) {
2673 	case IPV6_2292PKTINFO:
2674 	case IPV6_PKTINFO:
2675 	{
2676 		struct ifnet *ifp = NULL;
2677 		struct in6_pktinfo *pktinfo;
2678 
2679 		if (len != sizeof(struct in6_pktinfo))
2680 			return (EINVAL);
2681 
2682 		pktinfo = (struct in6_pktinfo *)buf;
2683 
2684 		/*
2685 		 * An application can clear any sticky IPV6_PKTINFO option by
2686 		 * doing a "regular" setsockopt with ipi6_addr being
2687 		 * in6addr_any and ipi6_ifindex being zero.
2688 		 * [RFC 3542, Section 6]
2689 		 */
2690 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2691 		    pktinfo->ipi6_ifindex == 0 &&
2692 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2693 			ip6_clearpktopts(opt, optname);
2694 			break;
2695 		}
2696 
2697 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2698 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2699 			return (EINVAL);
2700 		}
2701 		if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr))
2702 			return (EINVAL);
2703 		/* validate the interface index if specified. */
2704 		if (pktinfo->ipi6_ifindex > V_if_index)
2705 			 return (ENXIO);
2706 		if (pktinfo->ipi6_ifindex) {
2707 			ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
2708 			if (ifp == NULL)
2709 				return (ENXIO);
2710 		}
2711 		if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL ||
2712 		    (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0))
2713 			return (ENETDOWN);
2714 
2715 		if (ifp != NULL &&
2716 		    !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2717 			struct in6_ifaddr *ia;
2718 
2719 			in6_setscope(&pktinfo->ipi6_addr, ifp, NULL);
2720 			ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr);
2721 			if (ia == NULL)
2722 				return (EADDRNOTAVAIL);
2723 			ifa_free(&ia->ia_ifa);
2724 		}
2725 		/*
2726 		 * We store the address anyway, and let in6_selectsrc()
2727 		 * validate the specified address.  This is because ipi6_addr
2728 		 * may not have enough information about its scope zone, and
2729 		 * we may need additional information (such as outgoing
2730 		 * interface or the scope zone of a destination address) to
2731 		 * disambiguate the scope.
2732 		 * XXX: the delay of the validation may confuse the
2733 		 * application when it is used as a sticky option.
2734 		 */
2735 		if (opt->ip6po_pktinfo == NULL) {
2736 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2737 			    M_IP6OPT, M_NOWAIT);
2738 			if (opt->ip6po_pktinfo == NULL)
2739 				return (ENOBUFS);
2740 		}
2741 		bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2742 		break;
2743 	}
2744 
2745 	case IPV6_2292HOPLIMIT:
2746 	case IPV6_HOPLIMIT:
2747 	{
2748 		int *hlimp;
2749 
2750 		/*
2751 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2752 		 * to simplify the ordering among hoplimit options.
2753 		 */
2754 		if (optname == IPV6_HOPLIMIT && sticky)
2755 			return (ENOPROTOOPT);
2756 
2757 		if (len != sizeof(int))
2758 			return (EINVAL);
2759 		hlimp = (int *)buf;
2760 		if (*hlimp < -1 || *hlimp > 255)
2761 			return (EINVAL);
2762 
2763 		opt->ip6po_hlim = *hlimp;
2764 		break;
2765 	}
2766 
2767 	case IPV6_TCLASS:
2768 	{
2769 		int tclass;
2770 
2771 		if (len != sizeof(int))
2772 			return (EINVAL);
2773 		tclass = *(int *)buf;
2774 		if (tclass < -1 || tclass > 255)
2775 			return (EINVAL);
2776 
2777 		opt->ip6po_tclass = tclass;
2778 		break;
2779 	}
2780 
2781 	case IPV6_2292NEXTHOP:
2782 	case IPV6_NEXTHOP:
2783 		if (cred != NULL) {
2784 			error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS);
2785 			if (error)
2786 				return (error);
2787 		}
2788 
2789 		if (len == 0) {	/* just remove the option */
2790 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
2791 			break;
2792 		}
2793 
2794 		/* check if cmsg_len is large enough for sa_len */
2795 		if (len < sizeof(struct sockaddr) || len < *buf)
2796 			return (EINVAL);
2797 
2798 		switch (((struct sockaddr *)buf)->sa_family) {
2799 		case AF_INET6:
2800 		{
2801 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2802 			int error;
2803 
2804 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2805 				return (EINVAL);
2806 
2807 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2808 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2809 				return (EINVAL);
2810 			}
2811 			if ((error = sa6_embedscope(sa6, V_ip6_use_defzone))
2812 			    != 0) {
2813 				return (error);
2814 			}
2815 			break;
2816 		}
2817 		case AF_LINK:	/* should eventually be supported */
2818 		default:
2819 			return (EAFNOSUPPORT);
2820 		}
2821 
2822 		/* turn off the previous option, then set the new option. */
2823 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
2824 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
2825 		if (opt->ip6po_nexthop == NULL)
2826 			return (ENOBUFS);
2827 		bcopy(buf, opt->ip6po_nexthop, *buf);
2828 		break;
2829 
2830 	case IPV6_2292HOPOPTS:
2831 	case IPV6_HOPOPTS:
2832 	{
2833 		struct ip6_hbh *hbh;
2834 		int hbhlen;
2835 
2836 		/*
2837 		 * XXX: We don't allow a non-privileged user to set ANY HbH
2838 		 * options, since per-option restriction has too much
2839 		 * overhead.
2840 		 */
2841 		if (cred != NULL) {
2842 			error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS);
2843 			if (error)
2844 				return (error);
2845 		}
2846 
2847 		if (len == 0) {
2848 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
2849 			break;	/* just remove the option */
2850 		}
2851 
2852 		/* message length validation */
2853 		if (len < sizeof(struct ip6_hbh))
2854 			return (EINVAL);
2855 		hbh = (struct ip6_hbh *)buf;
2856 		hbhlen = (hbh->ip6h_len + 1) << 3;
2857 		if (len != hbhlen)
2858 			return (EINVAL);
2859 
2860 		/* turn off the previous option, then set the new option. */
2861 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
2862 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
2863 		if (opt->ip6po_hbh == NULL)
2864 			return (ENOBUFS);
2865 		bcopy(hbh, opt->ip6po_hbh, hbhlen);
2866 
2867 		break;
2868 	}
2869 
2870 	case IPV6_2292DSTOPTS:
2871 	case IPV6_DSTOPTS:
2872 	case IPV6_RTHDRDSTOPTS:
2873 	{
2874 		struct ip6_dest *dest, **newdest = NULL;
2875 		int destlen;
2876 
2877 		if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */
2878 			error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS);
2879 			if (error)
2880 				return (error);
2881 		}
2882 
2883 		if (len == 0) {
2884 			ip6_clearpktopts(opt, optname);
2885 			break;	/* just remove the option */
2886 		}
2887 
2888 		/* message length validation */
2889 		if (len < sizeof(struct ip6_dest))
2890 			return (EINVAL);
2891 		dest = (struct ip6_dest *)buf;
2892 		destlen = (dest->ip6d_len + 1) << 3;
2893 		if (len != destlen)
2894 			return (EINVAL);
2895 
2896 		/*
2897 		 * Determine the position that the destination options header
2898 		 * should be inserted; before or after the routing header.
2899 		 */
2900 		switch (optname) {
2901 		case IPV6_2292DSTOPTS:
2902 			/*
2903 			 * The old advacned API is ambiguous on this point.
2904 			 * Our approach is to determine the position based
2905 			 * according to the existence of a routing header.
2906 			 * Note, however, that this depends on the order of the
2907 			 * extension headers in the ancillary data; the 1st
2908 			 * part of the destination options header must appear
2909 			 * before the routing header in the ancillary data,
2910 			 * too.
2911 			 * RFC3542 solved the ambiguity by introducing
2912 			 * separate ancillary data or option types.
2913 			 */
2914 			if (opt->ip6po_rthdr == NULL)
2915 				newdest = &opt->ip6po_dest1;
2916 			else
2917 				newdest = &opt->ip6po_dest2;
2918 			break;
2919 		case IPV6_RTHDRDSTOPTS:
2920 			newdest = &opt->ip6po_dest1;
2921 			break;
2922 		case IPV6_DSTOPTS:
2923 			newdest = &opt->ip6po_dest2;
2924 			break;
2925 		}
2926 
2927 		/* turn off the previous option, then set the new option. */
2928 		ip6_clearpktopts(opt, optname);
2929 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
2930 		if (*newdest == NULL)
2931 			return (ENOBUFS);
2932 		bcopy(dest, *newdest, destlen);
2933 
2934 		break;
2935 	}
2936 
2937 	case IPV6_2292RTHDR:
2938 	case IPV6_RTHDR:
2939 	{
2940 		struct ip6_rthdr *rth;
2941 		int rthlen;
2942 
2943 		if (len == 0) {
2944 			ip6_clearpktopts(opt, IPV6_RTHDR);
2945 			break;	/* just remove the option */
2946 		}
2947 
2948 		/* message length validation */
2949 		if (len < sizeof(struct ip6_rthdr))
2950 			return (EINVAL);
2951 		rth = (struct ip6_rthdr *)buf;
2952 		rthlen = (rth->ip6r_len + 1) << 3;
2953 		if (len != rthlen)
2954 			return (EINVAL);
2955 
2956 		switch (rth->ip6r_type) {
2957 		case IPV6_RTHDR_TYPE_0:
2958 			if (rth->ip6r_len == 0)	/* must contain one addr */
2959 				return (EINVAL);
2960 			if (rth->ip6r_len % 2) /* length must be even */
2961 				return (EINVAL);
2962 			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
2963 				return (EINVAL);
2964 			break;
2965 		default:
2966 			return (EINVAL);	/* not supported */
2967 		}
2968 
2969 		/* turn off the previous option */
2970 		ip6_clearpktopts(opt, IPV6_RTHDR);
2971 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
2972 		if (opt->ip6po_rthdr == NULL)
2973 			return (ENOBUFS);
2974 		bcopy(rth, opt->ip6po_rthdr, rthlen);
2975 
2976 		break;
2977 	}
2978 
2979 	case IPV6_USE_MIN_MTU:
2980 		if (len != sizeof(int))
2981 			return (EINVAL);
2982 		minmtupolicy = *(int *)buf;
2983 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
2984 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
2985 		    minmtupolicy != IP6PO_MINMTU_ALL) {
2986 			return (EINVAL);
2987 		}
2988 		opt->ip6po_minmtu = minmtupolicy;
2989 		break;
2990 
2991 	case IPV6_DONTFRAG:
2992 		if (len != sizeof(int))
2993 			return (EINVAL);
2994 
2995 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
2996 			/*
2997 			 * we ignore this option for TCP sockets.
2998 			 * (RFC3542 leaves this case unspecified.)
2999 			 */
3000 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3001 		} else
3002 			opt->ip6po_flags |= IP6PO_DONTFRAG;
3003 		break;
3004 
3005 	case IPV6_PREFER_TEMPADDR:
3006 		if (len != sizeof(int))
3007 			return (EINVAL);
3008 		preftemp = *(int *)buf;
3009 		if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
3010 		    preftemp != IP6PO_TEMPADDR_NOTPREFER &&
3011 		    preftemp != IP6PO_TEMPADDR_PREFER) {
3012 			return (EINVAL);
3013 		}
3014 		opt->ip6po_prefer_tempaddr = preftemp;
3015 		break;
3016 
3017 	default:
3018 		return (ENOPROTOOPT);
3019 	} /* end of switch */
3020 
3021 	return (0);
3022 }
3023 
3024 /*
3025  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3026  * packet to the input queue of a specified interface.  Note that this
3027  * calls the output routine of the loopback "driver", but with an interface
3028  * pointer that might NOT be &loif -- easier than replicating that code here.
3029  */
3030 void
3031 ip6_mloopback(struct ifnet *ifp, struct mbuf *m)
3032 {
3033 	struct mbuf *copym;
3034 	struct ip6_hdr *ip6;
3035 
3036 	copym = m_copym(m, 0, M_COPYALL, M_NOWAIT);
3037 	if (copym == NULL)
3038 		return;
3039 
3040 	/*
3041 	 * Make sure to deep-copy IPv6 header portion in case the data
3042 	 * is in an mbuf cluster, so that we can safely override the IPv6
3043 	 * header portion later.
3044 	 */
3045 	if (!M_WRITABLE(copym) ||
3046 	    copym->m_len < sizeof(struct ip6_hdr)) {
3047 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
3048 		if (copym == NULL)
3049 			return;
3050 	}
3051 	ip6 = mtod(copym, struct ip6_hdr *);
3052 	/*
3053 	 * clear embedded scope identifiers if necessary.
3054 	 * in6_clearscope will touch the addresses only when necessary.
3055 	 */
3056 	in6_clearscope(&ip6->ip6_src);
3057 	in6_clearscope(&ip6->ip6_dst);
3058 	if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
3059 		copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 |
3060 		    CSUM_PSEUDO_HDR;
3061 		copym->m_pkthdr.csum_data = 0xffff;
3062 	}
3063 	if_simloop(ifp, copym, AF_INET6, 0);
3064 }
3065 
3066 /*
3067  * Chop IPv6 header off from the payload.
3068  */
3069 static int
3070 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3071 {
3072 	struct mbuf *mh;
3073 	struct ip6_hdr *ip6;
3074 
3075 	ip6 = mtod(m, struct ip6_hdr *);
3076 	if (m->m_len > sizeof(*ip6)) {
3077 		mh = m_gethdr(M_NOWAIT, MT_DATA);
3078 		if (mh == NULL) {
3079 			m_freem(m);
3080 			return ENOBUFS;
3081 		}
3082 		m_move_pkthdr(mh, m);
3083 		M_ALIGN(mh, sizeof(*ip6));
3084 		m->m_len -= sizeof(*ip6);
3085 		m->m_data += sizeof(*ip6);
3086 		mh->m_next = m;
3087 		m = mh;
3088 		m->m_len = sizeof(*ip6);
3089 		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
3090 	}
3091 	exthdrs->ip6e_ip6 = m;
3092 	return 0;
3093 }
3094 
3095 /*
3096  * Compute IPv6 extension header length.
3097  */
3098 int
3099 ip6_optlen(struct inpcb *in6p)
3100 {
3101 	int len;
3102 
3103 	if (!in6p->in6p_outputopts)
3104 		return 0;
3105 
3106 	len = 0;
3107 #define elen(x) \
3108     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3109 
3110 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
3111 	if (in6p->in6p_outputopts->ip6po_rthdr)
3112 		/* dest1 is valid with rthdr only */
3113 		len += elen(in6p->in6p_outputopts->ip6po_dest1);
3114 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3115 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
3116 	return len;
3117 #undef elen
3118 }
3119