1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ipsec.h" 69 70 #include <sys/param.h> 71 #include <sys/kernel.h> 72 #include <sys/malloc.h> 73 #include <sys/mbuf.h> 74 #include <sys/errno.h> 75 #include <sys/priv.h> 76 #include <sys/proc.h> 77 #include <sys/protosw.h> 78 #include <sys/socket.h> 79 #include <sys/socketvar.h> 80 #include <sys/ucred.h> 81 #include <sys/vimage.h> 82 83 #include <net/if.h> 84 #include <net/netisr.h> 85 #include <net/route.h> 86 #include <net/pfil.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet6/in6_var.h> 91 #include <netinet/ip6.h> 92 #include <netinet/icmp6.h> 93 #include <netinet6/ip6_var.h> 94 #include <netinet/in_pcb.h> 95 #include <netinet/tcp_var.h> 96 #include <netinet6/nd6.h> 97 98 #ifdef IPSEC 99 #include <netipsec/ipsec.h> 100 #include <netipsec/ipsec6.h> 101 #include <netipsec/key.h> 102 #include <netinet6/ip6_ipsec.h> 103 #endif /* IPSEC */ 104 105 #include <netinet6/ip6protosw.h> 106 #include <netinet6/scope6_var.h> 107 108 static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "internet multicast options"); 109 110 struct ip6_exthdrs { 111 struct mbuf *ip6e_ip6; 112 struct mbuf *ip6e_hbh; 113 struct mbuf *ip6e_dest1; 114 struct mbuf *ip6e_rthdr; 115 struct mbuf *ip6e_dest2; 116 }; 117 118 static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **, 119 struct ucred *, int)); 120 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 121 struct socket *, struct sockopt *)); 122 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 123 static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *, 124 struct ucred *, int, int, int)); 125 126 static int ip6_setmoptions(int, struct ip6_moptions **, struct mbuf *); 127 static int ip6_getmoptions(int, struct ip6_moptions *, struct mbuf **); 128 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 129 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 130 struct ip6_frag **)); 131 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 132 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 133 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *, 134 struct ifnet *, struct in6_addr *, u_long *, int *)); 135 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 136 137 138 /* 139 * Make an extension header from option data. hp is the source, and 140 * mp is the destination. 141 */ 142 #define MAKE_EXTHDR(hp, mp) \ 143 do { \ 144 if (hp) { \ 145 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 146 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 147 ((eh)->ip6e_len + 1) << 3); \ 148 if (error) \ 149 goto freehdrs; \ 150 } \ 151 } while (/*CONSTCOND*/ 0) 152 153 /* 154 * Form a chain of extension headers. 155 * m is the extension header mbuf 156 * mp is the previous mbuf in the chain 157 * p is the next header 158 * i is the type of option. 159 */ 160 #define MAKE_CHAIN(m, mp, p, i)\ 161 do {\ 162 if (m) {\ 163 if (!hdrsplit) \ 164 panic("assumption failed: hdr not split"); \ 165 *mtod((m), u_char *) = *(p);\ 166 *(p) = (i);\ 167 p = mtod((m), u_char *);\ 168 (m)->m_next = (mp)->m_next;\ 169 (mp)->m_next = (m);\ 170 (mp) = (m);\ 171 }\ 172 } while (/*CONSTCOND*/ 0) 173 174 /* 175 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 176 * header (with pri, len, nxt, hlim, src, dst). 177 * This function may modify ver and hlim only. 178 * The mbuf chain containing the packet will be freed. 179 * The mbuf opt, if present, will not be freed. 180 * 181 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 182 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 183 * which is rt_rmx.rmx_mtu. 184 * 185 * ifpp - XXX: just for statistics 186 */ 187 int 188 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 189 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 190 struct ifnet **ifpp, struct inpcb *inp) 191 { 192 struct ip6_hdr *ip6, *mhip6; 193 struct ifnet *ifp, *origifp; 194 struct mbuf *m = m0; 195 struct mbuf *mprev = NULL; 196 int hlen, tlen, len, off; 197 struct route_in6 ip6route; 198 struct rtentry *rt = NULL; 199 struct sockaddr_in6 *dst, src_sa, dst_sa; 200 struct in6_addr odst; 201 int error = 0; 202 struct in6_ifaddr *ia = NULL; 203 u_long mtu; 204 int alwaysfrag, dontfrag; 205 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 206 struct ip6_exthdrs exthdrs; 207 struct in6_addr finaldst, src0, dst0; 208 u_int32_t zone; 209 struct route_in6 *ro_pmtu = NULL; 210 int hdrsplit = 0; 211 int needipsec = 0; 212 #ifdef IPSEC 213 struct ipsec_output_state state; 214 struct ip6_rthdr *rh = NULL; 215 int needipsectun = 0; 216 int segleft_org = 0; 217 struct secpolicy *sp = NULL; 218 #endif /* IPSEC */ 219 220 ip6 = mtod(m, struct ip6_hdr *); 221 if (ip6 == NULL) { 222 printf ("ip6 is NULL"); 223 goto bad; 224 } 225 226 finaldst = ip6->ip6_dst; 227 228 bzero(&exthdrs, sizeof(exthdrs)); 229 230 if (opt) { 231 /* Hop-by-Hop options header */ 232 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 233 /* Destination options header(1st part) */ 234 if (opt->ip6po_rthdr) { 235 /* 236 * Destination options header(1st part) 237 * This only makes sense with a routing header. 238 * See Section 9.2 of RFC 3542. 239 * Disabling this part just for MIP6 convenience is 240 * a bad idea. We need to think carefully about a 241 * way to make the advanced API coexist with MIP6 242 * options, which might automatically be inserted in 243 * the kernel. 244 */ 245 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 246 } 247 /* Routing header */ 248 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 249 /* Destination options header(2nd part) */ 250 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 251 } 252 253 /* 254 * IPSec checking which handles several cases. 255 * FAST IPSEC: We re-injected the packet. 256 */ 257 #ifdef IPSEC 258 switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp)) 259 { 260 case 1: /* Bad packet */ 261 goto freehdrs; 262 case -1: /* Do IPSec */ 263 needipsec = 1; 264 case 0: /* No IPSec */ 265 default: 266 break; 267 } 268 #endif /* IPSEC */ 269 270 /* 271 * Calculate the total length of the extension header chain. 272 * Keep the length of the unfragmentable part for fragmentation. 273 */ 274 optlen = 0; 275 if (exthdrs.ip6e_hbh) 276 optlen += exthdrs.ip6e_hbh->m_len; 277 if (exthdrs.ip6e_dest1) 278 optlen += exthdrs.ip6e_dest1->m_len; 279 if (exthdrs.ip6e_rthdr) 280 optlen += exthdrs.ip6e_rthdr->m_len; 281 unfragpartlen = optlen + sizeof(struct ip6_hdr); 282 283 /* NOTE: we don't add AH/ESP length here. do that later. */ 284 if (exthdrs.ip6e_dest2) 285 optlen += exthdrs.ip6e_dest2->m_len; 286 287 /* 288 * If we need IPsec, or there is at least one extension header, 289 * separate IP6 header from the payload. 290 */ 291 if ((needipsec || optlen) && !hdrsplit) { 292 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 293 m = NULL; 294 goto freehdrs; 295 } 296 m = exthdrs.ip6e_ip6; 297 hdrsplit++; 298 } 299 300 /* adjust pointer */ 301 ip6 = mtod(m, struct ip6_hdr *); 302 303 /* adjust mbuf packet header length */ 304 m->m_pkthdr.len += optlen; 305 plen = m->m_pkthdr.len - sizeof(*ip6); 306 307 /* If this is a jumbo payload, insert a jumbo payload option. */ 308 if (plen > IPV6_MAXPACKET) { 309 if (!hdrsplit) { 310 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 311 m = NULL; 312 goto freehdrs; 313 } 314 m = exthdrs.ip6e_ip6; 315 hdrsplit++; 316 } 317 /* adjust pointer */ 318 ip6 = mtod(m, struct ip6_hdr *); 319 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 320 goto freehdrs; 321 ip6->ip6_plen = 0; 322 } else 323 ip6->ip6_plen = htons(plen); 324 325 /* 326 * Concatenate headers and fill in next header fields. 327 * Here we have, on "m" 328 * IPv6 payload 329 * and we insert headers accordingly. Finally, we should be getting: 330 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 331 * 332 * during the header composing process, "m" points to IPv6 header. 333 * "mprev" points to an extension header prior to esp. 334 */ 335 u_char *nexthdrp = &ip6->ip6_nxt; 336 mprev = m; 337 338 /* 339 * we treat dest2 specially. this makes IPsec processing 340 * much easier. the goal here is to make mprev point the 341 * mbuf prior to dest2. 342 * 343 * result: IPv6 dest2 payload 344 * m and mprev will point to IPv6 header. 345 */ 346 if (exthdrs.ip6e_dest2) { 347 if (!hdrsplit) 348 panic("assumption failed: hdr not split"); 349 exthdrs.ip6e_dest2->m_next = m->m_next; 350 m->m_next = exthdrs.ip6e_dest2; 351 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 352 ip6->ip6_nxt = IPPROTO_DSTOPTS; 353 } 354 355 /* 356 * result: IPv6 hbh dest1 rthdr dest2 payload 357 * m will point to IPv6 header. mprev will point to the 358 * extension header prior to dest2 (rthdr in the above case). 359 */ 360 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 361 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 362 IPPROTO_DSTOPTS); 363 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 364 IPPROTO_ROUTING); 365 366 #ifdef IPSEC 367 if (!needipsec) 368 goto skip_ipsec2; 369 370 /* 371 * pointers after IPsec headers are not valid any more. 372 * other pointers need a great care too. 373 * (IPsec routines should not mangle mbufs prior to AH/ESP) 374 */ 375 exthdrs.ip6e_dest2 = NULL; 376 377 if (exthdrs.ip6e_rthdr) { 378 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 379 segleft_org = rh->ip6r_segleft; 380 rh->ip6r_segleft = 0; 381 } 382 383 bzero(&state, sizeof(state)); 384 state.m = m; 385 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 386 &needipsectun); 387 m = state.m; 388 if (error == EJUSTRETURN) { 389 /* 390 * We had a SP with a level of 'use' and no SA. We 391 * will just continue to process the packet without 392 * IPsec processing. 393 */ 394 ; 395 } else if (error) { 396 /* mbuf is already reclaimed in ipsec6_output_trans. */ 397 m = NULL; 398 switch (error) { 399 case EHOSTUNREACH: 400 case ENETUNREACH: 401 case EMSGSIZE: 402 case ENOBUFS: 403 case ENOMEM: 404 break; 405 default: 406 printf("[%s:%d] (ipsec): error code %d\n", 407 __func__, __LINE__, error); 408 /* FALLTHROUGH */ 409 case ENOENT: 410 /* don't show these error codes to the user */ 411 error = 0; 412 break; 413 } 414 goto bad; 415 } else if (!needipsectun) { 416 /* 417 * In the FAST IPSec case we have already 418 * re-injected the packet and it has been freed 419 * by the ipsec_done() function. So, just clean 420 * up after ourselves. 421 */ 422 m = NULL; 423 goto done; 424 } 425 if (exthdrs.ip6e_rthdr) { 426 /* ah6_output doesn't modify mbuf chain */ 427 rh->ip6r_segleft = segleft_org; 428 } 429 skip_ipsec2:; 430 #endif /* IPSEC */ 431 432 /* 433 * If there is a routing header, replace the destination address field 434 * with the first hop of the routing header. 435 */ 436 if (exthdrs.ip6e_rthdr) { 437 struct ip6_rthdr *rh = 438 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 439 struct ip6_rthdr *)); 440 struct ip6_rthdr0 *rh0; 441 struct in6_addr *addr; 442 struct sockaddr_in6 sa; 443 444 switch (rh->ip6r_type) { 445 case IPV6_RTHDR_TYPE_0: 446 rh0 = (struct ip6_rthdr0 *)rh; 447 addr = (struct in6_addr *)(rh0 + 1); 448 449 /* 450 * construct a sockaddr_in6 form of 451 * the first hop. 452 * 453 * XXX: we may not have enough 454 * information about its scope zone; 455 * there is no standard API to pass 456 * the information from the 457 * application. 458 */ 459 bzero(&sa, sizeof(sa)); 460 sa.sin6_family = AF_INET6; 461 sa.sin6_len = sizeof(sa); 462 sa.sin6_addr = addr[0]; 463 if ((error = sa6_embedscope(&sa, 464 V_ip6_use_defzone)) != 0) { 465 goto bad; 466 } 467 ip6->ip6_dst = sa.sin6_addr; 468 bcopy(&addr[1], &addr[0], sizeof(struct in6_addr) 469 * (rh0->ip6r0_segleft - 1)); 470 addr[rh0->ip6r0_segleft - 1] = finaldst; 471 /* XXX */ 472 in6_clearscope(addr + rh0->ip6r0_segleft - 1); 473 break; 474 default: /* is it possible? */ 475 error = EINVAL; 476 goto bad; 477 } 478 } 479 480 /* Source address validation */ 481 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 482 (flags & IPV6_UNSPECSRC) == 0) { 483 error = EOPNOTSUPP; 484 V_ip6stat.ip6s_badscope++; 485 goto bad; 486 } 487 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 488 error = EOPNOTSUPP; 489 V_ip6stat.ip6s_badscope++; 490 goto bad; 491 } 492 493 V_ip6stat.ip6s_localout++; 494 495 /* 496 * Route packet. 497 */ 498 if (ro == 0) { 499 ro = &ip6route; 500 bzero((caddr_t)ro, sizeof(*ro)); 501 } 502 ro_pmtu = ro; 503 if (opt && opt->ip6po_rthdr) 504 ro = &opt->ip6po_route; 505 dst = (struct sockaddr_in6 *)&ro->ro_dst; 506 507 again: 508 /* 509 * if specified, try to fill in the traffic class field. 510 * do not override if a non-zero value is already set. 511 * we check the diffserv field and the ecn field separately. 512 */ 513 if (opt && opt->ip6po_tclass >= 0) { 514 int mask = 0; 515 516 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 517 mask |= 0xfc; 518 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 519 mask |= 0x03; 520 if (mask != 0) 521 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 522 } 523 524 /* fill in or override the hop limit field, if necessary. */ 525 if (opt && opt->ip6po_hlim != -1) 526 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 527 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 528 if (im6o != NULL) 529 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 530 else 531 ip6->ip6_hlim = V_ip6_defmcasthlim; 532 } 533 534 #ifdef IPSEC 535 /* 536 * We may re-inject packets into the stack here. 537 */ 538 if (needipsec && needipsectun) { 539 struct ipsec_output_state state; 540 541 /* 542 * All the extension headers will become inaccessible 543 * (since they can be encrypted). 544 * Don't panic, we need no more updates to extension headers 545 * on inner IPv6 packet (since they are now encapsulated). 546 * 547 * IPv6 [ESP|AH] IPv6 [extension headers] payload 548 */ 549 bzero(&exthdrs, sizeof(exthdrs)); 550 exthdrs.ip6e_ip6 = m; 551 552 bzero(&state, sizeof(state)); 553 state.m = m; 554 state.ro = (struct route *)ro; 555 state.dst = (struct sockaddr *)dst; 556 557 error = ipsec6_output_tunnel(&state, sp, flags); 558 559 m = state.m; 560 ro = (struct route_in6 *)state.ro; 561 dst = (struct sockaddr_in6 *)state.dst; 562 if (error == EJUSTRETURN) { 563 /* 564 * We had a SP with a level of 'use' and no SA. We 565 * will just continue to process the packet without 566 * IPsec processing. 567 */ 568 ; 569 } else if (error) { 570 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 571 m0 = m = NULL; 572 m = NULL; 573 switch (error) { 574 case EHOSTUNREACH: 575 case ENETUNREACH: 576 case EMSGSIZE: 577 case ENOBUFS: 578 case ENOMEM: 579 break; 580 default: 581 printf("[%s:%d] (ipsec): error code %d\n", 582 __func__, __LINE__, error); 583 /* FALLTHROUGH */ 584 case ENOENT: 585 /* don't show these error codes to the user */ 586 error = 0; 587 break; 588 } 589 goto bad; 590 } else { 591 /* 592 * In the FAST IPSec case we have already 593 * re-injected the packet and it has been freed 594 * by the ipsec_done() function. So, just clean 595 * up after ourselves. 596 */ 597 m = NULL; 598 goto done; 599 } 600 601 exthdrs.ip6e_ip6 = m; 602 } 603 #endif /* IPSEC */ 604 605 /* adjust pointer */ 606 ip6 = mtod(m, struct ip6_hdr *); 607 608 bzero(&dst_sa, sizeof(dst_sa)); 609 dst_sa.sin6_family = AF_INET6; 610 dst_sa.sin6_len = sizeof(dst_sa); 611 dst_sa.sin6_addr = ip6->ip6_dst; 612 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, 613 &ifp, &rt, 0)) != 0) { 614 switch (error) { 615 case EHOSTUNREACH: 616 V_ip6stat.ip6s_noroute++; 617 break; 618 case EADDRNOTAVAIL: 619 default: 620 break; /* XXX statistics? */ 621 } 622 if (ifp != NULL) 623 in6_ifstat_inc(ifp, ifs6_out_discard); 624 goto bad; 625 } 626 if (rt == NULL) { 627 /* 628 * If in6_selectroute() does not return a route entry, 629 * dst may not have been updated. 630 */ 631 *dst = dst_sa; /* XXX */ 632 } 633 634 /* 635 * then rt (for unicast) and ifp must be non-NULL valid values. 636 */ 637 if ((flags & IPV6_FORWARDING) == 0) { 638 /* XXX: the FORWARDING flag can be set for mrouting. */ 639 in6_ifstat_inc(ifp, ifs6_out_request); 640 } 641 if (rt != NULL) { 642 ia = (struct in6_ifaddr *)(rt->rt_ifa); 643 rt->rt_use++; 644 } 645 646 /* 647 * The outgoing interface must be in the zone of source and 648 * destination addresses. We should use ia_ifp to support the 649 * case of sending packets to an address of our own. 650 */ 651 if (ia != NULL && ia->ia_ifp) 652 origifp = ia->ia_ifp; 653 else 654 origifp = ifp; 655 656 src0 = ip6->ip6_src; 657 if (in6_setscope(&src0, origifp, &zone)) 658 goto badscope; 659 bzero(&src_sa, sizeof(src_sa)); 660 src_sa.sin6_family = AF_INET6; 661 src_sa.sin6_len = sizeof(src_sa); 662 src_sa.sin6_addr = ip6->ip6_src; 663 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 664 goto badscope; 665 666 dst0 = ip6->ip6_dst; 667 if (in6_setscope(&dst0, origifp, &zone)) 668 goto badscope; 669 /* re-initialize to be sure */ 670 bzero(&dst_sa, sizeof(dst_sa)); 671 dst_sa.sin6_family = AF_INET6; 672 dst_sa.sin6_len = sizeof(dst_sa); 673 dst_sa.sin6_addr = ip6->ip6_dst; 674 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 675 goto badscope; 676 } 677 678 /* scope check is done. */ 679 goto routefound; 680 681 badscope: 682 V_ip6stat.ip6s_badscope++; 683 in6_ifstat_inc(origifp, ifs6_out_discard); 684 if (error == 0) 685 error = EHOSTUNREACH; /* XXX */ 686 goto bad; 687 688 routefound: 689 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 690 if (opt && opt->ip6po_nextroute.ro_rt) { 691 /* 692 * The nexthop is explicitly specified by the 693 * application. We assume the next hop is an IPv6 694 * address. 695 */ 696 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 697 } 698 else if ((rt->rt_flags & RTF_GATEWAY)) 699 dst = (struct sockaddr_in6 *)rt->rt_gateway; 700 } 701 702 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 703 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 704 } else { 705 struct in6_multi *in6m; 706 707 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 708 709 in6_ifstat_inc(ifp, ifs6_out_mcast); 710 711 /* 712 * Confirm that the outgoing interface supports multicast. 713 */ 714 if (!(ifp->if_flags & IFF_MULTICAST)) { 715 V_ip6stat.ip6s_noroute++; 716 in6_ifstat_inc(ifp, ifs6_out_discard); 717 error = ENETUNREACH; 718 goto bad; 719 } 720 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 721 if (in6m != NULL && 722 (im6o == NULL || im6o->im6o_multicast_loop)) { 723 /* 724 * If we belong to the destination multicast group 725 * on the outgoing interface, and the caller did not 726 * forbid loopback, loop back a copy. 727 */ 728 ip6_mloopback(ifp, m, dst); 729 } else { 730 /* 731 * If we are acting as a multicast router, perform 732 * multicast forwarding as if the packet had just 733 * arrived on the interface to which we are about 734 * to send. The multicast forwarding function 735 * recursively calls this function, using the 736 * IPV6_FORWARDING flag to prevent infinite recursion. 737 * 738 * Multicasts that are looped back by ip6_mloopback(), 739 * above, will be forwarded by the ip6_input() routine, 740 * if necessary. 741 */ 742 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 743 /* 744 * XXX: ip6_mforward expects that rcvif is NULL 745 * when it is called from the originating path. 746 * However, it is not always the case, since 747 * some versions of MGETHDR() does not 748 * initialize the field. 749 */ 750 m->m_pkthdr.rcvif = NULL; 751 if (ip6_mforward(ip6, ifp, m) != 0) { 752 m_freem(m); 753 goto done; 754 } 755 } 756 } 757 /* 758 * Multicasts with a hoplimit of zero may be looped back, 759 * above, but must not be transmitted on a network. 760 * Also, multicasts addressed to the loopback interface 761 * are not sent -- the above call to ip6_mloopback() will 762 * loop back a copy if this host actually belongs to the 763 * destination group on the loopback interface. 764 */ 765 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 766 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 767 m_freem(m); 768 goto done; 769 } 770 } 771 772 /* 773 * Fill the outgoing inteface to tell the upper layer 774 * to increment per-interface statistics. 775 */ 776 if (ifpp) 777 *ifpp = ifp; 778 779 /* Determine path MTU. */ 780 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 781 &alwaysfrag)) != 0) 782 goto bad; 783 784 /* 785 * The caller of this function may specify to use the minimum MTU 786 * in some cases. 787 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 788 * setting. The logic is a bit complicated; by default, unicast 789 * packets will follow path MTU while multicast packets will be sent at 790 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 791 * including unicast ones will be sent at the minimum MTU. Multicast 792 * packets will always be sent at the minimum MTU unless 793 * IP6PO_MINMTU_DISABLE is explicitly specified. 794 * See RFC 3542 for more details. 795 */ 796 if (mtu > IPV6_MMTU) { 797 if ((flags & IPV6_MINMTU)) 798 mtu = IPV6_MMTU; 799 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 800 mtu = IPV6_MMTU; 801 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 802 (opt == NULL || 803 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 804 mtu = IPV6_MMTU; 805 } 806 } 807 808 /* 809 * clear embedded scope identifiers if necessary. 810 * in6_clearscope will touch the addresses only when necessary. 811 */ 812 in6_clearscope(&ip6->ip6_src); 813 in6_clearscope(&ip6->ip6_dst); 814 815 /* 816 * If the outgoing packet contains a hop-by-hop options header, 817 * it must be examined and processed even by the source node. 818 * (RFC 2460, section 4.) 819 */ 820 if (exthdrs.ip6e_hbh) { 821 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 822 u_int32_t dummy; /* XXX unused */ 823 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 824 825 #ifdef DIAGNOSTIC 826 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 827 panic("ip6e_hbh is not continuous"); 828 #endif 829 /* 830 * XXX: if we have to send an ICMPv6 error to the sender, 831 * we need the M_LOOP flag since icmp6_error() expects 832 * the IPv6 and the hop-by-hop options header are 833 * continuous unless the flag is set. 834 */ 835 m->m_flags |= M_LOOP; 836 m->m_pkthdr.rcvif = ifp; 837 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 838 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 839 &dummy, &plen) < 0) { 840 /* m was already freed at this point */ 841 error = EINVAL;/* better error? */ 842 goto done; 843 } 844 m->m_flags &= ~M_LOOP; /* XXX */ 845 m->m_pkthdr.rcvif = NULL; 846 } 847 848 /* Jump over all PFIL processing if hooks are not active. */ 849 if (!PFIL_HOOKED(&inet6_pfil_hook)) 850 goto passout; 851 852 odst = ip6->ip6_dst; 853 /* Run through list of hooks for output packets. */ 854 error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 855 if (error != 0 || m == NULL) 856 goto done; 857 ip6 = mtod(m, struct ip6_hdr *); 858 859 /* See if destination IP address was changed by packet filter. */ 860 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 861 m->m_flags |= M_SKIP_FIREWALL; 862 /* If destination is now ourself drop to ip6_input(). */ 863 if (in6_localaddr(&ip6->ip6_dst)) { 864 if (m->m_pkthdr.rcvif == NULL) 865 m->m_pkthdr.rcvif = V_loif; 866 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 867 m->m_pkthdr.csum_flags |= 868 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 869 m->m_pkthdr.csum_data = 0xffff; 870 } 871 m->m_pkthdr.csum_flags |= 872 CSUM_IP_CHECKED | CSUM_IP_VALID; 873 error = netisr_queue(NETISR_IPV6, m); 874 goto done; 875 } else 876 goto again; /* Redo the routing table lookup. */ 877 } 878 879 /* XXX: IPFIREWALL_FORWARD */ 880 881 passout: 882 /* 883 * Send the packet to the outgoing interface. 884 * If necessary, do IPv6 fragmentation before sending. 885 * 886 * the logic here is rather complex: 887 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 888 * 1-a: send as is if tlen <= path mtu 889 * 1-b: fragment if tlen > path mtu 890 * 891 * 2: if user asks us not to fragment (dontfrag == 1) 892 * 2-a: send as is if tlen <= interface mtu 893 * 2-b: error if tlen > interface mtu 894 * 895 * 3: if we always need to attach fragment header (alwaysfrag == 1) 896 * always fragment 897 * 898 * 4: if dontfrag == 1 && alwaysfrag == 1 899 * error, as we cannot handle this conflicting request 900 */ 901 tlen = m->m_pkthdr.len; 902 903 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 904 dontfrag = 1; 905 else 906 dontfrag = 0; 907 if (dontfrag && alwaysfrag) { /* case 4 */ 908 /* conflicting request - can't transmit */ 909 error = EMSGSIZE; 910 goto bad; 911 } 912 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */ 913 /* 914 * Even if the DONTFRAG option is specified, we cannot send the 915 * packet when the data length is larger than the MTU of the 916 * outgoing interface. 917 * Notify the error by sending IPV6_PATHMTU ancillary data as 918 * well as returning an error code (the latter is not described 919 * in the API spec.) 920 */ 921 u_int32_t mtu32; 922 struct ip6ctlparam ip6cp; 923 924 mtu32 = (u_int32_t)mtu; 925 bzero(&ip6cp, sizeof(ip6cp)); 926 ip6cp.ip6c_cmdarg = (void *)&mtu32; 927 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 928 (void *)&ip6cp); 929 930 error = EMSGSIZE; 931 goto bad; 932 } 933 934 /* 935 * transmit packet without fragmentation 936 */ 937 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 938 struct in6_ifaddr *ia6; 939 940 ip6 = mtod(m, struct ip6_hdr *); 941 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 942 if (ia6) { 943 /* Record statistics for this interface address. */ 944 ia6->ia_ifa.if_opackets++; 945 ia6->ia_ifa.if_obytes += m->m_pkthdr.len; 946 } 947 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 948 goto done; 949 } 950 951 /* 952 * try to fragment the packet. case 1-b and 3 953 */ 954 if (mtu < IPV6_MMTU) { 955 /* path MTU cannot be less than IPV6_MMTU */ 956 error = EMSGSIZE; 957 in6_ifstat_inc(ifp, ifs6_out_fragfail); 958 goto bad; 959 } else if (ip6->ip6_plen == 0) { 960 /* jumbo payload cannot be fragmented */ 961 error = EMSGSIZE; 962 in6_ifstat_inc(ifp, ifs6_out_fragfail); 963 goto bad; 964 } else { 965 struct mbuf **mnext, *m_frgpart; 966 struct ip6_frag *ip6f; 967 u_int32_t id = htonl(ip6_randomid()); 968 u_char nextproto; 969 970 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len; 971 972 /* 973 * Too large for the destination or interface; 974 * fragment if possible. 975 * Must be able to put at least 8 bytes per fragment. 976 */ 977 hlen = unfragpartlen; 978 if (mtu > IPV6_MAXPACKET) 979 mtu = IPV6_MAXPACKET; 980 981 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 982 if (len < 8) { 983 error = EMSGSIZE; 984 in6_ifstat_inc(ifp, ifs6_out_fragfail); 985 goto bad; 986 } 987 988 /* 989 * Verify that we have any chance at all of being able to queue 990 * the packet or packet fragments 991 */ 992 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen) 993 < tlen /* - hlen */)) { 994 error = ENOBUFS; 995 V_ip6stat.ip6s_odropped++; 996 goto bad; 997 } 998 999 mnext = &m->m_nextpkt; 1000 1001 /* 1002 * Change the next header field of the last header in the 1003 * unfragmentable part. 1004 */ 1005 if (exthdrs.ip6e_rthdr) { 1006 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1007 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1008 } else if (exthdrs.ip6e_dest1) { 1009 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1010 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1011 } else if (exthdrs.ip6e_hbh) { 1012 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1013 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1014 } else { 1015 nextproto = ip6->ip6_nxt; 1016 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1017 } 1018 1019 /* 1020 * Loop through length of segment after first fragment, 1021 * make new header and copy data of each part and link onto 1022 * chain. 1023 */ 1024 m0 = m; 1025 for (off = hlen; off < tlen; off += len) { 1026 MGETHDR(m, M_DONTWAIT, MT_HEADER); 1027 if (!m) { 1028 error = ENOBUFS; 1029 V_ip6stat.ip6s_odropped++; 1030 goto sendorfree; 1031 } 1032 m->m_pkthdr.rcvif = NULL; 1033 m->m_flags = m0->m_flags & M_COPYFLAGS; 1034 *mnext = m; 1035 mnext = &m->m_nextpkt; 1036 m->m_data += max_linkhdr; 1037 mhip6 = mtod(m, struct ip6_hdr *); 1038 *mhip6 = *ip6; 1039 m->m_len = sizeof(*mhip6); 1040 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1041 if (error) { 1042 V_ip6stat.ip6s_odropped++; 1043 goto sendorfree; 1044 } 1045 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 1046 if (off + len >= tlen) 1047 len = tlen - off; 1048 else 1049 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1050 mhip6->ip6_plen = htons((u_short)(len + hlen + 1051 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1052 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1053 error = ENOBUFS; 1054 V_ip6stat.ip6s_odropped++; 1055 goto sendorfree; 1056 } 1057 m_cat(m, m_frgpart); 1058 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1059 m->m_pkthdr.rcvif = NULL; 1060 ip6f->ip6f_reserved = 0; 1061 ip6f->ip6f_ident = id; 1062 ip6f->ip6f_nxt = nextproto; 1063 V_ip6stat.ip6s_ofragments++; 1064 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1065 } 1066 1067 in6_ifstat_inc(ifp, ifs6_out_fragok); 1068 } 1069 1070 /* 1071 * Remove leading garbages. 1072 */ 1073 sendorfree: 1074 m = m0->m_nextpkt; 1075 m0->m_nextpkt = 0; 1076 m_freem(m0); 1077 for (m0 = m; m; m = m0) { 1078 m0 = m->m_nextpkt; 1079 m->m_nextpkt = 0; 1080 if (error == 0) { 1081 /* Record statistics for this interface address. */ 1082 if (ia) { 1083 ia->ia_ifa.if_opackets++; 1084 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 1085 } 1086 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1087 } else 1088 m_freem(m); 1089 } 1090 1091 if (error == 0) 1092 V_ip6stat.ip6s_fragmented++; 1093 1094 done: 1095 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1096 RTFREE(ro->ro_rt); 1097 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1098 RTFREE(ro_pmtu->ro_rt); 1099 } 1100 #ifdef IPSEC 1101 if (sp != NULL) 1102 KEY_FREESP(&sp); 1103 #endif 1104 1105 return (error); 1106 1107 freehdrs: 1108 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1109 m_freem(exthdrs.ip6e_dest1); 1110 m_freem(exthdrs.ip6e_rthdr); 1111 m_freem(exthdrs.ip6e_dest2); 1112 /* FALLTHROUGH */ 1113 bad: 1114 if (m) 1115 m_freem(m); 1116 goto done; 1117 } 1118 1119 static int 1120 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1121 { 1122 struct mbuf *m; 1123 1124 if (hlen > MCLBYTES) 1125 return (ENOBUFS); /* XXX */ 1126 1127 MGET(m, M_DONTWAIT, MT_DATA); 1128 if (!m) 1129 return (ENOBUFS); 1130 1131 if (hlen > MLEN) { 1132 MCLGET(m, M_DONTWAIT); 1133 if ((m->m_flags & M_EXT) == 0) { 1134 m_free(m); 1135 return (ENOBUFS); 1136 } 1137 } 1138 m->m_len = hlen; 1139 if (hdr) 1140 bcopy(hdr, mtod(m, caddr_t), hlen); 1141 1142 *mp = m; 1143 return (0); 1144 } 1145 1146 /* 1147 * Insert jumbo payload option. 1148 */ 1149 static int 1150 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1151 { 1152 struct mbuf *mopt; 1153 u_char *optbuf; 1154 u_int32_t v; 1155 1156 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1157 1158 /* 1159 * If there is no hop-by-hop options header, allocate new one. 1160 * If there is one but it doesn't have enough space to store the 1161 * jumbo payload option, allocate a cluster to store the whole options. 1162 * Otherwise, use it to store the options. 1163 */ 1164 if (exthdrs->ip6e_hbh == 0) { 1165 MGET(mopt, M_DONTWAIT, MT_DATA); 1166 if (mopt == 0) 1167 return (ENOBUFS); 1168 mopt->m_len = JUMBOOPTLEN; 1169 optbuf = mtod(mopt, u_char *); 1170 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1171 exthdrs->ip6e_hbh = mopt; 1172 } else { 1173 struct ip6_hbh *hbh; 1174 1175 mopt = exthdrs->ip6e_hbh; 1176 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1177 /* 1178 * XXX assumption: 1179 * - exthdrs->ip6e_hbh is not referenced from places 1180 * other than exthdrs. 1181 * - exthdrs->ip6e_hbh is not an mbuf chain. 1182 */ 1183 int oldoptlen = mopt->m_len; 1184 struct mbuf *n; 1185 1186 /* 1187 * XXX: give up if the whole (new) hbh header does 1188 * not fit even in an mbuf cluster. 1189 */ 1190 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1191 return (ENOBUFS); 1192 1193 /* 1194 * As a consequence, we must always prepare a cluster 1195 * at this point. 1196 */ 1197 MGET(n, M_DONTWAIT, MT_DATA); 1198 if (n) { 1199 MCLGET(n, M_DONTWAIT); 1200 if ((n->m_flags & M_EXT) == 0) { 1201 m_freem(n); 1202 n = NULL; 1203 } 1204 } 1205 if (!n) 1206 return (ENOBUFS); 1207 n->m_len = oldoptlen + JUMBOOPTLEN; 1208 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1209 oldoptlen); 1210 optbuf = mtod(n, caddr_t) + oldoptlen; 1211 m_freem(mopt); 1212 mopt = exthdrs->ip6e_hbh = n; 1213 } else { 1214 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1215 mopt->m_len += JUMBOOPTLEN; 1216 } 1217 optbuf[0] = IP6OPT_PADN; 1218 optbuf[1] = 1; 1219 1220 /* 1221 * Adjust the header length according to the pad and 1222 * the jumbo payload option. 1223 */ 1224 hbh = mtod(mopt, struct ip6_hbh *); 1225 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1226 } 1227 1228 /* fill in the option. */ 1229 optbuf[2] = IP6OPT_JUMBO; 1230 optbuf[3] = 4; 1231 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1232 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1233 1234 /* finally, adjust the packet header length */ 1235 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1236 1237 return (0); 1238 #undef JUMBOOPTLEN 1239 } 1240 1241 /* 1242 * Insert fragment header and copy unfragmentable header portions. 1243 */ 1244 static int 1245 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1246 struct ip6_frag **frghdrp) 1247 { 1248 struct mbuf *n, *mlast; 1249 1250 if (hlen > sizeof(struct ip6_hdr)) { 1251 n = m_copym(m0, sizeof(struct ip6_hdr), 1252 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1253 if (n == 0) 1254 return (ENOBUFS); 1255 m->m_next = n; 1256 } else 1257 n = m; 1258 1259 /* Search for the last mbuf of unfragmentable part. */ 1260 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1261 ; 1262 1263 if ((mlast->m_flags & M_EXT) == 0 && 1264 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1265 /* use the trailing space of the last mbuf for the fragment hdr */ 1266 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1267 mlast->m_len); 1268 mlast->m_len += sizeof(struct ip6_frag); 1269 m->m_pkthdr.len += sizeof(struct ip6_frag); 1270 } else { 1271 /* allocate a new mbuf for the fragment header */ 1272 struct mbuf *mfrg; 1273 1274 MGET(mfrg, M_DONTWAIT, MT_DATA); 1275 if (mfrg == 0) 1276 return (ENOBUFS); 1277 mfrg->m_len = sizeof(struct ip6_frag); 1278 *frghdrp = mtod(mfrg, struct ip6_frag *); 1279 mlast->m_next = mfrg; 1280 } 1281 1282 return (0); 1283 } 1284 1285 static int 1286 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, 1287 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, 1288 int *alwaysfragp) 1289 { 1290 u_int32_t mtu = 0; 1291 int alwaysfrag = 0; 1292 int error = 0; 1293 1294 if (ro_pmtu != ro) { 1295 /* The first hop and the final destination may differ. */ 1296 struct sockaddr_in6 *sa6_dst = 1297 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1298 if (ro_pmtu->ro_rt && 1299 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1300 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1301 RTFREE(ro_pmtu->ro_rt); 1302 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1303 } 1304 if (ro_pmtu->ro_rt == NULL) { 1305 bzero(sa6_dst, sizeof(*sa6_dst)); 1306 sa6_dst->sin6_family = AF_INET6; 1307 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1308 sa6_dst->sin6_addr = *dst; 1309 1310 rtalloc((struct route *)ro_pmtu); 1311 } 1312 } 1313 if (ro_pmtu->ro_rt) { 1314 u_int32_t ifmtu; 1315 struct in_conninfo inc; 1316 1317 bzero(&inc, sizeof(inc)); 1318 inc.inc_flags = 1; /* IPv6 */ 1319 inc.inc6_faddr = *dst; 1320 1321 if (ifp == NULL) 1322 ifp = ro_pmtu->ro_rt->rt_ifp; 1323 ifmtu = IN6_LINKMTU(ifp); 1324 mtu = tcp_hc_getmtu(&inc); 1325 if (mtu) 1326 mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu); 1327 else 1328 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 1329 if (mtu == 0) 1330 mtu = ifmtu; 1331 else if (mtu < IPV6_MMTU) { 1332 /* 1333 * RFC2460 section 5, last paragraph: 1334 * if we record ICMPv6 too big message with 1335 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1336 * or smaller, with framgent header attached. 1337 * (fragment header is needed regardless from the 1338 * packet size, for translators to identify packets) 1339 */ 1340 alwaysfrag = 1; 1341 mtu = IPV6_MMTU; 1342 } else if (mtu > ifmtu) { 1343 /* 1344 * The MTU on the route is larger than the MTU on 1345 * the interface! This shouldn't happen, unless the 1346 * MTU of the interface has been changed after the 1347 * interface was brought up. Change the MTU in the 1348 * route to match the interface MTU (as long as the 1349 * field isn't locked). 1350 */ 1351 mtu = ifmtu; 1352 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; 1353 } 1354 } else if (ifp) { 1355 mtu = IN6_LINKMTU(ifp); 1356 } else 1357 error = EHOSTUNREACH; /* XXX */ 1358 1359 *mtup = mtu; 1360 if (alwaysfragp) 1361 *alwaysfragp = alwaysfrag; 1362 return (error); 1363 } 1364 1365 /* 1366 * IP6 socket option processing. 1367 */ 1368 int 1369 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1370 { 1371 int optdatalen, uproto; 1372 void *optdata; 1373 struct inpcb *in6p = sotoinpcb(so); 1374 int error, optval; 1375 int level, op, optname; 1376 int optlen; 1377 struct thread *td; 1378 1379 level = sopt->sopt_level; 1380 op = sopt->sopt_dir; 1381 optname = sopt->sopt_name; 1382 optlen = sopt->sopt_valsize; 1383 td = sopt->sopt_td; 1384 error = 0; 1385 optval = 0; 1386 uproto = (int)so->so_proto->pr_protocol; 1387 1388 if (level == IPPROTO_IPV6) { 1389 switch (op) { 1390 1391 case SOPT_SET: 1392 switch (optname) { 1393 case IPV6_2292PKTOPTIONS: 1394 #ifdef IPV6_PKTOPTIONS 1395 case IPV6_PKTOPTIONS: 1396 #endif 1397 { 1398 struct mbuf *m; 1399 1400 error = soopt_getm(sopt, &m); /* XXX */ 1401 if (error != 0) 1402 break; 1403 error = soopt_mcopyin(sopt, m); /* XXX */ 1404 if (error != 0) 1405 break; 1406 error = ip6_pcbopts(&in6p->in6p_outputopts, 1407 m, so, sopt); 1408 m_freem(m); /* XXX */ 1409 break; 1410 } 1411 1412 /* 1413 * Use of some Hop-by-Hop options or some 1414 * Destination options, might require special 1415 * privilege. That is, normal applications 1416 * (without special privilege) might be forbidden 1417 * from setting certain options in outgoing packets, 1418 * and might never see certain options in received 1419 * packets. [RFC 2292 Section 6] 1420 * KAME specific note: 1421 * KAME prevents non-privileged users from sending or 1422 * receiving ANY hbh/dst options in order to avoid 1423 * overhead of parsing options in the kernel. 1424 */ 1425 case IPV6_RECVHOPOPTS: 1426 case IPV6_RECVDSTOPTS: 1427 case IPV6_RECVRTHDRDSTOPTS: 1428 if (td != NULL) { 1429 error = priv_check(td, 1430 PRIV_NETINET_SETHDROPTS); 1431 if (error) 1432 break; 1433 } 1434 /* FALLTHROUGH */ 1435 case IPV6_UNICAST_HOPS: 1436 case IPV6_HOPLIMIT: 1437 case IPV6_FAITH: 1438 1439 case IPV6_RECVPKTINFO: 1440 case IPV6_RECVHOPLIMIT: 1441 case IPV6_RECVRTHDR: 1442 case IPV6_RECVPATHMTU: 1443 case IPV6_RECVTCLASS: 1444 case IPV6_V6ONLY: 1445 case IPV6_AUTOFLOWLABEL: 1446 if (optlen != sizeof(int)) { 1447 error = EINVAL; 1448 break; 1449 } 1450 error = sooptcopyin(sopt, &optval, 1451 sizeof optval, sizeof optval); 1452 if (error) 1453 break; 1454 switch (optname) { 1455 1456 case IPV6_UNICAST_HOPS: 1457 if (optval < -1 || optval >= 256) 1458 error = EINVAL; 1459 else { 1460 /* -1 = kernel default */ 1461 in6p->in6p_hops = optval; 1462 if ((in6p->in6p_vflag & 1463 INP_IPV4) != 0) 1464 in6p->inp_ip_ttl = optval; 1465 } 1466 break; 1467 #define OPTSET(bit) \ 1468 do { \ 1469 if (optval) \ 1470 in6p->in6p_flags |= (bit); \ 1471 else \ 1472 in6p->in6p_flags &= ~(bit); \ 1473 } while (/*CONSTCOND*/ 0) 1474 #define OPTSET2292(bit) \ 1475 do { \ 1476 in6p->in6p_flags |= IN6P_RFC2292; \ 1477 if (optval) \ 1478 in6p->in6p_flags |= (bit); \ 1479 else \ 1480 in6p->in6p_flags &= ~(bit); \ 1481 } while (/*CONSTCOND*/ 0) 1482 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1483 1484 case IPV6_RECVPKTINFO: 1485 /* cannot mix with RFC2292 */ 1486 if (OPTBIT(IN6P_RFC2292)) { 1487 error = EINVAL; 1488 break; 1489 } 1490 OPTSET(IN6P_PKTINFO); 1491 break; 1492 1493 case IPV6_HOPLIMIT: 1494 { 1495 struct ip6_pktopts **optp; 1496 1497 /* cannot mix with RFC2292 */ 1498 if (OPTBIT(IN6P_RFC2292)) { 1499 error = EINVAL; 1500 break; 1501 } 1502 optp = &in6p->in6p_outputopts; 1503 error = ip6_pcbopt(IPV6_HOPLIMIT, 1504 (u_char *)&optval, sizeof(optval), 1505 optp, (td != NULL) ? td->td_ucred : 1506 NULL, uproto); 1507 break; 1508 } 1509 1510 case IPV6_RECVHOPLIMIT: 1511 /* cannot mix with RFC2292 */ 1512 if (OPTBIT(IN6P_RFC2292)) { 1513 error = EINVAL; 1514 break; 1515 } 1516 OPTSET(IN6P_HOPLIMIT); 1517 break; 1518 1519 case IPV6_RECVHOPOPTS: 1520 /* cannot mix with RFC2292 */ 1521 if (OPTBIT(IN6P_RFC2292)) { 1522 error = EINVAL; 1523 break; 1524 } 1525 OPTSET(IN6P_HOPOPTS); 1526 break; 1527 1528 case IPV6_RECVDSTOPTS: 1529 /* cannot mix with RFC2292 */ 1530 if (OPTBIT(IN6P_RFC2292)) { 1531 error = EINVAL; 1532 break; 1533 } 1534 OPTSET(IN6P_DSTOPTS); 1535 break; 1536 1537 case IPV6_RECVRTHDRDSTOPTS: 1538 /* cannot mix with RFC2292 */ 1539 if (OPTBIT(IN6P_RFC2292)) { 1540 error = EINVAL; 1541 break; 1542 } 1543 OPTSET(IN6P_RTHDRDSTOPTS); 1544 break; 1545 1546 case IPV6_RECVRTHDR: 1547 /* cannot mix with RFC2292 */ 1548 if (OPTBIT(IN6P_RFC2292)) { 1549 error = EINVAL; 1550 break; 1551 } 1552 OPTSET(IN6P_RTHDR); 1553 break; 1554 1555 case IPV6_FAITH: 1556 OPTSET(IN6P_FAITH); 1557 break; 1558 1559 case IPV6_RECVPATHMTU: 1560 /* 1561 * We ignore this option for TCP 1562 * sockets. 1563 * (RFC3542 leaves this case 1564 * unspecified.) 1565 */ 1566 if (uproto != IPPROTO_TCP) 1567 OPTSET(IN6P_MTU); 1568 break; 1569 1570 case IPV6_V6ONLY: 1571 /* 1572 * make setsockopt(IPV6_V6ONLY) 1573 * available only prior to bind(2). 1574 * see ipng mailing list, Jun 22 2001. 1575 */ 1576 if (in6p->in6p_lport || 1577 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1578 error = EINVAL; 1579 break; 1580 } 1581 OPTSET(IN6P_IPV6_V6ONLY); 1582 if (optval) 1583 in6p->in6p_vflag &= ~INP_IPV4; 1584 else 1585 in6p->in6p_vflag |= INP_IPV4; 1586 break; 1587 case IPV6_RECVTCLASS: 1588 /* cannot mix with RFC2292 XXX */ 1589 if (OPTBIT(IN6P_RFC2292)) { 1590 error = EINVAL; 1591 break; 1592 } 1593 OPTSET(IN6P_TCLASS); 1594 break; 1595 case IPV6_AUTOFLOWLABEL: 1596 OPTSET(IN6P_AUTOFLOWLABEL); 1597 break; 1598 1599 } 1600 break; 1601 1602 case IPV6_TCLASS: 1603 case IPV6_DONTFRAG: 1604 case IPV6_USE_MIN_MTU: 1605 case IPV6_PREFER_TEMPADDR: 1606 if (optlen != sizeof(optval)) { 1607 error = EINVAL; 1608 break; 1609 } 1610 error = sooptcopyin(sopt, &optval, 1611 sizeof optval, sizeof optval); 1612 if (error) 1613 break; 1614 { 1615 struct ip6_pktopts **optp; 1616 optp = &in6p->in6p_outputopts; 1617 error = ip6_pcbopt(optname, 1618 (u_char *)&optval, sizeof(optval), 1619 optp, (td != NULL) ? td->td_ucred : 1620 NULL, uproto); 1621 break; 1622 } 1623 1624 case IPV6_2292PKTINFO: 1625 case IPV6_2292HOPLIMIT: 1626 case IPV6_2292HOPOPTS: 1627 case IPV6_2292DSTOPTS: 1628 case IPV6_2292RTHDR: 1629 /* RFC 2292 */ 1630 if (optlen != sizeof(int)) { 1631 error = EINVAL; 1632 break; 1633 } 1634 error = sooptcopyin(sopt, &optval, 1635 sizeof optval, sizeof optval); 1636 if (error) 1637 break; 1638 switch (optname) { 1639 case IPV6_2292PKTINFO: 1640 OPTSET2292(IN6P_PKTINFO); 1641 break; 1642 case IPV6_2292HOPLIMIT: 1643 OPTSET2292(IN6P_HOPLIMIT); 1644 break; 1645 case IPV6_2292HOPOPTS: 1646 /* 1647 * Check super-user privilege. 1648 * See comments for IPV6_RECVHOPOPTS. 1649 */ 1650 if (td != NULL) { 1651 error = priv_check(td, 1652 PRIV_NETINET_SETHDROPTS); 1653 if (error) 1654 return (error); 1655 } 1656 OPTSET2292(IN6P_HOPOPTS); 1657 break; 1658 case IPV6_2292DSTOPTS: 1659 if (td != NULL) { 1660 error = priv_check(td, 1661 PRIV_NETINET_SETHDROPTS); 1662 if (error) 1663 return (error); 1664 } 1665 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1666 break; 1667 case IPV6_2292RTHDR: 1668 OPTSET2292(IN6P_RTHDR); 1669 break; 1670 } 1671 break; 1672 case IPV6_PKTINFO: 1673 case IPV6_HOPOPTS: 1674 case IPV6_RTHDR: 1675 case IPV6_DSTOPTS: 1676 case IPV6_RTHDRDSTOPTS: 1677 case IPV6_NEXTHOP: 1678 { 1679 /* new advanced API (RFC3542) */ 1680 u_char *optbuf; 1681 u_char optbuf_storage[MCLBYTES]; 1682 int optlen; 1683 struct ip6_pktopts **optp; 1684 1685 /* cannot mix with RFC2292 */ 1686 if (OPTBIT(IN6P_RFC2292)) { 1687 error = EINVAL; 1688 break; 1689 } 1690 1691 /* 1692 * We only ensure valsize is not too large 1693 * here. Further validation will be done 1694 * later. 1695 */ 1696 error = sooptcopyin(sopt, optbuf_storage, 1697 sizeof(optbuf_storage), 0); 1698 if (error) 1699 break; 1700 optlen = sopt->sopt_valsize; 1701 optbuf = optbuf_storage; 1702 optp = &in6p->in6p_outputopts; 1703 error = ip6_pcbopt(optname, optbuf, optlen, 1704 optp, (td != NULL) ? td->td_ucred : NULL, 1705 uproto); 1706 break; 1707 } 1708 #undef OPTSET 1709 1710 case IPV6_MULTICAST_IF: 1711 case IPV6_MULTICAST_HOPS: 1712 case IPV6_MULTICAST_LOOP: 1713 case IPV6_JOIN_GROUP: 1714 case IPV6_LEAVE_GROUP: 1715 { 1716 if (sopt->sopt_valsize > MLEN) { 1717 error = EMSGSIZE; 1718 break; 1719 } 1720 /* XXX */ 1721 } 1722 /* FALLTHROUGH */ 1723 { 1724 struct mbuf *m; 1725 1726 if (sopt->sopt_valsize > MCLBYTES) { 1727 error = EMSGSIZE; 1728 break; 1729 } 1730 /* XXX */ 1731 MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA); 1732 if (m == 0) { 1733 error = ENOBUFS; 1734 break; 1735 } 1736 if (sopt->sopt_valsize > MLEN) { 1737 MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT); 1738 if ((m->m_flags & M_EXT) == 0) { 1739 m_free(m); 1740 error = ENOBUFS; 1741 break; 1742 } 1743 } 1744 m->m_len = sopt->sopt_valsize; 1745 error = sooptcopyin(sopt, mtod(m, char *), 1746 m->m_len, m->m_len); 1747 if (error) { 1748 (void)m_free(m); 1749 break; 1750 } 1751 error = ip6_setmoptions(sopt->sopt_name, 1752 &in6p->in6p_moptions, 1753 m); 1754 (void)m_free(m); 1755 } 1756 break; 1757 1758 case IPV6_PORTRANGE: 1759 error = sooptcopyin(sopt, &optval, 1760 sizeof optval, sizeof optval); 1761 if (error) 1762 break; 1763 1764 switch (optval) { 1765 case IPV6_PORTRANGE_DEFAULT: 1766 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1767 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1768 break; 1769 1770 case IPV6_PORTRANGE_HIGH: 1771 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1772 in6p->in6p_flags |= IN6P_HIGHPORT; 1773 break; 1774 1775 case IPV6_PORTRANGE_LOW: 1776 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1777 in6p->in6p_flags |= IN6P_LOWPORT; 1778 break; 1779 1780 default: 1781 error = EINVAL; 1782 break; 1783 } 1784 break; 1785 1786 #ifdef IPSEC 1787 case IPV6_IPSEC_POLICY: 1788 { 1789 caddr_t req; 1790 struct mbuf *m; 1791 1792 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1793 break; 1794 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1795 break; 1796 req = mtod(m, caddr_t); 1797 error = ipsec6_set_policy(in6p, optname, req, 1798 m->m_len, (sopt->sopt_td != NULL) ? 1799 sopt->sopt_td->td_ucred : NULL); 1800 m_freem(m); 1801 break; 1802 } 1803 #endif /* IPSEC */ 1804 1805 default: 1806 error = ENOPROTOOPT; 1807 break; 1808 } 1809 break; 1810 1811 case SOPT_GET: 1812 switch (optname) { 1813 1814 case IPV6_2292PKTOPTIONS: 1815 #ifdef IPV6_PKTOPTIONS 1816 case IPV6_PKTOPTIONS: 1817 #endif 1818 /* 1819 * RFC3542 (effectively) deprecated the 1820 * semantics of the 2292-style pktoptions. 1821 * Since it was not reliable in nature (i.e., 1822 * applications had to expect the lack of some 1823 * information after all), it would make sense 1824 * to simplify this part by always returning 1825 * empty data. 1826 */ 1827 sopt->sopt_valsize = 0; 1828 break; 1829 1830 case IPV6_RECVHOPOPTS: 1831 case IPV6_RECVDSTOPTS: 1832 case IPV6_RECVRTHDRDSTOPTS: 1833 case IPV6_UNICAST_HOPS: 1834 case IPV6_RECVPKTINFO: 1835 case IPV6_RECVHOPLIMIT: 1836 case IPV6_RECVRTHDR: 1837 case IPV6_RECVPATHMTU: 1838 1839 case IPV6_FAITH: 1840 case IPV6_V6ONLY: 1841 case IPV6_PORTRANGE: 1842 case IPV6_RECVTCLASS: 1843 case IPV6_AUTOFLOWLABEL: 1844 switch (optname) { 1845 1846 case IPV6_RECVHOPOPTS: 1847 optval = OPTBIT(IN6P_HOPOPTS); 1848 break; 1849 1850 case IPV6_RECVDSTOPTS: 1851 optval = OPTBIT(IN6P_DSTOPTS); 1852 break; 1853 1854 case IPV6_RECVRTHDRDSTOPTS: 1855 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1856 break; 1857 1858 case IPV6_UNICAST_HOPS: 1859 optval = in6p->in6p_hops; 1860 break; 1861 1862 case IPV6_RECVPKTINFO: 1863 optval = OPTBIT(IN6P_PKTINFO); 1864 break; 1865 1866 case IPV6_RECVHOPLIMIT: 1867 optval = OPTBIT(IN6P_HOPLIMIT); 1868 break; 1869 1870 case IPV6_RECVRTHDR: 1871 optval = OPTBIT(IN6P_RTHDR); 1872 break; 1873 1874 case IPV6_RECVPATHMTU: 1875 optval = OPTBIT(IN6P_MTU); 1876 break; 1877 1878 case IPV6_FAITH: 1879 optval = OPTBIT(IN6P_FAITH); 1880 break; 1881 1882 case IPV6_V6ONLY: 1883 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1884 break; 1885 1886 case IPV6_PORTRANGE: 1887 { 1888 int flags; 1889 flags = in6p->in6p_flags; 1890 if (flags & IN6P_HIGHPORT) 1891 optval = IPV6_PORTRANGE_HIGH; 1892 else if (flags & IN6P_LOWPORT) 1893 optval = IPV6_PORTRANGE_LOW; 1894 else 1895 optval = 0; 1896 break; 1897 } 1898 case IPV6_RECVTCLASS: 1899 optval = OPTBIT(IN6P_TCLASS); 1900 break; 1901 1902 case IPV6_AUTOFLOWLABEL: 1903 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1904 break; 1905 } 1906 if (error) 1907 break; 1908 error = sooptcopyout(sopt, &optval, 1909 sizeof optval); 1910 break; 1911 1912 case IPV6_PATHMTU: 1913 { 1914 u_long pmtu = 0; 1915 struct ip6_mtuinfo mtuinfo; 1916 struct route_in6 sro; 1917 1918 bzero(&sro, sizeof(sro)); 1919 1920 if (!(so->so_state & SS_ISCONNECTED)) 1921 return (ENOTCONN); 1922 /* 1923 * XXX: we dot not consider the case of source 1924 * routing, or optional information to specify 1925 * the outgoing interface. 1926 */ 1927 error = ip6_getpmtu(&sro, NULL, NULL, 1928 &in6p->in6p_faddr, &pmtu, NULL); 1929 if (sro.ro_rt) 1930 RTFREE(sro.ro_rt); 1931 if (error) 1932 break; 1933 if (pmtu > IPV6_MAXPACKET) 1934 pmtu = IPV6_MAXPACKET; 1935 1936 bzero(&mtuinfo, sizeof(mtuinfo)); 1937 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1938 optdata = (void *)&mtuinfo; 1939 optdatalen = sizeof(mtuinfo); 1940 error = sooptcopyout(sopt, optdata, 1941 optdatalen); 1942 break; 1943 } 1944 1945 case IPV6_2292PKTINFO: 1946 case IPV6_2292HOPLIMIT: 1947 case IPV6_2292HOPOPTS: 1948 case IPV6_2292RTHDR: 1949 case IPV6_2292DSTOPTS: 1950 switch (optname) { 1951 case IPV6_2292PKTINFO: 1952 optval = OPTBIT(IN6P_PKTINFO); 1953 break; 1954 case IPV6_2292HOPLIMIT: 1955 optval = OPTBIT(IN6P_HOPLIMIT); 1956 break; 1957 case IPV6_2292HOPOPTS: 1958 optval = OPTBIT(IN6P_HOPOPTS); 1959 break; 1960 case IPV6_2292RTHDR: 1961 optval = OPTBIT(IN6P_RTHDR); 1962 break; 1963 case IPV6_2292DSTOPTS: 1964 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1965 break; 1966 } 1967 error = sooptcopyout(sopt, &optval, 1968 sizeof optval); 1969 break; 1970 case IPV6_PKTINFO: 1971 case IPV6_HOPOPTS: 1972 case IPV6_RTHDR: 1973 case IPV6_DSTOPTS: 1974 case IPV6_RTHDRDSTOPTS: 1975 case IPV6_NEXTHOP: 1976 case IPV6_TCLASS: 1977 case IPV6_DONTFRAG: 1978 case IPV6_USE_MIN_MTU: 1979 case IPV6_PREFER_TEMPADDR: 1980 error = ip6_getpcbopt(in6p->in6p_outputopts, 1981 optname, sopt); 1982 break; 1983 1984 case IPV6_MULTICAST_IF: 1985 case IPV6_MULTICAST_HOPS: 1986 case IPV6_MULTICAST_LOOP: 1987 case IPV6_JOIN_GROUP: 1988 case IPV6_LEAVE_GROUP: 1989 { 1990 struct mbuf *m; 1991 error = ip6_getmoptions(sopt->sopt_name, 1992 in6p->in6p_moptions, &m); 1993 if (error == 0) 1994 error = sooptcopyout(sopt, 1995 mtod(m, char *), m->m_len); 1996 m_freem(m); 1997 } 1998 break; 1999 2000 #ifdef IPSEC 2001 case IPV6_IPSEC_POLICY: 2002 { 2003 caddr_t req = NULL; 2004 size_t len = 0; 2005 struct mbuf *m = NULL; 2006 struct mbuf **mp = &m; 2007 size_t ovalsize = sopt->sopt_valsize; 2008 caddr_t oval = (caddr_t)sopt->sopt_val; 2009 2010 error = soopt_getm(sopt, &m); /* XXX */ 2011 if (error != 0) 2012 break; 2013 error = soopt_mcopyin(sopt, m); /* XXX */ 2014 if (error != 0) 2015 break; 2016 sopt->sopt_valsize = ovalsize; 2017 sopt->sopt_val = oval; 2018 if (m) { 2019 req = mtod(m, caddr_t); 2020 len = m->m_len; 2021 } 2022 error = ipsec6_get_policy(in6p, req, len, mp); 2023 if (error == 0) 2024 error = soopt_mcopyout(sopt, m); /* XXX */ 2025 if (error == 0 && m) 2026 m_freem(m); 2027 break; 2028 } 2029 #endif /* IPSEC */ 2030 2031 default: 2032 error = ENOPROTOOPT; 2033 break; 2034 } 2035 break; 2036 } 2037 } else { /* level != IPPROTO_IPV6 */ 2038 error = EINVAL; 2039 } 2040 return (error); 2041 } 2042 2043 int 2044 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2045 { 2046 int error = 0, optval, optlen; 2047 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2048 struct in6pcb *in6p = sotoin6pcb(so); 2049 int level, op, optname; 2050 2051 level = sopt->sopt_level; 2052 op = sopt->sopt_dir; 2053 optname = sopt->sopt_name; 2054 optlen = sopt->sopt_valsize; 2055 2056 if (level != IPPROTO_IPV6) { 2057 return (EINVAL); 2058 } 2059 2060 switch (optname) { 2061 case IPV6_CHECKSUM: 2062 /* 2063 * For ICMPv6 sockets, no modification allowed for checksum 2064 * offset, permit "no change" values to help existing apps. 2065 * 2066 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2067 * for an ICMPv6 socket will fail." 2068 * The current behavior does not meet RFC3542. 2069 */ 2070 switch (op) { 2071 case SOPT_SET: 2072 if (optlen != sizeof(int)) { 2073 error = EINVAL; 2074 break; 2075 } 2076 error = sooptcopyin(sopt, &optval, sizeof(optval), 2077 sizeof(optval)); 2078 if (error) 2079 break; 2080 if ((optval % 2) != 0) { 2081 /* the API assumes even offset values */ 2082 error = EINVAL; 2083 } else if (so->so_proto->pr_protocol == 2084 IPPROTO_ICMPV6) { 2085 if (optval != icmp6off) 2086 error = EINVAL; 2087 } else 2088 in6p->in6p_cksum = optval; 2089 break; 2090 2091 case SOPT_GET: 2092 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2093 optval = icmp6off; 2094 else 2095 optval = in6p->in6p_cksum; 2096 2097 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2098 break; 2099 2100 default: 2101 error = EINVAL; 2102 break; 2103 } 2104 break; 2105 2106 default: 2107 error = ENOPROTOOPT; 2108 break; 2109 } 2110 2111 return (error); 2112 } 2113 2114 /* 2115 * Set up IP6 options in pcb for insertion in output packets or 2116 * specifying behavior of outgoing packets. 2117 */ 2118 static int 2119 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2120 struct socket *so, struct sockopt *sopt) 2121 { 2122 struct ip6_pktopts *opt = *pktopt; 2123 int error = 0; 2124 struct thread *td = sopt->sopt_td; 2125 2126 /* turn off any old options. */ 2127 if (opt) { 2128 #ifdef DIAGNOSTIC 2129 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2130 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2131 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2132 printf("ip6_pcbopts: all specified options are cleared.\n"); 2133 #endif 2134 ip6_clearpktopts(opt, -1); 2135 } else 2136 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2137 *pktopt = NULL; 2138 2139 if (!m || m->m_len == 0) { 2140 /* 2141 * Only turning off any previous options, regardless of 2142 * whether the opt is just created or given. 2143 */ 2144 free(opt, M_IP6OPT); 2145 return (0); 2146 } 2147 2148 /* set options specified by user. */ 2149 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2150 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2151 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2152 free(opt, M_IP6OPT); 2153 return (error); 2154 } 2155 *pktopt = opt; 2156 return (0); 2157 } 2158 2159 /* 2160 * initialize ip6_pktopts. beware that there are non-zero default values in 2161 * the struct. 2162 */ 2163 void 2164 ip6_initpktopts(struct ip6_pktopts *opt) 2165 { 2166 2167 bzero(opt, sizeof(*opt)); 2168 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2169 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2170 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2171 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2172 } 2173 2174 static int 2175 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2176 struct ucred *cred, int uproto) 2177 { 2178 struct ip6_pktopts *opt; 2179 2180 if (*pktopt == NULL) { 2181 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2182 M_WAITOK); 2183 ip6_initpktopts(*pktopt); 2184 } 2185 opt = *pktopt; 2186 2187 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2188 } 2189 2190 static int 2191 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2192 { 2193 void *optdata = NULL; 2194 int optdatalen = 0; 2195 struct ip6_ext *ip6e; 2196 int error = 0; 2197 struct in6_pktinfo null_pktinfo; 2198 int deftclass = 0, on; 2199 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2200 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2201 2202 switch (optname) { 2203 case IPV6_PKTINFO: 2204 if (pktopt && pktopt->ip6po_pktinfo) 2205 optdata = (void *)pktopt->ip6po_pktinfo; 2206 else { 2207 /* XXX: we don't have to do this every time... */ 2208 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2209 optdata = (void *)&null_pktinfo; 2210 } 2211 optdatalen = sizeof(struct in6_pktinfo); 2212 break; 2213 case IPV6_TCLASS: 2214 if (pktopt && pktopt->ip6po_tclass >= 0) 2215 optdata = (void *)&pktopt->ip6po_tclass; 2216 else 2217 optdata = (void *)&deftclass; 2218 optdatalen = sizeof(int); 2219 break; 2220 case IPV6_HOPOPTS: 2221 if (pktopt && pktopt->ip6po_hbh) { 2222 optdata = (void *)pktopt->ip6po_hbh; 2223 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2224 optdatalen = (ip6e->ip6e_len + 1) << 3; 2225 } 2226 break; 2227 case IPV6_RTHDR: 2228 if (pktopt && pktopt->ip6po_rthdr) { 2229 optdata = (void *)pktopt->ip6po_rthdr; 2230 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2231 optdatalen = (ip6e->ip6e_len + 1) << 3; 2232 } 2233 break; 2234 case IPV6_RTHDRDSTOPTS: 2235 if (pktopt && pktopt->ip6po_dest1) { 2236 optdata = (void *)pktopt->ip6po_dest1; 2237 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2238 optdatalen = (ip6e->ip6e_len + 1) << 3; 2239 } 2240 break; 2241 case IPV6_DSTOPTS: 2242 if (pktopt && pktopt->ip6po_dest2) { 2243 optdata = (void *)pktopt->ip6po_dest2; 2244 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2245 optdatalen = (ip6e->ip6e_len + 1) << 3; 2246 } 2247 break; 2248 case IPV6_NEXTHOP: 2249 if (pktopt && pktopt->ip6po_nexthop) { 2250 optdata = (void *)pktopt->ip6po_nexthop; 2251 optdatalen = pktopt->ip6po_nexthop->sa_len; 2252 } 2253 break; 2254 case IPV6_USE_MIN_MTU: 2255 if (pktopt) 2256 optdata = (void *)&pktopt->ip6po_minmtu; 2257 else 2258 optdata = (void *)&defminmtu; 2259 optdatalen = sizeof(int); 2260 break; 2261 case IPV6_DONTFRAG: 2262 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2263 on = 1; 2264 else 2265 on = 0; 2266 optdata = (void *)&on; 2267 optdatalen = sizeof(on); 2268 break; 2269 case IPV6_PREFER_TEMPADDR: 2270 if (pktopt) 2271 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2272 else 2273 optdata = (void *)&defpreftemp; 2274 optdatalen = sizeof(int); 2275 break; 2276 default: /* should not happen */ 2277 #ifdef DIAGNOSTIC 2278 panic("ip6_getpcbopt: unexpected option\n"); 2279 #endif 2280 return (ENOPROTOOPT); 2281 } 2282 2283 error = sooptcopyout(sopt, optdata, optdatalen); 2284 2285 return (error); 2286 } 2287 2288 void 2289 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2290 { 2291 if (pktopt == NULL) 2292 return; 2293 2294 if (optname == -1 || optname == IPV6_PKTINFO) { 2295 if (pktopt->ip6po_pktinfo) 2296 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2297 pktopt->ip6po_pktinfo = NULL; 2298 } 2299 if (optname == -1 || optname == IPV6_HOPLIMIT) 2300 pktopt->ip6po_hlim = -1; 2301 if (optname == -1 || optname == IPV6_TCLASS) 2302 pktopt->ip6po_tclass = -1; 2303 if (optname == -1 || optname == IPV6_NEXTHOP) { 2304 if (pktopt->ip6po_nextroute.ro_rt) { 2305 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2306 pktopt->ip6po_nextroute.ro_rt = NULL; 2307 } 2308 if (pktopt->ip6po_nexthop) 2309 free(pktopt->ip6po_nexthop, M_IP6OPT); 2310 pktopt->ip6po_nexthop = NULL; 2311 } 2312 if (optname == -1 || optname == IPV6_HOPOPTS) { 2313 if (pktopt->ip6po_hbh) 2314 free(pktopt->ip6po_hbh, M_IP6OPT); 2315 pktopt->ip6po_hbh = NULL; 2316 } 2317 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2318 if (pktopt->ip6po_dest1) 2319 free(pktopt->ip6po_dest1, M_IP6OPT); 2320 pktopt->ip6po_dest1 = NULL; 2321 } 2322 if (optname == -1 || optname == IPV6_RTHDR) { 2323 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2324 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2325 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2326 if (pktopt->ip6po_route.ro_rt) { 2327 RTFREE(pktopt->ip6po_route.ro_rt); 2328 pktopt->ip6po_route.ro_rt = NULL; 2329 } 2330 } 2331 if (optname == -1 || optname == IPV6_DSTOPTS) { 2332 if (pktopt->ip6po_dest2) 2333 free(pktopt->ip6po_dest2, M_IP6OPT); 2334 pktopt->ip6po_dest2 = NULL; 2335 } 2336 } 2337 2338 #define PKTOPT_EXTHDRCPY(type) \ 2339 do {\ 2340 if (src->type) {\ 2341 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2342 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2343 if (dst->type == NULL && canwait == M_NOWAIT)\ 2344 goto bad;\ 2345 bcopy(src->type, dst->type, hlen);\ 2346 }\ 2347 } while (/*CONSTCOND*/ 0) 2348 2349 static int 2350 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2351 { 2352 if (dst == NULL || src == NULL) { 2353 printf("ip6_clearpktopts: invalid argument\n"); 2354 return (EINVAL); 2355 } 2356 2357 dst->ip6po_hlim = src->ip6po_hlim; 2358 dst->ip6po_tclass = src->ip6po_tclass; 2359 dst->ip6po_flags = src->ip6po_flags; 2360 if (src->ip6po_pktinfo) { 2361 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2362 M_IP6OPT, canwait); 2363 if (dst->ip6po_pktinfo == NULL) 2364 goto bad; 2365 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2366 } 2367 if (src->ip6po_nexthop) { 2368 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2369 M_IP6OPT, canwait); 2370 if (dst->ip6po_nexthop == NULL) 2371 goto bad; 2372 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2373 src->ip6po_nexthop->sa_len); 2374 } 2375 PKTOPT_EXTHDRCPY(ip6po_hbh); 2376 PKTOPT_EXTHDRCPY(ip6po_dest1); 2377 PKTOPT_EXTHDRCPY(ip6po_dest2); 2378 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2379 return (0); 2380 2381 bad: 2382 ip6_clearpktopts(dst, -1); 2383 return (ENOBUFS); 2384 } 2385 #undef PKTOPT_EXTHDRCPY 2386 2387 struct ip6_pktopts * 2388 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2389 { 2390 int error; 2391 struct ip6_pktopts *dst; 2392 2393 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2394 if (dst == NULL) 2395 return (NULL); 2396 ip6_initpktopts(dst); 2397 2398 if ((error = copypktopts(dst, src, canwait)) != 0) { 2399 free(dst, M_IP6OPT); 2400 return (NULL); 2401 } 2402 2403 return (dst); 2404 } 2405 2406 void 2407 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2408 { 2409 if (pktopt == NULL) 2410 return; 2411 2412 ip6_clearpktopts(pktopt, -1); 2413 2414 free(pktopt, M_IP6OPT); 2415 } 2416 2417 /* 2418 * Set the IP6 multicast options in response to user setsockopt(). 2419 */ 2420 static int 2421 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m) 2422 { 2423 int error = 0; 2424 u_int loop, ifindex; 2425 struct ipv6_mreq *mreq; 2426 struct ifnet *ifp; 2427 struct ip6_moptions *im6o = *im6op; 2428 struct route_in6 ro; 2429 struct in6_multi_mship *imm; 2430 2431 if (im6o == NULL) { 2432 /* 2433 * No multicast option buffer attached to the pcb; 2434 * allocate one and initialize to default values. 2435 */ 2436 im6o = (struct ip6_moptions *) 2437 malloc(sizeof(*im6o), M_IP6MOPTS, M_WAITOK); 2438 2439 if (im6o == NULL) 2440 return (ENOBUFS); 2441 *im6op = im6o; 2442 im6o->im6o_multicast_ifp = NULL; 2443 im6o->im6o_multicast_hlim = V_ip6_defmcasthlim; 2444 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2445 LIST_INIT(&im6o->im6o_memberships); 2446 } 2447 2448 switch (optname) { 2449 2450 case IPV6_MULTICAST_IF: 2451 /* 2452 * Select the interface for outgoing multicast packets. 2453 */ 2454 if (m == NULL || m->m_len != sizeof(u_int)) { 2455 error = EINVAL; 2456 break; 2457 } 2458 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 2459 if (ifindex < 0 || V_if_index < ifindex) { 2460 error = ENXIO; /* XXX EINVAL? */ 2461 break; 2462 } 2463 ifp = ifnet_byindex(ifindex); 2464 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2465 error = EADDRNOTAVAIL; 2466 break; 2467 } 2468 im6o->im6o_multicast_ifp = ifp; 2469 break; 2470 2471 case IPV6_MULTICAST_HOPS: 2472 { 2473 /* 2474 * Set the IP6 hoplimit for outgoing multicast packets. 2475 */ 2476 int optval; 2477 if (m == NULL || m->m_len != sizeof(int)) { 2478 error = EINVAL; 2479 break; 2480 } 2481 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 2482 if (optval < -1 || optval >= 256) 2483 error = EINVAL; 2484 else if (optval == -1) 2485 im6o->im6o_multicast_hlim = V_ip6_defmcasthlim; 2486 else 2487 im6o->im6o_multicast_hlim = optval; 2488 break; 2489 } 2490 2491 case IPV6_MULTICAST_LOOP: 2492 /* 2493 * Set the loopback flag for outgoing multicast packets. 2494 * Must be zero or one. 2495 */ 2496 if (m == NULL || m->m_len != sizeof(u_int)) { 2497 error = EINVAL; 2498 break; 2499 } 2500 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 2501 if (loop > 1) { 2502 error = EINVAL; 2503 break; 2504 } 2505 im6o->im6o_multicast_loop = loop; 2506 break; 2507 2508 case IPV6_JOIN_GROUP: 2509 /* 2510 * Add a multicast group membership. 2511 * Group must be a valid IP6 multicast address. 2512 */ 2513 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2514 error = EINVAL; 2515 break; 2516 } 2517 mreq = mtod(m, struct ipv6_mreq *); 2518 2519 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2520 /* 2521 * We use the unspecified address to specify to accept 2522 * all multicast addresses. Only super user is allowed 2523 * to do this. 2524 */ 2525 /* XXX-BZ might need a better PRIV_NETINET_x for this */ 2526 error = priv_check(curthread, PRIV_NETINET_MROUTE); 2527 if (error) 2528 break; 2529 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2530 error = EINVAL; 2531 break; 2532 } 2533 2534 /* 2535 * If no interface was explicitly specified, choose an 2536 * appropriate one according to the given multicast address. 2537 */ 2538 if (mreq->ipv6mr_interface == 0) { 2539 struct sockaddr_in6 *dst; 2540 2541 /* 2542 * Look up the routing table for the 2543 * address, and choose the outgoing interface. 2544 * XXX: is it a good approach? 2545 */ 2546 ro.ro_rt = NULL; 2547 dst = (struct sockaddr_in6 *)&ro.ro_dst; 2548 bzero(dst, sizeof(*dst)); 2549 dst->sin6_family = AF_INET6; 2550 dst->sin6_len = sizeof(*dst); 2551 dst->sin6_addr = mreq->ipv6mr_multiaddr; 2552 rtalloc((struct route *)&ro); 2553 if (ro.ro_rt == NULL) { 2554 error = EADDRNOTAVAIL; 2555 break; 2556 } 2557 ifp = ro.ro_rt->rt_ifp; 2558 RTFREE(ro.ro_rt); 2559 } else { 2560 /* 2561 * If the interface is specified, validate it. 2562 */ 2563 if (mreq->ipv6mr_interface < 0 || 2564 V_if_index < mreq->ipv6mr_interface) { 2565 error = ENXIO; /* XXX EINVAL? */ 2566 break; 2567 } 2568 ifp = ifnet_byindex(mreq->ipv6mr_interface); 2569 if (!ifp) { 2570 error = ENXIO; /* XXX EINVAL? */ 2571 break; 2572 } 2573 } 2574 2575 /* 2576 * See if we found an interface, and confirm that it 2577 * supports multicast 2578 */ 2579 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2580 error = EADDRNOTAVAIL; 2581 break; 2582 } 2583 2584 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) { 2585 error = EADDRNOTAVAIL; /* XXX: should not happen */ 2586 break; 2587 } 2588 2589 /* 2590 * See if the membership already exists. 2591 */ 2592 for (imm = im6o->im6o_memberships.lh_first; 2593 imm != NULL; imm = imm->i6mm_chain.le_next) 2594 if (imm->i6mm_maddr->in6m_ifp == ifp && 2595 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2596 &mreq->ipv6mr_multiaddr)) 2597 break; 2598 if (imm != NULL) { 2599 error = EADDRINUSE; 2600 break; 2601 } 2602 /* 2603 * Everything looks good; add a new record to the multicast 2604 * address list for the given interface. 2605 */ 2606 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error, 0); 2607 if (imm == NULL) 2608 break; 2609 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2610 break; 2611 2612 case IPV6_LEAVE_GROUP: 2613 /* 2614 * Drop a multicast group membership. 2615 * Group must be a valid IP6 multicast address. 2616 */ 2617 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2618 error = EINVAL; 2619 break; 2620 } 2621 mreq = mtod(m, struct ipv6_mreq *); 2622 2623 /* 2624 * If an interface address was specified, get a pointer 2625 * to its ifnet structure. 2626 */ 2627 if (mreq->ipv6mr_interface < 0 || 2628 V_if_index < mreq->ipv6mr_interface) { 2629 error = ENXIO; /* XXX EINVAL? */ 2630 break; 2631 } 2632 if (mreq->ipv6mr_interface == 0) 2633 ifp = NULL; 2634 else 2635 ifp = ifnet_byindex(mreq->ipv6mr_interface); 2636 2637 /* Fill in the scope zone ID */ 2638 if (ifp) { 2639 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) { 2640 /* XXX: should not happen */ 2641 error = EADDRNOTAVAIL; 2642 break; 2643 } 2644 } else if (mreq->ipv6mr_interface != 0) { 2645 /* 2646 * This case happens when the (positive) index is in 2647 * the valid range, but the corresponding interface has 2648 * been detached dynamically (XXX). 2649 */ 2650 error = EADDRNOTAVAIL; 2651 break; 2652 } else { /* ipv6mr_interface == 0 */ 2653 struct sockaddr_in6 sa6_mc; 2654 2655 /* 2656 * The API spec says as follows: 2657 * If the interface index is specified as 0, the 2658 * system may choose a multicast group membership to 2659 * drop by matching the multicast address only. 2660 * On the other hand, we cannot disambiguate the scope 2661 * zone unless an interface is provided. Thus, we 2662 * check if there's ambiguity with the default scope 2663 * zone as the last resort. 2664 */ 2665 bzero(&sa6_mc, sizeof(sa6_mc)); 2666 sa6_mc.sin6_family = AF_INET6; 2667 sa6_mc.sin6_len = sizeof(sa6_mc); 2668 sa6_mc.sin6_addr = mreq->ipv6mr_multiaddr; 2669 error = sa6_embedscope(&sa6_mc, V_ip6_use_defzone); 2670 if (error != 0) 2671 break; 2672 mreq->ipv6mr_multiaddr = sa6_mc.sin6_addr; 2673 } 2674 2675 /* 2676 * Find the membership in the membership list. 2677 */ 2678 for (imm = im6o->im6o_memberships.lh_first; 2679 imm != NULL; imm = imm->i6mm_chain.le_next) { 2680 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2681 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2682 &mreq->ipv6mr_multiaddr)) 2683 break; 2684 } 2685 if (imm == NULL) { 2686 /* Unable to resolve interface */ 2687 error = EADDRNOTAVAIL; 2688 break; 2689 } 2690 /* 2691 * Give up the multicast address record to which the 2692 * membership points. 2693 */ 2694 LIST_REMOVE(imm, i6mm_chain); 2695 in6_delmulti(imm->i6mm_maddr); 2696 free(imm, M_IP6MADDR); 2697 break; 2698 2699 default: 2700 error = EOPNOTSUPP; 2701 break; 2702 } 2703 2704 /* 2705 * If all options have default values, no need to keep the mbuf. 2706 */ 2707 if (im6o->im6o_multicast_ifp == NULL && 2708 im6o->im6o_multicast_hlim == V_ip6_defmcasthlim && 2709 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2710 im6o->im6o_memberships.lh_first == NULL) { 2711 free(*im6op, M_IP6MOPTS); 2712 *im6op = NULL; 2713 } 2714 2715 return (error); 2716 } 2717 2718 /* 2719 * Return the IP6 multicast options in response to user getsockopt(). 2720 */ 2721 static int 2722 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp) 2723 { 2724 u_int *hlim, *loop, *ifindex; 2725 2726 *mp = m_get(M_WAIT, MT_HEADER); /* XXX */ 2727 2728 switch (optname) { 2729 2730 case IPV6_MULTICAST_IF: 2731 ifindex = mtod(*mp, u_int *); 2732 (*mp)->m_len = sizeof(u_int); 2733 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2734 *ifindex = 0; 2735 else 2736 *ifindex = im6o->im6o_multicast_ifp->if_index; 2737 return (0); 2738 2739 case IPV6_MULTICAST_HOPS: 2740 hlim = mtod(*mp, u_int *); 2741 (*mp)->m_len = sizeof(u_int); 2742 if (im6o == NULL) 2743 *hlim = V_ip6_defmcasthlim; 2744 else 2745 *hlim = im6o->im6o_multicast_hlim; 2746 return (0); 2747 2748 case IPV6_MULTICAST_LOOP: 2749 loop = mtod(*mp, u_int *); 2750 (*mp)->m_len = sizeof(u_int); 2751 if (im6o == NULL) 2752 *loop = V_ip6_defmcasthlim; 2753 else 2754 *loop = im6o->im6o_multicast_loop; 2755 return (0); 2756 2757 default: 2758 return (EOPNOTSUPP); 2759 } 2760 } 2761 2762 /* 2763 * Discard the IP6 multicast options. 2764 */ 2765 void 2766 ip6_freemoptions(struct ip6_moptions *im6o) 2767 { 2768 struct in6_multi_mship *imm; 2769 2770 if (im6o == NULL) 2771 return; 2772 2773 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2774 LIST_REMOVE(imm, i6mm_chain); 2775 if (imm->i6mm_maddr) 2776 in6_delmulti(imm->i6mm_maddr); 2777 free(imm, M_IP6MADDR); 2778 } 2779 free(im6o, M_IP6MOPTS); 2780 } 2781 2782 /* 2783 * Set IPv6 outgoing packet options based on advanced API. 2784 */ 2785 int 2786 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2787 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2788 { 2789 struct cmsghdr *cm = 0; 2790 2791 if (control == NULL || opt == NULL) 2792 return (EINVAL); 2793 2794 ip6_initpktopts(opt); 2795 if (stickyopt) { 2796 int error; 2797 2798 /* 2799 * If stickyopt is provided, make a local copy of the options 2800 * for this particular packet, then override them by ancillary 2801 * objects. 2802 * XXX: copypktopts() does not copy the cached route to a next 2803 * hop (if any). This is not very good in terms of efficiency, 2804 * but we can allow this since this option should be rarely 2805 * used. 2806 */ 2807 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2808 return (error); 2809 } 2810 2811 /* 2812 * XXX: Currently, we assume all the optional information is stored 2813 * in a single mbuf. 2814 */ 2815 if (control->m_next) 2816 return (EINVAL); 2817 2818 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2819 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2820 int error; 2821 2822 if (control->m_len < CMSG_LEN(0)) 2823 return (EINVAL); 2824 2825 cm = mtod(control, struct cmsghdr *); 2826 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2827 return (EINVAL); 2828 if (cm->cmsg_level != IPPROTO_IPV6) 2829 continue; 2830 2831 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2832 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2833 if (error) 2834 return (error); 2835 } 2836 2837 return (0); 2838 } 2839 2840 /* 2841 * Set a particular packet option, as a sticky option or an ancillary data 2842 * item. "len" can be 0 only when it's a sticky option. 2843 * We have 4 cases of combination of "sticky" and "cmsg": 2844 * "sticky=0, cmsg=0": impossible 2845 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2846 * "sticky=1, cmsg=0": RFC3542 socket option 2847 * "sticky=1, cmsg=1": RFC2292 socket option 2848 */ 2849 static int 2850 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2851 struct ucred *cred, int sticky, int cmsg, int uproto) 2852 { 2853 int minmtupolicy, preftemp; 2854 int error; 2855 2856 if (!sticky && !cmsg) { 2857 #ifdef DIAGNOSTIC 2858 printf("ip6_setpktopt: impossible case\n"); 2859 #endif 2860 return (EINVAL); 2861 } 2862 2863 /* 2864 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2865 * not be specified in the context of RFC3542. Conversely, 2866 * RFC3542 types should not be specified in the context of RFC2292. 2867 */ 2868 if (!cmsg) { 2869 switch (optname) { 2870 case IPV6_2292PKTINFO: 2871 case IPV6_2292HOPLIMIT: 2872 case IPV6_2292NEXTHOP: 2873 case IPV6_2292HOPOPTS: 2874 case IPV6_2292DSTOPTS: 2875 case IPV6_2292RTHDR: 2876 case IPV6_2292PKTOPTIONS: 2877 return (ENOPROTOOPT); 2878 } 2879 } 2880 if (sticky && cmsg) { 2881 switch (optname) { 2882 case IPV6_PKTINFO: 2883 case IPV6_HOPLIMIT: 2884 case IPV6_NEXTHOP: 2885 case IPV6_HOPOPTS: 2886 case IPV6_DSTOPTS: 2887 case IPV6_RTHDRDSTOPTS: 2888 case IPV6_RTHDR: 2889 case IPV6_USE_MIN_MTU: 2890 case IPV6_DONTFRAG: 2891 case IPV6_TCLASS: 2892 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2893 return (ENOPROTOOPT); 2894 } 2895 } 2896 2897 switch (optname) { 2898 case IPV6_2292PKTINFO: 2899 case IPV6_PKTINFO: 2900 { 2901 struct ifnet *ifp = NULL; 2902 struct in6_pktinfo *pktinfo; 2903 2904 if (len != sizeof(struct in6_pktinfo)) 2905 return (EINVAL); 2906 2907 pktinfo = (struct in6_pktinfo *)buf; 2908 2909 /* 2910 * An application can clear any sticky IPV6_PKTINFO option by 2911 * doing a "regular" setsockopt with ipi6_addr being 2912 * in6addr_any and ipi6_ifindex being zero. 2913 * [RFC 3542, Section 6] 2914 */ 2915 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2916 pktinfo->ipi6_ifindex == 0 && 2917 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2918 ip6_clearpktopts(opt, optname); 2919 break; 2920 } 2921 2922 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2923 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2924 return (EINVAL); 2925 } 2926 2927 /* validate the interface index if specified. */ 2928 if (pktinfo->ipi6_ifindex > V_if_index || 2929 pktinfo->ipi6_ifindex < 0) { 2930 return (ENXIO); 2931 } 2932 if (pktinfo->ipi6_ifindex) { 2933 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2934 if (ifp == NULL) 2935 return (ENXIO); 2936 } 2937 2938 /* 2939 * We store the address anyway, and let in6_selectsrc() 2940 * validate the specified address. This is because ipi6_addr 2941 * may not have enough information about its scope zone, and 2942 * we may need additional information (such as outgoing 2943 * interface or the scope zone of a destination address) to 2944 * disambiguate the scope. 2945 * XXX: the delay of the validation may confuse the 2946 * application when it is used as a sticky option. 2947 */ 2948 if (opt->ip6po_pktinfo == NULL) { 2949 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2950 M_IP6OPT, M_NOWAIT); 2951 if (opt->ip6po_pktinfo == NULL) 2952 return (ENOBUFS); 2953 } 2954 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2955 break; 2956 } 2957 2958 case IPV6_2292HOPLIMIT: 2959 case IPV6_HOPLIMIT: 2960 { 2961 int *hlimp; 2962 2963 /* 2964 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2965 * to simplify the ordering among hoplimit options. 2966 */ 2967 if (optname == IPV6_HOPLIMIT && sticky) 2968 return (ENOPROTOOPT); 2969 2970 if (len != sizeof(int)) 2971 return (EINVAL); 2972 hlimp = (int *)buf; 2973 if (*hlimp < -1 || *hlimp > 255) 2974 return (EINVAL); 2975 2976 opt->ip6po_hlim = *hlimp; 2977 break; 2978 } 2979 2980 case IPV6_TCLASS: 2981 { 2982 int tclass; 2983 2984 if (len != sizeof(int)) 2985 return (EINVAL); 2986 tclass = *(int *)buf; 2987 if (tclass < -1 || tclass > 255) 2988 return (EINVAL); 2989 2990 opt->ip6po_tclass = tclass; 2991 break; 2992 } 2993 2994 case IPV6_2292NEXTHOP: 2995 case IPV6_NEXTHOP: 2996 if (cred != NULL) { 2997 error = priv_check_cred(cred, 2998 PRIV_NETINET_SETHDROPTS, 0); 2999 if (error) 3000 return (error); 3001 } 3002 3003 if (len == 0) { /* just remove the option */ 3004 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3005 break; 3006 } 3007 3008 /* check if cmsg_len is large enough for sa_len */ 3009 if (len < sizeof(struct sockaddr) || len < *buf) 3010 return (EINVAL); 3011 3012 switch (((struct sockaddr *)buf)->sa_family) { 3013 case AF_INET6: 3014 { 3015 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3016 int error; 3017 3018 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3019 return (EINVAL); 3020 3021 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3022 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3023 return (EINVAL); 3024 } 3025 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 3026 != 0) { 3027 return (error); 3028 } 3029 break; 3030 } 3031 case AF_LINK: /* should eventually be supported */ 3032 default: 3033 return (EAFNOSUPPORT); 3034 } 3035 3036 /* turn off the previous option, then set the new option. */ 3037 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3038 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3039 if (opt->ip6po_nexthop == NULL) 3040 return (ENOBUFS); 3041 bcopy(buf, opt->ip6po_nexthop, *buf); 3042 break; 3043 3044 case IPV6_2292HOPOPTS: 3045 case IPV6_HOPOPTS: 3046 { 3047 struct ip6_hbh *hbh; 3048 int hbhlen; 3049 3050 /* 3051 * XXX: We don't allow a non-privileged user to set ANY HbH 3052 * options, since per-option restriction has too much 3053 * overhead. 3054 */ 3055 if (cred != NULL) { 3056 error = priv_check_cred(cred, 3057 PRIV_NETINET_SETHDROPTS, 0); 3058 if (error) 3059 return (error); 3060 } 3061 3062 if (len == 0) { 3063 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3064 break; /* just remove the option */ 3065 } 3066 3067 /* message length validation */ 3068 if (len < sizeof(struct ip6_hbh)) 3069 return (EINVAL); 3070 hbh = (struct ip6_hbh *)buf; 3071 hbhlen = (hbh->ip6h_len + 1) << 3; 3072 if (len != hbhlen) 3073 return (EINVAL); 3074 3075 /* turn off the previous option, then set the new option. */ 3076 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3077 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3078 if (opt->ip6po_hbh == NULL) 3079 return (ENOBUFS); 3080 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3081 3082 break; 3083 } 3084 3085 case IPV6_2292DSTOPTS: 3086 case IPV6_DSTOPTS: 3087 case IPV6_RTHDRDSTOPTS: 3088 { 3089 struct ip6_dest *dest, **newdest = NULL; 3090 int destlen; 3091 3092 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 3093 error = priv_check_cred(cred, 3094 PRIV_NETINET_SETHDROPTS, 0); 3095 if (error) 3096 return (error); 3097 } 3098 3099 if (len == 0) { 3100 ip6_clearpktopts(opt, optname); 3101 break; /* just remove the option */ 3102 } 3103 3104 /* message length validation */ 3105 if (len < sizeof(struct ip6_dest)) 3106 return (EINVAL); 3107 dest = (struct ip6_dest *)buf; 3108 destlen = (dest->ip6d_len + 1) << 3; 3109 if (len != destlen) 3110 return (EINVAL); 3111 3112 /* 3113 * Determine the position that the destination options header 3114 * should be inserted; before or after the routing header. 3115 */ 3116 switch (optname) { 3117 case IPV6_2292DSTOPTS: 3118 /* 3119 * The old advacned API is ambiguous on this point. 3120 * Our approach is to determine the position based 3121 * according to the existence of a routing header. 3122 * Note, however, that this depends on the order of the 3123 * extension headers in the ancillary data; the 1st 3124 * part of the destination options header must appear 3125 * before the routing header in the ancillary data, 3126 * too. 3127 * RFC3542 solved the ambiguity by introducing 3128 * separate ancillary data or option types. 3129 */ 3130 if (opt->ip6po_rthdr == NULL) 3131 newdest = &opt->ip6po_dest1; 3132 else 3133 newdest = &opt->ip6po_dest2; 3134 break; 3135 case IPV6_RTHDRDSTOPTS: 3136 newdest = &opt->ip6po_dest1; 3137 break; 3138 case IPV6_DSTOPTS: 3139 newdest = &opt->ip6po_dest2; 3140 break; 3141 } 3142 3143 /* turn off the previous option, then set the new option. */ 3144 ip6_clearpktopts(opt, optname); 3145 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3146 if (*newdest == NULL) 3147 return (ENOBUFS); 3148 bcopy(dest, *newdest, destlen); 3149 3150 break; 3151 } 3152 3153 case IPV6_2292RTHDR: 3154 case IPV6_RTHDR: 3155 { 3156 struct ip6_rthdr *rth; 3157 int rthlen; 3158 3159 if (len == 0) { 3160 ip6_clearpktopts(opt, IPV6_RTHDR); 3161 break; /* just remove the option */ 3162 } 3163 3164 /* message length validation */ 3165 if (len < sizeof(struct ip6_rthdr)) 3166 return (EINVAL); 3167 rth = (struct ip6_rthdr *)buf; 3168 rthlen = (rth->ip6r_len + 1) << 3; 3169 if (len != rthlen) 3170 return (EINVAL); 3171 3172 switch (rth->ip6r_type) { 3173 case IPV6_RTHDR_TYPE_0: 3174 if (rth->ip6r_len == 0) /* must contain one addr */ 3175 return (EINVAL); 3176 if (rth->ip6r_len % 2) /* length must be even */ 3177 return (EINVAL); 3178 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3179 return (EINVAL); 3180 break; 3181 default: 3182 return (EINVAL); /* not supported */ 3183 } 3184 3185 /* turn off the previous option */ 3186 ip6_clearpktopts(opt, IPV6_RTHDR); 3187 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3188 if (opt->ip6po_rthdr == NULL) 3189 return (ENOBUFS); 3190 bcopy(rth, opt->ip6po_rthdr, rthlen); 3191 3192 break; 3193 } 3194 3195 case IPV6_USE_MIN_MTU: 3196 if (len != sizeof(int)) 3197 return (EINVAL); 3198 minmtupolicy = *(int *)buf; 3199 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3200 minmtupolicy != IP6PO_MINMTU_DISABLE && 3201 minmtupolicy != IP6PO_MINMTU_ALL) { 3202 return (EINVAL); 3203 } 3204 opt->ip6po_minmtu = minmtupolicy; 3205 break; 3206 3207 case IPV6_DONTFRAG: 3208 if (len != sizeof(int)) 3209 return (EINVAL); 3210 3211 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3212 /* 3213 * we ignore this option for TCP sockets. 3214 * (RFC3542 leaves this case unspecified.) 3215 */ 3216 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3217 } else 3218 opt->ip6po_flags |= IP6PO_DONTFRAG; 3219 break; 3220 3221 case IPV6_PREFER_TEMPADDR: 3222 if (len != sizeof(int)) 3223 return (EINVAL); 3224 preftemp = *(int *)buf; 3225 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3226 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3227 preftemp != IP6PO_TEMPADDR_PREFER) { 3228 return (EINVAL); 3229 } 3230 opt->ip6po_prefer_tempaddr = preftemp; 3231 break; 3232 3233 default: 3234 return (ENOPROTOOPT); 3235 } /* end of switch */ 3236 3237 return (0); 3238 } 3239 3240 /* 3241 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3242 * packet to the input queue of a specified interface. Note that this 3243 * calls the output routine of the loopback "driver", but with an interface 3244 * pointer that might NOT be &loif -- easier than replicating that code here. 3245 */ 3246 void 3247 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 3248 { 3249 struct mbuf *copym; 3250 struct ip6_hdr *ip6; 3251 3252 copym = m_copy(m, 0, M_COPYALL); 3253 if (copym == NULL) 3254 return; 3255 3256 /* 3257 * Make sure to deep-copy IPv6 header portion in case the data 3258 * is in an mbuf cluster, so that we can safely override the IPv6 3259 * header portion later. 3260 */ 3261 if ((copym->m_flags & M_EXT) != 0 || 3262 copym->m_len < sizeof(struct ip6_hdr)) { 3263 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3264 if (copym == NULL) 3265 return; 3266 } 3267 3268 #ifdef DIAGNOSTIC 3269 if (copym->m_len < sizeof(*ip6)) { 3270 m_freem(copym); 3271 return; 3272 } 3273 #endif 3274 3275 ip6 = mtod(copym, struct ip6_hdr *); 3276 /* 3277 * clear embedded scope identifiers if necessary. 3278 * in6_clearscope will touch the addresses only when necessary. 3279 */ 3280 in6_clearscope(&ip6->ip6_src); 3281 in6_clearscope(&ip6->ip6_dst); 3282 3283 (void)if_simloop(ifp, copym, dst->sin6_family, 0); 3284 } 3285 3286 /* 3287 * Chop IPv6 header off from the payload. 3288 */ 3289 static int 3290 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3291 { 3292 struct mbuf *mh; 3293 struct ip6_hdr *ip6; 3294 3295 ip6 = mtod(m, struct ip6_hdr *); 3296 if (m->m_len > sizeof(*ip6)) { 3297 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3298 if (mh == 0) { 3299 m_freem(m); 3300 return ENOBUFS; 3301 } 3302 M_MOVE_PKTHDR(mh, m); 3303 MH_ALIGN(mh, sizeof(*ip6)); 3304 m->m_len -= sizeof(*ip6); 3305 m->m_data += sizeof(*ip6); 3306 mh->m_next = m; 3307 m = mh; 3308 m->m_len = sizeof(*ip6); 3309 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3310 } 3311 exthdrs->ip6e_ip6 = m; 3312 return 0; 3313 } 3314 3315 /* 3316 * Compute IPv6 extension header length. 3317 */ 3318 int 3319 ip6_optlen(struct in6pcb *in6p) 3320 { 3321 int len; 3322 3323 if (!in6p->in6p_outputopts) 3324 return 0; 3325 3326 len = 0; 3327 #define elen(x) \ 3328 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3329 3330 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3331 if (in6p->in6p_outputopts->ip6po_rthdr) 3332 /* dest1 is valid with rthdr only */ 3333 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3334 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3335 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3336 return len; 3337 #undef elen 3338 } 3339