1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ipfw.h" 69 #include "opt_ipsec.h" 70 #include "opt_sctp.h" 71 #include "opt_route.h" 72 73 #include <sys/param.h> 74 #include <sys/kernel.h> 75 #include <sys/malloc.h> 76 #include <sys/mbuf.h> 77 #include <sys/errno.h> 78 #include <sys/priv.h> 79 #include <sys/proc.h> 80 #include <sys/protosw.h> 81 #include <sys/socket.h> 82 #include <sys/socketvar.h> 83 #include <sys/syslog.h> 84 #include <sys/ucred.h> 85 86 #include <machine/in_cksum.h> 87 88 #include <net/if.h> 89 #include <net/if_var.h> 90 #include <net/netisr.h> 91 #include <net/route.h> 92 #include <net/pfil.h> 93 #include <net/vnet.h> 94 95 #include <netinet/in.h> 96 #include <netinet/in_var.h> 97 #include <netinet/ip_var.h> 98 #include <netinet6/in6_var.h> 99 #include <netinet/ip6.h> 100 #include <netinet/icmp6.h> 101 #include <netinet6/ip6_var.h> 102 #include <netinet/in_pcb.h> 103 #include <netinet/tcp_var.h> 104 #include <netinet6/nd6.h> 105 106 #ifdef IPSEC 107 #include <netipsec/ipsec.h> 108 #include <netipsec/ipsec6.h> 109 #include <netipsec/key.h> 110 #include <netinet6/ip6_ipsec.h> 111 #endif /* IPSEC */ 112 #ifdef SCTP 113 #include <netinet/sctp.h> 114 #include <netinet/sctp_crc32.h> 115 #endif 116 117 #include <netinet6/ip6protosw.h> 118 #include <netinet6/scope6_var.h> 119 120 #ifdef FLOWTABLE 121 #include <net/flowtable.h> 122 #endif 123 124 extern int in6_mcast_loop; 125 126 struct ip6_exthdrs { 127 struct mbuf *ip6e_ip6; 128 struct mbuf *ip6e_hbh; 129 struct mbuf *ip6e_dest1; 130 struct mbuf *ip6e_rthdr; 131 struct mbuf *ip6e_dest2; 132 }; 133 134 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 135 struct ucred *, int); 136 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 137 struct socket *, struct sockopt *); 138 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 139 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 140 struct ucred *, int, int, int); 141 142 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 143 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 144 struct ip6_frag **); 145 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 146 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 147 static int ip6_getpmtu(struct route_in6 *, struct route_in6 *, 148 struct ifnet *, struct in6_addr *, u_long *, int *, u_int); 149 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 150 151 152 /* 153 * Make an extension header from option data. hp is the source, and 154 * mp is the destination. 155 */ 156 #define MAKE_EXTHDR(hp, mp) \ 157 do { \ 158 if (hp) { \ 159 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 160 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 161 ((eh)->ip6e_len + 1) << 3); \ 162 if (error) \ 163 goto freehdrs; \ 164 } \ 165 } while (/*CONSTCOND*/ 0) 166 167 /* 168 * Form a chain of extension headers. 169 * m is the extension header mbuf 170 * mp is the previous mbuf in the chain 171 * p is the next header 172 * i is the type of option. 173 */ 174 #define MAKE_CHAIN(m, mp, p, i)\ 175 do {\ 176 if (m) {\ 177 if (!hdrsplit) \ 178 panic("assumption failed: hdr not split"); \ 179 *mtod((m), u_char *) = *(p);\ 180 *(p) = (i);\ 181 p = mtod((m), u_char *);\ 182 (m)->m_next = (mp)->m_next;\ 183 (mp)->m_next = (m);\ 184 (mp) = (m);\ 185 }\ 186 } while (/*CONSTCOND*/ 0) 187 188 static void 189 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 190 { 191 u_short csum; 192 193 csum = in_cksum_skip(m, offset + plen, offset); 194 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 195 csum = 0xffff; 196 offset += m->m_pkthdr.csum_data; /* checksum offset */ 197 198 if (offset + sizeof(u_short) > m->m_len) { 199 printf("%s: delayed m_pullup, m->len: %d plen %u off %u " 200 "csum_flags=%b\n", __func__, m->m_len, plen, offset, 201 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 202 /* 203 * XXX this should not happen, but if it does, the correct 204 * behavior may be to insert the checksum in the appropriate 205 * next mbuf in the chain. 206 */ 207 return; 208 } 209 *(u_short *)(m->m_data + offset) = csum; 210 } 211 212 /* 213 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 214 * header (with pri, len, nxt, hlim, src, dst). 215 * This function may modify ver and hlim only. 216 * The mbuf chain containing the packet will be freed. 217 * The mbuf opt, if present, will not be freed. 218 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 219 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 220 * then result of route lookup is stored in ro->ro_rt. 221 * 222 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 223 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 224 * which is rt_rmx.rmx_mtu. 225 * 226 * ifpp - XXX: just for statistics 227 */ 228 int 229 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 230 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 231 struct ifnet **ifpp, struct inpcb *inp) 232 { 233 struct ip6_hdr *ip6, *mhip6; 234 struct ifnet *ifp, *origifp; 235 struct mbuf *m = m0; 236 struct mbuf *mprev = NULL; 237 int hlen, tlen, len, off; 238 struct route_in6 ip6route; 239 struct rtentry *rt = NULL; 240 struct sockaddr_in6 *dst, src_sa, dst_sa; 241 struct in6_addr odst; 242 int error = 0; 243 struct in6_ifaddr *ia = NULL; 244 u_long mtu; 245 int alwaysfrag, dontfrag; 246 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 247 struct ip6_exthdrs exthdrs; 248 struct in6_addr finaldst, src0, dst0; 249 u_int32_t zone; 250 struct route_in6 *ro_pmtu = NULL; 251 int hdrsplit = 0; 252 int needipsec = 0; 253 int sw_csum, tso; 254 #ifdef IPSEC 255 struct ipsec_output_state state; 256 struct ip6_rthdr *rh = NULL; 257 int needipsectun = 0; 258 int segleft_org = 0; 259 struct secpolicy *sp = NULL; 260 #endif /* IPSEC */ 261 struct m_tag *fwd_tag = NULL; 262 263 ip6 = mtod(m, struct ip6_hdr *); 264 if (ip6 == NULL) { 265 printf ("ip6 is NULL"); 266 goto bad; 267 } 268 269 if (inp != NULL) 270 M_SETFIB(m, inp->inp_inc.inc_fibnum); 271 272 finaldst = ip6->ip6_dst; 273 bzero(&exthdrs, sizeof(exthdrs)); 274 if (opt) { 275 /* Hop-by-Hop options header */ 276 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 277 /* Destination options header(1st part) */ 278 if (opt->ip6po_rthdr) { 279 /* 280 * Destination options header(1st part) 281 * This only makes sense with a routing header. 282 * See Section 9.2 of RFC 3542. 283 * Disabling this part just for MIP6 convenience is 284 * a bad idea. We need to think carefully about a 285 * way to make the advanced API coexist with MIP6 286 * options, which might automatically be inserted in 287 * the kernel. 288 */ 289 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 290 } 291 /* Routing header */ 292 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 293 /* Destination options header(2nd part) */ 294 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 295 } 296 297 #ifdef IPSEC 298 /* 299 * IPSec checking which handles several cases. 300 * FAST IPSEC: We re-injected the packet. 301 */ 302 switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp)) 303 { 304 case 1: /* Bad packet */ 305 goto freehdrs; 306 case -1: /* Do IPSec */ 307 needipsec = 1; 308 /* 309 * Do delayed checksums now, as we may send before returning. 310 */ 311 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 312 plen = m->m_pkthdr.len - sizeof(*ip6); 313 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 314 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 315 } 316 #ifdef SCTP 317 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 318 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 319 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 320 } 321 #endif 322 case 0: /* No IPSec */ 323 default: 324 break; 325 } 326 #endif /* IPSEC */ 327 328 /* 329 * Calculate the total length of the extension header chain. 330 * Keep the length of the unfragmentable part for fragmentation. 331 */ 332 optlen = 0; 333 if (exthdrs.ip6e_hbh) 334 optlen += exthdrs.ip6e_hbh->m_len; 335 if (exthdrs.ip6e_dest1) 336 optlen += exthdrs.ip6e_dest1->m_len; 337 if (exthdrs.ip6e_rthdr) 338 optlen += exthdrs.ip6e_rthdr->m_len; 339 unfragpartlen = optlen + sizeof(struct ip6_hdr); 340 341 /* NOTE: we don't add AH/ESP length here. do that later. */ 342 if (exthdrs.ip6e_dest2) 343 optlen += exthdrs.ip6e_dest2->m_len; 344 345 /* 346 * If we need IPsec, or there is at least one extension header, 347 * separate IP6 header from the payload. 348 */ 349 if ((needipsec || optlen) && !hdrsplit) { 350 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 351 m = NULL; 352 goto freehdrs; 353 } 354 m = exthdrs.ip6e_ip6; 355 hdrsplit++; 356 } 357 358 /* adjust pointer */ 359 ip6 = mtod(m, struct ip6_hdr *); 360 361 /* adjust mbuf packet header length */ 362 m->m_pkthdr.len += optlen; 363 plen = m->m_pkthdr.len - sizeof(*ip6); 364 365 /* If this is a jumbo payload, insert a jumbo payload option. */ 366 if (plen > IPV6_MAXPACKET) { 367 if (!hdrsplit) { 368 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 369 m = NULL; 370 goto freehdrs; 371 } 372 m = exthdrs.ip6e_ip6; 373 hdrsplit++; 374 } 375 /* adjust pointer */ 376 ip6 = mtod(m, struct ip6_hdr *); 377 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 378 goto freehdrs; 379 ip6->ip6_plen = 0; 380 } else 381 ip6->ip6_plen = htons(plen); 382 383 /* 384 * Concatenate headers and fill in next header fields. 385 * Here we have, on "m" 386 * IPv6 payload 387 * and we insert headers accordingly. Finally, we should be getting: 388 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 389 * 390 * during the header composing process, "m" points to IPv6 header. 391 * "mprev" points to an extension header prior to esp. 392 */ 393 u_char *nexthdrp = &ip6->ip6_nxt; 394 mprev = m; 395 396 /* 397 * we treat dest2 specially. this makes IPsec processing 398 * much easier. the goal here is to make mprev point the 399 * mbuf prior to dest2. 400 * 401 * result: IPv6 dest2 payload 402 * m and mprev will point to IPv6 header. 403 */ 404 if (exthdrs.ip6e_dest2) { 405 if (!hdrsplit) 406 panic("assumption failed: hdr not split"); 407 exthdrs.ip6e_dest2->m_next = m->m_next; 408 m->m_next = exthdrs.ip6e_dest2; 409 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 410 ip6->ip6_nxt = IPPROTO_DSTOPTS; 411 } 412 413 /* 414 * result: IPv6 hbh dest1 rthdr dest2 payload 415 * m will point to IPv6 header. mprev will point to the 416 * extension header prior to dest2 (rthdr in the above case). 417 */ 418 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 419 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 420 IPPROTO_DSTOPTS); 421 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 422 IPPROTO_ROUTING); 423 424 #ifdef IPSEC 425 if (!needipsec) 426 goto skip_ipsec2; 427 428 /* 429 * pointers after IPsec headers are not valid any more. 430 * other pointers need a great care too. 431 * (IPsec routines should not mangle mbufs prior to AH/ESP) 432 */ 433 exthdrs.ip6e_dest2 = NULL; 434 435 if (exthdrs.ip6e_rthdr) { 436 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 437 segleft_org = rh->ip6r_segleft; 438 rh->ip6r_segleft = 0; 439 } 440 441 bzero(&state, sizeof(state)); 442 state.m = m; 443 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 444 &needipsectun); 445 m = state.m; 446 if (error == EJUSTRETURN) { 447 /* 448 * We had a SP with a level of 'use' and no SA. We 449 * will just continue to process the packet without 450 * IPsec processing. 451 */ 452 ; 453 } else if (error) { 454 /* mbuf is already reclaimed in ipsec6_output_trans. */ 455 m = NULL; 456 switch (error) { 457 case EHOSTUNREACH: 458 case ENETUNREACH: 459 case EMSGSIZE: 460 case ENOBUFS: 461 case ENOMEM: 462 break; 463 default: 464 printf("[%s:%d] (ipsec): error code %d\n", 465 __func__, __LINE__, error); 466 /* FALLTHROUGH */ 467 case ENOENT: 468 /* don't show these error codes to the user */ 469 error = 0; 470 break; 471 } 472 goto bad; 473 } else if (!needipsectun) { 474 /* 475 * In the FAST IPSec case we have already 476 * re-injected the packet and it has been freed 477 * by the ipsec_done() function. So, just clean 478 * up after ourselves. 479 */ 480 m = NULL; 481 goto done; 482 } 483 if (exthdrs.ip6e_rthdr) { 484 /* ah6_output doesn't modify mbuf chain */ 485 rh->ip6r_segleft = segleft_org; 486 } 487 skip_ipsec2:; 488 #endif /* IPSEC */ 489 490 /* 491 * If there is a routing header, discard the packet. 492 */ 493 if (exthdrs.ip6e_rthdr) { 494 error = EINVAL; 495 goto bad; 496 } 497 498 /* Source address validation */ 499 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 500 (flags & IPV6_UNSPECSRC) == 0) { 501 error = EOPNOTSUPP; 502 IP6STAT_INC(ip6s_badscope); 503 goto bad; 504 } 505 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 506 error = EOPNOTSUPP; 507 IP6STAT_INC(ip6s_badscope); 508 goto bad; 509 } 510 511 IP6STAT_INC(ip6s_localout); 512 513 /* 514 * Route packet. 515 */ 516 if (ro == 0) { 517 ro = &ip6route; 518 bzero((caddr_t)ro, sizeof(*ro)); 519 } 520 ro_pmtu = ro; 521 if (opt && opt->ip6po_rthdr) 522 ro = &opt->ip6po_route; 523 dst = (struct sockaddr_in6 *)&ro->ro_dst; 524 #ifdef FLOWTABLE 525 if (ro->ro_rt == NULL) { 526 struct flentry *fle; 527 528 /* 529 * The flow table returns route entries valid for up to 30 530 * seconds; we rely on the remainder of ip_output() taking no 531 * longer than that long for the stability of ro_rt. The 532 * flow ID assignment must have happened before this point. 533 */ 534 fle = flowtable_lookup_mbuf(V_ip6_ft, m, AF_INET6); 535 if (fle != NULL) 536 flow_to_route_in6(fle, ro); 537 } 538 #endif 539 again: 540 /* 541 * if specified, try to fill in the traffic class field. 542 * do not override if a non-zero value is already set. 543 * we check the diffserv field and the ecn field separately. 544 */ 545 if (opt && opt->ip6po_tclass >= 0) { 546 int mask = 0; 547 548 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 549 mask |= 0xfc; 550 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 551 mask |= 0x03; 552 if (mask != 0) 553 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 554 } 555 556 /* fill in or override the hop limit field, if necessary. */ 557 if (opt && opt->ip6po_hlim != -1) 558 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 559 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 560 if (im6o != NULL) 561 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 562 else 563 ip6->ip6_hlim = V_ip6_defmcasthlim; 564 } 565 566 #ifdef IPSEC 567 /* 568 * We may re-inject packets into the stack here. 569 */ 570 if (needipsec && needipsectun) { 571 struct ipsec_output_state state; 572 573 /* 574 * All the extension headers will become inaccessible 575 * (since they can be encrypted). 576 * Don't panic, we need no more updates to extension headers 577 * on inner IPv6 packet (since they are now encapsulated). 578 * 579 * IPv6 [ESP|AH] IPv6 [extension headers] payload 580 */ 581 bzero(&exthdrs, sizeof(exthdrs)); 582 exthdrs.ip6e_ip6 = m; 583 584 bzero(&state, sizeof(state)); 585 state.m = m; 586 state.ro = (struct route *)ro; 587 state.dst = (struct sockaddr *)dst; 588 589 error = ipsec6_output_tunnel(&state, sp, flags); 590 591 m = state.m; 592 ro = (struct route_in6 *)state.ro; 593 dst = (struct sockaddr_in6 *)state.dst; 594 if (error == EJUSTRETURN) { 595 /* 596 * We had a SP with a level of 'use' and no SA. We 597 * will just continue to process the packet without 598 * IPsec processing. 599 */ 600 ; 601 } else if (error) { 602 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 603 m0 = m = NULL; 604 m = NULL; 605 switch (error) { 606 case EHOSTUNREACH: 607 case ENETUNREACH: 608 case EMSGSIZE: 609 case ENOBUFS: 610 case ENOMEM: 611 break; 612 default: 613 printf("[%s:%d] (ipsec): error code %d\n", 614 __func__, __LINE__, error); 615 /* FALLTHROUGH */ 616 case ENOENT: 617 /* don't show these error codes to the user */ 618 error = 0; 619 break; 620 } 621 goto bad; 622 } else { 623 /* 624 * In the FAST IPSec case we have already 625 * re-injected the packet and it has been freed 626 * by the ipsec_done() function. So, just clean 627 * up after ourselves. 628 */ 629 m = NULL; 630 goto done; 631 } 632 633 exthdrs.ip6e_ip6 = m; 634 } 635 #endif /* IPSEC */ 636 637 /* adjust pointer */ 638 ip6 = mtod(m, struct ip6_hdr *); 639 640 if (ro->ro_rt && fwd_tag == NULL) { 641 rt = ro->ro_rt; 642 ifp = ro->ro_rt->rt_ifp; 643 } else { 644 if (fwd_tag == NULL) { 645 bzero(&dst_sa, sizeof(dst_sa)); 646 dst_sa.sin6_family = AF_INET6; 647 dst_sa.sin6_len = sizeof(dst_sa); 648 dst_sa.sin6_addr = ip6->ip6_dst; 649 } 650 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 651 &rt, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m)); 652 if (error != 0) { 653 if (ifp != NULL) 654 in6_ifstat_inc(ifp, ifs6_out_discard); 655 goto bad; 656 } 657 } 658 if (rt == NULL) { 659 /* 660 * If in6_selectroute() does not return a route entry, 661 * dst may not have been updated. 662 */ 663 *dst = dst_sa; /* XXX */ 664 } 665 666 /* 667 * then rt (for unicast) and ifp must be non-NULL valid values. 668 */ 669 if ((flags & IPV6_FORWARDING) == 0) { 670 /* XXX: the FORWARDING flag can be set for mrouting. */ 671 in6_ifstat_inc(ifp, ifs6_out_request); 672 } 673 if (rt != NULL) { 674 ia = (struct in6_ifaddr *)(rt->rt_ifa); 675 rt->rt_use++; 676 } 677 678 679 /* 680 * The outgoing interface must be in the zone of source and 681 * destination addresses. 682 */ 683 origifp = ifp; 684 685 src0 = ip6->ip6_src; 686 if (in6_setscope(&src0, origifp, &zone)) 687 goto badscope; 688 bzero(&src_sa, sizeof(src_sa)); 689 src_sa.sin6_family = AF_INET6; 690 src_sa.sin6_len = sizeof(src_sa); 691 src_sa.sin6_addr = ip6->ip6_src; 692 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 693 goto badscope; 694 695 dst0 = ip6->ip6_dst; 696 if (in6_setscope(&dst0, origifp, &zone)) 697 goto badscope; 698 /* re-initialize to be sure */ 699 bzero(&dst_sa, sizeof(dst_sa)); 700 dst_sa.sin6_family = AF_INET6; 701 dst_sa.sin6_len = sizeof(dst_sa); 702 dst_sa.sin6_addr = ip6->ip6_dst; 703 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 704 goto badscope; 705 } 706 707 /* We should use ia_ifp to support the case of 708 * sending packets to an address of our own. 709 */ 710 if (ia != NULL && ia->ia_ifp) 711 ifp = ia->ia_ifp; 712 713 /* scope check is done. */ 714 goto routefound; 715 716 badscope: 717 IP6STAT_INC(ip6s_badscope); 718 in6_ifstat_inc(origifp, ifs6_out_discard); 719 if (error == 0) 720 error = EHOSTUNREACH; /* XXX */ 721 goto bad; 722 723 routefound: 724 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 725 if (opt && opt->ip6po_nextroute.ro_rt) { 726 /* 727 * The nexthop is explicitly specified by the 728 * application. We assume the next hop is an IPv6 729 * address. 730 */ 731 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 732 } 733 else if ((rt->rt_flags & RTF_GATEWAY)) 734 dst = (struct sockaddr_in6 *)rt->rt_gateway; 735 } 736 737 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 738 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 739 } else { 740 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 741 in6_ifstat_inc(ifp, ifs6_out_mcast); 742 /* 743 * Confirm that the outgoing interface supports multicast. 744 */ 745 if (!(ifp->if_flags & IFF_MULTICAST)) { 746 IP6STAT_INC(ip6s_noroute); 747 in6_ifstat_inc(ifp, ifs6_out_discard); 748 error = ENETUNREACH; 749 goto bad; 750 } 751 if ((im6o == NULL && in6_mcast_loop) || 752 (im6o && im6o->im6o_multicast_loop)) { 753 /* 754 * Loop back multicast datagram if not expressly 755 * forbidden to do so, even if we have not joined 756 * the address; protocols will filter it later, 757 * thus deferring a hash lookup and lock acquisition 758 * at the expense of an m_copym(). 759 */ 760 ip6_mloopback(ifp, m, dst); 761 } else { 762 /* 763 * If we are acting as a multicast router, perform 764 * multicast forwarding as if the packet had just 765 * arrived on the interface to which we are about 766 * to send. The multicast forwarding function 767 * recursively calls this function, using the 768 * IPV6_FORWARDING flag to prevent infinite recursion. 769 * 770 * Multicasts that are looped back by ip6_mloopback(), 771 * above, will be forwarded by the ip6_input() routine, 772 * if necessary. 773 */ 774 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 775 /* 776 * XXX: ip6_mforward expects that rcvif is NULL 777 * when it is called from the originating path. 778 * However, it may not always be the case. 779 */ 780 m->m_pkthdr.rcvif = NULL; 781 if (ip6_mforward(ip6, ifp, m) != 0) { 782 m_freem(m); 783 goto done; 784 } 785 } 786 } 787 /* 788 * Multicasts with a hoplimit of zero may be looped back, 789 * above, but must not be transmitted on a network. 790 * Also, multicasts addressed to the loopback interface 791 * are not sent -- the above call to ip6_mloopback() will 792 * loop back a copy if this host actually belongs to the 793 * destination group on the loopback interface. 794 */ 795 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 796 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 797 m_freem(m); 798 goto done; 799 } 800 } 801 802 /* 803 * Fill the outgoing inteface to tell the upper layer 804 * to increment per-interface statistics. 805 */ 806 if (ifpp) 807 *ifpp = ifp; 808 809 /* Determine path MTU. */ 810 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 811 &alwaysfrag, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m))) != 0) 812 goto bad; 813 814 /* 815 * The caller of this function may specify to use the minimum MTU 816 * in some cases. 817 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 818 * setting. The logic is a bit complicated; by default, unicast 819 * packets will follow path MTU while multicast packets will be sent at 820 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 821 * including unicast ones will be sent at the minimum MTU. Multicast 822 * packets will always be sent at the minimum MTU unless 823 * IP6PO_MINMTU_DISABLE is explicitly specified. 824 * See RFC 3542 for more details. 825 */ 826 if (mtu > IPV6_MMTU) { 827 if ((flags & IPV6_MINMTU)) 828 mtu = IPV6_MMTU; 829 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 830 mtu = IPV6_MMTU; 831 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 832 (opt == NULL || 833 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 834 mtu = IPV6_MMTU; 835 } 836 } 837 838 /* 839 * clear embedded scope identifiers if necessary. 840 * in6_clearscope will touch the addresses only when necessary. 841 */ 842 in6_clearscope(&ip6->ip6_src); 843 in6_clearscope(&ip6->ip6_dst); 844 845 /* 846 * If the outgoing packet contains a hop-by-hop options header, 847 * it must be examined and processed even by the source node. 848 * (RFC 2460, section 4.) 849 */ 850 if (exthdrs.ip6e_hbh) { 851 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 852 u_int32_t dummy; /* XXX unused */ 853 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 854 855 #ifdef DIAGNOSTIC 856 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 857 panic("ip6e_hbh is not contiguous"); 858 #endif 859 /* 860 * XXX: if we have to send an ICMPv6 error to the sender, 861 * we need the M_LOOP flag since icmp6_error() expects 862 * the IPv6 and the hop-by-hop options header are 863 * contiguous unless the flag is set. 864 */ 865 m->m_flags |= M_LOOP; 866 m->m_pkthdr.rcvif = ifp; 867 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 868 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 869 &dummy, &plen) < 0) { 870 /* m was already freed at this point */ 871 error = EINVAL;/* better error? */ 872 goto done; 873 } 874 m->m_flags &= ~M_LOOP; /* XXX */ 875 m->m_pkthdr.rcvif = NULL; 876 } 877 878 /* Jump over all PFIL processing if hooks are not active. */ 879 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 880 goto passout; 881 882 odst = ip6->ip6_dst; 883 /* Run through list of hooks for output packets. */ 884 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 885 if (error != 0 || m == NULL) 886 goto done; 887 ip6 = mtod(m, struct ip6_hdr *); 888 889 /* See if destination IP address was changed by packet filter. */ 890 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 891 m->m_flags |= M_SKIP_FIREWALL; 892 /* If destination is now ourself drop to ip6_input(). */ 893 if (in6_localip(&ip6->ip6_dst)) { 894 m->m_flags |= M_FASTFWD_OURS; 895 if (m->m_pkthdr.rcvif == NULL) 896 m->m_pkthdr.rcvif = V_loif; 897 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 898 m->m_pkthdr.csum_flags |= 899 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 900 m->m_pkthdr.csum_data = 0xffff; 901 } 902 #ifdef SCTP 903 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 904 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 905 #endif 906 error = netisr_queue(NETISR_IPV6, m); 907 goto done; 908 } else 909 goto again; /* Redo the routing table lookup. */ 910 } 911 912 /* See if local, if yes, send it to netisr. */ 913 if (m->m_flags & M_FASTFWD_OURS) { 914 if (m->m_pkthdr.rcvif == NULL) 915 m->m_pkthdr.rcvif = V_loif; 916 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 917 m->m_pkthdr.csum_flags |= 918 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 919 m->m_pkthdr.csum_data = 0xffff; 920 } 921 #ifdef SCTP 922 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 923 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 924 #endif 925 error = netisr_queue(NETISR_IPV6, m); 926 goto done; 927 } 928 /* Or forward to some other address? */ 929 if ((m->m_flags & M_IP6_NEXTHOP) && 930 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 931 dst = (struct sockaddr_in6 *)&ro->ro_dst; 932 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 933 m->m_flags |= M_SKIP_FIREWALL; 934 m->m_flags &= ~M_IP6_NEXTHOP; 935 m_tag_delete(m, fwd_tag); 936 goto again; 937 } 938 939 passout: 940 /* 941 * Send the packet to the outgoing interface. 942 * If necessary, do IPv6 fragmentation before sending. 943 * 944 * the logic here is rather complex: 945 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 946 * 1-a: send as is if tlen <= path mtu 947 * 1-b: fragment if tlen > path mtu 948 * 949 * 2: if user asks us not to fragment (dontfrag == 1) 950 * 2-a: send as is if tlen <= interface mtu 951 * 2-b: error if tlen > interface mtu 952 * 953 * 3: if we always need to attach fragment header (alwaysfrag == 1) 954 * always fragment 955 * 956 * 4: if dontfrag == 1 && alwaysfrag == 1 957 * error, as we cannot handle this conflicting request 958 */ 959 sw_csum = m->m_pkthdr.csum_flags; 960 if (!hdrsplit) { 961 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 962 sw_csum &= ~ifp->if_hwassist; 963 } else 964 tso = 0; 965 /* 966 * If we added extension headers, we will not do TSO and calculate the 967 * checksums ourselves for now. 968 * XXX-BZ Need a framework to know when the NIC can handle it, even 969 * with ext. hdrs. 970 */ 971 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 972 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 973 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 974 } 975 #ifdef SCTP 976 if (sw_csum & CSUM_SCTP_IPV6) { 977 sw_csum &= ~CSUM_SCTP_IPV6; 978 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 979 } 980 #endif 981 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 982 tlen = m->m_pkthdr.len; 983 984 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 985 dontfrag = 1; 986 else 987 dontfrag = 0; 988 if (dontfrag && alwaysfrag) { /* case 4 */ 989 /* conflicting request - can't transmit */ 990 error = EMSGSIZE; 991 goto bad; 992 } 993 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 994 /* 995 * Even if the DONTFRAG option is specified, we cannot send the 996 * packet when the data length is larger than the MTU of the 997 * outgoing interface. 998 * Notify the error by sending IPV6_PATHMTU ancillary data as 999 * well as returning an error code (the latter is not described 1000 * in the API spec.) 1001 */ 1002 u_int32_t mtu32; 1003 struct ip6ctlparam ip6cp; 1004 1005 mtu32 = (u_int32_t)mtu; 1006 bzero(&ip6cp, sizeof(ip6cp)); 1007 ip6cp.ip6c_cmdarg = (void *)&mtu32; 1008 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 1009 (void *)&ip6cp); 1010 1011 error = EMSGSIZE; 1012 goto bad; 1013 } 1014 1015 /* 1016 * transmit packet without fragmentation 1017 */ 1018 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 1019 struct in6_ifaddr *ia6; 1020 1021 ip6 = mtod(m, struct ip6_hdr *); 1022 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1023 if (ia6) { 1024 /* Record statistics for this interface address. */ 1025 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 1026 counter_u64_add(ia6->ia_ifa.ifa_obytes, 1027 m->m_pkthdr.len); 1028 ifa_free(&ia6->ia_ifa); 1029 } 1030 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1031 goto done; 1032 } 1033 1034 /* 1035 * try to fragment the packet. case 1-b and 3 1036 */ 1037 if (mtu < IPV6_MMTU) { 1038 /* path MTU cannot be less than IPV6_MMTU */ 1039 error = EMSGSIZE; 1040 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1041 goto bad; 1042 } else if (ip6->ip6_plen == 0) { 1043 /* jumbo payload cannot be fragmented */ 1044 error = EMSGSIZE; 1045 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1046 goto bad; 1047 } else { 1048 struct mbuf **mnext, *m_frgpart; 1049 struct ip6_frag *ip6f; 1050 u_int32_t id = htonl(ip6_randomid()); 1051 u_char nextproto; 1052 1053 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len; 1054 1055 /* 1056 * Too large for the destination or interface; 1057 * fragment if possible. 1058 * Must be able to put at least 8 bytes per fragment. 1059 */ 1060 hlen = unfragpartlen; 1061 if (mtu > IPV6_MAXPACKET) 1062 mtu = IPV6_MAXPACKET; 1063 1064 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 1065 if (len < 8) { 1066 error = EMSGSIZE; 1067 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1068 goto bad; 1069 } 1070 1071 /* 1072 * Verify that we have any chance at all of being able to queue 1073 * the packet or packet fragments 1074 */ 1075 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen) 1076 < tlen /* - hlen */)) { 1077 error = ENOBUFS; 1078 IP6STAT_INC(ip6s_odropped); 1079 goto bad; 1080 } 1081 1082 1083 /* 1084 * If the interface will not calculate checksums on 1085 * fragmented packets, then do it here. 1086 * XXX-BZ handle the hw offloading case. Need flags. 1087 */ 1088 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1089 in6_delayed_cksum(m, plen, hlen); 1090 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 1091 } 1092 #ifdef SCTP 1093 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 1094 sctp_delayed_cksum(m, hlen); 1095 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 1096 } 1097 #endif 1098 mnext = &m->m_nextpkt; 1099 1100 /* 1101 * Change the next header field of the last header in the 1102 * unfragmentable part. 1103 */ 1104 if (exthdrs.ip6e_rthdr) { 1105 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1106 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1107 } else if (exthdrs.ip6e_dest1) { 1108 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1109 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1110 } else if (exthdrs.ip6e_hbh) { 1111 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1112 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1113 } else { 1114 nextproto = ip6->ip6_nxt; 1115 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1116 } 1117 1118 /* 1119 * Loop through length of segment after first fragment, 1120 * make new header and copy data of each part and link onto 1121 * chain. 1122 */ 1123 m0 = m; 1124 for (off = hlen; off < tlen; off += len) { 1125 m = m_gethdr(M_NOWAIT, MT_DATA); 1126 if (!m) { 1127 error = ENOBUFS; 1128 IP6STAT_INC(ip6s_odropped); 1129 goto sendorfree; 1130 } 1131 m->m_flags = m0->m_flags & M_COPYFLAGS; 1132 *mnext = m; 1133 mnext = &m->m_nextpkt; 1134 m->m_data += max_linkhdr; 1135 mhip6 = mtod(m, struct ip6_hdr *); 1136 *mhip6 = *ip6; 1137 m->m_len = sizeof(*mhip6); 1138 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1139 if (error) { 1140 IP6STAT_INC(ip6s_odropped); 1141 goto sendorfree; 1142 } 1143 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 1144 if (off + len >= tlen) 1145 len = tlen - off; 1146 else 1147 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1148 mhip6->ip6_plen = htons((u_short)(len + hlen + 1149 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1150 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1151 error = ENOBUFS; 1152 IP6STAT_INC(ip6s_odropped); 1153 goto sendorfree; 1154 } 1155 m_cat(m, m_frgpart); 1156 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1157 m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; 1158 m->m_pkthdr.rcvif = NULL; 1159 ip6f->ip6f_reserved = 0; 1160 ip6f->ip6f_ident = id; 1161 ip6f->ip6f_nxt = nextproto; 1162 IP6STAT_INC(ip6s_ofragments); 1163 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1164 } 1165 1166 in6_ifstat_inc(ifp, ifs6_out_fragok); 1167 } 1168 1169 /* 1170 * Remove leading garbages. 1171 */ 1172 sendorfree: 1173 m = m0->m_nextpkt; 1174 m0->m_nextpkt = 0; 1175 m_freem(m0); 1176 for (m0 = m; m; m = m0) { 1177 m0 = m->m_nextpkt; 1178 m->m_nextpkt = 0; 1179 if (error == 0) { 1180 /* Record statistics for this interface address. */ 1181 if (ia) { 1182 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1183 counter_u64_add(ia->ia_ifa.ifa_obytes, 1184 m->m_pkthdr.len); 1185 } 1186 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1187 } else 1188 m_freem(m); 1189 } 1190 1191 if (error == 0) 1192 IP6STAT_INC(ip6s_fragmented); 1193 1194 done: 1195 if (ro == &ip6route) 1196 RO_RTFREE(ro); 1197 if (ro_pmtu == &ip6route) 1198 RO_RTFREE(ro_pmtu); 1199 #ifdef IPSEC 1200 if (sp != NULL) 1201 KEY_FREESP(&sp); 1202 #endif 1203 1204 return (error); 1205 1206 freehdrs: 1207 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1208 m_freem(exthdrs.ip6e_dest1); 1209 m_freem(exthdrs.ip6e_rthdr); 1210 m_freem(exthdrs.ip6e_dest2); 1211 /* FALLTHROUGH */ 1212 bad: 1213 if (m) 1214 m_freem(m); 1215 goto done; 1216 } 1217 1218 static int 1219 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1220 { 1221 struct mbuf *m; 1222 1223 if (hlen > MCLBYTES) 1224 return (ENOBUFS); /* XXX */ 1225 1226 if (hlen > MLEN) 1227 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1228 else 1229 m = m_get(M_NOWAIT, MT_DATA); 1230 if (m == NULL) 1231 return (ENOBUFS); 1232 m->m_len = hlen; 1233 if (hdr) 1234 bcopy(hdr, mtod(m, caddr_t), hlen); 1235 1236 *mp = m; 1237 return (0); 1238 } 1239 1240 /* 1241 * Insert jumbo payload option. 1242 */ 1243 static int 1244 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1245 { 1246 struct mbuf *mopt; 1247 u_char *optbuf; 1248 u_int32_t v; 1249 1250 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1251 1252 /* 1253 * If there is no hop-by-hop options header, allocate new one. 1254 * If there is one but it doesn't have enough space to store the 1255 * jumbo payload option, allocate a cluster to store the whole options. 1256 * Otherwise, use it to store the options. 1257 */ 1258 if (exthdrs->ip6e_hbh == 0) { 1259 mopt = m_get(M_NOWAIT, MT_DATA); 1260 if (mopt == NULL) 1261 return (ENOBUFS); 1262 mopt->m_len = JUMBOOPTLEN; 1263 optbuf = mtod(mopt, u_char *); 1264 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1265 exthdrs->ip6e_hbh = mopt; 1266 } else { 1267 struct ip6_hbh *hbh; 1268 1269 mopt = exthdrs->ip6e_hbh; 1270 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1271 /* 1272 * XXX assumption: 1273 * - exthdrs->ip6e_hbh is not referenced from places 1274 * other than exthdrs. 1275 * - exthdrs->ip6e_hbh is not an mbuf chain. 1276 */ 1277 int oldoptlen = mopt->m_len; 1278 struct mbuf *n; 1279 1280 /* 1281 * XXX: give up if the whole (new) hbh header does 1282 * not fit even in an mbuf cluster. 1283 */ 1284 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1285 return (ENOBUFS); 1286 1287 /* 1288 * As a consequence, we must always prepare a cluster 1289 * at this point. 1290 */ 1291 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1292 if (n == NULL) 1293 return (ENOBUFS); 1294 n->m_len = oldoptlen + JUMBOOPTLEN; 1295 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1296 oldoptlen); 1297 optbuf = mtod(n, caddr_t) + oldoptlen; 1298 m_freem(mopt); 1299 mopt = exthdrs->ip6e_hbh = n; 1300 } else { 1301 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1302 mopt->m_len += JUMBOOPTLEN; 1303 } 1304 optbuf[0] = IP6OPT_PADN; 1305 optbuf[1] = 1; 1306 1307 /* 1308 * Adjust the header length according to the pad and 1309 * the jumbo payload option. 1310 */ 1311 hbh = mtod(mopt, struct ip6_hbh *); 1312 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1313 } 1314 1315 /* fill in the option. */ 1316 optbuf[2] = IP6OPT_JUMBO; 1317 optbuf[3] = 4; 1318 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1319 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1320 1321 /* finally, adjust the packet header length */ 1322 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1323 1324 return (0); 1325 #undef JUMBOOPTLEN 1326 } 1327 1328 /* 1329 * Insert fragment header and copy unfragmentable header portions. 1330 */ 1331 static int 1332 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1333 struct ip6_frag **frghdrp) 1334 { 1335 struct mbuf *n, *mlast; 1336 1337 if (hlen > sizeof(struct ip6_hdr)) { 1338 n = m_copym(m0, sizeof(struct ip6_hdr), 1339 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1340 if (n == 0) 1341 return (ENOBUFS); 1342 m->m_next = n; 1343 } else 1344 n = m; 1345 1346 /* Search for the last mbuf of unfragmentable part. */ 1347 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1348 ; 1349 1350 if ((mlast->m_flags & M_EXT) == 0 && 1351 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1352 /* use the trailing space of the last mbuf for the fragment hdr */ 1353 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1354 mlast->m_len); 1355 mlast->m_len += sizeof(struct ip6_frag); 1356 m->m_pkthdr.len += sizeof(struct ip6_frag); 1357 } else { 1358 /* allocate a new mbuf for the fragment header */ 1359 struct mbuf *mfrg; 1360 1361 mfrg = m_get(M_NOWAIT, MT_DATA); 1362 if (mfrg == NULL) 1363 return (ENOBUFS); 1364 mfrg->m_len = sizeof(struct ip6_frag); 1365 *frghdrp = mtod(mfrg, struct ip6_frag *); 1366 mlast->m_next = mfrg; 1367 } 1368 1369 return (0); 1370 } 1371 1372 static int 1373 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, 1374 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, 1375 int *alwaysfragp, u_int fibnum) 1376 { 1377 u_int32_t mtu = 0; 1378 int alwaysfrag = 0; 1379 int error = 0; 1380 1381 if (ro_pmtu != ro) { 1382 /* The first hop and the final destination may differ. */ 1383 struct sockaddr_in6 *sa6_dst = 1384 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1385 if (ro_pmtu->ro_rt && 1386 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1387 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1388 RTFREE(ro_pmtu->ro_rt); 1389 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1390 } 1391 if (ro_pmtu->ro_rt == NULL) { 1392 bzero(sa6_dst, sizeof(*sa6_dst)); 1393 sa6_dst->sin6_family = AF_INET6; 1394 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1395 sa6_dst->sin6_addr = *dst; 1396 1397 in6_rtalloc(ro_pmtu, fibnum); 1398 } 1399 } 1400 if (ro_pmtu->ro_rt) { 1401 u_int32_t ifmtu; 1402 struct in_conninfo inc; 1403 1404 bzero(&inc, sizeof(inc)); 1405 inc.inc_flags |= INC_ISIPV6; 1406 inc.inc6_faddr = *dst; 1407 1408 if (ifp == NULL) 1409 ifp = ro_pmtu->ro_rt->rt_ifp; 1410 ifmtu = IN6_LINKMTU(ifp); 1411 mtu = tcp_hc_getmtu(&inc); 1412 if (mtu) 1413 mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu); 1414 else 1415 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 1416 if (mtu == 0) 1417 mtu = ifmtu; 1418 else if (mtu < IPV6_MMTU) { 1419 /* 1420 * RFC2460 section 5, last paragraph: 1421 * if we record ICMPv6 too big message with 1422 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1423 * or smaller, with framgent header attached. 1424 * (fragment header is needed regardless from the 1425 * packet size, for translators to identify packets) 1426 */ 1427 alwaysfrag = 1; 1428 mtu = IPV6_MMTU; 1429 } else if (mtu > ifmtu) { 1430 /* 1431 * The MTU on the route is larger than the MTU on 1432 * the interface! This shouldn't happen, unless the 1433 * MTU of the interface has been changed after the 1434 * interface was brought up. Change the MTU in the 1435 * route to match the interface MTU (as long as the 1436 * field isn't locked). 1437 */ 1438 mtu = ifmtu; 1439 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; 1440 } 1441 } else if (ifp) { 1442 mtu = IN6_LINKMTU(ifp); 1443 } else 1444 error = EHOSTUNREACH; /* XXX */ 1445 1446 *mtup = mtu; 1447 if (alwaysfragp) 1448 *alwaysfragp = alwaysfrag; 1449 return (error); 1450 } 1451 1452 /* 1453 * IP6 socket option processing. 1454 */ 1455 int 1456 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1457 { 1458 int optdatalen, uproto; 1459 void *optdata; 1460 struct inpcb *in6p = sotoinpcb(so); 1461 int error, optval; 1462 int level, op, optname; 1463 int optlen; 1464 struct thread *td; 1465 1466 level = sopt->sopt_level; 1467 op = sopt->sopt_dir; 1468 optname = sopt->sopt_name; 1469 optlen = sopt->sopt_valsize; 1470 td = sopt->sopt_td; 1471 error = 0; 1472 optval = 0; 1473 uproto = (int)so->so_proto->pr_protocol; 1474 1475 if (level != IPPROTO_IPV6) { 1476 error = EINVAL; 1477 1478 if (sopt->sopt_level == SOL_SOCKET && 1479 sopt->sopt_dir == SOPT_SET) { 1480 switch (sopt->sopt_name) { 1481 case SO_REUSEADDR: 1482 INP_WLOCK(in6p); 1483 if ((so->so_options & SO_REUSEADDR) != 0) 1484 in6p->inp_flags2 |= INP_REUSEADDR; 1485 else 1486 in6p->inp_flags2 &= ~INP_REUSEADDR; 1487 INP_WUNLOCK(in6p); 1488 error = 0; 1489 break; 1490 case SO_REUSEPORT: 1491 INP_WLOCK(in6p); 1492 if ((so->so_options & SO_REUSEPORT) != 0) 1493 in6p->inp_flags2 |= INP_REUSEPORT; 1494 else 1495 in6p->inp_flags2 &= ~INP_REUSEPORT; 1496 INP_WUNLOCK(in6p); 1497 error = 0; 1498 break; 1499 case SO_SETFIB: 1500 INP_WLOCK(in6p); 1501 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1502 INP_WUNLOCK(in6p); 1503 error = 0; 1504 break; 1505 default: 1506 break; 1507 } 1508 } 1509 } else { /* level == IPPROTO_IPV6 */ 1510 switch (op) { 1511 1512 case SOPT_SET: 1513 switch (optname) { 1514 case IPV6_2292PKTOPTIONS: 1515 #ifdef IPV6_PKTOPTIONS 1516 case IPV6_PKTOPTIONS: 1517 #endif 1518 { 1519 struct mbuf *m; 1520 1521 error = soopt_getm(sopt, &m); /* XXX */ 1522 if (error != 0) 1523 break; 1524 error = soopt_mcopyin(sopt, m); /* XXX */ 1525 if (error != 0) 1526 break; 1527 error = ip6_pcbopts(&in6p->in6p_outputopts, 1528 m, so, sopt); 1529 m_freem(m); /* XXX */ 1530 break; 1531 } 1532 1533 /* 1534 * Use of some Hop-by-Hop options or some 1535 * Destination options, might require special 1536 * privilege. That is, normal applications 1537 * (without special privilege) might be forbidden 1538 * from setting certain options in outgoing packets, 1539 * and might never see certain options in received 1540 * packets. [RFC 2292 Section 6] 1541 * KAME specific note: 1542 * KAME prevents non-privileged users from sending or 1543 * receiving ANY hbh/dst options in order to avoid 1544 * overhead of parsing options in the kernel. 1545 */ 1546 case IPV6_RECVHOPOPTS: 1547 case IPV6_RECVDSTOPTS: 1548 case IPV6_RECVRTHDRDSTOPTS: 1549 if (td != NULL) { 1550 error = priv_check(td, 1551 PRIV_NETINET_SETHDROPTS); 1552 if (error) 1553 break; 1554 } 1555 /* FALLTHROUGH */ 1556 case IPV6_UNICAST_HOPS: 1557 case IPV6_HOPLIMIT: 1558 case IPV6_FAITH: 1559 1560 case IPV6_RECVPKTINFO: 1561 case IPV6_RECVHOPLIMIT: 1562 case IPV6_RECVRTHDR: 1563 case IPV6_RECVPATHMTU: 1564 case IPV6_RECVTCLASS: 1565 case IPV6_V6ONLY: 1566 case IPV6_AUTOFLOWLABEL: 1567 case IPV6_BINDANY: 1568 if (optname == IPV6_BINDANY && td != NULL) { 1569 error = priv_check(td, 1570 PRIV_NETINET_BINDANY); 1571 if (error) 1572 break; 1573 } 1574 1575 if (optlen != sizeof(int)) { 1576 error = EINVAL; 1577 break; 1578 } 1579 error = sooptcopyin(sopt, &optval, 1580 sizeof optval, sizeof optval); 1581 if (error) 1582 break; 1583 switch (optname) { 1584 1585 case IPV6_UNICAST_HOPS: 1586 if (optval < -1 || optval >= 256) 1587 error = EINVAL; 1588 else { 1589 /* -1 = kernel default */ 1590 in6p->in6p_hops = optval; 1591 if ((in6p->inp_vflag & 1592 INP_IPV4) != 0) 1593 in6p->inp_ip_ttl = optval; 1594 } 1595 break; 1596 #define OPTSET(bit) \ 1597 do { \ 1598 INP_WLOCK(in6p); \ 1599 if (optval) \ 1600 in6p->inp_flags |= (bit); \ 1601 else \ 1602 in6p->inp_flags &= ~(bit); \ 1603 INP_WUNLOCK(in6p); \ 1604 } while (/*CONSTCOND*/ 0) 1605 #define OPTSET2292(bit) \ 1606 do { \ 1607 INP_WLOCK(in6p); \ 1608 in6p->inp_flags |= IN6P_RFC2292; \ 1609 if (optval) \ 1610 in6p->inp_flags |= (bit); \ 1611 else \ 1612 in6p->inp_flags &= ~(bit); \ 1613 INP_WUNLOCK(in6p); \ 1614 } while (/*CONSTCOND*/ 0) 1615 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1616 1617 case IPV6_RECVPKTINFO: 1618 /* cannot mix with RFC2292 */ 1619 if (OPTBIT(IN6P_RFC2292)) { 1620 error = EINVAL; 1621 break; 1622 } 1623 OPTSET(IN6P_PKTINFO); 1624 break; 1625 1626 case IPV6_HOPLIMIT: 1627 { 1628 struct ip6_pktopts **optp; 1629 1630 /* cannot mix with RFC2292 */ 1631 if (OPTBIT(IN6P_RFC2292)) { 1632 error = EINVAL; 1633 break; 1634 } 1635 optp = &in6p->in6p_outputopts; 1636 error = ip6_pcbopt(IPV6_HOPLIMIT, 1637 (u_char *)&optval, sizeof(optval), 1638 optp, (td != NULL) ? td->td_ucred : 1639 NULL, uproto); 1640 break; 1641 } 1642 1643 case IPV6_RECVHOPLIMIT: 1644 /* cannot mix with RFC2292 */ 1645 if (OPTBIT(IN6P_RFC2292)) { 1646 error = EINVAL; 1647 break; 1648 } 1649 OPTSET(IN6P_HOPLIMIT); 1650 break; 1651 1652 case IPV6_RECVHOPOPTS: 1653 /* cannot mix with RFC2292 */ 1654 if (OPTBIT(IN6P_RFC2292)) { 1655 error = EINVAL; 1656 break; 1657 } 1658 OPTSET(IN6P_HOPOPTS); 1659 break; 1660 1661 case IPV6_RECVDSTOPTS: 1662 /* cannot mix with RFC2292 */ 1663 if (OPTBIT(IN6P_RFC2292)) { 1664 error = EINVAL; 1665 break; 1666 } 1667 OPTSET(IN6P_DSTOPTS); 1668 break; 1669 1670 case IPV6_RECVRTHDRDSTOPTS: 1671 /* cannot mix with RFC2292 */ 1672 if (OPTBIT(IN6P_RFC2292)) { 1673 error = EINVAL; 1674 break; 1675 } 1676 OPTSET(IN6P_RTHDRDSTOPTS); 1677 break; 1678 1679 case IPV6_RECVRTHDR: 1680 /* cannot mix with RFC2292 */ 1681 if (OPTBIT(IN6P_RFC2292)) { 1682 error = EINVAL; 1683 break; 1684 } 1685 OPTSET(IN6P_RTHDR); 1686 break; 1687 1688 case IPV6_FAITH: 1689 OPTSET(INP_FAITH); 1690 break; 1691 1692 case IPV6_RECVPATHMTU: 1693 /* 1694 * We ignore this option for TCP 1695 * sockets. 1696 * (RFC3542 leaves this case 1697 * unspecified.) 1698 */ 1699 if (uproto != IPPROTO_TCP) 1700 OPTSET(IN6P_MTU); 1701 break; 1702 1703 case IPV6_V6ONLY: 1704 /* 1705 * make setsockopt(IPV6_V6ONLY) 1706 * available only prior to bind(2). 1707 * see ipng mailing list, Jun 22 2001. 1708 */ 1709 if (in6p->inp_lport || 1710 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1711 error = EINVAL; 1712 break; 1713 } 1714 OPTSET(IN6P_IPV6_V6ONLY); 1715 if (optval) 1716 in6p->inp_vflag &= ~INP_IPV4; 1717 else 1718 in6p->inp_vflag |= INP_IPV4; 1719 break; 1720 case IPV6_RECVTCLASS: 1721 /* cannot mix with RFC2292 XXX */ 1722 if (OPTBIT(IN6P_RFC2292)) { 1723 error = EINVAL; 1724 break; 1725 } 1726 OPTSET(IN6P_TCLASS); 1727 break; 1728 case IPV6_AUTOFLOWLABEL: 1729 OPTSET(IN6P_AUTOFLOWLABEL); 1730 break; 1731 1732 case IPV6_BINDANY: 1733 OPTSET(INP_BINDANY); 1734 break; 1735 } 1736 break; 1737 1738 case IPV6_TCLASS: 1739 case IPV6_DONTFRAG: 1740 case IPV6_USE_MIN_MTU: 1741 case IPV6_PREFER_TEMPADDR: 1742 if (optlen != sizeof(optval)) { 1743 error = EINVAL; 1744 break; 1745 } 1746 error = sooptcopyin(sopt, &optval, 1747 sizeof optval, sizeof optval); 1748 if (error) 1749 break; 1750 { 1751 struct ip6_pktopts **optp; 1752 optp = &in6p->in6p_outputopts; 1753 error = ip6_pcbopt(optname, 1754 (u_char *)&optval, sizeof(optval), 1755 optp, (td != NULL) ? td->td_ucred : 1756 NULL, uproto); 1757 break; 1758 } 1759 1760 case IPV6_2292PKTINFO: 1761 case IPV6_2292HOPLIMIT: 1762 case IPV6_2292HOPOPTS: 1763 case IPV6_2292DSTOPTS: 1764 case IPV6_2292RTHDR: 1765 /* RFC 2292 */ 1766 if (optlen != sizeof(int)) { 1767 error = EINVAL; 1768 break; 1769 } 1770 error = sooptcopyin(sopt, &optval, 1771 sizeof optval, sizeof optval); 1772 if (error) 1773 break; 1774 switch (optname) { 1775 case IPV6_2292PKTINFO: 1776 OPTSET2292(IN6P_PKTINFO); 1777 break; 1778 case IPV6_2292HOPLIMIT: 1779 OPTSET2292(IN6P_HOPLIMIT); 1780 break; 1781 case IPV6_2292HOPOPTS: 1782 /* 1783 * Check super-user privilege. 1784 * See comments for IPV6_RECVHOPOPTS. 1785 */ 1786 if (td != NULL) { 1787 error = priv_check(td, 1788 PRIV_NETINET_SETHDROPTS); 1789 if (error) 1790 return (error); 1791 } 1792 OPTSET2292(IN6P_HOPOPTS); 1793 break; 1794 case IPV6_2292DSTOPTS: 1795 if (td != NULL) { 1796 error = priv_check(td, 1797 PRIV_NETINET_SETHDROPTS); 1798 if (error) 1799 return (error); 1800 } 1801 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1802 break; 1803 case IPV6_2292RTHDR: 1804 OPTSET2292(IN6P_RTHDR); 1805 break; 1806 } 1807 break; 1808 case IPV6_PKTINFO: 1809 case IPV6_HOPOPTS: 1810 case IPV6_RTHDR: 1811 case IPV6_DSTOPTS: 1812 case IPV6_RTHDRDSTOPTS: 1813 case IPV6_NEXTHOP: 1814 { 1815 /* new advanced API (RFC3542) */ 1816 u_char *optbuf; 1817 u_char optbuf_storage[MCLBYTES]; 1818 int optlen; 1819 struct ip6_pktopts **optp; 1820 1821 /* cannot mix with RFC2292 */ 1822 if (OPTBIT(IN6P_RFC2292)) { 1823 error = EINVAL; 1824 break; 1825 } 1826 1827 /* 1828 * We only ensure valsize is not too large 1829 * here. Further validation will be done 1830 * later. 1831 */ 1832 error = sooptcopyin(sopt, optbuf_storage, 1833 sizeof(optbuf_storage), 0); 1834 if (error) 1835 break; 1836 optlen = sopt->sopt_valsize; 1837 optbuf = optbuf_storage; 1838 optp = &in6p->in6p_outputopts; 1839 error = ip6_pcbopt(optname, optbuf, optlen, 1840 optp, (td != NULL) ? td->td_ucred : NULL, 1841 uproto); 1842 break; 1843 } 1844 #undef OPTSET 1845 1846 case IPV6_MULTICAST_IF: 1847 case IPV6_MULTICAST_HOPS: 1848 case IPV6_MULTICAST_LOOP: 1849 case IPV6_JOIN_GROUP: 1850 case IPV6_LEAVE_GROUP: 1851 case IPV6_MSFILTER: 1852 case MCAST_BLOCK_SOURCE: 1853 case MCAST_UNBLOCK_SOURCE: 1854 case MCAST_JOIN_GROUP: 1855 case MCAST_LEAVE_GROUP: 1856 case MCAST_JOIN_SOURCE_GROUP: 1857 case MCAST_LEAVE_SOURCE_GROUP: 1858 error = ip6_setmoptions(in6p, sopt); 1859 break; 1860 1861 case IPV6_PORTRANGE: 1862 error = sooptcopyin(sopt, &optval, 1863 sizeof optval, sizeof optval); 1864 if (error) 1865 break; 1866 1867 INP_WLOCK(in6p); 1868 switch (optval) { 1869 case IPV6_PORTRANGE_DEFAULT: 1870 in6p->inp_flags &= ~(INP_LOWPORT); 1871 in6p->inp_flags &= ~(INP_HIGHPORT); 1872 break; 1873 1874 case IPV6_PORTRANGE_HIGH: 1875 in6p->inp_flags &= ~(INP_LOWPORT); 1876 in6p->inp_flags |= INP_HIGHPORT; 1877 break; 1878 1879 case IPV6_PORTRANGE_LOW: 1880 in6p->inp_flags &= ~(INP_HIGHPORT); 1881 in6p->inp_flags |= INP_LOWPORT; 1882 break; 1883 1884 default: 1885 error = EINVAL; 1886 break; 1887 } 1888 INP_WUNLOCK(in6p); 1889 break; 1890 1891 #ifdef IPSEC 1892 case IPV6_IPSEC_POLICY: 1893 { 1894 caddr_t req; 1895 struct mbuf *m; 1896 1897 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1898 break; 1899 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1900 break; 1901 req = mtod(m, caddr_t); 1902 error = ipsec_set_policy(in6p, optname, req, 1903 m->m_len, (sopt->sopt_td != NULL) ? 1904 sopt->sopt_td->td_ucred : NULL); 1905 m_freem(m); 1906 break; 1907 } 1908 #endif /* IPSEC */ 1909 1910 default: 1911 error = ENOPROTOOPT; 1912 break; 1913 } 1914 break; 1915 1916 case SOPT_GET: 1917 switch (optname) { 1918 1919 case IPV6_2292PKTOPTIONS: 1920 #ifdef IPV6_PKTOPTIONS 1921 case IPV6_PKTOPTIONS: 1922 #endif 1923 /* 1924 * RFC3542 (effectively) deprecated the 1925 * semantics of the 2292-style pktoptions. 1926 * Since it was not reliable in nature (i.e., 1927 * applications had to expect the lack of some 1928 * information after all), it would make sense 1929 * to simplify this part by always returning 1930 * empty data. 1931 */ 1932 sopt->sopt_valsize = 0; 1933 break; 1934 1935 case IPV6_RECVHOPOPTS: 1936 case IPV6_RECVDSTOPTS: 1937 case IPV6_RECVRTHDRDSTOPTS: 1938 case IPV6_UNICAST_HOPS: 1939 case IPV6_RECVPKTINFO: 1940 case IPV6_RECVHOPLIMIT: 1941 case IPV6_RECVRTHDR: 1942 case IPV6_RECVPATHMTU: 1943 1944 case IPV6_FAITH: 1945 case IPV6_V6ONLY: 1946 case IPV6_PORTRANGE: 1947 case IPV6_RECVTCLASS: 1948 case IPV6_AUTOFLOWLABEL: 1949 case IPV6_BINDANY: 1950 switch (optname) { 1951 1952 case IPV6_RECVHOPOPTS: 1953 optval = OPTBIT(IN6P_HOPOPTS); 1954 break; 1955 1956 case IPV6_RECVDSTOPTS: 1957 optval = OPTBIT(IN6P_DSTOPTS); 1958 break; 1959 1960 case IPV6_RECVRTHDRDSTOPTS: 1961 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1962 break; 1963 1964 case IPV6_UNICAST_HOPS: 1965 optval = in6p->in6p_hops; 1966 break; 1967 1968 case IPV6_RECVPKTINFO: 1969 optval = OPTBIT(IN6P_PKTINFO); 1970 break; 1971 1972 case IPV6_RECVHOPLIMIT: 1973 optval = OPTBIT(IN6P_HOPLIMIT); 1974 break; 1975 1976 case IPV6_RECVRTHDR: 1977 optval = OPTBIT(IN6P_RTHDR); 1978 break; 1979 1980 case IPV6_RECVPATHMTU: 1981 optval = OPTBIT(IN6P_MTU); 1982 break; 1983 1984 case IPV6_FAITH: 1985 optval = OPTBIT(INP_FAITH); 1986 break; 1987 1988 case IPV6_V6ONLY: 1989 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1990 break; 1991 1992 case IPV6_PORTRANGE: 1993 { 1994 int flags; 1995 flags = in6p->inp_flags; 1996 if (flags & INP_HIGHPORT) 1997 optval = IPV6_PORTRANGE_HIGH; 1998 else if (flags & INP_LOWPORT) 1999 optval = IPV6_PORTRANGE_LOW; 2000 else 2001 optval = 0; 2002 break; 2003 } 2004 case IPV6_RECVTCLASS: 2005 optval = OPTBIT(IN6P_TCLASS); 2006 break; 2007 2008 case IPV6_AUTOFLOWLABEL: 2009 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2010 break; 2011 2012 case IPV6_BINDANY: 2013 optval = OPTBIT(INP_BINDANY); 2014 break; 2015 } 2016 if (error) 2017 break; 2018 error = sooptcopyout(sopt, &optval, 2019 sizeof optval); 2020 break; 2021 2022 case IPV6_PATHMTU: 2023 { 2024 u_long pmtu = 0; 2025 struct ip6_mtuinfo mtuinfo; 2026 struct route_in6 sro; 2027 2028 bzero(&sro, sizeof(sro)); 2029 2030 if (!(so->so_state & SS_ISCONNECTED)) 2031 return (ENOTCONN); 2032 /* 2033 * XXX: we dot not consider the case of source 2034 * routing, or optional information to specify 2035 * the outgoing interface. 2036 */ 2037 error = ip6_getpmtu(&sro, NULL, NULL, 2038 &in6p->in6p_faddr, &pmtu, NULL, 2039 so->so_fibnum); 2040 if (sro.ro_rt) 2041 RTFREE(sro.ro_rt); 2042 if (error) 2043 break; 2044 if (pmtu > IPV6_MAXPACKET) 2045 pmtu = IPV6_MAXPACKET; 2046 2047 bzero(&mtuinfo, sizeof(mtuinfo)); 2048 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2049 optdata = (void *)&mtuinfo; 2050 optdatalen = sizeof(mtuinfo); 2051 error = sooptcopyout(sopt, optdata, 2052 optdatalen); 2053 break; 2054 } 2055 2056 case IPV6_2292PKTINFO: 2057 case IPV6_2292HOPLIMIT: 2058 case IPV6_2292HOPOPTS: 2059 case IPV6_2292RTHDR: 2060 case IPV6_2292DSTOPTS: 2061 switch (optname) { 2062 case IPV6_2292PKTINFO: 2063 optval = OPTBIT(IN6P_PKTINFO); 2064 break; 2065 case IPV6_2292HOPLIMIT: 2066 optval = OPTBIT(IN6P_HOPLIMIT); 2067 break; 2068 case IPV6_2292HOPOPTS: 2069 optval = OPTBIT(IN6P_HOPOPTS); 2070 break; 2071 case IPV6_2292RTHDR: 2072 optval = OPTBIT(IN6P_RTHDR); 2073 break; 2074 case IPV6_2292DSTOPTS: 2075 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2076 break; 2077 } 2078 error = sooptcopyout(sopt, &optval, 2079 sizeof optval); 2080 break; 2081 case IPV6_PKTINFO: 2082 case IPV6_HOPOPTS: 2083 case IPV6_RTHDR: 2084 case IPV6_DSTOPTS: 2085 case IPV6_RTHDRDSTOPTS: 2086 case IPV6_NEXTHOP: 2087 case IPV6_TCLASS: 2088 case IPV6_DONTFRAG: 2089 case IPV6_USE_MIN_MTU: 2090 case IPV6_PREFER_TEMPADDR: 2091 error = ip6_getpcbopt(in6p->in6p_outputopts, 2092 optname, sopt); 2093 break; 2094 2095 case IPV6_MULTICAST_IF: 2096 case IPV6_MULTICAST_HOPS: 2097 case IPV6_MULTICAST_LOOP: 2098 case IPV6_MSFILTER: 2099 error = ip6_getmoptions(in6p, sopt); 2100 break; 2101 2102 #ifdef IPSEC 2103 case IPV6_IPSEC_POLICY: 2104 { 2105 caddr_t req = NULL; 2106 size_t len = 0; 2107 struct mbuf *m = NULL; 2108 struct mbuf **mp = &m; 2109 size_t ovalsize = sopt->sopt_valsize; 2110 caddr_t oval = (caddr_t)sopt->sopt_val; 2111 2112 error = soopt_getm(sopt, &m); /* XXX */ 2113 if (error != 0) 2114 break; 2115 error = soopt_mcopyin(sopt, m); /* XXX */ 2116 if (error != 0) 2117 break; 2118 sopt->sopt_valsize = ovalsize; 2119 sopt->sopt_val = oval; 2120 if (m) { 2121 req = mtod(m, caddr_t); 2122 len = m->m_len; 2123 } 2124 error = ipsec_get_policy(in6p, req, len, mp); 2125 if (error == 0) 2126 error = soopt_mcopyout(sopt, m); /* XXX */ 2127 if (error == 0 && m) 2128 m_freem(m); 2129 break; 2130 } 2131 #endif /* IPSEC */ 2132 2133 default: 2134 error = ENOPROTOOPT; 2135 break; 2136 } 2137 break; 2138 } 2139 } 2140 return (error); 2141 } 2142 2143 int 2144 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2145 { 2146 int error = 0, optval, optlen; 2147 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2148 struct inpcb *in6p = sotoinpcb(so); 2149 int level, op, optname; 2150 2151 level = sopt->sopt_level; 2152 op = sopt->sopt_dir; 2153 optname = sopt->sopt_name; 2154 optlen = sopt->sopt_valsize; 2155 2156 if (level != IPPROTO_IPV6) { 2157 return (EINVAL); 2158 } 2159 2160 switch (optname) { 2161 case IPV6_CHECKSUM: 2162 /* 2163 * For ICMPv6 sockets, no modification allowed for checksum 2164 * offset, permit "no change" values to help existing apps. 2165 * 2166 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2167 * for an ICMPv6 socket will fail." 2168 * The current behavior does not meet RFC3542. 2169 */ 2170 switch (op) { 2171 case SOPT_SET: 2172 if (optlen != sizeof(int)) { 2173 error = EINVAL; 2174 break; 2175 } 2176 error = sooptcopyin(sopt, &optval, sizeof(optval), 2177 sizeof(optval)); 2178 if (error) 2179 break; 2180 if ((optval % 2) != 0) { 2181 /* the API assumes even offset values */ 2182 error = EINVAL; 2183 } else if (so->so_proto->pr_protocol == 2184 IPPROTO_ICMPV6) { 2185 if (optval != icmp6off) 2186 error = EINVAL; 2187 } else 2188 in6p->in6p_cksum = optval; 2189 break; 2190 2191 case SOPT_GET: 2192 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2193 optval = icmp6off; 2194 else 2195 optval = in6p->in6p_cksum; 2196 2197 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2198 break; 2199 2200 default: 2201 error = EINVAL; 2202 break; 2203 } 2204 break; 2205 2206 default: 2207 error = ENOPROTOOPT; 2208 break; 2209 } 2210 2211 return (error); 2212 } 2213 2214 /* 2215 * Set up IP6 options in pcb for insertion in output packets or 2216 * specifying behavior of outgoing packets. 2217 */ 2218 static int 2219 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2220 struct socket *so, struct sockopt *sopt) 2221 { 2222 struct ip6_pktopts *opt = *pktopt; 2223 int error = 0; 2224 struct thread *td = sopt->sopt_td; 2225 2226 /* turn off any old options. */ 2227 if (opt) { 2228 #ifdef DIAGNOSTIC 2229 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2230 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2231 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2232 printf("ip6_pcbopts: all specified options are cleared.\n"); 2233 #endif 2234 ip6_clearpktopts(opt, -1); 2235 } else 2236 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2237 *pktopt = NULL; 2238 2239 if (!m || m->m_len == 0) { 2240 /* 2241 * Only turning off any previous options, regardless of 2242 * whether the opt is just created or given. 2243 */ 2244 free(opt, M_IP6OPT); 2245 return (0); 2246 } 2247 2248 /* set options specified by user. */ 2249 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2250 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2251 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2252 free(opt, M_IP6OPT); 2253 return (error); 2254 } 2255 *pktopt = opt; 2256 return (0); 2257 } 2258 2259 /* 2260 * initialize ip6_pktopts. beware that there are non-zero default values in 2261 * the struct. 2262 */ 2263 void 2264 ip6_initpktopts(struct ip6_pktopts *opt) 2265 { 2266 2267 bzero(opt, sizeof(*opt)); 2268 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2269 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2270 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2271 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2272 } 2273 2274 static int 2275 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2276 struct ucred *cred, int uproto) 2277 { 2278 struct ip6_pktopts *opt; 2279 2280 if (*pktopt == NULL) { 2281 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2282 M_WAITOK); 2283 ip6_initpktopts(*pktopt); 2284 } 2285 opt = *pktopt; 2286 2287 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2288 } 2289 2290 static int 2291 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2292 { 2293 void *optdata = NULL; 2294 int optdatalen = 0; 2295 struct ip6_ext *ip6e; 2296 int error = 0; 2297 struct in6_pktinfo null_pktinfo; 2298 int deftclass = 0, on; 2299 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2300 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2301 2302 switch (optname) { 2303 case IPV6_PKTINFO: 2304 if (pktopt && pktopt->ip6po_pktinfo) 2305 optdata = (void *)pktopt->ip6po_pktinfo; 2306 else { 2307 /* XXX: we don't have to do this every time... */ 2308 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2309 optdata = (void *)&null_pktinfo; 2310 } 2311 optdatalen = sizeof(struct in6_pktinfo); 2312 break; 2313 case IPV6_TCLASS: 2314 if (pktopt && pktopt->ip6po_tclass >= 0) 2315 optdata = (void *)&pktopt->ip6po_tclass; 2316 else 2317 optdata = (void *)&deftclass; 2318 optdatalen = sizeof(int); 2319 break; 2320 case IPV6_HOPOPTS: 2321 if (pktopt && pktopt->ip6po_hbh) { 2322 optdata = (void *)pktopt->ip6po_hbh; 2323 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2324 optdatalen = (ip6e->ip6e_len + 1) << 3; 2325 } 2326 break; 2327 case IPV6_RTHDR: 2328 if (pktopt && pktopt->ip6po_rthdr) { 2329 optdata = (void *)pktopt->ip6po_rthdr; 2330 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2331 optdatalen = (ip6e->ip6e_len + 1) << 3; 2332 } 2333 break; 2334 case IPV6_RTHDRDSTOPTS: 2335 if (pktopt && pktopt->ip6po_dest1) { 2336 optdata = (void *)pktopt->ip6po_dest1; 2337 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2338 optdatalen = (ip6e->ip6e_len + 1) << 3; 2339 } 2340 break; 2341 case IPV6_DSTOPTS: 2342 if (pktopt && pktopt->ip6po_dest2) { 2343 optdata = (void *)pktopt->ip6po_dest2; 2344 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2345 optdatalen = (ip6e->ip6e_len + 1) << 3; 2346 } 2347 break; 2348 case IPV6_NEXTHOP: 2349 if (pktopt && pktopt->ip6po_nexthop) { 2350 optdata = (void *)pktopt->ip6po_nexthop; 2351 optdatalen = pktopt->ip6po_nexthop->sa_len; 2352 } 2353 break; 2354 case IPV6_USE_MIN_MTU: 2355 if (pktopt) 2356 optdata = (void *)&pktopt->ip6po_minmtu; 2357 else 2358 optdata = (void *)&defminmtu; 2359 optdatalen = sizeof(int); 2360 break; 2361 case IPV6_DONTFRAG: 2362 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2363 on = 1; 2364 else 2365 on = 0; 2366 optdata = (void *)&on; 2367 optdatalen = sizeof(on); 2368 break; 2369 case IPV6_PREFER_TEMPADDR: 2370 if (pktopt) 2371 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2372 else 2373 optdata = (void *)&defpreftemp; 2374 optdatalen = sizeof(int); 2375 break; 2376 default: /* should not happen */ 2377 #ifdef DIAGNOSTIC 2378 panic("ip6_getpcbopt: unexpected option\n"); 2379 #endif 2380 return (ENOPROTOOPT); 2381 } 2382 2383 error = sooptcopyout(sopt, optdata, optdatalen); 2384 2385 return (error); 2386 } 2387 2388 void 2389 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2390 { 2391 if (pktopt == NULL) 2392 return; 2393 2394 if (optname == -1 || optname == IPV6_PKTINFO) { 2395 if (pktopt->ip6po_pktinfo) 2396 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2397 pktopt->ip6po_pktinfo = NULL; 2398 } 2399 if (optname == -1 || optname == IPV6_HOPLIMIT) 2400 pktopt->ip6po_hlim = -1; 2401 if (optname == -1 || optname == IPV6_TCLASS) 2402 pktopt->ip6po_tclass = -1; 2403 if (optname == -1 || optname == IPV6_NEXTHOP) { 2404 if (pktopt->ip6po_nextroute.ro_rt) { 2405 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2406 pktopt->ip6po_nextroute.ro_rt = NULL; 2407 } 2408 if (pktopt->ip6po_nexthop) 2409 free(pktopt->ip6po_nexthop, M_IP6OPT); 2410 pktopt->ip6po_nexthop = NULL; 2411 } 2412 if (optname == -1 || optname == IPV6_HOPOPTS) { 2413 if (pktopt->ip6po_hbh) 2414 free(pktopt->ip6po_hbh, M_IP6OPT); 2415 pktopt->ip6po_hbh = NULL; 2416 } 2417 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2418 if (pktopt->ip6po_dest1) 2419 free(pktopt->ip6po_dest1, M_IP6OPT); 2420 pktopt->ip6po_dest1 = NULL; 2421 } 2422 if (optname == -1 || optname == IPV6_RTHDR) { 2423 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2424 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2425 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2426 if (pktopt->ip6po_route.ro_rt) { 2427 RTFREE(pktopt->ip6po_route.ro_rt); 2428 pktopt->ip6po_route.ro_rt = NULL; 2429 } 2430 } 2431 if (optname == -1 || optname == IPV6_DSTOPTS) { 2432 if (pktopt->ip6po_dest2) 2433 free(pktopt->ip6po_dest2, M_IP6OPT); 2434 pktopt->ip6po_dest2 = NULL; 2435 } 2436 } 2437 2438 #define PKTOPT_EXTHDRCPY(type) \ 2439 do {\ 2440 if (src->type) {\ 2441 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2442 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2443 if (dst->type == NULL && canwait == M_NOWAIT)\ 2444 goto bad;\ 2445 bcopy(src->type, dst->type, hlen);\ 2446 }\ 2447 } while (/*CONSTCOND*/ 0) 2448 2449 static int 2450 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2451 { 2452 if (dst == NULL || src == NULL) { 2453 printf("ip6_clearpktopts: invalid argument\n"); 2454 return (EINVAL); 2455 } 2456 2457 dst->ip6po_hlim = src->ip6po_hlim; 2458 dst->ip6po_tclass = src->ip6po_tclass; 2459 dst->ip6po_flags = src->ip6po_flags; 2460 dst->ip6po_minmtu = src->ip6po_minmtu; 2461 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2462 if (src->ip6po_pktinfo) { 2463 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2464 M_IP6OPT, canwait); 2465 if (dst->ip6po_pktinfo == NULL) 2466 goto bad; 2467 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2468 } 2469 if (src->ip6po_nexthop) { 2470 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2471 M_IP6OPT, canwait); 2472 if (dst->ip6po_nexthop == NULL) 2473 goto bad; 2474 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2475 src->ip6po_nexthop->sa_len); 2476 } 2477 PKTOPT_EXTHDRCPY(ip6po_hbh); 2478 PKTOPT_EXTHDRCPY(ip6po_dest1); 2479 PKTOPT_EXTHDRCPY(ip6po_dest2); 2480 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2481 return (0); 2482 2483 bad: 2484 ip6_clearpktopts(dst, -1); 2485 return (ENOBUFS); 2486 } 2487 #undef PKTOPT_EXTHDRCPY 2488 2489 struct ip6_pktopts * 2490 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2491 { 2492 int error; 2493 struct ip6_pktopts *dst; 2494 2495 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2496 if (dst == NULL) 2497 return (NULL); 2498 ip6_initpktopts(dst); 2499 2500 if ((error = copypktopts(dst, src, canwait)) != 0) { 2501 free(dst, M_IP6OPT); 2502 return (NULL); 2503 } 2504 2505 return (dst); 2506 } 2507 2508 void 2509 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2510 { 2511 if (pktopt == NULL) 2512 return; 2513 2514 ip6_clearpktopts(pktopt, -1); 2515 2516 free(pktopt, M_IP6OPT); 2517 } 2518 2519 /* 2520 * Set IPv6 outgoing packet options based on advanced API. 2521 */ 2522 int 2523 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2524 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2525 { 2526 struct cmsghdr *cm = 0; 2527 2528 if (control == NULL || opt == NULL) 2529 return (EINVAL); 2530 2531 ip6_initpktopts(opt); 2532 if (stickyopt) { 2533 int error; 2534 2535 /* 2536 * If stickyopt is provided, make a local copy of the options 2537 * for this particular packet, then override them by ancillary 2538 * objects. 2539 * XXX: copypktopts() does not copy the cached route to a next 2540 * hop (if any). This is not very good in terms of efficiency, 2541 * but we can allow this since this option should be rarely 2542 * used. 2543 */ 2544 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2545 return (error); 2546 } 2547 2548 /* 2549 * XXX: Currently, we assume all the optional information is stored 2550 * in a single mbuf. 2551 */ 2552 if (control->m_next) 2553 return (EINVAL); 2554 2555 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2556 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2557 int error; 2558 2559 if (control->m_len < CMSG_LEN(0)) 2560 return (EINVAL); 2561 2562 cm = mtod(control, struct cmsghdr *); 2563 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2564 return (EINVAL); 2565 if (cm->cmsg_level != IPPROTO_IPV6) 2566 continue; 2567 2568 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2569 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2570 if (error) 2571 return (error); 2572 } 2573 2574 return (0); 2575 } 2576 2577 /* 2578 * Set a particular packet option, as a sticky option or an ancillary data 2579 * item. "len" can be 0 only when it's a sticky option. 2580 * We have 4 cases of combination of "sticky" and "cmsg": 2581 * "sticky=0, cmsg=0": impossible 2582 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2583 * "sticky=1, cmsg=0": RFC3542 socket option 2584 * "sticky=1, cmsg=1": RFC2292 socket option 2585 */ 2586 static int 2587 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2588 struct ucred *cred, int sticky, int cmsg, int uproto) 2589 { 2590 int minmtupolicy, preftemp; 2591 int error; 2592 2593 if (!sticky && !cmsg) { 2594 #ifdef DIAGNOSTIC 2595 printf("ip6_setpktopt: impossible case\n"); 2596 #endif 2597 return (EINVAL); 2598 } 2599 2600 /* 2601 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2602 * not be specified in the context of RFC3542. Conversely, 2603 * RFC3542 types should not be specified in the context of RFC2292. 2604 */ 2605 if (!cmsg) { 2606 switch (optname) { 2607 case IPV6_2292PKTINFO: 2608 case IPV6_2292HOPLIMIT: 2609 case IPV6_2292NEXTHOP: 2610 case IPV6_2292HOPOPTS: 2611 case IPV6_2292DSTOPTS: 2612 case IPV6_2292RTHDR: 2613 case IPV6_2292PKTOPTIONS: 2614 return (ENOPROTOOPT); 2615 } 2616 } 2617 if (sticky && cmsg) { 2618 switch (optname) { 2619 case IPV6_PKTINFO: 2620 case IPV6_HOPLIMIT: 2621 case IPV6_NEXTHOP: 2622 case IPV6_HOPOPTS: 2623 case IPV6_DSTOPTS: 2624 case IPV6_RTHDRDSTOPTS: 2625 case IPV6_RTHDR: 2626 case IPV6_USE_MIN_MTU: 2627 case IPV6_DONTFRAG: 2628 case IPV6_TCLASS: 2629 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2630 return (ENOPROTOOPT); 2631 } 2632 } 2633 2634 switch (optname) { 2635 case IPV6_2292PKTINFO: 2636 case IPV6_PKTINFO: 2637 { 2638 struct ifnet *ifp = NULL; 2639 struct in6_pktinfo *pktinfo; 2640 2641 if (len != sizeof(struct in6_pktinfo)) 2642 return (EINVAL); 2643 2644 pktinfo = (struct in6_pktinfo *)buf; 2645 2646 /* 2647 * An application can clear any sticky IPV6_PKTINFO option by 2648 * doing a "regular" setsockopt with ipi6_addr being 2649 * in6addr_any and ipi6_ifindex being zero. 2650 * [RFC 3542, Section 6] 2651 */ 2652 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2653 pktinfo->ipi6_ifindex == 0 && 2654 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2655 ip6_clearpktopts(opt, optname); 2656 break; 2657 } 2658 2659 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2660 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2661 return (EINVAL); 2662 } 2663 2664 /* validate the interface index if specified. */ 2665 if (pktinfo->ipi6_ifindex > V_if_index) 2666 return (ENXIO); 2667 if (pktinfo->ipi6_ifindex) { 2668 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2669 if (ifp == NULL) 2670 return (ENXIO); 2671 } 2672 2673 /* 2674 * We store the address anyway, and let in6_selectsrc() 2675 * validate the specified address. This is because ipi6_addr 2676 * may not have enough information about its scope zone, and 2677 * we may need additional information (such as outgoing 2678 * interface or the scope zone of a destination address) to 2679 * disambiguate the scope. 2680 * XXX: the delay of the validation may confuse the 2681 * application when it is used as a sticky option. 2682 */ 2683 if (opt->ip6po_pktinfo == NULL) { 2684 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2685 M_IP6OPT, M_NOWAIT); 2686 if (opt->ip6po_pktinfo == NULL) 2687 return (ENOBUFS); 2688 } 2689 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2690 break; 2691 } 2692 2693 case IPV6_2292HOPLIMIT: 2694 case IPV6_HOPLIMIT: 2695 { 2696 int *hlimp; 2697 2698 /* 2699 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2700 * to simplify the ordering among hoplimit options. 2701 */ 2702 if (optname == IPV6_HOPLIMIT && sticky) 2703 return (ENOPROTOOPT); 2704 2705 if (len != sizeof(int)) 2706 return (EINVAL); 2707 hlimp = (int *)buf; 2708 if (*hlimp < -1 || *hlimp > 255) 2709 return (EINVAL); 2710 2711 opt->ip6po_hlim = *hlimp; 2712 break; 2713 } 2714 2715 case IPV6_TCLASS: 2716 { 2717 int tclass; 2718 2719 if (len != sizeof(int)) 2720 return (EINVAL); 2721 tclass = *(int *)buf; 2722 if (tclass < -1 || tclass > 255) 2723 return (EINVAL); 2724 2725 opt->ip6po_tclass = tclass; 2726 break; 2727 } 2728 2729 case IPV6_2292NEXTHOP: 2730 case IPV6_NEXTHOP: 2731 if (cred != NULL) { 2732 error = priv_check_cred(cred, 2733 PRIV_NETINET_SETHDROPTS, 0); 2734 if (error) 2735 return (error); 2736 } 2737 2738 if (len == 0) { /* just remove the option */ 2739 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2740 break; 2741 } 2742 2743 /* check if cmsg_len is large enough for sa_len */ 2744 if (len < sizeof(struct sockaddr) || len < *buf) 2745 return (EINVAL); 2746 2747 switch (((struct sockaddr *)buf)->sa_family) { 2748 case AF_INET6: 2749 { 2750 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2751 int error; 2752 2753 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2754 return (EINVAL); 2755 2756 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2757 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2758 return (EINVAL); 2759 } 2760 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2761 != 0) { 2762 return (error); 2763 } 2764 break; 2765 } 2766 case AF_LINK: /* should eventually be supported */ 2767 default: 2768 return (EAFNOSUPPORT); 2769 } 2770 2771 /* turn off the previous option, then set the new option. */ 2772 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2773 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2774 if (opt->ip6po_nexthop == NULL) 2775 return (ENOBUFS); 2776 bcopy(buf, opt->ip6po_nexthop, *buf); 2777 break; 2778 2779 case IPV6_2292HOPOPTS: 2780 case IPV6_HOPOPTS: 2781 { 2782 struct ip6_hbh *hbh; 2783 int hbhlen; 2784 2785 /* 2786 * XXX: We don't allow a non-privileged user to set ANY HbH 2787 * options, since per-option restriction has too much 2788 * overhead. 2789 */ 2790 if (cred != NULL) { 2791 error = priv_check_cred(cred, 2792 PRIV_NETINET_SETHDROPTS, 0); 2793 if (error) 2794 return (error); 2795 } 2796 2797 if (len == 0) { 2798 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2799 break; /* just remove the option */ 2800 } 2801 2802 /* message length validation */ 2803 if (len < sizeof(struct ip6_hbh)) 2804 return (EINVAL); 2805 hbh = (struct ip6_hbh *)buf; 2806 hbhlen = (hbh->ip6h_len + 1) << 3; 2807 if (len != hbhlen) 2808 return (EINVAL); 2809 2810 /* turn off the previous option, then set the new option. */ 2811 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2812 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2813 if (opt->ip6po_hbh == NULL) 2814 return (ENOBUFS); 2815 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2816 2817 break; 2818 } 2819 2820 case IPV6_2292DSTOPTS: 2821 case IPV6_DSTOPTS: 2822 case IPV6_RTHDRDSTOPTS: 2823 { 2824 struct ip6_dest *dest, **newdest = NULL; 2825 int destlen; 2826 2827 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2828 error = priv_check_cred(cred, 2829 PRIV_NETINET_SETHDROPTS, 0); 2830 if (error) 2831 return (error); 2832 } 2833 2834 if (len == 0) { 2835 ip6_clearpktopts(opt, optname); 2836 break; /* just remove the option */ 2837 } 2838 2839 /* message length validation */ 2840 if (len < sizeof(struct ip6_dest)) 2841 return (EINVAL); 2842 dest = (struct ip6_dest *)buf; 2843 destlen = (dest->ip6d_len + 1) << 3; 2844 if (len != destlen) 2845 return (EINVAL); 2846 2847 /* 2848 * Determine the position that the destination options header 2849 * should be inserted; before or after the routing header. 2850 */ 2851 switch (optname) { 2852 case IPV6_2292DSTOPTS: 2853 /* 2854 * The old advacned API is ambiguous on this point. 2855 * Our approach is to determine the position based 2856 * according to the existence of a routing header. 2857 * Note, however, that this depends on the order of the 2858 * extension headers in the ancillary data; the 1st 2859 * part of the destination options header must appear 2860 * before the routing header in the ancillary data, 2861 * too. 2862 * RFC3542 solved the ambiguity by introducing 2863 * separate ancillary data or option types. 2864 */ 2865 if (opt->ip6po_rthdr == NULL) 2866 newdest = &opt->ip6po_dest1; 2867 else 2868 newdest = &opt->ip6po_dest2; 2869 break; 2870 case IPV6_RTHDRDSTOPTS: 2871 newdest = &opt->ip6po_dest1; 2872 break; 2873 case IPV6_DSTOPTS: 2874 newdest = &opt->ip6po_dest2; 2875 break; 2876 } 2877 2878 /* turn off the previous option, then set the new option. */ 2879 ip6_clearpktopts(opt, optname); 2880 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2881 if (*newdest == NULL) 2882 return (ENOBUFS); 2883 bcopy(dest, *newdest, destlen); 2884 2885 break; 2886 } 2887 2888 case IPV6_2292RTHDR: 2889 case IPV6_RTHDR: 2890 { 2891 struct ip6_rthdr *rth; 2892 int rthlen; 2893 2894 if (len == 0) { 2895 ip6_clearpktopts(opt, IPV6_RTHDR); 2896 break; /* just remove the option */ 2897 } 2898 2899 /* message length validation */ 2900 if (len < sizeof(struct ip6_rthdr)) 2901 return (EINVAL); 2902 rth = (struct ip6_rthdr *)buf; 2903 rthlen = (rth->ip6r_len + 1) << 3; 2904 if (len != rthlen) 2905 return (EINVAL); 2906 2907 switch (rth->ip6r_type) { 2908 case IPV6_RTHDR_TYPE_0: 2909 if (rth->ip6r_len == 0) /* must contain one addr */ 2910 return (EINVAL); 2911 if (rth->ip6r_len % 2) /* length must be even */ 2912 return (EINVAL); 2913 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2914 return (EINVAL); 2915 break; 2916 default: 2917 return (EINVAL); /* not supported */ 2918 } 2919 2920 /* turn off the previous option */ 2921 ip6_clearpktopts(opt, IPV6_RTHDR); 2922 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2923 if (opt->ip6po_rthdr == NULL) 2924 return (ENOBUFS); 2925 bcopy(rth, opt->ip6po_rthdr, rthlen); 2926 2927 break; 2928 } 2929 2930 case IPV6_USE_MIN_MTU: 2931 if (len != sizeof(int)) 2932 return (EINVAL); 2933 minmtupolicy = *(int *)buf; 2934 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2935 minmtupolicy != IP6PO_MINMTU_DISABLE && 2936 minmtupolicy != IP6PO_MINMTU_ALL) { 2937 return (EINVAL); 2938 } 2939 opt->ip6po_minmtu = minmtupolicy; 2940 break; 2941 2942 case IPV6_DONTFRAG: 2943 if (len != sizeof(int)) 2944 return (EINVAL); 2945 2946 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2947 /* 2948 * we ignore this option for TCP sockets. 2949 * (RFC3542 leaves this case unspecified.) 2950 */ 2951 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2952 } else 2953 opt->ip6po_flags |= IP6PO_DONTFRAG; 2954 break; 2955 2956 case IPV6_PREFER_TEMPADDR: 2957 if (len != sizeof(int)) 2958 return (EINVAL); 2959 preftemp = *(int *)buf; 2960 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 2961 preftemp != IP6PO_TEMPADDR_NOTPREFER && 2962 preftemp != IP6PO_TEMPADDR_PREFER) { 2963 return (EINVAL); 2964 } 2965 opt->ip6po_prefer_tempaddr = preftemp; 2966 break; 2967 2968 default: 2969 return (ENOPROTOOPT); 2970 } /* end of switch */ 2971 2972 return (0); 2973 } 2974 2975 /* 2976 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2977 * packet to the input queue of a specified interface. Note that this 2978 * calls the output routine of the loopback "driver", but with an interface 2979 * pointer that might NOT be &loif -- easier than replicating that code here. 2980 */ 2981 void 2982 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 2983 { 2984 struct mbuf *copym; 2985 struct ip6_hdr *ip6; 2986 2987 copym = m_copy(m, 0, M_COPYALL); 2988 if (copym == NULL) 2989 return; 2990 2991 /* 2992 * Make sure to deep-copy IPv6 header portion in case the data 2993 * is in an mbuf cluster, so that we can safely override the IPv6 2994 * header portion later. 2995 */ 2996 if ((copym->m_flags & M_EXT) != 0 || 2997 copym->m_len < sizeof(struct ip6_hdr)) { 2998 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2999 if (copym == NULL) 3000 return; 3001 } 3002 3003 #ifdef DIAGNOSTIC 3004 if (copym->m_len < sizeof(*ip6)) { 3005 m_freem(copym); 3006 return; 3007 } 3008 #endif 3009 3010 ip6 = mtod(copym, struct ip6_hdr *); 3011 /* 3012 * clear embedded scope identifiers if necessary. 3013 * in6_clearscope will touch the addresses only when necessary. 3014 */ 3015 in6_clearscope(&ip6->ip6_src); 3016 in6_clearscope(&ip6->ip6_dst); 3017 3018 (void)if_simloop(ifp, copym, dst->sin6_family, 0); 3019 } 3020 3021 /* 3022 * Chop IPv6 header off from the payload. 3023 */ 3024 static int 3025 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3026 { 3027 struct mbuf *mh; 3028 struct ip6_hdr *ip6; 3029 3030 ip6 = mtod(m, struct ip6_hdr *); 3031 if (m->m_len > sizeof(*ip6)) { 3032 mh = m_gethdr(M_NOWAIT, MT_DATA); 3033 if (mh == NULL) { 3034 m_freem(m); 3035 return ENOBUFS; 3036 } 3037 m_move_pkthdr(mh, m); 3038 MH_ALIGN(mh, sizeof(*ip6)); 3039 m->m_len -= sizeof(*ip6); 3040 m->m_data += sizeof(*ip6); 3041 mh->m_next = m; 3042 m = mh; 3043 m->m_len = sizeof(*ip6); 3044 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3045 } 3046 exthdrs->ip6e_ip6 = m; 3047 return 0; 3048 } 3049 3050 /* 3051 * Compute IPv6 extension header length. 3052 */ 3053 int 3054 ip6_optlen(struct inpcb *in6p) 3055 { 3056 int len; 3057 3058 if (!in6p->in6p_outputopts) 3059 return 0; 3060 3061 len = 0; 3062 #define elen(x) \ 3063 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3064 3065 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3066 if (in6p->in6p_outputopts->ip6po_rthdr) 3067 /* dest1 is valid with rthdr only */ 3068 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3069 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3070 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3071 return len; 3072 #undef elen 3073 } 3074