1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ipfw.h" 69 #include "opt_ipsec.h" 70 #include "opt_sctp.h" 71 #include "opt_route.h" 72 #include "opt_rss.h" 73 74 #include <sys/param.h> 75 #include <sys/kernel.h> 76 #include <sys/malloc.h> 77 #include <sys/mbuf.h> 78 #include <sys/errno.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/protosw.h> 82 #include <sys/socket.h> 83 #include <sys/socketvar.h> 84 #include <sys/syslog.h> 85 #include <sys/ucred.h> 86 87 #include <machine/in_cksum.h> 88 89 #include <net/if.h> 90 #include <net/if_var.h> 91 #include <net/netisr.h> 92 #include <net/route.h> 93 #include <net/pfil.h> 94 #include <net/rss_config.h> 95 #include <net/vnet.h> 96 97 #include <netinet/in.h> 98 #include <netinet/in_var.h> 99 #include <netinet/ip_var.h> 100 #include <netinet6/in6_var.h> 101 #include <netinet/ip6.h> 102 #include <netinet/icmp6.h> 103 #include <netinet6/ip6_var.h> 104 #include <netinet/in_pcb.h> 105 #include <netinet/tcp_var.h> 106 #include <netinet6/nd6.h> 107 #include <netinet6/in6_rss.h> 108 109 #ifdef IPSEC 110 #include <netipsec/ipsec.h> 111 #include <netipsec/ipsec6.h> 112 #include <netipsec/key.h> 113 #include <netinet6/ip6_ipsec.h> 114 #endif /* IPSEC */ 115 #ifdef SCTP 116 #include <netinet/sctp.h> 117 #include <netinet/sctp_crc32.h> 118 #endif 119 120 #include <netinet6/ip6protosw.h> 121 #include <netinet6/scope6_var.h> 122 123 #ifdef FLOWTABLE 124 #include <net/flowtable.h> 125 #endif 126 127 extern int in6_mcast_loop; 128 129 struct ip6_exthdrs { 130 struct mbuf *ip6e_ip6; 131 struct mbuf *ip6e_hbh; 132 struct mbuf *ip6e_dest1; 133 struct mbuf *ip6e_rthdr; 134 struct mbuf *ip6e_dest2; 135 }; 136 137 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 138 struct ucred *, int); 139 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 140 struct socket *, struct sockopt *); 141 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 142 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 143 struct ucred *, int, int, int); 144 145 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 146 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 147 struct ip6_frag **); 148 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 149 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 150 static int ip6_getpmtu(struct route_in6 *, struct route_in6 *, 151 struct ifnet *, struct in6_addr *, u_long *, int *, u_int); 152 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 153 154 155 /* 156 * Make an extension header from option data. hp is the source, and 157 * mp is the destination. 158 */ 159 #define MAKE_EXTHDR(hp, mp) \ 160 do { \ 161 if (hp) { \ 162 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 163 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 164 ((eh)->ip6e_len + 1) << 3); \ 165 if (error) \ 166 goto freehdrs; \ 167 } \ 168 } while (/*CONSTCOND*/ 0) 169 170 /* 171 * Form a chain of extension headers. 172 * m is the extension header mbuf 173 * mp is the previous mbuf in the chain 174 * p is the next header 175 * i is the type of option. 176 */ 177 #define MAKE_CHAIN(m, mp, p, i)\ 178 do {\ 179 if (m) {\ 180 if (!hdrsplit) \ 181 panic("assumption failed: hdr not split"); \ 182 *mtod((m), u_char *) = *(p);\ 183 *(p) = (i);\ 184 p = mtod((m), u_char *);\ 185 (m)->m_next = (mp)->m_next;\ 186 (mp)->m_next = (m);\ 187 (mp) = (m);\ 188 }\ 189 } while (/*CONSTCOND*/ 0) 190 191 void 192 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 193 { 194 u_short csum; 195 196 csum = in_cksum_skip(m, offset + plen, offset); 197 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 198 csum = 0xffff; 199 offset += m->m_pkthdr.csum_data; /* checksum offset */ 200 201 if (offset + sizeof(u_short) > m->m_len) { 202 printf("%s: delayed m_pullup, m->len: %d plen %u off %u " 203 "csum_flags=%b\n", __func__, m->m_len, plen, offset, 204 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 205 /* 206 * XXX this should not happen, but if it does, the correct 207 * behavior may be to insert the checksum in the appropriate 208 * next mbuf in the chain. 209 */ 210 return; 211 } 212 *(u_short *)(m->m_data + offset) = csum; 213 } 214 215 /* 216 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 217 * header (with pri, len, nxt, hlim, src, dst). 218 * This function may modify ver and hlim only. 219 * The mbuf chain containing the packet will be freed. 220 * The mbuf opt, if present, will not be freed. 221 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 222 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 223 * then result of route lookup is stored in ro->ro_rt. 224 * 225 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 226 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 227 * which is rt_mtu. 228 * 229 * ifpp - XXX: just for statistics 230 */ 231 /* 232 * XXX TODO: no flowid is assigned for outbound flows? 233 */ 234 int 235 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 236 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 237 struct ifnet **ifpp, struct inpcb *inp) 238 { 239 struct ip6_hdr *ip6, *mhip6; 240 struct ifnet *ifp, *origifp; 241 struct mbuf *m = m0; 242 struct mbuf *mprev = NULL; 243 int hlen, tlen, len, off; 244 struct route_in6 ip6route; 245 struct rtentry *rt = NULL; 246 struct sockaddr_in6 *dst, src_sa, dst_sa; 247 struct in6_addr odst; 248 int error = 0; 249 struct in6_ifaddr *ia = NULL; 250 u_long mtu; 251 int alwaysfrag, dontfrag; 252 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 253 struct ip6_exthdrs exthdrs; 254 struct in6_addr finaldst, src0, dst0; 255 u_int32_t zone; 256 struct route_in6 *ro_pmtu = NULL; 257 int hdrsplit = 0; 258 int sw_csum, tso; 259 int needfiblookup; 260 uint32_t fibnum; 261 struct m_tag *fwd_tag = NULL; 262 263 ip6 = mtod(m, struct ip6_hdr *); 264 if (ip6 == NULL) { 265 printf ("ip6 is NULL"); 266 goto bad; 267 } 268 269 if (inp != NULL) { 270 M_SETFIB(m, inp->inp_inc.inc_fibnum); 271 if ((flags & IP_NODEFAULTFLOWID) == 0) { 272 /* unconditionally set flowid */ 273 m->m_pkthdr.flowid = inp->inp_flowid; 274 M_HASHTYPE_SET(m, inp->inp_flowtype); 275 } 276 } 277 278 finaldst = ip6->ip6_dst; 279 bzero(&exthdrs, sizeof(exthdrs)); 280 if (opt) { 281 /* Hop-by-Hop options header */ 282 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 283 /* Destination options header(1st part) */ 284 if (opt->ip6po_rthdr) { 285 /* 286 * Destination options header(1st part) 287 * This only makes sense with a routing header. 288 * See Section 9.2 of RFC 3542. 289 * Disabling this part just for MIP6 convenience is 290 * a bad idea. We need to think carefully about a 291 * way to make the advanced API coexist with MIP6 292 * options, which might automatically be inserted in 293 * the kernel. 294 */ 295 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 296 } 297 /* Routing header */ 298 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 299 /* Destination options header(2nd part) */ 300 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 301 } 302 303 #ifdef IPSEC 304 /* 305 * IPSec checking which handles several cases. 306 * FAST IPSEC: We re-injected the packet. 307 * XXX: need scope argument. 308 */ 309 switch(ip6_ipsec_output(&m, inp, &error)) 310 { 311 case 1: /* Bad packet */ 312 goto freehdrs; 313 case -1: /* IPSec done */ 314 goto done; 315 case 0: /* No IPSec */ 316 default: 317 break; 318 } 319 #endif /* IPSEC */ 320 321 /* 322 * Calculate the total length of the extension header chain. 323 * Keep the length of the unfragmentable part for fragmentation. 324 */ 325 optlen = 0; 326 if (exthdrs.ip6e_hbh) 327 optlen += exthdrs.ip6e_hbh->m_len; 328 if (exthdrs.ip6e_dest1) 329 optlen += exthdrs.ip6e_dest1->m_len; 330 if (exthdrs.ip6e_rthdr) 331 optlen += exthdrs.ip6e_rthdr->m_len; 332 unfragpartlen = optlen + sizeof(struct ip6_hdr); 333 334 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 335 if (exthdrs.ip6e_dest2) 336 optlen += exthdrs.ip6e_dest2->m_len; 337 338 /* 339 * If there is at least one extension header, 340 * separate IP6 header from the payload. 341 */ 342 if (optlen && !hdrsplit) { 343 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 344 m = NULL; 345 goto freehdrs; 346 } 347 m = exthdrs.ip6e_ip6; 348 hdrsplit++; 349 } 350 351 /* adjust pointer */ 352 ip6 = mtod(m, struct ip6_hdr *); 353 354 /* adjust mbuf packet header length */ 355 m->m_pkthdr.len += optlen; 356 plen = m->m_pkthdr.len - sizeof(*ip6); 357 358 /* If this is a jumbo payload, insert a jumbo payload option. */ 359 if (plen > IPV6_MAXPACKET) { 360 if (!hdrsplit) { 361 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 362 m = NULL; 363 goto freehdrs; 364 } 365 m = exthdrs.ip6e_ip6; 366 hdrsplit++; 367 } 368 /* adjust pointer */ 369 ip6 = mtod(m, struct ip6_hdr *); 370 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 371 goto freehdrs; 372 ip6->ip6_plen = 0; 373 } else 374 ip6->ip6_plen = htons(plen); 375 376 /* 377 * Concatenate headers and fill in next header fields. 378 * Here we have, on "m" 379 * IPv6 payload 380 * and we insert headers accordingly. Finally, we should be getting: 381 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 382 * 383 * during the header composing process, "m" points to IPv6 header. 384 * "mprev" points to an extension header prior to esp. 385 */ 386 u_char *nexthdrp = &ip6->ip6_nxt; 387 mprev = m; 388 389 /* 390 * we treat dest2 specially. this makes IPsec processing 391 * much easier. the goal here is to make mprev point the 392 * mbuf prior to dest2. 393 * 394 * result: IPv6 dest2 payload 395 * m and mprev will point to IPv6 header. 396 */ 397 if (exthdrs.ip6e_dest2) { 398 if (!hdrsplit) 399 panic("assumption failed: hdr not split"); 400 exthdrs.ip6e_dest2->m_next = m->m_next; 401 m->m_next = exthdrs.ip6e_dest2; 402 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 403 ip6->ip6_nxt = IPPROTO_DSTOPTS; 404 } 405 406 /* 407 * result: IPv6 hbh dest1 rthdr dest2 payload 408 * m will point to IPv6 header. mprev will point to the 409 * extension header prior to dest2 (rthdr in the above case). 410 */ 411 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 412 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 413 IPPROTO_DSTOPTS); 414 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 415 IPPROTO_ROUTING); 416 417 /* 418 * If there is a routing header, discard the packet. 419 */ 420 if (exthdrs.ip6e_rthdr) { 421 error = EINVAL; 422 goto bad; 423 } 424 425 /* Source address validation */ 426 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 427 (flags & IPV6_UNSPECSRC) == 0) { 428 error = EOPNOTSUPP; 429 IP6STAT_INC(ip6s_badscope); 430 goto bad; 431 } 432 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 433 error = EOPNOTSUPP; 434 IP6STAT_INC(ip6s_badscope); 435 goto bad; 436 } 437 438 IP6STAT_INC(ip6s_localout); 439 440 /* 441 * Route packet. 442 */ 443 if (ro == 0) { 444 ro = &ip6route; 445 bzero((caddr_t)ro, sizeof(*ro)); 446 } 447 ro_pmtu = ro; 448 if (opt && opt->ip6po_rthdr) 449 ro = &opt->ip6po_route; 450 dst = (struct sockaddr_in6 *)&ro->ro_dst; 451 #ifdef FLOWTABLE 452 if (ro->ro_rt == NULL) 453 (void )flowtable_lookup(AF_INET6, m, (struct route *)ro); 454 #endif 455 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 456 again: 457 /* 458 * if specified, try to fill in the traffic class field. 459 * do not override if a non-zero value is already set. 460 * we check the diffserv field and the ecn field separately. 461 */ 462 if (opt && opt->ip6po_tclass >= 0) { 463 int mask = 0; 464 465 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 466 mask |= 0xfc; 467 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 468 mask |= 0x03; 469 if (mask != 0) 470 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 471 } 472 473 /* fill in or override the hop limit field, if necessary. */ 474 if (opt && opt->ip6po_hlim != -1) 475 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 476 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 477 if (im6o != NULL) 478 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 479 else 480 ip6->ip6_hlim = V_ip6_defmcasthlim; 481 } 482 483 /* adjust pointer */ 484 ip6 = mtod(m, struct ip6_hdr *); 485 486 if (ro->ro_rt && fwd_tag == NULL) { 487 rt = ro->ro_rt; 488 ifp = ro->ro_rt->rt_ifp; 489 } else { 490 if (fwd_tag == NULL) { 491 bzero(&dst_sa, sizeof(dst_sa)); 492 dst_sa.sin6_family = AF_INET6; 493 dst_sa.sin6_len = sizeof(dst_sa); 494 dst_sa.sin6_addr = ip6->ip6_dst; 495 } 496 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 497 &rt, fibnum); 498 if (error != 0) { 499 if (ifp != NULL) 500 in6_ifstat_inc(ifp, ifs6_out_discard); 501 goto bad; 502 } 503 } 504 if (rt == NULL) { 505 /* 506 * If in6_selectroute() does not return a route entry, 507 * dst may not have been updated. 508 */ 509 *dst = dst_sa; /* XXX */ 510 } 511 512 /* 513 * then rt (for unicast) and ifp must be non-NULL valid values. 514 */ 515 if ((flags & IPV6_FORWARDING) == 0) { 516 /* XXX: the FORWARDING flag can be set for mrouting. */ 517 in6_ifstat_inc(ifp, ifs6_out_request); 518 } 519 if (rt != NULL) { 520 ia = (struct in6_ifaddr *)(rt->rt_ifa); 521 counter_u64_add(rt->rt_pksent, 1); 522 } 523 524 525 /* 526 * The outgoing interface must be in the zone of source and 527 * destination addresses. 528 */ 529 origifp = ifp; 530 531 src0 = ip6->ip6_src; 532 if (in6_setscope(&src0, origifp, &zone)) 533 goto badscope; 534 bzero(&src_sa, sizeof(src_sa)); 535 src_sa.sin6_family = AF_INET6; 536 src_sa.sin6_len = sizeof(src_sa); 537 src_sa.sin6_addr = ip6->ip6_src; 538 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 539 goto badscope; 540 541 dst0 = ip6->ip6_dst; 542 if (in6_setscope(&dst0, origifp, &zone)) 543 goto badscope; 544 /* re-initialize to be sure */ 545 bzero(&dst_sa, sizeof(dst_sa)); 546 dst_sa.sin6_family = AF_INET6; 547 dst_sa.sin6_len = sizeof(dst_sa); 548 dst_sa.sin6_addr = ip6->ip6_dst; 549 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 550 goto badscope; 551 } 552 553 /* We should use ia_ifp to support the case of 554 * sending packets to an address of our own. 555 */ 556 if (ia != NULL && ia->ia_ifp) 557 ifp = ia->ia_ifp; 558 559 /* scope check is done. */ 560 goto routefound; 561 562 badscope: 563 IP6STAT_INC(ip6s_badscope); 564 in6_ifstat_inc(origifp, ifs6_out_discard); 565 if (error == 0) 566 error = EHOSTUNREACH; /* XXX */ 567 goto bad; 568 569 routefound: 570 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 571 if (opt && opt->ip6po_nextroute.ro_rt) { 572 /* 573 * The nexthop is explicitly specified by the 574 * application. We assume the next hop is an IPv6 575 * address. 576 */ 577 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 578 } 579 else if ((rt->rt_flags & RTF_GATEWAY)) 580 dst = (struct sockaddr_in6 *)rt->rt_gateway; 581 } 582 583 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 584 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 585 } else { 586 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 587 in6_ifstat_inc(ifp, ifs6_out_mcast); 588 /* 589 * Confirm that the outgoing interface supports multicast. 590 */ 591 if (!(ifp->if_flags & IFF_MULTICAST)) { 592 IP6STAT_INC(ip6s_noroute); 593 in6_ifstat_inc(ifp, ifs6_out_discard); 594 error = ENETUNREACH; 595 goto bad; 596 } 597 if ((im6o == NULL && in6_mcast_loop) || 598 (im6o && im6o->im6o_multicast_loop)) { 599 /* 600 * Loop back multicast datagram if not expressly 601 * forbidden to do so, even if we have not joined 602 * the address; protocols will filter it later, 603 * thus deferring a hash lookup and lock acquisition 604 * at the expense of an m_copym(). 605 */ 606 ip6_mloopback(ifp, m, dst); 607 } else { 608 /* 609 * If we are acting as a multicast router, perform 610 * multicast forwarding as if the packet had just 611 * arrived on the interface to which we are about 612 * to send. The multicast forwarding function 613 * recursively calls this function, using the 614 * IPV6_FORWARDING flag to prevent infinite recursion. 615 * 616 * Multicasts that are looped back by ip6_mloopback(), 617 * above, will be forwarded by the ip6_input() routine, 618 * if necessary. 619 */ 620 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 621 /* 622 * XXX: ip6_mforward expects that rcvif is NULL 623 * when it is called from the originating path. 624 * However, it may not always be the case. 625 */ 626 m->m_pkthdr.rcvif = NULL; 627 if (ip6_mforward(ip6, ifp, m) != 0) { 628 m_freem(m); 629 goto done; 630 } 631 } 632 } 633 /* 634 * Multicasts with a hoplimit of zero may be looped back, 635 * above, but must not be transmitted on a network. 636 * Also, multicasts addressed to the loopback interface 637 * are not sent -- the above call to ip6_mloopback() will 638 * loop back a copy if this host actually belongs to the 639 * destination group on the loopback interface. 640 */ 641 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 642 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 643 m_freem(m); 644 goto done; 645 } 646 } 647 648 /* 649 * Fill the outgoing inteface to tell the upper layer 650 * to increment per-interface statistics. 651 */ 652 if (ifpp) 653 *ifpp = ifp; 654 655 /* Determine path MTU. */ 656 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 657 &alwaysfrag, fibnum)) != 0) 658 goto bad; 659 660 /* 661 * The caller of this function may specify to use the minimum MTU 662 * in some cases. 663 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 664 * setting. The logic is a bit complicated; by default, unicast 665 * packets will follow path MTU while multicast packets will be sent at 666 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 667 * including unicast ones will be sent at the minimum MTU. Multicast 668 * packets will always be sent at the minimum MTU unless 669 * IP6PO_MINMTU_DISABLE is explicitly specified. 670 * See RFC 3542 for more details. 671 */ 672 if (mtu > IPV6_MMTU) { 673 if ((flags & IPV6_MINMTU)) 674 mtu = IPV6_MMTU; 675 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 676 mtu = IPV6_MMTU; 677 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 678 (opt == NULL || 679 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 680 mtu = IPV6_MMTU; 681 } 682 } 683 684 /* 685 * clear embedded scope identifiers if necessary. 686 * in6_clearscope will touch the addresses only when necessary. 687 */ 688 in6_clearscope(&ip6->ip6_src); 689 in6_clearscope(&ip6->ip6_dst); 690 691 /* 692 * If the outgoing packet contains a hop-by-hop options header, 693 * it must be examined and processed even by the source node. 694 * (RFC 2460, section 4.) 695 */ 696 if (exthdrs.ip6e_hbh) { 697 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 698 u_int32_t dummy; /* XXX unused */ 699 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 700 701 #ifdef DIAGNOSTIC 702 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 703 panic("ip6e_hbh is not contiguous"); 704 #endif 705 /* 706 * XXX: if we have to send an ICMPv6 error to the sender, 707 * we need the M_LOOP flag since icmp6_error() expects 708 * the IPv6 and the hop-by-hop options header are 709 * contiguous unless the flag is set. 710 */ 711 m->m_flags |= M_LOOP; 712 m->m_pkthdr.rcvif = ifp; 713 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 714 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 715 &dummy, &plen) < 0) { 716 /* m was already freed at this point */ 717 error = EINVAL;/* better error? */ 718 goto done; 719 } 720 m->m_flags &= ~M_LOOP; /* XXX */ 721 m->m_pkthdr.rcvif = NULL; 722 } 723 724 /* Jump over all PFIL processing if hooks are not active. */ 725 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 726 goto passout; 727 728 odst = ip6->ip6_dst; 729 /* Run through list of hooks for output packets. */ 730 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 731 if (error != 0 || m == NULL) 732 goto done; 733 ip6 = mtod(m, struct ip6_hdr *); 734 735 needfiblookup = 0; 736 /* See if destination IP address was changed by packet filter. */ 737 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 738 m->m_flags |= M_SKIP_FIREWALL; 739 /* If destination is now ourself drop to ip6_input(). */ 740 if (in6_localip(&ip6->ip6_dst)) { 741 m->m_flags |= M_FASTFWD_OURS; 742 if (m->m_pkthdr.rcvif == NULL) 743 m->m_pkthdr.rcvif = V_loif; 744 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 745 m->m_pkthdr.csum_flags |= 746 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 747 m->m_pkthdr.csum_data = 0xffff; 748 } 749 #ifdef SCTP 750 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 751 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 752 #endif 753 error = netisr_queue(NETISR_IPV6, m); 754 goto done; 755 } else 756 needfiblookup = 1; /* Redo the routing table lookup. */ 757 } 758 /* See if fib was changed by packet filter. */ 759 if (fibnum != M_GETFIB(m)) { 760 m->m_flags |= M_SKIP_FIREWALL; 761 fibnum = M_GETFIB(m); 762 RO_RTFREE(ro); 763 needfiblookup = 1; 764 } 765 if (needfiblookup) 766 goto again; 767 768 /* See if local, if yes, send it to netisr. */ 769 if (m->m_flags & M_FASTFWD_OURS) { 770 if (m->m_pkthdr.rcvif == NULL) 771 m->m_pkthdr.rcvif = V_loif; 772 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 773 m->m_pkthdr.csum_flags |= 774 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 775 m->m_pkthdr.csum_data = 0xffff; 776 } 777 #ifdef SCTP 778 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 779 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 780 #endif 781 error = netisr_queue(NETISR_IPV6, m); 782 goto done; 783 } 784 /* Or forward to some other address? */ 785 if ((m->m_flags & M_IP6_NEXTHOP) && 786 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 787 dst = (struct sockaddr_in6 *)&ro->ro_dst; 788 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 789 m->m_flags |= M_SKIP_FIREWALL; 790 m->m_flags &= ~M_IP6_NEXTHOP; 791 m_tag_delete(m, fwd_tag); 792 goto again; 793 } 794 795 passout: 796 /* 797 * Send the packet to the outgoing interface. 798 * If necessary, do IPv6 fragmentation before sending. 799 * 800 * the logic here is rather complex: 801 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 802 * 1-a: send as is if tlen <= path mtu 803 * 1-b: fragment if tlen > path mtu 804 * 805 * 2: if user asks us not to fragment (dontfrag == 1) 806 * 2-a: send as is if tlen <= interface mtu 807 * 2-b: error if tlen > interface mtu 808 * 809 * 3: if we always need to attach fragment header (alwaysfrag == 1) 810 * always fragment 811 * 812 * 4: if dontfrag == 1 && alwaysfrag == 1 813 * error, as we cannot handle this conflicting request 814 */ 815 sw_csum = m->m_pkthdr.csum_flags; 816 if (!hdrsplit) { 817 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 818 sw_csum &= ~ifp->if_hwassist; 819 } else 820 tso = 0; 821 /* 822 * If we added extension headers, we will not do TSO and calculate the 823 * checksums ourselves for now. 824 * XXX-BZ Need a framework to know when the NIC can handle it, even 825 * with ext. hdrs. 826 */ 827 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 828 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 829 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 830 } 831 #ifdef SCTP 832 if (sw_csum & CSUM_SCTP_IPV6) { 833 sw_csum &= ~CSUM_SCTP_IPV6; 834 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 835 } 836 #endif 837 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 838 tlen = m->m_pkthdr.len; 839 840 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 841 dontfrag = 1; 842 else 843 dontfrag = 0; 844 if (dontfrag && alwaysfrag) { /* case 4 */ 845 /* conflicting request - can't transmit */ 846 error = EMSGSIZE; 847 goto bad; 848 } 849 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 850 /* 851 * Even if the DONTFRAG option is specified, we cannot send the 852 * packet when the data length is larger than the MTU of the 853 * outgoing interface. 854 * Notify the error by sending IPV6_PATHMTU ancillary data as 855 * well as returning an error code (the latter is not described 856 * in the API spec.) 857 */ 858 u_int32_t mtu32; 859 struct ip6ctlparam ip6cp; 860 861 mtu32 = (u_int32_t)mtu; 862 bzero(&ip6cp, sizeof(ip6cp)); 863 ip6cp.ip6c_cmdarg = (void *)&mtu32; 864 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 865 (void *)&ip6cp); 866 867 error = EMSGSIZE; 868 goto bad; 869 } 870 871 /* 872 * transmit packet without fragmentation 873 */ 874 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 875 struct in6_ifaddr *ia6; 876 877 ip6 = mtod(m, struct ip6_hdr *); 878 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 879 if (ia6) { 880 /* Record statistics for this interface address. */ 881 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 882 counter_u64_add(ia6->ia_ifa.ifa_obytes, 883 m->m_pkthdr.len); 884 ifa_free(&ia6->ia_ifa); 885 } 886 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 887 goto done; 888 } 889 890 /* 891 * try to fragment the packet. case 1-b and 3 892 */ 893 if (mtu < IPV6_MMTU) { 894 /* path MTU cannot be less than IPV6_MMTU */ 895 error = EMSGSIZE; 896 in6_ifstat_inc(ifp, ifs6_out_fragfail); 897 goto bad; 898 } else if (ip6->ip6_plen == 0) { 899 /* jumbo payload cannot be fragmented */ 900 error = EMSGSIZE; 901 in6_ifstat_inc(ifp, ifs6_out_fragfail); 902 goto bad; 903 } else { 904 struct mbuf **mnext, *m_frgpart; 905 struct ip6_frag *ip6f; 906 u_int32_t id = htonl(ip6_randomid()); 907 u_char nextproto; 908 909 /* 910 * Too large for the destination or interface; 911 * fragment if possible. 912 * Must be able to put at least 8 bytes per fragment. 913 */ 914 hlen = unfragpartlen; 915 if (mtu > IPV6_MAXPACKET) 916 mtu = IPV6_MAXPACKET; 917 918 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 919 if (len < 8) { 920 error = EMSGSIZE; 921 in6_ifstat_inc(ifp, ifs6_out_fragfail); 922 goto bad; 923 } 924 925 /* 926 * If the interface will not calculate checksums on 927 * fragmented packets, then do it here. 928 * XXX-BZ handle the hw offloading case. Need flags. 929 */ 930 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 931 in6_delayed_cksum(m, plen, hlen); 932 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 933 } 934 #ifdef SCTP 935 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 936 sctp_delayed_cksum(m, hlen); 937 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 938 } 939 #endif 940 mnext = &m->m_nextpkt; 941 942 /* 943 * Change the next header field of the last header in the 944 * unfragmentable part. 945 */ 946 if (exthdrs.ip6e_rthdr) { 947 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 948 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 949 } else if (exthdrs.ip6e_dest1) { 950 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 951 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 952 } else if (exthdrs.ip6e_hbh) { 953 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 954 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 955 } else { 956 nextproto = ip6->ip6_nxt; 957 ip6->ip6_nxt = IPPROTO_FRAGMENT; 958 } 959 960 /* 961 * Loop through length of segment after first fragment, 962 * make new header and copy data of each part and link onto 963 * chain. 964 */ 965 m0 = m; 966 for (off = hlen; off < tlen; off += len) { 967 m = m_gethdr(M_NOWAIT, MT_DATA); 968 if (!m) { 969 error = ENOBUFS; 970 IP6STAT_INC(ip6s_odropped); 971 goto sendorfree; 972 } 973 m->m_flags = m0->m_flags & M_COPYFLAGS; 974 *mnext = m; 975 mnext = &m->m_nextpkt; 976 m->m_data += max_linkhdr; 977 mhip6 = mtod(m, struct ip6_hdr *); 978 *mhip6 = *ip6; 979 m->m_len = sizeof(*mhip6); 980 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 981 if (error) { 982 IP6STAT_INC(ip6s_odropped); 983 goto sendorfree; 984 } 985 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 986 if (off + len >= tlen) 987 len = tlen - off; 988 else 989 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 990 mhip6->ip6_plen = htons((u_short)(len + hlen + 991 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 992 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 993 error = ENOBUFS; 994 IP6STAT_INC(ip6s_odropped); 995 goto sendorfree; 996 } 997 m_cat(m, m_frgpart); 998 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 999 m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; 1000 m->m_pkthdr.rcvif = NULL; 1001 ip6f->ip6f_reserved = 0; 1002 ip6f->ip6f_ident = id; 1003 ip6f->ip6f_nxt = nextproto; 1004 IP6STAT_INC(ip6s_ofragments); 1005 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1006 } 1007 1008 in6_ifstat_inc(ifp, ifs6_out_fragok); 1009 } 1010 1011 /* 1012 * Remove leading garbages. 1013 */ 1014 sendorfree: 1015 m = m0->m_nextpkt; 1016 m0->m_nextpkt = 0; 1017 m_freem(m0); 1018 for (m0 = m; m; m = m0) { 1019 m0 = m->m_nextpkt; 1020 m->m_nextpkt = 0; 1021 if (error == 0) { 1022 /* Record statistics for this interface address. */ 1023 if (ia) { 1024 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1025 counter_u64_add(ia->ia_ifa.ifa_obytes, 1026 m->m_pkthdr.len); 1027 } 1028 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1029 } else 1030 m_freem(m); 1031 } 1032 1033 if (error == 0) 1034 IP6STAT_INC(ip6s_fragmented); 1035 1036 done: 1037 if (ro == &ip6route) 1038 RO_RTFREE(ro); 1039 if (ro_pmtu == &ip6route) 1040 RO_RTFREE(ro_pmtu); 1041 return (error); 1042 1043 freehdrs: 1044 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1045 m_freem(exthdrs.ip6e_dest1); 1046 m_freem(exthdrs.ip6e_rthdr); 1047 m_freem(exthdrs.ip6e_dest2); 1048 /* FALLTHROUGH */ 1049 bad: 1050 if (m) 1051 m_freem(m); 1052 goto done; 1053 } 1054 1055 static int 1056 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1057 { 1058 struct mbuf *m; 1059 1060 if (hlen > MCLBYTES) 1061 return (ENOBUFS); /* XXX */ 1062 1063 if (hlen > MLEN) 1064 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1065 else 1066 m = m_get(M_NOWAIT, MT_DATA); 1067 if (m == NULL) 1068 return (ENOBUFS); 1069 m->m_len = hlen; 1070 if (hdr) 1071 bcopy(hdr, mtod(m, caddr_t), hlen); 1072 1073 *mp = m; 1074 return (0); 1075 } 1076 1077 /* 1078 * Insert jumbo payload option. 1079 */ 1080 static int 1081 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1082 { 1083 struct mbuf *mopt; 1084 u_char *optbuf; 1085 u_int32_t v; 1086 1087 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1088 1089 /* 1090 * If there is no hop-by-hop options header, allocate new one. 1091 * If there is one but it doesn't have enough space to store the 1092 * jumbo payload option, allocate a cluster to store the whole options. 1093 * Otherwise, use it to store the options. 1094 */ 1095 if (exthdrs->ip6e_hbh == 0) { 1096 mopt = m_get(M_NOWAIT, MT_DATA); 1097 if (mopt == NULL) 1098 return (ENOBUFS); 1099 mopt->m_len = JUMBOOPTLEN; 1100 optbuf = mtod(mopt, u_char *); 1101 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1102 exthdrs->ip6e_hbh = mopt; 1103 } else { 1104 struct ip6_hbh *hbh; 1105 1106 mopt = exthdrs->ip6e_hbh; 1107 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1108 /* 1109 * XXX assumption: 1110 * - exthdrs->ip6e_hbh is not referenced from places 1111 * other than exthdrs. 1112 * - exthdrs->ip6e_hbh is not an mbuf chain. 1113 */ 1114 int oldoptlen = mopt->m_len; 1115 struct mbuf *n; 1116 1117 /* 1118 * XXX: give up if the whole (new) hbh header does 1119 * not fit even in an mbuf cluster. 1120 */ 1121 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1122 return (ENOBUFS); 1123 1124 /* 1125 * As a consequence, we must always prepare a cluster 1126 * at this point. 1127 */ 1128 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1129 if (n == NULL) 1130 return (ENOBUFS); 1131 n->m_len = oldoptlen + JUMBOOPTLEN; 1132 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1133 oldoptlen); 1134 optbuf = mtod(n, caddr_t) + oldoptlen; 1135 m_freem(mopt); 1136 mopt = exthdrs->ip6e_hbh = n; 1137 } else { 1138 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1139 mopt->m_len += JUMBOOPTLEN; 1140 } 1141 optbuf[0] = IP6OPT_PADN; 1142 optbuf[1] = 1; 1143 1144 /* 1145 * Adjust the header length according to the pad and 1146 * the jumbo payload option. 1147 */ 1148 hbh = mtod(mopt, struct ip6_hbh *); 1149 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1150 } 1151 1152 /* fill in the option. */ 1153 optbuf[2] = IP6OPT_JUMBO; 1154 optbuf[3] = 4; 1155 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1156 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1157 1158 /* finally, adjust the packet header length */ 1159 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1160 1161 return (0); 1162 #undef JUMBOOPTLEN 1163 } 1164 1165 /* 1166 * Insert fragment header and copy unfragmentable header portions. 1167 */ 1168 static int 1169 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1170 struct ip6_frag **frghdrp) 1171 { 1172 struct mbuf *n, *mlast; 1173 1174 if (hlen > sizeof(struct ip6_hdr)) { 1175 n = m_copym(m0, sizeof(struct ip6_hdr), 1176 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1177 if (n == 0) 1178 return (ENOBUFS); 1179 m->m_next = n; 1180 } else 1181 n = m; 1182 1183 /* Search for the last mbuf of unfragmentable part. */ 1184 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1185 ; 1186 1187 if (M_WRITABLE(mlast) && 1188 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1189 /* use the trailing space of the last mbuf for the fragment hdr */ 1190 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1191 mlast->m_len); 1192 mlast->m_len += sizeof(struct ip6_frag); 1193 m->m_pkthdr.len += sizeof(struct ip6_frag); 1194 } else { 1195 /* allocate a new mbuf for the fragment header */ 1196 struct mbuf *mfrg; 1197 1198 mfrg = m_get(M_NOWAIT, MT_DATA); 1199 if (mfrg == NULL) 1200 return (ENOBUFS); 1201 mfrg->m_len = sizeof(struct ip6_frag); 1202 *frghdrp = mtod(mfrg, struct ip6_frag *); 1203 mlast->m_next = mfrg; 1204 } 1205 1206 return (0); 1207 } 1208 1209 static int 1210 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, 1211 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, 1212 int *alwaysfragp, u_int fibnum) 1213 { 1214 u_int32_t mtu = 0; 1215 int alwaysfrag = 0; 1216 int error = 0; 1217 1218 if (ro_pmtu != ro) { 1219 /* The first hop and the final destination may differ. */ 1220 struct sockaddr_in6 *sa6_dst = 1221 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1222 if (ro_pmtu->ro_rt && 1223 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1224 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1225 RTFREE(ro_pmtu->ro_rt); 1226 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1227 } 1228 if (ro_pmtu->ro_rt == NULL) { 1229 bzero(sa6_dst, sizeof(*sa6_dst)); 1230 sa6_dst->sin6_family = AF_INET6; 1231 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1232 sa6_dst->sin6_addr = *dst; 1233 1234 in6_rtalloc(ro_pmtu, fibnum); 1235 } 1236 } 1237 if (ro_pmtu->ro_rt) { 1238 u_int32_t ifmtu; 1239 struct in_conninfo inc; 1240 1241 bzero(&inc, sizeof(inc)); 1242 inc.inc_flags |= INC_ISIPV6; 1243 inc.inc6_faddr = *dst; 1244 1245 if (ifp == NULL) 1246 ifp = ro_pmtu->ro_rt->rt_ifp; 1247 ifmtu = IN6_LINKMTU(ifp); 1248 mtu = tcp_hc_getmtu(&inc); 1249 if (mtu) 1250 mtu = min(mtu, ro_pmtu->ro_rt->rt_mtu); 1251 else 1252 mtu = ro_pmtu->ro_rt->rt_mtu; 1253 if (mtu == 0) 1254 mtu = ifmtu; 1255 else if (mtu < IPV6_MMTU) { 1256 /* 1257 * RFC2460 section 5, last paragraph: 1258 * if we record ICMPv6 too big message with 1259 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1260 * or smaller, with framgent header attached. 1261 * (fragment header is needed regardless from the 1262 * packet size, for translators to identify packets) 1263 */ 1264 alwaysfrag = 1; 1265 mtu = IPV6_MMTU; 1266 } 1267 } else if (ifp) { 1268 mtu = IN6_LINKMTU(ifp); 1269 } else 1270 error = EHOSTUNREACH; /* XXX */ 1271 1272 *mtup = mtu; 1273 if (alwaysfragp) 1274 *alwaysfragp = alwaysfrag; 1275 return (error); 1276 } 1277 1278 /* 1279 * IP6 socket option processing. 1280 */ 1281 int 1282 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1283 { 1284 int optdatalen, uproto; 1285 void *optdata; 1286 struct inpcb *in6p = sotoinpcb(so); 1287 int error, optval; 1288 int level, op, optname; 1289 int optlen; 1290 struct thread *td; 1291 #ifdef RSS 1292 uint32_t rss_bucket; 1293 int retval; 1294 #endif 1295 1296 level = sopt->sopt_level; 1297 op = sopt->sopt_dir; 1298 optname = sopt->sopt_name; 1299 optlen = sopt->sopt_valsize; 1300 td = sopt->sopt_td; 1301 error = 0; 1302 optval = 0; 1303 uproto = (int)so->so_proto->pr_protocol; 1304 1305 if (level != IPPROTO_IPV6) { 1306 error = EINVAL; 1307 1308 if (sopt->sopt_level == SOL_SOCKET && 1309 sopt->sopt_dir == SOPT_SET) { 1310 switch (sopt->sopt_name) { 1311 case SO_REUSEADDR: 1312 INP_WLOCK(in6p); 1313 if ((so->so_options & SO_REUSEADDR) != 0) 1314 in6p->inp_flags2 |= INP_REUSEADDR; 1315 else 1316 in6p->inp_flags2 &= ~INP_REUSEADDR; 1317 INP_WUNLOCK(in6p); 1318 error = 0; 1319 break; 1320 case SO_REUSEPORT: 1321 INP_WLOCK(in6p); 1322 if ((so->so_options & SO_REUSEPORT) != 0) 1323 in6p->inp_flags2 |= INP_REUSEPORT; 1324 else 1325 in6p->inp_flags2 &= ~INP_REUSEPORT; 1326 INP_WUNLOCK(in6p); 1327 error = 0; 1328 break; 1329 case SO_SETFIB: 1330 INP_WLOCK(in6p); 1331 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1332 INP_WUNLOCK(in6p); 1333 error = 0; 1334 break; 1335 default: 1336 break; 1337 } 1338 } 1339 } else { /* level == IPPROTO_IPV6 */ 1340 switch (op) { 1341 1342 case SOPT_SET: 1343 switch (optname) { 1344 case IPV6_2292PKTOPTIONS: 1345 #ifdef IPV6_PKTOPTIONS 1346 case IPV6_PKTOPTIONS: 1347 #endif 1348 { 1349 struct mbuf *m; 1350 1351 error = soopt_getm(sopt, &m); /* XXX */ 1352 if (error != 0) 1353 break; 1354 error = soopt_mcopyin(sopt, m); /* XXX */ 1355 if (error != 0) 1356 break; 1357 error = ip6_pcbopts(&in6p->in6p_outputopts, 1358 m, so, sopt); 1359 m_freem(m); /* XXX */ 1360 break; 1361 } 1362 1363 /* 1364 * Use of some Hop-by-Hop options or some 1365 * Destination options, might require special 1366 * privilege. That is, normal applications 1367 * (without special privilege) might be forbidden 1368 * from setting certain options in outgoing packets, 1369 * and might never see certain options in received 1370 * packets. [RFC 2292 Section 6] 1371 * KAME specific note: 1372 * KAME prevents non-privileged users from sending or 1373 * receiving ANY hbh/dst options in order to avoid 1374 * overhead of parsing options in the kernel. 1375 */ 1376 case IPV6_RECVHOPOPTS: 1377 case IPV6_RECVDSTOPTS: 1378 case IPV6_RECVRTHDRDSTOPTS: 1379 if (td != NULL) { 1380 error = priv_check(td, 1381 PRIV_NETINET_SETHDROPTS); 1382 if (error) 1383 break; 1384 } 1385 /* FALLTHROUGH */ 1386 case IPV6_UNICAST_HOPS: 1387 case IPV6_HOPLIMIT: 1388 1389 case IPV6_RECVPKTINFO: 1390 case IPV6_RECVHOPLIMIT: 1391 case IPV6_RECVRTHDR: 1392 case IPV6_RECVPATHMTU: 1393 case IPV6_RECVTCLASS: 1394 case IPV6_V6ONLY: 1395 case IPV6_AUTOFLOWLABEL: 1396 case IPV6_BINDANY: 1397 case IPV6_BINDMULTI: 1398 #ifdef RSS 1399 case IPV6_RSS_LISTEN_BUCKET: 1400 #endif 1401 if (optname == IPV6_BINDANY && td != NULL) { 1402 error = priv_check(td, 1403 PRIV_NETINET_BINDANY); 1404 if (error) 1405 break; 1406 } 1407 1408 if (optlen != sizeof(int)) { 1409 error = EINVAL; 1410 break; 1411 } 1412 error = sooptcopyin(sopt, &optval, 1413 sizeof optval, sizeof optval); 1414 if (error) 1415 break; 1416 switch (optname) { 1417 1418 case IPV6_UNICAST_HOPS: 1419 if (optval < -1 || optval >= 256) 1420 error = EINVAL; 1421 else { 1422 /* -1 = kernel default */ 1423 in6p->in6p_hops = optval; 1424 if ((in6p->inp_vflag & 1425 INP_IPV4) != 0) 1426 in6p->inp_ip_ttl = optval; 1427 } 1428 break; 1429 #define OPTSET(bit) \ 1430 do { \ 1431 INP_WLOCK(in6p); \ 1432 if (optval) \ 1433 in6p->inp_flags |= (bit); \ 1434 else \ 1435 in6p->inp_flags &= ~(bit); \ 1436 INP_WUNLOCK(in6p); \ 1437 } while (/*CONSTCOND*/ 0) 1438 #define OPTSET2292(bit) \ 1439 do { \ 1440 INP_WLOCK(in6p); \ 1441 in6p->inp_flags |= IN6P_RFC2292; \ 1442 if (optval) \ 1443 in6p->inp_flags |= (bit); \ 1444 else \ 1445 in6p->inp_flags &= ~(bit); \ 1446 INP_WUNLOCK(in6p); \ 1447 } while (/*CONSTCOND*/ 0) 1448 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1449 1450 #define OPTSET2(bit, val) do { \ 1451 INP_WLOCK(in6p); \ 1452 if (val) \ 1453 in6p->inp_flags2 |= bit; \ 1454 else \ 1455 in6p->inp_flags2 &= ~bit; \ 1456 INP_WUNLOCK(in6p); \ 1457 } while (0) 1458 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) 1459 1460 case IPV6_RECVPKTINFO: 1461 /* cannot mix with RFC2292 */ 1462 if (OPTBIT(IN6P_RFC2292)) { 1463 error = EINVAL; 1464 break; 1465 } 1466 OPTSET(IN6P_PKTINFO); 1467 break; 1468 1469 case IPV6_HOPLIMIT: 1470 { 1471 struct ip6_pktopts **optp; 1472 1473 /* cannot mix with RFC2292 */ 1474 if (OPTBIT(IN6P_RFC2292)) { 1475 error = EINVAL; 1476 break; 1477 } 1478 optp = &in6p->in6p_outputopts; 1479 error = ip6_pcbopt(IPV6_HOPLIMIT, 1480 (u_char *)&optval, sizeof(optval), 1481 optp, (td != NULL) ? td->td_ucred : 1482 NULL, uproto); 1483 break; 1484 } 1485 1486 case IPV6_RECVHOPLIMIT: 1487 /* cannot mix with RFC2292 */ 1488 if (OPTBIT(IN6P_RFC2292)) { 1489 error = EINVAL; 1490 break; 1491 } 1492 OPTSET(IN6P_HOPLIMIT); 1493 break; 1494 1495 case IPV6_RECVHOPOPTS: 1496 /* cannot mix with RFC2292 */ 1497 if (OPTBIT(IN6P_RFC2292)) { 1498 error = EINVAL; 1499 break; 1500 } 1501 OPTSET(IN6P_HOPOPTS); 1502 break; 1503 1504 case IPV6_RECVDSTOPTS: 1505 /* cannot mix with RFC2292 */ 1506 if (OPTBIT(IN6P_RFC2292)) { 1507 error = EINVAL; 1508 break; 1509 } 1510 OPTSET(IN6P_DSTOPTS); 1511 break; 1512 1513 case IPV6_RECVRTHDRDSTOPTS: 1514 /* cannot mix with RFC2292 */ 1515 if (OPTBIT(IN6P_RFC2292)) { 1516 error = EINVAL; 1517 break; 1518 } 1519 OPTSET(IN6P_RTHDRDSTOPTS); 1520 break; 1521 1522 case IPV6_RECVRTHDR: 1523 /* cannot mix with RFC2292 */ 1524 if (OPTBIT(IN6P_RFC2292)) { 1525 error = EINVAL; 1526 break; 1527 } 1528 OPTSET(IN6P_RTHDR); 1529 break; 1530 1531 case IPV6_RECVPATHMTU: 1532 /* 1533 * We ignore this option for TCP 1534 * sockets. 1535 * (RFC3542 leaves this case 1536 * unspecified.) 1537 */ 1538 if (uproto != IPPROTO_TCP) 1539 OPTSET(IN6P_MTU); 1540 break; 1541 1542 case IPV6_V6ONLY: 1543 /* 1544 * make setsockopt(IPV6_V6ONLY) 1545 * available only prior to bind(2). 1546 * see ipng mailing list, Jun 22 2001. 1547 */ 1548 if (in6p->inp_lport || 1549 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1550 error = EINVAL; 1551 break; 1552 } 1553 OPTSET(IN6P_IPV6_V6ONLY); 1554 if (optval) 1555 in6p->inp_vflag &= ~INP_IPV4; 1556 else 1557 in6p->inp_vflag |= INP_IPV4; 1558 break; 1559 case IPV6_RECVTCLASS: 1560 /* cannot mix with RFC2292 XXX */ 1561 if (OPTBIT(IN6P_RFC2292)) { 1562 error = EINVAL; 1563 break; 1564 } 1565 OPTSET(IN6P_TCLASS); 1566 break; 1567 case IPV6_AUTOFLOWLABEL: 1568 OPTSET(IN6P_AUTOFLOWLABEL); 1569 break; 1570 1571 case IPV6_BINDANY: 1572 OPTSET(INP_BINDANY); 1573 break; 1574 1575 case IPV6_BINDMULTI: 1576 OPTSET2(INP_BINDMULTI, optval); 1577 break; 1578 #ifdef RSS 1579 case IPV6_RSS_LISTEN_BUCKET: 1580 if ((optval >= 0) && 1581 (optval < rss_getnumbuckets())) { 1582 in6p->inp_rss_listen_bucket = optval; 1583 OPTSET2(INP_RSS_BUCKET_SET, 1); 1584 } else { 1585 error = EINVAL; 1586 } 1587 break; 1588 #endif 1589 } 1590 break; 1591 1592 case IPV6_TCLASS: 1593 case IPV6_DONTFRAG: 1594 case IPV6_USE_MIN_MTU: 1595 case IPV6_PREFER_TEMPADDR: 1596 if (optlen != sizeof(optval)) { 1597 error = EINVAL; 1598 break; 1599 } 1600 error = sooptcopyin(sopt, &optval, 1601 sizeof optval, sizeof optval); 1602 if (error) 1603 break; 1604 { 1605 struct ip6_pktopts **optp; 1606 optp = &in6p->in6p_outputopts; 1607 error = ip6_pcbopt(optname, 1608 (u_char *)&optval, sizeof(optval), 1609 optp, (td != NULL) ? td->td_ucred : 1610 NULL, uproto); 1611 break; 1612 } 1613 1614 case IPV6_2292PKTINFO: 1615 case IPV6_2292HOPLIMIT: 1616 case IPV6_2292HOPOPTS: 1617 case IPV6_2292DSTOPTS: 1618 case IPV6_2292RTHDR: 1619 /* RFC 2292 */ 1620 if (optlen != sizeof(int)) { 1621 error = EINVAL; 1622 break; 1623 } 1624 error = sooptcopyin(sopt, &optval, 1625 sizeof optval, sizeof optval); 1626 if (error) 1627 break; 1628 switch (optname) { 1629 case IPV6_2292PKTINFO: 1630 OPTSET2292(IN6P_PKTINFO); 1631 break; 1632 case IPV6_2292HOPLIMIT: 1633 OPTSET2292(IN6P_HOPLIMIT); 1634 break; 1635 case IPV6_2292HOPOPTS: 1636 /* 1637 * Check super-user privilege. 1638 * See comments for IPV6_RECVHOPOPTS. 1639 */ 1640 if (td != NULL) { 1641 error = priv_check(td, 1642 PRIV_NETINET_SETHDROPTS); 1643 if (error) 1644 return (error); 1645 } 1646 OPTSET2292(IN6P_HOPOPTS); 1647 break; 1648 case IPV6_2292DSTOPTS: 1649 if (td != NULL) { 1650 error = priv_check(td, 1651 PRIV_NETINET_SETHDROPTS); 1652 if (error) 1653 return (error); 1654 } 1655 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1656 break; 1657 case IPV6_2292RTHDR: 1658 OPTSET2292(IN6P_RTHDR); 1659 break; 1660 } 1661 break; 1662 case IPV6_PKTINFO: 1663 case IPV6_HOPOPTS: 1664 case IPV6_RTHDR: 1665 case IPV6_DSTOPTS: 1666 case IPV6_RTHDRDSTOPTS: 1667 case IPV6_NEXTHOP: 1668 { 1669 /* new advanced API (RFC3542) */ 1670 u_char *optbuf; 1671 u_char optbuf_storage[MCLBYTES]; 1672 int optlen; 1673 struct ip6_pktopts **optp; 1674 1675 /* cannot mix with RFC2292 */ 1676 if (OPTBIT(IN6P_RFC2292)) { 1677 error = EINVAL; 1678 break; 1679 } 1680 1681 /* 1682 * We only ensure valsize is not too large 1683 * here. Further validation will be done 1684 * later. 1685 */ 1686 error = sooptcopyin(sopt, optbuf_storage, 1687 sizeof(optbuf_storage), 0); 1688 if (error) 1689 break; 1690 optlen = sopt->sopt_valsize; 1691 optbuf = optbuf_storage; 1692 optp = &in6p->in6p_outputopts; 1693 error = ip6_pcbopt(optname, optbuf, optlen, 1694 optp, (td != NULL) ? td->td_ucred : NULL, 1695 uproto); 1696 break; 1697 } 1698 #undef OPTSET 1699 1700 case IPV6_MULTICAST_IF: 1701 case IPV6_MULTICAST_HOPS: 1702 case IPV6_MULTICAST_LOOP: 1703 case IPV6_JOIN_GROUP: 1704 case IPV6_LEAVE_GROUP: 1705 case IPV6_MSFILTER: 1706 case MCAST_BLOCK_SOURCE: 1707 case MCAST_UNBLOCK_SOURCE: 1708 case MCAST_JOIN_GROUP: 1709 case MCAST_LEAVE_GROUP: 1710 case MCAST_JOIN_SOURCE_GROUP: 1711 case MCAST_LEAVE_SOURCE_GROUP: 1712 error = ip6_setmoptions(in6p, sopt); 1713 break; 1714 1715 case IPV6_PORTRANGE: 1716 error = sooptcopyin(sopt, &optval, 1717 sizeof optval, sizeof optval); 1718 if (error) 1719 break; 1720 1721 INP_WLOCK(in6p); 1722 switch (optval) { 1723 case IPV6_PORTRANGE_DEFAULT: 1724 in6p->inp_flags &= ~(INP_LOWPORT); 1725 in6p->inp_flags &= ~(INP_HIGHPORT); 1726 break; 1727 1728 case IPV6_PORTRANGE_HIGH: 1729 in6p->inp_flags &= ~(INP_LOWPORT); 1730 in6p->inp_flags |= INP_HIGHPORT; 1731 break; 1732 1733 case IPV6_PORTRANGE_LOW: 1734 in6p->inp_flags &= ~(INP_HIGHPORT); 1735 in6p->inp_flags |= INP_LOWPORT; 1736 break; 1737 1738 default: 1739 error = EINVAL; 1740 break; 1741 } 1742 INP_WUNLOCK(in6p); 1743 break; 1744 1745 #ifdef IPSEC 1746 case IPV6_IPSEC_POLICY: 1747 { 1748 caddr_t req; 1749 struct mbuf *m; 1750 1751 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1752 break; 1753 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1754 break; 1755 req = mtod(m, caddr_t); 1756 error = ipsec_set_policy(in6p, optname, req, 1757 m->m_len, (sopt->sopt_td != NULL) ? 1758 sopt->sopt_td->td_ucred : NULL); 1759 m_freem(m); 1760 break; 1761 } 1762 #endif /* IPSEC */ 1763 1764 default: 1765 error = ENOPROTOOPT; 1766 break; 1767 } 1768 break; 1769 1770 case SOPT_GET: 1771 switch (optname) { 1772 1773 case IPV6_2292PKTOPTIONS: 1774 #ifdef IPV6_PKTOPTIONS 1775 case IPV6_PKTOPTIONS: 1776 #endif 1777 /* 1778 * RFC3542 (effectively) deprecated the 1779 * semantics of the 2292-style pktoptions. 1780 * Since it was not reliable in nature (i.e., 1781 * applications had to expect the lack of some 1782 * information after all), it would make sense 1783 * to simplify this part by always returning 1784 * empty data. 1785 */ 1786 sopt->sopt_valsize = 0; 1787 break; 1788 1789 case IPV6_RECVHOPOPTS: 1790 case IPV6_RECVDSTOPTS: 1791 case IPV6_RECVRTHDRDSTOPTS: 1792 case IPV6_UNICAST_HOPS: 1793 case IPV6_RECVPKTINFO: 1794 case IPV6_RECVHOPLIMIT: 1795 case IPV6_RECVRTHDR: 1796 case IPV6_RECVPATHMTU: 1797 1798 case IPV6_V6ONLY: 1799 case IPV6_PORTRANGE: 1800 case IPV6_RECVTCLASS: 1801 case IPV6_AUTOFLOWLABEL: 1802 case IPV6_BINDANY: 1803 case IPV6_FLOWID: 1804 case IPV6_FLOWTYPE: 1805 #ifdef RSS 1806 case IPV6_RSSBUCKETID: 1807 #endif 1808 switch (optname) { 1809 1810 case IPV6_RECVHOPOPTS: 1811 optval = OPTBIT(IN6P_HOPOPTS); 1812 break; 1813 1814 case IPV6_RECVDSTOPTS: 1815 optval = OPTBIT(IN6P_DSTOPTS); 1816 break; 1817 1818 case IPV6_RECVRTHDRDSTOPTS: 1819 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1820 break; 1821 1822 case IPV6_UNICAST_HOPS: 1823 optval = in6p->in6p_hops; 1824 break; 1825 1826 case IPV6_RECVPKTINFO: 1827 optval = OPTBIT(IN6P_PKTINFO); 1828 break; 1829 1830 case IPV6_RECVHOPLIMIT: 1831 optval = OPTBIT(IN6P_HOPLIMIT); 1832 break; 1833 1834 case IPV6_RECVRTHDR: 1835 optval = OPTBIT(IN6P_RTHDR); 1836 break; 1837 1838 case IPV6_RECVPATHMTU: 1839 optval = OPTBIT(IN6P_MTU); 1840 break; 1841 1842 case IPV6_V6ONLY: 1843 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1844 break; 1845 1846 case IPV6_PORTRANGE: 1847 { 1848 int flags; 1849 flags = in6p->inp_flags; 1850 if (flags & INP_HIGHPORT) 1851 optval = IPV6_PORTRANGE_HIGH; 1852 else if (flags & INP_LOWPORT) 1853 optval = IPV6_PORTRANGE_LOW; 1854 else 1855 optval = 0; 1856 break; 1857 } 1858 case IPV6_RECVTCLASS: 1859 optval = OPTBIT(IN6P_TCLASS); 1860 break; 1861 1862 case IPV6_AUTOFLOWLABEL: 1863 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1864 break; 1865 1866 case IPV6_BINDANY: 1867 optval = OPTBIT(INP_BINDANY); 1868 break; 1869 1870 case IPV6_FLOWID: 1871 optval = in6p->inp_flowid; 1872 break; 1873 1874 case IPV6_FLOWTYPE: 1875 optval = in6p->inp_flowtype; 1876 break; 1877 #ifdef RSS 1878 case IPV6_RSSBUCKETID: 1879 retval = 1880 rss_hash2bucket(in6p->inp_flowid, 1881 in6p->inp_flowtype, 1882 &rss_bucket); 1883 if (retval == 0) 1884 optval = rss_bucket; 1885 else 1886 error = EINVAL; 1887 break; 1888 #endif 1889 1890 case IPV6_BINDMULTI: 1891 optval = OPTBIT2(INP_BINDMULTI); 1892 break; 1893 1894 } 1895 if (error) 1896 break; 1897 error = sooptcopyout(sopt, &optval, 1898 sizeof optval); 1899 break; 1900 1901 case IPV6_PATHMTU: 1902 { 1903 u_long pmtu = 0; 1904 struct ip6_mtuinfo mtuinfo; 1905 struct route_in6 sro; 1906 1907 bzero(&sro, sizeof(sro)); 1908 1909 if (!(so->so_state & SS_ISCONNECTED)) 1910 return (ENOTCONN); 1911 /* 1912 * XXX: we dot not consider the case of source 1913 * routing, or optional information to specify 1914 * the outgoing interface. 1915 */ 1916 error = ip6_getpmtu(&sro, NULL, NULL, 1917 &in6p->in6p_faddr, &pmtu, NULL, 1918 so->so_fibnum); 1919 if (sro.ro_rt) 1920 RTFREE(sro.ro_rt); 1921 if (error) 1922 break; 1923 if (pmtu > IPV6_MAXPACKET) 1924 pmtu = IPV6_MAXPACKET; 1925 1926 bzero(&mtuinfo, sizeof(mtuinfo)); 1927 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1928 optdata = (void *)&mtuinfo; 1929 optdatalen = sizeof(mtuinfo); 1930 error = sooptcopyout(sopt, optdata, 1931 optdatalen); 1932 break; 1933 } 1934 1935 case IPV6_2292PKTINFO: 1936 case IPV6_2292HOPLIMIT: 1937 case IPV6_2292HOPOPTS: 1938 case IPV6_2292RTHDR: 1939 case IPV6_2292DSTOPTS: 1940 switch (optname) { 1941 case IPV6_2292PKTINFO: 1942 optval = OPTBIT(IN6P_PKTINFO); 1943 break; 1944 case IPV6_2292HOPLIMIT: 1945 optval = OPTBIT(IN6P_HOPLIMIT); 1946 break; 1947 case IPV6_2292HOPOPTS: 1948 optval = OPTBIT(IN6P_HOPOPTS); 1949 break; 1950 case IPV6_2292RTHDR: 1951 optval = OPTBIT(IN6P_RTHDR); 1952 break; 1953 case IPV6_2292DSTOPTS: 1954 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1955 break; 1956 } 1957 error = sooptcopyout(sopt, &optval, 1958 sizeof optval); 1959 break; 1960 case IPV6_PKTINFO: 1961 case IPV6_HOPOPTS: 1962 case IPV6_RTHDR: 1963 case IPV6_DSTOPTS: 1964 case IPV6_RTHDRDSTOPTS: 1965 case IPV6_NEXTHOP: 1966 case IPV6_TCLASS: 1967 case IPV6_DONTFRAG: 1968 case IPV6_USE_MIN_MTU: 1969 case IPV6_PREFER_TEMPADDR: 1970 error = ip6_getpcbopt(in6p->in6p_outputopts, 1971 optname, sopt); 1972 break; 1973 1974 case IPV6_MULTICAST_IF: 1975 case IPV6_MULTICAST_HOPS: 1976 case IPV6_MULTICAST_LOOP: 1977 case IPV6_MSFILTER: 1978 error = ip6_getmoptions(in6p, sopt); 1979 break; 1980 1981 #ifdef IPSEC 1982 case IPV6_IPSEC_POLICY: 1983 { 1984 caddr_t req = NULL; 1985 size_t len = 0; 1986 struct mbuf *m = NULL; 1987 struct mbuf **mp = &m; 1988 size_t ovalsize = sopt->sopt_valsize; 1989 caddr_t oval = (caddr_t)sopt->sopt_val; 1990 1991 error = soopt_getm(sopt, &m); /* XXX */ 1992 if (error != 0) 1993 break; 1994 error = soopt_mcopyin(sopt, m); /* XXX */ 1995 if (error != 0) 1996 break; 1997 sopt->sopt_valsize = ovalsize; 1998 sopt->sopt_val = oval; 1999 if (m) { 2000 req = mtod(m, caddr_t); 2001 len = m->m_len; 2002 } 2003 error = ipsec_get_policy(in6p, req, len, mp); 2004 if (error == 0) 2005 error = soopt_mcopyout(sopt, m); /* XXX */ 2006 if (error == 0 && m) 2007 m_freem(m); 2008 break; 2009 } 2010 #endif /* IPSEC */ 2011 2012 default: 2013 error = ENOPROTOOPT; 2014 break; 2015 } 2016 break; 2017 } 2018 } 2019 return (error); 2020 } 2021 2022 int 2023 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2024 { 2025 int error = 0, optval, optlen; 2026 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2027 struct inpcb *in6p = sotoinpcb(so); 2028 int level, op, optname; 2029 2030 level = sopt->sopt_level; 2031 op = sopt->sopt_dir; 2032 optname = sopt->sopt_name; 2033 optlen = sopt->sopt_valsize; 2034 2035 if (level != IPPROTO_IPV6) { 2036 return (EINVAL); 2037 } 2038 2039 switch (optname) { 2040 case IPV6_CHECKSUM: 2041 /* 2042 * For ICMPv6 sockets, no modification allowed for checksum 2043 * offset, permit "no change" values to help existing apps. 2044 * 2045 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2046 * for an ICMPv6 socket will fail." 2047 * The current behavior does not meet RFC3542. 2048 */ 2049 switch (op) { 2050 case SOPT_SET: 2051 if (optlen != sizeof(int)) { 2052 error = EINVAL; 2053 break; 2054 } 2055 error = sooptcopyin(sopt, &optval, sizeof(optval), 2056 sizeof(optval)); 2057 if (error) 2058 break; 2059 if ((optval % 2) != 0) { 2060 /* the API assumes even offset values */ 2061 error = EINVAL; 2062 } else if (so->so_proto->pr_protocol == 2063 IPPROTO_ICMPV6) { 2064 if (optval != icmp6off) 2065 error = EINVAL; 2066 } else 2067 in6p->in6p_cksum = optval; 2068 break; 2069 2070 case SOPT_GET: 2071 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2072 optval = icmp6off; 2073 else 2074 optval = in6p->in6p_cksum; 2075 2076 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2077 break; 2078 2079 default: 2080 error = EINVAL; 2081 break; 2082 } 2083 break; 2084 2085 default: 2086 error = ENOPROTOOPT; 2087 break; 2088 } 2089 2090 return (error); 2091 } 2092 2093 /* 2094 * Set up IP6 options in pcb for insertion in output packets or 2095 * specifying behavior of outgoing packets. 2096 */ 2097 static int 2098 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2099 struct socket *so, struct sockopt *sopt) 2100 { 2101 struct ip6_pktopts *opt = *pktopt; 2102 int error = 0; 2103 struct thread *td = sopt->sopt_td; 2104 2105 /* turn off any old options. */ 2106 if (opt) { 2107 #ifdef DIAGNOSTIC 2108 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2109 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2110 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2111 printf("ip6_pcbopts: all specified options are cleared.\n"); 2112 #endif 2113 ip6_clearpktopts(opt, -1); 2114 } else 2115 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2116 *pktopt = NULL; 2117 2118 if (!m || m->m_len == 0) { 2119 /* 2120 * Only turning off any previous options, regardless of 2121 * whether the opt is just created or given. 2122 */ 2123 free(opt, M_IP6OPT); 2124 return (0); 2125 } 2126 2127 /* set options specified by user. */ 2128 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2129 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2130 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2131 free(opt, M_IP6OPT); 2132 return (error); 2133 } 2134 *pktopt = opt; 2135 return (0); 2136 } 2137 2138 /* 2139 * initialize ip6_pktopts. beware that there are non-zero default values in 2140 * the struct. 2141 */ 2142 void 2143 ip6_initpktopts(struct ip6_pktopts *opt) 2144 { 2145 2146 bzero(opt, sizeof(*opt)); 2147 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2148 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2149 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2150 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2151 } 2152 2153 static int 2154 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2155 struct ucred *cred, int uproto) 2156 { 2157 struct ip6_pktopts *opt; 2158 2159 if (*pktopt == NULL) { 2160 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2161 M_WAITOK); 2162 ip6_initpktopts(*pktopt); 2163 } 2164 opt = *pktopt; 2165 2166 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2167 } 2168 2169 static int 2170 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2171 { 2172 void *optdata = NULL; 2173 int optdatalen = 0; 2174 struct ip6_ext *ip6e; 2175 int error = 0; 2176 struct in6_pktinfo null_pktinfo; 2177 int deftclass = 0, on; 2178 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2179 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2180 2181 switch (optname) { 2182 case IPV6_PKTINFO: 2183 if (pktopt && pktopt->ip6po_pktinfo) 2184 optdata = (void *)pktopt->ip6po_pktinfo; 2185 else { 2186 /* XXX: we don't have to do this every time... */ 2187 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2188 optdata = (void *)&null_pktinfo; 2189 } 2190 optdatalen = sizeof(struct in6_pktinfo); 2191 break; 2192 case IPV6_TCLASS: 2193 if (pktopt && pktopt->ip6po_tclass >= 0) 2194 optdata = (void *)&pktopt->ip6po_tclass; 2195 else 2196 optdata = (void *)&deftclass; 2197 optdatalen = sizeof(int); 2198 break; 2199 case IPV6_HOPOPTS: 2200 if (pktopt && pktopt->ip6po_hbh) { 2201 optdata = (void *)pktopt->ip6po_hbh; 2202 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2203 optdatalen = (ip6e->ip6e_len + 1) << 3; 2204 } 2205 break; 2206 case IPV6_RTHDR: 2207 if (pktopt && pktopt->ip6po_rthdr) { 2208 optdata = (void *)pktopt->ip6po_rthdr; 2209 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2210 optdatalen = (ip6e->ip6e_len + 1) << 3; 2211 } 2212 break; 2213 case IPV6_RTHDRDSTOPTS: 2214 if (pktopt && pktopt->ip6po_dest1) { 2215 optdata = (void *)pktopt->ip6po_dest1; 2216 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2217 optdatalen = (ip6e->ip6e_len + 1) << 3; 2218 } 2219 break; 2220 case IPV6_DSTOPTS: 2221 if (pktopt && pktopt->ip6po_dest2) { 2222 optdata = (void *)pktopt->ip6po_dest2; 2223 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2224 optdatalen = (ip6e->ip6e_len + 1) << 3; 2225 } 2226 break; 2227 case IPV6_NEXTHOP: 2228 if (pktopt && pktopt->ip6po_nexthop) { 2229 optdata = (void *)pktopt->ip6po_nexthop; 2230 optdatalen = pktopt->ip6po_nexthop->sa_len; 2231 } 2232 break; 2233 case IPV6_USE_MIN_MTU: 2234 if (pktopt) 2235 optdata = (void *)&pktopt->ip6po_minmtu; 2236 else 2237 optdata = (void *)&defminmtu; 2238 optdatalen = sizeof(int); 2239 break; 2240 case IPV6_DONTFRAG: 2241 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2242 on = 1; 2243 else 2244 on = 0; 2245 optdata = (void *)&on; 2246 optdatalen = sizeof(on); 2247 break; 2248 case IPV6_PREFER_TEMPADDR: 2249 if (pktopt) 2250 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2251 else 2252 optdata = (void *)&defpreftemp; 2253 optdatalen = sizeof(int); 2254 break; 2255 default: /* should not happen */ 2256 #ifdef DIAGNOSTIC 2257 panic("ip6_getpcbopt: unexpected option\n"); 2258 #endif 2259 return (ENOPROTOOPT); 2260 } 2261 2262 error = sooptcopyout(sopt, optdata, optdatalen); 2263 2264 return (error); 2265 } 2266 2267 void 2268 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2269 { 2270 if (pktopt == NULL) 2271 return; 2272 2273 if (optname == -1 || optname == IPV6_PKTINFO) { 2274 if (pktopt->ip6po_pktinfo) 2275 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2276 pktopt->ip6po_pktinfo = NULL; 2277 } 2278 if (optname == -1 || optname == IPV6_HOPLIMIT) 2279 pktopt->ip6po_hlim = -1; 2280 if (optname == -1 || optname == IPV6_TCLASS) 2281 pktopt->ip6po_tclass = -1; 2282 if (optname == -1 || optname == IPV6_NEXTHOP) { 2283 if (pktopt->ip6po_nextroute.ro_rt) { 2284 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2285 pktopt->ip6po_nextroute.ro_rt = NULL; 2286 } 2287 if (pktopt->ip6po_nexthop) 2288 free(pktopt->ip6po_nexthop, M_IP6OPT); 2289 pktopt->ip6po_nexthop = NULL; 2290 } 2291 if (optname == -1 || optname == IPV6_HOPOPTS) { 2292 if (pktopt->ip6po_hbh) 2293 free(pktopt->ip6po_hbh, M_IP6OPT); 2294 pktopt->ip6po_hbh = NULL; 2295 } 2296 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2297 if (pktopt->ip6po_dest1) 2298 free(pktopt->ip6po_dest1, M_IP6OPT); 2299 pktopt->ip6po_dest1 = NULL; 2300 } 2301 if (optname == -1 || optname == IPV6_RTHDR) { 2302 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2303 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2304 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2305 if (pktopt->ip6po_route.ro_rt) { 2306 RTFREE(pktopt->ip6po_route.ro_rt); 2307 pktopt->ip6po_route.ro_rt = NULL; 2308 } 2309 } 2310 if (optname == -1 || optname == IPV6_DSTOPTS) { 2311 if (pktopt->ip6po_dest2) 2312 free(pktopt->ip6po_dest2, M_IP6OPT); 2313 pktopt->ip6po_dest2 = NULL; 2314 } 2315 } 2316 2317 #define PKTOPT_EXTHDRCPY(type) \ 2318 do {\ 2319 if (src->type) {\ 2320 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2321 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2322 if (dst->type == NULL && canwait == M_NOWAIT)\ 2323 goto bad;\ 2324 bcopy(src->type, dst->type, hlen);\ 2325 }\ 2326 } while (/*CONSTCOND*/ 0) 2327 2328 static int 2329 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2330 { 2331 if (dst == NULL || src == NULL) { 2332 printf("ip6_clearpktopts: invalid argument\n"); 2333 return (EINVAL); 2334 } 2335 2336 dst->ip6po_hlim = src->ip6po_hlim; 2337 dst->ip6po_tclass = src->ip6po_tclass; 2338 dst->ip6po_flags = src->ip6po_flags; 2339 dst->ip6po_minmtu = src->ip6po_minmtu; 2340 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2341 if (src->ip6po_pktinfo) { 2342 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2343 M_IP6OPT, canwait); 2344 if (dst->ip6po_pktinfo == NULL) 2345 goto bad; 2346 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2347 } 2348 if (src->ip6po_nexthop) { 2349 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2350 M_IP6OPT, canwait); 2351 if (dst->ip6po_nexthop == NULL) 2352 goto bad; 2353 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2354 src->ip6po_nexthop->sa_len); 2355 } 2356 PKTOPT_EXTHDRCPY(ip6po_hbh); 2357 PKTOPT_EXTHDRCPY(ip6po_dest1); 2358 PKTOPT_EXTHDRCPY(ip6po_dest2); 2359 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2360 return (0); 2361 2362 bad: 2363 ip6_clearpktopts(dst, -1); 2364 return (ENOBUFS); 2365 } 2366 #undef PKTOPT_EXTHDRCPY 2367 2368 struct ip6_pktopts * 2369 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2370 { 2371 int error; 2372 struct ip6_pktopts *dst; 2373 2374 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2375 if (dst == NULL) 2376 return (NULL); 2377 ip6_initpktopts(dst); 2378 2379 if ((error = copypktopts(dst, src, canwait)) != 0) { 2380 free(dst, M_IP6OPT); 2381 return (NULL); 2382 } 2383 2384 return (dst); 2385 } 2386 2387 void 2388 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2389 { 2390 if (pktopt == NULL) 2391 return; 2392 2393 ip6_clearpktopts(pktopt, -1); 2394 2395 free(pktopt, M_IP6OPT); 2396 } 2397 2398 /* 2399 * Set IPv6 outgoing packet options based on advanced API. 2400 */ 2401 int 2402 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2403 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2404 { 2405 struct cmsghdr *cm = 0; 2406 2407 if (control == NULL || opt == NULL) 2408 return (EINVAL); 2409 2410 ip6_initpktopts(opt); 2411 if (stickyopt) { 2412 int error; 2413 2414 /* 2415 * If stickyopt is provided, make a local copy of the options 2416 * for this particular packet, then override them by ancillary 2417 * objects. 2418 * XXX: copypktopts() does not copy the cached route to a next 2419 * hop (if any). This is not very good in terms of efficiency, 2420 * but we can allow this since this option should be rarely 2421 * used. 2422 */ 2423 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2424 return (error); 2425 } 2426 2427 /* 2428 * XXX: Currently, we assume all the optional information is stored 2429 * in a single mbuf. 2430 */ 2431 if (control->m_next) 2432 return (EINVAL); 2433 2434 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2435 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2436 int error; 2437 2438 if (control->m_len < CMSG_LEN(0)) 2439 return (EINVAL); 2440 2441 cm = mtod(control, struct cmsghdr *); 2442 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2443 return (EINVAL); 2444 if (cm->cmsg_level != IPPROTO_IPV6) 2445 continue; 2446 2447 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2448 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2449 if (error) 2450 return (error); 2451 } 2452 2453 return (0); 2454 } 2455 2456 /* 2457 * Set a particular packet option, as a sticky option or an ancillary data 2458 * item. "len" can be 0 only when it's a sticky option. 2459 * We have 4 cases of combination of "sticky" and "cmsg": 2460 * "sticky=0, cmsg=0": impossible 2461 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2462 * "sticky=1, cmsg=0": RFC3542 socket option 2463 * "sticky=1, cmsg=1": RFC2292 socket option 2464 */ 2465 static int 2466 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2467 struct ucred *cred, int sticky, int cmsg, int uproto) 2468 { 2469 int minmtupolicy, preftemp; 2470 int error; 2471 2472 if (!sticky && !cmsg) { 2473 #ifdef DIAGNOSTIC 2474 printf("ip6_setpktopt: impossible case\n"); 2475 #endif 2476 return (EINVAL); 2477 } 2478 2479 /* 2480 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2481 * not be specified in the context of RFC3542. Conversely, 2482 * RFC3542 types should not be specified in the context of RFC2292. 2483 */ 2484 if (!cmsg) { 2485 switch (optname) { 2486 case IPV6_2292PKTINFO: 2487 case IPV6_2292HOPLIMIT: 2488 case IPV6_2292NEXTHOP: 2489 case IPV6_2292HOPOPTS: 2490 case IPV6_2292DSTOPTS: 2491 case IPV6_2292RTHDR: 2492 case IPV6_2292PKTOPTIONS: 2493 return (ENOPROTOOPT); 2494 } 2495 } 2496 if (sticky && cmsg) { 2497 switch (optname) { 2498 case IPV6_PKTINFO: 2499 case IPV6_HOPLIMIT: 2500 case IPV6_NEXTHOP: 2501 case IPV6_HOPOPTS: 2502 case IPV6_DSTOPTS: 2503 case IPV6_RTHDRDSTOPTS: 2504 case IPV6_RTHDR: 2505 case IPV6_USE_MIN_MTU: 2506 case IPV6_DONTFRAG: 2507 case IPV6_TCLASS: 2508 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2509 return (ENOPROTOOPT); 2510 } 2511 } 2512 2513 switch (optname) { 2514 case IPV6_2292PKTINFO: 2515 case IPV6_PKTINFO: 2516 { 2517 struct ifnet *ifp = NULL; 2518 struct in6_pktinfo *pktinfo; 2519 2520 if (len != sizeof(struct in6_pktinfo)) 2521 return (EINVAL); 2522 2523 pktinfo = (struct in6_pktinfo *)buf; 2524 2525 /* 2526 * An application can clear any sticky IPV6_PKTINFO option by 2527 * doing a "regular" setsockopt with ipi6_addr being 2528 * in6addr_any and ipi6_ifindex being zero. 2529 * [RFC 3542, Section 6] 2530 */ 2531 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2532 pktinfo->ipi6_ifindex == 0 && 2533 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2534 ip6_clearpktopts(opt, optname); 2535 break; 2536 } 2537 2538 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2539 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2540 return (EINVAL); 2541 } 2542 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2543 return (EINVAL); 2544 /* validate the interface index if specified. */ 2545 if (pktinfo->ipi6_ifindex > V_if_index) 2546 return (ENXIO); 2547 if (pktinfo->ipi6_ifindex) { 2548 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2549 if (ifp == NULL) 2550 return (ENXIO); 2551 } 2552 if (ifp != NULL && ( 2553 ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) 2554 return (ENETDOWN); 2555 2556 if (ifp != NULL && 2557 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2558 struct in6_ifaddr *ia; 2559 2560 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2561 if (ia == NULL) 2562 return (EADDRNOTAVAIL); 2563 ifa_free(&ia->ia_ifa); 2564 } 2565 /* 2566 * We store the address anyway, and let in6_selectsrc() 2567 * validate the specified address. This is because ipi6_addr 2568 * may not have enough information about its scope zone, and 2569 * we may need additional information (such as outgoing 2570 * interface or the scope zone of a destination address) to 2571 * disambiguate the scope. 2572 * XXX: the delay of the validation may confuse the 2573 * application when it is used as a sticky option. 2574 */ 2575 if (opt->ip6po_pktinfo == NULL) { 2576 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2577 M_IP6OPT, M_NOWAIT); 2578 if (opt->ip6po_pktinfo == NULL) 2579 return (ENOBUFS); 2580 } 2581 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2582 break; 2583 } 2584 2585 case IPV6_2292HOPLIMIT: 2586 case IPV6_HOPLIMIT: 2587 { 2588 int *hlimp; 2589 2590 /* 2591 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2592 * to simplify the ordering among hoplimit options. 2593 */ 2594 if (optname == IPV6_HOPLIMIT && sticky) 2595 return (ENOPROTOOPT); 2596 2597 if (len != sizeof(int)) 2598 return (EINVAL); 2599 hlimp = (int *)buf; 2600 if (*hlimp < -1 || *hlimp > 255) 2601 return (EINVAL); 2602 2603 opt->ip6po_hlim = *hlimp; 2604 break; 2605 } 2606 2607 case IPV6_TCLASS: 2608 { 2609 int tclass; 2610 2611 if (len != sizeof(int)) 2612 return (EINVAL); 2613 tclass = *(int *)buf; 2614 if (tclass < -1 || tclass > 255) 2615 return (EINVAL); 2616 2617 opt->ip6po_tclass = tclass; 2618 break; 2619 } 2620 2621 case IPV6_2292NEXTHOP: 2622 case IPV6_NEXTHOP: 2623 if (cred != NULL) { 2624 error = priv_check_cred(cred, 2625 PRIV_NETINET_SETHDROPTS, 0); 2626 if (error) 2627 return (error); 2628 } 2629 2630 if (len == 0) { /* just remove the option */ 2631 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2632 break; 2633 } 2634 2635 /* check if cmsg_len is large enough for sa_len */ 2636 if (len < sizeof(struct sockaddr) || len < *buf) 2637 return (EINVAL); 2638 2639 switch (((struct sockaddr *)buf)->sa_family) { 2640 case AF_INET6: 2641 { 2642 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2643 int error; 2644 2645 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2646 return (EINVAL); 2647 2648 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2649 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2650 return (EINVAL); 2651 } 2652 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2653 != 0) { 2654 return (error); 2655 } 2656 break; 2657 } 2658 case AF_LINK: /* should eventually be supported */ 2659 default: 2660 return (EAFNOSUPPORT); 2661 } 2662 2663 /* turn off the previous option, then set the new option. */ 2664 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2665 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2666 if (opt->ip6po_nexthop == NULL) 2667 return (ENOBUFS); 2668 bcopy(buf, opt->ip6po_nexthop, *buf); 2669 break; 2670 2671 case IPV6_2292HOPOPTS: 2672 case IPV6_HOPOPTS: 2673 { 2674 struct ip6_hbh *hbh; 2675 int hbhlen; 2676 2677 /* 2678 * XXX: We don't allow a non-privileged user to set ANY HbH 2679 * options, since per-option restriction has too much 2680 * overhead. 2681 */ 2682 if (cred != NULL) { 2683 error = priv_check_cred(cred, 2684 PRIV_NETINET_SETHDROPTS, 0); 2685 if (error) 2686 return (error); 2687 } 2688 2689 if (len == 0) { 2690 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2691 break; /* just remove the option */ 2692 } 2693 2694 /* message length validation */ 2695 if (len < sizeof(struct ip6_hbh)) 2696 return (EINVAL); 2697 hbh = (struct ip6_hbh *)buf; 2698 hbhlen = (hbh->ip6h_len + 1) << 3; 2699 if (len != hbhlen) 2700 return (EINVAL); 2701 2702 /* turn off the previous option, then set the new option. */ 2703 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2704 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2705 if (opt->ip6po_hbh == NULL) 2706 return (ENOBUFS); 2707 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2708 2709 break; 2710 } 2711 2712 case IPV6_2292DSTOPTS: 2713 case IPV6_DSTOPTS: 2714 case IPV6_RTHDRDSTOPTS: 2715 { 2716 struct ip6_dest *dest, **newdest = NULL; 2717 int destlen; 2718 2719 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2720 error = priv_check_cred(cred, 2721 PRIV_NETINET_SETHDROPTS, 0); 2722 if (error) 2723 return (error); 2724 } 2725 2726 if (len == 0) { 2727 ip6_clearpktopts(opt, optname); 2728 break; /* just remove the option */ 2729 } 2730 2731 /* message length validation */ 2732 if (len < sizeof(struct ip6_dest)) 2733 return (EINVAL); 2734 dest = (struct ip6_dest *)buf; 2735 destlen = (dest->ip6d_len + 1) << 3; 2736 if (len != destlen) 2737 return (EINVAL); 2738 2739 /* 2740 * Determine the position that the destination options header 2741 * should be inserted; before or after the routing header. 2742 */ 2743 switch (optname) { 2744 case IPV6_2292DSTOPTS: 2745 /* 2746 * The old advacned API is ambiguous on this point. 2747 * Our approach is to determine the position based 2748 * according to the existence of a routing header. 2749 * Note, however, that this depends on the order of the 2750 * extension headers in the ancillary data; the 1st 2751 * part of the destination options header must appear 2752 * before the routing header in the ancillary data, 2753 * too. 2754 * RFC3542 solved the ambiguity by introducing 2755 * separate ancillary data or option types. 2756 */ 2757 if (opt->ip6po_rthdr == NULL) 2758 newdest = &opt->ip6po_dest1; 2759 else 2760 newdest = &opt->ip6po_dest2; 2761 break; 2762 case IPV6_RTHDRDSTOPTS: 2763 newdest = &opt->ip6po_dest1; 2764 break; 2765 case IPV6_DSTOPTS: 2766 newdest = &opt->ip6po_dest2; 2767 break; 2768 } 2769 2770 /* turn off the previous option, then set the new option. */ 2771 ip6_clearpktopts(opt, optname); 2772 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2773 if (*newdest == NULL) 2774 return (ENOBUFS); 2775 bcopy(dest, *newdest, destlen); 2776 2777 break; 2778 } 2779 2780 case IPV6_2292RTHDR: 2781 case IPV6_RTHDR: 2782 { 2783 struct ip6_rthdr *rth; 2784 int rthlen; 2785 2786 if (len == 0) { 2787 ip6_clearpktopts(opt, IPV6_RTHDR); 2788 break; /* just remove the option */ 2789 } 2790 2791 /* message length validation */ 2792 if (len < sizeof(struct ip6_rthdr)) 2793 return (EINVAL); 2794 rth = (struct ip6_rthdr *)buf; 2795 rthlen = (rth->ip6r_len + 1) << 3; 2796 if (len != rthlen) 2797 return (EINVAL); 2798 2799 switch (rth->ip6r_type) { 2800 case IPV6_RTHDR_TYPE_0: 2801 if (rth->ip6r_len == 0) /* must contain one addr */ 2802 return (EINVAL); 2803 if (rth->ip6r_len % 2) /* length must be even */ 2804 return (EINVAL); 2805 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2806 return (EINVAL); 2807 break; 2808 default: 2809 return (EINVAL); /* not supported */ 2810 } 2811 2812 /* turn off the previous option */ 2813 ip6_clearpktopts(opt, IPV6_RTHDR); 2814 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2815 if (opt->ip6po_rthdr == NULL) 2816 return (ENOBUFS); 2817 bcopy(rth, opt->ip6po_rthdr, rthlen); 2818 2819 break; 2820 } 2821 2822 case IPV6_USE_MIN_MTU: 2823 if (len != sizeof(int)) 2824 return (EINVAL); 2825 minmtupolicy = *(int *)buf; 2826 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2827 minmtupolicy != IP6PO_MINMTU_DISABLE && 2828 minmtupolicy != IP6PO_MINMTU_ALL) { 2829 return (EINVAL); 2830 } 2831 opt->ip6po_minmtu = minmtupolicy; 2832 break; 2833 2834 case IPV6_DONTFRAG: 2835 if (len != sizeof(int)) 2836 return (EINVAL); 2837 2838 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2839 /* 2840 * we ignore this option for TCP sockets. 2841 * (RFC3542 leaves this case unspecified.) 2842 */ 2843 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2844 } else 2845 opt->ip6po_flags |= IP6PO_DONTFRAG; 2846 break; 2847 2848 case IPV6_PREFER_TEMPADDR: 2849 if (len != sizeof(int)) 2850 return (EINVAL); 2851 preftemp = *(int *)buf; 2852 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 2853 preftemp != IP6PO_TEMPADDR_NOTPREFER && 2854 preftemp != IP6PO_TEMPADDR_PREFER) { 2855 return (EINVAL); 2856 } 2857 opt->ip6po_prefer_tempaddr = preftemp; 2858 break; 2859 2860 default: 2861 return (ENOPROTOOPT); 2862 } /* end of switch */ 2863 2864 return (0); 2865 } 2866 2867 /* 2868 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2869 * packet to the input queue of a specified interface. Note that this 2870 * calls the output routine of the loopback "driver", but with an interface 2871 * pointer that might NOT be &loif -- easier than replicating that code here. 2872 */ 2873 void 2874 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 2875 { 2876 struct mbuf *copym; 2877 struct ip6_hdr *ip6; 2878 2879 copym = m_copy(m, 0, M_COPYALL); 2880 if (copym == NULL) 2881 return; 2882 2883 /* 2884 * Make sure to deep-copy IPv6 header portion in case the data 2885 * is in an mbuf cluster, so that we can safely override the IPv6 2886 * header portion later. 2887 */ 2888 if (!M_WRITABLE(copym) || 2889 copym->m_len < sizeof(struct ip6_hdr)) { 2890 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2891 if (copym == NULL) 2892 return; 2893 } 2894 2895 #ifdef DIAGNOSTIC 2896 if (copym->m_len < sizeof(*ip6)) { 2897 m_freem(copym); 2898 return; 2899 } 2900 #endif 2901 2902 ip6 = mtod(copym, struct ip6_hdr *); 2903 /* 2904 * clear embedded scope identifiers if necessary. 2905 * in6_clearscope will touch the addresses only when necessary. 2906 */ 2907 in6_clearscope(&ip6->ip6_src); 2908 in6_clearscope(&ip6->ip6_dst); 2909 2910 (void)if_simloop(ifp, copym, dst->sin6_family, 0); 2911 } 2912 2913 /* 2914 * Chop IPv6 header off from the payload. 2915 */ 2916 static int 2917 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 2918 { 2919 struct mbuf *mh; 2920 struct ip6_hdr *ip6; 2921 2922 ip6 = mtod(m, struct ip6_hdr *); 2923 if (m->m_len > sizeof(*ip6)) { 2924 mh = m_gethdr(M_NOWAIT, MT_DATA); 2925 if (mh == NULL) { 2926 m_freem(m); 2927 return ENOBUFS; 2928 } 2929 m_move_pkthdr(mh, m); 2930 M_ALIGN(mh, sizeof(*ip6)); 2931 m->m_len -= sizeof(*ip6); 2932 m->m_data += sizeof(*ip6); 2933 mh->m_next = m; 2934 m = mh; 2935 m->m_len = sizeof(*ip6); 2936 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2937 } 2938 exthdrs->ip6e_ip6 = m; 2939 return 0; 2940 } 2941 2942 /* 2943 * Compute IPv6 extension header length. 2944 */ 2945 int 2946 ip6_optlen(struct inpcb *in6p) 2947 { 2948 int len; 2949 2950 if (!in6p->in6p_outputopts) 2951 return 0; 2952 2953 len = 0; 2954 #define elen(x) \ 2955 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2956 2957 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2958 if (in6p->in6p_outputopts->ip6po_rthdr) 2959 /* dest1 is valid with rthdr only */ 2960 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2961 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2962 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2963 return len; 2964 #undef elen 2965 } 2966