1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 */ 62 63 #include <sys/cdefs.h> 64 #include "opt_inet.h" 65 #include "opt_inet6.h" 66 #include "opt_ipsec.h" 67 #include "opt_kern_tls.h" 68 #include "opt_ratelimit.h" 69 #include "opt_route.h" 70 #include "opt_rss.h" 71 #include "opt_sctp.h" 72 73 #include <sys/param.h> 74 #include <sys/kernel.h> 75 #include <sys/ktls.h> 76 #include <sys/malloc.h> 77 #include <sys/mbuf.h> 78 #include <sys/errno.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/protosw.h> 82 #include <sys/socket.h> 83 #include <sys/socketvar.h> 84 #include <sys/syslog.h> 85 #include <sys/ucred.h> 86 87 #include <machine/in_cksum.h> 88 89 #include <net/if.h> 90 #include <net/if_var.h> 91 #include <net/if_private.h> 92 #include <net/if_vlan_var.h> 93 #include <net/if_llatbl.h> 94 #include <net/ethernet.h> 95 #include <net/netisr.h> 96 #include <net/route.h> 97 #include <net/route/nhop.h> 98 #include <net/pfil.h> 99 #include <net/rss_config.h> 100 #include <net/vnet.h> 101 102 #include <netinet/in.h> 103 #include <netinet/in_var.h> 104 #include <netinet/ip_var.h> 105 #include <netinet6/in6_fib.h> 106 #include <netinet6/in6_var.h> 107 #include <netinet/ip6.h> 108 #include <netinet/icmp6.h> 109 #include <netinet6/ip6_var.h> 110 #include <netinet/in_pcb.h> 111 #include <netinet/tcp_var.h> 112 #include <netinet6/nd6.h> 113 #include <netinet6/in6_rss.h> 114 115 #include <netipsec/ipsec_support.h> 116 #if defined(SCTP) || defined(SCTP_SUPPORT) 117 #include <netinet/sctp.h> 118 #include <netinet/sctp_crc32.h> 119 #endif 120 121 #include <netinet6/scope6_var.h> 122 123 extern int in6_mcast_loop; 124 125 struct ip6_exthdrs { 126 struct mbuf *ip6e_ip6; 127 struct mbuf *ip6e_hbh; 128 struct mbuf *ip6e_dest1; 129 struct mbuf *ip6e_rthdr; 130 struct mbuf *ip6e_dest2; 131 }; 132 133 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 134 135 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 136 struct ucred *, int); 137 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 138 struct socket *, struct sockopt *); 139 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 140 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 141 struct ucred *, int, int, int); 142 143 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 144 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 145 struct ip6_frag **); 146 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 147 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 148 static int ip6_getpmtu(struct route_in6 *, int, 149 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 150 u_int); 151 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 152 u_long *, int *, u_int); 153 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 154 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 155 156 /* 157 * Make an extension header from option data. hp is the source, 158 * mp is the destination, and _ol is the optlen. 159 */ 160 #define MAKE_EXTHDR(hp, mp, _ol) \ 161 do { \ 162 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 163 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 164 ((eh)->ip6e_len + 1) << 3); \ 165 if (error) \ 166 goto freehdrs; \ 167 (_ol) += (*(mp))->m_len; \ 168 } while (/*CONSTCOND*/ 0) 169 170 /* 171 * Form a chain of extension headers. 172 * m is the extension header mbuf 173 * mp is the previous mbuf in the chain 174 * p is the next header 175 * i is the type of option. 176 */ 177 #define MAKE_CHAIN(m, mp, p, i)\ 178 do {\ 179 if (m) {\ 180 if (!hdrsplit) \ 181 panic("%s:%d: assumption failed: "\ 182 "hdr not split: hdrsplit %d exthdrs %p",\ 183 __func__, __LINE__, hdrsplit, &exthdrs);\ 184 *mtod((m), u_char *) = *(p);\ 185 *(p) = (i);\ 186 p = mtod((m), u_char *);\ 187 (m)->m_next = (mp)->m_next;\ 188 (mp)->m_next = (m);\ 189 (mp) = (m);\ 190 }\ 191 } while (/*CONSTCOND*/ 0) 192 193 void 194 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 195 { 196 u_short csum; 197 198 csum = in_cksum_skip(m, offset + plen, offset); 199 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 200 csum = 0xffff; 201 offset += m->m_pkthdr.csum_data; /* checksum offset */ 202 203 if (offset + sizeof(csum) > m->m_len) 204 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 205 else 206 *(u_short *)mtodo(m, offset) = csum; 207 } 208 209 static void 210 ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags, 211 int plen, int optlen) 212 { 213 214 KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p " 215 "csum_flags %#x", 216 __func__, __LINE__, plen, optlen, m, ifp, csum_flags)); 217 218 if (csum_flags & CSUM_DELAY_DATA_IPV6) { 219 in6_delayed_cksum(m, plen - optlen, 220 sizeof(struct ip6_hdr) + optlen); 221 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 222 } 223 #if defined(SCTP) || defined(SCTP_SUPPORT) 224 if (csum_flags & CSUM_SCTP_IPV6) { 225 sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen); 226 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 227 } 228 #endif 229 } 230 231 int 232 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 233 int fraglen , uint32_t id) 234 { 235 struct mbuf *m, **mnext, *m_frgpart; 236 struct ip6_hdr *ip6, *mhip6; 237 struct ip6_frag *ip6f; 238 int off; 239 int error; 240 int tlen = m0->m_pkthdr.len; 241 242 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 243 244 m = m0; 245 ip6 = mtod(m, struct ip6_hdr *); 246 mnext = &m->m_nextpkt; 247 248 for (off = hlen; off < tlen; off += fraglen) { 249 m = m_gethdr(M_NOWAIT, MT_DATA); 250 if (!m) { 251 IP6STAT_INC(ip6s_odropped); 252 return (ENOBUFS); 253 } 254 255 /* 256 * Make sure the complete packet header gets copied 257 * from the originating mbuf to the newly created 258 * mbuf. This also ensures that existing firewall 259 * classification(s), VLAN tags and so on get copied 260 * to the resulting fragmented packet(s): 261 */ 262 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 263 m_free(m); 264 IP6STAT_INC(ip6s_odropped); 265 return (ENOBUFS); 266 } 267 268 *mnext = m; 269 mnext = &m->m_nextpkt; 270 m->m_data += max_linkhdr; 271 mhip6 = mtod(m, struct ip6_hdr *); 272 *mhip6 = *ip6; 273 m->m_len = sizeof(*mhip6); 274 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 275 if (error) { 276 IP6STAT_INC(ip6s_odropped); 277 return (error); 278 } 279 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 280 if (off + fraglen >= tlen) 281 fraglen = tlen - off; 282 else 283 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 284 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 285 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 286 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 287 IP6STAT_INC(ip6s_odropped); 288 return (ENOBUFS); 289 } 290 m_cat(m, m_frgpart); 291 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 292 ip6f->ip6f_reserved = 0; 293 ip6f->ip6f_ident = id; 294 ip6f->ip6f_nxt = nextproto; 295 IP6STAT_INC(ip6s_ofragments); 296 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 297 } 298 299 return (0); 300 } 301 302 static int 303 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp, 304 struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro, 305 bool stamp_tag) 306 { 307 #ifdef KERN_TLS 308 struct ktls_session *tls = NULL; 309 #endif 310 struct m_snd_tag *mst; 311 int error; 312 313 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 314 mst = NULL; 315 316 #ifdef KERN_TLS 317 /* 318 * If this is an unencrypted TLS record, save a reference to 319 * the record. This local reference is used to call 320 * ktls_output_eagain after the mbuf has been freed (thus 321 * dropping the mbuf's reference) in if_output. 322 */ 323 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 324 tls = ktls_hold(m->m_next->m_epg_tls); 325 mst = tls->snd_tag; 326 327 /* 328 * If a TLS session doesn't have a valid tag, it must 329 * have had an earlier ifp mismatch, so drop this 330 * packet. 331 */ 332 if (mst == NULL) { 333 m_freem(m); 334 error = EAGAIN; 335 goto done; 336 } 337 /* 338 * Always stamp tags that include NIC ktls. 339 */ 340 stamp_tag = true; 341 } 342 #endif 343 #ifdef RATELIMIT 344 if (inp != NULL && mst == NULL) { 345 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 346 (inp->inp_snd_tag != NULL && 347 inp->inp_snd_tag->ifp != ifp)) 348 in_pcboutput_txrtlmt(inp, ifp, m); 349 350 if (inp->inp_snd_tag != NULL) 351 mst = inp->inp_snd_tag; 352 } 353 #endif 354 if (stamp_tag && mst != NULL) { 355 KASSERT(m->m_pkthdr.rcvif == NULL, 356 ("trying to add a send tag to a forwarded packet")); 357 if (mst->ifp != ifp) { 358 m_freem(m); 359 error = EAGAIN; 360 goto done; 361 } 362 363 /* stamp send tag on mbuf */ 364 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 365 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 366 } 367 368 error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); 369 370 done: 371 /* Check for route change invalidating send tags. */ 372 #ifdef KERN_TLS 373 if (tls != NULL) { 374 if (error == EAGAIN) 375 error = ktls_output_eagain(inp, tls); 376 ktls_free(tls); 377 } 378 #endif 379 #ifdef RATELIMIT 380 if (error == EAGAIN) 381 in_pcboutput_eagain(inp); 382 #endif 383 return (error); 384 } 385 386 /* 387 * IP6 output. 388 * The packet in mbuf chain m contains a skeletal IP6 header (with pri, len, 389 * nxt, hlim, src, dst). 390 * This function may modify ver and hlim only. 391 * The mbuf chain containing the packet will be freed. 392 * The mbuf opt, if present, will not be freed. 393 * If route_in6 ro is present and has ro_nh initialized, route lookup would be 394 * skipped and ro->ro_nh would be used. If ro is present but ro->ro_nh is NULL, 395 * then result of route lookup is stored in ro->ro_nh. 396 * 397 * Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu 398 * is uint32_t. So we use u_long to hold largest one, which is rt_mtu. 399 * 400 * ifpp - XXX: just for statistics 401 */ 402 int 403 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 404 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 405 struct ifnet **ifpp, struct inpcb *inp) 406 { 407 struct ip6_hdr *ip6; 408 struct ifnet *ifp, *origifp; 409 struct mbuf *m = m0; 410 struct mbuf *mprev; 411 struct route_in6 *ro_pmtu; 412 struct nhop_object *nh; 413 struct sockaddr_in6 *dst, sin6, src_sa, dst_sa; 414 struct in6_addr odst; 415 u_char *nexthdrp; 416 int tlen, len; 417 int error = 0; 418 int vlan_pcp = -1; 419 struct in6_ifaddr *ia = NULL; 420 u_long mtu; 421 int alwaysfrag, dontfrag; 422 u_int32_t optlen, plen = 0, unfragpartlen; 423 struct ip6_exthdrs exthdrs; 424 struct in6_addr src0, dst0; 425 u_int32_t zone; 426 bool hdrsplit; 427 int sw_csum, tso; 428 int needfiblookup; 429 uint32_t fibnum; 430 struct m_tag *fwd_tag = NULL; 431 uint32_t id; 432 uint32_t optvalid; 433 434 NET_EPOCH_ASSERT(); 435 436 if (inp != NULL) { 437 INP_LOCK_ASSERT(inp); 438 M_SETFIB(m, inp->inp_inc.inc_fibnum); 439 if ((flags & IP_NODEFAULTFLOWID) == 0) { 440 /* Unconditionally set flowid. */ 441 m->m_pkthdr.flowid = inp->inp_flowid; 442 M_HASHTYPE_SET(m, inp->inp_flowtype); 443 } 444 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 445 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 446 INP_2PCP_SHIFT; 447 #ifdef NUMA 448 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 449 #endif 450 } 451 452 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 453 /* 454 * IPSec checking which handles several cases. 455 * FAST IPSEC: We re-injected the packet. 456 * XXX: need scope argument. 457 */ 458 if (IPSEC_ENABLED(ipv6)) { 459 m = mb_unmapped_to_ext(m); 460 if (m == NULL) { 461 IP6STAT_INC(ip6s_odropped); 462 error = ENOBUFS; 463 goto bad; 464 } 465 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 466 if (error == EINPROGRESS) 467 error = 0; 468 goto done; 469 } 470 } 471 #endif /* IPSEC */ 472 473 /* Source address validation. */ 474 ip6 = mtod(m, struct ip6_hdr *); 475 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 476 (flags & IPV6_UNSPECSRC) == 0) { 477 error = EOPNOTSUPP; 478 IP6STAT_INC(ip6s_badscope); 479 goto bad; 480 } 481 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 482 error = EOPNOTSUPP; 483 IP6STAT_INC(ip6s_badscope); 484 goto bad; 485 } 486 487 /* 488 * If we are given packet options to add extension headers prepare them. 489 * Calculate the total length of the extension header chain. 490 * Keep the length of the unfragmentable part for fragmentation. 491 */ 492 bzero(&exthdrs, sizeof(exthdrs)); 493 optlen = optvalid = 0; 494 unfragpartlen = sizeof(struct ip6_hdr); 495 if (opt) { 496 optvalid = opt->ip6po_valid; 497 498 /* Hop-by-Hop options header. */ 499 if ((optvalid & IP6PO_VALID_HBH) != 0) 500 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen); 501 502 /* Destination options header (1st part). */ 503 if ((optvalid & IP6PO_VALID_RHINFO) != 0) { 504 #ifndef RTHDR_SUPPORT_IMPLEMENTED 505 /* 506 * If there is a routing header, discard the packet 507 * right away here. RH0/1 are obsolete and we do not 508 * currently support RH2/3/4. 509 * People trying to use RH253/254 may want to disable 510 * this check. 511 * The moment we do support any routing header (again) 512 * this block should check the routing type more 513 * selectively. 514 */ 515 error = EINVAL; 516 goto bad; 517 #endif 518 519 /* 520 * Destination options header (1st part). 521 * This only makes sense with a routing header. 522 * See Section 9.2 of RFC 3542. 523 * Disabling this part just for MIP6 convenience is 524 * a bad idea. We need to think carefully about a 525 * way to make the advanced API coexist with MIP6 526 * options, which might automatically be inserted in 527 * the kernel. 528 */ 529 if ((optvalid & IP6PO_VALID_DEST1) != 0) 530 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1, 531 optlen); 532 } 533 /* Routing header. */ 534 if ((optvalid & IP6PO_VALID_RHINFO) != 0) 535 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen); 536 537 unfragpartlen += optlen; 538 539 /* 540 * NOTE: we don't add AH/ESP length here (done in 541 * ip6_ipsec_output()). 542 */ 543 544 /* Destination options header (2nd part). */ 545 if ((optvalid & IP6PO_VALID_DEST2) != 0) 546 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen); 547 } 548 549 /* 550 * If there is at least one extension header, 551 * separate IP6 header from the payload. 552 */ 553 hdrsplit = false; 554 if (optlen) { 555 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 556 m = NULL; 557 goto freehdrs; 558 } 559 m = exthdrs.ip6e_ip6; 560 ip6 = mtod(m, struct ip6_hdr *); 561 hdrsplit = true; 562 } 563 564 /* Adjust mbuf packet header length. */ 565 m->m_pkthdr.len += optlen; 566 plen = m->m_pkthdr.len - sizeof(*ip6); 567 568 /* If this is a jumbo payload, insert a jumbo payload option. */ 569 if (plen > IPV6_MAXPACKET) { 570 if (!hdrsplit) { 571 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 572 m = NULL; 573 goto freehdrs; 574 } 575 m = exthdrs.ip6e_ip6; 576 ip6 = mtod(m, struct ip6_hdr *); 577 hdrsplit = true; 578 } 579 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 580 goto freehdrs; 581 ip6->ip6_plen = 0; 582 } else 583 ip6->ip6_plen = htons(plen); 584 nexthdrp = &ip6->ip6_nxt; 585 586 if (optlen) { 587 /* 588 * Concatenate headers and fill in next header fields. 589 * Here we have, on "m" 590 * IPv6 payload 591 * and we insert headers accordingly. 592 * Finally, we should be getting: 593 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]. 594 * 595 * During the header composing process "m" points to IPv6 596 * header. "mprev" points to an extension header prior to esp. 597 */ 598 mprev = m; 599 600 /* 601 * We treat dest2 specially. This makes IPsec processing 602 * much easier. The goal here is to make mprev point the 603 * mbuf prior to dest2. 604 * 605 * Result: IPv6 dest2 payload. 606 * m and mprev will point to IPv6 header. 607 */ 608 if (exthdrs.ip6e_dest2) { 609 if (!hdrsplit) 610 panic("%s:%d: assumption failed: " 611 "hdr not split: hdrsplit %d exthdrs %p", 612 __func__, __LINE__, hdrsplit, &exthdrs); 613 exthdrs.ip6e_dest2->m_next = m->m_next; 614 m->m_next = exthdrs.ip6e_dest2; 615 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 616 ip6->ip6_nxt = IPPROTO_DSTOPTS; 617 } 618 619 /* 620 * Result: IPv6 hbh dest1 rthdr dest2 payload. 621 * m will point to IPv6 header. mprev will point to the 622 * extension header prior to dest2 (rthdr in the above case). 623 */ 624 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 625 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 626 IPPROTO_DSTOPTS); 627 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 628 IPPROTO_ROUTING); 629 } 630 631 IP6STAT_INC(ip6s_localout); 632 633 /* Route packet. */ 634 ro_pmtu = ro; 635 if ((optvalid & IP6PO_VALID_RHINFO) != 0) 636 ro = &opt->ip6po_route; 637 if (ro != NULL) 638 dst = (struct sockaddr_in6 *)&ro->ro_dst; 639 else 640 dst = &sin6; 641 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 642 643 again: 644 /* 645 * If specified, try to fill in the traffic class field. 646 * Do not override if a non-zero value is already set. 647 * We check the diffserv field and the ECN field separately. 648 */ 649 if ((optvalid & IP6PO_VALID_TC) != 0){ 650 int mask = 0; 651 652 if (IPV6_DSCP(ip6) == 0) 653 mask |= 0xfc; 654 if (IPV6_ECN(ip6) == 0) 655 mask |= 0x03; 656 if (mask != 0) 657 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 658 } 659 660 /* Fill in or override the hop limit field, if necessary. */ 661 if ((optvalid & IP6PO_VALID_HLIM) != 0) 662 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 663 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 664 if (im6o != NULL) 665 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 666 else 667 ip6->ip6_hlim = V_ip6_defmcasthlim; 668 } 669 670 if (ro == NULL || ro->ro_nh == NULL) { 671 bzero(dst, sizeof(*dst)); 672 dst->sin6_family = AF_INET6; 673 dst->sin6_len = sizeof(*dst); 674 dst->sin6_addr = ip6->ip6_dst; 675 } 676 /* 677 * Validate route against routing table changes. 678 * Make sure that the address family is set in route. 679 */ 680 nh = NULL; 681 ifp = NULL; 682 mtu = 0; 683 if (ro != NULL) { 684 if (ro->ro_nh != NULL && inp != NULL) { 685 ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */ 686 NH_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, 687 fibnum); 688 } 689 if (ro->ro_nh != NULL && fwd_tag == NULL && 690 (!NH_IS_VALID(ro->ro_nh) || 691 ro->ro_dst.sin6_family != AF_INET6 || 692 !IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst))) 693 RO_INVALIDATE_CACHE(ro); 694 695 if (ro->ro_nh != NULL && fwd_tag == NULL && 696 ro->ro_dst.sin6_family == AF_INET6 && 697 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 698 /* Nexthop is valid and contains valid ifp */ 699 nh = ro->ro_nh; 700 } else { 701 if (ro->ro_lle) 702 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 703 ro->ro_lle = NULL; 704 if (fwd_tag == NULL) { 705 bzero(&dst_sa, sizeof(dst_sa)); 706 dst_sa.sin6_family = AF_INET6; 707 dst_sa.sin6_len = sizeof(dst_sa); 708 dst_sa.sin6_addr = ip6->ip6_dst; 709 } 710 error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, 711 &nh, fibnum, m->m_pkthdr.flowid); 712 if (error != 0) { 713 IP6STAT_INC(ip6s_noroute); 714 if (ifp != NULL) 715 in6_ifstat_inc(ifp, ifs6_out_discard); 716 goto bad; 717 } 718 /* 719 * At this point at least @ifp is not NULL 720 * Can be the case when dst is multicast, link-local or 721 * interface is explicitly specificed by the caller. 722 */ 723 } 724 if (nh == NULL) { 725 /* 726 * If in6_selectroute() does not return a nexthop 727 * dst may not have been updated. 728 */ 729 *dst = dst_sa; /* XXX */ 730 origifp = ifp; 731 mtu = ifp->if_mtu; 732 } else { 733 ifp = nh->nh_ifp; 734 origifp = nh->nh_aifp; 735 ia = (struct in6_ifaddr *)(nh->nh_ifa); 736 counter_u64_add(nh->nh_pksent, 1); 737 } 738 } else { 739 struct nhop_object *nh; 740 struct in6_addr kdst; 741 uint32_t scopeid; 742 743 if (fwd_tag == NULL) { 744 bzero(&dst_sa, sizeof(dst_sa)); 745 dst_sa.sin6_family = AF_INET6; 746 dst_sa.sin6_len = sizeof(dst_sa); 747 dst_sa.sin6_addr = ip6->ip6_dst; 748 } 749 750 if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) && 751 im6o != NULL && 752 (ifp = im6o->im6o_multicast_ifp) != NULL) { 753 /* We do not need a route lookup. */ 754 *dst = dst_sa; /* XXX */ 755 origifp = ifp; 756 goto nonh6lookup; 757 } 758 759 in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid); 760 761 if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) || 762 IN6_IS_ADDR_MC_NODELOCAL(&dst_sa.sin6_addr)) { 763 if (scopeid > 0) { 764 ifp = in6_getlinkifnet(scopeid); 765 if (ifp == NULL) { 766 error = EHOSTUNREACH; 767 goto bad; 768 } 769 *dst = dst_sa; /* XXX */ 770 origifp = ifp; 771 goto nonh6lookup; 772 } 773 } 774 775 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 776 m->m_pkthdr.flowid); 777 if (nh == NULL) { 778 IP6STAT_INC(ip6s_noroute); 779 /* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */ 780 error = EHOSTUNREACH; 781 goto bad; 782 } 783 784 ifp = nh->nh_ifp; 785 origifp = nh->nh_aifp; 786 ia = ifatoia6(nh->nh_ifa); 787 if (nh->nh_flags & NHF_GATEWAY) 788 dst->sin6_addr = nh->gw6_sa.sin6_addr; 789 else if (fwd_tag != NULL) 790 dst->sin6_addr = dst_sa.sin6_addr; 791 nonh6lookup: 792 ; 793 } 794 /* 795 * At this point ifp MUST be pointing to the valid transmit ifp. 796 * origifp MUST be valid and pointing to either the same ifp or, 797 * in case of loopback output, to the interface which ip6_src 798 * belongs to. 799 * Examples: 800 * fe80::1%em0 -> fe80::2%em0 -> ifp=em0, origifp=em0 801 * fe80::1%em0 -> fe80::1%em0 -> ifp=lo0, origifp=em0 802 * ::1 -> ::1 -> ifp=lo0, origifp=lo0 803 * 804 * mtu can be 0 and will be refined later. 805 */ 806 KASSERT((ifp != NULL), ("output interface must not be NULL")); 807 KASSERT((origifp != NULL), ("output address interface must not be NULL")); 808 809 if ((flags & IPV6_FORWARDING) == 0) { 810 /* XXX: the FORWARDING flag can be set for mrouting. */ 811 in6_ifstat_inc(ifp, ifs6_out_request); 812 } 813 814 /* Setup data structures for scope ID checks. */ 815 src0 = ip6->ip6_src; 816 bzero(&src_sa, sizeof(src_sa)); 817 src_sa.sin6_family = AF_INET6; 818 src_sa.sin6_len = sizeof(src_sa); 819 src_sa.sin6_addr = ip6->ip6_src; 820 821 dst0 = ip6->ip6_dst; 822 /* Re-initialize to be sure. */ 823 bzero(&dst_sa, sizeof(dst_sa)); 824 dst_sa.sin6_family = AF_INET6; 825 dst_sa.sin6_len = sizeof(dst_sa); 826 dst_sa.sin6_addr = ip6->ip6_dst; 827 828 /* Check for valid scope ID. */ 829 if (in6_setscope(&src0, origifp, &zone) == 0 && 830 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && 831 in6_setscope(&dst0, origifp, &zone) == 0 && 832 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { 833 /* 834 * The outgoing interface is in the zone of the source 835 * and destination addresses. 836 * 837 */ 838 } else if ((origifp->if_flags & IFF_LOOPBACK) == 0 || 839 sa6_recoverscope(&src_sa) != 0 || 840 sa6_recoverscope(&dst_sa) != 0 || 841 dst_sa.sin6_scope_id == 0 || 842 (src_sa.sin6_scope_id != 0 && 843 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || 844 ifnet_byindex(dst_sa.sin6_scope_id) == NULL) { 845 /* 846 * If the destination network interface is not a 847 * loopback interface, or the destination network 848 * address has no scope ID, or the source address has 849 * a scope ID set which is different from the 850 * destination address one, or there is no network 851 * interface representing this scope ID, the address 852 * pair is considered invalid. 853 */ 854 IP6STAT_INC(ip6s_badscope); 855 in6_ifstat_inc(origifp, ifs6_out_discard); 856 if (error == 0) 857 error = EHOSTUNREACH; /* XXX */ 858 goto bad; 859 } 860 /* All scope ID checks are successful. */ 861 862 if (nh && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 863 if ((optvalid & IP6PO_VALID_NHINFO) != 0) { 864 /* 865 * The nexthop is explicitly specified by the 866 * application. We assume the next hop is an IPv6 867 * address. 868 */ 869 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 870 } 871 else if ((nh->nh_flags & NHF_GATEWAY)) 872 dst = &nh->gw6_sa; 873 } 874 875 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 876 m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */ 877 } else { 878 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 879 in6_ifstat_inc(ifp, ifs6_out_mcast); 880 881 /* Confirm that the outgoing interface supports multicast. */ 882 if (!(ifp->if_flags & IFF_MULTICAST)) { 883 IP6STAT_INC(ip6s_noroute); 884 in6_ifstat_inc(ifp, ifs6_out_discard); 885 error = ENETUNREACH; 886 goto bad; 887 } 888 if ((im6o == NULL && in6_mcast_loop) || 889 (im6o && im6o->im6o_multicast_loop)) { 890 /* 891 * Loop back multicast datagram if not expressly 892 * forbidden to do so, even if we have not joined 893 * the address; protocols will filter it later, 894 * thus deferring a hash lookup and lock acquisition 895 * at the expense of an m_copym(). 896 */ 897 ip6_mloopback(ifp, m); 898 } else { 899 /* 900 * If we are acting as a multicast router, perform 901 * multicast forwarding as if the packet had just 902 * arrived on the interface to which we are about 903 * to send. The multicast forwarding function 904 * recursively calls this function, using the 905 * IPV6_FORWARDING flag to prevent infinite recursion. 906 * 907 * Multicasts that are looped back by ip6_mloopback(), 908 * above, will be forwarded by the ip6_input() routine, 909 * if necessary. 910 */ 911 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 912 /* 913 * XXX: ip6_mforward expects that rcvif is NULL 914 * when it is called from the originating path. 915 * However, it may not always be the case. 916 */ 917 m->m_pkthdr.rcvif = NULL; 918 if (ip6_mforward(ip6, ifp, m) != 0) { 919 m_freem(m); 920 goto done; 921 } 922 } 923 } 924 /* 925 * Multicasts with a hoplimit of zero may be looped back, 926 * above, but must not be transmitted on a network. 927 * Also, multicasts addressed to the loopback interface 928 * are not sent -- the above call to ip6_mloopback() will 929 * loop back a copy if this host actually belongs to the 930 * destination group on the loopback interface. 931 */ 932 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 933 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 934 m_freem(m); 935 goto done; 936 } 937 } 938 939 /* 940 * Fill the outgoing inteface to tell the upper layer 941 * to increment per-interface statistics. 942 */ 943 if (ifpp) 944 *ifpp = ifp; 945 946 /* Determine path MTU. */ 947 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 948 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 949 goto bad; 950 KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p " 951 "alwaysfrag %d fibnum %u\n", __func__, __LINE__, mtu, ro_pmtu, ro, 952 ifp, alwaysfrag, fibnum)); 953 954 /* 955 * The caller of this function may specify to use the minimum MTU 956 * in some cases. 957 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 958 * setting. The logic is a bit complicated; by default, unicast 959 * packets will follow path MTU while multicast packets will be sent at 960 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 961 * including unicast ones will be sent at the minimum MTU. Multicast 962 * packets will always be sent at the minimum MTU unless 963 * IP6PO_MINMTU_DISABLE is explicitly specified. 964 * See RFC 3542 for more details. 965 */ 966 if (mtu > IPV6_MMTU) { 967 if ((flags & IPV6_MINMTU)) 968 mtu = IPV6_MMTU; 969 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 970 mtu = IPV6_MMTU; 971 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 972 (opt == NULL || 973 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 974 mtu = IPV6_MMTU; 975 } 976 } 977 978 /* 979 * Clear embedded scope identifiers if necessary. 980 * in6_clearscope() will touch the addresses only when necessary. 981 */ 982 in6_clearscope(&ip6->ip6_src); 983 in6_clearscope(&ip6->ip6_dst); 984 985 /* 986 * If the outgoing packet contains a hop-by-hop options header, 987 * it must be examined and processed even by the source node. 988 * (RFC 2460, section 4.) 989 */ 990 if (exthdrs.ip6e_hbh) { 991 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 992 u_int32_t dummy; /* XXX unused */ 993 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 994 995 #ifdef DIAGNOSTIC 996 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 997 panic("ip6e_hbh is not contiguous"); 998 #endif 999 /* 1000 * XXX: if we have to send an ICMPv6 error to the sender, 1001 * we need the M_LOOP flag since icmp6_error() expects 1002 * the IPv6 and the hop-by-hop options header are 1003 * contiguous unless the flag is set. 1004 */ 1005 m->m_flags |= M_LOOP; 1006 m->m_pkthdr.rcvif = ifp; 1007 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 1008 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 1009 &dummy, &plen) < 0) { 1010 /* m was already freed at this point. */ 1011 error = EINVAL;/* better error? */ 1012 goto done; 1013 } 1014 m->m_flags &= ~M_LOOP; /* XXX */ 1015 m->m_pkthdr.rcvif = NULL; 1016 } 1017 1018 /* Jump over all PFIL processing if hooks are not active. */ 1019 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head)) 1020 goto passout; 1021 1022 odst = ip6->ip6_dst; 1023 /* Run through list of hooks for output packets. */ 1024 switch (pfil_mbuf_out(V_inet6_pfil_head, &m, ifp, inp)) { 1025 case PFIL_PASS: 1026 ip6 = mtod(m, struct ip6_hdr *); 1027 break; 1028 case PFIL_DROPPED: 1029 error = EACCES; 1030 /* FALLTHROUGH */ 1031 case PFIL_CONSUMED: 1032 goto done; 1033 } 1034 1035 needfiblookup = 0; 1036 /* See if destination IP address was changed by packet filter. */ 1037 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 1038 m->m_flags |= M_SKIP_FIREWALL; 1039 /* If destination is now ourself drop to ip6_input(). */ 1040 if (in6_localip(&ip6->ip6_dst)) { 1041 m->m_flags |= M_FASTFWD_OURS; 1042 if (m->m_pkthdr.rcvif == NULL) 1043 m->m_pkthdr.rcvif = V_loif; 1044 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1045 m->m_pkthdr.csum_flags |= 1046 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1047 m->m_pkthdr.csum_data = 0xffff; 1048 } 1049 #if defined(SCTP) || defined(SCTP_SUPPORT) 1050 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1051 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1052 #endif 1053 error = netisr_queue(NETISR_IPV6, m); 1054 goto done; 1055 } else { 1056 if (ro != NULL) 1057 RO_INVALIDATE_CACHE(ro); 1058 needfiblookup = 1; /* Redo the routing table lookup. */ 1059 } 1060 } 1061 /* See if fib was changed by packet filter. */ 1062 if (fibnum != M_GETFIB(m)) { 1063 m->m_flags |= M_SKIP_FIREWALL; 1064 fibnum = M_GETFIB(m); 1065 if (ro != NULL) 1066 RO_INVALIDATE_CACHE(ro); 1067 needfiblookup = 1; 1068 } 1069 if (needfiblookup) 1070 goto again; 1071 1072 /* See if local, if yes, send it to netisr. */ 1073 if (m->m_flags & M_FASTFWD_OURS) { 1074 if (m->m_pkthdr.rcvif == NULL) 1075 m->m_pkthdr.rcvif = V_loif; 1076 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1077 m->m_pkthdr.csum_flags |= 1078 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1079 m->m_pkthdr.csum_data = 0xffff; 1080 } 1081 #if defined(SCTP) || defined(SCTP_SUPPORT) 1082 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1083 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1084 #endif 1085 error = netisr_queue(NETISR_IPV6, m); 1086 goto done; 1087 } 1088 /* Or forward to some other address? */ 1089 if ((m->m_flags & M_IP6_NEXTHOP) && 1090 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 1091 if (ro != NULL) 1092 dst = (struct sockaddr_in6 *)&ro->ro_dst; 1093 else 1094 dst = &sin6; 1095 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 1096 m->m_flags |= M_SKIP_FIREWALL; 1097 m->m_flags &= ~M_IP6_NEXTHOP; 1098 m_tag_delete(m, fwd_tag); 1099 goto again; 1100 } 1101 1102 passout: 1103 if (vlan_pcp > -1) 1104 EVL_APPLY_PRI(m, vlan_pcp); 1105 1106 /* Ensure the packet data is mapped if the interface requires it. */ 1107 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 1108 m = mb_unmapped_to_ext(m); 1109 if (m == NULL) { 1110 IP6STAT_INC(ip6s_odropped); 1111 return (ENOBUFS); 1112 } 1113 } 1114 1115 /* 1116 * Send the packet to the outgoing interface. 1117 * If necessary, do IPv6 fragmentation before sending. 1118 * 1119 * The logic here is rather complex: 1120 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 1121 * 1-a: send as is if tlen <= path mtu 1122 * 1-b: fragment if tlen > path mtu 1123 * 1124 * 2: if user asks us not to fragment (dontfrag == 1) 1125 * 2-a: send as is if tlen <= interface mtu 1126 * 2-b: error if tlen > interface mtu 1127 * 1128 * 3: if we always need to attach fragment header (alwaysfrag == 1) 1129 * always fragment 1130 * 1131 * 4: if dontfrag == 1 && alwaysfrag == 1 1132 * error, as we cannot handle this conflicting request. 1133 */ 1134 sw_csum = m->m_pkthdr.csum_flags; 1135 if (!hdrsplit) { 1136 tso = ((sw_csum & ifp->if_hwassist & 1137 (CSUM_TSO | CSUM_INNER_TSO)) != 0) ? 1 : 0; 1138 sw_csum &= ~ifp->if_hwassist; 1139 } else 1140 tso = 0; 1141 /* 1142 * If we added extension headers, we will not do TSO and calculate the 1143 * checksums ourselves for now. 1144 * XXX-BZ Need a framework to know when the NIC can handle it, even 1145 * with ext. hdrs. 1146 */ 1147 ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen); 1148 /* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */ 1149 tlen = m->m_pkthdr.len; 1150 1151 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 1152 dontfrag = 1; 1153 else 1154 dontfrag = 0; 1155 if (dontfrag && alwaysfrag) { /* Case 4. */ 1156 /* Conflicting request - can't transmit. */ 1157 error = EMSGSIZE; 1158 goto bad; 1159 } 1160 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* Case 2-b. */ 1161 /* 1162 * Even if the DONTFRAG option is specified, we cannot send the 1163 * packet when the data length is larger than the MTU of the 1164 * outgoing interface. 1165 * Notify the error by sending IPV6_PATHMTU ancillary data if 1166 * application wanted to know the MTU value. Also return an 1167 * error code (this is not described in the API spec). 1168 */ 1169 if (inp != NULL) 1170 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 1171 error = EMSGSIZE; 1172 goto bad; 1173 } 1174 1175 /* Transmit packet without fragmentation. */ 1176 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* Cases 1-a and 2-a. */ 1177 struct in6_ifaddr *ia6; 1178 1179 ip6 = mtod(m, struct ip6_hdr *); 1180 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1181 if (ia6) { 1182 /* Record statistics for this interface address. */ 1183 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 1184 counter_u64_add(ia6->ia_ifa.ifa_obytes, 1185 m->m_pkthdr.len); 1186 } 1187 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1188 (flags & IP_NO_SND_TAG_RL) ? false : true); 1189 goto done; 1190 } 1191 1192 /* Try to fragment the packet. Cases 1-b and 3. */ 1193 if (mtu < IPV6_MMTU) { 1194 /* Path MTU cannot be less than IPV6_MMTU. */ 1195 error = EMSGSIZE; 1196 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1197 goto bad; 1198 } else if (ip6->ip6_plen == 0) { 1199 /* Jumbo payload cannot be fragmented. */ 1200 error = EMSGSIZE; 1201 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1202 goto bad; 1203 } else { 1204 u_char nextproto; 1205 1206 /* 1207 * Too large for the destination or interface; 1208 * fragment if possible. 1209 * Must be able to put at least 8 bytes per fragment. 1210 */ 1211 if (mtu > IPV6_MAXPACKET) 1212 mtu = IPV6_MAXPACKET; 1213 1214 len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7; 1215 if (len < 8) { 1216 error = EMSGSIZE; 1217 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1218 goto bad; 1219 } 1220 1221 /* 1222 * If the interface will not calculate checksums on 1223 * fragmented packets, then do it here. 1224 * XXX-BZ handle the hw offloading case. Need flags. 1225 */ 1226 ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags, plen, 1227 optlen); 1228 1229 /* 1230 * Change the next header field of the last header in the 1231 * unfragmentable part. 1232 */ 1233 if (exthdrs.ip6e_rthdr) { 1234 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1235 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1236 } else if (exthdrs.ip6e_dest1) { 1237 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1238 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1239 } else if (exthdrs.ip6e_hbh) { 1240 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1241 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1242 } else { 1243 ip6 = mtod(m, struct ip6_hdr *); 1244 nextproto = ip6->ip6_nxt; 1245 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1246 } 1247 1248 /* 1249 * Loop through length of segment after first fragment, 1250 * make new header and copy data of each part and link onto 1251 * chain. 1252 */ 1253 m0 = m; 1254 id = htonl(ip6_randomid()); 1255 error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id); 1256 if (error != 0) 1257 goto sendorfree; 1258 1259 in6_ifstat_inc(ifp, ifs6_out_fragok); 1260 } 1261 1262 /* Remove leading garbage. */ 1263 sendorfree: 1264 m = m0->m_nextpkt; 1265 m0->m_nextpkt = 0; 1266 m_freem(m0); 1267 for (; m; m = m0) { 1268 m0 = m->m_nextpkt; 1269 m->m_nextpkt = 0; 1270 if (error == 0) { 1271 /* Record statistics for this interface address. */ 1272 if (ia) { 1273 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1274 counter_u64_add(ia->ia_ifa.ifa_obytes, 1275 m->m_pkthdr.len); 1276 } 1277 if (vlan_pcp > -1) 1278 EVL_APPLY_PRI(m, vlan_pcp); 1279 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1280 true); 1281 } else 1282 m_freem(m); 1283 } 1284 1285 if (error == 0) 1286 IP6STAT_INC(ip6s_fragmented); 1287 1288 done: 1289 return (error); 1290 1291 freehdrs: 1292 m_freem(exthdrs.ip6e_hbh); /* m_freem() checks if mbuf is NULL. */ 1293 m_freem(exthdrs.ip6e_dest1); 1294 m_freem(exthdrs.ip6e_rthdr); 1295 m_freem(exthdrs.ip6e_dest2); 1296 /* FALLTHROUGH */ 1297 bad: 1298 if (m) 1299 m_freem(m); 1300 goto done; 1301 } 1302 1303 static int 1304 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1305 { 1306 struct mbuf *m; 1307 1308 if (hlen > MCLBYTES) 1309 return (ENOBUFS); /* XXX */ 1310 1311 if (hlen > MLEN) 1312 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1313 else 1314 m = m_get(M_NOWAIT, MT_DATA); 1315 if (m == NULL) 1316 return (ENOBUFS); 1317 m->m_len = hlen; 1318 if (hdr) 1319 bcopy(hdr, mtod(m, caddr_t), hlen); 1320 1321 *mp = m; 1322 return (0); 1323 } 1324 1325 /* 1326 * Insert jumbo payload option. 1327 */ 1328 static int 1329 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1330 { 1331 struct mbuf *mopt; 1332 u_char *optbuf; 1333 u_int32_t v; 1334 1335 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1336 1337 /* 1338 * If there is no hop-by-hop options header, allocate new one. 1339 * If there is one but it doesn't have enough space to store the 1340 * jumbo payload option, allocate a cluster to store the whole options. 1341 * Otherwise, use it to store the options. 1342 */ 1343 if (exthdrs->ip6e_hbh == NULL) { 1344 mopt = m_get(M_NOWAIT, MT_DATA); 1345 if (mopt == NULL) 1346 return (ENOBUFS); 1347 mopt->m_len = JUMBOOPTLEN; 1348 optbuf = mtod(mopt, u_char *); 1349 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1350 exthdrs->ip6e_hbh = mopt; 1351 } else { 1352 struct ip6_hbh *hbh; 1353 1354 mopt = exthdrs->ip6e_hbh; 1355 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1356 /* 1357 * XXX assumption: 1358 * - exthdrs->ip6e_hbh is not referenced from places 1359 * other than exthdrs. 1360 * - exthdrs->ip6e_hbh is not an mbuf chain. 1361 */ 1362 int oldoptlen = mopt->m_len; 1363 struct mbuf *n; 1364 1365 /* 1366 * XXX: give up if the whole (new) hbh header does 1367 * not fit even in an mbuf cluster. 1368 */ 1369 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1370 return (ENOBUFS); 1371 1372 /* 1373 * As a consequence, we must always prepare a cluster 1374 * at this point. 1375 */ 1376 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1377 if (n == NULL) 1378 return (ENOBUFS); 1379 n->m_len = oldoptlen + JUMBOOPTLEN; 1380 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1381 oldoptlen); 1382 optbuf = mtod(n, caddr_t) + oldoptlen; 1383 m_freem(mopt); 1384 mopt = exthdrs->ip6e_hbh = n; 1385 } else { 1386 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1387 mopt->m_len += JUMBOOPTLEN; 1388 } 1389 optbuf[0] = IP6OPT_PADN; 1390 optbuf[1] = 1; 1391 1392 /* 1393 * Adjust the header length according to the pad and 1394 * the jumbo payload option. 1395 */ 1396 hbh = mtod(mopt, struct ip6_hbh *); 1397 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1398 } 1399 1400 /* fill in the option. */ 1401 optbuf[2] = IP6OPT_JUMBO; 1402 optbuf[3] = 4; 1403 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1404 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1405 1406 /* finally, adjust the packet header length */ 1407 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1408 1409 return (0); 1410 #undef JUMBOOPTLEN 1411 } 1412 1413 /* 1414 * Insert fragment header and copy unfragmentable header portions. 1415 */ 1416 static int 1417 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1418 struct ip6_frag **frghdrp) 1419 { 1420 struct mbuf *n, *mlast; 1421 1422 if (hlen > sizeof(struct ip6_hdr)) { 1423 n = m_copym(m0, sizeof(struct ip6_hdr), 1424 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1425 if (n == NULL) 1426 return (ENOBUFS); 1427 m->m_next = n; 1428 } else 1429 n = m; 1430 1431 /* Search for the last mbuf of unfragmentable part. */ 1432 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1433 ; 1434 1435 if (M_WRITABLE(mlast) && 1436 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1437 /* use the trailing space of the last mbuf for the fragment hdr */ 1438 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1439 mlast->m_len); 1440 mlast->m_len += sizeof(struct ip6_frag); 1441 m->m_pkthdr.len += sizeof(struct ip6_frag); 1442 } else { 1443 /* allocate a new mbuf for the fragment header */ 1444 struct mbuf *mfrg; 1445 1446 mfrg = m_get(M_NOWAIT, MT_DATA); 1447 if (mfrg == NULL) 1448 return (ENOBUFS); 1449 mfrg->m_len = sizeof(struct ip6_frag); 1450 *frghdrp = mtod(mfrg, struct ip6_frag *); 1451 mlast->m_next = mfrg; 1452 } 1453 1454 return (0); 1455 } 1456 1457 /* 1458 * Calculates IPv6 path mtu for destination @dst. 1459 * Resulting MTU is stored in @mtup. 1460 * 1461 * Returns 0 on success. 1462 */ 1463 static int 1464 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1465 { 1466 struct epoch_tracker et; 1467 struct nhop_object *nh; 1468 struct in6_addr kdst; 1469 uint32_t scopeid; 1470 int error; 1471 1472 in6_splitscope(dst, &kdst, &scopeid); 1473 1474 NET_EPOCH_ENTER(et); 1475 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1476 if (nh != NULL) 1477 error = ip6_calcmtu(nh->nh_ifp, dst, nh->nh_mtu, mtup, NULL, 0); 1478 else 1479 error = EHOSTUNREACH; 1480 NET_EPOCH_EXIT(et); 1481 1482 return (error); 1483 } 1484 1485 /* 1486 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1487 * and cached data in @ro_pmtu. 1488 * MTU from (successful) route lookup is saved (along with dst) 1489 * inside @ro_pmtu to avoid subsequent route lookups after packet 1490 * filter processing. 1491 * 1492 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1493 * Returns 0 on success. 1494 */ 1495 static int 1496 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1497 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1498 int *alwaysfragp, u_int fibnum, u_int proto) 1499 { 1500 struct nhop_object *nh; 1501 struct in6_addr kdst; 1502 uint32_t scopeid; 1503 struct sockaddr_in6 *sa6_dst, sin6; 1504 u_long mtu; 1505 1506 NET_EPOCH_ASSERT(); 1507 1508 mtu = 0; 1509 if (ro_pmtu == NULL || do_lookup) { 1510 /* 1511 * Here ro_pmtu has final destination address, while 1512 * ro might represent immediate destination. 1513 * Use ro_pmtu destination since mtu might differ. 1514 */ 1515 if (ro_pmtu != NULL) { 1516 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1517 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1518 ro_pmtu->ro_mtu = 0; 1519 } else 1520 sa6_dst = &sin6; 1521 1522 if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) { 1523 bzero(sa6_dst, sizeof(*sa6_dst)); 1524 sa6_dst->sin6_family = AF_INET6; 1525 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1526 sa6_dst->sin6_addr = *dst; 1527 1528 in6_splitscope(dst, &kdst, &scopeid); 1529 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1530 if (nh != NULL) { 1531 mtu = nh->nh_mtu; 1532 if (ro_pmtu != NULL) 1533 ro_pmtu->ro_mtu = mtu; 1534 } 1535 } else 1536 mtu = ro_pmtu->ro_mtu; 1537 } 1538 1539 if (ro_pmtu != NULL && ro_pmtu->ro_nh != NULL) 1540 mtu = ro_pmtu->ro_nh->nh_mtu; 1541 1542 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1543 } 1544 1545 /* 1546 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1547 * hostcache data for @dst. 1548 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1549 * 1550 * Returns 0 on success. 1551 */ 1552 static int 1553 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1554 u_long *mtup, int *alwaysfragp, u_int proto) 1555 { 1556 u_long mtu = 0; 1557 int alwaysfrag = 0; 1558 int error = 0; 1559 1560 if (rt_mtu > 0) { 1561 u_int32_t ifmtu; 1562 struct in_conninfo inc; 1563 1564 bzero(&inc, sizeof(inc)); 1565 inc.inc_flags |= INC_ISIPV6; 1566 inc.inc6_faddr = *dst; 1567 1568 ifmtu = IN6_LINKMTU(ifp); 1569 1570 /* TCP is known to react to pmtu changes so skip hc */ 1571 if (proto != IPPROTO_TCP) 1572 mtu = tcp_hc_getmtu(&inc); 1573 1574 if (mtu) 1575 mtu = min(mtu, rt_mtu); 1576 else 1577 mtu = rt_mtu; 1578 if (mtu == 0) 1579 mtu = ifmtu; 1580 else if (mtu < IPV6_MMTU) { 1581 /* 1582 * RFC2460 section 5, last paragraph: 1583 * if we record ICMPv6 too big message with 1584 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1585 * or smaller, with framgent header attached. 1586 * (fragment header is needed regardless from the 1587 * packet size, for translators to identify packets) 1588 */ 1589 alwaysfrag = 1; 1590 mtu = IPV6_MMTU; 1591 } 1592 } else if (ifp) { 1593 mtu = IN6_LINKMTU(ifp); 1594 } else 1595 error = EHOSTUNREACH; /* XXX */ 1596 1597 *mtup = mtu; 1598 if (alwaysfragp) 1599 *alwaysfragp = alwaysfrag; 1600 return (error); 1601 } 1602 1603 /* 1604 * IP6 socket option processing. 1605 */ 1606 int 1607 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1608 { 1609 int optdatalen, uproto; 1610 void *optdata; 1611 struct inpcb *inp = sotoinpcb(so); 1612 int error, optval; 1613 int level, op, optname; 1614 int optlen; 1615 struct thread *td; 1616 #ifdef RSS 1617 uint32_t rss_bucket; 1618 int retval; 1619 #endif 1620 1621 /* 1622 * Don't use more than a quarter of mbuf clusters. N.B.: 1623 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1624 * on LP64 architectures, so cast to u_long to avoid undefined 1625 * behavior. ILP32 architectures cannot have nmbclusters 1626 * large enough to overflow for other reasons. 1627 */ 1628 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1629 1630 level = sopt->sopt_level; 1631 op = sopt->sopt_dir; 1632 optname = sopt->sopt_name; 1633 optlen = sopt->sopt_valsize; 1634 td = sopt->sopt_td; 1635 error = 0; 1636 optval = 0; 1637 uproto = (int)so->so_proto->pr_protocol; 1638 1639 if (level != IPPROTO_IPV6) { 1640 error = EINVAL; 1641 1642 if (sopt->sopt_level == SOL_SOCKET && 1643 sopt->sopt_dir == SOPT_SET) { 1644 switch (sopt->sopt_name) { 1645 case SO_SETFIB: 1646 INP_WLOCK(inp); 1647 inp->inp_inc.inc_fibnum = so->so_fibnum; 1648 INP_WUNLOCK(inp); 1649 error = 0; 1650 break; 1651 case SO_MAX_PACING_RATE: 1652 #ifdef RATELIMIT 1653 INP_WLOCK(inp); 1654 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1655 INP_WUNLOCK(inp); 1656 error = 0; 1657 #else 1658 error = EOPNOTSUPP; 1659 #endif 1660 break; 1661 default: 1662 break; 1663 } 1664 } 1665 } else { /* level == IPPROTO_IPV6 */ 1666 switch (op) { 1667 case SOPT_SET: 1668 switch (optname) { 1669 case IPV6_2292PKTOPTIONS: 1670 #ifdef IPV6_PKTOPTIONS 1671 case IPV6_PKTOPTIONS: 1672 #endif 1673 { 1674 struct mbuf *m; 1675 1676 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1677 printf("ip6_ctloutput: mbuf limit hit\n"); 1678 error = ENOBUFS; 1679 break; 1680 } 1681 1682 error = soopt_getm(sopt, &m); /* XXX */ 1683 if (error != 0) 1684 break; 1685 error = soopt_mcopyin(sopt, m); /* XXX */ 1686 if (error != 0) 1687 break; 1688 INP_WLOCK(inp); 1689 error = ip6_pcbopts(&inp->in6p_outputopts, m, 1690 so, sopt); 1691 INP_WUNLOCK(inp); 1692 m_freem(m); /* XXX */ 1693 break; 1694 } 1695 1696 /* 1697 * Use of some Hop-by-Hop options or some 1698 * Destination options, might require special 1699 * privilege. That is, normal applications 1700 * (without special privilege) might be forbidden 1701 * from setting certain options in outgoing packets, 1702 * and might never see certain options in received 1703 * packets. [RFC 2292 Section 6] 1704 * KAME specific note: 1705 * KAME prevents non-privileged users from sending or 1706 * receiving ANY hbh/dst options in order to avoid 1707 * overhead of parsing options in the kernel. 1708 */ 1709 case IPV6_RECVHOPOPTS: 1710 case IPV6_RECVDSTOPTS: 1711 case IPV6_RECVRTHDRDSTOPTS: 1712 if (td != NULL) { 1713 error = priv_check(td, 1714 PRIV_NETINET_SETHDROPTS); 1715 if (error) 1716 break; 1717 } 1718 /* FALLTHROUGH */ 1719 case IPV6_UNICAST_HOPS: 1720 case IPV6_HOPLIMIT: 1721 1722 case IPV6_RECVPKTINFO: 1723 case IPV6_RECVHOPLIMIT: 1724 case IPV6_RECVRTHDR: 1725 case IPV6_RECVPATHMTU: 1726 case IPV6_RECVTCLASS: 1727 case IPV6_RECVFLOWID: 1728 #ifdef RSS 1729 case IPV6_RECVRSSBUCKETID: 1730 #endif 1731 case IPV6_V6ONLY: 1732 case IPV6_AUTOFLOWLABEL: 1733 case IPV6_ORIGDSTADDR: 1734 case IPV6_BINDANY: 1735 case IPV6_VLAN_PCP: 1736 if (optname == IPV6_BINDANY && td != NULL) { 1737 error = priv_check(td, 1738 PRIV_NETINET_BINDANY); 1739 if (error) 1740 break; 1741 } 1742 1743 if (optlen != sizeof(int)) { 1744 error = EINVAL; 1745 break; 1746 } 1747 error = sooptcopyin(sopt, &optval, 1748 sizeof optval, sizeof optval); 1749 if (error) 1750 break; 1751 switch (optname) { 1752 case IPV6_UNICAST_HOPS: 1753 if (optval < -1 || optval >= 256) 1754 error = EINVAL; 1755 else { 1756 /* -1 = kernel default */ 1757 inp->in6p_hops = optval; 1758 if ((inp->inp_vflag & 1759 INP_IPV4) != 0) 1760 inp->inp_ip_ttl = optval; 1761 } 1762 break; 1763 #define OPTSET(bit) \ 1764 do { \ 1765 INP_WLOCK(inp); \ 1766 if (optval) \ 1767 inp->inp_flags |= (bit); \ 1768 else \ 1769 inp->inp_flags &= ~(bit); \ 1770 INP_WUNLOCK(inp); \ 1771 } while (/*CONSTCOND*/ 0) 1772 #define OPTSET2292(bit) \ 1773 do { \ 1774 INP_WLOCK(inp); \ 1775 inp->inp_flags |= IN6P_RFC2292; \ 1776 if (optval) \ 1777 inp->inp_flags |= (bit); \ 1778 else \ 1779 inp->inp_flags &= ~(bit); \ 1780 INP_WUNLOCK(inp); \ 1781 } while (/*CONSTCOND*/ 0) 1782 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1783 1784 #define OPTSET2_N(bit, val) do { \ 1785 if (val) \ 1786 inp->inp_flags2 |= bit; \ 1787 else \ 1788 inp->inp_flags2 &= ~bit; \ 1789 } while (0) 1790 #define OPTSET2(bit, val) do { \ 1791 INP_WLOCK(inp); \ 1792 OPTSET2_N(bit, val); \ 1793 INP_WUNLOCK(inp); \ 1794 } while (0) 1795 #define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0) 1796 #define OPTSET2292_EXCLUSIVE(bit) \ 1797 do { \ 1798 INP_WLOCK(inp); \ 1799 if (OPTBIT(IN6P_RFC2292)) { \ 1800 error = EINVAL; \ 1801 } else { \ 1802 if (optval) \ 1803 inp->inp_flags |= (bit); \ 1804 else \ 1805 inp->inp_flags &= ~(bit); \ 1806 } \ 1807 INP_WUNLOCK(inp); \ 1808 } while (/*CONSTCOND*/ 0) 1809 1810 case IPV6_RECVPKTINFO: 1811 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1812 break; 1813 1814 case IPV6_HOPLIMIT: 1815 { 1816 struct ip6_pktopts **optp; 1817 1818 /* cannot mix with RFC2292 */ 1819 if (OPTBIT(IN6P_RFC2292)) { 1820 error = EINVAL; 1821 break; 1822 } 1823 INP_WLOCK(inp); 1824 if (inp->inp_flags & INP_DROPPED) { 1825 INP_WUNLOCK(inp); 1826 return (ECONNRESET); 1827 } 1828 optp = &inp->in6p_outputopts; 1829 error = ip6_pcbopt(IPV6_HOPLIMIT, 1830 (u_char *)&optval, sizeof(optval), 1831 optp, (td != NULL) ? td->td_ucred : 1832 NULL, uproto); 1833 INP_WUNLOCK(inp); 1834 break; 1835 } 1836 1837 case IPV6_RECVHOPLIMIT: 1838 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1839 break; 1840 1841 case IPV6_RECVHOPOPTS: 1842 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1843 break; 1844 1845 case IPV6_RECVDSTOPTS: 1846 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1847 break; 1848 1849 case IPV6_RECVRTHDRDSTOPTS: 1850 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1851 break; 1852 1853 case IPV6_RECVRTHDR: 1854 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1855 break; 1856 1857 case IPV6_RECVPATHMTU: 1858 /* 1859 * We ignore this option for TCP 1860 * sockets. 1861 * (RFC3542 leaves this case 1862 * unspecified.) 1863 */ 1864 if (uproto != IPPROTO_TCP) 1865 OPTSET(IN6P_MTU); 1866 break; 1867 1868 case IPV6_RECVFLOWID: 1869 OPTSET2(INP_RECVFLOWID, optval); 1870 break; 1871 1872 #ifdef RSS 1873 case IPV6_RECVRSSBUCKETID: 1874 OPTSET2(INP_RECVRSSBUCKETID, optval); 1875 break; 1876 #endif 1877 1878 case IPV6_V6ONLY: 1879 INP_WLOCK(inp); 1880 if (inp->inp_lport || 1881 !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { 1882 /* 1883 * The socket is already bound. 1884 */ 1885 INP_WUNLOCK(inp); 1886 error = EINVAL; 1887 break; 1888 } 1889 if (optval) { 1890 inp->inp_flags |= IN6P_IPV6_V6ONLY; 1891 inp->inp_vflag &= ~INP_IPV4; 1892 } else { 1893 inp->inp_flags &= ~IN6P_IPV6_V6ONLY; 1894 inp->inp_vflag |= INP_IPV4; 1895 } 1896 INP_WUNLOCK(inp); 1897 break; 1898 case IPV6_RECVTCLASS: 1899 /* cannot mix with RFC2292 XXX */ 1900 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1901 break; 1902 case IPV6_AUTOFLOWLABEL: 1903 OPTSET(IN6P_AUTOFLOWLABEL); 1904 break; 1905 1906 case IPV6_ORIGDSTADDR: 1907 OPTSET2(INP_ORIGDSTADDR, optval); 1908 break; 1909 case IPV6_BINDANY: 1910 OPTSET(INP_BINDANY); 1911 break; 1912 case IPV6_VLAN_PCP: 1913 if ((optval >= -1) && (optval <= 1914 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1915 if (optval == -1) { 1916 INP_WLOCK(inp); 1917 inp->inp_flags2 &= 1918 ~(INP_2PCP_SET | 1919 INP_2PCP_MASK); 1920 INP_WUNLOCK(inp); 1921 } else { 1922 INP_WLOCK(inp); 1923 inp->inp_flags2 |= 1924 INP_2PCP_SET; 1925 inp->inp_flags2 &= 1926 ~INP_2PCP_MASK; 1927 inp->inp_flags2 |= 1928 optval << 1929 INP_2PCP_SHIFT; 1930 INP_WUNLOCK(inp); 1931 } 1932 } else 1933 error = EINVAL; 1934 break; 1935 } 1936 break; 1937 1938 case IPV6_TCLASS: 1939 case IPV6_DONTFRAG: 1940 case IPV6_USE_MIN_MTU: 1941 case IPV6_PREFER_TEMPADDR: 1942 if (optlen != sizeof(optval)) { 1943 error = EINVAL; 1944 break; 1945 } 1946 error = sooptcopyin(sopt, &optval, 1947 sizeof optval, sizeof optval); 1948 if (error) 1949 break; 1950 { 1951 struct ip6_pktopts **optp; 1952 INP_WLOCK(inp); 1953 if (inp->inp_flags & INP_DROPPED) { 1954 INP_WUNLOCK(inp); 1955 return (ECONNRESET); 1956 } 1957 optp = &inp->in6p_outputopts; 1958 error = ip6_pcbopt(optname, 1959 (u_char *)&optval, sizeof(optval), 1960 optp, (td != NULL) ? td->td_ucred : 1961 NULL, uproto); 1962 INP_WUNLOCK(inp); 1963 break; 1964 } 1965 1966 case IPV6_2292PKTINFO: 1967 case IPV6_2292HOPLIMIT: 1968 case IPV6_2292HOPOPTS: 1969 case IPV6_2292DSTOPTS: 1970 case IPV6_2292RTHDR: 1971 /* RFC 2292 */ 1972 if (optlen != sizeof(int)) { 1973 error = EINVAL; 1974 break; 1975 } 1976 error = sooptcopyin(sopt, &optval, 1977 sizeof optval, sizeof optval); 1978 if (error) 1979 break; 1980 switch (optname) { 1981 case IPV6_2292PKTINFO: 1982 OPTSET2292(IN6P_PKTINFO); 1983 break; 1984 case IPV6_2292HOPLIMIT: 1985 OPTSET2292(IN6P_HOPLIMIT); 1986 break; 1987 case IPV6_2292HOPOPTS: 1988 /* 1989 * Check super-user privilege. 1990 * See comments for IPV6_RECVHOPOPTS. 1991 */ 1992 if (td != NULL) { 1993 error = priv_check(td, 1994 PRIV_NETINET_SETHDROPTS); 1995 if (error) 1996 return (error); 1997 } 1998 OPTSET2292(IN6P_HOPOPTS); 1999 break; 2000 case IPV6_2292DSTOPTS: 2001 if (td != NULL) { 2002 error = priv_check(td, 2003 PRIV_NETINET_SETHDROPTS); 2004 if (error) 2005 return (error); 2006 } 2007 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 2008 break; 2009 case IPV6_2292RTHDR: 2010 OPTSET2292(IN6P_RTHDR); 2011 break; 2012 } 2013 break; 2014 case IPV6_PKTINFO: 2015 case IPV6_HOPOPTS: 2016 case IPV6_RTHDR: 2017 case IPV6_DSTOPTS: 2018 case IPV6_RTHDRDSTOPTS: 2019 case IPV6_NEXTHOP: 2020 { 2021 /* new advanced API (RFC3542) */ 2022 u_char *optbuf; 2023 u_char optbuf_storage[MCLBYTES]; 2024 int optlen; 2025 struct ip6_pktopts **optp; 2026 2027 /* cannot mix with RFC2292 */ 2028 if (OPTBIT(IN6P_RFC2292)) { 2029 error = EINVAL; 2030 break; 2031 } 2032 2033 /* 2034 * We only ensure valsize is not too large 2035 * here. Further validation will be done 2036 * later. 2037 */ 2038 error = sooptcopyin(sopt, optbuf_storage, 2039 sizeof(optbuf_storage), 0); 2040 if (error) 2041 break; 2042 optlen = sopt->sopt_valsize; 2043 optbuf = optbuf_storage; 2044 INP_WLOCK(inp); 2045 if (inp->inp_flags & INP_DROPPED) { 2046 INP_WUNLOCK(inp); 2047 return (ECONNRESET); 2048 } 2049 optp = &inp->in6p_outputopts; 2050 error = ip6_pcbopt(optname, optbuf, optlen, 2051 optp, (td != NULL) ? td->td_ucred : NULL, 2052 uproto); 2053 INP_WUNLOCK(inp); 2054 break; 2055 } 2056 #undef OPTSET 2057 2058 case IPV6_MULTICAST_IF: 2059 case IPV6_MULTICAST_HOPS: 2060 case IPV6_MULTICAST_LOOP: 2061 case IPV6_JOIN_GROUP: 2062 case IPV6_LEAVE_GROUP: 2063 case IPV6_MSFILTER: 2064 case MCAST_BLOCK_SOURCE: 2065 case MCAST_UNBLOCK_SOURCE: 2066 case MCAST_JOIN_GROUP: 2067 case MCAST_LEAVE_GROUP: 2068 case MCAST_JOIN_SOURCE_GROUP: 2069 case MCAST_LEAVE_SOURCE_GROUP: 2070 error = ip6_setmoptions(inp, sopt); 2071 break; 2072 2073 case IPV6_PORTRANGE: 2074 error = sooptcopyin(sopt, &optval, 2075 sizeof optval, sizeof optval); 2076 if (error) 2077 break; 2078 2079 INP_WLOCK(inp); 2080 switch (optval) { 2081 case IPV6_PORTRANGE_DEFAULT: 2082 inp->inp_flags &= ~(INP_LOWPORT); 2083 inp->inp_flags &= ~(INP_HIGHPORT); 2084 break; 2085 2086 case IPV6_PORTRANGE_HIGH: 2087 inp->inp_flags &= ~(INP_LOWPORT); 2088 inp->inp_flags |= INP_HIGHPORT; 2089 break; 2090 2091 case IPV6_PORTRANGE_LOW: 2092 inp->inp_flags &= ~(INP_HIGHPORT); 2093 inp->inp_flags |= INP_LOWPORT; 2094 break; 2095 2096 default: 2097 error = EINVAL; 2098 break; 2099 } 2100 INP_WUNLOCK(inp); 2101 break; 2102 2103 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2104 case IPV6_IPSEC_POLICY: 2105 if (IPSEC_ENABLED(ipv6)) { 2106 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2107 break; 2108 } 2109 /* FALLTHROUGH */ 2110 #endif /* IPSEC */ 2111 2112 default: 2113 error = ENOPROTOOPT; 2114 break; 2115 } 2116 break; 2117 2118 case SOPT_GET: 2119 switch (optname) { 2120 case IPV6_2292PKTOPTIONS: 2121 #ifdef IPV6_PKTOPTIONS 2122 case IPV6_PKTOPTIONS: 2123 #endif 2124 /* 2125 * RFC3542 (effectively) deprecated the 2126 * semantics of the 2292-style pktoptions. 2127 * Since it was not reliable in nature (i.e., 2128 * applications had to expect the lack of some 2129 * information after all), it would make sense 2130 * to simplify this part by always returning 2131 * empty data. 2132 */ 2133 sopt->sopt_valsize = 0; 2134 break; 2135 2136 case IPV6_RECVHOPOPTS: 2137 case IPV6_RECVDSTOPTS: 2138 case IPV6_RECVRTHDRDSTOPTS: 2139 case IPV6_UNICAST_HOPS: 2140 case IPV6_RECVPKTINFO: 2141 case IPV6_RECVHOPLIMIT: 2142 case IPV6_RECVRTHDR: 2143 case IPV6_RECVPATHMTU: 2144 2145 case IPV6_V6ONLY: 2146 case IPV6_PORTRANGE: 2147 case IPV6_RECVTCLASS: 2148 case IPV6_AUTOFLOWLABEL: 2149 case IPV6_BINDANY: 2150 case IPV6_FLOWID: 2151 case IPV6_FLOWTYPE: 2152 case IPV6_RECVFLOWID: 2153 #ifdef RSS 2154 case IPV6_RSSBUCKETID: 2155 case IPV6_RECVRSSBUCKETID: 2156 #endif 2157 case IPV6_VLAN_PCP: 2158 switch (optname) { 2159 case IPV6_RECVHOPOPTS: 2160 optval = OPTBIT(IN6P_HOPOPTS); 2161 break; 2162 2163 case IPV6_RECVDSTOPTS: 2164 optval = OPTBIT(IN6P_DSTOPTS); 2165 break; 2166 2167 case IPV6_RECVRTHDRDSTOPTS: 2168 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 2169 break; 2170 2171 case IPV6_UNICAST_HOPS: 2172 optval = inp->in6p_hops; 2173 break; 2174 2175 case IPV6_RECVPKTINFO: 2176 optval = OPTBIT(IN6P_PKTINFO); 2177 break; 2178 2179 case IPV6_RECVHOPLIMIT: 2180 optval = OPTBIT(IN6P_HOPLIMIT); 2181 break; 2182 2183 case IPV6_RECVRTHDR: 2184 optval = OPTBIT(IN6P_RTHDR); 2185 break; 2186 2187 case IPV6_RECVPATHMTU: 2188 optval = OPTBIT(IN6P_MTU); 2189 break; 2190 2191 case IPV6_V6ONLY: 2192 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2193 break; 2194 2195 case IPV6_PORTRANGE: 2196 { 2197 int flags; 2198 flags = inp->inp_flags; 2199 if (flags & INP_HIGHPORT) 2200 optval = IPV6_PORTRANGE_HIGH; 2201 else if (flags & INP_LOWPORT) 2202 optval = IPV6_PORTRANGE_LOW; 2203 else 2204 optval = 0; 2205 break; 2206 } 2207 case IPV6_RECVTCLASS: 2208 optval = OPTBIT(IN6P_TCLASS); 2209 break; 2210 2211 case IPV6_AUTOFLOWLABEL: 2212 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2213 break; 2214 2215 case IPV6_ORIGDSTADDR: 2216 optval = OPTBIT2(INP_ORIGDSTADDR); 2217 break; 2218 2219 case IPV6_BINDANY: 2220 optval = OPTBIT(INP_BINDANY); 2221 break; 2222 2223 case IPV6_FLOWID: 2224 optval = inp->inp_flowid; 2225 break; 2226 2227 case IPV6_FLOWTYPE: 2228 optval = inp->inp_flowtype; 2229 break; 2230 2231 case IPV6_RECVFLOWID: 2232 optval = OPTBIT2(INP_RECVFLOWID); 2233 break; 2234 #ifdef RSS 2235 case IPV6_RSSBUCKETID: 2236 retval = 2237 rss_hash2bucket(inp->inp_flowid, 2238 inp->inp_flowtype, 2239 &rss_bucket); 2240 if (retval == 0) 2241 optval = rss_bucket; 2242 else 2243 error = EINVAL; 2244 break; 2245 2246 case IPV6_RECVRSSBUCKETID: 2247 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2248 break; 2249 #endif 2250 2251 2252 case IPV6_VLAN_PCP: 2253 if (OPTBIT2(INP_2PCP_SET)) { 2254 optval = (inp->inp_flags2 & 2255 INP_2PCP_MASK) >> 2256 INP_2PCP_SHIFT; 2257 } else { 2258 optval = -1; 2259 } 2260 break; 2261 } 2262 2263 if (error) 2264 break; 2265 error = sooptcopyout(sopt, &optval, 2266 sizeof optval); 2267 break; 2268 2269 case IPV6_PATHMTU: 2270 { 2271 u_long pmtu = 0; 2272 struct ip6_mtuinfo mtuinfo; 2273 struct in6_addr addr; 2274 2275 if (!(so->so_state & SS_ISCONNECTED)) 2276 return (ENOTCONN); 2277 /* 2278 * XXX: we dot not consider the case of source 2279 * routing, or optional information to specify 2280 * the outgoing interface. 2281 * Copy faddr out of inp to avoid holding lock 2282 * on inp during route lookup. 2283 */ 2284 INP_RLOCK(inp); 2285 bcopy(&inp->in6p_faddr, &addr, sizeof(addr)); 2286 INP_RUNLOCK(inp); 2287 error = ip6_getpmtu_ctl(so->so_fibnum, 2288 &addr, &pmtu); 2289 if (error) 2290 break; 2291 if (pmtu > IPV6_MAXPACKET) 2292 pmtu = IPV6_MAXPACKET; 2293 2294 bzero(&mtuinfo, sizeof(mtuinfo)); 2295 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2296 optdata = (void *)&mtuinfo; 2297 optdatalen = sizeof(mtuinfo); 2298 error = sooptcopyout(sopt, optdata, 2299 optdatalen); 2300 break; 2301 } 2302 2303 case IPV6_2292PKTINFO: 2304 case IPV6_2292HOPLIMIT: 2305 case IPV6_2292HOPOPTS: 2306 case IPV6_2292RTHDR: 2307 case IPV6_2292DSTOPTS: 2308 switch (optname) { 2309 case IPV6_2292PKTINFO: 2310 optval = OPTBIT(IN6P_PKTINFO); 2311 break; 2312 case IPV6_2292HOPLIMIT: 2313 optval = OPTBIT(IN6P_HOPLIMIT); 2314 break; 2315 case IPV6_2292HOPOPTS: 2316 optval = OPTBIT(IN6P_HOPOPTS); 2317 break; 2318 case IPV6_2292RTHDR: 2319 optval = OPTBIT(IN6P_RTHDR); 2320 break; 2321 case IPV6_2292DSTOPTS: 2322 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2323 break; 2324 } 2325 error = sooptcopyout(sopt, &optval, 2326 sizeof optval); 2327 break; 2328 case IPV6_PKTINFO: 2329 case IPV6_HOPOPTS: 2330 case IPV6_RTHDR: 2331 case IPV6_DSTOPTS: 2332 case IPV6_RTHDRDSTOPTS: 2333 case IPV6_NEXTHOP: 2334 case IPV6_TCLASS: 2335 case IPV6_DONTFRAG: 2336 case IPV6_USE_MIN_MTU: 2337 case IPV6_PREFER_TEMPADDR: 2338 error = ip6_getpcbopt(inp, optname, sopt); 2339 break; 2340 2341 case IPV6_MULTICAST_IF: 2342 case IPV6_MULTICAST_HOPS: 2343 case IPV6_MULTICAST_LOOP: 2344 case IPV6_MSFILTER: 2345 error = ip6_getmoptions(inp, sopt); 2346 break; 2347 2348 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2349 case IPV6_IPSEC_POLICY: 2350 if (IPSEC_ENABLED(ipv6)) { 2351 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2352 break; 2353 } 2354 /* FALLTHROUGH */ 2355 #endif /* IPSEC */ 2356 default: 2357 error = ENOPROTOOPT; 2358 break; 2359 } 2360 break; 2361 } 2362 } 2363 return (error); 2364 } 2365 2366 int 2367 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2368 { 2369 int error = 0, optval, optlen; 2370 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2371 struct inpcb *inp = sotoinpcb(so); 2372 int level, op, optname; 2373 2374 level = sopt->sopt_level; 2375 op = sopt->sopt_dir; 2376 optname = sopt->sopt_name; 2377 optlen = sopt->sopt_valsize; 2378 2379 if (level != IPPROTO_IPV6) { 2380 return (EINVAL); 2381 } 2382 2383 switch (optname) { 2384 case IPV6_CHECKSUM: 2385 /* 2386 * For ICMPv6 sockets, no modification allowed for checksum 2387 * offset, permit "no change" values to help existing apps. 2388 * 2389 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2390 * for an ICMPv6 socket will fail." 2391 * The current behavior does not meet RFC3542. 2392 */ 2393 switch (op) { 2394 case SOPT_SET: 2395 if (optlen != sizeof(int)) { 2396 error = EINVAL; 2397 break; 2398 } 2399 error = sooptcopyin(sopt, &optval, sizeof(optval), 2400 sizeof(optval)); 2401 if (error) 2402 break; 2403 if (optval < -1 || (optval % 2) != 0) { 2404 /* 2405 * The API assumes non-negative even offset 2406 * values or -1 as a special value. 2407 */ 2408 error = EINVAL; 2409 } else if (inp->inp_ip_p == IPPROTO_ICMPV6) { 2410 if (optval != icmp6off) 2411 error = EINVAL; 2412 } else 2413 inp->in6p_cksum = optval; 2414 break; 2415 2416 case SOPT_GET: 2417 if (inp->inp_ip_p == IPPROTO_ICMPV6) 2418 optval = icmp6off; 2419 else 2420 optval = inp->in6p_cksum; 2421 2422 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2423 break; 2424 2425 default: 2426 error = EINVAL; 2427 break; 2428 } 2429 break; 2430 2431 default: 2432 error = ENOPROTOOPT; 2433 break; 2434 } 2435 2436 return (error); 2437 } 2438 2439 /* 2440 * Set up IP6 options in pcb for insertion in output packets or 2441 * specifying behavior of outgoing packets. 2442 */ 2443 static int 2444 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2445 struct socket *so, struct sockopt *sopt) 2446 { 2447 struct ip6_pktopts *opt = *pktopt; 2448 int error = 0; 2449 struct thread *td = sopt->sopt_td; 2450 struct epoch_tracker et; 2451 2452 /* turn off any old options. */ 2453 if (opt) { 2454 #ifdef DIAGNOSTIC 2455 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2456 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2457 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2458 printf("ip6_pcbopts: all specified options are cleared.\n"); 2459 #endif 2460 ip6_clearpktopts(opt, -1); 2461 } else { 2462 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2463 if (opt == NULL) 2464 return (ENOMEM); 2465 } 2466 *pktopt = NULL; 2467 2468 if (!m || m->m_len == 0) { 2469 /* 2470 * Only turning off any previous options, regardless of 2471 * whether the opt is just created or given. 2472 */ 2473 free(opt, M_IP6OPT); 2474 return (0); 2475 } 2476 2477 /* set options specified by user. */ 2478 NET_EPOCH_ENTER(et); 2479 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2480 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2481 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2482 free(opt, M_IP6OPT); 2483 NET_EPOCH_EXIT(et); 2484 return (error); 2485 } 2486 NET_EPOCH_EXIT(et); 2487 *pktopt = opt; 2488 return (0); 2489 } 2490 2491 /* 2492 * initialize ip6_pktopts. beware that there are non-zero default values in 2493 * the struct. 2494 */ 2495 void 2496 ip6_initpktopts(struct ip6_pktopts *opt) 2497 { 2498 2499 bzero(opt, sizeof(*opt)); 2500 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2501 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2502 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2503 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2504 } 2505 2506 static int 2507 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2508 struct ucred *cred, int uproto) 2509 { 2510 struct epoch_tracker et; 2511 struct ip6_pktopts *opt; 2512 int ret; 2513 2514 if (*pktopt == NULL) { 2515 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2516 M_NOWAIT); 2517 if (*pktopt == NULL) 2518 return (ENOBUFS); 2519 ip6_initpktopts(*pktopt); 2520 } 2521 opt = *pktopt; 2522 2523 NET_EPOCH_ENTER(et); 2524 ret = ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto); 2525 NET_EPOCH_EXIT(et); 2526 2527 return (ret); 2528 } 2529 2530 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2531 if (pktopt && pktopt->field) { \ 2532 INP_RUNLOCK(inp); \ 2533 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2534 malloc_optdata = true; \ 2535 INP_RLOCK(inp); \ 2536 if (inp->inp_flags & INP_DROPPED) { \ 2537 INP_RUNLOCK(inp); \ 2538 free(optdata, M_TEMP); \ 2539 return (ECONNRESET); \ 2540 } \ 2541 pktopt = inp->in6p_outputopts; \ 2542 if (pktopt && pktopt->field) { \ 2543 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2544 bcopy(pktopt->field, optdata, optdatalen); \ 2545 } else { \ 2546 free(optdata, M_TEMP); \ 2547 optdata = NULL; \ 2548 malloc_optdata = false; \ 2549 } \ 2550 } \ 2551 } while(0) 2552 2553 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2554 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2555 2556 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2557 pktopt->field->sa_len) 2558 2559 static int 2560 ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt) 2561 { 2562 void *optdata = NULL; 2563 bool malloc_optdata = false; 2564 int optdatalen = 0; 2565 int error = 0; 2566 struct in6_pktinfo null_pktinfo; 2567 int deftclass = 0, on; 2568 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2569 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2570 struct ip6_pktopts *pktopt; 2571 2572 INP_RLOCK(inp); 2573 pktopt = inp->in6p_outputopts; 2574 2575 switch (optname) { 2576 case IPV6_PKTINFO: 2577 optdata = (void *)&null_pktinfo; 2578 if (pktopt && pktopt->ip6po_pktinfo) { 2579 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2580 sizeof(null_pktinfo)); 2581 in6_clearscope(&null_pktinfo.ipi6_addr); 2582 } else { 2583 /* XXX: we don't have to do this every time... */ 2584 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2585 } 2586 optdatalen = sizeof(struct in6_pktinfo); 2587 break; 2588 case IPV6_TCLASS: 2589 if (pktopt && pktopt->ip6po_tclass >= 0) 2590 deftclass = pktopt->ip6po_tclass; 2591 optdata = (void *)&deftclass; 2592 optdatalen = sizeof(int); 2593 break; 2594 case IPV6_HOPOPTS: 2595 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2596 break; 2597 case IPV6_RTHDR: 2598 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2599 break; 2600 case IPV6_RTHDRDSTOPTS: 2601 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2602 break; 2603 case IPV6_DSTOPTS: 2604 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2605 break; 2606 case IPV6_NEXTHOP: 2607 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2608 break; 2609 case IPV6_USE_MIN_MTU: 2610 if (pktopt) 2611 defminmtu = pktopt->ip6po_minmtu; 2612 optdata = (void *)&defminmtu; 2613 optdatalen = sizeof(int); 2614 break; 2615 case IPV6_DONTFRAG: 2616 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2617 on = 1; 2618 else 2619 on = 0; 2620 optdata = (void *)&on; 2621 optdatalen = sizeof(on); 2622 break; 2623 case IPV6_PREFER_TEMPADDR: 2624 if (pktopt) 2625 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2626 optdata = (void *)&defpreftemp; 2627 optdatalen = sizeof(int); 2628 break; 2629 default: /* should not happen */ 2630 #ifdef DIAGNOSTIC 2631 panic("ip6_getpcbopt: unexpected option\n"); 2632 #endif 2633 INP_RUNLOCK(inp); 2634 return (ENOPROTOOPT); 2635 } 2636 INP_RUNLOCK(inp); 2637 2638 error = sooptcopyout(sopt, optdata, optdatalen); 2639 if (malloc_optdata) 2640 free(optdata, M_TEMP); 2641 2642 return (error); 2643 } 2644 2645 void 2646 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2647 { 2648 if (pktopt == NULL) 2649 return; 2650 2651 if (optname == -1 || optname == IPV6_PKTINFO) { 2652 if (pktopt->ip6po_pktinfo) 2653 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2654 pktopt->ip6po_pktinfo = NULL; 2655 } 2656 if (optname == -1 || optname == IPV6_HOPLIMIT) { 2657 pktopt->ip6po_hlim = -1; 2658 pktopt->ip6po_valid &= ~IP6PO_VALID_HLIM; 2659 } 2660 if (optname == -1 || optname == IPV6_TCLASS) { 2661 pktopt->ip6po_tclass = -1; 2662 pktopt->ip6po_valid &= ~IP6PO_VALID_TC; 2663 } 2664 if (optname == -1 || optname == IPV6_NEXTHOP) { 2665 if (pktopt->ip6po_nextroute.ro_nh) { 2666 NH_FREE(pktopt->ip6po_nextroute.ro_nh); 2667 pktopt->ip6po_nextroute.ro_nh = NULL; 2668 } 2669 if (pktopt->ip6po_nexthop) 2670 free(pktopt->ip6po_nexthop, M_IP6OPT); 2671 pktopt->ip6po_nexthop = NULL; 2672 pktopt->ip6po_valid &= ~IP6PO_VALID_NHINFO; 2673 } 2674 if (optname == -1 || optname == IPV6_HOPOPTS) { 2675 if (pktopt->ip6po_hbh) 2676 free(pktopt->ip6po_hbh, M_IP6OPT); 2677 pktopt->ip6po_hbh = NULL; 2678 pktopt->ip6po_valid &= ~IP6PO_VALID_HBH; 2679 } 2680 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2681 if (pktopt->ip6po_dest1) 2682 free(pktopt->ip6po_dest1, M_IP6OPT); 2683 pktopt->ip6po_dest1 = NULL; 2684 pktopt->ip6po_valid &= ~IP6PO_VALID_DEST1; 2685 } 2686 if (optname == -1 || optname == IPV6_RTHDR) { 2687 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2688 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2689 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2690 if (pktopt->ip6po_route.ro_nh) { 2691 NH_FREE(pktopt->ip6po_route.ro_nh); 2692 pktopt->ip6po_route.ro_nh = NULL; 2693 } 2694 pktopt->ip6po_valid &= ~IP6PO_VALID_RHINFO; 2695 } 2696 if (optname == -1 || optname == IPV6_DSTOPTS) { 2697 if (pktopt->ip6po_dest2) 2698 free(pktopt->ip6po_dest2, M_IP6OPT); 2699 pktopt->ip6po_dest2 = NULL; 2700 pktopt->ip6po_valid &= ~IP6PO_VALID_DEST2; 2701 } 2702 } 2703 2704 #define PKTOPT_EXTHDRCPY(type) \ 2705 do {\ 2706 if (src->type) {\ 2707 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2708 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2709 if (dst->type == NULL)\ 2710 goto bad;\ 2711 bcopy(src->type, dst->type, hlen);\ 2712 }\ 2713 } while (/*CONSTCOND*/ 0) 2714 2715 static int 2716 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2717 { 2718 if (dst == NULL || src == NULL) { 2719 printf("ip6_clearpktopts: invalid argument\n"); 2720 return (EINVAL); 2721 } 2722 2723 dst->ip6po_hlim = src->ip6po_hlim; 2724 dst->ip6po_tclass = src->ip6po_tclass; 2725 dst->ip6po_flags = src->ip6po_flags; 2726 dst->ip6po_minmtu = src->ip6po_minmtu; 2727 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2728 if (src->ip6po_pktinfo) { 2729 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2730 M_IP6OPT, canwait); 2731 if (dst->ip6po_pktinfo == NULL) 2732 goto bad; 2733 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2734 } 2735 if (src->ip6po_nexthop) { 2736 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2737 M_IP6OPT, canwait); 2738 if (dst->ip6po_nexthop == NULL) 2739 goto bad; 2740 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2741 src->ip6po_nexthop->sa_len); 2742 } 2743 PKTOPT_EXTHDRCPY(ip6po_hbh); 2744 PKTOPT_EXTHDRCPY(ip6po_dest1); 2745 PKTOPT_EXTHDRCPY(ip6po_dest2); 2746 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2747 dst->ip6po_valid = src->ip6po_valid; 2748 return (0); 2749 2750 bad: 2751 ip6_clearpktopts(dst, -1); 2752 return (ENOBUFS); 2753 } 2754 #undef PKTOPT_EXTHDRCPY 2755 2756 struct ip6_pktopts * 2757 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2758 { 2759 int error; 2760 struct ip6_pktopts *dst; 2761 2762 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2763 if (dst == NULL) 2764 return (NULL); 2765 ip6_initpktopts(dst); 2766 2767 if ((error = copypktopts(dst, src, canwait)) != 0) { 2768 free(dst, M_IP6OPT); 2769 return (NULL); 2770 } 2771 2772 return (dst); 2773 } 2774 2775 void 2776 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2777 { 2778 if (pktopt == NULL) 2779 return; 2780 2781 ip6_clearpktopts(pktopt, -1); 2782 2783 free(pktopt, M_IP6OPT); 2784 } 2785 2786 /* 2787 * Set IPv6 outgoing packet options based on advanced API. 2788 */ 2789 int 2790 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2791 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2792 { 2793 struct cmsghdr *cm = NULL; 2794 2795 if (control == NULL || opt == NULL) 2796 return (EINVAL); 2797 2798 /* 2799 * ip6_setpktopt can call ifnet_byindex(), so it's imperative that we 2800 * are in the network epoch here. 2801 */ 2802 NET_EPOCH_ASSERT(); 2803 2804 ip6_initpktopts(opt); 2805 if (stickyopt) { 2806 int error; 2807 2808 /* 2809 * If stickyopt is provided, make a local copy of the options 2810 * for this particular packet, then override them by ancillary 2811 * objects. 2812 * XXX: copypktopts() does not copy the cached route to a next 2813 * hop (if any). This is not very good in terms of efficiency, 2814 * but we can allow this since this option should be rarely 2815 * used. 2816 */ 2817 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2818 return (error); 2819 } 2820 2821 /* 2822 * XXX: Currently, we assume all the optional information is stored 2823 * in a single mbuf. 2824 */ 2825 if (control->m_next) 2826 return (EINVAL); 2827 2828 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2829 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2830 int error; 2831 2832 if (control->m_len < CMSG_LEN(0)) 2833 return (EINVAL); 2834 2835 cm = mtod(control, struct cmsghdr *); 2836 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2837 return (EINVAL); 2838 if (cm->cmsg_level != IPPROTO_IPV6) 2839 continue; 2840 2841 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2842 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2843 if (error) 2844 return (error); 2845 } 2846 2847 return (0); 2848 } 2849 2850 /* 2851 * Set a particular packet option, as a sticky option or an ancillary data 2852 * item. "len" can be 0 only when it's a sticky option. 2853 * We have 4 cases of combination of "sticky" and "cmsg": 2854 * "sticky=0, cmsg=0": impossible 2855 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2856 * "sticky=1, cmsg=0": RFC3542 socket option 2857 * "sticky=1, cmsg=1": RFC2292 socket option 2858 */ 2859 static int 2860 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2861 struct ucred *cred, int sticky, int cmsg, int uproto) 2862 { 2863 int minmtupolicy, preftemp; 2864 int error; 2865 2866 NET_EPOCH_ASSERT(); 2867 2868 if (!sticky && !cmsg) { 2869 #ifdef DIAGNOSTIC 2870 printf("ip6_setpktopt: impossible case\n"); 2871 #endif 2872 return (EINVAL); 2873 } 2874 2875 /* 2876 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2877 * not be specified in the context of RFC3542. Conversely, 2878 * RFC3542 types should not be specified in the context of RFC2292. 2879 */ 2880 if (!cmsg) { 2881 switch (optname) { 2882 case IPV6_2292PKTINFO: 2883 case IPV6_2292HOPLIMIT: 2884 case IPV6_2292NEXTHOP: 2885 case IPV6_2292HOPOPTS: 2886 case IPV6_2292DSTOPTS: 2887 case IPV6_2292RTHDR: 2888 case IPV6_2292PKTOPTIONS: 2889 return (ENOPROTOOPT); 2890 } 2891 } 2892 if (sticky && cmsg) { 2893 switch (optname) { 2894 case IPV6_PKTINFO: 2895 case IPV6_HOPLIMIT: 2896 case IPV6_NEXTHOP: 2897 case IPV6_HOPOPTS: 2898 case IPV6_DSTOPTS: 2899 case IPV6_RTHDRDSTOPTS: 2900 case IPV6_RTHDR: 2901 case IPV6_USE_MIN_MTU: 2902 case IPV6_DONTFRAG: 2903 case IPV6_TCLASS: 2904 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2905 return (ENOPROTOOPT); 2906 } 2907 } 2908 2909 switch (optname) { 2910 case IPV6_2292PKTINFO: 2911 case IPV6_PKTINFO: 2912 { 2913 struct ifnet *ifp = NULL; 2914 struct in6_pktinfo *pktinfo; 2915 2916 if (len != sizeof(struct in6_pktinfo)) 2917 return (EINVAL); 2918 2919 pktinfo = (struct in6_pktinfo *)buf; 2920 2921 /* 2922 * An application can clear any sticky IPV6_PKTINFO option by 2923 * doing a "regular" setsockopt with ipi6_addr being 2924 * in6addr_any and ipi6_ifindex being zero. 2925 * [RFC 3542, Section 6] 2926 */ 2927 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2928 pktinfo->ipi6_ifindex == 0 && 2929 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2930 ip6_clearpktopts(opt, optname); 2931 break; 2932 } 2933 2934 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2935 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2936 return (EINVAL); 2937 } 2938 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2939 return (EINVAL); 2940 /* validate the interface index if specified. */ 2941 if (pktinfo->ipi6_ifindex) { 2942 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2943 if (ifp == NULL) 2944 return (ENXIO); 2945 } 2946 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2947 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2948 return (ENETDOWN); 2949 2950 if (ifp != NULL && 2951 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2952 struct in6_ifaddr *ia; 2953 2954 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2955 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2956 if (ia == NULL) 2957 return (EADDRNOTAVAIL); 2958 ifa_free(&ia->ia_ifa); 2959 } 2960 /* 2961 * We store the address anyway, and let in6_selectsrc() 2962 * validate the specified address. This is because ipi6_addr 2963 * may not have enough information about its scope zone, and 2964 * we may need additional information (such as outgoing 2965 * interface or the scope zone of a destination address) to 2966 * disambiguate the scope. 2967 * XXX: the delay of the validation may confuse the 2968 * application when it is used as a sticky option. 2969 */ 2970 if (opt->ip6po_pktinfo == NULL) { 2971 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2972 M_IP6OPT, M_NOWAIT); 2973 if (opt->ip6po_pktinfo == NULL) 2974 return (ENOBUFS); 2975 } 2976 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2977 opt->ip6po_valid |= IP6PO_VALID_PKTINFO; 2978 break; 2979 } 2980 2981 case IPV6_2292HOPLIMIT: 2982 case IPV6_HOPLIMIT: 2983 { 2984 int *hlimp; 2985 2986 /* 2987 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2988 * to simplify the ordering among hoplimit options. 2989 */ 2990 if (optname == IPV6_HOPLIMIT && sticky) 2991 return (ENOPROTOOPT); 2992 2993 if (len != sizeof(int)) 2994 return (EINVAL); 2995 hlimp = (int *)buf; 2996 if (*hlimp < -1 || *hlimp > 255) 2997 return (EINVAL); 2998 2999 opt->ip6po_hlim = *hlimp; 3000 opt->ip6po_valid |= IP6PO_VALID_HLIM; 3001 break; 3002 } 3003 3004 case IPV6_TCLASS: 3005 { 3006 int tclass; 3007 3008 if (len != sizeof(int)) 3009 return (EINVAL); 3010 tclass = *(int *)buf; 3011 if (tclass < -1 || tclass > 255) 3012 return (EINVAL); 3013 3014 opt->ip6po_tclass = tclass; 3015 opt->ip6po_valid |= IP6PO_VALID_TC; 3016 break; 3017 } 3018 3019 case IPV6_2292NEXTHOP: 3020 case IPV6_NEXTHOP: 3021 if (cred != NULL) { 3022 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3023 if (error) 3024 return (error); 3025 } 3026 3027 if (len == 0) { /* just remove the option */ 3028 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3029 break; 3030 } 3031 3032 /* check if cmsg_len is large enough for sa_len */ 3033 if (len < sizeof(struct sockaddr) || len < *buf) 3034 return (EINVAL); 3035 3036 switch (((struct sockaddr *)buf)->sa_family) { 3037 case AF_INET6: 3038 { 3039 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3040 int error; 3041 3042 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3043 return (EINVAL); 3044 3045 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3046 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3047 return (EINVAL); 3048 } 3049 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 3050 != 0) { 3051 return (error); 3052 } 3053 break; 3054 } 3055 case AF_LINK: /* should eventually be supported */ 3056 default: 3057 return (EAFNOSUPPORT); 3058 } 3059 3060 /* turn off the previous option, then set the new option. */ 3061 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3062 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3063 if (opt->ip6po_nexthop == NULL) 3064 return (ENOBUFS); 3065 bcopy(buf, opt->ip6po_nexthop, *buf); 3066 opt->ip6po_valid |= IP6PO_VALID_NHINFO; 3067 break; 3068 3069 case IPV6_2292HOPOPTS: 3070 case IPV6_HOPOPTS: 3071 { 3072 struct ip6_hbh *hbh; 3073 int hbhlen; 3074 3075 /* 3076 * XXX: We don't allow a non-privileged user to set ANY HbH 3077 * options, since per-option restriction has too much 3078 * overhead. 3079 */ 3080 if (cred != NULL) { 3081 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3082 if (error) 3083 return (error); 3084 } 3085 3086 if (len == 0) { 3087 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3088 break; /* just remove the option */ 3089 } 3090 3091 /* message length validation */ 3092 if (len < sizeof(struct ip6_hbh)) 3093 return (EINVAL); 3094 hbh = (struct ip6_hbh *)buf; 3095 hbhlen = (hbh->ip6h_len + 1) << 3; 3096 if (len != hbhlen) 3097 return (EINVAL); 3098 3099 /* turn off the previous option, then set the new option. */ 3100 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3101 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3102 if (opt->ip6po_hbh == NULL) 3103 return (ENOBUFS); 3104 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3105 opt->ip6po_valid |= IP6PO_VALID_HBH; 3106 3107 break; 3108 } 3109 3110 case IPV6_2292DSTOPTS: 3111 case IPV6_DSTOPTS: 3112 case IPV6_RTHDRDSTOPTS: 3113 { 3114 struct ip6_dest *dest, **newdest = NULL; 3115 int destlen; 3116 3117 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 3118 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3119 if (error) 3120 return (error); 3121 } 3122 3123 if (len == 0) { 3124 ip6_clearpktopts(opt, optname); 3125 break; /* just remove the option */ 3126 } 3127 3128 /* message length validation */ 3129 if (len < sizeof(struct ip6_dest)) 3130 return (EINVAL); 3131 dest = (struct ip6_dest *)buf; 3132 destlen = (dest->ip6d_len + 1) << 3; 3133 if (len != destlen) 3134 return (EINVAL); 3135 3136 /* 3137 * Determine the position that the destination options header 3138 * should be inserted; before or after the routing header. 3139 */ 3140 switch (optname) { 3141 case IPV6_2292DSTOPTS: 3142 /* 3143 * The old advacned API is ambiguous on this point. 3144 * Our approach is to determine the position based 3145 * according to the existence of a routing header. 3146 * Note, however, that this depends on the order of the 3147 * extension headers in the ancillary data; the 1st 3148 * part of the destination options header must appear 3149 * before the routing header in the ancillary data, 3150 * too. 3151 * RFC3542 solved the ambiguity by introducing 3152 * separate ancillary data or option types. 3153 */ 3154 if (opt->ip6po_rthdr == NULL) 3155 newdest = &opt->ip6po_dest1; 3156 else 3157 newdest = &opt->ip6po_dest2; 3158 break; 3159 case IPV6_RTHDRDSTOPTS: 3160 newdest = &opt->ip6po_dest1; 3161 break; 3162 case IPV6_DSTOPTS: 3163 newdest = &opt->ip6po_dest2; 3164 break; 3165 } 3166 3167 /* turn off the previous option, then set the new option. */ 3168 ip6_clearpktopts(opt, optname); 3169 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3170 if (*newdest == NULL) 3171 return (ENOBUFS); 3172 bcopy(dest, *newdest, destlen); 3173 if (newdest == &opt->ip6po_dest1) 3174 opt->ip6po_valid |= IP6PO_VALID_DEST1; 3175 else 3176 opt->ip6po_valid |= IP6PO_VALID_DEST2; 3177 3178 break; 3179 } 3180 3181 case IPV6_2292RTHDR: 3182 case IPV6_RTHDR: 3183 { 3184 struct ip6_rthdr *rth; 3185 int rthlen; 3186 3187 if (len == 0) { 3188 ip6_clearpktopts(opt, IPV6_RTHDR); 3189 break; /* just remove the option */ 3190 } 3191 3192 /* message length validation */ 3193 if (len < sizeof(struct ip6_rthdr)) 3194 return (EINVAL); 3195 rth = (struct ip6_rthdr *)buf; 3196 rthlen = (rth->ip6r_len + 1) << 3; 3197 if (len != rthlen) 3198 return (EINVAL); 3199 3200 switch (rth->ip6r_type) { 3201 case IPV6_RTHDR_TYPE_0: 3202 if (rth->ip6r_len == 0) /* must contain one addr */ 3203 return (EINVAL); 3204 if (rth->ip6r_len % 2) /* length must be even */ 3205 return (EINVAL); 3206 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3207 return (EINVAL); 3208 break; 3209 default: 3210 return (EINVAL); /* not supported */ 3211 } 3212 3213 /* turn off the previous option */ 3214 ip6_clearpktopts(opt, IPV6_RTHDR); 3215 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3216 if (opt->ip6po_rthdr == NULL) 3217 return (ENOBUFS); 3218 bcopy(rth, opt->ip6po_rthdr, rthlen); 3219 opt->ip6po_valid |= IP6PO_VALID_RHINFO; 3220 3221 break; 3222 } 3223 3224 case IPV6_USE_MIN_MTU: 3225 if (len != sizeof(int)) 3226 return (EINVAL); 3227 minmtupolicy = *(int *)buf; 3228 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3229 minmtupolicy != IP6PO_MINMTU_DISABLE && 3230 minmtupolicy != IP6PO_MINMTU_ALL) { 3231 return (EINVAL); 3232 } 3233 opt->ip6po_minmtu = minmtupolicy; 3234 break; 3235 3236 case IPV6_DONTFRAG: 3237 if (len != sizeof(int)) 3238 return (EINVAL); 3239 3240 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3241 /* 3242 * we ignore this option for TCP sockets. 3243 * (RFC3542 leaves this case unspecified.) 3244 */ 3245 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3246 } else 3247 opt->ip6po_flags |= IP6PO_DONTFRAG; 3248 break; 3249 3250 case IPV6_PREFER_TEMPADDR: 3251 if (len != sizeof(int)) 3252 return (EINVAL); 3253 preftemp = *(int *)buf; 3254 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3255 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3256 preftemp != IP6PO_TEMPADDR_PREFER) { 3257 return (EINVAL); 3258 } 3259 opt->ip6po_prefer_tempaddr = preftemp; 3260 break; 3261 3262 default: 3263 return (ENOPROTOOPT); 3264 } /* end of switch */ 3265 3266 return (0); 3267 } 3268 3269 /* 3270 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3271 * packet to the input queue of a specified interface. Note that this 3272 * calls the output routine of the loopback "driver", but with an interface 3273 * pointer that might NOT be &loif -- easier than replicating that code here. 3274 */ 3275 void 3276 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3277 { 3278 struct mbuf *copym; 3279 struct ip6_hdr *ip6; 3280 3281 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3282 if (copym == NULL) 3283 return; 3284 3285 /* 3286 * Make sure to deep-copy IPv6 header portion in case the data 3287 * is in an mbuf cluster, so that we can safely override the IPv6 3288 * header portion later. 3289 */ 3290 if (!M_WRITABLE(copym) || 3291 copym->m_len < sizeof(struct ip6_hdr)) { 3292 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3293 if (copym == NULL) 3294 return; 3295 } 3296 ip6 = mtod(copym, struct ip6_hdr *); 3297 /* 3298 * clear embedded scope identifiers if necessary. 3299 * in6_clearscope will touch the addresses only when necessary. 3300 */ 3301 in6_clearscope(&ip6->ip6_src); 3302 in6_clearscope(&ip6->ip6_dst); 3303 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3304 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3305 CSUM_PSEUDO_HDR; 3306 copym->m_pkthdr.csum_data = 0xffff; 3307 } 3308 if_simloop(ifp, copym, AF_INET6, 0); 3309 } 3310 3311 /* 3312 * Chop IPv6 header off from the payload. 3313 */ 3314 static int 3315 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3316 { 3317 struct mbuf *mh; 3318 struct ip6_hdr *ip6; 3319 3320 ip6 = mtod(m, struct ip6_hdr *); 3321 if (m->m_len > sizeof(*ip6)) { 3322 mh = m_gethdr(M_NOWAIT, MT_DATA); 3323 if (mh == NULL) { 3324 m_freem(m); 3325 return ENOBUFS; 3326 } 3327 m_move_pkthdr(mh, m); 3328 M_ALIGN(mh, sizeof(*ip6)); 3329 m->m_len -= sizeof(*ip6); 3330 m->m_data += sizeof(*ip6); 3331 mh->m_next = m; 3332 m = mh; 3333 m->m_len = sizeof(*ip6); 3334 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3335 } 3336 exthdrs->ip6e_ip6 = m; 3337 return 0; 3338 } 3339 3340 /* 3341 * Compute IPv6 extension header length. 3342 */ 3343 int 3344 ip6_optlen(struct inpcb *inp) 3345 { 3346 int len; 3347 3348 if (!inp->in6p_outputopts) 3349 return 0; 3350 3351 len = 0; 3352 #define elen(x) \ 3353 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3354 3355 len += elen(inp->in6p_outputopts->ip6po_hbh); 3356 if (inp->in6p_outputopts->ip6po_rthdr) 3357 /* dest1 is valid with rthdr only */ 3358 len += elen(inp->in6p_outputopts->ip6po_dest1); 3359 len += elen(inp->in6p_outputopts->ip6po_rthdr); 3360 len += elen(inp->in6p_outputopts->ip6po_dest2); 3361 return len; 3362 #undef elen 3363 } 3364