1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ipsec.h" 69 #include "opt_sctp.h" 70 #include "opt_route.h" 71 #include "opt_rss.h" 72 73 #include <sys/param.h> 74 #include <sys/kernel.h> 75 #include <sys/malloc.h> 76 #include <sys/mbuf.h> 77 #include <sys/errno.h> 78 #include <sys/priv.h> 79 #include <sys/proc.h> 80 #include <sys/protosw.h> 81 #include <sys/socket.h> 82 #include <sys/socketvar.h> 83 #include <sys/syslog.h> 84 #include <sys/ucred.h> 85 86 #include <machine/in_cksum.h> 87 88 #include <net/if.h> 89 #include <net/if_var.h> 90 #include <net/if_llatbl.h> 91 #include <net/netisr.h> 92 #include <net/route.h> 93 #include <net/pfil.h> 94 #include <net/rss_config.h> 95 #include <net/vnet.h> 96 97 #include <netinet/in.h> 98 #include <netinet/in_var.h> 99 #include <netinet/ip_var.h> 100 #include <netinet6/in6_fib.h> 101 #include <netinet6/in6_var.h> 102 #include <netinet/ip6.h> 103 #include <netinet/icmp6.h> 104 #include <netinet6/ip6_var.h> 105 #include <netinet/in_pcb.h> 106 #include <netinet/tcp_var.h> 107 #include <netinet6/nd6.h> 108 #include <netinet6/in6_rss.h> 109 110 #ifdef IPSEC 111 #include <netipsec/ipsec.h> 112 #include <netipsec/ipsec6.h> 113 #include <netipsec/key.h> 114 #include <netinet6/ip6_ipsec.h> 115 #endif /* IPSEC */ 116 #ifdef SCTP 117 #include <netinet/sctp.h> 118 #include <netinet/sctp_crc32.h> 119 #endif 120 121 #include <netinet6/ip6protosw.h> 122 #include <netinet6/scope6_var.h> 123 124 #ifdef FLOWTABLE 125 #include <net/flowtable.h> 126 #endif 127 128 extern int in6_mcast_loop; 129 130 struct ip6_exthdrs { 131 struct mbuf *ip6e_ip6; 132 struct mbuf *ip6e_hbh; 133 struct mbuf *ip6e_dest1; 134 struct mbuf *ip6e_rthdr; 135 struct mbuf *ip6e_dest2; 136 }; 137 138 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 139 140 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 141 struct ucred *, int); 142 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 143 struct socket *, struct sockopt *); 144 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 145 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 146 struct ucred *, int, int, int); 147 148 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 149 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 150 struct ip6_frag **); 151 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 152 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 153 static int ip6_getpmtu(struct route_in6 *, int, 154 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 155 u_int); 156 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 157 u_long *, int *, u_int); 158 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 159 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 160 161 162 /* 163 * Make an extension header from option data. hp is the source, and 164 * mp is the destination. 165 */ 166 #define MAKE_EXTHDR(hp, mp) \ 167 do { \ 168 if (hp) { \ 169 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 170 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 171 ((eh)->ip6e_len + 1) << 3); \ 172 if (error) \ 173 goto freehdrs; \ 174 } \ 175 } while (/*CONSTCOND*/ 0) 176 177 /* 178 * Form a chain of extension headers. 179 * m is the extension header mbuf 180 * mp is the previous mbuf in the chain 181 * p is the next header 182 * i is the type of option. 183 */ 184 #define MAKE_CHAIN(m, mp, p, i)\ 185 do {\ 186 if (m) {\ 187 if (!hdrsplit) \ 188 panic("assumption failed: hdr not split"); \ 189 *mtod((m), u_char *) = *(p);\ 190 *(p) = (i);\ 191 p = mtod((m), u_char *);\ 192 (m)->m_next = (mp)->m_next;\ 193 (mp)->m_next = (m);\ 194 (mp) = (m);\ 195 }\ 196 } while (/*CONSTCOND*/ 0) 197 198 void 199 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 200 { 201 u_short csum; 202 203 csum = in_cksum_skip(m, offset + plen, offset); 204 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 205 csum = 0xffff; 206 offset += m->m_pkthdr.csum_data; /* checksum offset */ 207 208 if (offset + sizeof(u_short) > m->m_len) { 209 printf("%s: delayed m_pullup, m->len: %d plen %u off %u " 210 "csum_flags=%b\n", __func__, m->m_len, plen, offset, 211 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 212 /* 213 * XXX this should not happen, but if it does, the correct 214 * behavior may be to insert the checksum in the appropriate 215 * next mbuf in the chain. 216 */ 217 return; 218 } 219 *(u_short *)(m->m_data + offset) = csum; 220 } 221 222 int 223 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 224 int mtu, uint32_t id) 225 { 226 struct mbuf *m, **mnext, *m_frgpart; 227 struct ip6_hdr *ip6, *mhip6; 228 struct ip6_frag *ip6f; 229 int off; 230 int error; 231 int tlen = m0->m_pkthdr.len; 232 233 m = m0; 234 ip6 = mtod(m, struct ip6_hdr *); 235 mnext = &m->m_nextpkt; 236 237 for (off = hlen; off < tlen; off += mtu) { 238 m = m_gethdr(M_NOWAIT, MT_DATA); 239 if (!m) { 240 IP6STAT_INC(ip6s_odropped); 241 return (ENOBUFS); 242 } 243 m->m_flags = m0->m_flags & M_COPYFLAGS; 244 *mnext = m; 245 mnext = &m->m_nextpkt; 246 m->m_data += max_linkhdr; 247 mhip6 = mtod(m, struct ip6_hdr *); 248 *mhip6 = *ip6; 249 m->m_len = sizeof(*mhip6); 250 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 251 if (error) { 252 IP6STAT_INC(ip6s_odropped); 253 return (error); 254 } 255 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 256 if (off + mtu >= tlen) 257 mtu = tlen - off; 258 else 259 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 260 mhip6->ip6_plen = htons((u_short)(mtu + hlen + 261 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 262 if ((m_frgpart = m_copym(m0, off, mtu, M_NOWAIT)) == NULL) { 263 IP6STAT_INC(ip6s_odropped); 264 return (ENOBUFS); 265 } 266 m_cat(m, m_frgpart); 267 m->m_pkthdr.len = mtu + hlen + sizeof(*ip6f); 268 m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; 269 m->m_pkthdr.rcvif = NULL; 270 ip6f->ip6f_reserved = 0; 271 ip6f->ip6f_ident = id; 272 ip6f->ip6f_nxt = nextproto; 273 IP6STAT_INC(ip6s_ofragments); 274 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 275 } 276 277 return (0); 278 } 279 280 /* 281 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 282 * header (with pri, len, nxt, hlim, src, dst). 283 * This function may modify ver and hlim only. 284 * The mbuf chain containing the packet will be freed. 285 * The mbuf opt, if present, will not be freed. 286 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 287 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 288 * then result of route lookup is stored in ro->ro_rt. 289 * 290 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 291 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 292 * which is rt_mtu. 293 * 294 * ifpp - XXX: just for statistics 295 */ 296 /* 297 * XXX TODO: no flowid is assigned for outbound flows? 298 */ 299 int 300 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 301 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 302 struct ifnet **ifpp, struct inpcb *inp) 303 { 304 struct ip6_hdr *ip6; 305 struct ifnet *ifp, *origifp; 306 struct mbuf *m = m0; 307 struct mbuf *mprev = NULL; 308 int hlen, tlen, len; 309 struct route_in6 ip6route; 310 struct rtentry *rt = NULL; 311 struct sockaddr_in6 *dst, src_sa, dst_sa; 312 struct in6_addr odst; 313 int error = 0; 314 struct in6_ifaddr *ia = NULL; 315 u_long mtu; 316 int alwaysfrag, dontfrag; 317 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 318 struct ip6_exthdrs exthdrs; 319 struct in6_addr src0, dst0; 320 u_int32_t zone; 321 struct route_in6 *ro_pmtu = NULL; 322 int hdrsplit = 0; 323 int sw_csum, tso; 324 int needfiblookup; 325 uint32_t fibnum; 326 struct m_tag *fwd_tag = NULL; 327 uint32_t id; 328 329 if (inp != NULL) { 330 M_SETFIB(m, inp->inp_inc.inc_fibnum); 331 if ((flags & IP_NODEFAULTFLOWID) == 0) { 332 /* unconditionally set flowid */ 333 m->m_pkthdr.flowid = inp->inp_flowid; 334 M_HASHTYPE_SET(m, inp->inp_flowtype); 335 } 336 } 337 338 bzero(&exthdrs, sizeof(exthdrs)); 339 if (opt) { 340 /* Hop-by-Hop options header */ 341 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 342 /* Destination options header(1st part) */ 343 if (opt->ip6po_rthdr) { 344 /* 345 * Destination options header(1st part) 346 * This only makes sense with a routing header. 347 * See Section 9.2 of RFC 3542. 348 * Disabling this part just for MIP6 convenience is 349 * a bad idea. We need to think carefully about a 350 * way to make the advanced API coexist with MIP6 351 * options, which might automatically be inserted in 352 * the kernel. 353 */ 354 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 355 } 356 /* Routing header */ 357 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 358 /* Destination options header(2nd part) */ 359 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 360 } 361 362 #ifdef IPSEC 363 /* 364 * IPSec checking which handles several cases. 365 * FAST IPSEC: We re-injected the packet. 366 * XXX: need scope argument. 367 */ 368 switch(ip6_ipsec_output(&m, inp, &error)) 369 { 370 case 1: /* Bad packet */ 371 goto freehdrs; 372 case -1: /* IPSec done */ 373 goto done; 374 case 0: /* No IPSec */ 375 default: 376 break; 377 } 378 #endif /* IPSEC */ 379 380 /* 381 * Calculate the total length of the extension header chain. 382 * Keep the length of the unfragmentable part for fragmentation. 383 */ 384 optlen = 0; 385 if (exthdrs.ip6e_hbh) 386 optlen += exthdrs.ip6e_hbh->m_len; 387 if (exthdrs.ip6e_dest1) 388 optlen += exthdrs.ip6e_dest1->m_len; 389 if (exthdrs.ip6e_rthdr) 390 optlen += exthdrs.ip6e_rthdr->m_len; 391 unfragpartlen = optlen + sizeof(struct ip6_hdr); 392 393 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 394 if (exthdrs.ip6e_dest2) 395 optlen += exthdrs.ip6e_dest2->m_len; 396 397 /* 398 * If there is at least one extension header, 399 * separate IP6 header from the payload. 400 */ 401 if (optlen && !hdrsplit) { 402 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 403 m = NULL; 404 goto freehdrs; 405 } 406 m = exthdrs.ip6e_ip6; 407 hdrsplit++; 408 } 409 410 ip6 = mtod(m, struct ip6_hdr *); 411 412 /* adjust mbuf packet header length */ 413 m->m_pkthdr.len += optlen; 414 plen = m->m_pkthdr.len - sizeof(*ip6); 415 416 /* If this is a jumbo payload, insert a jumbo payload option. */ 417 if (plen > IPV6_MAXPACKET) { 418 if (!hdrsplit) { 419 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 420 m = NULL; 421 goto freehdrs; 422 } 423 m = exthdrs.ip6e_ip6; 424 hdrsplit++; 425 } 426 /* adjust pointer */ 427 ip6 = mtod(m, struct ip6_hdr *); 428 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 429 goto freehdrs; 430 ip6->ip6_plen = 0; 431 } else 432 ip6->ip6_plen = htons(plen); 433 434 /* 435 * Concatenate headers and fill in next header fields. 436 * Here we have, on "m" 437 * IPv6 payload 438 * and we insert headers accordingly. Finally, we should be getting: 439 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 440 * 441 * during the header composing process, "m" points to IPv6 header. 442 * "mprev" points to an extension header prior to esp. 443 */ 444 u_char *nexthdrp = &ip6->ip6_nxt; 445 mprev = m; 446 447 /* 448 * we treat dest2 specially. this makes IPsec processing 449 * much easier. the goal here is to make mprev point the 450 * mbuf prior to dest2. 451 * 452 * result: IPv6 dest2 payload 453 * m and mprev will point to IPv6 header. 454 */ 455 if (exthdrs.ip6e_dest2) { 456 if (!hdrsplit) 457 panic("assumption failed: hdr not split"); 458 exthdrs.ip6e_dest2->m_next = m->m_next; 459 m->m_next = exthdrs.ip6e_dest2; 460 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 461 ip6->ip6_nxt = IPPROTO_DSTOPTS; 462 } 463 464 /* 465 * result: IPv6 hbh dest1 rthdr dest2 payload 466 * m will point to IPv6 header. mprev will point to the 467 * extension header prior to dest2 (rthdr in the above case). 468 */ 469 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 470 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 471 IPPROTO_DSTOPTS); 472 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 473 IPPROTO_ROUTING); 474 475 /* 476 * If there is a routing header, discard the packet. 477 */ 478 if (exthdrs.ip6e_rthdr) { 479 error = EINVAL; 480 goto bad; 481 } 482 483 /* Source address validation */ 484 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 485 (flags & IPV6_UNSPECSRC) == 0) { 486 error = EOPNOTSUPP; 487 IP6STAT_INC(ip6s_badscope); 488 goto bad; 489 } 490 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 491 error = EOPNOTSUPP; 492 IP6STAT_INC(ip6s_badscope); 493 goto bad; 494 } 495 496 IP6STAT_INC(ip6s_localout); 497 498 /* 499 * Route packet. 500 */ 501 if (ro == NULL) { 502 ro = &ip6route; 503 bzero((caddr_t)ro, sizeof(*ro)); 504 } else 505 ro->ro_flags |= RT_LLE_CACHE; 506 ro_pmtu = ro; 507 if (opt && opt->ip6po_rthdr) 508 ro = &opt->ip6po_route; 509 dst = (struct sockaddr_in6 *)&ro->ro_dst; 510 #ifdef FLOWTABLE 511 if (ro->ro_rt == NULL) 512 (void )flowtable_lookup(AF_INET6, m, (struct route *)ro); 513 #endif 514 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 515 again: 516 /* 517 * if specified, try to fill in the traffic class field. 518 * do not override if a non-zero value is already set. 519 * we check the diffserv field and the ecn field separately. 520 */ 521 if (opt && opt->ip6po_tclass >= 0) { 522 int mask = 0; 523 524 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 525 mask |= 0xfc; 526 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 527 mask |= 0x03; 528 if (mask != 0) 529 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 530 } 531 532 /* fill in or override the hop limit field, if necessary. */ 533 if (opt && opt->ip6po_hlim != -1) 534 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 535 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 536 if (im6o != NULL) 537 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 538 else 539 ip6->ip6_hlim = V_ip6_defmcasthlim; 540 } 541 /* 542 * Validate route against routing table additions; 543 * a better/more specific route might have been added. 544 * Make sure address family is set in route. 545 */ 546 if (inp) { 547 ro->ro_dst.sin6_family = AF_INET6; 548 RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, fibnum); 549 } 550 if (ro->ro_rt && fwd_tag == NULL && (ro->ro_rt->rt_flags & RTF_UP) && 551 ro->ro_dst.sin6_family == AF_INET6 && 552 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 553 rt = ro->ro_rt; 554 ifp = ro->ro_rt->rt_ifp; 555 } else { 556 if (ro->ro_lle) 557 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 558 ro->ro_lle = NULL; 559 if (fwd_tag == NULL) { 560 bzero(&dst_sa, sizeof(dst_sa)); 561 dst_sa.sin6_family = AF_INET6; 562 dst_sa.sin6_len = sizeof(dst_sa); 563 dst_sa.sin6_addr = ip6->ip6_dst; 564 } 565 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 566 &rt, fibnum); 567 if (error != 0) { 568 if (ifp != NULL) 569 in6_ifstat_inc(ifp, ifs6_out_discard); 570 goto bad; 571 } 572 } 573 if (rt == NULL) { 574 /* 575 * If in6_selectroute() does not return a route entry, 576 * dst may not have been updated. 577 */ 578 *dst = dst_sa; /* XXX */ 579 } 580 581 /* 582 * then rt (for unicast) and ifp must be non-NULL valid values. 583 */ 584 if ((flags & IPV6_FORWARDING) == 0) { 585 /* XXX: the FORWARDING flag can be set for mrouting. */ 586 in6_ifstat_inc(ifp, ifs6_out_request); 587 } 588 if (rt != NULL) { 589 ia = (struct in6_ifaddr *)(rt->rt_ifa); 590 counter_u64_add(rt->rt_pksent, 1); 591 } 592 593 594 /* 595 * The outgoing interface must be in the zone of source and 596 * destination addresses. 597 */ 598 origifp = ifp; 599 600 src0 = ip6->ip6_src; 601 if (in6_setscope(&src0, origifp, &zone)) 602 goto badscope; 603 bzero(&src_sa, sizeof(src_sa)); 604 src_sa.sin6_family = AF_INET6; 605 src_sa.sin6_len = sizeof(src_sa); 606 src_sa.sin6_addr = ip6->ip6_src; 607 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 608 goto badscope; 609 610 dst0 = ip6->ip6_dst; 611 if (in6_setscope(&dst0, origifp, &zone)) 612 goto badscope; 613 /* re-initialize to be sure */ 614 bzero(&dst_sa, sizeof(dst_sa)); 615 dst_sa.sin6_family = AF_INET6; 616 dst_sa.sin6_len = sizeof(dst_sa); 617 dst_sa.sin6_addr = ip6->ip6_dst; 618 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 619 goto badscope; 620 } 621 622 /* We should use ia_ifp to support the case of 623 * sending packets to an address of our own. 624 */ 625 if (ia != NULL && ia->ia_ifp) 626 ifp = ia->ia_ifp; 627 628 /* scope check is done. */ 629 goto routefound; 630 631 badscope: 632 IP6STAT_INC(ip6s_badscope); 633 in6_ifstat_inc(origifp, ifs6_out_discard); 634 if (error == 0) 635 error = EHOSTUNREACH; /* XXX */ 636 goto bad; 637 638 routefound: 639 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 640 if (opt && opt->ip6po_nextroute.ro_rt) { 641 /* 642 * The nexthop is explicitly specified by the 643 * application. We assume the next hop is an IPv6 644 * address. 645 */ 646 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 647 } 648 else if ((rt->rt_flags & RTF_GATEWAY)) 649 dst = (struct sockaddr_in6 *)rt->rt_gateway; 650 } 651 652 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 653 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 654 } else { 655 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 656 in6_ifstat_inc(ifp, ifs6_out_mcast); 657 /* 658 * Confirm that the outgoing interface supports multicast. 659 */ 660 if (!(ifp->if_flags & IFF_MULTICAST)) { 661 IP6STAT_INC(ip6s_noroute); 662 in6_ifstat_inc(ifp, ifs6_out_discard); 663 error = ENETUNREACH; 664 goto bad; 665 } 666 if ((im6o == NULL && in6_mcast_loop) || 667 (im6o && im6o->im6o_multicast_loop)) { 668 /* 669 * Loop back multicast datagram if not expressly 670 * forbidden to do so, even if we have not joined 671 * the address; protocols will filter it later, 672 * thus deferring a hash lookup and lock acquisition 673 * at the expense of an m_copym(). 674 */ 675 ip6_mloopback(ifp, m); 676 } else { 677 /* 678 * If we are acting as a multicast router, perform 679 * multicast forwarding as if the packet had just 680 * arrived on the interface to which we are about 681 * to send. The multicast forwarding function 682 * recursively calls this function, using the 683 * IPV6_FORWARDING flag to prevent infinite recursion. 684 * 685 * Multicasts that are looped back by ip6_mloopback(), 686 * above, will be forwarded by the ip6_input() routine, 687 * if necessary. 688 */ 689 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 690 /* 691 * XXX: ip6_mforward expects that rcvif is NULL 692 * when it is called from the originating path. 693 * However, it may not always be the case. 694 */ 695 m->m_pkthdr.rcvif = NULL; 696 if (ip6_mforward(ip6, ifp, m) != 0) { 697 m_freem(m); 698 goto done; 699 } 700 } 701 } 702 /* 703 * Multicasts with a hoplimit of zero may be looped back, 704 * above, but must not be transmitted on a network. 705 * Also, multicasts addressed to the loopback interface 706 * are not sent -- the above call to ip6_mloopback() will 707 * loop back a copy if this host actually belongs to the 708 * destination group on the loopback interface. 709 */ 710 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 711 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 712 m_freem(m); 713 goto done; 714 } 715 } 716 717 /* 718 * Fill the outgoing inteface to tell the upper layer 719 * to increment per-interface statistics. 720 */ 721 if (ifpp) 722 *ifpp = ifp; 723 724 /* Determine path MTU. */ 725 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 726 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 727 goto bad; 728 729 /* 730 * The caller of this function may specify to use the minimum MTU 731 * in some cases. 732 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 733 * setting. The logic is a bit complicated; by default, unicast 734 * packets will follow path MTU while multicast packets will be sent at 735 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 736 * including unicast ones will be sent at the minimum MTU. Multicast 737 * packets will always be sent at the minimum MTU unless 738 * IP6PO_MINMTU_DISABLE is explicitly specified. 739 * See RFC 3542 for more details. 740 */ 741 if (mtu > IPV6_MMTU) { 742 if ((flags & IPV6_MINMTU)) 743 mtu = IPV6_MMTU; 744 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 745 mtu = IPV6_MMTU; 746 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 747 (opt == NULL || 748 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 749 mtu = IPV6_MMTU; 750 } 751 } 752 753 /* 754 * clear embedded scope identifiers if necessary. 755 * in6_clearscope will touch the addresses only when necessary. 756 */ 757 in6_clearscope(&ip6->ip6_src); 758 in6_clearscope(&ip6->ip6_dst); 759 760 /* 761 * If the outgoing packet contains a hop-by-hop options header, 762 * it must be examined and processed even by the source node. 763 * (RFC 2460, section 4.) 764 */ 765 if (exthdrs.ip6e_hbh) { 766 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 767 u_int32_t dummy; /* XXX unused */ 768 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 769 770 #ifdef DIAGNOSTIC 771 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 772 panic("ip6e_hbh is not contiguous"); 773 #endif 774 /* 775 * XXX: if we have to send an ICMPv6 error to the sender, 776 * we need the M_LOOP flag since icmp6_error() expects 777 * the IPv6 and the hop-by-hop options header are 778 * contiguous unless the flag is set. 779 */ 780 m->m_flags |= M_LOOP; 781 m->m_pkthdr.rcvif = ifp; 782 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 783 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 784 &dummy, &plen) < 0) { 785 /* m was already freed at this point */ 786 error = EINVAL;/* better error? */ 787 goto done; 788 } 789 m->m_flags &= ~M_LOOP; /* XXX */ 790 m->m_pkthdr.rcvif = NULL; 791 } 792 793 /* Jump over all PFIL processing if hooks are not active. */ 794 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 795 goto passout; 796 797 odst = ip6->ip6_dst; 798 /* Run through list of hooks for output packets. */ 799 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 800 if (error != 0 || m == NULL) 801 goto done; 802 /* adjust pointer */ 803 ip6 = mtod(m, struct ip6_hdr *); 804 805 needfiblookup = 0; 806 /* See if destination IP address was changed by packet filter. */ 807 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 808 m->m_flags |= M_SKIP_FIREWALL; 809 /* If destination is now ourself drop to ip6_input(). */ 810 if (in6_localip(&ip6->ip6_dst)) { 811 m->m_flags |= M_FASTFWD_OURS; 812 if (m->m_pkthdr.rcvif == NULL) 813 m->m_pkthdr.rcvif = V_loif; 814 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 815 m->m_pkthdr.csum_flags |= 816 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 817 m->m_pkthdr.csum_data = 0xffff; 818 } 819 #ifdef SCTP 820 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 821 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 822 #endif 823 error = netisr_queue(NETISR_IPV6, m); 824 goto done; 825 } else { 826 RO_RTFREE(ro); 827 needfiblookup = 1; /* Redo the routing table lookup. */ 828 if (ro->ro_lle) 829 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 830 ro->ro_lle = NULL; 831 } 832 } 833 /* See if fib was changed by packet filter. */ 834 if (fibnum != M_GETFIB(m)) { 835 m->m_flags |= M_SKIP_FIREWALL; 836 fibnum = M_GETFIB(m); 837 RO_RTFREE(ro); 838 needfiblookup = 1; 839 if (ro->ro_lle) 840 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 841 ro->ro_lle = NULL; 842 } 843 if (needfiblookup) 844 goto again; 845 846 /* See if local, if yes, send it to netisr. */ 847 if (m->m_flags & M_FASTFWD_OURS) { 848 if (m->m_pkthdr.rcvif == NULL) 849 m->m_pkthdr.rcvif = V_loif; 850 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 851 m->m_pkthdr.csum_flags |= 852 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 853 m->m_pkthdr.csum_data = 0xffff; 854 } 855 #ifdef SCTP 856 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 857 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 858 #endif 859 error = netisr_queue(NETISR_IPV6, m); 860 goto done; 861 } 862 /* Or forward to some other address? */ 863 if ((m->m_flags & M_IP6_NEXTHOP) && 864 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 865 dst = (struct sockaddr_in6 *)&ro->ro_dst; 866 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 867 m->m_flags |= M_SKIP_FIREWALL; 868 m->m_flags &= ~M_IP6_NEXTHOP; 869 m_tag_delete(m, fwd_tag); 870 goto again; 871 } 872 873 passout: 874 /* 875 * Send the packet to the outgoing interface. 876 * If necessary, do IPv6 fragmentation before sending. 877 * 878 * the logic here is rather complex: 879 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 880 * 1-a: send as is if tlen <= path mtu 881 * 1-b: fragment if tlen > path mtu 882 * 883 * 2: if user asks us not to fragment (dontfrag == 1) 884 * 2-a: send as is if tlen <= interface mtu 885 * 2-b: error if tlen > interface mtu 886 * 887 * 3: if we always need to attach fragment header (alwaysfrag == 1) 888 * always fragment 889 * 890 * 4: if dontfrag == 1 && alwaysfrag == 1 891 * error, as we cannot handle this conflicting request 892 */ 893 sw_csum = m->m_pkthdr.csum_flags; 894 if (!hdrsplit) { 895 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 896 sw_csum &= ~ifp->if_hwassist; 897 } else 898 tso = 0; 899 /* 900 * If we added extension headers, we will not do TSO and calculate the 901 * checksums ourselves for now. 902 * XXX-BZ Need a framework to know when the NIC can handle it, even 903 * with ext. hdrs. 904 */ 905 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 906 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 907 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 908 } 909 #ifdef SCTP 910 if (sw_csum & CSUM_SCTP_IPV6) { 911 sw_csum &= ~CSUM_SCTP_IPV6; 912 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 913 } 914 #endif 915 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 916 tlen = m->m_pkthdr.len; 917 918 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 919 dontfrag = 1; 920 else 921 dontfrag = 0; 922 if (dontfrag && alwaysfrag) { /* case 4 */ 923 /* conflicting request - can't transmit */ 924 error = EMSGSIZE; 925 goto bad; 926 } 927 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 928 /* 929 * Even if the DONTFRAG option is specified, we cannot send the 930 * packet when the data length is larger than the MTU of the 931 * outgoing interface. 932 * Notify the error by sending IPV6_PATHMTU ancillary data if 933 * application wanted to know the MTU value. Also return an 934 * error code (this is not described in the API spec). 935 */ 936 if (inp != NULL) 937 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 938 error = EMSGSIZE; 939 goto bad; 940 } 941 942 /* 943 * transmit packet without fragmentation 944 */ 945 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 946 struct in6_ifaddr *ia6; 947 948 ip6 = mtod(m, struct ip6_hdr *); 949 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 950 if (ia6) { 951 /* Record statistics for this interface address. */ 952 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 953 counter_u64_add(ia6->ia_ifa.ifa_obytes, 954 m->m_pkthdr.len); 955 ifa_free(&ia6->ia_ifa); 956 } 957 error = nd6_output_ifp(ifp, origifp, m, dst, 958 (struct route *)ro); 959 goto done; 960 } 961 962 /* 963 * try to fragment the packet. case 1-b and 3 964 */ 965 if (mtu < IPV6_MMTU) { 966 /* path MTU cannot be less than IPV6_MMTU */ 967 error = EMSGSIZE; 968 in6_ifstat_inc(ifp, ifs6_out_fragfail); 969 goto bad; 970 } else if (ip6->ip6_plen == 0) { 971 /* jumbo payload cannot be fragmented */ 972 error = EMSGSIZE; 973 in6_ifstat_inc(ifp, ifs6_out_fragfail); 974 goto bad; 975 } else { 976 u_char nextproto; 977 978 /* 979 * Too large for the destination or interface; 980 * fragment if possible. 981 * Must be able to put at least 8 bytes per fragment. 982 */ 983 hlen = unfragpartlen; 984 if (mtu > IPV6_MAXPACKET) 985 mtu = IPV6_MAXPACKET; 986 987 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 988 if (len < 8) { 989 error = EMSGSIZE; 990 in6_ifstat_inc(ifp, ifs6_out_fragfail); 991 goto bad; 992 } 993 994 /* 995 * If the interface will not calculate checksums on 996 * fragmented packets, then do it here. 997 * XXX-BZ handle the hw offloading case. Need flags. 998 */ 999 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1000 in6_delayed_cksum(m, plen, hlen); 1001 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 1002 } 1003 #ifdef SCTP 1004 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 1005 sctp_delayed_cksum(m, hlen); 1006 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 1007 } 1008 #endif 1009 /* 1010 * Change the next header field of the last header in the 1011 * unfragmentable part. 1012 */ 1013 if (exthdrs.ip6e_rthdr) { 1014 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1015 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1016 } else if (exthdrs.ip6e_dest1) { 1017 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1018 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1019 } else if (exthdrs.ip6e_hbh) { 1020 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1021 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1022 } else { 1023 nextproto = ip6->ip6_nxt; 1024 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1025 } 1026 1027 /* 1028 * Loop through length of segment after first fragment, 1029 * make new header and copy data of each part and link onto 1030 * chain. 1031 */ 1032 m0 = m; 1033 id = htonl(ip6_randomid()); 1034 if ((error = ip6_fragment(ifp, m, hlen, nextproto, len, id))) 1035 goto sendorfree; 1036 1037 in6_ifstat_inc(ifp, ifs6_out_fragok); 1038 } 1039 1040 /* 1041 * Remove leading garbages. 1042 */ 1043 sendorfree: 1044 m = m0->m_nextpkt; 1045 m0->m_nextpkt = 0; 1046 m_freem(m0); 1047 for (m0 = m; m; m = m0) { 1048 m0 = m->m_nextpkt; 1049 m->m_nextpkt = 0; 1050 if (error == 0) { 1051 /* Record statistics for this interface address. */ 1052 if (ia) { 1053 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1054 counter_u64_add(ia->ia_ifa.ifa_obytes, 1055 m->m_pkthdr.len); 1056 } 1057 error = nd6_output_ifp(ifp, origifp, m, dst, 1058 (struct route *)ro); 1059 } else 1060 m_freem(m); 1061 } 1062 1063 if (error == 0) 1064 IP6STAT_INC(ip6s_fragmented); 1065 1066 done: 1067 if (ro == &ip6route) 1068 RO_RTFREE(ro); 1069 return (error); 1070 1071 freehdrs: 1072 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1073 m_freem(exthdrs.ip6e_dest1); 1074 m_freem(exthdrs.ip6e_rthdr); 1075 m_freem(exthdrs.ip6e_dest2); 1076 /* FALLTHROUGH */ 1077 bad: 1078 if (m) 1079 m_freem(m); 1080 goto done; 1081 } 1082 1083 static int 1084 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1085 { 1086 struct mbuf *m; 1087 1088 if (hlen > MCLBYTES) 1089 return (ENOBUFS); /* XXX */ 1090 1091 if (hlen > MLEN) 1092 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1093 else 1094 m = m_get(M_NOWAIT, MT_DATA); 1095 if (m == NULL) 1096 return (ENOBUFS); 1097 m->m_len = hlen; 1098 if (hdr) 1099 bcopy(hdr, mtod(m, caddr_t), hlen); 1100 1101 *mp = m; 1102 return (0); 1103 } 1104 1105 /* 1106 * Insert jumbo payload option. 1107 */ 1108 static int 1109 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1110 { 1111 struct mbuf *mopt; 1112 u_char *optbuf; 1113 u_int32_t v; 1114 1115 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1116 1117 /* 1118 * If there is no hop-by-hop options header, allocate new one. 1119 * If there is one but it doesn't have enough space to store the 1120 * jumbo payload option, allocate a cluster to store the whole options. 1121 * Otherwise, use it to store the options. 1122 */ 1123 if (exthdrs->ip6e_hbh == NULL) { 1124 mopt = m_get(M_NOWAIT, MT_DATA); 1125 if (mopt == NULL) 1126 return (ENOBUFS); 1127 mopt->m_len = JUMBOOPTLEN; 1128 optbuf = mtod(mopt, u_char *); 1129 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1130 exthdrs->ip6e_hbh = mopt; 1131 } else { 1132 struct ip6_hbh *hbh; 1133 1134 mopt = exthdrs->ip6e_hbh; 1135 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1136 /* 1137 * XXX assumption: 1138 * - exthdrs->ip6e_hbh is not referenced from places 1139 * other than exthdrs. 1140 * - exthdrs->ip6e_hbh is not an mbuf chain. 1141 */ 1142 int oldoptlen = mopt->m_len; 1143 struct mbuf *n; 1144 1145 /* 1146 * XXX: give up if the whole (new) hbh header does 1147 * not fit even in an mbuf cluster. 1148 */ 1149 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1150 return (ENOBUFS); 1151 1152 /* 1153 * As a consequence, we must always prepare a cluster 1154 * at this point. 1155 */ 1156 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1157 if (n == NULL) 1158 return (ENOBUFS); 1159 n->m_len = oldoptlen + JUMBOOPTLEN; 1160 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1161 oldoptlen); 1162 optbuf = mtod(n, caddr_t) + oldoptlen; 1163 m_freem(mopt); 1164 mopt = exthdrs->ip6e_hbh = n; 1165 } else { 1166 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1167 mopt->m_len += JUMBOOPTLEN; 1168 } 1169 optbuf[0] = IP6OPT_PADN; 1170 optbuf[1] = 1; 1171 1172 /* 1173 * Adjust the header length according to the pad and 1174 * the jumbo payload option. 1175 */ 1176 hbh = mtod(mopt, struct ip6_hbh *); 1177 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1178 } 1179 1180 /* fill in the option. */ 1181 optbuf[2] = IP6OPT_JUMBO; 1182 optbuf[3] = 4; 1183 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1184 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1185 1186 /* finally, adjust the packet header length */ 1187 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1188 1189 return (0); 1190 #undef JUMBOOPTLEN 1191 } 1192 1193 /* 1194 * Insert fragment header and copy unfragmentable header portions. 1195 */ 1196 static int 1197 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1198 struct ip6_frag **frghdrp) 1199 { 1200 struct mbuf *n, *mlast; 1201 1202 if (hlen > sizeof(struct ip6_hdr)) { 1203 n = m_copym(m0, sizeof(struct ip6_hdr), 1204 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1205 if (n == NULL) 1206 return (ENOBUFS); 1207 m->m_next = n; 1208 } else 1209 n = m; 1210 1211 /* Search for the last mbuf of unfragmentable part. */ 1212 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1213 ; 1214 1215 if (M_WRITABLE(mlast) && 1216 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1217 /* use the trailing space of the last mbuf for the fragment hdr */ 1218 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1219 mlast->m_len); 1220 mlast->m_len += sizeof(struct ip6_frag); 1221 m->m_pkthdr.len += sizeof(struct ip6_frag); 1222 } else { 1223 /* allocate a new mbuf for the fragment header */ 1224 struct mbuf *mfrg; 1225 1226 mfrg = m_get(M_NOWAIT, MT_DATA); 1227 if (mfrg == NULL) 1228 return (ENOBUFS); 1229 mfrg->m_len = sizeof(struct ip6_frag); 1230 *frghdrp = mtod(mfrg, struct ip6_frag *); 1231 mlast->m_next = mfrg; 1232 } 1233 1234 return (0); 1235 } 1236 1237 /* 1238 * Calculates IPv6 path mtu for destination @dst. 1239 * Resulting MTU is stored in @mtup. 1240 * 1241 * Returns 0 on success. 1242 */ 1243 static int 1244 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1245 { 1246 struct nhop6_extended nh6; 1247 struct in6_addr kdst; 1248 uint32_t scopeid; 1249 struct ifnet *ifp; 1250 u_long mtu; 1251 int error; 1252 1253 in6_splitscope(dst, &kdst, &scopeid); 1254 if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0) 1255 return (EHOSTUNREACH); 1256 1257 ifp = nh6.nh_ifp; 1258 mtu = nh6.nh_mtu; 1259 1260 error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL, 0); 1261 fib6_free_nh_ext(fibnum, &nh6); 1262 1263 return (error); 1264 } 1265 1266 /* 1267 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1268 * and cached data in @ro_pmtu. 1269 * MTU from (successful) route lookup is saved (along with dst) 1270 * inside @ro_pmtu to avoid subsequent route lookups after packet 1271 * filter processing. 1272 * 1273 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1274 * Returns 0 on success. 1275 */ 1276 static int 1277 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1278 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1279 int *alwaysfragp, u_int fibnum, u_int proto) 1280 { 1281 struct nhop6_basic nh6; 1282 struct in6_addr kdst; 1283 uint32_t scopeid; 1284 struct sockaddr_in6 *sa6_dst; 1285 u_long mtu; 1286 1287 mtu = 0; 1288 if (do_lookup) { 1289 1290 /* 1291 * Here ro_pmtu has final destination address, while 1292 * ro might represent immediate destination. 1293 * Use ro_pmtu destination since mtu might differ. 1294 */ 1295 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1296 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1297 ro_pmtu->ro_mtu = 0; 1298 1299 if (ro_pmtu->ro_mtu == 0) { 1300 bzero(sa6_dst, sizeof(*sa6_dst)); 1301 sa6_dst->sin6_family = AF_INET6; 1302 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1303 sa6_dst->sin6_addr = *dst; 1304 1305 in6_splitscope(dst, &kdst, &scopeid); 1306 if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0, 1307 &nh6) == 0) 1308 ro_pmtu->ro_mtu = nh6.nh_mtu; 1309 } 1310 1311 mtu = ro_pmtu->ro_mtu; 1312 } 1313 1314 if (ro_pmtu->ro_rt) 1315 mtu = ro_pmtu->ro_rt->rt_mtu; 1316 1317 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1318 } 1319 1320 /* 1321 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1322 * hostcache data for @dst. 1323 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1324 * 1325 * Returns 0 on success. 1326 */ 1327 static int 1328 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1329 u_long *mtup, int *alwaysfragp, u_int proto) 1330 { 1331 u_long mtu = 0; 1332 int alwaysfrag = 0; 1333 int error = 0; 1334 1335 if (rt_mtu > 0) { 1336 u_int32_t ifmtu; 1337 struct in_conninfo inc; 1338 1339 bzero(&inc, sizeof(inc)); 1340 inc.inc_flags |= INC_ISIPV6; 1341 inc.inc6_faddr = *dst; 1342 1343 ifmtu = IN6_LINKMTU(ifp); 1344 1345 /* TCP is known to react to pmtu changes so skip hc */ 1346 if (proto != IPPROTO_TCP) 1347 mtu = tcp_hc_getmtu(&inc); 1348 1349 if (mtu) 1350 mtu = min(mtu, rt_mtu); 1351 else 1352 mtu = rt_mtu; 1353 if (mtu == 0) 1354 mtu = ifmtu; 1355 else if (mtu < IPV6_MMTU) { 1356 /* 1357 * RFC2460 section 5, last paragraph: 1358 * if we record ICMPv6 too big message with 1359 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1360 * or smaller, with framgent header attached. 1361 * (fragment header is needed regardless from the 1362 * packet size, for translators to identify packets) 1363 */ 1364 alwaysfrag = 1; 1365 mtu = IPV6_MMTU; 1366 } 1367 } else if (ifp) { 1368 mtu = IN6_LINKMTU(ifp); 1369 } else 1370 error = EHOSTUNREACH; /* XXX */ 1371 1372 *mtup = mtu; 1373 if (alwaysfragp) 1374 *alwaysfragp = alwaysfrag; 1375 return (error); 1376 } 1377 1378 /* 1379 * IP6 socket option processing. 1380 */ 1381 int 1382 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1383 { 1384 int optdatalen, uproto; 1385 void *optdata; 1386 struct inpcb *in6p = sotoinpcb(so); 1387 int error, optval; 1388 int level, op, optname; 1389 int optlen; 1390 struct thread *td; 1391 #ifdef RSS 1392 uint32_t rss_bucket; 1393 int retval; 1394 #endif 1395 1396 /* 1397 * Don't use more than a quarter of mbuf clusters. N.B.: 1398 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1399 * on LP64 architectures, so cast to u_long to avoid undefined 1400 * behavior. ILP32 architectures cannot have nmbclusters 1401 * large enough to overflow for other reasons. 1402 */ 1403 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1404 1405 level = sopt->sopt_level; 1406 op = sopt->sopt_dir; 1407 optname = sopt->sopt_name; 1408 optlen = sopt->sopt_valsize; 1409 td = sopt->sopt_td; 1410 error = 0; 1411 optval = 0; 1412 uproto = (int)so->so_proto->pr_protocol; 1413 1414 if (level != IPPROTO_IPV6) { 1415 error = EINVAL; 1416 1417 if (sopt->sopt_level == SOL_SOCKET && 1418 sopt->sopt_dir == SOPT_SET) { 1419 switch (sopt->sopt_name) { 1420 case SO_REUSEADDR: 1421 INP_WLOCK(in6p); 1422 if ((so->so_options & SO_REUSEADDR) != 0) 1423 in6p->inp_flags2 |= INP_REUSEADDR; 1424 else 1425 in6p->inp_flags2 &= ~INP_REUSEADDR; 1426 INP_WUNLOCK(in6p); 1427 error = 0; 1428 break; 1429 case SO_REUSEPORT: 1430 INP_WLOCK(in6p); 1431 if ((so->so_options & SO_REUSEPORT) != 0) 1432 in6p->inp_flags2 |= INP_REUSEPORT; 1433 else 1434 in6p->inp_flags2 &= ~INP_REUSEPORT; 1435 INP_WUNLOCK(in6p); 1436 error = 0; 1437 break; 1438 case SO_SETFIB: 1439 INP_WLOCK(in6p); 1440 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1441 INP_WUNLOCK(in6p); 1442 error = 0; 1443 break; 1444 default: 1445 break; 1446 } 1447 } 1448 } else { /* level == IPPROTO_IPV6 */ 1449 switch (op) { 1450 1451 case SOPT_SET: 1452 switch (optname) { 1453 case IPV6_2292PKTOPTIONS: 1454 #ifdef IPV6_PKTOPTIONS 1455 case IPV6_PKTOPTIONS: 1456 #endif 1457 { 1458 struct mbuf *m; 1459 1460 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1461 printf("ip6_ctloutput: mbuf limit hit\n"); 1462 error = ENOBUFS; 1463 break; 1464 } 1465 1466 error = soopt_getm(sopt, &m); /* XXX */ 1467 if (error != 0) 1468 break; 1469 error = soopt_mcopyin(sopt, m); /* XXX */ 1470 if (error != 0) 1471 break; 1472 error = ip6_pcbopts(&in6p->in6p_outputopts, 1473 m, so, sopt); 1474 m_freem(m); /* XXX */ 1475 break; 1476 } 1477 1478 /* 1479 * Use of some Hop-by-Hop options or some 1480 * Destination options, might require special 1481 * privilege. That is, normal applications 1482 * (without special privilege) might be forbidden 1483 * from setting certain options in outgoing packets, 1484 * and might never see certain options in received 1485 * packets. [RFC 2292 Section 6] 1486 * KAME specific note: 1487 * KAME prevents non-privileged users from sending or 1488 * receiving ANY hbh/dst options in order to avoid 1489 * overhead of parsing options in the kernel. 1490 */ 1491 case IPV6_RECVHOPOPTS: 1492 case IPV6_RECVDSTOPTS: 1493 case IPV6_RECVRTHDRDSTOPTS: 1494 if (td != NULL) { 1495 error = priv_check(td, 1496 PRIV_NETINET_SETHDROPTS); 1497 if (error) 1498 break; 1499 } 1500 /* FALLTHROUGH */ 1501 case IPV6_UNICAST_HOPS: 1502 case IPV6_HOPLIMIT: 1503 1504 case IPV6_RECVPKTINFO: 1505 case IPV6_RECVHOPLIMIT: 1506 case IPV6_RECVRTHDR: 1507 case IPV6_RECVPATHMTU: 1508 case IPV6_RECVTCLASS: 1509 case IPV6_RECVFLOWID: 1510 #ifdef RSS 1511 case IPV6_RECVRSSBUCKETID: 1512 #endif 1513 case IPV6_V6ONLY: 1514 case IPV6_AUTOFLOWLABEL: 1515 case IPV6_BINDANY: 1516 case IPV6_BINDMULTI: 1517 #ifdef RSS 1518 case IPV6_RSS_LISTEN_BUCKET: 1519 #endif 1520 if (optname == IPV6_BINDANY && td != NULL) { 1521 error = priv_check(td, 1522 PRIV_NETINET_BINDANY); 1523 if (error) 1524 break; 1525 } 1526 1527 if (optlen != sizeof(int)) { 1528 error = EINVAL; 1529 break; 1530 } 1531 error = sooptcopyin(sopt, &optval, 1532 sizeof optval, sizeof optval); 1533 if (error) 1534 break; 1535 switch (optname) { 1536 1537 case IPV6_UNICAST_HOPS: 1538 if (optval < -1 || optval >= 256) 1539 error = EINVAL; 1540 else { 1541 /* -1 = kernel default */ 1542 in6p->in6p_hops = optval; 1543 if ((in6p->inp_vflag & 1544 INP_IPV4) != 0) 1545 in6p->inp_ip_ttl = optval; 1546 } 1547 break; 1548 #define OPTSET(bit) \ 1549 do { \ 1550 INP_WLOCK(in6p); \ 1551 if (optval) \ 1552 in6p->inp_flags |= (bit); \ 1553 else \ 1554 in6p->inp_flags &= ~(bit); \ 1555 INP_WUNLOCK(in6p); \ 1556 } while (/*CONSTCOND*/ 0) 1557 #define OPTSET2292(bit) \ 1558 do { \ 1559 INP_WLOCK(in6p); \ 1560 in6p->inp_flags |= IN6P_RFC2292; \ 1561 if (optval) \ 1562 in6p->inp_flags |= (bit); \ 1563 else \ 1564 in6p->inp_flags &= ~(bit); \ 1565 INP_WUNLOCK(in6p); \ 1566 } while (/*CONSTCOND*/ 0) 1567 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1568 1569 #define OPTSET2(bit, val) do { \ 1570 INP_WLOCK(in6p); \ 1571 if (val) \ 1572 in6p->inp_flags2 |= bit; \ 1573 else \ 1574 in6p->inp_flags2 &= ~bit; \ 1575 INP_WUNLOCK(in6p); \ 1576 } while (0) 1577 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) 1578 1579 case IPV6_RECVPKTINFO: 1580 /* cannot mix with RFC2292 */ 1581 if (OPTBIT(IN6P_RFC2292)) { 1582 error = EINVAL; 1583 break; 1584 } 1585 OPTSET(IN6P_PKTINFO); 1586 break; 1587 1588 case IPV6_HOPLIMIT: 1589 { 1590 struct ip6_pktopts **optp; 1591 1592 /* cannot mix with RFC2292 */ 1593 if (OPTBIT(IN6P_RFC2292)) { 1594 error = EINVAL; 1595 break; 1596 } 1597 optp = &in6p->in6p_outputopts; 1598 error = ip6_pcbopt(IPV6_HOPLIMIT, 1599 (u_char *)&optval, sizeof(optval), 1600 optp, (td != NULL) ? td->td_ucred : 1601 NULL, uproto); 1602 break; 1603 } 1604 1605 case IPV6_RECVHOPLIMIT: 1606 /* cannot mix with RFC2292 */ 1607 if (OPTBIT(IN6P_RFC2292)) { 1608 error = EINVAL; 1609 break; 1610 } 1611 OPTSET(IN6P_HOPLIMIT); 1612 break; 1613 1614 case IPV6_RECVHOPOPTS: 1615 /* cannot mix with RFC2292 */ 1616 if (OPTBIT(IN6P_RFC2292)) { 1617 error = EINVAL; 1618 break; 1619 } 1620 OPTSET(IN6P_HOPOPTS); 1621 break; 1622 1623 case IPV6_RECVDSTOPTS: 1624 /* cannot mix with RFC2292 */ 1625 if (OPTBIT(IN6P_RFC2292)) { 1626 error = EINVAL; 1627 break; 1628 } 1629 OPTSET(IN6P_DSTOPTS); 1630 break; 1631 1632 case IPV6_RECVRTHDRDSTOPTS: 1633 /* cannot mix with RFC2292 */ 1634 if (OPTBIT(IN6P_RFC2292)) { 1635 error = EINVAL; 1636 break; 1637 } 1638 OPTSET(IN6P_RTHDRDSTOPTS); 1639 break; 1640 1641 case IPV6_RECVRTHDR: 1642 /* cannot mix with RFC2292 */ 1643 if (OPTBIT(IN6P_RFC2292)) { 1644 error = EINVAL; 1645 break; 1646 } 1647 OPTSET(IN6P_RTHDR); 1648 break; 1649 1650 case IPV6_RECVPATHMTU: 1651 /* 1652 * We ignore this option for TCP 1653 * sockets. 1654 * (RFC3542 leaves this case 1655 * unspecified.) 1656 */ 1657 if (uproto != IPPROTO_TCP) 1658 OPTSET(IN6P_MTU); 1659 break; 1660 1661 case IPV6_RECVFLOWID: 1662 OPTSET2(INP_RECVFLOWID, optval); 1663 break; 1664 1665 #ifdef RSS 1666 case IPV6_RECVRSSBUCKETID: 1667 OPTSET2(INP_RECVRSSBUCKETID, optval); 1668 break; 1669 #endif 1670 1671 case IPV6_V6ONLY: 1672 /* 1673 * make setsockopt(IPV6_V6ONLY) 1674 * available only prior to bind(2). 1675 * see ipng mailing list, Jun 22 2001. 1676 */ 1677 if (in6p->inp_lport || 1678 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1679 error = EINVAL; 1680 break; 1681 } 1682 OPTSET(IN6P_IPV6_V6ONLY); 1683 if (optval) 1684 in6p->inp_vflag &= ~INP_IPV4; 1685 else 1686 in6p->inp_vflag |= INP_IPV4; 1687 break; 1688 case IPV6_RECVTCLASS: 1689 /* cannot mix with RFC2292 XXX */ 1690 if (OPTBIT(IN6P_RFC2292)) { 1691 error = EINVAL; 1692 break; 1693 } 1694 OPTSET(IN6P_TCLASS); 1695 break; 1696 case IPV6_AUTOFLOWLABEL: 1697 OPTSET(IN6P_AUTOFLOWLABEL); 1698 break; 1699 1700 case IPV6_BINDANY: 1701 OPTSET(INP_BINDANY); 1702 break; 1703 1704 case IPV6_BINDMULTI: 1705 OPTSET2(INP_BINDMULTI, optval); 1706 break; 1707 #ifdef RSS 1708 case IPV6_RSS_LISTEN_BUCKET: 1709 if ((optval >= 0) && 1710 (optval < rss_getnumbuckets())) { 1711 in6p->inp_rss_listen_bucket = optval; 1712 OPTSET2(INP_RSS_BUCKET_SET, 1); 1713 } else { 1714 error = EINVAL; 1715 } 1716 break; 1717 #endif 1718 } 1719 break; 1720 1721 case IPV6_TCLASS: 1722 case IPV6_DONTFRAG: 1723 case IPV6_USE_MIN_MTU: 1724 case IPV6_PREFER_TEMPADDR: 1725 if (optlen != sizeof(optval)) { 1726 error = EINVAL; 1727 break; 1728 } 1729 error = sooptcopyin(sopt, &optval, 1730 sizeof optval, sizeof optval); 1731 if (error) 1732 break; 1733 { 1734 struct ip6_pktopts **optp; 1735 optp = &in6p->in6p_outputopts; 1736 error = ip6_pcbopt(optname, 1737 (u_char *)&optval, sizeof(optval), 1738 optp, (td != NULL) ? td->td_ucred : 1739 NULL, uproto); 1740 break; 1741 } 1742 1743 case IPV6_2292PKTINFO: 1744 case IPV6_2292HOPLIMIT: 1745 case IPV6_2292HOPOPTS: 1746 case IPV6_2292DSTOPTS: 1747 case IPV6_2292RTHDR: 1748 /* RFC 2292 */ 1749 if (optlen != sizeof(int)) { 1750 error = EINVAL; 1751 break; 1752 } 1753 error = sooptcopyin(sopt, &optval, 1754 sizeof optval, sizeof optval); 1755 if (error) 1756 break; 1757 switch (optname) { 1758 case IPV6_2292PKTINFO: 1759 OPTSET2292(IN6P_PKTINFO); 1760 break; 1761 case IPV6_2292HOPLIMIT: 1762 OPTSET2292(IN6P_HOPLIMIT); 1763 break; 1764 case IPV6_2292HOPOPTS: 1765 /* 1766 * Check super-user privilege. 1767 * See comments for IPV6_RECVHOPOPTS. 1768 */ 1769 if (td != NULL) { 1770 error = priv_check(td, 1771 PRIV_NETINET_SETHDROPTS); 1772 if (error) 1773 return (error); 1774 } 1775 OPTSET2292(IN6P_HOPOPTS); 1776 break; 1777 case IPV6_2292DSTOPTS: 1778 if (td != NULL) { 1779 error = priv_check(td, 1780 PRIV_NETINET_SETHDROPTS); 1781 if (error) 1782 return (error); 1783 } 1784 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1785 break; 1786 case IPV6_2292RTHDR: 1787 OPTSET2292(IN6P_RTHDR); 1788 break; 1789 } 1790 break; 1791 case IPV6_PKTINFO: 1792 case IPV6_HOPOPTS: 1793 case IPV6_RTHDR: 1794 case IPV6_DSTOPTS: 1795 case IPV6_RTHDRDSTOPTS: 1796 case IPV6_NEXTHOP: 1797 { 1798 /* new advanced API (RFC3542) */ 1799 u_char *optbuf; 1800 u_char optbuf_storage[MCLBYTES]; 1801 int optlen; 1802 struct ip6_pktopts **optp; 1803 1804 /* cannot mix with RFC2292 */ 1805 if (OPTBIT(IN6P_RFC2292)) { 1806 error = EINVAL; 1807 break; 1808 } 1809 1810 /* 1811 * We only ensure valsize is not too large 1812 * here. Further validation will be done 1813 * later. 1814 */ 1815 error = sooptcopyin(sopt, optbuf_storage, 1816 sizeof(optbuf_storage), 0); 1817 if (error) 1818 break; 1819 optlen = sopt->sopt_valsize; 1820 optbuf = optbuf_storage; 1821 optp = &in6p->in6p_outputopts; 1822 error = ip6_pcbopt(optname, optbuf, optlen, 1823 optp, (td != NULL) ? td->td_ucred : NULL, 1824 uproto); 1825 break; 1826 } 1827 #undef OPTSET 1828 1829 case IPV6_MULTICAST_IF: 1830 case IPV6_MULTICAST_HOPS: 1831 case IPV6_MULTICAST_LOOP: 1832 case IPV6_JOIN_GROUP: 1833 case IPV6_LEAVE_GROUP: 1834 case IPV6_MSFILTER: 1835 case MCAST_BLOCK_SOURCE: 1836 case MCAST_UNBLOCK_SOURCE: 1837 case MCAST_JOIN_GROUP: 1838 case MCAST_LEAVE_GROUP: 1839 case MCAST_JOIN_SOURCE_GROUP: 1840 case MCAST_LEAVE_SOURCE_GROUP: 1841 error = ip6_setmoptions(in6p, sopt); 1842 break; 1843 1844 case IPV6_PORTRANGE: 1845 error = sooptcopyin(sopt, &optval, 1846 sizeof optval, sizeof optval); 1847 if (error) 1848 break; 1849 1850 INP_WLOCK(in6p); 1851 switch (optval) { 1852 case IPV6_PORTRANGE_DEFAULT: 1853 in6p->inp_flags &= ~(INP_LOWPORT); 1854 in6p->inp_flags &= ~(INP_HIGHPORT); 1855 break; 1856 1857 case IPV6_PORTRANGE_HIGH: 1858 in6p->inp_flags &= ~(INP_LOWPORT); 1859 in6p->inp_flags |= INP_HIGHPORT; 1860 break; 1861 1862 case IPV6_PORTRANGE_LOW: 1863 in6p->inp_flags &= ~(INP_HIGHPORT); 1864 in6p->inp_flags |= INP_LOWPORT; 1865 break; 1866 1867 default: 1868 error = EINVAL; 1869 break; 1870 } 1871 INP_WUNLOCK(in6p); 1872 break; 1873 1874 #ifdef IPSEC 1875 case IPV6_IPSEC_POLICY: 1876 { 1877 caddr_t req; 1878 struct mbuf *m; 1879 1880 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1881 break; 1882 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1883 break; 1884 req = mtod(m, caddr_t); 1885 error = ipsec_set_policy(in6p, optname, req, 1886 m->m_len, (sopt->sopt_td != NULL) ? 1887 sopt->sopt_td->td_ucred : NULL); 1888 m_freem(m); 1889 break; 1890 } 1891 #endif /* IPSEC */ 1892 1893 default: 1894 error = ENOPROTOOPT; 1895 break; 1896 } 1897 break; 1898 1899 case SOPT_GET: 1900 switch (optname) { 1901 1902 case IPV6_2292PKTOPTIONS: 1903 #ifdef IPV6_PKTOPTIONS 1904 case IPV6_PKTOPTIONS: 1905 #endif 1906 /* 1907 * RFC3542 (effectively) deprecated the 1908 * semantics of the 2292-style pktoptions. 1909 * Since it was not reliable in nature (i.e., 1910 * applications had to expect the lack of some 1911 * information after all), it would make sense 1912 * to simplify this part by always returning 1913 * empty data. 1914 */ 1915 sopt->sopt_valsize = 0; 1916 break; 1917 1918 case IPV6_RECVHOPOPTS: 1919 case IPV6_RECVDSTOPTS: 1920 case IPV6_RECVRTHDRDSTOPTS: 1921 case IPV6_UNICAST_HOPS: 1922 case IPV6_RECVPKTINFO: 1923 case IPV6_RECVHOPLIMIT: 1924 case IPV6_RECVRTHDR: 1925 case IPV6_RECVPATHMTU: 1926 1927 case IPV6_V6ONLY: 1928 case IPV6_PORTRANGE: 1929 case IPV6_RECVTCLASS: 1930 case IPV6_AUTOFLOWLABEL: 1931 case IPV6_BINDANY: 1932 case IPV6_FLOWID: 1933 case IPV6_FLOWTYPE: 1934 case IPV6_RECVFLOWID: 1935 #ifdef RSS 1936 case IPV6_RSSBUCKETID: 1937 case IPV6_RECVRSSBUCKETID: 1938 #endif 1939 case IPV6_BINDMULTI: 1940 switch (optname) { 1941 1942 case IPV6_RECVHOPOPTS: 1943 optval = OPTBIT(IN6P_HOPOPTS); 1944 break; 1945 1946 case IPV6_RECVDSTOPTS: 1947 optval = OPTBIT(IN6P_DSTOPTS); 1948 break; 1949 1950 case IPV6_RECVRTHDRDSTOPTS: 1951 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1952 break; 1953 1954 case IPV6_UNICAST_HOPS: 1955 optval = in6p->in6p_hops; 1956 break; 1957 1958 case IPV6_RECVPKTINFO: 1959 optval = OPTBIT(IN6P_PKTINFO); 1960 break; 1961 1962 case IPV6_RECVHOPLIMIT: 1963 optval = OPTBIT(IN6P_HOPLIMIT); 1964 break; 1965 1966 case IPV6_RECVRTHDR: 1967 optval = OPTBIT(IN6P_RTHDR); 1968 break; 1969 1970 case IPV6_RECVPATHMTU: 1971 optval = OPTBIT(IN6P_MTU); 1972 break; 1973 1974 case IPV6_V6ONLY: 1975 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1976 break; 1977 1978 case IPV6_PORTRANGE: 1979 { 1980 int flags; 1981 flags = in6p->inp_flags; 1982 if (flags & INP_HIGHPORT) 1983 optval = IPV6_PORTRANGE_HIGH; 1984 else if (flags & INP_LOWPORT) 1985 optval = IPV6_PORTRANGE_LOW; 1986 else 1987 optval = 0; 1988 break; 1989 } 1990 case IPV6_RECVTCLASS: 1991 optval = OPTBIT(IN6P_TCLASS); 1992 break; 1993 1994 case IPV6_AUTOFLOWLABEL: 1995 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1996 break; 1997 1998 case IPV6_BINDANY: 1999 optval = OPTBIT(INP_BINDANY); 2000 break; 2001 2002 case IPV6_FLOWID: 2003 optval = in6p->inp_flowid; 2004 break; 2005 2006 case IPV6_FLOWTYPE: 2007 optval = in6p->inp_flowtype; 2008 break; 2009 2010 case IPV6_RECVFLOWID: 2011 optval = OPTBIT2(INP_RECVFLOWID); 2012 break; 2013 #ifdef RSS 2014 case IPV6_RSSBUCKETID: 2015 retval = 2016 rss_hash2bucket(in6p->inp_flowid, 2017 in6p->inp_flowtype, 2018 &rss_bucket); 2019 if (retval == 0) 2020 optval = rss_bucket; 2021 else 2022 error = EINVAL; 2023 break; 2024 2025 case IPV6_RECVRSSBUCKETID: 2026 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2027 break; 2028 #endif 2029 2030 case IPV6_BINDMULTI: 2031 optval = OPTBIT2(INP_BINDMULTI); 2032 break; 2033 2034 } 2035 if (error) 2036 break; 2037 error = sooptcopyout(sopt, &optval, 2038 sizeof optval); 2039 break; 2040 2041 case IPV6_PATHMTU: 2042 { 2043 u_long pmtu = 0; 2044 struct ip6_mtuinfo mtuinfo; 2045 2046 if (!(so->so_state & SS_ISCONNECTED)) 2047 return (ENOTCONN); 2048 /* 2049 * XXX: we dot not consider the case of source 2050 * routing, or optional information to specify 2051 * the outgoing interface. 2052 */ 2053 error = ip6_getpmtu_ctl(so->so_fibnum, 2054 &in6p->in6p_faddr, &pmtu); 2055 if (error) 2056 break; 2057 if (pmtu > IPV6_MAXPACKET) 2058 pmtu = IPV6_MAXPACKET; 2059 2060 bzero(&mtuinfo, sizeof(mtuinfo)); 2061 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2062 optdata = (void *)&mtuinfo; 2063 optdatalen = sizeof(mtuinfo); 2064 error = sooptcopyout(sopt, optdata, 2065 optdatalen); 2066 break; 2067 } 2068 2069 case IPV6_2292PKTINFO: 2070 case IPV6_2292HOPLIMIT: 2071 case IPV6_2292HOPOPTS: 2072 case IPV6_2292RTHDR: 2073 case IPV6_2292DSTOPTS: 2074 switch (optname) { 2075 case IPV6_2292PKTINFO: 2076 optval = OPTBIT(IN6P_PKTINFO); 2077 break; 2078 case IPV6_2292HOPLIMIT: 2079 optval = OPTBIT(IN6P_HOPLIMIT); 2080 break; 2081 case IPV6_2292HOPOPTS: 2082 optval = OPTBIT(IN6P_HOPOPTS); 2083 break; 2084 case IPV6_2292RTHDR: 2085 optval = OPTBIT(IN6P_RTHDR); 2086 break; 2087 case IPV6_2292DSTOPTS: 2088 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2089 break; 2090 } 2091 error = sooptcopyout(sopt, &optval, 2092 sizeof optval); 2093 break; 2094 case IPV6_PKTINFO: 2095 case IPV6_HOPOPTS: 2096 case IPV6_RTHDR: 2097 case IPV6_DSTOPTS: 2098 case IPV6_RTHDRDSTOPTS: 2099 case IPV6_NEXTHOP: 2100 case IPV6_TCLASS: 2101 case IPV6_DONTFRAG: 2102 case IPV6_USE_MIN_MTU: 2103 case IPV6_PREFER_TEMPADDR: 2104 error = ip6_getpcbopt(in6p->in6p_outputopts, 2105 optname, sopt); 2106 break; 2107 2108 case IPV6_MULTICAST_IF: 2109 case IPV6_MULTICAST_HOPS: 2110 case IPV6_MULTICAST_LOOP: 2111 case IPV6_MSFILTER: 2112 error = ip6_getmoptions(in6p, sopt); 2113 break; 2114 2115 #ifdef IPSEC 2116 case IPV6_IPSEC_POLICY: 2117 { 2118 caddr_t req = NULL; 2119 size_t len = 0; 2120 struct mbuf *m = NULL; 2121 struct mbuf **mp = &m; 2122 size_t ovalsize = sopt->sopt_valsize; 2123 caddr_t oval = (caddr_t)sopt->sopt_val; 2124 2125 error = soopt_getm(sopt, &m); /* XXX */ 2126 if (error != 0) 2127 break; 2128 error = soopt_mcopyin(sopt, m); /* XXX */ 2129 if (error != 0) 2130 break; 2131 sopt->sopt_valsize = ovalsize; 2132 sopt->sopt_val = oval; 2133 if (m) { 2134 req = mtod(m, caddr_t); 2135 len = m->m_len; 2136 } 2137 error = ipsec_get_policy(in6p, req, len, mp); 2138 if (error == 0) 2139 error = soopt_mcopyout(sopt, m); /* XXX */ 2140 if (error == 0 && m) 2141 m_freem(m); 2142 break; 2143 } 2144 #endif /* IPSEC */ 2145 2146 default: 2147 error = ENOPROTOOPT; 2148 break; 2149 } 2150 break; 2151 } 2152 } 2153 return (error); 2154 } 2155 2156 int 2157 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2158 { 2159 int error = 0, optval, optlen; 2160 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2161 struct inpcb *in6p = sotoinpcb(so); 2162 int level, op, optname; 2163 2164 level = sopt->sopt_level; 2165 op = sopt->sopt_dir; 2166 optname = sopt->sopt_name; 2167 optlen = sopt->sopt_valsize; 2168 2169 if (level != IPPROTO_IPV6) { 2170 return (EINVAL); 2171 } 2172 2173 switch (optname) { 2174 case IPV6_CHECKSUM: 2175 /* 2176 * For ICMPv6 sockets, no modification allowed for checksum 2177 * offset, permit "no change" values to help existing apps. 2178 * 2179 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2180 * for an ICMPv6 socket will fail." 2181 * The current behavior does not meet RFC3542. 2182 */ 2183 switch (op) { 2184 case SOPT_SET: 2185 if (optlen != sizeof(int)) { 2186 error = EINVAL; 2187 break; 2188 } 2189 error = sooptcopyin(sopt, &optval, sizeof(optval), 2190 sizeof(optval)); 2191 if (error) 2192 break; 2193 if ((optval % 2) != 0) { 2194 /* the API assumes even offset values */ 2195 error = EINVAL; 2196 } else if (so->so_proto->pr_protocol == 2197 IPPROTO_ICMPV6) { 2198 if (optval != icmp6off) 2199 error = EINVAL; 2200 } else 2201 in6p->in6p_cksum = optval; 2202 break; 2203 2204 case SOPT_GET: 2205 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2206 optval = icmp6off; 2207 else 2208 optval = in6p->in6p_cksum; 2209 2210 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2211 break; 2212 2213 default: 2214 error = EINVAL; 2215 break; 2216 } 2217 break; 2218 2219 default: 2220 error = ENOPROTOOPT; 2221 break; 2222 } 2223 2224 return (error); 2225 } 2226 2227 /* 2228 * Set up IP6 options in pcb for insertion in output packets or 2229 * specifying behavior of outgoing packets. 2230 */ 2231 static int 2232 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2233 struct socket *so, struct sockopt *sopt) 2234 { 2235 struct ip6_pktopts *opt = *pktopt; 2236 int error = 0; 2237 struct thread *td = sopt->sopt_td; 2238 2239 /* turn off any old options. */ 2240 if (opt) { 2241 #ifdef DIAGNOSTIC 2242 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2243 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2244 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2245 printf("ip6_pcbopts: all specified options are cleared.\n"); 2246 #endif 2247 ip6_clearpktopts(opt, -1); 2248 } else 2249 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2250 *pktopt = NULL; 2251 2252 if (!m || m->m_len == 0) { 2253 /* 2254 * Only turning off any previous options, regardless of 2255 * whether the opt is just created or given. 2256 */ 2257 free(opt, M_IP6OPT); 2258 return (0); 2259 } 2260 2261 /* set options specified by user. */ 2262 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2263 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2264 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2265 free(opt, M_IP6OPT); 2266 return (error); 2267 } 2268 *pktopt = opt; 2269 return (0); 2270 } 2271 2272 /* 2273 * initialize ip6_pktopts. beware that there are non-zero default values in 2274 * the struct. 2275 */ 2276 void 2277 ip6_initpktopts(struct ip6_pktopts *opt) 2278 { 2279 2280 bzero(opt, sizeof(*opt)); 2281 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2282 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2283 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2284 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2285 } 2286 2287 static int 2288 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2289 struct ucred *cred, int uproto) 2290 { 2291 struct ip6_pktopts *opt; 2292 2293 if (*pktopt == NULL) { 2294 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2295 M_WAITOK); 2296 ip6_initpktopts(*pktopt); 2297 } 2298 opt = *pktopt; 2299 2300 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2301 } 2302 2303 static int 2304 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2305 { 2306 void *optdata = NULL; 2307 int optdatalen = 0; 2308 struct ip6_ext *ip6e; 2309 int error = 0; 2310 struct in6_pktinfo null_pktinfo; 2311 int deftclass = 0, on; 2312 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2313 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2314 2315 switch (optname) { 2316 case IPV6_PKTINFO: 2317 optdata = (void *)&null_pktinfo; 2318 if (pktopt && pktopt->ip6po_pktinfo) { 2319 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2320 sizeof(null_pktinfo)); 2321 in6_clearscope(&null_pktinfo.ipi6_addr); 2322 } else { 2323 /* XXX: we don't have to do this every time... */ 2324 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2325 } 2326 optdatalen = sizeof(struct in6_pktinfo); 2327 break; 2328 case IPV6_TCLASS: 2329 if (pktopt && pktopt->ip6po_tclass >= 0) 2330 optdata = (void *)&pktopt->ip6po_tclass; 2331 else 2332 optdata = (void *)&deftclass; 2333 optdatalen = sizeof(int); 2334 break; 2335 case IPV6_HOPOPTS: 2336 if (pktopt && pktopt->ip6po_hbh) { 2337 optdata = (void *)pktopt->ip6po_hbh; 2338 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2339 optdatalen = (ip6e->ip6e_len + 1) << 3; 2340 } 2341 break; 2342 case IPV6_RTHDR: 2343 if (pktopt && pktopt->ip6po_rthdr) { 2344 optdata = (void *)pktopt->ip6po_rthdr; 2345 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2346 optdatalen = (ip6e->ip6e_len + 1) << 3; 2347 } 2348 break; 2349 case IPV6_RTHDRDSTOPTS: 2350 if (pktopt && pktopt->ip6po_dest1) { 2351 optdata = (void *)pktopt->ip6po_dest1; 2352 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2353 optdatalen = (ip6e->ip6e_len + 1) << 3; 2354 } 2355 break; 2356 case IPV6_DSTOPTS: 2357 if (pktopt && pktopt->ip6po_dest2) { 2358 optdata = (void *)pktopt->ip6po_dest2; 2359 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2360 optdatalen = (ip6e->ip6e_len + 1) << 3; 2361 } 2362 break; 2363 case IPV6_NEXTHOP: 2364 if (pktopt && pktopt->ip6po_nexthop) { 2365 optdata = (void *)pktopt->ip6po_nexthop; 2366 optdatalen = pktopt->ip6po_nexthop->sa_len; 2367 } 2368 break; 2369 case IPV6_USE_MIN_MTU: 2370 if (pktopt) 2371 optdata = (void *)&pktopt->ip6po_minmtu; 2372 else 2373 optdata = (void *)&defminmtu; 2374 optdatalen = sizeof(int); 2375 break; 2376 case IPV6_DONTFRAG: 2377 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2378 on = 1; 2379 else 2380 on = 0; 2381 optdata = (void *)&on; 2382 optdatalen = sizeof(on); 2383 break; 2384 case IPV6_PREFER_TEMPADDR: 2385 if (pktopt) 2386 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2387 else 2388 optdata = (void *)&defpreftemp; 2389 optdatalen = sizeof(int); 2390 break; 2391 default: /* should not happen */ 2392 #ifdef DIAGNOSTIC 2393 panic("ip6_getpcbopt: unexpected option\n"); 2394 #endif 2395 return (ENOPROTOOPT); 2396 } 2397 2398 error = sooptcopyout(sopt, optdata, optdatalen); 2399 2400 return (error); 2401 } 2402 2403 void 2404 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2405 { 2406 if (pktopt == NULL) 2407 return; 2408 2409 if (optname == -1 || optname == IPV6_PKTINFO) { 2410 if (pktopt->ip6po_pktinfo) 2411 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2412 pktopt->ip6po_pktinfo = NULL; 2413 } 2414 if (optname == -1 || optname == IPV6_HOPLIMIT) 2415 pktopt->ip6po_hlim = -1; 2416 if (optname == -1 || optname == IPV6_TCLASS) 2417 pktopt->ip6po_tclass = -1; 2418 if (optname == -1 || optname == IPV6_NEXTHOP) { 2419 if (pktopt->ip6po_nextroute.ro_rt) { 2420 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2421 pktopt->ip6po_nextroute.ro_rt = NULL; 2422 } 2423 if (pktopt->ip6po_nexthop) 2424 free(pktopt->ip6po_nexthop, M_IP6OPT); 2425 pktopt->ip6po_nexthop = NULL; 2426 } 2427 if (optname == -1 || optname == IPV6_HOPOPTS) { 2428 if (pktopt->ip6po_hbh) 2429 free(pktopt->ip6po_hbh, M_IP6OPT); 2430 pktopt->ip6po_hbh = NULL; 2431 } 2432 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2433 if (pktopt->ip6po_dest1) 2434 free(pktopt->ip6po_dest1, M_IP6OPT); 2435 pktopt->ip6po_dest1 = NULL; 2436 } 2437 if (optname == -1 || optname == IPV6_RTHDR) { 2438 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2439 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2440 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2441 if (pktopt->ip6po_route.ro_rt) { 2442 RTFREE(pktopt->ip6po_route.ro_rt); 2443 pktopt->ip6po_route.ro_rt = NULL; 2444 } 2445 } 2446 if (optname == -1 || optname == IPV6_DSTOPTS) { 2447 if (pktopt->ip6po_dest2) 2448 free(pktopt->ip6po_dest2, M_IP6OPT); 2449 pktopt->ip6po_dest2 = NULL; 2450 } 2451 } 2452 2453 #define PKTOPT_EXTHDRCPY(type) \ 2454 do {\ 2455 if (src->type) {\ 2456 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2457 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2458 if (dst->type == NULL && canwait == M_NOWAIT)\ 2459 goto bad;\ 2460 bcopy(src->type, dst->type, hlen);\ 2461 }\ 2462 } while (/*CONSTCOND*/ 0) 2463 2464 static int 2465 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2466 { 2467 if (dst == NULL || src == NULL) { 2468 printf("ip6_clearpktopts: invalid argument\n"); 2469 return (EINVAL); 2470 } 2471 2472 dst->ip6po_hlim = src->ip6po_hlim; 2473 dst->ip6po_tclass = src->ip6po_tclass; 2474 dst->ip6po_flags = src->ip6po_flags; 2475 dst->ip6po_minmtu = src->ip6po_minmtu; 2476 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2477 if (src->ip6po_pktinfo) { 2478 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2479 M_IP6OPT, canwait); 2480 if (dst->ip6po_pktinfo == NULL) 2481 goto bad; 2482 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2483 } 2484 if (src->ip6po_nexthop) { 2485 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2486 M_IP6OPT, canwait); 2487 if (dst->ip6po_nexthop == NULL) 2488 goto bad; 2489 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2490 src->ip6po_nexthop->sa_len); 2491 } 2492 PKTOPT_EXTHDRCPY(ip6po_hbh); 2493 PKTOPT_EXTHDRCPY(ip6po_dest1); 2494 PKTOPT_EXTHDRCPY(ip6po_dest2); 2495 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2496 return (0); 2497 2498 bad: 2499 ip6_clearpktopts(dst, -1); 2500 return (ENOBUFS); 2501 } 2502 #undef PKTOPT_EXTHDRCPY 2503 2504 struct ip6_pktopts * 2505 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2506 { 2507 int error; 2508 struct ip6_pktopts *dst; 2509 2510 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2511 if (dst == NULL) 2512 return (NULL); 2513 ip6_initpktopts(dst); 2514 2515 if ((error = copypktopts(dst, src, canwait)) != 0) { 2516 free(dst, M_IP6OPT); 2517 return (NULL); 2518 } 2519 2520 return (dst); 2521 } 2522 2523 void 2524 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2525 { 2526 if (pktopt == NULL) 2527 return; 2528 2529 ip6_clearpktopts(pktopt, -1); 2530 2531 free(pktopt, M_IP6OPT); 2532 } 2533 2534 /* 2535 * Set IPv6 outgoing packet options based on advanced API. 2536 */ 2537 int 2538 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2539 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2540 { 2541 struct cmsghdr *cm = NULL; 2542 2543 if (control == NULL || opt == NULL) 2544 return (EINVAL); 2545 2546 ip6_initpktopts(opt); 2547 if (stickyopt) { 2548 int error; 2549 2550 /* 2551 * If stickyopt is provided, make a local copy of the options 2552 * for this particular packet, then override them by ancillary 2553 * objects. 2554 * XXX: copypktopts() does not copy the cached route to a next 2555 * hop (if any). This is not very good in terms of efficiency, 2556 * but we can allow this since this option should be rarely 2557 * used. 2558 */ 2559 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2560 return (error); 2561 } 2562 2563 /* 2564 * XXX: Currently, we assume all the optional information is stored 2565 * in a single mbuf. 2566 */ 2567 if (control->m_next) 2568 return (EINVAL); 2569 2570 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2571 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2572 int error; 2573 2574 if (control->m_len < CMSG_LEN(0)) 2575 return (EINVAL); 2576 2577 cm = mtod(control, struct cmsghdr *); 2578 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2579 return (EINVAL); 2580 if (cm->cmsg_level != IPPROTO_IPV6) 2581 continue; 2582 2583 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2584 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2585 if (error) 2586 return (error); 2587 } 2588 2589 return (0); 2590 } 2591 2592 /* 2593 * Set a particular packet option, as a sticky option or an ancillary data 2594 * item. "len" can be 0 only when it's a sticky option. 2595 * We have 4 cases of combination of "sticky" and "cmsg": 2596 * "sticky=0, cmsg=0": impossible 2597 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2598 * "sticky=1, cmsg=0": RFC3542 socket option 2599 * "sticky=1, cmsg=1": RFC2292 socket option 2600 */ 2601 static int 2602 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2603 struct ucred *cred, int sticky, int cmsg, int uproto) 2604 { 2605 int minmtupolicy, preftemp; 2606 int error; 2607 2608 if (!sticky && !cmsg) { 2609 #ifdef DIAGNOSTIC 2610 printf("ip6_setpktopt: impossible case\n"); 2611 #endif 2612 return (EINVAL); 2613 } 2614 2615 /* 2616 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2617 * not be specified in the context of RFC3542. Conversely, 2618 * RFC3542 types should not be specified in the context of RFC2292. 2619 */ 2620 if (!cmsg) { 2621 switch (optname) { 2622 case IPV6_2292PKTINFO: 2623 case IPV6_2292HOPLIMIT: 2624 case IPV6_2292NEXTHOP: 2625 case IPV6_2292HOPOPTS: 2626 case IPV6_2292DSTOPTS: 2627 case IPV6_2292RTHDR: 2628 case IPV6_2292PKTOPTIONS: 2629 return (ENOPROTOOPT); 2630 } 2631 } 2632 if (sticky && cmsg) { 2633 switch (optname) { 2634 case IPV6_PKTINFO: 2635 case IPV6_HOPLIMIT: 2636 case IPV6_NEXTHOP: 2637 case IPV6_HOPOPTS: 2638 case IPV6_DSTOPTS: 2639 case IPV6_RTHDRDSTOPTS: 2640 case IPV6_RTHDR: 2641 case IPV6_USE_MIN_MTU: 2642 case IPV6_DONTFRAG: 2643 case IPV6_TCLASS: 2644 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2645 return (ENOPROTOOPT); 2646 } 2647 } 2648 2649 switch (optname) { 2650 case IPV6_2292PKTINFO: 2651 case IPV6_PKTINFO: 2652 { 2653 struct ifnet *ifp = NULL; 2654 struct in6_pktinfo *pktinfo; 2655 2656 if (len != sizeof(struct in6_pktinfo)) 2657 return (EINVAL); 2658 2659 pktinfo = (struct in6_pktinfo *)buf; 2660 2661 /* 2662 * An application can clear any sticky IPV6_PKTINFO option by 2663 * doing a "regular" setsockopt with ipi6_addr being 2664 * in6addr_any and ipi6_ifindex being zero. 2665 * [RFC 3542, Section 6] 2666 */ 2667 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2668 pktinfo->ipi6_ifindex == 0 && 2669 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2670 ip6_clearpktopts(opt, optname); 2671 break; 2672 } 2673 2674 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2675 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2676 return (EINVAL); 2677 } 2678 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2679 return (EINVAL); 2680 /* validate the interface index if specified. */ 2681 if (pktinfo->ipi6_ifindex > V_if_index) 2682 return (ENXIO); 2683 if (pktinfo->ipi6_ifindex) { 2684 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2685 if (ifp == NULL) 2686 return (ENXIO); 2687 } 2688 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2689 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2690 return (ENETDOWN); 2691 2692 if (ifp != NULL && 2693 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2694 struct in6_ifaddr *ia; 2695 2696 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2697 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2698 if (ia == NULL) 2699 return (EADDRNOTAVAIL); 2700 ifa_free(&ia->ia_ifa); 2701 } 2702 /* 2703 * We store the address anyway, and let in6_selectsrc() 2704 * validate the specified address. This is because ipi6_addr 2705 * may not have enough information about its scope zone, and 2706 * we may need additional information (such as outgoing 2707 * interface or the scope zone of a destination address) to 2708 * disambiguate the scope. 2709 * XXX: the delay of the validation may confuse the 2710 * application when it is used as a sticky option. 2711 */ 2712 if (opt->ip6po_pktinfo == NULL) { 2713 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2714 M_IP6OPT, M_NOWAIT); 2715 if (opt->ip6po_pktinfo == NULL) 2716 return (ENOBUFS); 2717 } 2718 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2719 break; 2720 } 2721 2722 case IPV6_2292HOPLIMIT: 2723 case IPV6_HOPLIMIT: 2724 { 2725 int *hlimp; 2726 2727 /* 2728 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2729 * to simplify the ordering among hoplimit options. 2730 */ 2731 if (optname == IPV6_HOPLIMIT && sticky) 2732 return (ENOPROTOOPT); 2733 2734 if (len != sizeof(int)) 2735 return (EINVAL); 2736 hlimp = (int *)buf; 2737 if (*hlimp < -1 || *hlimp > 255) 2738 return (EINVAL); 2739 2740 opt->ip6po_hlim = *hlimp; 2741 break; 2742 } 2743 2744 case IPV6_TCLASS: 2745 { 2746 int tclass; 2747 2748 if (len != sizeof(int)) 2749 return (EINVAL); 2750 tclass = *(int *)buf; 2751 if (tclass < -1 || tclass > 255) 2752 return (EINVAL); 2753 2754 opt->ip6po_tclass = tclass; 2755 break; 2756 } 2757 2758 case IPV6_2292NEXTHOP: 2759 case IPV6_NEXTHOP: 2760 if (cred != NULL) { 2761 error = priv_check_cred(cred, 2762 PRIV_NETINET_SETHDROPTS, 0); 2763 if (error) 2764 return (error); 2765 } 2766 2767 if (len == 0) { /* just remove the option */ 2768 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2769 break; 2770 } 2771 2772 /* check if cmsg_len is large enough for sa_len */ 2773 if (len < sizeof(struct sockaddr) || len < *buf) 2774 return (EINVAL); 2775 2776 switch (((struct sockaddr *)buf)->sa_family) { 2777 case AF_INET6: 2778 { 2779 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2780 int error; 2781 2782 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2783 return (EINVAL); 2784 2785 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2786 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2787 return (EINVAL); 2788 } 2789 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2790 != 0) { 2791 return (error); 2792 } 2793 break; 2794 } 2795 case AF_LINK: /* should eventually be supported */ 2796 default: 2797 return (EAFNOSUPPORT); 2798 } 2799 2800 /* turn off the previous option, then set the new option. */ 2801 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2802 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2803 if (opt->ip6po_nexthop == NULL) 2804 return (ENOBUFS); 2805 bcopy(buf, opt->ip6po_nexthop, *buf); 2806 break; 2807 2808 case IPV6_2292HOPOPTS: 2809 case IPV6_HOPOPTS: 2810 { 2811 struct ip6_hbh *hbh; 2812 int hbhlen; 2813 2814 /* 2815 * XXX: We don't allow a non-privileged user to set ANY HbH 2816 * options, since per-option restriction has too much 2817 * overhead. 2818 */ 2819 if (cred != NULL) { 2820 error = priv_check_cred(cred, 2821 PRIV_NETINET_SETHDROPTS, 0); 2822 if (error) 2823 return (error); 2824 } 2825 2826 if (len == 0) { 2827 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2828 break; /* just remove the option */ 2829 } 2830 2831 /* message length validation */ 2832 if (len < sizeof(struct ip6_hbh)) 2833 return (EINVAL); 2834 hbh = (struct ip6_hbh *)buf; 2835 hbhlen = (hbh->ip6h_len + 1) << 3; 2836 if (len != hbhlen) 2837 return (EINVAL); 2838 2839 /* turn off the previous option, then set the new option. */ 2840 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2841 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2842 if (opt->ip6po_hbh == NULL) 2843 return (ENOBUFS); 2844 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2845 2846 break; 2847 } 2848 2849 case IPV6_2292DSTOPTS: 2850 case IPV6_DSTOPTS: 2851 case IPV6_RTHDRDSTOPTS: 2852 { 2853 struct ip6_dest *dest, **newdest = NULL; 2854 int destlen; 2855 2856 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2857 error = priv_check_cred(cred, 2858 PRIV_NETINET_SETHDROPTS, 0); 2859 if (error) 2860 return (error); 2861 } 2862 2863 if (len == 0) { 2864 ip6_clearpktopts(opt, optname); 2865 break; /* just remove the option */ 2866 } 2867 2868 /* message length validation */ 2869 if (len < sizeof(struct ip6_dest)) 2870 return (EINVAL); 2871 dest = (struct ip6_dest *)buf; 2872 destlen = (dest->ip6d_len + 1) << 3; 2873 if (len != destlen) 2874 return (EINVAL); 2875 2876 /* 2877 * Determine the position that the destination options header 2878 * should be inserted; before or after the routing header. 2879 */ 2880 switch (optname) { 2881 case IPV6_2292DSTOPTS: 2882 /* 2883 * The old advacned API is ambiguous on this point. 2884 * Our approach is to determine the position based 2885 * according to the existence of a routing header. 2886 * Note, however, that this depends on the order of the 2887 * extension headers in the ancillary data; the 1st 2888 * part of the destination options header must appear 2889 * before the routing header in the ancillary data, 2890 * too. 2891 * RFC3542 solved the ambiguity by introducing 2892 * separate ancillary data or option types. 2893 */ 2894 if (opt->ip6po_rthdr == NULL) 2895 newdest = &opt->ip6po_dest1; 2896 else 2897 newdest = &opt->ip6po_dest2; 2898 break; 2899 case IPV6_RTHDRDSTOPTS: 2900 newdest = &opt->ip6po_dest1; 2901 break; 2902 case IPV6_DSTOPTS: 2903 newdest = &opt->ip6po_dest2; 2904 break; 2905 } 2906 2907 /* turn off the previous option, then set the new option. */ 2908 ip6_clearpktopts(opt, optname); 2909 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2910 if (*newdest == NULL) 2911 return (ENOBUFS); 2912 bcopy(dest, *newdest, destlen); 2913 2914 break; 2915 } 2916 2917 case IPV6_2292RTHDR: 2918 case IPV6_RTHDR: 2919 { 2920 struct ip6_rthdr *rth; 2921 int rthlen; 2922 2923 if (len == 0) { 2924 ip6_clearpktopts(opt, IPV6_RTHDR); 2925 break; /* just remove the option */ 2926 } 2927 2928 /* message length validation */ 2929 if (len < sizeof(struct ip6_rthdr)) 2930 return (EINVAL); 2931 rth = (struct ip6_rthdr *)buf; 2932 rthlen = (rth->ip6r_len + 1) << 3; 2933 if (len != rthlen) 2934 return (EINVAL); 2935 2936 switch (rth->ip6r_type) { 2937 case IPV6_RTHDR_TYPE_0: 2938 if (rth->ip6r_len == 0) /* must contain one addr */ 2939 return (EINVAL); 2940 if (rth->ip6r_len % 2) /* length must be even */ 2941 return (EINVAL); 2942 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2943 return (EINVAL); 2944 break; 2945 default: 2946 return (EINVAL); /* not supported */ 2947 } 2948 2949 /* turn off the previous option */ 2950 ip6_clearpktopts(opt, IPV6_RTHDR); 2951 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2952 if (opt->ip6po_rthdr == NULL) 2953 return (ENOBUFS); 2954 bcopy(rth, opt->ip6po_rthdr, rthlen); 2955 2956 break; 2957 } 2958 2959 case IPV6_USE_MIN_MTU: 2960 if (len != sizeof(int)) 2961 return (EINVAL); 2962 minmtupolicy = *(int *)buf; 2963 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2964 minmtupolicy != IP6PO_MINMTU_DISABLE && 2965 minmtupolicy != IP6PO_MINMTU_ALL) { 2966 return (EINVAL); 2967 } 2968 opt->ip6po_minmtu = minmtupolicy; 2969 break; 2970 2971 case IPV6_DONTFRAG: 2972 if (len != sizeof(int)) 2973 return (EINVAL); 2974 2975 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2976 /* 2977 * we ignore this option for TCP sockets. 2978 * (RFC3542 leaves this case unspecified.) 2979 */ 2980 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2981 } else 2982 opt->ip6po_flags |= IP6PO_DONTFRAG; 2983 break; 2984 2985 case IPV6_PREFER_TEMPADDR: 2986 if (len != sizeof(int)) 2987 return (EINVAL); 2988 preftemp = *(int *)buf; 2989 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 2990 preftemp != IP6PO_TEMPADDR_NOTPREFER && 2991 preftemp != IP6PO_TEMPADDR_PREFER) { 2992 return (EINVAL); 2993 } 2994 opt->ip6po_prefer_tempaddr = preftemp; 2995 break; 2996 2997 default: 2998 return (ENOPROTOOPT); 2999 } /* end of switch */ 3000 3001 return (0); 3002 } 3003 3004 /* 3005 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3006 * packet to the input queue of a specified interface. Note that this 3007 * calls the output routine of the loopback "driver", but with an interface 3008 * pointer that might NOT be &loif -- easier than replicating that code here. 3009 */ 3010 void 3011 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3012 { 3013 struct mbuf *copym; 3014 struct ip6_hdr *ip6; 3015 3016 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3017 if (copym == NULL) 3018 return; 3019 3020 /* 3021 * Make sure to deep-copy IPv6 header portion in case the data 3022 * is in an mbuf cluster, so that we can safely override the IPv6 3023 * header portion later. 3024 */ 3025 if (!M_WRITABLE(copym) || 3026 copym->m_len < sizeof(struct ip6_hdr)) { 3027 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3028 if (copym == NULL) 3029 return; 3030 } 3031 ip6 = mtod(copym, struct ip6_hdr *); 3032 /* 3033 * clear embedded scope identifiers if necessary. 3034 * in6_clearscope will touch the addresses only when necessary. 3035 */ 3036 in6_clearscope(&ip6->ip6_src); 3037 in6_clearscope(&ip6->ip6_dst); 3038 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3039 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3040 CSUM_PSEUDO_HDR; 3041 copym->m_pkthdr.csum_data = 0xffff; 3042 } 3043 if_simloop(ifp, copym, AF_INET6, 0); 3044 } 3045 3046 /* 3047 * Chop IPv6 header off from the payload. 3048 */ 3049 static int 3050 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3051 { 3052 struct mbuf *mh; 3053 struct ip6_hdr *ip6; 3054 3055 ip6 = mtod(m, struct ip6_hdr *); 3056 if (m->m_len > sizeof(*ip6)) { 3057 mh = m_gethdr(M_NOWAIT, MT_DATA); 3058 if (mh == NULL) { 3059 m_freem(m); 3060 return ENOBUFS; 3061 } 3062 m_move_pkthdr(mh, m); 3063 M_ALIGN(mh, sizeof(*ip6)); 3064 m->m_len -= sizeof(*ip6); 3065 m->m_data += sizeof(*ip6); 3066 mh->m_next = m; 3067 m = mh; 3068 m->m_len = sizeof(*ip6); 3069 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3070 } 3071 exthdrs->ip6e_ip6 = m; 3072 return 0; 3073 } 3074 3075 /* 3076 * Compute IPv6 extension header length. 3077 */ 3078 int 3079 ip6_optlen(struct inpcb *in6p) 3080 { 3081 int len; 3082 3083 if (!in6p->in6p_outputopts) 3084 return 0; 3085 3086 len = 0; 3087 #define elen(x) \ 3088 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3089 3090 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3091 if (in6p->in6p_outputopts->ip6po_rthdr) 3092 /* dest1 is valid with rthdr only */ 3093 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3094 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3095 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3096 return len; 3097 #undef elen 3098 } 3099