1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ratelimit.h" 71 #include "opt_ipsec.h" 72 #include "opt_sctp.h" 73 #include "opt_route.h" 74 #include "opt_rss.h" 75 76 #include <sys/param.h> 77 #include <sys/kernel.h> 78 #include <sys/malloc.h> 79 #include <sys/mbuf.h> 80 #include <sys/errno.h> 81 #include <sys/priv.h> 82 #include <sys/proc.h> 83 #include <sys/protosw.h> 84 #include <sys/socket.h> 85 #include <sys/socketvar.h> 86 #include <sys/syslog.h> 87 #include <sys/ucred.h> 88 89 #include <machine/in_cksum.h> 90 91 #include <net/if.h> 92 #include <net/if_var.h> 93 #include <net/if_llatbl.h> 94 #include <net/netisr.h> 95 #include <net/route.h> 96 #include <net/pfil.h> 97 #include <net/rss_config.h> 98 #include <net/vnet.h> 99 100 #include <netinet/in.h> 101 #include <netinet/in_var.h> 102 #include <netinet/ip_var.h> 103 #include <netinet6/in6_fib.h> 104 #include <netinet6/in6_var.h> 105 #include <netinet/ip6.h> 106 #include <netinet/icmp6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet/in_pcb.h> 109 #include <netinet/tcp_var.h> 110 #include <netinet6/nd6.h> 111 #include <netinet6/in6_rss.h> 112 113 #include <netipsec/ipsec_support.h> 114 #ifdef SCTP 115 #include <netinet/sctp.h> 116 #include <netinet/sctp_crc32.h> 117 #endif 118 119 #include <netinet6/ip6protosw.h> 120 #include <netinet6/scope6_var.h> 121 122 extern int in6_mcast_loop; 123 124 struct ip6_exthdrs { 125 struct mbuf *ip6e_ip6; 126 struct mbuf *ip6e_hbh; 127 struct mbuf *ip6e_dest1; 128 struct mbuf *ip6e_rthdr; 129 struct mbuf *ip6e_dest2; 130 }; 131 132 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 133 134 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 135 struct ucred *, int); 136 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 137 struct socket *, struct sockopt *); 138 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 139 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 140 struct ucred *, int, int, int); 141 142 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 143 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 144 struct ip6_frag **); 145 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 146 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 147 static int ip6_getpmtu(struct route_in6 *, int, 148 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 149 u_int); 150 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 151 u_long *, int *, u_int); 152 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 153 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 154 155 156 /* 157 * Make an extension header from option data. hp is the source, and 158 * mp is the destination. 159 */ 160 #define MAKE_EXTHDR(hp, mp) \ 161 do { \ 162 if (hp) { \ 163 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 164 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 165 ((eh)->ip6e_len + 1) << 3); \ 166 if (error) \ 167 goto freehdrs; \ 168 } \ 169 } while (/*CONSTCOND*/ 0) 170 171 /* 172 * Form a chain of extension headers. 173 * m is the extension header mbuf 174 * mp is the previous mbuf in the chain 175 * p is the next header 176 * i is the type of option. 177 */ 178 #define MAKE_CHAIN(m, mp, p, i)\ 179 do {\ 180 if (m) {\ 181 if (!hdrsplit) \ 182 panic("assumption failed: hdr not split"); \ 183 *mtod((m), u_char *) = *(p);\ 184 *(p) = (i);\ 185 p = mtod((m), u_char *);\ 186 (m)->m_next = (mp)->m_next;\ 187 (mp)->m_next = (m);\ 188 (mp) = (m);\ 189 }\ 190 } while (/*CONSTCOND*/ 0) 191 192 void 193 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 194 { 195 u_short csum; 196 197 csum = in_cksum_skip(m, offset + plen, offset); 198 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 199 csum = 0xffff; 200 offset += m->m_pkthdr.csum_data; /* checksum offset */ 201 202 if (offset + sizeof(csum) > m->m_len) 203 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 204 else 205 *(u_short *)mtodo(m, offset) = csum; 206 } 207 208 int 209 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 210 int fraglen , uint32_t id) 211 { 212 struct mbuf *m, **mnext, *m_frgpart; 213 struct ip6_hdr *ip6, *mhip6; 214 struct ip6_frag *ip6f; 215 int off; 216 int error; 217 int tlen = m0->m_pkthdr.len; 218 219 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 220 221 m = m0; 222 ip6 = mtod(m, struct ip6_hdr *); 223 mnext = &m->m_nextpkt; 224 225 for (off = hlen; off < tlen; off += fraglen) { 226 m = m_gethdr(M_NOWAIT, MT_DATA); 227 if (!m) { 228 IP6STAT_INC(ip6s_odropped); 229 return (ENOBUFS); 230 } 231 m->m_flags = m0->m_flags & M_COPYFLAGS; 232 *mnext = m; 233 mnext = &m->m_nextpkt; 234 m->m_data += max_linkhdr; 235 mhip6 = mtod(m, struct ip6_hdr *); 236 *mhip6 = *ip6; 237 m->m_len = sizeof(*mhip6); 238 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 239 if (error) { 240 IP6STAT_INC(ip6s_odropped); 241 return (error); 242 } 243 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 244 if (off + fraglen >= tlen) 245 fraglen = tlen - off; 246 else 247 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 248 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 249 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 250 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 251 IP6STAT_INC(ip6s_odropped); 252 return (ENOBUFS); 253 } 254 m_cat(m, m_frgpart); 255 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 256 m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; 257 m->m_pkthdr.rcvif = NULL; 258 ip6f->ip6f_reserved = 0; 259 ip6f->ip6f_ident = id; 260 ip6f->ip6f_nxt = nextproto; 261 IP6STAT_INC(ip6s_ofragments); 262 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 263 } 264 265 return (0); 266 } 267 268 /* 269 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 270 * header (with pri, len, nxt, hlim, src, dst). 271 * This function may modify ver and hlim only. 272 * The mbuf chain containing the packet will be freed. 273 * The mbuf opt, if present, will not be freed. 274 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 275 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 276 * then result of route lookup is stored in ro->ro_rt. 277 * 278 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 279 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 280 * which is rt_mtu. 281 * 282 * ifpp - XXX: just for statistics 283 */ 284 /* 285 * XXX TODO: no flowid is assigned for outbound flows? 286 */ 287 int 288 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 289 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 290 struct ifnet **ifpp, struct inpcb *inp) 291 { 292 struct ip6_hdr *ip6; 293 struct ifnet *ifp, *origifp; 294 struct mbuf *m = m0; 295 struct mbuf *mprev = NULL; 296 int hlen, tlen, len; 297 struct route_in6 ip6route; 298 struct rtentry *rt = NULL; 299 struct sockaddr_in6 *dst, src_sa, dst_sa; 300 struct in6_addr odst; 301 int error = 0; 302 struct in6_ifaddr *ia = NULL; 303 u_long mtu; 304 int alwaysfrag, dontfrag; 305 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 306 struct ip6_exthdrs exthdrs; 307 struct in6_addr src0, dst0; 308 u_int32_t zone; 309 struct route_in6 *ro_pmtu = NULL; 310 int hdrsplit = 0; 311 int sw_csum, tso; 312 int needfiblookup; 313 uint32_t fibnum; 314 struct m_tag *fwd_tag = NULL; 315 uint32_t id; 316 317 if (inp != NULL) { 318 INP_LOCK_ASSERT(inp); 319 M_SETFIB(m, inp->inp_inc.inc_fibnum); 320 if ((flags & IP_NODEFAULTFLOWID) == 0) { 321 /* unconditionally set flowid */ 322 m->m_pkthdr.flowid = inp->inp_flowid; 323 M_HASHTYPE_SET(m, inp->inp_flowtype); 324 } 325 } 326 327 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 328 /* 329 * IPSec checking which handles several cases. 330 * FAST IPSEC: We re-injected the packet. 331 * XXX: need scope argument. 332 */ 333 if (IPSEC_ENABLED(ipv6)) { 334 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 335 if (error == EINPROGRESS) 336 error = 0; 337 goto done; 338 } 339 } 340 #endif /* IPSEC */ 341 342 bzero(&exthdrs, sizeof(exthdrs)); 343 if (opt) { 344 /* Hop-by-Hop options header */ 345 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 346 /* Destination options header(1st part) */ 347 if (opt->ip6po_rthdr) { 348 /* 349 * Destination options header(1st part) 350 * This only makes sense with a routing header. 351 * See Section 9.2 of RFC 3542. 352 * Disabling this part just for MIP6 convenience is 353 * a bad idea. We need to think carefully about a 354 * way to make the advanced API coexist with MIP6 355 * options, which might automatically be inserted in 356 * the kernel. 357 */ 358 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 359 } 360 /* Routing header */ 361 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 362 /* Destination options header(2nd part) */ 363 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 364 } 365 366 /* 367 * Calculate the total length of the extension header chain. 368 * Keep the length of the unfragmentable part for fragmentation. 369 */ 370 optlen = 0; 371 if (exthdrs.ip6e_hbh) 372 optlen += exthdrs.ip6e_hbh->m_len; 373 if (exthdrs.ip6e_dest1) 374 optlen += exthdrs.ip6e_dest1->m_len; 375 if (exthdrs.ip6e_rthdr) 376 optlen += exthdrs.ip6e_rthdr->m_len; 377 unfragpartlen = optlen + sizeof(struct ip6_hdr); 378 379 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 380 if (exthdrs.ip6e_dest2) 381 optlen += exthdrs.ip6e_dest2->m_len; 382 383 /* 384 * If there is at least one extension header, 385 * separate IP6 header from the payload. 386 */ 387 if (optlen && !hdrsplit) { 388 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 389 m = NULL; 390 goto freehdrs; 391 } 392 m = exthdrs.ip6e_ip6; 393 hdrsplit++; 394 } 395 396 ip6 = mtod(m, struct ip6_hdr *); 397 398 /* adjust mbuf packet header length */ 399 m->m_pkthdr.len += optlen; 400 plen = m->m_pkthdr.len - sizeof(*ip6); 401 402 /* If this is a jumbo payload, insert a jumbo payload option. */ 403 if (plen > IPV6_MAXPACKET) { 404 if (!hdrsplit) { 405 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 406 m = NULL; 407 goto freehdrs; 408 } 409 m = exthdrs.ip6e_ip6; 410 hdrsplit++; 411 } 412 /* adjust pointer */ 413 ip6 = mtod(m, struct ip6_hdr *); 414 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 415 goto freehdrs; 416 ip6->ip6_plen = 0; 417 } else 418 ip6->ip6_plen = htons(plen); 419 420 /* 421 * Concatenate headers and fill in next header fields. 422 * Here we have, on "m" 423 * IPv6 payload 424 * and we insert headers accordingly. Finally, we should be getting: 425 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 426 * 427 * during the header composing process, "m" points to IPv6 header. 428 * "mprev" points to an extension header prior to esp. 429 */ 430 u_char *nexthdrp = &ip6->ip6_nxt; 431 mprev = m; 432 433 /* 434 * we treat dest2 specially. this makes IPsec processing 435 * much easier. the goal here is to make mprev point the 436 * mbuf prior to dest2. 437 * 438 * result: IPv6 dest2 payload 439 * m and mprev will point to IPv6 header. 440 */ 441 if (exthdrs.ip6e_dest2) { 442 if (!hdrsplit) 443 panic("assumption failed: hdr not split"); 444 exthdrs.ip6e_dest2->m_next = m->m_next; 445 m->m_next = exthdrs.ip6e_dest2; 446 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 447 ip6->ip6_nxt = IPPROTO_DSTOPTS; 448 } 449 450 /* 451 * result: IPv6 hbh dest1 rthdr dest2 payload 452 * m will point to IPv6 header. mprev will point to the 453 * extension header prior to dest2 (rthdr in the above case). 454 */ 455 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 456 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 457 IPPROTO_DSTOPTS); 458 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 459 IPPROTO_ROUTING); 460 461 /* 462 * If there is a routing header, discard the packet. 463 */ 464 if (exthdrs.ip6e_rthdr) { 465 error = EINVAL; 466 goto bad; 467 } 468 469 /* Source address validation */ 470 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 471 (flags & IPV6_UNSPECSRC) == 0) { 472 error = EOPNOTSUPP; 473 IP6STAT_INC(ip6s_badscope); 474 goto bad; 475 } 476 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 477 error = EOPNOTSUPP; 478 IP6STAT_INC(ip6s_badscope); 479 goto bad; 480 } 481 482 IP6STAT_INC(ip6s_localout); 483 484 /* 485 * Route packet. 486 */ 487 if (ro == NULL) { 488 ro = &ip6route; 489 bzero((caddr_t)ro, sizeof(*ro)); 490 } 491 ro_pmtu = ro; 492 if (opt && opt->ip6po_rthdr) 493 ro = &opt->ip6po_route; 494 dst = (struct sockaddr_in6 *)&ro->ro_dst; 495 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 496 again: 497 /* 498 * if specified, try to fill in the traffic class field. 499 * do not override if a non-zero value is already set. 500 * we check the diffserv field and the ecn field separately. 501 */ 502 if (opt && opt->ip6po_tclass >= 0) { 503 int mask = 0; 504 505 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 506 mask |= 0xfc; 507 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 508 mask |= 0x03; 509 if (mask != 0) 510 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 511 } 512 513 /* fill in or override the hop limit field, if necessary. */ 514 if (opt && opt->ip6po_hlim != -1) 515 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 516 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 517 if (im6o != NULL) 518 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 519 else 520 ip6->ip6_hlim = V_ip6_defmcasthlim; 521 } 522 /* 523 * Validate route against routing table additions; 524 * a better/more specific route might have been added. 525 * Make sure address family is set in route. 526 */ 527 if (inp) { 528 ro->ro_dst.sin6_family = AF_INET6; 529 RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, fibnum); 530 } 531 if (ro->ro_rt && fwd_tag == NULL && (ro->ro_rt->rt_flags & RTF_UP) && 532 ro->ro_dst.sin6_family == AF_INET6 && 533 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 534 rt = ro->ro_rt; 535 ifp = ro->ro_rt->rt_ifp; 536 } else { 537 if (ro->ro_lle) 538 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 539 ro->ro_lle = NULL; 540 if (fwd_tag == NULL) { 541 bzero(&dst_sa, sizeof(dst_sa)); 542 dst_sa.sin6_family = AF_INET6; 543 dst_sa.sin6_len = sizeof(dst_sa); 544 dst_sa.sin6_addr = ip6->ip6_dst; 545 } 546 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 547 &rt, fibnum); 548 if (error != 0) { 549 if (ifp != NULL) 550 in6_ifstat_inc(ifp, ifs6_out_discard); 551 goto bad; 552 } 553 } 554 if (rt == NULL) { 555 /* 556 * If in6_selectroute() does not return a route entry, 557 * dst may not have been updated. 558 */ 559 *dst = dst_sa; /* XXX */ 560 } 561 562 /* 563 * then rt (for unicast) and ifp must be non-NULL valid values. 564 */ 565 if ((flags & IPV6_FORWARDING) == 0) { 566 /* XXX: the FORWARDING flag can be set for mrouting. */ 567 in6_ifstat_inc(ifp, ifs6_out_request); 568 } 569 if (rt != NULL) { 570 ia = (struct in6_ifaddr *)(rt->rt_ifa); 571 counter_u64_add(rt->rt_pksent, 1); 572 } 573 574 575 /* 576 * The outgoing interface must be in the zone of source and 577 * destination addresses. 578 */ 579 origifp = ifp; 580 581 src0 = ip6->ip6_src; 582 if (in6_setscope(&src0, origifp, &zone)) 583 goto badscope; 584 bzero(&src_sa, sizeof(src_sa)); 585 src_sa.sin6_family = AF_INET6; 586 src_sa.sin6_len = sizeof(src_sa); 587 src_sa.sin6_addr = ip6->ip6_src; 588 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 589 goto badscope; 590 591 dst0 = ip6->ip6_dst; 592 if (in6_setscope(&dst0, origifp, &zone)) 593 goto badscope; 594 /* re-initialize to be sure */ 595 bzero(&dst_sa, sizeof(dst_sa)); 596 dst_sa.sin6_family = AF_INET6; 597 dst_sa.sin6_len = sizeof(dst_sa); 598 dst_sa.sin6_addr = ip6->ip6_dst; 599 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 600 goto badscope; 601 } 602 603 /* We should use ia_ifp to support the case of 604 * sending packets to an address of our own. 605 */ 606 if (ia != NULL && ia->ia_ifp) 607 ifp = ia->ia_ifp; 608 609 /* scope check is done. */ 610 goto routefound; 611 612 badscope: 613 IP6STAT_INC(ip6s_badscope); 614 in6_ifstat_inc(origifp, ifs6_out_discard); 615 if (error == 0) 616 error = EHOSTUNREACH; /* XXX */ 617 goto bad; 618 619 routefound: 620 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 621 if (opt && opt->ip6po_nextroute.ro_rt) { 622 /* 623 * The nexthop is explicitly specified by the 624 * application. We assume the next hop is an IPv6 625 * address. 626 */ 627 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 628 } 629 else if ((rt->rt_flags & RTF_GATEWAY)) 630 dst = (struct sockaddr_in6 *)rt->rt_gateway; 631 } 632 633 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 634 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 635 } else { 636 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 637 in6_ifstat_inc(ifp, ifs6_out_mcast); 638 /* 639 * Confirm that the outgoing interface supports multicast. 640 */ 641 if (!(ifp->if_flags & IFF_MULTICAST)) { 642 IP6STAT_INC(ip6s_noroute); 643 in6_ifstat_inc(ifp, ifs6_out_discard); 644 error = ENETUNREACH; 645 goto bad; 646 } 647 if ((im6o == NULL && in6_mcast_loop) || 648 (im6o && im6o->im6o_multicast_loop)) { 649 /* 650 * Loop back multicast datagram if not expressly 651 * forbidden to do so, even if we have not joined 652 * the address; protocols will filter it later, 653 * thus deferring a hash lookup and lock acquisition 654 * at the expense of an m_copym(). 655 */ 656 ip6_mloopback(ifp, m); 657 } else { 658 /* 659 * If we are acting as a multicast router, perform 660 * multicast forwarding as if the packet had just 661 * arrived on the interface to which we are about 662 * to send. The multicast forwarding function 663 * recursively calls this function, using the 664 * IPV6_FORWARDING flag to prevent infinite recursion. 665 * 666 * Multicasts that are looped back by ip6_mloopback(), 667 * above, will be forwarded by the ip6_input() routine, 668 * if necessary. 669 */ 670 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 671 /* 672 * XXX: ip6_mforward expects that rcvif is NULL 673 * when it is called from the originating path. 674 * However, it may not always be the case. 675 */ 676 m->m_pkthdr.rcvif = NULL; 677 if (ip6_mforward(ip6, ifp, m) != 0) { 678 m_freem(m); 679 goto done; 680 } 681 } 682 } 683 /* 684 * Multicasts with a hoplimit of zero may be looped back, 685 * above, but must not be transmitted on a network. 686 * Also, multicasts addressed to the loopback interface 687 * are not sent -- the above call to ip6_mloopback() will 688 * loop back a copy if this host actually belongs to the 689 * destination group on the loopback interface. 690 */ 691 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 692 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 693 m_freem(m); 694 goto done; 695 } 696 } 697 698 /* 699 * Fill the outgoing inteface to tell the upper layer 700 * to increment per-interface statistics. 701 */ 702 if (ifpp) 703 *ifpp = ifp; 704 705 /* Determine path MTU. */ 706 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 707 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 708 goto bad; 709 710 /* 711 * The caller of this function may specify to use the minimum MTU 712 * in some cases. 713 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 714 * setting. The logic is a bit complicated; by default, unicast 715 * packets will follow path MTU while multicast packets will be sent at 716 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 717 * including unicast ones will be sent at the minimum MTU. Multicast 718 * packets will always be sent at the minimum MTU unless 719 * IP6PO_MINMTU_DISABLE is explicitly specified. 720 * See RFC 3542 for more details. 721 */ 722 if (mtu > IPV6_MMTU) { 723 if ((flags & IPV6_MINMTU)) 724 mtu = IPV6_MMTU; 725 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 726 mtu = IPV6_MMTU; 727 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 728 (opt == NULL || 729 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 730 mtu = IPV6_MMTU; 731 } 732 } 733 734 /* 735 * clear embedded scope identifiers if necessary. 736 * in6_clearscope will touch the addresses only when necessary. 737 */ 738 in6_clearscope(&ip6->ip6_src); 739 in6_clearscope(&ip6->ip6_dst); 740 741 /* 742 * If the outgoing packet contains a hop-by-hop options header, 743 * it must be examined and processed even by the source node. 744 * (RFC 2460, section 4.) 745 */ 746 if (exthdrs.ip6e_hbh) { 747 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 748 u_int32_t dummy; /* XXX unused */ 749 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 750 751 #ifdef DIAGNOSTIC 752 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 753 panic("ip6e_hbh is not contiguous"); 754 #endif 755 /* 756 * XXX: if we have to send an ICMPv6 error to the sender, 757 * we need the M_LOOP flag since icmp6_error() expects 758 * the IPv6 and the hop-by-hop options header are 759 * contiguous unless the flag is set. 760 */ 761 m->m_flags |= M_LOOP; 762 m->m_pkthdr.rcvif = ifp; 763 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 764 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 765 &dummy, &plen) < 0) { 766 /* m was already freed at this point */ 767 error = EINVAL;/* better error? */ 768 goto done; 769 } 770 m->m_flags &= ~M_LOOP; /* XXX */ 771 m->m_pkthdr.rcvif = NULL; 772 } 773 774 /* Jump over all PFIL processing if hooks are not active. */ 775 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 776 goto passout; 777 778 odst = ip6->ip6_dst; 779 /* Run through list of hooks for output packets. */ 780 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, 0, inp); 781 if (error != 0 || m == NULL) 782 goto done; 783 /* adjust pointer */ 784 ip6 = mtod(m, struct ip6_hdr *); 785 786 needfiblookup = 0; 787 /* See if destination IP address was changed by packet filter. */ 788 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 789 m->m_flags |= M_SKIP_FIREWALL; 790 /* If destination is now ourself drop to ip6_input(). */ 791 if (in6_localip(&ip6->ip6_dst)) { 792 m->m_flags |= M_FASTFWD_OURS; 793 if (m->m_pkthdr.rcvif == NULL) 794 m->m_pkthdr.rcvif = V_loif; 795 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 796 m->m_pkthdr.csum_flags |= 797 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 798 m->m_pkthdr.csum_data = 0xffff; 799 } 800 #ifdef SCTP 801 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 802 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 803 #endif 804 error = netisr_queue(NETISR_IPV6, m); 805 goto done; 806 } else { 807 RO_INVALIDATE_CACHE(ro); 808 needfiblookup = 1; /* Redo the routing table lookup. */ 809 } 810 } 811 /* See if fib was changed by packet filter. */ 812 if (fibnum != M_GETFIB(m)) { 813 m->m_flags |= M_SKIP_FIREWALL; 814 fibnum = M_GETFIB(m); 815 RO_INVALIDATE_CACHE(ro); 816 needfiblookup = 1; 817 } 818 if (needfiblookup) 819 goto again; 820 821 /* See if local, if yes, send it to netisr. */ 822 if (m->m_flags & M_FASTFWD_OURS) { 823 if (m->m_pkthdr.rcvif == NULL) 824 m->m_pkthdr.rcvif = V_loif; 825 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 826 m->m_pkthdr.csum_flags |= 827 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 828 m->m_pkthdr.csum_data = 0xffff; 829 } 830 #ifdef SCTP 831 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 832 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 833 #endif 834 error = netisr_queue(NETISR_IPV6, m); 835 goto done; 836 } 837 /* Or forward to some other address? */ 838 if ((m->m_flags & M_IP6_NEXTHOP) && 839 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 840 dst = (struct sockaddr_in6 *)&ro->ro_dst; 841 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 842 m->m_flags |= M_SKIP_FIREWALL; 843 m->m_flags &= ~M_IP6_NEXTHOP; 844 m_tag_delete(m, fwd_tag); 845 goto again; 846 } 847 848 passout: 849 /* 850 * Send the packet to the outgoing interface. 851 * If necessary, do IPv6 fragmentation before sending. 852 * 853 * the logic here is rather complex: 854 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 855 * 1-a: send as is if tlen <= path mtu 856 * 1-b: fragment if tlen > path mtu 857 * 858 * 2: if user asks us not to fragment (dontfrag == 1) 859 * 2-a: send as is if tlen <= interface mtu 860 * 2-b: error if tlen > interface mtu 861 * 862 * 3: if we always need to attach fragment header (alwaysfrag == 1) 863 * always fragment 864 * 865 * 4: if dontfrag == 1 && alwaysfrag == 1 866 * error, as we cannot handle this conflicting request 867 */ 868 sw_csum = m->m_pkthdr.csum_flags; 869 if (!hdrsplit) { 870 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 871 sw_csum &= ~ifp->if_hwassist; 872 } else 873 tso = 0; 874 /* 875 * If we added extension headers, we will not do TSO and calculate the 876 * checksums ourselves for now. 877 * XXX-BZ Need a framework to know when the NIC can handle it, even 878 * with ext. hdrs. 879 */ 880 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 881 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 882 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 883 } 884 #ifdef SCTP 885 if (sw_csum & CSUM_SCTP_IPV6) { 886 sw_csum &= ~CSUM_SCTP_IPV6; 887 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 888 } 889 #endif 890 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 891 tlen = m->m_pkthdr.len; 892 893 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 894 dontfrag = 1; 895 else 896 dontfrag = 0; 897 if (dontfrag && alwaysfrag) { /* case 4 */ 898 /* conflicting request - can't transmit */ 899 error = EMSGSIZE; 900 goto bad; 901 } 902 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 903 /* 904 * Even if the DONTFRAG option is specified, we cannot send the 905 * packet when the data length is larger than the MTU of the 906 * outgoing interface. 907 * Notify the error by sending IPV6_PATHMTU ancillary data if 908 * application wanted to know the MTU value. Also return an 909 * error code (this is not described in the API spec). 910 */ 911 if (inp != NULL) 912 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 913 error = EMSGSIZE; 914 goto bad; 915 } 916 917 /* 918 * transmit packet without fragmentation 919 */ 920 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 921 struct in6_ifaddr *ia6; 922 923 ip6 = mtod(m, struct ip6_hdr *); 924 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 925 if (ia6) { 926 /* Record statistics for this interface address. */ 927 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 928 counter_u64_add(ia6->ia_ifa.ifa_obytes, 929 m->m_pkthdr.len); 930 ifa_free(&ia6->ia_ifa); 931 } 932 #ifdef RATELIMIT 933 if (inp != NULL) { 934 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 935 in_pcboutput_txrtlmt(inp, ifp, m); 936 /* stamp send tag on mbuf */ 937 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 938 } else { 939 m->m_pkthdr.snd_tag = NULL; 940 } 941 #endif 942 error = nd6_output_ifp(ifp, origifp, m, dst, 943 (struct route *)ro); 944 #ifdef RATELIMIT 945 /* check for route change */ 946 if (error == EAGAIN) 947 in_pcboutput_eagain(inp); 948 #endif 949 goto done; 950 } 951 952 /* 953 * try to fragment the packet. case 1-b and 3 954 */ 955 if (mtu < IPV6_MMTU) { 956 /* path MTU cannot be less than IPV6_MMTU */ 957 error = EMSGSIZE; 958 in6_ifstat_inc(ifp, ifs6_out_fragfail); 959 goto bad; 960 } else if (ip6->ip6_plen == 0) { 961 /* jumbo payload cannot be fragmented */ 962 error = EMSGSIZE; 963 in6_ifstat_inc(ifp, ifs6_out_fragfail); 964 goto bad; 965 } else { 966 u_char nextproto; 967 968 /* 969 * Too large for the destination or interface; 970 * fragment if possible. 971 * Must be able to put at least 8 bytes per fragment. 972 */ 973 hlen = unfragpartlen; 974 if (mtu > IPV6_MAXPACKET) 975 mtu = IPV6_MAXPACKET; 976 977 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 978 if (len < 8) { 979 error = EMSGSIZE; 980 in6_ifstat_inc(ifp, ifs6_out_fragfail); 981 goto bad; 982 } 983 984 /* 985 * If the interface will not calculate checksums on 986 * fragmented packets, then do it here. 987 * XXX-BZ handle the hw offloading case. Need flags. 988 */ 989 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 990 in6_delayed_cksum(m, plen, hlen); 991 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 992 } 993 #ifdef SCTP 994 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 995 sctp_delayed_cksum(m, hlen); 996 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 997 } 998 #endif 999 /* 1000 * Change the next header field of the last header in the 1001 * unfragmentable part. 1002 */ 1003 if (exthdrs.ip6e_rthdr) { 1004 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1005 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1006 } else if (exthdrs.ip6e_dest1) { 1007 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1008 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1009 } else if (exthdrs.ip6e_hbh) { 1010 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1011 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1012 } else { 1013 nextproto = ip6->ip6_nxt; 1014 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1015 } 1016 1017 /* 1018 * Loop through length of segment after first fragment, 1019 * make new header and copy data of each part and link onto 1020 * chain. 1021 */ 1022 m0 = m; 1023 id = htonl(ip6_randomid()); 1024 if ((error = ip6_fragment(ifp, m, hlen, nextproto, len, id))) 1025 goto sendorfree; 1026 1027 in6_ifstat_inc(ifp, ifs6_out_fragok); 1028 } 1029 1030 /* 1031 * Remove leading garbages. 1032 */ 1033 sendorfree: 1034 m = m0->m_nextpkt; 1035 m0->m_nextpkt = 0; 1036 m_freem(m0); 1037 for (; m; m = m0) { 1038 m0 = m->m_nextpkt; 1039 m->m_nextpkt = 0; 1040 if (error == 0) { 1041 /* Record statistics for this interface address. */ 1042 if (ia) { 1043 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1044 counter_u64_add(ia->ia_ifa.ifa_obytes, 1045 m->m_pkthdr.len); 1046 } 1047 #ifdef RATELIMIT 1048 if (inp != NULL) { 1049 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 1050 in_pcboutput_txrtlmt(inp, ifp, m); 1051 /* stamp send tag on mbuf */ 1052 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 1053 } else { 1054 m->m_pkthdr.snd_tag = NULL; 1055 } 1056 #endif 1057 error = nd6_output_ifp(ifp, origifp, m, dst, 1058 (struct route *)ro); 1059 #ifdef RATELIMIT 1060 /* check for route change */ 1061 if (error == EAGAIN) 1062 in_pcboutput_eagain(inp); 1063 #endif 1064 } else 1065 m_freem(m); 1066 } 1067 1068 if (error == 0) 1069 IP6STAT_INC(ip6s_fragmented); 1070 1071 done: 1072 if (ro == &ip6route) 1073 RO_RTFREE(ro); 1074 return (error); 1075 1076 freehdrs: 1077 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1078 m_freem(exthdrs.ip6e_dest1); 1079 m_freem(exthdrs.ip6e_rthdr); 1080 m_freem(exthdrs.ip6e_dest2); 1081 /* FALLTHROUGH */ 1082 bad: 1083 if (m) 1084 m_freem(m); 1085 goto done; 1086 } 1087 1088 static int 1089 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1090 { 1091 struct mbuf *m; 1092 1093 if (hlen > MCLBYTES) 1094 return (ENOBUFS); /* XXX */ 1095 1096 if (hlen > MLEN) 1097 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1098 else 1099 m = m_get(M_NOWAIT, MT_DATA); 1100 if (m == NULL) 1101 return (ENOBUFS); 1102 m->m_len = hlen; 1103 if (hdr) 1104 bcopy(hdr, mtod(m, caddr_t), hlen); 1105 1106 *mp = m; 1107 return (0); 1108 } 1109 1110 /* 1111 * Insert jumbo payload option. 1112 */ 1113 static int 1114 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1115 { 1116 struct mbuf *mopt; 1117 u_char *optbuf; 1118 u_int32_t v; 1119 1120 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1121 1122 /* 1123 * If there is no hop-by-hop options header, allocate new one. 1124 * If there is one but it doesn't have enough space to store the 1125 * jumbo payload option, allocate a cluster to store the whole options. 1126 * Otherwise, use it to store the options. 1127 */ 1128 if (exthdrs->ip6e_hbh == NULL) { 1129 mopt = m_get(M_NOWAIT, MT_DATA); 1130 if (mopt == NULL) 1131 return (ENOBUFS); 1132 mopt->m_len = JUMBOOPTLEN; 1133 optbuf = mtod(mopt, u_char *); 1134 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1135 exthdrs->ip6e_hbh = mopt; 1136 } else { 1137 struct ip6_hbh *hbh; 1138 1139 mopt = exthdrs->ip6e_hbh; 1140 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1141 /* 1142 * XXX assumption: 1143 * - exthdrs->ip6e_hbh is not referenced from places 1144 * other than exthdrs. 1145 * - exthdrs->ip6e_hbh is not an mbuf chain. 1146 */ 1147 int oldoptlen = mopt->m_len; 1148 struct mbuf *n; 1149 1150 /* 1151 * XXX: give up if the whole (new) hbh header does 1152 * not fit even in an mbuf cluster. 1153 */ 1154 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1155 return (ENOBUFS); 1156 1157 /* 1158 * As a consequence, we must always prepare a cluster 1159 * at this point. 1160 */ 1161 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1162 if (n == NULL) 1163 return (ENOBUFS); 1164 n->m_len = oldoptlen + JUMBOOPTLEN; 1165 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1166 oldoptlen); 1167 optbuf = mtod(n, caddr_t) + oldoptlen; 1168 m_freem(mopt); 1169 mopt = exthdrs->ip6e_hbh = n; 1170 } else { 1171 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1172 mopt->m_len += JUMBOOPTLEN; 1173 } 1174 optbuf[0] = IP6OPT_PADN; 1175 optbuf[1] = 1; 1176 1177 /* 1178 * Adjust the header length according to the pad and 1179 * the jumbo payload option. 1180 */ 1181 hbh = mtod(mopt, struct ip6_hbh *); 1182 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1183 } 1184 1185 /* fill in the option. */ 1186 optbuf[2] = IP6OPT_JUMBO; 1187 optbuf[3] = 4; 1188 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1189 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1190 1191 /* finally, adjust the packet header length */ 1192 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1193 1194 return (0); 1195 #undef JUMBOOPTLEN 1196 } 1197 1198 /* 1199 * Insert fragment header and copy unfragmentable header portions. 1200 */ 1201 static int 1202 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1203 struct ip6_frag **frghdrp) 1204 { 1205 struct mbuf *n, *mlast; 1206 1207 if (hlen > sizeof(struct ip6_hdr)) { 1208 n = m_copym(m0, sizeof(struct ip6_hdr), 1209 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1210 if (n == NULL) 1211 return (ENOBUFS); 1212 m->m_next = n; 1213 } else 1214 n = m; 1215 1216 /* Search for the last mbuf of unfragmentable part. */ 1217 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1218 ; 1219 1220 if (M_WRITABLE(mlast) && 1221 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1222 /* use the trailing space of the last mbuf for the fragment hdr */ 1223 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1224 mlast->m_len); 1225 mlast->m_len += sizeof(struct ip6_frag); 1226 m->m_pkthdr.len += sizeof(struct ip6_frag); 1227 } else { 1228 /* allocate a new mbuf for the fragment header */ 1229 struct mbuf *mfrg; 1230 1231 mfrg = m_get(M_NOWAIT, MT_DATA); 1232 if (mfrg == NULL) 1233 return (ENOBUFS); 1234 mfrg->m_len = sizeof(struct ip6_frag); 1235 *frghdrp = mtod(mfrg, struct ip6_frag *); 1236 mlast->m_next = mfrg; 1237 } 1238 1239 return (0); 1240 } 1241 1242 /* 1243 * Calculates IPv6 path mtu for destination @dst. 1244 * Resulting MTU is stored in @mtup. 1245 * 1246 * Returns 0 on success. 1247 */ 1248 static int 1249 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1250 { 1251 struct nhop6_extended nh6; 1252 struct in6_addr kdst; 1253 uint32_t scopeid; 1254 struct ifnet *ifp; 1255 u_long mtu; 1256 int error; 1257 1258 in6_splitscope(dst, &kdst, &scopeid); 1259 if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0) 1260 return (EHOSTUNREACH); 1261 1262 ifp = nh6.nh_ifp; 1263 mtu = nh6.nh_mtu; 1264 1265 error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL, 0); 1266 fib6_free_nh_ext(fibnum, &nh6); 1267 1268 return (error); 1269 } 1270 1271 /* 1272 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1273 * and cached data in @ro_pmtu. 1274 * MTU from (successful) route lookup is saved (along with dst) 1275 * inside @ro_pmtu to avoid subsequent route lookups after packet 1276 * filter processing. 1277 * 1278 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1279 * Returns 0 on success. 1280 */ 1281 static int 1282 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1283 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1284 int *alwaysfragp, u_int fibnum, u_int proto) 1285 { 1286 struct nhop6_basic nh6; 1287 struct in6_addr kdst; 1288 uint32_t scopeid; 1289 struct sockaddr_in6 *sa6_dst; 1290 u_long mtu; 1291 1292 mtu = 0; 1293 if (do_lookup) { 1294 1295 /* 1296 * Here ro_pmtu has final destination address, while 1297 * ro might represent immediate destination. 1298 * Use ro_pmtu destination since mtu might differ. 1299 */ 1300 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1301 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1302 ro_pmtu->ro_mtu = 0; 1303 1304 if (ro_pmtu->ro_mtu == 0) { 1305 bzero(sa6_dst, sizeof(*sa6_dst)); 1306 sa6_dst->sin6_family = AF_INET6; 1307 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1308 sa6_dst->sin6_addr = *dst; 1309 1310 in6_splitscope(dst, &kdst, &scopeid); 1311 if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0, 1312 &nh6) == 0) 1313 ro_pmtu->ro_mtu = nh6.nh_mtu; 1314 } 1315 1316 mtu = ro_pmtu->ro_mtu; 1317 } 1318 1319 if (ro_pmtu->ro_rt) 1320 mtu = ro_pmtu->ro_rt->rt_mtu; 1321 1322 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1323 } 1324 1325 /* 1326 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1327 * hostcache data for @dst. 1328 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1329 * 1330 * Returns 0 on success. 1331 */ 1332 static int 1333 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1334 u_long *mtup, int *alwaysfragp, u_int proto) 1335 { 1336 u_long mtu = 0; 1337 int alwaysfrag = 0; 1338 int error = 0; 1339 1340 if (rt_mtu > 0) { 1341 u_int32_t ifmtu; 1342 struct in_conninfo inc; 1343 1344 bzero(&inc, sizeof(inc)); 1345 inc.inc_flags |= INC_ISIPV6; 1346 inc.inc6_faddr = *dst; 1347 1348 ifmtu = IN6_LINKMTU(ifp); 1349 1350 /* TCP is known to react to pmtu changes so skip hc */ 1351 if (proto != IPPROTO_TCP) 1352 mtu = tcp_hc_getmtu(&inc); 1353 1354 if (mtu) 1355 mtu = min(mtu, rt_mtu); 1356 else 1357 mtu = rt_mtu; 1358 if (mtu == 0) 1359 mtu = ifmtu; 1360 else if (mtu < IPV6_MMTU) { 1361 /* 1362 * RFC2460 section 5, last paragraph: 1363 * if we record ICMPv6 too big message with 1364 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1365 * or smaller, with framgent header attached. 1366 * (fragment header is needed regardless from the 1367 * packet size, for translators to identify packets) 1368 */ 1369 alwaysfrag = 1; 1370 mtu = IPV6_MMTU; 1371 } 1372 } else if (ifp) { 1373 mtu = IN6_LINKMTU(ifp); 1374 } else 1375 error = EHOSTUNREACH; /* XXX */ 1376 1377 *mtup = mtu; 1378 if (alwaysfragp) 1379 *alwaysfragp = alwaysfrag; 1380 return (error); 1381 } 1382 1383 /* 1384 * IP6 socket option processing. 1385 */ 1386 int 1387 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1388 { 1389 int optdatalen, uproto; 1390 void *optdata; 1391 struct inpcb *in6p = sotoinpcb(so); 1392 int error, optval; 1393 int level, op, optname; 1394 int optlen; 1395 struct thread *td; 1396 #ifdef RSS 1397 uint32_t rss_bucket; 1398 int retval; 1399 #endif 1400 1401 /* 1402 * Don't use more than a quarter of mbuf clusters. N.B.: 1403 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1404 * on LP64 architectures, so cast to u_long to avoid undefined 1405 * behavior. ILP32 architectures cannot have nmbclusters 1406 * large enough to overflow for other reasons. 1407 */ 1408 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1409 1410 level = sopt->sopt_level; 1411 op = sopt->sopt_dir; 1412 optname = sopt->sopt_name; 1413 optlen = sopt->sopt_valsize; 1414 td = sopt->sopt_td; 1415 error = 0; 1416 optval = 0; 1417 uproto = (int)so->so_proto->pr_protocol; 1418 1419 if (level != IPPROTO_IPV6) { 1420 error = EINVAL; 1421 1422 if (sopt->sopt_level == SOL_SOCKET && 1423 sopt->sopt_dir == SOPT_SET) { 1424 switch (sopt->sopt_name) { 1425 case SO_REUSEADDR: 1426 INP_WLOCK(in6p); 1427 if ((so->so_options & SO_REUSEADDR) != 0) 1428 in6p->inp_flags2 |= INP_REUSEADDR; 1429 else 1430 in6p->inp_flags2 &= ~INP_REUSEADDR; 1431 INP_WUNLOCK(in6p); 1432 error = 0; 1433 break; 1434 case SO_REUSEPORT: 1435 INP_WLOCK(in6p); 1436 if ((so->so_options & SO_REUSEPORT) != 0) 1437 in6p->inp_flags2 |= INP_REUSEPORT; 1438 else 1439 in6p->inp_flags2 &= ~INP_REUSEPORT; 1440 INP_WUNLOCK(in6p); 1441 error = 0; 1442 break; 1443 case SO_REUSEPORT_LB: 1444 INP_WLOCK(in6p); 1445 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1446 in6p->inp_flags2 |= INP_REUSEPORT_LB; 1447 else 1448 in6p->inp_flags2 &= ~INP_REUSEPORT_LB; 1449 INP_WUNLOCK(in6p); 1450 error = 0; 1451 break; 1452 case SO_SETFIB: 1453 INP_WLOCK(in6p); 1454 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1455 INP_WUNLOCK(in6p); 1456 error = 0; 1457 break; 1458 case SO_MAX_PACING_RATE: 1459 #ifdef RATELIMIT 1460 INP_WLOCK(in6p); 1461 in6p->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1462 INP_WUNLOCK(in6p); 1463 error = 0; 1464 #else 1465 error = EOPNOTSUPP; 1466 #endif 1467 break; 1468 default: 1469 break; 1470 } 1471 } 1472 } else { /* level == IPPROTO_IPV6 */ 1473 switch (op) { 1474 1475 case SOPT_SET: 1476 switch (optname) { 1477 case IPV6_2292PKTOPTIONS: 1478 #ifdef IPV6_PKTOPTIONS 1479 case IPV6_PKTOPTIONS: 1480 #endif 1481 { 1482 struct mbuf *m; 1483 1484 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1485 printf("ip6_ctloutput: mbuf limit hit\n"); 1486 error = ENOBUFS; 1487 break; 1488 } 1489 1490 error = soopt_getm(sopt, &m); /* XXX */ 1491 if (error != 0) 1492 break; 1493 error = soopt_mcopyin(sopt, m); /* XXX */ 1494 if (error != 0) 1495 break; 1496 error = ip6_pcbopts(&in6p->in6p_outputopts, 1497 m, so, sopt); 1498 m_freem(m); /* XXX */ 1499 break; 1500 } 1501 1502 /* 1503 * Use of some Hop-by-Hop options or some 1504 * Destination options, might require special 1505 * privilege. That is, normal applications 1506 * (without special privilege) might be forbidden 1507 * from setting certain options in outgoing packets, 1508 * and might never see certain options in received 1509 * packets. [RFC 2292 Section 6] 1510 * KAME specific note: 1511 * KAME prevents non-privileged users from sending or 1512 * receiving ANY hbh/dst options in order to avoid 1513 * overhead of parsing options in the kernel. 1514 */ 1515 case IPV6_RECVHOPOPTS: 1516 case IPV6_RECVDSTOPTS: 1517 case IPV6_RECVRTHDRDSTOPTS: 1518 if (td != NULL) { 1519 error = priv_check(td, 1520 PRIV_NETINET_SETHDROPTS); 1521 if (error) 1522 break; 1523 } 1524 /* FALLTHROUGH */ 1525 case IPV6_UNICAST_HOPS: 1526 case IPV6_HOPLIMIT: 1527 1528 case IPV6_RECVPKTINFO: 1529 case IPV6_RECVHOPLIMIT: 1530 case IPV6_RECVRTHDR: 1531 case IPV6_RECVPATHMTU: 1532 case IPV6_RECVTCLASS: 1533 case IPV6_RECVFLOWID: 1534 #ifdef RSS 1535 case IPV6_RECVRSSBUCKETID: 1536 #endif 1537 case IPV6_V6ONLY: 1538 case IPV6_AUTOFLOWLABEL: 1539 case IPV6_ORIGDSTADDR: 1540 case IPV6_BINDANY: 1541 case IPV6_BINDMULTI: 1542 #ifdef RSS 1543 case IPV6_RSS_LISTEN_BUCKET: 1544 #endif 1545 if (optname == IPV6_BINDANY && td != NULL) { 1546 error = priv_check(td, 1547 PRIV_NETINET_BINDANY); 1548 if (error) 1549 break; 1550 } 1551 1552 if (optlen != sizeof(int)) { 1553 error = EINVAL; 1554 break; 1555 } 1556 error = sooptcopyin(sopt, &optval, 1557 sizeof optval, sizeof optval); 1558 if (error) 1559 break; 1560 switch (optname) { 1561 1562 case IPV6_UNICAST_HOPS: 1563 if (optval < -1 || optval >= 256) 1564 error = EINVAL; 1565 else { 1566 /* -1 = kernel default */ 1567 in6p->in6p_hops = optval; 1568 if ((in6p->inp_vflag & 1569 INP_IPV4) != 0) 1570 in6p->inp_ip_ttl = optval; 1571 } 1572 break; 1573 #define OPTSET(bit) \ 1574 do { \ 1575 INP_WLOCK(in6p); \ 1576 if (optval) \ 1577 in6p->inp_flags |= (bit); \ 1578 else \ 1579 in6p->inp_flags &= ~(bit); \ 1580 INP_WUNLOCK(in6p); \ 1581 } while (/*CONSTCOND*/ 0) 1582 #define OPTSET2292(bit) \ 1583 do { \ 1584 INP_WLOCK(in6p); \ 1585 in6p->inp_flags |= IN6P_RFC2292; \ 1586 if (optval) \ 1587 in6p->inp_flags |= (bit); \ 1588 else \ 1589 in6p->inp_flags &= ~(bit); \ 1590 INP_WUNLOCK(in6p); \ 1591 } while (/*CONSTCOND*/ 0) 1592 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1593 1594 #define OPTSET2_N(bit, val) do { \ 1595 if (val) \ 1596 in6p->inp_flags2 |= bit; \ 1597 else \ 1598 in6p->inp_flags2 &= ~bit; \ 1599 } while (0) 1600 #define OPTSET2(bit, val) do { \ 1601 INP_WLOCK(in6p); \ 1602 OPTSET2_N(bit, val); \ 1603 INP_WUNLOCK(in6p); \ 1604 } while (0) 1605 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) 1606 #define OPTSET2292_EXCLUSIVE(bit) \ 1607 do { \ 1608 INP_WLOCK(in6p); \ 1609 if (OPTBIT(IN6P_RFC2292)) { \ 1610 error = EINVAL; \ 1611 } else { \ 1612 if (optval) \ 1613 in6p->inp_flags |= (bit); \ 1614 else \ 1615 in6p->inp_flags &= ~(bit); \ 1616 } \ 1617 INP_WUNLOCK(in6p); \ 1618 } while (/*CONSTCOND*/ 0) 1619 1620 case IPV6_RECVPKTINFO: 1621 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1622 break; 1623 1624 case IPV6_HOPLIMIT: 1625 { 1626 struct ip6_pktopts **optp; 1627 1628 /* cannot mix with RFC2292 */ 1629 if (OPTBIT(IN6P_RFC2292)) { 1630 error = EINVAL; 1631 break; 1632 } 1633 INP_WLOCK(in6p); 1634 if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1635 INP_WUNLOCK(in6p); 1636 return (ECONNRESET); 1637 } 1638 optp = &in6p->in6p_outputopts; 1639 error = ip6_pcbopt(IPV6_HOPLIMIT, 1640 (u_char *)&optval, sizeof(optval), 1641 optp, (td != NULL) ? td->td_ucred : 1642 NULL, uproto); 1643 INP_WUNLOCK(in6p); 1644 break; 1645 } 1646 1647 case IPV6_RECVHOPLIMIT: 1648 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1649 break; 1650 1651 case IPV6_RECVHOPOPTS: 1652 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1653 break; 1654 1655 case IPV6_RECVDSTOPTS: 1656 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1657 break; 1658 1659 case IPV6_RECVRTHDRDSTOPTS: 1660 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1661 break; 1662 1663 case IPV6_RECVRTHDR: 1664 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1665 break; 1666 1667 case IPV6_RECVPATHMTU: 1668 /* 1669 * We ignore this option for TCP 1670 * sockets. 1671 * (RFC3542 leaves this case 1672 * unspecified.) 1673 */ 1674 if (uproto != IPPROTO_TCP) 1675 OPTSET(IN6P_MTU); 1676 break; 1677 1678 case IPV6_RECVFLOWID: 1679 OPTSET2(INP_RECVFLOWID, optval); 1680 break; 1681 1682 #ifdef RSS 1683 case IPV6_RECVRSSBUCKETID: 1684 OPTSET2(INP_RECVRSSBUCKETID, optval); 1685 break; 1686 #endif 1687 1688 case IPV6_V6ONLY: 1689 /* 1690 * make setsockopt(IPV6_V6ONLY) 1691 * available only prior to bind(2). 1692 * see ipng mailing list, Jun 22 2001. 1693 */ 1694 if (in6p->inp_lport || 1695 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1696 error = EINVAL; 1697 break; 1698 } 1699 OPTSET(IN6P_IPV6_V6ONLY); 1700 if (optval) 1701 in6p->inp_vflag &= ~INP_IPV4; 1702 else 1703 in6p->inp_vflag |= INP_IPV4; 1704 break; 1705 case IPV6_RECVTCLASS: 1706 /* cannot mix with RFC2292 XXX */ 1707 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1708 break; 1709 case IPV6_AUTOFLOWLABEL: 1710 OPTSET(IN6P_AUTOFLOWLABEL); 1711 break; 1712 1713 case IPV6_ORIGDSTADDR: 1714 OPTSET2(INP_ORIGDSTADDR, optval); 1715 break; 1716 case IPV6_BINDANY: 1717 OPTSET(INP_BINDANY); 1718 break; 1719 1720 case IPV6_BINDMULTI: 1721 OPTSET2(INP_BINDMULTI, optval); 1722 break; 1723 #ifdef RSS 1724 case IPV6_RSS_LISTEN_BUCKET: 1725 if ((optval >= 0) && 1726 (optval < rss_getnumbuckets())) { 1727 INP_WLOCK(in6p); 1728 in6p->inp_rss_listen_bucket = optval; 1729 OPTSET2_N(INP_RSS_BUCKET_SET, 1); 1730 INP_WUNLOCK(in6p); 1731 } else { 1732 error = EINVAL; 1733 } 1734 break; 1735 #endif 1736 } 1737 break; 1738 1739 case IPV6_TCLASS: 1740 case IPV6_DONTFRAG: 1741 case IPV6_USE_MIN_MTU: 1742 case IPV6_PREFER_TEMPADDR: 1743 if (optlen != sizeof(optval)) { 1744 error = EINVAL; 1745 break; 1746 } 1747 error = sooptcopyin(sopt, &optval, 1748 sizeof optval, sizeof optval); 1749 if (error) 1750 break; 1751 { 1752 struct ip6_pktopts **optp; 1753 INP_WLOCK(in6p); 1754 if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1755 INP_WUNLOCK(in6p); 1756 return (ECONNRESET); 1757 } 1758 optp = &in6p->in6p_outputopts; 1759 error = ip6_pcbopt(optname, 1760 (u_char *)&optval, sizeof(optval), 1761 optp, (td != NULL) ? td->td_ucred : 1762 NULL, uproto); 1763 INP_WUNLOCK(in6p); 1764 break; 1765 } 1766 1767 case IPV6_2292PKTINFO: 1768 case IPV6_2292HOPLIMIT: 1769 case IPV6_2292HOPOPTS: 1770 case IPV6_2292DSTOPTS: 1771 case IPV6_2292RTHDR: 1772 /* RFC 2292 */ 1773 if (optlen != sizeof(int)) { 1774 error = EINVAL; 1775 break; 1776 } 1777 error = sooptcopyin(sopt, &optval, 1778 sizeof optval, sizeof optval); 1779 if (error) 1780 break; 1781 switch (optname) { 1782 case IPV6_2292PKTINFO: 1783 OPTSET2292(IN6P_PKTINFO); 1784 break; 1785 case IPV6_2292HOPLIMIT: 1786 OPTSET2292(IN6P_HOPLIMIT); 1787 break; 1788 case IPV6_2292HOPOPTS: 1789 /* 1790 * Check super-user privilege. 1791 * See comments for IPV6_RECVHOPOPTS. 1792 */ 1793 if (td != NULL) { 1794 error = priv_check(td, 1795 PRIV_NETINET_SETHDROPTS); 1796 if (error) 1797 return (error); 1798 } 1799 OPTSET2292(IN6P_HOPOPTS); 1800 break; 1801 case IPV6_2292DSTOPTS: 1802 if (td != NULL) { 1803 error = priv_check(td, 1804 PRIV_NETINET_SETHDROPTS); 1805 if (error) 1806 return (error); 1807 } 1808 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1809 break; 1810 case IPV6_2292RTHDR: 1811 OPTSET2292(IN6P_RTHDR); 1812 break; 1813 } 1814 break; 1815 case IPV6_PKTINFO: 1816 case IPV6_HOPOPTS: 1817 case IPV6_RTHDR: 1818 case IPV6_DSTOPTS: 1819 case IPV6_RTHDRDSTOPTS: 1820 case IPV6_NEXTHOP: 1821 { 1822 /* new advanced API (RFC3542) */ 1823 u_char *optbuf; 1824 u_char optbuf_storage[MCLBYTES]; 1825 int optlen; 1826 struct ip6_pktopts **optp; 1827 1828 /* cannot mix with RFC2292 */ 1829 if (OPTBIT(IN6P_RFC2292)) { 1830 error = EINVAL; 1831 break; 1832 } 1833 1834 /* 1835 * We only ensure valsize is not too large 1836 * here. Further validation will be done 1837 * later. 1838 */ 1839 error = sooptcopyin(sopt, optbuf_storage, 1840 sizeof(optbuf_storage), 0); 1841 if (error) 1842 break; 1843 optlen = sopt->sopt_valsize; 1844 optbuf = optbuf_storage; 1845 INP_WLOCK(in6p); 1846 if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1847 INP_WUNLOCK(in6p); 1848 return (ECONNRESET); 1849 } 1850 optp = &in6p->in6p_outputopts; 1851 error = ip6_pcbopt(optname, optbuf, optlen, 1852 optp, (td != NULL) ? td->td_ucred : NULL, 1853 uproto); 1854 INP_WUNLOCK(in6p); 1855 break; 1856 } 1857 #undef OPTSET 1858 1859 case IPV6_MULTICAST_IF: 1860 case IPV6_MULTICAST_HOPS: 1861 case IPV6_MULTICAST_LOOP: 1862 case IPV6_JOIN_GROUP: 1863 case IPV6_LEAVE_GROUP: 1864 case IPV6_MSFILTER: 1865 case MCAST_BLOCK_SOURCE: 1866 case MCAST_UNBLOCK_SOURCE: 1867 case MCAST_JOIN_GROUP: 1868 case MCAST_LEAVE_GROUP: 1869 case MCAST_JOIN_SOURCE_GROUP: 1870 case MCAST_LEAVE_SOURCE_GROUP: 1871 error = ip6_setmoptions(in6p, sopt); 1872 break; 1873 1874 case IPV6_PORTRANGE: 1875 error = sooptcopyin(sopt, &optval, 1876 sizeof optval, sizeof optval); 1877 if (error) 1878 break; 1879 1880 INP_WLOCK(in6p); 1881 switch (optval) { 1882 case IPV6_PORTRANGE_DEFAULT: 1883 in6p->inp_flags &= ~(INP_LOWPORT); 1884 in6p->inp_flags &= ~(INP_HIGHPORT); 1885 break; 1886 1887 case IPV6_PORTRANGE_HIGH: 1888 in6p->inp_flags &= ~(INP_LOWPORT); 1889 in6p->inp_flags |= INP_HIGHPORT; 1890 break; 1891 1892 case IPV6_PORTRANGE_LOW: 1893 in6p->inp_flags &= ~(INP_HIGHPORT); 1894 in6p->inp_flags |= INP_LOWPORT; 1895 break; 1896 1897 default: 1898 error = EINVAL; 1899 break; 1900 } 1901 INP_WUNLOCK(in6p); 1902 break; 1903 1904 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1905 case IPV6_IPSEC_POLICY: 1906 if (IPSEC_ENABLED(ipv6)) { 1907 error = IPSEC_PCBCTL(ipv6, in6p, sopt); 1908 break; 1909 } 1910 /* FALLTHROUGH */ 1911 #endif /* IPSEC */ 1912 1913 default: 1914 error = ENOPROTOOPT; 1915 break; 1916 } 1917 break; 1918 1919 case SOPT_GET: 1920 switch (optname) { 1921 1922 case IPV6_2292PKTOPTIONS: 1923 #ifdef IPV6_PKTOPTIONS 1924 case IPV6_PKTOPTIONS: 1925 #endif 1926 /* 1927 * RFC3542 (effectively) deprecated the 1928 * semantics of the 2292-style pktoptions. 1929 * Since it was not reliable in nature (i.e., 1930 * applications had to expect the lack of some 1931 * information after all), it would make sense 1932 * to simplify this part by always returning 1933 * empty data. 1934 */ 1935 sopt->sopt_valsize = 0; 1936 break; 1937 1938 case IPV6_RECVHOPOPTS: 1939 case IPV6_RECVDSTOPTS: 1940 case IPV6_RECVRTHDRDSTOPTS: 1941 case IPV6_UNICAST_HOPS: 1942 case IPV6_RECVPKTINFO: 1943 case IPV6_RECVHOPLIMIT: 1944 case IPV6_RECVRTHDR: 1945 case IPV6_RECVPATHMTU: 1946 1947 case IPV6_V6ONLY: 1948 case IPV6_PORTRANGE: 1949 case IPV6_RECVTCLASS: 1950 case IPV6_AUTOFLOWLABEL: 1951 case IPV6_BINDANY: 1952 case IPV6_FLOWID: 1953 case IPV6_FLOWTYPE: 1954 case IPV6_RECVFLOWID: 1955 #ifdef RSS 1956 case IPV6_RSSBUCKETID: 1957 case IPV6_RECVRSSBUCKETID: 1958 #endif 1959 case IPV6_BINDMULTI: 1960 switch (optname) { 1961 1962 case IPV6_RECVHOPOPTS: 1963 optval = OPTBIT(IN6P_HOPOPTS); 1964 break; 1965 1966 case IPV6_RECVDSTOPTS: 1967 optval = OPTBIT(IN6P_DSTOPTS); 1968 break; 1969 1970 case IPV6_RECVRTHDRDSTOPTS: 1971 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1972 break; 1973 1974 case IPV6_UNICAST_HOPS: 1975 optval = in6p->in6p_hops; 1976 break; 1977 1978 case IPV6_RECVPKTINFO: 1979 optval = OPTBIT(IN6P_PKTINFO); 1980 break; 1981 1982 case IPV6_RECVHOPLIMIT: 1983 optval = OPTBIT(IN6P_HOPLIMIT); 1984 break; 1985 1986 case IPV6_RECVRTHDR: 1987 optval = OPTBIT(IN6P_RTHDR); 1988 break; 1989 1990 case IPV6_RECVPATHMTU: 1991 optval = OPTBIT(IN6P_MTU); 1992 break; 1993 1994 case IPV6_V6ONLY: 1995 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1996 break; 1997 1998 case IPV6_PORTRANGE: 1999 { 2000 int flags; 2001 flags = in6p->inp_flags; 2002 if (flags & INP_HIGHPORT) 2003 optval = IPV6_PORTRANGE_HIGH; 2004 else if (flags & INP_LOWPORT) 2005 optval = IPV6_PORTRANGE_LOW; 2006 else 2007 optval = 0; 2008 break; 2009 } 2010 case IPV6_RECVTCLASS: 2011 optval = OPTBIT(IN6P_TCLASS); 2012 break; 2013 2014 case IPV6_AUTOFLOWLABEL: 2015 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2016 break; 2017 2018 case IPV6_ORIGDSTADDR: 2019 optval = OPTBIT2(INP_ORIGDSTADDR); 2020 break; 2021 2022 case IPV6_BINDANY: 2023 optval = OPTBIT(INP_BINDANY); 2024 break; 2025 2026 case IPV6_FLOWID: 2027 optval = in6p->inp_flowid; 2028 break; 2029 2030 case IPV6_FLOWTYPE: 2031 optval = in6p->inp_flowtype; 2032 break; 2033 2034 case IPV6_RECVFLOWID: 2035 optval = OPTBIT2(INP_RECVFLOWID); 2036 break; 2037 #ifdef RSS 2038 case IPV6_RSSBUCKETID: 2039 retval = 2040 rss_hash2bucket(in6p->inp_flowid, 2041 in6p->inp_flowtype, 2042 &rss_bucket); 2043 if (retval == 0) 2044 optval = rss_bucket; 2045 else 2046 error = EINVAL; 2047 break; 2048 2049 case IPV6_RECVRSSBUCKETID: 2050 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2051 break; 2052 #endif 2053 2054 case IPV6_BINDMULTI: 2055 optval = OPTBIT2(INP_BINDMULTI); 2056 break; 2057 2058 } 2059 if (error) 2060 break; 2061 error = sooptcopyout(sopt, &optval, 2062 sizeof optval); 2063 break; 2064 2065 case IPV6_PATHMTU: 2066 { 2067 u_long pmtu = 0; 2068 struct ip6_mtuinfo mtuinfo; 2069 struct in6_addr addr; 2070 2071 if (!(so->so_state & SS_ISCONNECTED)) 2072 return (ENOTCONN); 2073 /* 2074 * XXX: we dot not consider the case of source 2075 * routing, or optional information to specify 2076 * the outgoing interface. 2077 * Copy faddr out of in6p to avoid holding lock 2078 * on inp during route lookup. 2079 */ 2080 INP_RLOCK(in6p); 2081 bcopy(&in6p->in6p_faddr, &addr, sizeof(addr)); 2082 INP_RUNLOCK(in6p); 2083 error = ip6_getpmtu_ctl(so->so_fibnum, 2084 &addr, &pmtu); 2085 if (error) 2086 break; 2087 if (pmtu > IPV6_MAXPACKET) 2088 pmtu = IPV6_MAXPACKET; 2089 2090 bzero(&mtuinfo, sizeof(mtuinfo)); 2091 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2092 optdata = (void *)&mtuinfo; 2093 optdatalen = sizeof(mtuinfo); 2094 error = sooptcopyout(sopt, optdata, 2095 optdatalen); 2096 break; 2097 } 2098 2099 case IPV6_2292PKTINFO: 2100 case IPV6_2292HOPLIMIT: 2101 case IPV6_2292HOPOPTS: 2102 case IPV6_2292RTHDR: 2103 case IPV6_2292DSTOPTS: 2104 switch (optname) { 2105 case IPV6_2292PKTINFO: 2106 optval = OPTBIT(IN6P_PKTINFO); 2107 break; 2108 case IPV6_2292HOPLIMIT: 2109 optval = OPTBIT(IN6P_HOPLIMIT); 2110 break; 2111 case IPV6_2292HOPOPTS: 2112 optval = OPTBIT(IN6P_HOPOPTS); 2113 break; 2114 case IPV6_2292RTHDR: 2115 optval = OPTBIT(IN6P_RTHDR); 2116 break; 2117 case IPV6_2292DSTOPTS: 2118 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2119 break; 2120 } 2121 error = sooptcopyout(sopt, &optval, 2122 sizeof optval); 2123 break; 2124 case IPV6_PKTINFO: 2125 case IPV6_HOPOPTS: 2126 case IPV6_RTHDR: 2127 case IPV6_DSTOPTS: 2128 case IPV6_RTHDRDSTOPTS: 2129 case IPV6_NEXTHOP: 2130 case IPV6_TCLASS: 2131 case IPV6_DONTFRAG: 2132 case IPV6_USE_MIN_MTU: 2133 case IPV6_PREFER_TEMPADDR: 2134 error = ip6_getpcbopt(in6p, optname, sopt); 2135 break; 2136 2137 case IPV6_MULTICAST_IF: 2138 case IPV6_MULTICAST_HOPS: 2139 case IPV6_MULTICAST_LOOP: 2140 case IPV6_MSFILTER: 2141 error = ip6_getmoptions(in6p, sopt); 2142 break; 2143 2144 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2145 case IPV6_IPSEC_POLICY: 2146 if (IPSEC_ENABLED(ipv6)) { 2147 error = IPSEC_PCBCTL(ipv6, in6p, sopt); 2148 break; 2149 } 2150 /* FALLTHROUGH */ 2151 #endif /* IPSEC */ 2152 default: 2153 error = ENOPROTOOPT; 2154 break; 2155 } 2156 break; 2157 } 2158 } 2159 return (error); 2160 } 2161 2162 int 2163 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2164 { 2165 int error = 0, optval, optlen; 2166 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2167 struct inpcb *in6p = sotoinpcb(so); 2168 int level, op, optname; 2169 2170 level = sopt->sopt_level; 2171 op = sopt->sopt_dir; 2172 optname = sopt->sopt_name; 2173 optlen = sopt->sopt_valsize; 2174 2175 if (level != IPPROTO_IPV6) { 2176 return (EINVAL); 2177 } 2178 2179 switch (optname) { 2180 case IPV6_CHECKSUM: 2181 /* 2182 * For ICMPv6 sockets, no modification allowed for checksum 2183 * offset, permit "no change" values to help existing apps. 2184 * 2185 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2186 * for an ICMPv6 socket will fail." 2187 * The current behavior does not meet RFC3542. 2188 */ 2189 switch (op) { 2190 case SOPT_SET: 2191 if (optlen != sizeof(int)) { 2192 error = EINVAL; 2193 break; 2194 } 2195 error = sooptcopyin(sopt, &optval, sizeof(optval), 2196 sizeof(optval)); 2197 if (error) 2198 break; 2199 if ((optval % 2) != 0) { 2200 /* the API assumes even offset values */ 2201 error = EINVAL; 2202 } else if (so->so_proto->pr_protocol == 2203 IPPROTO_ICMPV6) { 2204 if (optval != icmp6off) 2205 error = EINVAL; 2206 } else 2207 in6p->in6p_cksum = optval; 2208 break; 2209 2210 case SOPT_GET: 2211 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2212 optval = icmp6off; 2213 else 2214 optval = in6p->in6p_cksum; 2215 2216 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2217 break; 2218 2219 default: 2220 error = EINVAL; 2221 break; 2222 } 2223 break; 2224 2225 default: 2226 error = ENOPROTOOPT; 2227 break; 2228 } 2229 2230 return (error); 2231 } 2232 2233 /* 2234 * Set up IP6 options in pcb for insertion in output packets or 2235 * specifying behavior of outgoing packets. 2236 */ 2237 static int 2238 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2239 struct socket *so, struct sockopt *sopt) 2240 { 2241 struct ip6_pktopts *opt = *pktopt; 2242 int error = 0; 2243 struct thread *td = sopt->sopt_td; 2244 2245 /* turn off any old options. */ 2246 if (opt) { 2247 #ifdef DIAGNOSTIC 2248 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2249 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2250 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2251 printf("ip6_pcbopts: all specified options are cleared.\n"); 2252 #endif 2253 ip6_clearpktopts(opt, -1); 2254 } else 2255 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2256 *pktopt = NULL; 2257 2258 if (!m || m->m_len == 0) { 2259 /* 2260 * Only turning off any previous options, regardless of 2261 * whether the opt is just created or given. 2262 */ 2263 free(opt, M_IP6OPT); 2264 return (0); 2265 } 2266 2267 /* set options specified by user. */ 2268 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2269 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2270 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2271 free(opt, M_IP6OPT); 2272 return (error); 2273 } 2274 *pktopt = opt; 2275 return (0); 2276 } 2277 2278 /* 2279 * initialize ip6_pktopts. beware that there are non-zero default values in 2280 * the struct. 2281 */ 2282 void 2283 ip6_initpktopts(struct ip6_pktopts *opt) 2284 { 2285 2286 bzero(opt, sizeof(*opt)); 2287 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2288 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2289 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2290 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2291 } 2292 2293 static int 2294 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2295 struct ucred *cred, int uproto) 2296 { 2297 struct ip6_pktopts *opt; 2298 2299 if (*pktopt == NULL) { 2300 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2301 M_NOWAIT); 2302 if (*pktopt == NULL) 2303 return (ENOBUFS); 2304 ip6_initpktopts(*pktopt); 2305 } 2306 opt = *pktopt; 2307 2308 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2309 } 2310 2311 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2312 if (pktopt && pktopt->field) { \ 2313 INP_RUNLOCK(in6p); \ 2314 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2315 malloc_optdata = true; \ 2316 INP_RLOCK(in6p); \ 2317 if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ 2318 INP_RUNLOCK(in6p); \ 2319 free(optdata, M_TEMP); \ 2320 return (ECONNRESET); \ 2321 } \ 2322 pktopt = in6p->in6p_outputopts; \ 2323 if (pktopt && pktopt->field) { \ 2324 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2325 bcopy(&pktopt->field, optdata, optdatalen); \ 2326 } else { \ 2327 free(optdata, M_TEMP); \ 2328 optdata = NULL; \ 2329 malloc_optdata = false; \ 2330 } \ 2331 } \ 2332 } while(0) 2333 2334 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2335 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2336 2337 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2338 pktopt->field->sa_len) 2339 2340 static int 2341 ip6_getpcbopt(struct inpcb *in6p, int optname, struct sockopt *sopt) 2342 { 2343 void *optdata = NULL; 2344 bool malloc_optdata = false; 2345 int optdatalen = 0; 2346 int error = 0; 2347 struct in6_pktinfo null_pktinfo; 2348 int deftclass = 0, on; 2349 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2350 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2351 struct ip6_pktopts *pktopt; 2352 2353 INP_RLOCK(in6p); 2354 pktopt = in6p->in6p_outputopts; 2355 2356 switch (optname) { 2357 case IPV6_PKTINFO: 2358 optdata = (void *)&null_pktinfo; 2359 if (pktopt && pktopt->ip6po_pktinfo) { 2360 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2361 sizeof(null_pktinfo)); 2362 in6_clearscope(&null_pktinfo.ipi6_addr); 2363 } else { 2364 /* XXX: we don't have to do this every time... */ 2365 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2366 } 2367 optdatalen = sizeof(struct in6_pktinfo); 2368 break; 2369 case IPV6_TCLASS: 2370 if (pktopt && pktopt->ip6po_tclass >= 0) 2371 deftclass = pktopt->ip6po_tclass; 2372 optdata = (void *)&deftclass; 2373 optdatalen = sizeof(int); 2374 break; 2375 case IPV6_HOPOPTS: 2376 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2377 break; 2378 case IPV6_RTHDR: 2379 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2380 break; 2381 case IPV6_RTHDRDSTOPTS: 2382 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2383 break; 2384 case IPV6_DSTOPTS: 2385 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2386 break; 2387 case IPV6_NEXTHOP: 2388 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2389 break; 2390 case IPV6_USE_MIN_MTU: 2391 if (pktopt) 2392 defminmtu = pktopt->ip6po_minmtu; 2393 optdata = (void *)&defminmtu; 2394 optdatalen = sizeof(int); 2395 break; 2396 case IPV6_DONTFRAG: 2397 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2398 on = 1; 2399 else 2400 on = 0; 2401 optdata = (void *)&on; 2402 optdatalen = sizeof(on); 2403 break; 2404 case IPV6_PREFER_TEMPADDR: 2405 if (pktopt) 2406 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2407 optdata = (void *)&defpreftemp; 2408 optdatalen = sizeof(int); 2409 break; 2410 default: /* should not happen */ 2411 #ifdef DIAGNOSTIC 2412 panic("ip6_getpcbopt: unexpected option\n"); 2413 #endif 2414 INP_RUNLOCK(in6p); 2415 return (ENOPROTOOPT); 2416 } 2417 INP_RUNLOCK(in6p); 2418 2419 error = sooptcopyout(sopt, optdata, optdatalen); 2420 if (malloc_optdata) 2421 free(optdata, M_TEMP); 2422 2423 return (error); 2424 } 2425 2426 void 2427 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2428 { 2429 if (pktopt == NULL) 2430 return; 2431 2432 if (optname == -1 || optname == IPV6_PKTINFO) { 2433 if (pktopt->ip6po_pktinfo) 2434 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2435 pktopt->ip6po_pktinfo = NULL; 2436 } 2437 if (optname == -1 || optname == IPV6_HOPLIMIT) 2438 pktopt->ip6po_hlim = -1; 2439 if (optname == -1 || optname == IPV6_TCLASS) 2440 pktopt->ip6po_tclass = -1; 2441 if (optname == -1 || optname == IPV6_NEXTHOP) { 2442 if (pktopt->ip6po_nextroute.ro_rt) { 2443 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2444 pktopt->ip6po_nextroute.ro_rt = NULL; 2445 } 2446 if (pktopt->ip6po_nexthop) 2447 free(pktopt->ip6po_nexthop, M_IP6OPT); 2448 pktopt->ip6po_nexthop = NULL; 2449 } 2450 if (optname == -1 || optname == IPV6_HOPOPTS) { 2451 if (pktopt->ip6po_hbh) 2452 free(pktopt->ip6po_hbh, M_IP6OPT); 2453 pktopt->ip6po_hbh = NULL; 2454 } 2455 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2456 if (pktopt->ip6po_dest1) 2457 free(pktopt->ip6po_dest1, M_IP6OPT); 2458 pktopt->ip6po_dest1 = NULL; 2459 } 2460 if (optname == -1 || optname == IPV6_RTHDR) { 2461 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2462 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2463 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2464 if (pktopt->ip6po_route.ro_rt) { 2465 RTFREE(pktopt->ip6po_route.ro_rt); 2466 pktopt->ip6po_route.ro_rt = NULL; 2467 } 2468 } 2469 if (optname == -1 || optname == IPV6_DSTOPTS) { 2470 if (pktopt->ip6po_dest2) 2471 free(pktopt->ip6po_dest2, M_IP6OPT); 2472 pktopt->ip6po_dest2 = NULL; 2473 } 2474 } 2475 2476 #define PKTOPT_EXTHDRCPY(type) \ 2477 do {\ 2478 if (src->type) {\ 2479 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2480 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2481 if (dst->type == NULL)\ 2482 goto bad;\ 2483 bcopy(src->type, dst->type, hlen);\ 2484 }\ 2485 } while (/*CONSTCOND*/ 0) 2486 2487 static int 2488 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2489 { 2490 if (dst == NULL || src == NULL) { 2491 printf("ip6_clearpktopts: invalid argument\n"); 2492 return (EINVAL); 2493 } 2494 2495 dst->ip6po_hlim = src->ip6po_hlim; 2496 dst->ip6po_tclass = src->ip6po_tclass; 2497 dst->ip6po_flags = src->ip6po_flags; 2498 dst->ip6po_minmtu = src->ip6po_minmtu; 2499 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2500 if (src->ip6po_pktinfo) { 2501 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2502 M_IP6OPT, canwait); 2503 if (dst->ip6po_pktinfo == NULL) 2504 goto bad; 2505 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2506 } 2507 if (src->ip6po_nexthop) { 2508 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2509 M_IP6OPT, canwait); 2510 if (dst->ip6po_nexthop == NULL) 2511 goto bad; 2512 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2513 src->ip6po_nexthop->sa_len); 2514 } 2515 PKTOPT_EXTHDRCPY(ip6po_hbh); 2516 PKTOPT_EXTHDRCPY(ip6po_dest1); 2517 PKTOPT_EXTHDRCPY(ip6po_dest2); 2518 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2519 return (0); 2520 2521 bad: 2522 ip6_clearpktopts(dst, -1); 2523 return (ENOBUFS); 2524 } 2525 #undef PKTOPT_EXTHDRCPY 2526 2527 struct ip6_pktopts * 2528 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2529 { 2530 int error; 2531 struct ip6_pktopts *dst; 2532 2533 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2534 if (dst == NULL) 2535 return (NULL); 2536 ip6_initpktopts(dst); 2537 2538 if ((error = copypktopts(dst, src, canwait)) != 0) { 2539 free(dst, M_IP6OPT); 2540 return (NULL); 2541 } 2542 2543 return (dst); 2544 } 2545 2546 void 2547 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2548 { 2549 if (pktopt == NULL) 2550 return; 2551 2552 ip6_clearpktopts(pktopt, -1); 2553 2554 free(pktopt, M_IP6OPT); 2555 } 2556 2557 /* 2558 * Set IPv6 outgoing packet options based on advanced API. 2559 */ 2560 int 2561 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2562 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2563 { 2564 struct cmsghdr *cm = NULL; 2565 2566 if (control == NULL || opt == NULL) 2567 return (EINVAL); 2568 2569 ip6_initpktopts(opt); 2570 if (stickyopt) { 2571 int error; 2572 2573 /* 2574 * If stickyopt is provided, make a local copy of the options 2575 * for this particular packet, then override them by ancillary 2576 * objects. 2577 * XXX: copypktopts() does not copy the cached route to a next 2578 * hop (if any). This is not very good in terms of efficiency, 2579 * but we can allow this since this option should be rarely 2580 * used. 2581 */ 2582 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2583 return (error); 2584 } 2585 2586 /* 2587 * XXX: Currently, we assume all the optional information is stored 2588 * in a single mbuf. 2589 */ 2590 if (control->m_next) 2591 return (EINVAL); 2592 2593 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2594 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2595 int error; 2596 2597 if (control->m_len < CMSG_LEN(0)) 2598 return (EINVAL); 2599 2600 cm = mtod(control, struct cmsghdr *); 2601 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2602 return (EINVAL); 2603 if (cm->cmsg_level != IPPROTO_IPV6) 2604 continue; 2605 2606 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2607 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2608 if (error) 2609 return (error); 2610 } 2611 2612 return (0); 2613 } 2614 2615 /* 2616 * Set a particular packet option, as a sticky option or an ancillary data 2617 * item. "len" can be 0 only when it's a sticky option. 2618 * We have 4 cases of combination of "sticky" and "cmsg": 2619 * "sticky=0, cmsg=0": impossible 2620 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2621 * "sticky=1, cmsg=0": RFC3542 socket option 2622 * "sticky=1, cmsg=1": RFC2292 socket option 2623 */ 2624 static int 2625 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2626 struct ucred *cred, int sticky, int cmsg, int uproto) 2627 { 2628 int minmtupolicy, preftemp; 2629 int error; 2630 2631 if (!sticky && !cmsg) { 2632 #ifdef DIAGNOSTIC 2633 printf("ip6_setpktopt: impossible case\n"); 2634 #endif 2635 return (EINVAL); 2636 } 2637 2638 /* 2639 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2640 * not be specified in the context of RFC3542. Conversely, 2641 * RFC3542 types should not be specified in the context of RFC2292. 2642 */ 2643 if (!cmsg) { 2644 switch (optname) { 2645 case IPV6_2292PKTINFO: 2646 case IPV6_2292HOPLIMIT: 2647 case IPV6_2292NEXTHOP: 2648 case IPV6_2292HOPOPTS: 2649 case IPV6_2292DSTOPTS: 2650 case IPV6_2292RTHDR: 2651 case IPV6_2292PKTOPTIONS: 2652 return (ENOPROTOOPT); 2653 } 2654 } 2655 if (sticky && cmsg) { 2656 switch (optname) { 2657 case IPV6_PKTINFO: 2658 case IPV6_HOPLIMIT: 2659 case IPV6_NEXTHOP: 2660 case IPV6_HOPOPTS: 2661 case IPV6_DSTOPTS: 2662 case IPV6_RTHDRDSTOPTS: 2663 case IPV6_RTHDR: 2664 case IPV6_USE_MIN_MTU: 2665 case IPV6_DONTFRAG: 2666 case IPV6_TCLASS: 2667 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2668 return (ENOPROTOOPT); 2669 } 2670 } 2671 2672 switch (optname) { 2673 case IPV6_2292PKTINFO: 2674 case IPV6_PKTINFO: 2675 { 2676 struct ifnet *ifp = NULL; 2677 struct in6_pktinfo *pktinfo; 2678 2679 if (len != sizeof(struct in6_pktinfo)) 2680 return (EINVAL); 2681 2682 pktinfo = (struct in6_pktinfo *)buf; 2683 2684 /* 2685 * An application can clear any sticky IPV6_PKTINFO option by 2686 * doing a "regular" setsockopt with ipi6_addr being 2687 * in6addr_any and ipi6_ifindex being zero. 2688 * [RFC 3542, Section 6] 2689 */ 2690 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2691 pktinfo->ipi6_ifindex == 0 && 2692 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2693 ip6_clearpktopts(opt, optname); 2694 break; 2695 } 2696 2697 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2698 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2699 return (EINVAL); 2700 } 2701 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2702 return (EINVAL); 2703 /* validate the interface index if specified. */ 2704 if (pktinfo->ipi6_ifindex > V_if_index) 2705 return (ENXIO); 2706 if (pktinfo->ipi6_ifindex) { 2707 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2708 if (ifp == NULL) 2709 return (ENXIO); 2710 } 2711 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2712 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2713 return (ENETDOWN); 2714 2715 if (ifp != NULL && 2716 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2717 struct in6_ifaddr *ia; 2718 2719 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2720 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2721 if (ia == NULL) 2722 return (EADDRNOTAVAIL); 2723 ifa_free(&ia->ia_ifa); 2724 } 2725 /* 2726 * We store the address anyway, and let in6_selectsrc() 2727 * validate the specified address. This is because ipi6_addr 2728 * may not have enough information about its scope zone, and 2729 * we may need additional information (such as outgoing 2730 * interface or the scope zone of a destination address) to 2731 * disambiguate the scope. 2732 * XXX: the delay of the validation may confuse the 2733 * application when it is used as a sticky option. 2734 */ 2735 if (opt->ip6po_pktinfo == NULL) { 2736 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2737 M_IP6OPT, M_NOWAIT); 2738 if (opt->ip6po_pktinfo == NULL) 2739 return (ENOBUFS); 2740 } 2741 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2742 break; 2743 } 2744 2745 case IPV6_2292HOPLIMIT: 2746 case IPV6_HOPLIMIT: 2747 { 2748 int *hlimp; 2749 2750 /* 2751 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2752 * to simplify the ordering among hoplimit options. 2753 */ 2754 if (optname == IPV6_HOPLIMIT && sticky) 2755 return (ENOPROTOOPT); 2756 2757 if (len != sizeof(int)) 2758 return (EINVAL); 2759 hlimp = (int *)buf; 2760 if (*hlimp < -1 || *hlimp > 255) 2761 return (EINVAL); 2762 2763 opt->ip6po_hlim = *hlimp; 2764 break; 2765 } 2766 2767 case IPV6_TCLASS: 2768 { 2769 int tclass; 2770 2771 if (len != sizeof(int)) 2772 return (EINVAL); 2773 tclass = *(int *)buf; 2774 if (tclass < -1 || tclass > 255) 2775 return (EINVAL); 2776 2777 opt->ip6po_tclass = tclass; 2778 break; 2779 } 2780 2781 case IPV6_2292NEXTHOP: 2782 case IPV6_NEXTHOP: 2783 if (cred != NULL) { 2784 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 2785 if (error) 2786 return (error); 2787 } 2788 2789 if (len == 0) { /* just remove the option */ 2790 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2791 break; 2792 } 2793 2794 /* check if cmsg_len is large enough for sa_len */ 2795 if (len < sizeof(struct sockaddr) || len < *buf) 2796 return (EINVAL); 2797 2798 switch (((struct sockaddr *)buf)->sa_family) { 2799 case AF_INET6: 2800 { 2801 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2802 int error; 2803 2804 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2805 return (EINVAL); 2806 2807 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2808 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2809 return (EINVAL); 2810 } 2811 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2812 != 0) { 2813 return (error); 2814 } 2815 break; 2816 } 2817 case AF_LINK: /* should eventually be supported */ 2818 default: 2819 return (EAFNOSUPPORT); 2820 } 2821 2822 /* turn off the previous option, then set the new option. */ 2823 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2824 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2825 if (opt->ip6po_nexthop == NULL) 2826 return (ENOBUFS); 2827 bcopy(buf, opt->ip6po_nexthop, *buf); 2828 break; 2829 2830 case IPV6_2292HOPOPTS: 2831 case IPV6_HOPOPTS: 2832 { 2833 struct ip6_hbh *hbh; 2834 int hbhlen; 2835 2836 /* 2837 * XXX: We don't allow a non-privileged user to set ANY HbH 2838 * options, since per-option restriction has too much 2839 * overhead. 2840 */ 2841 if (cred != NULL) { 2842 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 2843 if (error) 2844 return (error); 2845 } 2846 2847 if (len == 0) { 2848 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2849 break; /* just remove the option */ 2850 } 2851 2852 /* message length validation */ 2853 if (len < sizeof(struct ip6_hbh)) 2854 return (EINVAL); 2855 hbh = (struct ip6_hbh *)buf; 2856 hbhlen = (hbh->ip6h_len + 1) << 3; 2857 if (len != hbhlen) 2858 return (EINVAL); 2859 2860 /* turn off the previous option, then set the new option. */ 2861 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2862 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2863 if (opt->ip6po_hbh == NULL) 2864 return (ENOBUFS); 2865 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2866 2867 break; 2868 } 2869 2870 case IPV6_2292DSTOPTS: 2871 case IPV6_DSTOPTS: 2872 case IPV6_RTHDRDSTOPTS: 2873 { 2874 struct ip6_dest *dest, **newdest = NULL; 2875 int destlen; 2876 2877 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2878 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 2879 if (error) 2880 return (error); 2881 } 2882 2883 if (len == 0) { 2884 ip6_clearpktopts(opt, optname); 2885 break; /* just remove the option */ 2886 } 2887 2888 /* message length validation */ 2889 if (len < sizeof(struct ip6_dest)) 2890 return (EINVAL); 2891 dest = (struct ip6_dest *)buf; 2892 destlen = (dest->ip6d_len + 1) << 3; 2893 if (len != destlen) 2894 return (EINVAL); 2895 2896 /* 2897 * Determine the position that the destination options header 2898 * should be inserted; before or after the routing header. 2899 */ 2900 switch (optname) { 2901 case IPV6_2292DSTOPTS: 2902 /* 2903 * The old advacned API is ambiguous on this point. 2904 * Our approach is to determine the position based 2905 * according to the existence of a routing header. 2906 * Note, however, that this depends on the order of the 2907 * extension headers in the ancillary data; the 1st 2908 * part of the destination options header must appear 2909 * before the routing header in the ancillary data, 2910 * too. 2911 * RFC3542 solved the ambiguity by introducing 2912 * separate ancillary data or option types. 2913 */ 2914 if (opt->ip6po_rthdr == NULL) 2915 newdest = &opt->ip6po_dest1; 2916 else 2917 newdest = &opt->ip6po_dest2; 2918 break; 2919 case IPV6_RTHDRDSTOPTS: 2920 newdest = &opt->ip6po_dest1; 2921 break; 2922 case IPV6_DSTOPTS: 2923 newdest = &opt->ip6po_dest2; 2924 break; 2925 } 2926 2927 /* turn off the previous option, then set the new option. */ 2928 ip6_clearpktopts(opt, optname); 2929 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2930 if (*newdest == NULL) 2931 return (ENOBUFS); 2932 bcopy(dest, *newdest, destlen); 2933 2934 break; 2935 } 2936 2937 case IPV6_2292RTHDR: 2938 case IPV6_RTHDR: 2939 { 2940 struct ip6_rthdr *rth; 2941 int rthlen; 2942 2943 if (len == 0) { 2944 ip6_clearpktopts(opt, IPV6_RTHDR); 2945 break; /* just remove the option */ 2946 } 2947 2948 /* message length validation */ 2949 if (len < sizeof(struct ip6_rthdr)) 2950 return (EINVAL); 2951 rth = (struct ip6_rthdr *)buf; 2952 rthlen = (rth->ip6r_len + 1) << 3; 2953 if (len != rthlen) 2954 return (EINVAL); 2955 2956 switch (rth->ip6r_type) { 2957 case IPV6_RTHDR_TYPE_0: 2958 if (rth->ip6r_len == 0) /* must contain one addr */ 2959 return (EINVAL); 2960 if (rth->ip6r_len % 2) /* length must be even */ 2961 return (EINVAL); 2962 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2963 return (EINVAL); 2964 break; 2965 default: 2966 return (EINVAL); /* not supported */ 2967 } 2968 2969 /* turn off the previous option */ 2970 ip6_clearpktopts(opt, IPV6_RTHDR); 2971 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2972 if (opt->ip6po_rthdr == NULL) 2973 return (ENOBUFS); 2974 bcopy(rth, opt->ip6po_rthdr, rthlen); 2975 2976 break; 2977 } 2978 2979 case IPV6_USE_MIN_MTU: 2980 if (len != sizeof(int)) 2981 return (EINVAL); 2982 minmtupolicy = *(int *)buf; 2983 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2984 minmtupolicy != IP6PO_MINMTU_DISABLE && 2985 minmtupolicy != IP6PO_MINMTU_ALL) { 2986 return (EINVAL); 2987 } 2988 opt->ip6po_minmtu = minmtupolicy; 2989 break; 2990 2991 case IPV6_DONTFRAG: 2992 if (len != sizeof(int)) 2993 return (EINVAL); 2994 2995 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2996 /* 2997 * we ignore this option for TCP sockets. 2998 * (RFC3542 leaves this case unspecified.) 2999 */ 3000 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3001 } else 3002 opt->ip6po_flags |= IP6PO_DONTFRAG; 3003 break; 3004 3005 case IPV6_PREFER_TEMPADDR: 3006 if (len != sizeof(int)) 3007 return (EINVAL); 3008 preftemp = *(int *)buf; 3009 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3010 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3011 preftemp != IP6PO_TEMPADDR_PREFER) { 3012 return (EINVAL); 3013 } 3014 opt->ip6po_prefer_tempaddr = preftemp; 3015 break; 3016 3017 default: 3018 return (ENOPROTOOPT); 3019 } /* end of switch */ 3020 3021 return (0); 3022 } 3023 3024 /* 3025 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3026 * packet to the input queue of a specified interface. Note that this 3027 * calls the output routine of the loopback "driver", but with an interface 3028 * pointer that might NOT be &loif -- easier than replicating that code here. 3029 */ 3030 void 3031 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3032 { 3033 struct mbuf *copym; 3034 struct ip6_hdr *ip6; 3035 3036 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3037 if (copym == NULL) 3038 return; 3039 3040 /* 3041 * Make sure to deep-copy IPv6 header portion in case the data 3042 * is in an mbuf cluster, so that we can safely override the IPv6 3043 * header portion later. 3044 */ 3045 if (!M_WRITABLE(copym) || 3046 copym->m_len < sizeof(struct ip6_hdr)) { 3047 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3048 if (copym == NULL) 3049 return; 3050 } 3051 ip6 = mtod(copym, struct ip6_hdr *); 3052 /* 3053 * clear embedded scope identifiers if necessary. 3054 * in6_clearscope will touch the addresses only when necessary. 3055 */ 3056 in6_clearscope(&ip6->ip6_src); 3057 in6_clearscope(&ip6->ip6_dst); 3058 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3059 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3060 CSUM_PSEUDO_HDR; 3061 copym->m_pkthdr.csum_data = 0xffff; 3062 } 3063 if_simloop(ifp, copym, AF_INET6, 0); 3064 } 3065 3066 /* 3067 * Chop IPv6 header off from the payload. 3068 */ 3069 static int 3070 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3071 { 3072 struct mbuf *mh; 3073 struct ip6_hdr *ip6; 3074 3075 ip6 = mtod(m, struct ip6_hdr *); 3076 if (m->m_len > sizeof(*ip6)) { 3077 mh = m_gethdr(M_NOWAIT, MT_DATA); 3078 if (mh == NULL) { 3079 m_freem(m); 3080 return ENOBUFS; 3081 } 3082 m_move_pkthdr(mh, m); 3083 M_ALIGN(mh, sizeof(*ip6)); 3084 m->m_len -= sizeof(*ip6); 3085 m->m_data += sizeof(*ip6); 3086 mh->m_next = m; 3087 m = mh; 3088 m->m_len = sizeof(*ip6); 3089 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3090 } 3091 exthdrs->ip6e_ip6 = m; 3092 return 0; 3093 } 3094 3095 /* 3096 * Compute IPv6 extension header length. 3097 */ 3098 int 3099 ip6_optlen(struct inpcb *in6p) 3100 { 3101 int len; 3102 3103 if (!in6p->in6p_outputopts) 3104 return 0; 3105 3106 len = 0; 3107 #define elen(x) \ 3108 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3109 3110 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3111 if (in6p->in6p_outputopts->ip6po_rthdr) 3112 /* dest1 is valid with rthdr only */ 3113 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3114 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3115 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3116 return len; 3117 #undef elen 3118 } 3119