1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #include "opt_kern_tls.h" 72 #include "opt_ratelimit.h" 73 #include "opt_route.h" 74 #include "opt_rss.h" 75 #include "opt_sctp.h" 76 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/ktls.h> 80 #include <sys/malloc.h> 81 #include <sys/mbuf.h> 82 #include <sys/errno.h> 83 #include <sys/priv.h> 84 #include <sys/proc.h> 85 #include <sys/protosw.h> 86 #include <sys/socket.h> 87 #include <sys/socketvar.h> 88 #include <sys/syslog.h> 89 #include <sys/ucred.h> 90 91 #include <machine/in_cksum.h> 92 93 #include <net/if.h> 94 #include <net/if_var.h> 95 #include <net/if_llatbl.h> 96 #include <net/netisr.h> 97 #include <net/route.h> 98 #include <net/route/nhop.h> 99 #include <net/pfil.h> 100 #include <net/rss_config.h> 101 #include <net/vnet.h> 102 103 #include <netinet/in.h> 104 #include <netinet/in_var.h> 105 #include <netinet/ip_var.h> 106 #include <netinet6/in6_fib.h> 107 #include <netinet6/in6_var.h> 108 #include <netinet/ip6.h> 109 #include <netinet/icmp6.h> 110 #include <netinet6/ip6_var.h> 111 #include <netinet/in_pcb.h> 112 #include <netinet/tcp_var.h> 113 #include <netinet6/nd6.h> 114 #include <netinet6/in6_rss.h> 115 116 #include <netipsec/ipsec_support.h> 117 #if defined(SCTP) || defined(SCTP_SUPPORT) 118 #include <netinet/sctp.h> 119 #include <netinet/sctp_crc32.h> 120 #endif 121 122 #include <netinet6/ip6protosw.h> 123 #include <netinet6/scope6_var.h> 124 125 extern int in6_mcast_loop; 126 127 struct ip6_exthdrs { 128 struct mbuf *ip6e_ip6; 129 struct mbuf *ip6e_hbh; 130 struct mbuf *ip6e_dest1; 131 struct mbuf *ip6e_rthdr; 132 struct mbuf *ip6e_dest2; 133 }; 134 135 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 136 137 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 138 struct ucred *, int); 139 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 140 struct socket *, struct sockopt *); 141 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 142 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 143 struct ucred *, int, int, int); 144 145 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 146 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 147 struct ip6_frag **); 148 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 149 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 150 static int ip6_getpmtu(struct route_in6 *, int, 151 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 152 u_int); 153 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 154 u_long *, int *, u_int); 155 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 156 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 157 158 159 /* 160 * Make an extension header from option data. hp is the source, 161 * mp is the destination, and _ol is the optlen. 162 */ 163 #define MAKE_EXTHDR(hp, mp, _ol) \ 164 do { \ 165 if (hp) { \ 166 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 167 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 168 ((eh)->ip6e_len + 1) << 3); \ 169 if (error) \ 170 goto freehdrs; \ 171 (_ol) += (*(mp))->m_len; \ 172 } \ 173 } while (/*CONSTCOND*/ 0) 174 175 /* 176 * Form a chain of extension headers. 177 * m is the extension header mbuf 178 * mp is the previous mbuf in the chain 179 * p is the next header 180 * i is the type of option. 181 */ 182 #define MAKE_CHAIN(m, mp, p, i)\ 183 do {\ 184 if (m) {\ 185 if (!hdrsplit) \ 186 panic("%s:%d: assumption failed: "\ 187 "hdr not split: hdrsplit %d exthdrs %p",\ 188 __func__, __LINE__, hdrsplit, &exthdrs);\ 189 *mtod((m), u_char *) = *(p);\ 190 *(p) = (i);\ 191 p = mtod((m), u_char *);\ 192 (m)->m_next = (mp)->m_next;\ 193 (mp)->m_next = (m);\ 194 (mp) = (m);\ 195 }\ 196 } while (/*CONSTCOND*/ 0) 197 198 void 199 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 200 { 201 u_short csum; 202 203 csum = in_cksum_skip(m, offset + plen, offset); 204 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 205 csum = 0xffff; 206 offset += m->m_pkthdr.csum_data; /* checksum offset */ 207 208 if (offset + sizeof(csum) > m->m_len) 209 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 210 else 211 *(u_short *)mtodo(m, offset) = csum; 212 } 213 214 static int 215 ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags, 216 int plen, int optlen, bool frag) 217 { 218 219 KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p " 220 "csum_flags %#x frag %d\n", 221 __func__, __LINE__, plen, optlen, m, ifp, csum_flags, frag)); 222 223 if ((csum_flags & CSUM_DELAY_DATA_IPV6) || 224 #if defined(SCTP) || defined(SCTP_SUPPORT) 225 (csum_flags & CSUM_SCTP_IPV6) || 226 #endif 227 (!frag && (ifp->if_capenable & IFCAP_NOMAP) == 0)) { 228 m = mb_unmapped_to_ext(m); 229 if (m == NULL) { 230 if (frag) 231 in6_ifstat_inc(ifp, ifs6_out_fragfail); 232 else 233 IP6STAT_INC(ip6s_odropped); 234 return (ENOBUFS); 235 } 236 if (csum_flags & CSUM_DELAY_DATA_IPV6) { 237 in6_delayed_cksum(m, plen - optlen, 238 sizeof(struct ip6_hdr) + optlen); 239 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 240 } 241 #if defined(SCTP) || defined(SCTP_SUPPORT) 242 if (csum_flags & CSUM_SCTP_IPV6) { 243 sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen); 244 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 245 } 246 #endif 247 } 248 249 return (0); 250 } 251 252 int 253 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 254 int fraglen , uint32_t id) 255 { 256 struct mbuf *m, **mnext, *m_frgpart; 257 struct ip6_hdr *ip6, *mhip6; 258 struct ip6_frag *ip6f; 259 int off; 260 int error; 261 int tlen = m0->m_pkthdr.len; 262 263 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 264 265 m = m0; 266 ip6 = mtod(m, struct ip6_hdr *); 267 mnext = &m->m_nextpkt; 268 269 for (off = hlen; off < tlen; off += fraglen) { 270 m = m_gethdr(M_NOWAIT, MT_DATA); 271 if (!m) { 272 IP6STAT_INC(ip6s_odropped); 273 return (ENOBUFS); 274 } 275 276 /* 277 * Make sure the complete packet header gets copied 278 * from the originating mbuf to the newly created 279 * mbuf. This also ensures that existing firewall 280 * classification(s), VLAN tags and so on get copied 281 * to the resulting fragmented packet(s): 282 */ 283 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 284 m_free(m); 285 IP6STAT_INC(ip6s_odropped); 286 return (ENOBUFS); 287 } 288 289 *mnext = m; 290 mnext = &m->m_nextpkt; 291 m->m_data += max_linkhdr; 292 mhip6 = mtod(m, struct ip6_hdr *); 293 *mhip6 = *ip6; 294 m->m_len = sizeof(*mhip6); 295 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 296 if (error) { 297 IP6STAT_INC(ip6s_odropped); 298 return (error); 299 } 300 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 301 if (off + fraglen >= tlen) 302 fraglen = tlen - off; 303 else 304 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 305 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 306 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 307 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 308 IP6STAT_INC(ip6s_odropped); 309 return (ENOBUFS); 310 } 311 m_cat(m, m_frgpart); 312 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 313 ip6f->ip6f_reserved = 0; 314 ip6f->ip6f_ident = id; 315 ip6f->ip6f_nxt = nextproto; 316 IP6STAT_INC(ip6s_ofragments); 317 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 318 } 319 320 return (0); 321 } 322 323 static int 324 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp, 325 struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro, 326 bool stamp_tag) 327 { 328 #ifdef KERN_TLS 329 struct ktls_session *tls = NULL; 330 #endif 331 struct m_snd_tag *mst; 332 int error; 333 334 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 335 mst = NULL; 336 337 #ifdef KERN_TLS 338 /* 339 * If this is an unencrypted TLS record, save a reference to 340 * the record. This local reference is used to call 341 * ktls_output_eagain after the mbuf has been freed (thus 342 * dropping the mbuf's reference) in if_output. 343 */ 344 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 345 tls = ktls_hold(m->m_next->m_epg_tls); 346 mst = tls->snd_tag; 347 348 /* 349 * If a TLS session doesn't have a valid tag, it must 350 * have had an earlier ifp mismatch, so drop this 351 * packet. 352 */ 353 if (mst == NULL) { 354 error = EAGAIN; 355 goto done; 356 } 357 /* 358 * Always stamp tags that include NIC ktls. 359 */ 360 stamp_tag = true; 361 } 362 #endif 363 #ifdef RATELIMIT 364 if (inp != NULL && mst == NULL) { 365 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 366 (inp->inp_snd_tag != NULL && 367 inp->inp_snd_tag->ifp != ifp)) 368 in_pcboutput_txrtlmt(inp, ifp, m); 369 370 if (inp->inp_snd_tag != NULL) 371 mst = inp->inp_snd_tag; 372 } 373 #endif 374 if (stamp_tag && mst != NULL) { 375 KASSERT(m->m_pkthdr.rcvif == NULL, 376 ("trying to add a send tag to a forwarded packet")); 377 if (mst->ifp != ifp) { 378 error = EAGAIN; 379 goto done; 380 } 381 382 /* stamp send tag on mbuf */ 383 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 384 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 385 } 386 387 error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); 388 389 done: 390 /* Check for route change invalidating send tags. */ 391 #ifdef KERN_TLS 392 if (tls != NULL) { 393 if (error == EAGAIN) 394 error = ktls_output_eagain(inp, tls); 395 ktls_free(tls); 396 } 397 #endif 398 #ifdef RATELIMIT 399 if (error == EAGAIN) 400 in_pcboutput_eagain(inp); 401 #endif 402 return (error); 403 } 404 405 /* 406 * IP6 output. 407 * The packet in mbuf chain m contains a skeletal IP6 header (with pri, len, 408 * nxt, hlim, src, dst). 409 * This function may modify ver and hlim only. 410 * The mbuf chain containing the packet will be freed. 411 * The mbuf opt, if present, will not be freed. 412 * If route_in6 ro is present and has ro_nh initialized, route lookup would be 413 * skipped and ro->ro_nh would be used. If ro is present but ro->ro_nh is NULL, 414 * then result of route lookup is stored in ro->ro_nh. 415 * 416 * Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu 417 * is uint32_t. So we use u_long to hold largest one, which is rt_mtu. 418 * 419 * ifpp - XXX: just for statistics 420 */ 421 /* 422 * XXX TODO: no flowid is assigned for outbound flows? 423 */ 424 int 425 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 426 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 427 struct ifnet **ifpp, struct inpcb *inp) 428 { 429 struct ip6_hdr *ip6; 430 struct ifnet *ifp, *origifp; 431 struct mbuf *m = m0; 432 struct mbuf *mprev; 433 struct route_in6 *ro_pmtu; 434 struct nhop_object *nh; 435 struct sockaddr_in6 *dst, sin6, src_sa, dst_sa; 436 struct in6_addr odst; 437 u_char *nexthdrp; 438 int tlen, len; 439 int error = 0; 440 struct in6_ifaddr *ia = NULL; 441 u_long mtu; 442 int alwaysfrag, dontfrag; 443 u_int32_t optlen, plen = 0, unfragpartlen; 444 struct ip6_exthdrs exthdrs; 445 struct in6_addr src0, dst0; 446 u_int32_t zone; 447 bool hdrsplit; 448 int sw_csum, tso; 449 int needfiblookup; 450 uint32_t fibnum; 451 struct m_tag *fwd_tag = NULL; 452 uint32_t id; 453 454 NET_EPOCH_ASSERT(); 455 456 if (inp != NULL) { 457 INP_LOCK_ASSERT(inp); 458 M_SETFIB(m, inp->inp_inc.inc_fibnum); 459 if ((flags & IP_NODEFAULTFLOWID) == 0) { 460 /* Unconditionally set flowid. */ 461 m->m_pkthdr.flowid = inp->inp_flowid; 462 M_HASHTYPE_SET(m, inp->inp_flowtype); 463 } 464 #ifdef NUMA 465 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 466 #endif 467 } 468 469 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 470 /* 471 * IPSec checking which handles several cases. 472 * FAST IPSEC: We re-injected the packet. 473 * XXX: need scope argument. 474 */ 475 if (IPSEC_ENABLED(ipv6)) { 476 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 477 if (error == EINPROGRESS) 478 error = 0; 479 goto done; 480 } 481 } 482 #endif /* IPSEC */ 483 484 /* Source address validation. */ 485 ip6 = mtod(m, struct ip6_hdr *); 486 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 487 (flags & IPV6_UNSPECSRC) == 0) { 488 error = EOPNOTSUPP; 489 IP6STAT_INC(ip6s_badscope); 490 goto bad; 491 } 492 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 493 error = EOPNOTSUPP; 494 IP6STAT_INC(ip6s_badscope); 495 goto bad; 496 } 497 498 /* 499 * If we are given packet options to add extension headers prepare them. 500 * Calculate the total length of the extension header chain. 501 * Keep the length of the unfragmentable part for fragmentation. 502 */ 503 bzero(&exthdrs, sizeof(exthdrs)); 504 optlen = 0; 505 unfragpartlen = sizeof(struct ip6_hdr); 506 if (opt) { 507 /* Hop-by-Hop options header. */ 508 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen); 509 510 /* Destination options header (1st part). */ 511 if (opt->ip6po_rthdr) { 512 #ifndef RTHDR_SUPPORT_IMPLEMENTED 513 /* 514 * If there is a routing header, discard the packet 515 * right away here. RH0/1 are obsolete and we do not 516 * currently support RH2/3/4. 517 * People trying to use RH253/254 may want to disable 518 * this check. 519 * The moment we do support any routing header (again) 520 * this block should check the routing type more 521 * selectively. 522 */ 523 error = EINVAL; 524 goto bad; 525 #endif 526 527 /* 528 * Destination options header (1st part). 529 * This only makes sense with a routing header. 530 * See Section 9.2 of RFC 3542. 531 * Disabling this part just for MIP6 convenience is 532 * a bad idea. We need to think carefully about a 533 * way to make the advanced API coexist with MIP6 534 * options, which might automatically be inserted in 535 * the kernel. 536 */ 537 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1, 538 optlen); 539 } 540 /* Routing header. */ 541 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen); 542 543 unfragpartlen += optlen; 544 545 /* 546 * NOTE: we don't add AH/ESP length here (done in 547 * ip6_ipsec_output()). 548 */ 549 550 /* Destination options header (2nd part). */ 551 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen); 552 } 553 554 /* 555 * If there is at least one extension header, 556 * separate IP6 header from the payload. 557 */ 558 hdrsplit = false; 559 if (optlen) { 560 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 561 m = NULL; 562 goto freehdrs; 563 } 564 m = exthdrs.ip6e_ip6; 565 ip6 = mtod(m, struct ip6_hdr *); 566 hdrsplit = true; 567 } 568 569 /* Adjust mbuf packet header length. */ 570 m->m_pkthdr.len += optlen; 571 plen = m->m_pkthdr.len - sizeof(*ip6); 572 573 /* If this is a jumbo payload, insert a jumbo payload option. */ 574 if (plen > IPV6_MAXPACKET) { 575 if (!hdrsplit) { 576 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 577 m = NULL; 578 goto freehdrs; 579 } 580 m = exthdrs.ip6e_ip6; 581 ip6 = mtod(m, struct ip6_hdr *); 582 hdrsplit = true; 583 } 584 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 585 goto freehdrs; 586 ip6->ip6_plen = 0; 587 } else 588 ip6->ip6_plen = htons(plen); 589 nexthdrp = &ip6->ip6_nxt; 590 591 if (optlen) { 592 /* 593 * Concatenate headers and fill in next header fields. 594 * Here we have, on "m" 595 * IPv6 payload 596 * and we insert headers accordingly. 597 * Finally, we should be getting: 598 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]. 599 * 600 * During the header composing process "m" points to IPv6 601 * header. "mprev" points to an extension header prior to esp. 602 */ 603 mprev = m; 604 605 /* 606 * We treat dest2 specially. This makes IPsec processing 607 * much easier. The goal here is to make mprev point the 608 * mbuf prior to dest2. 609 * 610 * Result: IPv6 dest2 payload. 611 * m and mprev will point to IPv6 header. 612 */ 613 if (exthdrs.ip6e_dest2) { 614 if (!hdrsplit) 615 panic("%s:%d: assumption failed: " 616 "hdr not split: hdrsplit %d exthdrs %p", 617 __func__, __LINE__, hdrsplit, &exthdrs); 618 exthdrs.ip6e_dest2->m_next = m->m_next; 619 m->m_next = exthdrs.ip6e_dest2; 620 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 621 ip6->ip6_nxt = IPPROTO_DSTOPTS; 622 } 623 624 /* 625 * Result: IPv6 hbh dest1 rthdr dest2 payload. 626 * m will point to IPv6 header. mprev will point to the 627 * extension header prior to dest2 (rthdr in the above case). 628 */ 629 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 630 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 631 IPPROTO_DSTOPTS); 632 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 633 IPPROTO_ROUTING); 634 } 635 636 IP6STAT_INC(ip6s_localout); 637 638 /* Route packet. */ 639 ro_pmtu = ro; 640 if (opt && opt->ip6po_rthdr) 641 ro = &opt->ip6po_route; 642 if (ro != NULL) 643 dst = (struct sockaddr_in6 *)&ro->ro_dst; 644 else 645 dst = &sin6; 646 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 647 648 again: 649 /* 650 * If specified, try to fill in the traffic class field. 651 * Do not override if a non-zero value is already set. 652 * We check the diffserv field and the ECN field separately. 653 */ 654 if (opt && opt->ip6po_tclass >= 0) { 655 int mask = 0; 656 657 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 658 mask |= 0xfc; 659 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 660 mask |= 0x03; 661 if (mask != 0) 662 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 663 } 664 665 /* Fill in or override the hop limit field, if necessary. */ 666 if (opt && opt->ip6po_hlim != -1) 667 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 668 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 669 if (im6o != NULL) 670 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 671 else 672 ip6->ip6_hlim = V_ip6_defmcasthlim; 673 } 674 675 if (ro == NULL || ro->ro_nh == NULL) { 676 bzero(dst, sizeof(*dst)); 677 dst->sin6_family = AF_INET6; 678 dst->sin6_len = sizeof(*dst); 679 dst->sin6_addr = ip6->ip6_dst; 680 } 681 /* 682 * Validate route against routing table changes. 683 * Make sure that the address family is set in route. 684 */ 685 nh = NULL; 686 ifp = NULL; 687 mtu = 0; 688 if (ro != NULL) { 689 if (ro->ro_nh != NULL && inp != NULL) { 690 ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */ 691 NH_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, 692 fibnum); 693 } 694 if (ro->ro_nh != NULL && fwd_tag == NULL && 695 (!NH_IS_VALID(ro->ro_nh) || 696 ro->ro_dst.sin6_family != AF_INET6 || 697 !IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst))) 698 RO_INVALIDATE_CACHE(ro); 699 700 if (ro->ro_nh != NULL && fwd_tag == NULL && 701 ro->ro_dst.sin6_family == AF_INET6 && 702 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 703 nh = ro->ro_nh; 704 ifp = nh->nh_ifp; 705 } else { 706 if (ro->ro_lle) 707 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 708 ro->ro_lle = NULL; 709 if (fwd_tag == NULL) { 710 bzero(&dst_sa, sizeof(dst_sa)); 711 dst_sa.sin6_family = AF_INET6; 712 dst_sa.sin6_len = sizeof(dst_sa); 713 dst_sa.sin6_addr = ip6->ip6_dst; 714 } 715 error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, 716 &nh, fibnum, m->m_pkthdr.flowid); 717 if (error != 0) { 718 IP6STAT_INC(ip6s_noroute); 719 if (ifp != NULL) 720 in6_ifstat_inc(ifp, ifs6_out_discard); 721 goto bad; 722 } 723 if (ifp != NULL) 724 mtu = ifp->if_mtu; 725 } 726 if (nh == NULL) { 727 /* 728 * If in6_selectroute() does not return a nexthop 729 * dst may not have been updated. 730 */ 731 *dst = dst_sa; /* XXX */ 732 } else { 733 if (nh->nh_flags & NHF_HOST) 734 mtu = nh->nh_mtu; 735 ia = (struct in6_ifaddr *)(nh->nh_ifa); 736 counter_u64_add(nh->nh_pksent, 1); 737 } 738 } else { 739 struct nhop_object *nh; 740 struct in6_addr kdst; 741 uint32_t scopeid; 742 743 if (fwd_tag == NULL) { 744 bzero(&dst_sa, sizeof(dst_sa)); 745 dst_sa.sin6_family = AF_INET6; 746 dst_sa.sin6_len = sizeof(dst_sa); 747 dst_sa.sin6_addr = ip6->ip6_dst; 748 } 749 750 if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) && 751 im6o != NULL && 752 (ifp = im6o->im6o_multicast_ifp) != NULL) { 753 /* We do not need a route lookup. */ 754 *dst = dst_sa; /* XXX */ 755 goto nonh6lookup; 756 } 757 758 in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid); 759 760 if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) || 761 IN6_IS_ADDR_MC_NODELOCAL(&dst_sa.sin6_addr)) { 762 if (scopeid > 0) { 763 ifp = in6_getlinkifnet(scopeid); 764 if (ifp == NULL) { 765 error = EHOSTUNREACH; 766 goto bad; 767 } 768 *dst = dst_sa; /* XXX */ 769 goto nonh6lookup; 770 } 771 } 772 773 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 774 if (nh == NULL) { 775 IP6STAT_INC(ip6s_noroute); 776 /* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */ 777 error = EHOSTUNREACH;; 778 goto bad; 779 } 780 781 ifp = nh->nh_ifp; 782 mtu = nh->nh_mtu; 783 ia = ifatoia6(nh->nh_ifa); 784 if (nh->nh_flags & NHF_GATEWAY) 785 dst->sin6_addr = nh->gw6_sa.sin6_addr; 786 nonh6lookup: 787 ; 788 } 789 790 /* Then nh (for unicast) and ifp must be non-NULL valid values. */ 791 if ((flags & IPV6_FORWARDING) == 0) { 792 /* XXX: the FORWARDING flag can be set for mrouting. */ 793 in6_ifstat_inc(ifp, ifs6_out_request); 794 } 795 796 /* Setup data structures for scope ID checks. */ 797 src0 = ip6->ip6_src; 798 bzero(&src_sa, sizeof(src_sa)); 799 src_sa.sin6_family = AF_INET6; 800 src_sa.sin6_len = sizeof(src_sa); 801 src_sa.sin6_addr = ip6->ip6_src; 802 803 dst0 = ip6->ip6_dst; 804 /* Re-initialize to be sure. */ 805 bzero(&dst_sa, sizeof(dst_sa)); 806 dst_sa.sin6_family = AF_INET6; 807 dst_sa.sin6_len = sizeof(dst_sa); 808 dst_sa.sin6_addr = ip6->ip6_dst; 809 810 /* Check for valid scope ID. */ 811 if (in6_setscope(&src0, ifp, &zone) == 0 && 812 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && 813 in6_setscope(&dst0, ifp, &zone) == 0 && 814 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { 815 /* 816 * The outgoing interface is in the zone of the source 817 * and destination addresses. 818 * 819 * Because the loopback interface cannot receive 820 * packets with a different scope ID than its own, 821 * there is a trick to pretend the outgoing packet 822 * was received by the real network interface, by 823 * setting "origifp" different from "ifp". This is 824 * only allowed when "ifp" is a loopback network 825 * interface. Refer to code in nd6_output_ifp() for 826 * more details. 827 */ 828 origifp = ifp; 829 830 /* 831 * We should use ia_ifp to support the case of sending 832 * packets to an address of our own. 833 */ 834 if (ia != NULL && ia->ia_ifp) 835 ifp = ia->ia_ifp; 836 837 } else if ((ifp->if_flags & IFF_LOOPBACK) == 0 || 838 sa6_recoverscope(&src_sa) != 0 || 839 sa6_recoverscope(&dst_sa) != 0 || 840 dst_sa.sin6_scope_id == 0 || 841 (src_sa.sin6_scope_id != 0 && 842 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || 843 (origifp = ifnet_byindex(dst_sa.sin6_scope_id)) == NULL) { 844 /* 845 * If the destination network interface is not a 846 * loopback interface, or the destination network 847 * address has no scope ID, or the source address has 848 * a scope ID set which is different from the 849 * destination address one, or there is no network 850 * interface representing this scope ID, the address 851 * pair is considered invalid. 852 */ 853 IP6STAT_INC(ip6s_badscope); 854 in6_ifstat_inc(ifp, ifs6_out_discard); 855 if (error == 0) 856 error = EHOSTUNREACH; /* XXX */ 857 goto bad; 858 } 859 /* All scope ID checks are successful. */ 860 861 if (nh && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 862 if (opt && opt->ip6po_nextroute.ro_nh) { 863 /* 864 * The nexthop is explicitly specified by the 865 * application. We assume the next hop is an IPv6 866 * address. 867 */ 868 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 869 } 870 else if ((nh->nh_flags & NHF_GATEWAY)) 871 dst = &nh->gw6_sa; 872 } 873 874 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 875 m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */ 876 } else { 877 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 878 in6_ifstat_inc(ifp, ifs6_out_mcast); 879 880 /* Confirm that the outgoing interface supports multicast. */ 881 if (!(ifp->if_flags & IFF_MULTICAST)) { 882 IP6STAT_INC(ip6s_noroute); 883 in6_ifstat_inc(ifp, ifs6_out_discard); 884 error = ENETUNREACH; 885 goto bad; 886 } 887 if ((im6o == NULL && in6_mcast_loop) || 888 (im6o && im6o->im6o_multicast_loop)) { 889 /* 890 * Loop back multicast datagram if not expressly 891 * forbidden to do so, even if we have not joined 892 * the address; protocols will filter it later, 893 * thus deferring a hash lookup and lock acquisition 894 * at the expense of an m_copym(). 895 */ 896 ip6_mloopback(ifp, m); 897 } else { 898 /* 899 * If we are acting as a multicast router, perform 900 * multicast forwarding as if the packet had just 901 * arrived on the interface to which we are about 902 * to send. The multicast forwarding function 903 * recursively calls this function, using the 904 * IPV6_FORWARDING flag to prevent infinite recursion. 905 * 906 * Multicasts that are looped back by ip6_mloopback(), 907 * above, will be forwarded by the ip6_input() routine, 908 * if necessary. 909 */ 910 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 911 /* 912 * XXX: ip6_mforward expects that rcvif is NULL 913 * when it is called from the originating path. 914 * However, it may not always be the case. 915 */ 916 m->m_pkthdr.rcvif = NULL; 917 if (ip6_mforward(ip6, ifp, m) != 0) { 918 m_freem(m); 919 goto done; 920 } 921 } 922 } 923 /* 924 * Multicasts with a hoplimit of zero may be looped back, 925 * above, but must not be transmitted on a network. 926 * Also, multicasts addressed to the loopback interface 927 * are not sent -- the above call to ip6_mloopback() will 928 * loop back a copy if this host actually belongs to the 929 * destination group on the loopback interface. 930 */ 931 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 932 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 933 m_freem(m); 934 goto done; 935 } 936 } 937 938 /* 939 * Fill the outgoing inteface to tell the upper layer 940 * to increment per-interface statistics. 941 */ 942 if (ifpp) 943 *ifpp = ifp; 944 945 /* Determine path MTU. */ 946 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 947 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 948 goto bad; 949 KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p " 950 "alwaysfrag %d fibnum %u\n", __func__, __LINE__, mtu, ro_pmtu, ro, 951 ifp, alwaysfrag, fibnum)); 952 953 /* 954 * The caller of this function may specify to use the minimum MTU 955 * in some cases. 956 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 957 * setting. The logic is a bit complicated; by default, unicast 958 * packets will follow path MTU while multicast packets will be sent at 959 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 960 * including unicast ones will be sent at the minimum MTU. Multicast 961 * packets will always be sent at the minimum MTU unless 962 * IP6PO_MINMTU_DISABLE is explicitly specified. 963 * See RFC 3542 for more details. 964 */ 965 if (mtu > IPV6_MMTU) { 966 if ((flags & IPV6_MINMTU)) 967 mtu = IPV6_MMTU; 968 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 969 mtu = IPV6_MMTU; 970 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 971 (opt == NULL || 972 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 973 mtu = IPV6_MMTU; 974 } 975 } 976 977 /* 978 * Clear embedded scope identifiers if necessary. 979 * in6_clearscope() will touch the addresses only when necessary. 980 */ 981 in6_clearscope(&ip6->ip6_src); 982 in6_clearscope(&ip6->ip6_dst); 983 984 /* 985 * If the outgoing packet contains a hop-by-hop options header, 986 * it must be examined and processed even by the source node. 987 * (RFC 2460, section 4.) 988 */ 989 if (exthdrs.ip6e_hbh) { 990 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 991 u_int32_t dummy; /* XXX unused */ 992 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 993 994 #ifdef DIAGNOSTIC 995 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 996 panic("ip6e_hbh is not contiguous"); 997 #endif 998 /* 999 * XXX: if we have to send an ICMPv6 error to the sender, 1000 * we need the M_LOOP flag since icmp6_error() expects 1001 * the IPv6 and the hop-by-hop options header are 1002 * contiguous unless the flag is set. 1003 */ 1004 m->m_flags |= M_LOOP; 1005 m->m_pkthdr.rcvif = ifp; 1006 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 1007 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 1008 &dummy, &plen) < 0) { 1009 /* m was already freed at this point. */ 1010 error = EINVAL;/* better error? */ 1011 goto done; 1012 } 1013 m->m_flags &= ~M_LOOP; /* XXX */ 1014 m->m_pkthdr.rcvif = NULL; 1015 } 1016 1017 /* Jump over all PFIL processing if hooks are not active. */ 1018 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head)) 1019 goto passout; 1020 1021 odst = ip6->ip6_dst; 1022 /* Run through list of hooks for output packets. */ 1023 switch (pfil_run_hooks(V_inet6_pfil_head, &m, ifp, PFIL_OUT, inp)) { 1024 case PFIL_PASS: 1025 ip6 = mtod(m, struct ip6_hdr *); 1026 break; 1027 case PFIL_DROPPED: 1028 error = EACCES; 1029 /* FALLTHROUGH */ 1030 case PFIL_CONSUMED: 1031 goto done; 1032 } 1033 1034 needfiblookup = 0; 1035 /* See if destination IP address was changed by packet filter. */ 1036 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 1037 m->m_flags |= M_SKIP_FIREWALL; 1038 /* If destination is now ourself drop to ip6_input(). */ 1039 if (in6_localip(&ip6->ip6_dst)) { 1040 m->m_flags |= M_FASTFWD_OURS; 1041 if (m->m_pkthdr.rcvif == NULL) 1042 m->m_pkthdr.rcvif = V_loif; 1043 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1044 m->m_pkthdr.csum_flags |= 1045 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1046 m->m_pkthdr.csum_data = 0xffff; 1047 } 1048 #if defined(SCTP) || defined(SCTP_SUPPORT) 1049 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1050 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1051 #endif 1052 error = netisr_queue(NETISR_IPV6, m); 1053 goto done; 1054 } else { 1055 if (ro != NULL) 1056 RO_INVALIDATE_CACHE(ro); 1057 needfiblookup = 1; /* Redo the routing table lookup. */ 1058 } 1059 } 1060 /* See if fib was changed by packet filter. */ 1061 if (fibnum != M_GETFIB(m)) { 1062 m->m_flags |= M_SKIP_FIREWALL; 1063 fibnum = M_GETFIB(m); 1064 if (ro != NULL) 1065 RO_INVALIDATE_CACHE(ro); 1066 needfiblookup = 1; 1067 } 1068 if (needfiblookup) 1069 goto again; 1070 1071 /* See if local, if yes, send it to netisr. */ 1072 if (m->m_flags & M_FASTFWD_OURS) { 1073 if (m->m_pkthdr.rcvif == NULL) 1074 m->m_pkthdr.rcvif = V_loif; 1075 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1076 m->m_pkthdr.csum_flags |= 1077 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1078 m->m_pkthdr.csum_data = 0xffff; 1079 } 1080 #if defined(SCTP) || defined(SCTP_SUPPORT) 1081 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1082 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1083 #endif 1084 error = netisr_queue(NETISR_IPV6, m); 1085 goto done; 1086 } 1087 /* Or forward to some other address? */ 1088 if ((m->m_flags & M_IP6_NEXTHOP) && 1089 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 1090 if (ro != NULL) 1091 dst = (struct sockaddr_in6 *)&ro->ro_dst; 1092 else 1093 dst = &sin6; 1094 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 1095 m->m_flags |= M_SKIP_FIREWALL; 1096 m->m_flags &= ~M_IP6_NEXTHOP; 1097 m_tag_delete(m, fwd_tag); 1098 goto again; 1099 } 1100 1101 passout: 1102 /* 1103 * Send the packet to the outgoing interface. 1104 * If necessary, do IPv6 fragmentation before sending. 1105 * 1106 * The logic here is rather complex: 1107 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 1108 * 1-a: send as is if tlen <= path mtu 1109 * 1-b: fragment if tlen > path mtu 1110 * 1111 * 2: if user asks us not to fragment (dontfrag == 1) 1112 * 2-a: send as is if tlen <= interface mtu 1113 * 2-b: error if tlen > interface mtu 1114 * 1115 * 3: if we always need to attach fragment header (alwaysfrag == 1) 1116 * always fragment 1117 * 1118 * 4: if dontfrag == 1 && alwaysfrag == 1 1119 * error, as we cannot handle this conflicting request. 1120 */ 1121 sw_csum = m->m_pkthdr.csum_flags; 1122 if (!hdrsplit) { 1123 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 1124 sw_csum &= ~ifp->if_hwassist; 1125 } else 1126 tso = 0; 1127 /* 1128 * If we added extension headers, we will not do TSO and calculate the 1129 * checksums ourselves for now. 1130 * XXX-BZ Need a framework to know when the NIC can handle it, even 1131 * with ext. hdrs. 1132 */ 1133 error = ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen, false); 1134 if (error != 0) 1135 goto bad; 1136 /* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */ 1137 tlen = m->m_pkthdr.len; 1138 1139 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 1140 dontfrag = 1; 1141 else 1142 dontfrag = 0; 1143 if (dontfrag && alwaysfrag) { /* Case 4. */ 1144 /* Conflicting request - can't transmit. */ 1145 error = EMSGSIZE; 1146 goto bad; 1147 } 1148 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* Case 2-b. */ 1149 /* 1150 * Even if the DONTFRAG option is specified, we cannot send the 1151 * packet when the data length is larger than the MTU of the 1152 * outgoing interface. 1153 * Notify the error by sending IPV6_PATHMTU ancillary data if 1154 * application wanted to know the MTU value. Also return an 1155 * error code (this is not described in the API spec). 1156 */ 1157 if (inp != NULL) 1158 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 1159 error = EMSGSIZE; 1160 goto bad; 1161 } 1162 1163 /* Transmit packet without fragmentation. */ 1164 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* Cases 1-a and 2-a. */ 1165 struct in6_ifaddr *ia6; 1166 1167 ip6 = mtod(m, struct ip6_hdr *); 1168 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1169 if (ia6) { 1170 /* Record statistics for this interface address. */ 1171 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 1172 counter_u64_add(ia6->ia_ifa.ifa_obytes, 1173 m->m_pkthdr.len); 1174 ifa_free(&ia6->ia_ifa); 1175 } 1176 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1177 (flags & IP_NO_SND_TAG_RL) ? false : true); 1178 goto done; 1179 } 1180 1181 /* Try to fragment the packet. Cases 1-b and 3. */ 1182 if (mtu < IPV6_MMTU) { 1183 /* Path MTU cannot be less than IPV6_MMTU. */ 1184 error = EMSGSIZE; 1185 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1186 goto bad; 1187 } else if (ip6->ip6_plen == 0) { 1188 /* Jumbo payload cannot be fragmented. */ 1189 error = EMSGSIZE; 1190 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1191 goto bad; 1192 } else { 1193 u_char nextproto; 1194 1195 /* 1196 * Too large for the destination or interface; 1197 * fragment if possible. 1198 * Must be able to put at least 8 bytes per fragment. 1199 */ 1200 if (mtu > IPV6_MAXPACKET) 1201 mtu = IPV6_MAXPACKET; 1202 1203 len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7; 1204 if (len < 8) { 1205 error = EMSGSIZE; 1206 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1207 goto bad; 1208 } 1209 1210 /* 1211 * If the interface will not calculate checksums on 1212 * fragmented packets, then do it here. 1213 * XXX-BZ handle the hw offloading case. Need flags. 1214 */ 1215 error = ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags, 1216 plen, optlen, true); 1217 if (error != 0) 1218 goto bad; 1219 1220 /* 1221 * Change the next header field of the last header in the 1222 * unfragmentable part. 1223 */ 1224 if (exthdrs.ip6e_rthdr) { 1225 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1226 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1227 } else if (exthdrs.ip6e_dest1) { 1228 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1229 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1230 } else if (exthdrs.ip6e_hbh) { 1231 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1232 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1233 } else { 1234 ip6 = mtod(m, struct ip6_hdr *); 1235 nextproto = ip6->ip6_nxt; 1236 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1237 } 1238 1239 /* 1240 * Loop through length of segment after first fragment, 1241 * make new header and copy data of each part and link onto 1242 * chain. 1243 */ 1244 m0 = m; 1245 id = htonl(ip6_randomid()); 1246 error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id); 1247 if (error != 0) 1248 goto sendorfree; 1249 1250 in6_ifstat_inc(ifp, ifs6_out_fragok); 1251 } 1252 1253 /* Remove leading garbage. */ 1254 sendorfree: 1255 m = m0->m_nextpkt; 1256 m0->m_nextpkt = 0; 1257 m_freem(m0); 1258 for (; m; m = m0) { 1259 m0 = m->m_nextpkt; 1260 m->m_nextpkt = 0; 1261 if (error == 0) { 1262 /* Record statistics for this interface address. */ 1263 if (ia) { 1264 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1265 counter_u64_add(ia->ia_ifa.ifa_obytes, 1266 m->m_pkthdr.len); 1267 } 1268 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1269 true); 1270 } else 1271 m_freem(m); 1272 } 1273 1274 if (error == 0) 1275 IP6STAT_INC(ip6s_fragmented); 1276 1277 done: 1278 return (error); 1279 1280 freehdrs: 1281 m_freem(exthdrs.ip6e_hbh); /* m_freem() checks if mbuf is NULL. */ 1282 m_freem(exthdrs.ip6e_dest1); 1283 m_freem(exthdrs.ip6e_rthdr); 1284 m_freem(exthdrs.ip6e_dest2); 1285 /* FALLTHROUGH */ 1286 bad: 1287 if (m) 1288 m_freem(m); 1289 goto done; 1290 } 1291 1292 static int 1293 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1294 { 1295 struct mbuf *m; 1296 1297 if (hlen > MCLBYTES) 1298 return (ENOBUFS); /* XXX */ 1299 1300 if (hlen > MLEN) 1301 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1302 else 1303 m = m_get(M_NOWAIT, MT_DATA); 1304 if (m == NULL) 1305 return (ENOBUFS); 1306 m->m_len = hlen; 1307 if (hdr) 1308 bcopy(hdr, mtod(m, caddr_t), hlen); 1309 1310 *mp = m; 1311 return (0); 1312 } 1313 1314 /* 1315 * Insert jumbo payload option. 1316 */ 1317 static int 1318 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1319 { 1320 struct mbuf *mopt; 1321 u_char *optbuf; 1322 u_int32_t v; 1323 1324 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1325 1326 /* 1327 * If there is no hop-by-hop options header, allocate new one. 1328 * If there is one but it doesn't have enough space to store the 1329 * jumbo payload option, allocate a cluster to store the whole options. 1330 * Otherwise, use it to store the options. 1331 */ 1332 if (exthdrs->ip6e_hbh == NULL) { 1333 mopt = m_get(M_NOWAIT, MT_DATA); 1334 if (mopt == NULL) 1335 return (ENOBUFS); 1336 mopt->m_len = JUMBOOPTLEN; 1337 optbuf = mtod(mopt, u_char *); 1338 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1339 exthdrs->ip6e_hbh = mopt; 1340 } else { 1341 struct ip6_hbh *hbh; 1342 1343 mopt = exthdrs->ip6e_hbh; 1344 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1345 /* 1346 * XXX assumption: 1347 * - exthdrs->ip6e_hbh is not referenced from places 1348 * other than exthdrs. 1349 * - exthdrs->ip6e_hbh is not an mbuf chain. 1350 */ 1351 int oldoptlen = mopt->m_len; 1352 struct mbuf *n; 1353 1354 /* 1355 * XXX: give up if the whole (new) hbh header does 1356 * not fit even in an mbuf cluster. 1357 */ 1358 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1359 return (ENOBUFS); 1360 1361 /* 1362 * As a consequence, we must always prepare a cluster 1363 * at this point. 1364 */ 1365 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1366 if (n == NULL) 1367 return (ENOBUFS); 1368 n->m_len = oldoptlen + JUMBOOPTLEN; 1369 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1370 oldoptlen); 1371 optbuf = mtod(n, caddr_t) + oldoptlen; 1372 m_freem(mopt); 1373 mopt = exthdrs->ip6e_hbh = n; 1374 } else { 1375 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1376 mopt->m_len += JUMBOOPTLEN; 1377 } 1378 optbuf[0] = IP6OPT_PADN; 1379 optbuf[1] = 1; 1380 1381 /* 1382 * Adjust the header length according to the pad and 1383 * the jumbo payload option. 1384 */ 1385 hbh = mtod(mopt, struct ip6_hbh *); 1386 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1387 } 1388 1389 /* fill in the option. */ 1390 optbuf[2] = IP6OPT_JUMBO; 1391 optbuf[3] = 4; 1392 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1393 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1394 1395 /* finally, adjust the packet header length */ 1396 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1397 1398 return (0); 1399 #undef JUMBOOPTLEN 1400 } 1401 1402 /* 1403 * Insert fragment header and copy unfragmentable header portions. 1404 */ 1405 static int 1406 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1407 struct ip6_frag **frghdrp) 1408 { 1409 struct mbuf *n, *mlast; 1410 1411 if (hlen > sizeof(struct ip6_hdr)) { 1412 n = m_copym(m0, sizeof(struct ip6_hdr), 1413 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1414 if (n == NULL) 1415 return (ENOBUFS); 1416 m->m_next = n; 1417 } else 1418 n = m; 1419 1420 /* Search for the last mbuf of unfragmentable part. */ 1421 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1422 ; 1423 1424 if (M_WRITABLE(mlast) && 1425 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1426 /* use the trailing space of the last mbuf for the fragment hdr */ 1427 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1428 mlast->m_len); 1429 mlast->m_len += sizeof(struct ip6_frag); 1430 m->m_pkthdr.len += sizeof(struct ip6_frag); 1431 } else { 1432 /* allocate a new mbuf for the fragment header */ 1433 struct mbuf *mfrg; 1434 1435 mfrg = m_get(M_NOWAIT, MT_DATA); 1436 if (mfrg == NULL) 1437 return (ENOBUFS); 1438 mfrg->m_len = sizeof(struct ip6_frag); 1439 *frghdrp = mtod(mfrg, struct ip6_frag *); 1440 mlast->m_next = mfrg; 1441 } 1442 1443 return (0); 1444 } 1445 1446 /* 1447 * Calculates IPv6 path mtu for destination @dst. 1448 * Resulting MTU is stored in @mtup. 1449 * 1450 * Returns 0 on success. 1451 */ 1452 static int 1453 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1454 { 1455 struct epoch_tracker et; 1456 struct nhop_object *nh; 1457 struct in6_addr kdst; 1458 uint32_t scopeid; 1459 int error; 1460 1461 in6_splitscope(dst, &kdst, &scopeid); 1462 1463 NET_EPOCH_ENTER(et); 1464 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1465 if (nh != NULL) 1466 error = ip6_calcmtu(nh->nh_ifp, dst, nh->nh_mtu, mtup, NULL, 0); 1467 else 1468 error = EHOSTUNREACH; 1469 NET_EPOCH_EXIT(et); 1470 1471 return (error); 1472 } 1473 1474 /* 1475 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1476 * and cached data in @ro_pmtu. 1477 * MTU from (successful) route lookup is saved (along with dst) 1478 * inside @ro_pmtu to avoid subsequent route lookups after packet 1479 * filter processing. 1480 * 1481 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1482 * Returns 0 on success. 1483 */ 1484 static int 1485 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1486 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1487 int *alwaysfragp, u_int fibnum, u_int proto) 1488 { 1489 struct nhop_object *nh; 1490 struct in6_addr kdst; 1491 uint32_t scopeid; 1492 struct sockaddr_in6 *sa6_dst, sin6; 1493 u_long mtu; 1494 1495 NET_EPOCH_ASSERT(); 1496 1497 mtu = 0; 1498 if (ro_pmtu == NULL || do_lookup) { 1499 1500 /* 1501 * Here ro_pmtu has final destination address, while 1502 * ro might represent immediate destination. 1503 * Use ro_pmtu destination since mtu might differ. 1504 */ 1505 if (ro_pmtu != NULL) { 1506 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1507 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1508 ro_pmtu->ro_mtu = 0; 1509 } else 1510 sa6_dst = &sin6; 1511 1512 if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) { 1513 bzero(sa6_dst, sizeof(*sa6_dst)); 1514 sa6_dst->sin6_family = AF_INET6; 1515 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1516 sa6_dst->sin6_addr = *dst; 1517 1518 in6_splitscope(dst, &kdst, &scopeid); 1519 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1520 if (nh != NULL) { 1521 mtu = nh->nh_mtu; 1522 if (ro_pmtu != NULL) 1523 ro_pmtu->ro_mtu = mtu; 1524 } 1525 } else 1526 mtu = ro_pmtu->ro_mtu; 1527 } 1528 1529 if (ro_pmtu != NULL && ro_pmtu->ro_nh != NULL) 1530 mtu = ro_pmtu->ro_nh->nh_mtu; 1531 1532 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1533 } 1534 1535 /* 1536 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1537 * hostcache data for @dst. 1538 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1539 * 1540 * Returns 0 on success. 1541 */ 1542 static int 1543 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1544 u_long *mtup, int *alwaysfragp, u_int proto) 1545 { 1546 u_long mtu = 0; 1547 int alwaysfrag = 0; 1548 int error = 0; 1549 1550 if (rt_mtu > 0) { 1551 u_int32_t ifmtu; 1552 struct in_conninfo inc; 1553 1554 bzero(&inc, sizeof(inc)); 1555 inc.inc_flags |= INC_ISIPV6; 1556 inc.inc6_faddr = *dst; 1557 1558 ifmtu = IN6_LINKMTU(ifp); 1559 1560 /* TCP is known to react to pmtu changes so skip hc */ 1561 if (proto != IPPROTO_TCP) 1562 mtu = tcp_hc_getmtu(&inc); 1563 1564 if (mtu) 1565 mtu = min(mtu, rt_mtu); 1566 else 1567 mtu = rt_mtu; 1568 if (mtu == 0) 1569 mtu = ifmtu; 1570 else if (mtu < IPV6_MMTU) { 1571 /* 1572 * RFC2460 section 5, last paragraph: 1573 * if we record ICMPv6 too big message with 1574 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1575 * or smaller, with framgent header attached. 1576 * (fragment header is needed regardless from the 1577 * packet size, for translators to identify packets) 1578 */ 1579 alwaysfrag = 1; 1580 mtu = IPV6_MMTU; 1581 } 1582 } else if (ifp) { 1583 mtu = IN6_LINKMTU(ifp); 1584 } else 1585 error = EHOSTUNREACH; /* XXX */ 1586 1587 *mtup = mtu; 1588 if (alwaysfragp) 1589 *alwaysfragp = alwaysfrag; 1590 return (error); 1591 } 1592 1593 /* 1594 * IP6 socket option processing. 1595 */ 1596 int 1597 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1598 { 1599 int optdatalen, uproto; 1600 void *optdata; 1601 struct inpcb *inp = sotoinpcb(so); 1602 int error, optval; 1603 int level, op, optname; 1604 int optlen; 1605 struct thread *td; 1606 #ifdef RSS 1607 uint32_t rss_bucket; 1608 int retval; 1609 #endif 1610 1611 /* 1612 * Don't use more than a quarter of mbuf clusters. N.B.: 1613 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1614 * on LP64 architectures, so cast to u_long to avoid undefined 1615 * behavior. ILP32 architectures cannot have nmbclusters 1616 * large enough to overflow for other reasons. 1617 */ 1618 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1619 1620 level = sopt->sopt_level; 1621 op = sopt->sopt_dir; 1622 optname = sopt->sopt_name; 1623 optlen = sopt->sopt_valsize; 1624 td = sopt->sopt_td; 1625 error = 0; 1626 optval = 0; 1627 uproto = (int)so->so_proto->pr_protocol; 1628 1629 if (level != IPPROTO_IPV6) { 1630 error = EINVAL; 1631 1632 if (sopt->sopt_level == SOL_SOCKET && 1633 sopt->sopt_dir == SOPT_SET) { 1634 switch (sopt->sopt_name) { 1635 case SO_REUSEADDR: 1636 INP_WLOCK(inp); 1637 if ((so->so_options & SO_REUSEADDR) != 0) 1638 inp->inp_flags2 |= INP_REUSEADDR; 1639 else 1640 inp->inp_flags2 &= ~INP_REUSEADDR; 1641 INP_WUNLOCK(inp); 1642 error = 0; 1643 break; 1644 case SO_REUSEPORT: 1645 INP_WLOCK(inp); 1646 if ((so->so_options & SO_REUSEPORT) != 0) 1647 inp->inp_flags2 |= INP_REUSEPORT; 1648 else 1649 inp->inp_flags2 &= ~INP_REUSEPORT; 1650 INP_WUNLOCK(inp); 1651 error = 0; 1652 break; 1653 case SO_REUSEPORT_LB: 1654 INP_WLOCK(inp); 1655 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1656 inp->inp_flags2 |= INP_REUSEPORT_LB; 1657 else 1658 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1659 INP_WUNLOCK(inp); 1660 error = 0; 1661 break; 1662 case SO_SETFIB: 1663 INP_WLOCK(inp); 1664 inp->inp_inc.inc_fibnum = so->so_fibnum; 1665 INP_WUNLOCK(inp); 1666 error = 0; 1667 break; 1668 case SO_MAX_PACING_RATE: 1669 #ifdef RATELIMIT 1670 INP_WLOCK(inp); 1671 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1672 INP_WUNLOCK(inp); 1673 error = 0; 1674 #else 1675 error = EOPNOTSUPP; 1676 #endif 1677 break; 1678 default: 1679 break; 1680 } 1681 } 1682 } else { /* level == IPPROTO_IPV6 */ 1683 switch (op) { 1684 1685 case SOPT_SET: 1686 switch (optname) { 1687 case IPV6_2292PKTOPTIONS: 1688 #ifdef IPV6_PKTOPTIONS 1689 case IPV6_PKTOPTIONS: 1690 #endif 1691 { 1692 struct mbuf *m; 1693 1694 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1695 printf("ip6_ctloutput: mbuf limit hit\n"); 1696 error = ENOBUFS; 1697 break; 1698 } 1699 1700 error = soopt_getm(sopt, &m); /* XXX */ 1701 if (error != 0) 1702 break; 1703 error = soopt_mcopyin(sopt, m); /* XXX */ 1704 if (error != 0) 1705 break; 1706 INP_WLOCK(inp); 1707 error = ip6_pcbopts(&inp->in6p_outputopts, m, 1708 so, sopt); 1709 INP_WUNLOCK(inp); 1710 m_freem(m); /* XXX */ 1711 break; 1712 } 1713 1714 /* 1715 * Use of some Hop-by-Hop options or some 1716 * Destination options, might require special 1717 * privilege. That is, normal applications 1718 * (without special privilege) might be forbidden 1719 * from setting certain options in outgoing packets, 1720 * and might never see certain options in received 1721 * packets. [RFC 2292 Section 6] 1722 * KAME specific note: 1723 * KAME prevents non-privileged users from sending or 1724 * receiving ANY hbh/dst options in order to avoid 1725 * overhead of parsing options in the kernel. 1726 */ 1727 case IPV6_RECVHOPOPTS: 1728 case IPV6_RECVDSTOPTS: 1729 case IPV6_RECVRTHDRDSTOPTS: 1730 if (td != NULL) { 1731 error = priv_check(td, 1732 PRIV_NETINET_SETHDROPTS); 1733 if (error) 1734 break; 1735 } 1736 /* FALLTHROUGH */ 1737 case IPV6_UNICAST_HOPS: 1738 case IPV6_HOPLIMIT: 1739 1740 case IPV6_RECVPKTINFO: 1741 case IPV6_RECVHOPLIMIT: 1742 case IPV6_RECVRTHDR: 1743 case IPV6_RECVPATHMTU: 1744 case IPV6_RECVTCLASS: 1745 case IPV6_RECVFLOWID: 1746 #ifdef RSS 1747 case IPV6_RECVRSSBUCKETID: 1748 #endif 1749 case IPV6_V6ONLY: 1750 case IPV6_AUTOFLOWLABEL: 1751 case IPV6_ORIGDSTADDR: 1752 case IPV6_BINDANY: 1753 case IPV6_BINDMULTI: 1754 #ifdef RSS 1755 case IPV6_RSS_LISTEN_BUCKET: 1756 #endif 1757 if (optname == IPV6_BINDANY && td != NULL) { 1758 error = priv_check(td, 1759 PRIV_NETINET_BINDANY); 1760 if (error) 1761 break; 1762 } 1763 1764 if (optlen != sizeof(int)) { 1765 error = EINVAL; 1766 break; 1767 } 1768 error = sooptcopyin(sopt, &optval, 1769 sizeof optval, sizeof optval); 1770 if (error) 1771 break; 1772 switch (optname) { 1773 1774 case IPV6_UNICAST_HOPS: 1775 if (optval < -1 || optval >= 256) 1776 error = EINVAL; 1777 else { 1778 /* -1 = kernel default */ 1779 inp->in6p_hops = optval; 1780 if ((inp->inp_vflag & 1781 INP_IPV4) != 0) 1782 inp->inp_ip_ttl = optval; 1783 } 1784 break; 1785 #define OPTSET(bit) \ 1786 do { \ 1787 INP_WLOCK(inp); \ 1788 if (optval) \ 1789 inp->inp_flags |= (bit); \ 1790 else \ 1791 inp->inp_flags &= ~(bit); \ 1792 INP_WUNLOCK(inp); \ 1793 } while (/*CONSTCOND*/ 0) 1794 #define OPTSET2292(bit) \ 1795 do { \ 1796 INP_WLOCK(inp); \ 1797 inp->inp_flags |= IN6P_RFC2292; \ 1798 if (optval) \ 1799 inp->inp_flags |= (bit); \ 1800 else \ 1801 inp->inp_flags &= ~(bit); \ 1802 INP_WUNLOCK(inp); \ 1803 } while (/*CONSTCOND*/ 0) 1804 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1805 1806 #define OPTSET2_N(bit, val) do { \ 1807 if (val) \ 1808 inp->inp_flags2 |= bit; \ 1809 else \ 1810 inp->inp_flags2 &= ~bit; \ 1811 } while (0) 1812 #define OPTSET2(bit, val) do { \ 1813 INP_WLOCK(inp); \ 1814 OPTSET2_N(bit, val); \ 1815 INP_WUNLOCK(inp); \ 1816 } while (0) 1817 #define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0) 1818 #define OPTSET2292_EXCLUSIVE(bit) \ 1819 do { \ 1820 INP_WLOCK(inp); \ 1821 if (OPTBIT(IN6P_RFC2292)) { \ 1822 error = EINVAL; \ 1823 } else { \ 1824 if (optval) \ 1825 inp->inp_flags |= (bit); \ 1826 else \ 1827 inp->inp_flags &= ~(bit); \ 1828 } \ 1829 INP_WUNLOCK(inp); \ 1830 } while (/*CONSTCOND*/ 0) 1831 1832 case IPV6_RECVPKTINFO: 1833 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1834 break; 1835 1836 case IPV6_HOPLIMIT: 1837 { 1838 struct ip6_pktopts **optp; 1839 1840 /* cannot mix with RFC2292 */ 1841 if (OPTBIT(IN6P_RFC2292)) { 1842 error = EINVAL; 1843 break; 1844 } 1845 INP_WLOCK(inp); 1846 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1847 INP_WUNLOCK(inp); 1848 return (ECONNRESET); 1849 } 1850 optp = &inp->in6p_outputopts; 1851 error = ip6_pcbopt(IPV6_HOPLIMIT, 1852 (u_char *)&optval, sizeof(optval), 1853 optp, (td != NULL) ? td->td_ucred : 1854 NULL, uproto); 1855 INP_WUNLOCK(inp); 1856 break; 1857 } 1858 1859 case IPV6_RECVHOPLIMIT: 1860 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1861 break; 1862 1863 case IPV6_RECVHOPOPTS: 1864 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1865 break; 1866 1867 case IPV6_RECVDSTOPTS: 1868 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1869 break; 1870 1871 case IPV6_RECVRTHDRDSTOPTS: 1872 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1873 break; 1874 1875 case IPV6_RECVRTHDR: 1876 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1877 break; 1878 1879 case IPV6_RECVPATHMTU: 1880 /* 1881 * We ignore this option for TCP 1882 * sockets. 1883 * (RFC3542 leaves this case 1884 * unspecified.) 1885 */ 1886 if (uproto != IPPROTO_TCP) 1887 OPTSET(IN6P_MTU); 1888 break; 1889 1890 case IPV6_RECVFLOWID: 1891 OPTSET2(INP_RECVFLOWID, optval); 1892 break; 1893 1894 #ifdef RSS 1895 case IPV6_RECVRSSBUCKETID: 1896 OPTSET2(INP_RECVRSSBUCKETID, optval); 1897 break; 1898 #endif 1899 1900 case IPV6_V6ONLY: 1901 INP_WLOCK(inp); 1902 if (inp->inp_lport || 1903 !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { 1904 /* 1905 * The socket is already bound. 1906 */ 1907 INP_WUNLOCK(inp); 1908 error = EINVAL; 1909 break; 1910 } 1911 if (optval) { 1912 inp->inp_flags |= IN6P_IPV6_V6ONLY; 1913 inp->inp_vflag &= ~INP_IPV4; 1914 } else { 1915 inp->inp_flags &= ~IN6P_IPV6_V6ONLY; 1916 inp->inp_vflag |= INP_IPV4; 1917 } 1918 INP_WUNLOCK(inp); 1919 break; 1920 case IPV6_RECVTCLASS: 1921 /* cannot mix with RFC2292 XXX */ 1922 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1923 break; 1924 case IPV6_AUTOFLOWLABEL: 1925 OPTSET(IN6P_AUTOFLOWLABEL); 1926 break; 1927 1928 case IPV6_ORIGDSTADDR: 1929 OPTSET2(INP_ORIGDSTADDR, optval); 1930 break; 1931 case IPV6_BINDANY: 1932 OPTSET(INP_BINDANY); 1933 break; 1934 1935 case IPV6_BINDMULTI: 1936 OPTSET2(INP_BINDMULTI, optval); 1937 break; 1938 #ifdef RSS 1939 case IPV6_RSS_LISTEN_BUCKET: 1940 if ((optval >= 0) && 1941 (optval < rss_getnumbuckets())) { 1942 INP_WLOCK(inp); 1943 inp->inp_rss_listen_bucket = optval; 1944 OPTSET2_N(INP_RSS_BUCKET_SET, 1); 1945 INP_WUNLOCK(inp); 1946 } else { 1947 error = EINVAL; 1948 } 1949 break; 1950 #endif 1951 } 1952 break; 1953 1954 case IPV6_TCLASS: 1955 case IPV6_DONTFRAG: 1956 case IPV6_USE_MIN_MTU: 1957 case IPV6_PREFER_TEMPADDR: 1958 if (optlen != sizeof(optval)) { 1959 error = EINVAL; 1960 break; 1961 } 1962 error = sooptcopyin(sopt, &optval, 1963 sizeof optval, sizeof optval); 1964 if (error) 1965 break; 1966 { 1967 struct ip6_pktopts **optp; 1968 INP_WLOCK(inp); 1969 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1970 INP_WUNLOCK(inp); 1971 return (ECONNRESET); 1972 } 1973 optp = &inp->in6p_outputopts; 1974 error = ip6_pcbopt(optname, 1975 (u_char *)&optval, sizeof(optval), 1976 optp, (td != NULL) ? td->td_ucred : 1977 NULL, uproto); 1978 INP_WUNLOCK(inp); 1979 break; 1980 } 1981 1982 case IPV6_2292PKTINFO: 1983 case IPV6_2292HOPLIMIT: 1984 case IPV6_2292HOPOPTS: 1985 case IPV6_2292DSTOPTS: 1986 case IPV6_2292RTHDR: 1987 /* RFC 2292 */ 1988 if (optlen != sizeof(int)) { 1989 error = EINVAL; 1990 break; 1991 } 1992 error = sooptcopyin(sopt, &optval, 1993 sizeof optval, sizeof optval); 1994 if (error) 1995 break; 1996 switch (optname) { 1997 case IPV6_2292PKTINFO: 1998 OPTSET2292(IN6P_PKTINFO); 1999 break; 2000 case IPV6_2292HOPLIMIT: 2001 OPTSET2292(IN6P_HOPLIMIT); 2002 break; 2003 case IPV6_2292HOPOPTS: 2004 /* 2005 * Check super-user privilege. 2006 * See comments for IPV6_RECVHOPOPTS. 2007 */ 2008 if (td != NULL) { 2009 error = priv_check(td, 2010 PRIV_NETINET_SETHDROPTS); 2011 if (error) 2012 return (error); 2013 } 2014 OPTSET2292(IN6P_HOPOPTS); 2015 break; 2016 case IPV6_2292DSTOPTS: 2017 if (td != NULL) { 2018 error = priv_check(td, 2019 PRIV_NETINET_SETHDROPTS); 2020 if (error) 2021 return (error); 2022 } 2023 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 2024 break; 2025 case IPV6_2292RTHDR: 2026 OPTSET2292(IN6P_RTHDR); 2027 break; 2028 } 2029 break; 2030 case IPV6_PKTINFO: 2031 case IPV6_HOPOPTS: 2032 case IPV6_RTHDR: 2033 case IPV6_DSTOPTS: 2034 case IPV6_RTHDRDSTOPTS: 2035 case IPV6_NEXTHOP: 2036 { 2037 /* new advanced API (RFC3542) */ 2038 u_char *optbuf; 2039 u_char optbuf_storage[MCLBYTES]; 2040 int optlen; 2041 struct ip6_pktopts **optp; 2042 2043 /* cannot mix with RFC2292 */ 2044 if (OPTBIT(IN6P_RFC2292)) { 2045 error = EINVAL; 2046 break; 2047 } 2048 2049 /* 2050 * We only ensure valsize is not too large 2051 * here. Further validation will be done 2052 * later. 2053 */ 2054 error = sooptcopyin(sopt, optbuf_storage, 2055 sizeof(optbuf_storage), 0); 2056 if (error) 2057 break; 2058 optlen = sopt->sopt_valsize; 2059 optbuf = optbuf_storage; 2060 INP_WLOCK(inp); 2061 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 2062 INP_WUNLOCK(inp); 2063 return (ECONNRESET); 2064 } 2065 optp = &inp->in6p_outputopts; 2066 error = ip6_pcbopt(optname, optbuf, optlen, 2067 optp, (td != NULL) ? td->td_ucred : NULL, 2068 uproto); 2069 INP_WUNLOCK(inp); 2070 break; 2071 } 2072 #undef OPTSET 2073 2074 case IPV6_MULTICAST_IF: 2075 case IPV6_MULTICAST_HOPS: 2076 case IPV6_MULTICAST_LOOP: 2077 case IPV6_JOIN_GROUP: 2078 case IPV6_LEAVE_GROUP: 2079 case IPV6_MSFILTER: 2080 case MCAST_BLOCK_SOURCE: 2081 case MCAST_UNBLOCK_SOURCE: 2082 case MCAST_JOIN_GROUP: 2083 case MCAST_LEAVE_GROUP: 2084 case MCAST_JOIN_SOURCE_GROUP: 2085 case MCAST_LEAVE_SOURCE_GROUP: 2086 error = ip6_setmoptions(inp, sopt); 2087 break; 2088 2089 case IPV6_PORTRANGE: 2090 error = sooptcopyin(sopt, &optval, 2091 sizeof optval, sizeof optval); 2092 if (error) 2093 break; 2094 2095 INP_WLOCK(inp); 2096 switch (optval) { 2097 case IPV6_PORTRANGE_DEFAULT: 2098 inp->inp_flags &= ~(INP_LOWPORT); 2099 inp->inp_flags &= ~(INP_HIGHPORT); 2100 break; 2101 2102 case IPV6_PORTRANGE_HIGH: 2103 inp->inp_flags &= ~(INP_LOWPORT); 2104 inp->inp_flags |= INP_HIGHPORT; 2105 break; 2106 2107 case IPV6_PORTRANGE_LOW: 2108 inp->inp_flags &= ~(INP_HIGHPORT); 2109 inp->inp_flags |= INP_LOWPORT; 2110 break; 2111 2112 default: 2113 error = EINVAL; 2114 break; 2115 } 2116 INP_WUNLOCK(inp); 2117 break; 2118 2119 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2120 case IPV6_IPSEC_POLICY: 2121 if (IPSEC_ENABLED(ipv6)) { 2122 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2123 break; 2124 } 2125 /* FALLTHROUGH */ 2126 #endif /* IPSEC */ 2127 2128 default: 2129 error = ENOPROTOOPT; 2130 break; 2131 } 2132 break; 2133 2134 case SOPT_GET: 2135 switch (optname) { 2136 2137 case IPV6_2292PKTOPTIONS: 2138 #ifdef IPV6_PKTOPTIONS 2139 case IPV6_PKTOPTIONS: 2140 #endif 2141 /* 2142 * RFC3542 (effectively) deprecated the 2143 * semantics of the 2292-style pktoptions. 2144 * Since it was not reliable in nature (i.e., 2145 * applications had to expect the lack of some 2146 * information after all), it would make sense 2147 * to simplify this part by always returning 2148 * empty data. 2149 */ 2150 sopt->sopt_valsize = 0; 2151 break; 2152 2153 case IPV6_RECVHOPOPTS: 2154 case IPV6_RECVDSTOPTS: 2155 case IPV6_RECVRTHDRDSTOPTS: 2156 case IPV6_UNICAST_HOPS: 2157 case IPV6_RECVPKTINFO: 2158 case IPV6_RECVHOPLIMIT: 2159 case IPV6_RECVRTHDR: 2160 case IPV6_RECVPATHMTU: 2161 2162 case IPV6_V6ONLY: 2163 case IPV6_PORTRANGE: 2164 case IPV6_RECVTCLASS: 2165 case IPV6_AUTOFLOWLABEL: 2166 case IPV6_BINDANY: 2167 case IPV6_FLOWID: 2168 case IPV6_FLOWTYPE: 2169 case IPV6_RECVFLOWID: 2170 #ifdef RSS 2171 case IPV6_RSSBUCKETID: 2172 case IPV6_RECVRSSBUCKETID: 2173 #endif 2174 case IPV6_BINDMULTI: 2175 switch (optname) { 2176 2177 case IPV6_RECVHOPOPTS: 2178 optval = OPTBIT(IN6P_HOPOPTS); 2179 break; 2180 2181 case IPV6_RECVDSTOPTS: 2182 optval = OPTBIT(IN6P_DSTOPTS); 2183 break; 2184 2185 case IPV6_RECVRTHDRDSTOPTS: 2186 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 2187 break; 2188 2189 case IPV6_UNICAST_HOPS: 2190 optval = inp->in6p_hops; 2191 break; 2192 2193 case IPV6_RECVPKTINFO: 2194 optval = OPTBIT(IN6P_PKTINFO); 2195 break; 2196 2197 case IPV6_RECVHOPLIMIT: 2198 optval = OPTBIT(IN6P_HOPLIMIT); 2199 break; 2200 2201 case IPV6_RECVRTHDR: 2202 optval = OPTBIT(IN6P_RTHDR); 2203 break; 2204 2205 case IPV6_RECVPATHMTU: 2206 optval = OPTBIT(IN6P_MTU); 2207 break; 2208 2209 case IPV6_V6ONLY: 2210 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2211 break; 2212 2213 case IPV6_PORTRANGE: 2214 { 2215 int flags; 2216 flags = inp->inp_flags; 2217 if (flags & INP_HIGHPORT) 2218 optval = IPV6_PORTRANGE_HIGH; 2219 else if (flags & INP_LOWPORT) 2220 optval = IPV6_PORTRANGE_LOW; 2221 else 2222 optval = 0; 2223 break; 2224 } 2225 case IPV6_RECVTCLASS: 2226 optval = OPTBIT(IN6P_TCLASS); 2227 break; 2228 2229 case IPV6_AUTOFLOWLABEL: 2230 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2231 break; 2232 2233 case IPV6_ORIGDSTADDR: 2234 optval = OPTBIT2(INP_ORIGDSTADDR); 2235 break; 2236 2237 case IPV6_BINDANY: 2238 optval = OPTBIT(INP_BINDANY); 2239 break; 2240 2241 case IPV6_FLOWID: 2242 optval = inp->inp_flowid; 2243 break; 2244 2245 case IPV6_FLOWTYPE: 2246 optval = inp->inp_flowtype; 2247 break; 2248 2249 case IPV6_RECVFLOWID: 2250 optval = OPTBIT2(INP_RECVFLOWID); 2251 break; 2252 #ifdef RSS 2253 case IPV6_RSSBUCKETID: 2254 retval = 2255 rss_hash2bucket(inp->inp_flowid, 2256 inp->inp_flowtype, 2257 &rss_bucket); 2258 if (retval == 0) 2259 optval = rss_bucket; 2260 else 2261 error = EINVAL; 2262 break; 2263 2264 case IPV6_RECVRSSBUCKETID: 2265 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2266 break; 2267 #endif 2268 2269 case IPV6_BINDMULTI: 2270 optval = OPTBIT2(INP_BINDMULTI); 2271 break; 2272 2273 } 2274 if (error) 2275 break; 2276 error = sooptcopyout(sopt, &optval, 2277 sizeof optval); 2278 break; 2279 2280 case IPV6_PATHMTU: 2281 { 2282 u_long pmtu = 0; 2283 struct ip6_mtuinfo mtuinfo; 2284 struct in6_addr addr; 2285 2286 if (!(so->so_state & SS_ISCONNECTED)) 2287 return (ENOTCONN); 2288 /* 2289 * XXX: we dot not consider the case of source 2290 * routing, or optional information to specify 2291 * the outgoing interface. 2292 * Copy faddr out of inp to avoid holding lock 2293 * on inp during route lookup. 2294 */ 2295 INP_RLOCK(inp); 2296 bcopy(&inp->in6p_faddr, &addr, sizeof(addr)); 2297 INP_RUNLOCK(inp); 2298 error = ip6_getpmtu_ctl(so->so_fibnum, 2299 &addr, &pmtu); 2300 if (error) 2301 break; 2302 if (pmtu > IPV6_MAXPACKET) 2303 pmtu = IPV6_MAXPACKET; 2304 2305 bzero(&mtuinfo, sizeof(mtuinfo)); 2306 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2307 optdata = (void *)&mtuinfo; 2308 optdatalen = sizeof(mtuinfo); 2309 error = sooptcopyout(sopt, optdata, 2310 optdatalen); 2311 break; 2312 } 2313 2314 case IPV6_2292PKTINFO: 2315 case IPV6_2292HOPLIMIT: 2316 case IPV6_2292HOPOPTS: 2317 case IPV6_2292RTHDR: 2318 case IPV6_2292DSTOPTS: 2319 switch (optname) { 2320 case IPV6_2292PKTINFO: 2321 optval = OPTBIT(IN6P_PKTINFO); 2322 break; 2323 case IPV6_2292HOPLIMIT: 2324 optval = OPTBIT(IN6P_HOPLIMIT); 2325 break; 2326 case IPV6_2292HOPOPTS: 2327 optval = OPTBIT(IN6P_HOPOPTS); 2328 break; 2329 case IPV6_2292RTHDR: 2330 optval = OPTBIT(IN6P_RTHDR); 2331 break; 2332 case IPV6_2292DSTOPTS: 2333 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2334 break; 2335 } 2336 error = sooptcopyout(sopt, &optval, 2337 sizeof optval); 2338 break; 2339 case IPV6_PKTINFO: 2340 case IPV6_HOPOPTS: 2341 case IPV6_RTHDR: 2342 case IPV6_DSTOPTS: 2343 case IPV6_RTHDRDSTOPTS: 2344 case IPV6_NEXTHOP: 2345 case IPV6_TCLASS: 2346 case IPV6_DONTFRAG: 2347 case IPV6_USE_MIN_MTU: 2348 case IPV6_PREFER_TEMPADDR: 2349 error = ip6_getpcbopt(inp, optname, sopt); 2350 break; 2351 2352 case IPV6_MULTICAST_IF: 2353 case IPV6_MULTICAST_HOPS: 2354 case IPV6_MULTICAST_LOOP: 2355 case IPV6_MSFILTER: 2356 error = ip6_getmoptions(inp, sopt); 2357 break; 2358 2359 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2360 case IPV6_IPSEC_POLICY: 2361 if (IPSEC_ENABLED(ipv6)) { 2362 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2363 break; 2364 } 2365 /* FALLTHROUGH */ 2366 #endif /* IPSEC */ 2367 default: 2368 error = ENOPROTOOPT; 2369 break; 2370 } 2371 break; 2372 } 2373 } 2374 return (error); 2375 } 2376 2377 int 2378 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2379 { 2380 int error = 0, optval, optlen; 2381 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2382 struct inpcb *inp = sotoinpcb(so); 2383 int level, op, optname; 2384 2385 level = sopt->sopt_level; 2386 op = sopt->sopt_dir; 2387 optname = sopt->sopt_name; 2388 optlen = sopt->sopt_valsize; 2389 2390 if (level != IPPROTO_IPV6) { 2391 return (EINVAL); 2392 } 2393 2394 switch (optname) { 2395 case IPV6_CHECKSUM: 2396 /* 2397 * For ICMPv6 sockets, no modification allowed for checksum 2398 * offset, permit "no change" values to help existing apps. 2399 * 2400 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2401 * for an ICMPv6 socket will fail." 2402 * The current behavior does not meet RFC3542. 2403 */ 2404 switch (op) { 2405 case SOPT_SET: 2406 if (optlen != sizeof(int)) { 2407 error = EINVAL; 2408 break; 2409 } 2410 error = sooptcopyin(sopt, &optval, sizeof(optval), 2411 sizeof(optval)); 2412 if (error) 2413 break; 2414 if (optval < -1 || (optval % 2) != 0) { 2415 /* 2416 * The API assumes non-negative even offset 2417 * values or -1 as a special value. 2418 */ 2419 error = EINVAL; 2420 } else if (so->so_proto->pr_protocol == 2421 IPPROTO_ICMPV6) { 2422 if (optval != icmp6off) 2423 error = EINVAL; 2424 } else 2425 inp->in6p_cksum = optval; 2426 break; 2427 2428 case SOPT_GET: 2429 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2430 optval = icmp6off; 2431 else 2432 optval = inp->in6p_cksum; 2433 2434 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2435 break; 2436 2437 default: 2438 error = EINVAL; 2439 break; 2440 } 2441 break; 2442 2443 default: 2444 error = ENOPROTOOPT; 2445 break; 2446 } 2447 2448 return (error); 2449 } 2450 2451 /* 2452 * Set up IP6 options in pcb for insertion in output packets or 2453 * specifying behavior of outgoing packets. 2454 */ 2455 static int 2456 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2457 struct socket *so, struct sockopt *sopt) 2458 { 2459 struct ip6_pktopts *opt = *pktopt; 2460 int error = 0; 2461 struct thread *td = sopt->sopt_td; 2462 2463 /* turn off any old options. */ 2464 if (opt) { 2465 #ifdef DIAGNOSTIC 2466 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2467 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2468 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2469 printf("ip6_pcbopts: all specified options are cleared.\n"); 2470 #endif 2471 ip6_clearpktopts(opt, -1); 2472 } else { 2473 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2474 if (opt == NULL) 2475 return (ENOMEM); 2476 } 2477 *pktopt = NULL; 2478 2479 if (!m || m->m_len == 0) { 2480 /* 2481 * Only turning off any previous options, regardless of 2482 * whether the opt is just created or given. 2483 */ 2484 free(opt, M_IP6OPT); 2485 return (0); 2486 } 2487 2488 /* set options specified by user. */ 2489 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2490 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2491 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2492 free(opt, M_IP6OPT); 2493 return (error); 2494 } 2495 *pktopt = opt; 2496 return (0); 2497 } 2498 2499 /* 2500 * initialize ip6_pktopts. beware that there are non-zero default values in 2501 * the struct. 2502 */ 2503 void 2504 ip6_initpktopts(struct ip6_pktopts *opt) 2505 { 2506 2507 bzero(opt, sizeof(*opt)); 2508 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2509 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2510 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2511 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2512 } 2513 2514 static int 2515 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2516 struct ucred *cred, int uproto) 2517 { 2518 struct ip6_pktopts *opt; 2519 2520 if (*pktopt == NULL) { 2521 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2522 M_NOWAIT); 2523 if (*pktopt == NULL) 2524 return (ENOBUFS); 2525 ip6_initpktopts(*pktopt); 2526 } 2527 opt = *pktopt; 2528 2529 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2530 } 2531 2532 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2533 if (pktopt && pktopt->field) { \ 2534 INP_RUNLOCK(inp); \ 2535 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2536 malloc_optdata = true; \ 2537 INP_RLOCK(inp); \ 2538 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ 2539 INP_RUNLOCK(inp); \ 2540 free(optdata, M_TEMP); \ 2541 return (ECONNRESET); \ 2542 } \ 2543 pktopt = inp->in6p_outputopts; \ 2544 if (pktopt && pktopt->field) { \ 2545 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2546 bcopy(&pktopt->field, optdata, optdatalen); \ 2547 } else { \ 2548 free(optdata, M_TEMP); \ 2549 optdata = NULL; \ 2550 malloc_optdata = false; \ 2551 } \ 2552 } \ 2553 } while(0) 2554 2555 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2556 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2557 2558 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2559 pktopt->field->sa_len) 2560 2561 static int 2562 ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt) 2563 { 2564 void *optdata = NULL; 2565 bool malloc_optdata = false; 2566 int optdatalen = 0; 2567 int error = 0; 2568 struct in6_pktinfo null_pktinfo; 2569 int deftclass = 0, on; 2570 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2571 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2572 struct ip6_pktopts *pktopt; 2573 2574 INP_RLOCK(inp); 2575 pktopt = inp->in6p_outputopts; 2576 2577 switch (optname) { 2578 case IPV6_PKTINFO: 2579 optdata = (void *)&null_pktinfo; 2580 if (pktopt && pktopt->ip6po_pktinfo) { 2581 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2582 sizeof(null_pktinfo)); 2583 in6_clearscope(&null_pktinfo.ipi6_addr); 2584 } else { 2585 /* XXX: we don't have to do this every time... */ 2586 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2587 } 2588 optdatalen = sizeof(struct in6_pktinfo); 2589 break; 2590 case IPV6_TCLASS: 2591 if (pktopt && pktopt->ip6po_tclass >= 0) 2592 deftclass = pktopt->ip6po_tclass; 2593 optdata = (void *)&deftclass; 2594 optdatalen = sizeof(int); 2595 break; 2596 case IPV6_HOPOPTS: 2597 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2598 break; 2599 case IPV6_RTHDR: 2600 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2601 break; 2602 case IPV6_RTHDRDSTOPTS: 2603 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2604 break; 2605 case IPV6_DSTOPTS: 2606 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2607 break; 2608 case IPV6_NEXTHOP: 2609 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2610 break; 2611 case IPV6_USE_MIN_MTU: 2612 if (pktopt) 2613 defminmtu = pktopt->ip6po_minmtu; 2614 optdata = (void *)&defminmtu; 2615 optdatalen = sizeof(int); 2616 break; 2617 case IPV6_DONTFRAG: 2618 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2619 on = 1; 2620 else 2621 on = 0; 2622 optdata = (void *)&on; 2623 optdatalen = sizeof(on); 2624 break; 2625 case IPV6_PREFER_TEMPADDR: 2626 if (pktopt) 2627 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2628 optdata = (void *)&defpreftemp; 2629 optdatalen = sizeof(int); 2630 break; 2631 default: /* should not happen */ 2632 #ifdef DIAGNOSTIC 2633 panic("ip6_getpcbopt: unexpected option\n"); 2634 #endif 2635 INP_RUNLOCK(inp); 2636 return (ENOPROTOOPT); 2637 } 2638 INP_RUNLOCK(inp); 2639 2640 error = sooptcopyout(sopt, optdata, optdatalen); 2641 if (malloc_optdata) 2642 free(optdata, M_TEMP); 2643 2644 return (error); 2645 } 2646 2647 void 2648 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2649 { 2650 if (pktopt == NULL) 2651 return; 2652 2653 if (optname == -1 || optname == IPV6_PKTINFO) { 2654 if (pktopt->ip6po_pktinfo) 2655 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2656 pktopt->ip6po_pktinfo = NULL; 2657 } 2658 if (optname == -1 || optname == IPV6_HOPLIMIT) 2659 pktopt->ip6po_hlim = -1; 2660 if (optname == -1 || optname == IPV6_TCLASS) 2661 pktopt->ip6po_tclass = -1; 2662 if (optname == -1 || optname == IPV6_NEXTHOP) { 2663 if (pktopt->ip6po_nextroute.ro_nh) { 2664 NH_FREE(pktopt->ip6po_nextroute.ro_nh); 2665 pktopt->ip6po_nextroute.ro_nh = NULL; 2666 } 2667 if (pktopt->ip6po_nexthop) 2668 free(pktopt->ip6po_nexthop, M_IP6OPT); 2669 pktopt->ip6po_nexthop = NULL; 2670 } 2671 if (optname == -1 || optname == IPV6_HOPOPTS) { 2672 if (pktopt->ip6po_hbh) 2673 free(pktopt->ip6po_hbh, M_IP6OPT); 2674 pktopt->ip6po_hbh = NULL; 2675 } 2676 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2677 if (pktopt->ip6po_dest1) 2678 free(pktopt->ip6po_dest1, M_IP6OPT); 2679 pktopt->ip6po_dest1 = NULL; 2680 } 2681 if (optname == -1 || optname == IPV6_RTHDR) { 2682 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2683 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2684 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2685 if (pktopt->ip6po_route.ro_nh) { 2686 NH_FREE(pktopt->ip6po_route.ro_nh); 2687 pktopt->ip6po_route.ro_nh = NULL; 2688 } 2689 } 2690 if (optname == -1 || optname == IPV6_DSTOPTS) { 2691 if (pktopt->ip6po_dest2) 2692 free(pktopt->ip6po_dest2, M_IP6OPT); 2693 pktopt->ip6po_dest2 = NULL; 2694 } 2695 } 2696 2697 #define PKTOPT_EXTHDRCPY(type) \ 2698 do {\ 2699 if (src->type) {\ 2700 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2701 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2702 if (dst->type == NULL)\ 2703 goto bad;\ 2704 bcopy(src->type, dst->type, hlen);\ 2705 }\ 2706 } while (/*CONSTCOND*/ 0) 2707 2708 static int 2709 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2710 { 2711 if (dst == NULL || src == NULL) { 2712 printf("ip6_clearpktopts: invalid argument\n"); 2713 return (EINVAL); 2714 } 2715 2716 dst->ip6po_hlim = src->ip6po_hlim; 2717 dst->ip6po_tclass = src->ip6po_tclass; 2718 dst->ip6po_flags = src->ip6po_flags; 2719 dst->ip6po_minmtu = src->ip6po_minmtu; 2720 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2721 if (src->ip6po_pktinfo) { 2722 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2723 M_IP6OPT, canwait); 2724 if (dst->ip6po_pktinfo == NULL) 2725 goto bad; 2726 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2727 } 2728 if (src->ip6po_nexthop) { 2729 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2730 M_IP6OPT, canwait); 2731 if (dst->ip6po_nexthop == NULL) 2732 goto bad; 2733 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2734 src->ip6po_nexthop->sa_len); 2735 } 2736 PKTOPT_EXTHDRCPY(ip6po_hbh); 2737 PKTOPT_EXTHDRCPY(ip6po_dest1); 2738 PKTOPT_EXTHDRCPY(ip6po_dest2); 2739 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2740 return (0); 2741 2742 bad: 2743 ip6_clearpktopts(dst, -1); 2744 return (ENOBUFS); 2745 } 2746 #undef PKTOPT_EXTHDRCPY 2747 2748 struct ip6_pktopts * 2749 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2750 { 2751 int error; 2752 struct ip6_pktopts *dst; 2753 2754 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2755 if (dst == NULL) 2756 return (NULL); 2757 ip6_initpktopts(dst); 2758 2759 if ((error = copypktopts(dst, src, canwait)) != 0) { 2760 free(dst, M_IP6OPT); 2761 return (NULL); 2762 } 2763 2764 return (dst); 2765 } 2766 2767 void 2768 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2769 { 2770 if (pktopt == NULL) 2771 return; 2772 2773 ip6_clearpktopts(pktopt, -1); 2774 2775 free(pktopt, M_IP6OPT); 2776 } 2777 2778 /* 2779 * Set IPv6 outgoing packet options based on advanced API. 2780 */ 2781 int 2782 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2783 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2784 { 2785 struct cmsghdr *cm = NULL; 2786 2787 if (control == NULL || opt == NULL) 2788 return (EINVAL); 2789 2790 ip6_initpktopts(opt); 2791 if (stickyopt) { 2792 int error; 2793 2794 /* 2795 * If stickyopt is provided, make a local copy of the options 2796 * for this particular packet, then override them by ancillary 2797 * objects. 2798 * XXX: copypktopts() does not copy the cached route to a next 2799 * hop (if any). This is not very good in terms of efficiency, 2800 * but we can allow this since this option should be rarely 2801 * used. 2802 */ 2803 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2804 return (error); 2805 } 2806 2807 /* 2808 * XXX: Currently, we assume all the optional information is stored 2809 * in a single mbuf. 2810 */ 2811 if (control->m_next) 2812 return (EINVAL); 2813 2814 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2815 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2816 int error; 2817 2818 if (control->m_len < CMSG_LEN(0)) 2819 return (EINVAL); 2820 2821 cm = mtod(control, struct cmsghdr *); 2822 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2823 return (EINVAL); 2824 if (cm->cmsg_level != IPPROTO_IPV6) 2825 continue; 2826 2827 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2828 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2829 if (error) 2830 return (error); 2831 } 2832 2833 return (0); 2834 } 2835 2836 /* 2837 * Set a particular packet option, as a sticky option or an ancillary data 2838 * item. "len" can be 0 only when it's a sticky option. 2839 * We have 4 cases of combination of "sticky" and "cmsg": 2840 * "sticky=0, cmsg=0": impossible 2841 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2842 * "sticky=1, cmsg=0": RFC3542 socket option 2843 * "sticky=1, cmsg=1": RFC2292 socket option 2844 */ 2845 static int 2846 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2847 struct ucred *cred, int sticky, int cmsg, int uproto) 2848 { 2849 int minmtupolicy, preftemp; 2850 int error; 2851 2852 if (!sticky && !cmsg) { 2853 #ifdef DIAGNOSTIC 2854 printf("ip6_setpktopt: impossible case\n"); 2855 #endif 2856 return (EINVAL); 2857 } 2858 2859 /* 2860 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2861 * not be specified in the context of RFC3542. Conversely, 2862 * RFC3542 types should not be specified in the context of RFC2292. 2863 */ 2864 if (!cmsg) { 2865 switch (optname) { 2866 case IPV6_2292PKTINFO: 2867 case IPV6_2292HOPLIMIT: 2868 case IPV6_2292NEXTHOP: 2869 case IPV6_2292HOPOPTS: 2870 case IPV6_2292DSTOPTS: 2871 case IPV6_2292RTHDR: 2872 case IPV6_2292PKTOPTIONS: 2873 return (ENOPROTOOPT); 2874 } 2875 } 2876 if (sticky && cmsg) { 2877 switch (optname) { 2878 case IPV6_PKTINFO: 2879 case IPV6_HOPLIMIT: 2880 case IPV6_NEXTHOP: 2881 case IPV6_HOPOPTS: 2882 case IPV6_DSTOPTS: 2883 case IPV6_RTHDRDSTOPTS: 2884 case IPV6_RTHDR: 2885 case IPV6_USE_MIN_MTU: 2886 case IPV6_DONTFRAG: 2887 case IPV6_TCLASS: 2888 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2889 return (ENOPROTOOPT); 2890 } 2891 } 2892 2893 switch (optname) { 2894 case IPV6_2292PKTINFO: 2895 case IPV6_PKTINFO: 2896 { 2897 struct ifnet *ifp = NULL; 2898 struct in6_pktinfo *pktinfo; 2899 2900 if (len != sizeof(struct in6_pktinfo)) 2901 return (EINVAL); 2902 2903 pktinfo = (struct in6_pktinfo *)buf; 2904 2905 /* 2906 * An application can clear any sticky IPV6_PKTINFO option by 2907 * doing a "regular" setsockopt with ipi6_addr being 2908 * in6addr_any and ipi6_ifindex being zero. 2909 * [RFC 3542, Section 6] 2910 */ 2911 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2912 pktinfo->ipi6_ifindex == 0 && 2913 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2914 ip6_clearpktopts(opt, optname); 2915 break; 2916 } 2917 2918 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2919 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2920 return (EINVAL); 2921 } 2922 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2923 return (EINVAL); 2924 /* validate the interface index if specified. */ 2925 if (pktinfo->ipi6_ifindex > V_if_index) 2926 return (ENXIO); 2927 if (pktinfo->ipi6_ifindex) { 2928 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2929 if (ifp == NULL) 2930 return (ENXIO); 2931 } 2932 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2933 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2934 return (ENETDOWN); 2935 2936 if (ifp != NULL && 2937 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2938 struct in6_ifaddr *ia; 2939 2940 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2941 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2942 if (ia == NULL) 2943 return (EADDRNOTAVAIL); 2944 ifa_free(&ia->ia_ifa); 2945 } 2946 /* 2947 * We store the address anyway, and let in6_selectsrc() 2948 * validate the specified address. This is because ipi6_addr 2949 * may not have enough information about its scope zone, and 2950 * we may need additional information (such as outgoing 2951 * interface or the scope zone of a destination address) to 2952 * disambiguate the scope. 2953 * XXX: the delay of the validation may confuse the 2954 * application when it is used as a sticky option. 2955 */ 2956 if (opt->ip6po_pktinfo == NULL) { 2957 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2958 M_IP6OPT, M_NOWAIT); 2959 if (opt->ip6po_pktinfo == NULL) 2960 return (ENOBUFS); 2961 } 2962 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2963 break; 2964 } 2965 2966 case IPV6_2292HOPLIMIT: 2967 case IPV6_HOPLIMIT: 2968 { 2969 int *hlimp; 2970 2971 /* 2972 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2973 * to simplify the ordering among hoplimit options. 2974 */ 2975 if (optname == IPV6_HOPLIMIT && sticky) 2976 return (ENOPROTOOPT); 2977 2978 if (len != sizeof(int)) 2979 return (EINVAL); 2980 hlimp = (int *)buf; 2981 if (*hlimp < -1 || *hlimp > 255) 2982 return (EINVAL); 2983 2984 opt->ip6po_hlim = *hlimp; 2985 break; 2986 } 2987 2988 case IPV6_TCLASS: 2989 { 2990 int tclass; 2991 2992 if (len != sizeof(int)) 2993 return (EINVAL); 2994 tclass = *(int *)buf; 2995 if (tclass < -1 || tclass > 255) 2996 return (EINVAL); 2997 2998 opt->ip6po_tclass = tclass; 2999 break; 3000 } 3001 3002 case IPV6_2292NEXTHOP: 3003 case IPV6_NEXTHOP: 3004 if (cred != NULL) { 3005 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3006 if (error) 3007 return (error); 3008 } 3009 3010 if (len == 0) { /* just remove the option */ 3011 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3012 break; 3013 } 3014 3015 /* check if cmsg_len is large enough for sa_len */ 3016 if (len < sizeof(struct sockaddr) || len < *buf) 3017 return (EINVAL); 3018 3019 switch (((struct sockaddr *)buf)->sa_family) { 3020 case AF_INET6: 3021 { 3022 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3023 int error; 3024 3025 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3026 return (EINVAL); 3027 3028 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3029 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3030 return (EINVAL); 3031 } 3032 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 3033 != 0) { 3034 return (error); 3035 } 3036 break; 3037 } 3038 case AF_LINK: /* should eventually be supported */ 3039 default: 3040 return (EAFNOSUPPORT); 3041 } 3042 3043 /* turn off the previous option, then set the new option. */ 3044 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3045 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3046 if (opt->ip6po_nexthop == NULL) 3047 return (ENOBUFS); 3048 bcopy(buf, opt->ip6po_nexthop, *buf); 3049 break; 3050 3051 case IPV6_2292HOPOPTS: 3052 case IPV6_HOPOPTS: 3053 { 3054 struct ip6_hbh *hbh; 3055 int hbhlen; 3056 3057 /* 3058 * XXX: We don't allow a non-privileged user to set ANY HbH 3059 * options, since per-option restriction has too much 3060 * overhead. 3061 */ 3062 if (cred != NULL) { 3063 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3064 if (error) 3065 return (error); 3066 } 3067 3068 if (len == 0) { 3069 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3070 break; /* just remove the option */ 3071 } 3072 3073 /* message length validation */ 3074 if (len < sizeof(struct ip6_hbh)) 3075 return (EINVAL); 3076 hbh = (struct ip6_hbh *)buf; 3077 hbhlen = (hbh->ip6h_len + 1) << 3; 3078 if (len != hbhlen) 3079 return (EINVAL); 3080 3081 /* turn off the previous option, then set the new option. */ 3082 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3083 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3084 if (opt->ip6po_hbh == NULL) 3085 return (ENOBUFS); 3086 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3087 3088 break; 3089 } 3090 3091 case IPV6_2292DSTOPTS: 3092 case IPV6_DSTOPTS: 3093 case IPV6_RTHDRDSTOPTS: 3094 { 3095 struct ip6_dest *dest, **newdest = NULL; 3096 int destlen; 3097 3098 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 3099 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3100 if (error) 3101 return (error); 3102 } 3103 3104 if (len == 0) { 3105 ip6_clearpktopts(opt, optname); 3106 break; /* just remove the option */ 3107 } 3108 3109 /* message length validation */ 3110 if (len < sizeof(struct ip6_dest)) 3111 return (EINVAL); 3112 dest = (struct ip6_dest *)buf; 3113 destlen = (dest->ip6d_len + 1) << 3; 3114 if (len != destlen) 3115 return (EINVAL); 3116 3117 /* 3118 * Determine the position that the destination options header 3119 * should be inserted; before or after the routing header. 3120 */ 3121 switch (optname) { 3122 case IPV6_2292DSTOPTS: 3123 /* 3124 * The old advacned API is ambiguous on this point. 3125 * Our approach is to determine the position based 3126 * according to the existence of a routing header. 3127 * Note, however, that this depends on the order of the 3128 * extension headers in the ancillary data; the 1st 3129 * part of the destination options header must appear 3130 * before the routing header in the ancillary data, 3131 * too. 3132 * RFC3542 solved the ambiguity by introducing 3133 * separate ancillary data or option types. 3134 */ 3135 if (opt->ip6po_rthdr == NULL) 3136 newdest = &opt->ip6po_dest1; 3137 else 3138 newdest = &opt->ip6po_dest2; 3139 break; 3140 case IPV6_RTHDRDSTOPTS: 3141 newdest = &opt->ip6po_dest1; 3142 break; 3143 case IPV6_DSTOPTS: 3144 newdest = &opt->ip6po_dest2; 3145 break; 3146 } 3147 3148 /* turn off the previous option, then set the new option. */ 3149 ip6_clearpktopts(opt, optname); 3150 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3151 if (*newdest == NULL) 3152 return (ENOBUFS); 3153 bcopy(dest, *newdest, destlen); 3154 3155 break; 3156 } 3157 3158 case IPV6_2292RTHDR: 3159 case IPV6_RTHDR: 3160 { 3161 struct ip6_rthdr *rth; 3162 int rthlen; 3163 3164 if (len == 0) { 3165 ip6_clearpktopts(opt, IPV6_RTHDR); 3166 break; /* just remove the option */ 3167 } 3168 3169 /* message length validation */ 3170 if (len < sizeof(struct ip6_rthdr)) 3171 return (EINVAL); 3172 rth = (struct ip6_rthdr *)buf; 3173 rthlen = (rth->ip6r_len + 1) << 3; 3174 if (len != rthlen) 3175 return (EINVAL); 3176 3177 switch (rth->ip6r_type) { 3178 case IPV6_RTHDR_TYPE_0: 3179 if (rth->ip6r_len == 0) /* must contain one addr */ 3180 return (EINVAL); 3181 if (rth->ip6r_len % 2) /* length must be even */ 3182 return (EINVAL); 3183 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3184 return (EINVAL); 3185 break; 3186 default: 3187 return (EINVAL); /* not supported */ 3188 } 3189 3190 /* turn off the previous option */ 3191 ip6_clearpktopts(opt, IPV6_RTHDR); 3192 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3193 if (opt->ip6po_rthdr == NULL) 3194 return (ENOBUFS); 3195 bcopy(rth, opt->ip6po_rthdr, rthlen); 3196 3197 break; 3198 } 3199 3200 case IPV6_USE_MIN_MTU: 3201 if (len != sizeof(int)) 3202 return (EINVAL); 3203 minmtupolicy = *(int *)buf; 3204 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3205 minmtupolicy != IP6PO_MINMTU_DISABLE && 3206 minmtupolicy != IP6PO_MINMTU_ALL) { 3207 return (EINVAL); 3208 } 3209 opt->ip6po_minmtu = minmtupolicy; 3210 break; 3211 3212 case IPV6_DONTFRAG: 3213 if (len != sizeof(int)) 3214 return (EINVAL); 3215 3216 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3217 /* 3218 * we ignore this option for TCP sockets. 3219 * (RFC3542 leaves this case unspecified.) 3220 */ 3221 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3222 } else 3223 opt->ip6po_flags |= IP6PO_DONTFRAG; 3224 break; 3225 3226 case IPV6_PREFER_TEMPADDR: 3227 if (len != sizeof(int)) 3228 return (EINVAL); 3229 preftemp = *(int *)buf; 3230 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3231 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3232 preftemp != IP6PO_TEMPADDR_PREFER) { 3233 return (EINVAL); 3234 } 3235 opt->ip6po_prefer_tempaddr = preftemp; 3236 break; 3237 3238 default: 3239 return (ENOPROTOOPT); 3240 } /* end of switch */ 3241 3242 return (0); 3243 } 3244 3245 /* 3246 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3247 * packet to the input queue of a specified interface. Note that this 3248 * calls the output routine of the loopback "driver", but with an interface 3249 * pointer that might NOT be &loif -- easier than replicating that code here. 3250 */ 3251 void 3252 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3253 { 3254 struct mbuf *copym; 3255 struct ip6_hdr *ip6; 3256 3257 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3258 if (copym == NULL) 3259 return; 3260 3261 /* 3262 * Make sure to deep-copy IPv6 header portion in case the data 3263 * is in an mbuf cluster, so that we can safely override the IPv6 3264 * header portion later. 3265 */ 3266 if (!M_WRITABLE(copym) || 3267 copym->m_len < sizeof(struct ip6_hdr)) { 3268 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3269 if (copym == NULL) 3270 return; 3271 } 3272 ip6 = mtod(copym, struct ip6_hdr *); 3273 /* 3274 * clear embedded scope identifiers if necessary. 3275 * in6_clearscope will touch the addresses only when necessary. 3276 */ 3277 in6_clearscope(&ip6->ip6_src); 3278 in6_clearscope(&ip6->ip6_dst); 3279 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3280 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3281 CSUM_PSEUDO_HDR; 3282 copym->m_pkthdr.csum_data = 0xffff; 3283 } 3284 if_simloop(ifp, copym, AF_INET6, 0); 3285 } 3286 3287 /* 3288 * Chop IPv6 header off from the payload. 3289 */ 3290 static int 3291 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3292 { 3293 struct mbuf *mh; 3294 struct ip6_hdr *ip6; 3295 3296 ip6 = mtod(m, struct ip6_hdr *); 3297 if (m->m_len > sizeof(*ip6)) { 3298 mh = m_gethdr(M_NOWAIT, MT_DATA); 3299 if (mh == NULL) { 3300 m_freem(m); 3301 return ENOBUFS; 3302 } 3303 m_move_pkthdr(mh, m); 3304 M_ALIGN(mh, sizeof(*ip6)); 3305 m->m_len -= sizeof(*ip6); 3306 m->m_data += sizeof(*ip6); 3307 mh->m_next = m; 3308 m = mh; 3309 m->m_len = sizeof(*ip6); 3310 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3311 } 3312 exthdrs->ip6e_ip6 = m; 3313 return 0; 3314 } 3315 3316 /* 3317 * Compute IPv6 extension header length. 3318 */ 3319 int 3320 ip6_optlen(struct inpcb *inp) 3321 { 3322 int len; 3323 3324 if (!inp->in6p_outputopts) 3325 return 0; 3326 3327 len = 0; 3328 #define elen(x) \ 3329 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3330 3331 len += elen(inp->in6p_outputopts->ip6po_hbh); 3332 if (inp->in6p_outputopts->ip6po_rthdr) 3333 /* dest1 is valid with rthdr only */ 3334 len += elen(inp->in6p_outputopts->ip6po_dest1); 3335 len += elen(inp->in6p_outputopts->ip6po_rthdr); 3336 len += elen(inp->in6p_outputopts->ip6po_dest2); 3337 return len; 3338 #undef elen 3339 } 3340