1 /* 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 /* 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. All advertising materials mentioning features or use of this software 45 * must display the following acknowledgement: 46 * This product includes software developed by the University of 47 * California, Berkeley and its contributors. 48 * 4. Neither the name of the University nor the names of its contributors 49 * may be used to endorse or promote products derived from this software 50 * without specific prior written permission. 51 * 52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 62 * SUCH DAMAGE. 63 * 64 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 65 */ 66 67 #include "opt_key.h" 68 69 #include <sys/param.h> 70 #include <sys/malloc.h> 71 #include <sys/mbuf.h> 72 #include <sys/errno.h> 73 #include <sys/protosw.h> 74 #include <sys/socket.h> 75 #include <sys/socketvar.h> 76 #include <sys/systm.h> 77 #include <sys/kernel.h> 78 #include <sys/proc.h> 79 80 #include <net/if.h> 81 #include <net/route.h> 82 83 #include <netinet/in.h> 84 #include <netinet/in_var.h> 85 #include <netinet6/ip6.h> 86 #include <netinet6/icmp6.h> 87 #include <netinet/in_pcb.h> 88 #include <netinet6/ip6_var.h> 89 #include <netinet6/nd6.h> 90 91 #ifdef IPSEC 92 #include <netinet6/ipsec.h> 93 #include <netinet6/ipsec6.h> 94 #include <netkey/key.h> 95 #ifdef KEY_DEBUG 96 #include <netkey/key_debug.h> 97 #else 98 #define DPRINTF(lev,arg) 99 #define DDO(lev, stmt) 100 #define DP(x, y, z) 101 #endif /* KEY_DEBUG */ 102 #endif /* IPSEC */ 103 104 #include "loop.h" 105 106 #include <net/net_osdep.h> 107 108 #ifdef IPV6FIREWALL 109 #include <netinet6/ip6_fw.h> 110 #endif 111 112 static MALLOC_DEFINE(M_IPMOPTS, "ip6_moptions", "internet multicast options"); 113 114 struct ip6_exthdrs { 115 struct mbuf *ip6e_ip6; 116 struct mbuf *ip6e_hbh; 117 struct mbuf *ip6e_dest1; 118 struct mbuf *ip6e_rthdr; 119 struct mbuf *ip6e_dest2; 120 }; 121 122 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 123 struct socket *, struct sockopt *sopt)); 124 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *)); 125 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **)); 126 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int)); 127 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 128 struct ip6_frag **)); 129 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t)); 130 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *)); 131 132 /* 133 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 134 * header (with pri, len, nxt, hlim, src, dst). 135 * This function may modify ver and hlim only. 136 * The mbuf chain containing the packet will be freed. 137 * The mbuf opt, if present, will not be freed. 138 */ 139 int 140 ip6_output(m0, opt, ro, flags, im6o, ifpp) 141 struct mbuf *m0; 142 struct ip6_pktopts *opt; 143 struct route_in6 *ro; 144 int flags; 145 struct ip6_moptions *im6o; 146 struct ifnet **ifpp; /* XXX: just for statistics */ 147 { 148 struct ip6_hdr *ip6, *mhip6; 149 struct ifnet *ifp; 150 struct mbuf *m = m0; 151 int hlen, tlen, len, off; 152 struct route_in6 ip6route; 153 struct sockaddr_in6 *dst; 154 int error = 0; 155 struct in6_ifaddr *ia; 156 u_long mtu; 157 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 158 struct ip6_exthdrs exthdrs; 159 struct in6_addr finaldst; 160 struct route_in6 *ro_pmtu = NULL; 161 int hdrsplit = 0; 162 int needipsec = 0; 163 #ifdef IPSEC 164 int needipsectun = 0; 165 struct socket *so; 166 struct secpolicy *sp = NULL; 167 168 /* for AH processing. stupid to have "socket" variable in IP layer... */ 169 so = (struct socket *)m->m_pkthdr.rcvif; 170 m->m_pkthdr.rcvif = NULL; 171 ip6 = mtod(m, struct ip6_hdr *); 172 #endif /* IPSEC */ 173 174 #define MAKE_EXTHDR(hp,mp) \ 175 { \ 176 if (hp) { \ 177 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 178 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 179 ((eh)->ip6e_len + 1) << 3); \ 180 if (error) \ 181 goto freehdrs; \ 182 } \ 183 } 184 185 bzero(&exthdrs, sizeof(exthdrs)); 186 if (opt) { 187 /* Hop-by-Hop options header */ 188 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 189 /* Destination options header(1st part) */ 190 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 191 /* Routing header */ 192 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 193 /* Destination options header(2nd part) */ 194 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 195 } 196 197 #ifdef IPSEC 198 /* get a security policy for this packet */ 199 if (so == NULL) 200 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 201 else 202 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 203 204 if (sp == NULL) { 205 ipsec6stat.out_inval++; 206 goto bad; 207 } 208 209 error = 0; 210 211 /* check policy */ 212 switch (sp->policy) { 213 case IPSEC_POLICY_DISCARD: 214 /* 215 * This packet is just discarded. 216 */ 217 ipsec6stat.out_polvio++; 218 goto bad; 219 220 case IPSEC_POLICY_BYPASS: 221 case IPSEC_POLICY_NONE: 222 /* no need to do IPsec. */ 223 needipsec = 0; 224 break; 225 226 case IPSEC_POLICY_IPSEC: 227 if (sp->req == NULL) { 228 /* XXX should be panic ? */ 229 printf("ip6_output: No IPsec request specified.\n"); 230 error = EINVAL; 231 goto bad; 232 } 233 needipsec = 1; 234 break; 235 236 case IPSEC_POLICY_ENTRUST: 237 default: 238 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 239 } 240 #endif /* IPSEC */ 241 242 /* 243 * Calculate the total length of the extension header chain. 244 * Keep the length of the unfragmentable part for fragmentation. 245 */ 246 optlen = 0; 247 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 248 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 249 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 250 unfragpartlen = optlen + sizeof(struct ip6_hdr); 251 /* NOTE: we don't add AH/ESP length here. do that later. */ 252 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 253 254 /* 255 * If we need IPsec, or there is at least one extension header, 256 * separate IP6 header from the payload. 257 */ 258 if ((needipsec || optlen) && !hdrsplit) { 259 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 260 m = NULL; 261 goto freehdrs; 262 } 263 m = exthdrs.ip6e_ip6; 264 hdrsplit++; 265 } 266 267 /* adjust pointer */ 268 ip6 = mtod(m, struct ip6_hdr *); 269 270 /* adjust mbuf packet header length */ 271 m->m_pkthdr.len += optlen; 272 plen = m->m_pkthdr.len - sizeof(*ip6); 273 274 /* If this is a jumbo payload, insert a jumbo payload option. */ 275 if (plen > IPV6_MAXPACKET) { 276 if (!hdrsplit) { 277 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 278 m = NULL; 279 goto freehdrs; 280 } 281 m = exthdrs.ip6e_ip6; 282 hdrsplit++; 283 } 284 /* adjust pointer */ 285 ip6 = mtod(m, struct ip6_hdr *); 286 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 287 goto freehdrs; 288 ip6->ip6_plen = 0; 289 } else 290 ip6->ip6_plen = htons(plen); 291 292 /* 293 * Concatenate headers and fill in next header fields. 294 * Here we have, on "m" 295 * IPv6 payload 296 * and we insert headers accordingly. Finally, we should be getting: 297 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 298 * 299 * during the header composing process, "m" points to IPv6 header. 300 * "mprev" points to an extension header prior to esp. 301 */ 302 { 303 u_char *nexthdrp = &ip6->ip6_nxt; 304 struct mbuf *mprev = m; 305 306 /* 307 * we treat dest2 specially. this makes IPsec processing 308 * much easier. 309 * 310 * result: IPv6 dest2 payload 311 * m and mprev will point to IPv6 header. 312 */ 313 if (exthdrs.ip6e_dest2) { 314 if (!hdrsplit) 315 panic("assumption failed: hdr not split"); 316 exthdrs.ip6e_dest2->m_next = m->m_next; 317 m->m_next = exthdrs.ip6e_dest2; 318 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 319 ip6->ip6_nxt = IPPROTO_DSTOPTS; 320 } 321 322 #define MAKE_CHAIN(m,mp,p,i)\ 323 {\ 324 if (m) {\ 325 if (!hdrsplit) \ 326 panic("assumption failed: hdr not split"); \ 327 *mtod((m), u_char *) = *(p);\ 328 *(p) = (i);\ 329 p = mtod((m), u_char *);\ 330 (m)->m_next = (mp)->m_next;\ 331 (mp)->m_next = (m);\ 332 (mp) = (m);\ 333 }\ 334 } 335 /* 336 * result: IPv6 hbh dest1 rthdr dest2 payload 337 * m will point to IPv6 header. mprev will point to the 338 * extension header prior to dest2 (rthdr in the above case). 339 */ 340 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, 341 nexthdrp, IPPROTO_HOPOPTS); 342 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, 343 nexthdrp, IPPROTO_DSTOPTS); 344 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, 345 nexthdrp, IPPROTO_ROUTING); 346 347 #ifdef IPSEC 348 if (!needipsec) 349 goto skip_ipsec2; 350 351 /* 352 * pointers after IPsec headers are not valid any more. 353 * other pointers need a great care too. 354 * (IPsec routines should not mangle mbufs prior to AH/ESP) 355 */ 356 exthdrs.ip6e_dest2 = NULL; 357 358 { 359 struct ip6_rthdr *rh = NULL; 360 int segleft_org = 0; 361 struct ipsec_output_state state; 362 363 if (exthdrs.ip6e_rthdr) { 364 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 365 segleft_org = rh->ip6r_segleft; 366 rh->ip6r_segleft = 0; 367 } 368 369 bzero(&state, sizeof(state)); 370 state.m = m; 371 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 372 &needipsectun); 373 m = state.m; 374 if (error) { 375 /* mbuf is already reclaimed in ipsec6_output_trans. */ 376 m = NULL; 377 switch (error) { 378 case EHOSTUNREACH: 379 case ENETUNREACH: 380 case EMSGSIZE: 381 case ENOBUFS: 382 case ENOMEM: 383 break; 384 default: 385 printf("ip6_output (ipsec): error code %d\n", error); 386 /*fall through*/ 387 case ENOENT: 388 /* don't show these error codes to the user */ 389 error = 0; 390 break; 391 } 392 goto bad; 393 } 394 if (exthdrs.ip6e_rthdr) { 395 /* ah6_output doesn't modify mbuf chain */ 396 rh->ip6r_segleft = segleft_org; 397 } 398 } 399 skip_ipsec2:; 400 #endif 401 } 402 403 /* 404 * If there is a routing header, replace destination address field 405 * with the first hop of the routing header. 406 */ 407 if (exthdrs.ip6e_rthdr) { 408 struct ip6_rthdr *rh = 409 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 410 struct ip6_rthdr *)); 411 struct ip6_rthdr0 *rh0; 412 413 finaldst = ip6->ip6_dst; 414 switch(rh->ip6r_type) { 415 case IPV6_RTHDR_TYPE_0: 416 rh0 = (struct ip6_rthdr0 *)rh; 417 ip6->ip6_dst = rh0->ip6r0_addr[0]; 418 bcopy((caddr_t)&rh0->ip6r0_addr[1], 419 (caddr_t)&rh0->ip6r0_addr[0], 420 sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1) 421 ); 422 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst; 423 break; 424 default: /* is it possible? */ 425 error = EINVAL; 426 goto bad; 427 } 428 } 429 430 /* Source address validation */ 431 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 432 (flags & IPV6_DADOUTPUT) == 0) { 433 error = EOPNOTSUPP; 434 ip6stat.ip6s_badscope++; 435 goto bad; 436 } 437 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 438 error = EOPNOTSUPP; 439 ip6stat.ip6s_badscope++; 440 goto bad; 441 } 442 443 ip6stat.ip6s_localout++; 444 445 /* 446 * Route packet. 447 */ 448 if (ro == 0) { 449 ro = &ip6route; 450 bzero((caddr_t)ro, sizeof(*ro)); 451 } 452 ro_pmtu = ro; 453 if (opt && opt->ip6po_rthdr) 454 ro = &opt->ip6po_route; 455 dst = (struct sockaddr_in6 *)&ro->ro_dst; 456 /* 457 * If there is a cached route, 458 * check that it is to the same destination 459 * and is still up. If not, free it and try again. 460 */ 461 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 462 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 463 RTFREE(ro->ro_rt); 464 ro->ro_rt = (struct rtentry *)0; 465 } 466 if (ro->ro_rt == 0) { 467 bzero(dst, sizeof(*dst)); 468 dst->sin6_family = AF_INET6; 469 dst->sin6_len = sizeof(struct sockaddr_in6); 470 dst->sin6_addr = ip6->ip6_dst; 471 } 472 #ifdef IPSEC 473 if (needipsec && needipsectun) { 474 struct ipsec_output_state state; 475 476 /* 477 * All the extension headers will become inaccessible 478 * (since they can be encrypted). 479 * Don't panic, we need no more updates to extension headers 480 * on inner IPv6 packet (since they are now encapsulated). 481 * 482 * IPv6 [ESP|AH] IPv6 [extension headers] payload 483 */ 484 bzero(&exthdrs, sizeof(exthdrs)); 485 exthdrs.ip6e_ip6 = m; 486 487 bzero(&state, sizeof(state)); 488 state.m = m; 489 state.ro = (struct route *)ro; 490 state.dst = (struct sockaddr *)dst; 491 492 error = ipsec6_output_tunnel(&state, sp, flags); 493 494 m = state.m; 495 ro = (struct route_in6 *)state.ro; 496 dst = (struct sockaddr_in6 *)state.dst; 497 if (error) { 498 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 499 m0 = m = NULL; 500 m = NULL; 501 switch (error) { 502 case EHOSTUNREACH: 503 case ENETUNREACH: 504 case EMSGSIZE: 505 case ENOBUFS: 506 case ENOMEM: 507 break; 508 default: 509 printf("ip6_output (ipsec): error code %d\n", error); 510 /*fall through*/ 511 case ENOENT: 512 /* don't show these error codes to the user */ 513 error = 0; 514 break; 515 } 516 goto bad; 517 } 518 519 exthdrs.ip6e_ip6 = m; 520 } 521 #endif /*IPESC*/ 522 523 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 524 /* Unicast */ 525 526 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 527 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 528 /* xxx 529 * interface selection comes here 530 * if an interface is specified from an upper layer, 531 * ifp must point it. 532 */ 533 if (ro->ro_rt == 0) 534 rtalloc((struct route *)ro); 535 if (ro->ro_rt == 0) { 536 ip6stat.ip6s_noroute++; 537 error = EHOSTUNREACH; 538 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 539 goto bad; 540 } 541 ia = ifatoia6(ro->ro_rt->rt_ifa); 542 ifp = ro->ro_rt->rt_ifp; 543 ro->ro_rt->rt_use++; 544 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 545 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 546 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 547 548 in6_ifstat_inc(ifp, ifs6_out_request); 549 550 /* 551 * Check if there is the outgoing interface conflicts with 552 * the interface specified by ifi6_ifindex(if specified). 553 * Note that loopback interface is always okay. 554 * (this happens when we are sending packet toward my 555 * interface) 556 */ 557 if (opt && opt->ip6po_pktinfo 558 && opt->ip6po_pktinfo->ipi6_ifindex) { 559 if (!(ifp->if_flags & IFF_LOOPBACK) 560 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 561 ip6stat.ip6s_noroute++; 562 in6_ifstat_inc(ifp, ifs6_out_discard); 563 error = EHOSTUNREACH; 564 goto bad; 565 } 566 } 567 568 if (opt && opt->ip6po_hlim != -1) 569 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 570 } else { 571 /* Multicast */ 572 struct in6_multi *in6m; 573 574 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 575 576 /* 577 * See if the caller provided any multicast options 578 */ 579 ifp = NULL; 580 if (im6o != NULL) { 581 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 582 if (im6o->im6o_multicast_ifp != NULL) 583 ifp = im6o->im6o_multicast_ifp; 584 } else 585 ip6->ip6_hlim = ip6_defmcasthlim; 586 587 /* 588 * See if the caller provided the outgoing interface 589 * as an ancillary data. 590 * Boundary check for ifindex is assumed to be already done. 591 */ 592 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 593 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex]; 594 595 /* 596 * If the destination is a node-local scope multicast, 597 * the packet should be loop-backed only. 598 */ 599 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) { 600 /* 601 * If the outgoing interface is already specified, 602 * it should be a loopback interface. 603 */ 604 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) { 605 ip6stat.ip6s_badscope++; 606 error = ENETUNREACH; /* XXX: better error? */ 607 /* XXX correct ifp? */ 608 in6_ifstat_inc(ifp, ifs6_out_discard); 609 goto bad; 610 } else { 611 ifp = &loif[0]; 612 } 613 } 614 615 if (opt && opt->ip6po_hlim != -1) 616 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 617 618 /* 619 * If caller did not provide an interface lookup a 620 * default in the routing table. This is either a 621 * default for the speicfied group (i.e. a host 622 * route), or a multicast default (a route for the 623 * ``net'' ff00::/8). 624 */ 625 if (ifp == NULL) { 626 if (ro->ro_rt == 0) { 627 ro->ro_rt = rtalloc1((struct sockaddr *) 628 &ro->ro_dst, 0, 0UL); 629 } 630 if (ro->ro_rt == 0) { 631 ip6stat.ip6s_noroute++; 632 error = EHOSTUNREACH; 633 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 634 goto bad; 635 } 636 ia = ifatoia6(ro->ro_rt->rt_ifa); 637 ifp = ro->ro_rt->rt_ifp; 638 ro->ro_rt->rt_use++; 639 } 640 641 if ((flags & IPV6_FORWARDING) == 0) 642 in6_ifstat_inc(ifp, ifs6_out_request); 643 in6_ifstat_inc(ifp, ifs6_out_mcast); 644 645 /* 646 * Confirm that the outgoing interface supports multicast. 647 */ 648 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 649 ip6stat.ip6s_noroute++; 650 in6_ifstat_inc(ifp, ifs6_out_discard); 651 error = ENETUNREACH; 652 goto bad; 653 } 654 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 655 if (in6m != NULL && 656 (im6o == NULL || im6o->im6o_multicast_loop)) { 657 /* 658 * If we belong to the destination multicast group 659 * on the outgoing interface, and the caller did not 660 * forbid loopback, loop back a copy. 661 */ 662 ip6_mloopback(ifp, m, dst); 663 } 664 /* 665 * Multicasts with a hoplimit of zero may be looped back, 666 * above, but must not be transmitted on a network. 667 * Also, multicasts addressed to the loopback interface 668 * are not sent -- the above call to ip6_mloopback() will 669 * loop back a copy if this host actually belongs to the 670 * destination group on the loopback interface. 671 */ 672 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) { 673 m_freem(m); 674 goto done; 675 } 676 } 677 678 /* 679 * Fill the outgoing inteface to tell the upper layer 680 * to increment per-interface statistics. 681 */ 682 if (ifpp) 683 *ifpp = ifp; 684 685 /* 686 * Determine path MTU. 687 */ 688 if (ro_pmtu != ro) { 689 /* The first hop and the final destination may differ. */ 690 struct sockaddr_in6 *sin6_fin = 691 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 692 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 693 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr, 694 &finaldst))) { 695 RTFREE(ro_pmtu->ro_rt); 696 ro_pmtu->ro_rt = (struct rtentry *)0; 697 } 698 if (ro_pmtu->ro_rt == 0) { 699 bzero(sin6_fin, sizeof(*sin6_fin)); 700 sin6_fin->sin6_family = AF_INET6; 701 sin6_fin->sin6_len = sizeof(struct sockaddr_in6); 702 sin6_fin->sin6_addr = finaldst; 703 704 rtalloc((struct route *)ro_pmtu); 705 } 706 } 707 if (ro_pmtu->ro_rt != NULL) { 708 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu; 709 710 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 711 if (mtu > ifmtu) { 712 /* 713 * The MTU on the route is larger than the MTU on 714 * the interface! This shouldn't happen, unless the 715 * MTU of the interface has been changed after the 716 * interface was brought up. Change the MTU in the 717 * route to match the interface MTU (as long as the 718 * field isn't locked). 719 */ 720 mtu = ifmtu; 721 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0) 722 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */ 723 } 724 } else { 725 mtu = nd_ifinfo[ifp->if_index].linkmtu; 726 } 727 728 /* 729 * Fake link-local scope-class addresses 730 */ 731 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 732 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 733 ip6->ip6_src.s6_addr16[1] = 0; 734 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 735 ip6->ip6_dst.s6_addr16[1] = 0; 736 } 737 738 #ifdef IPV6FIREWALL 739 /* 740 * Check with the firewall... 741 */ 742 if (ip6_fw_chk_ptr) { 743 u_short port = 0; 744 /* If ipfw says divert, we have to just drop packet */ 745 if ((*ip6_fw_chk_ptr)(&ip6, ifp, &port, &m)) { 746 m_freem(m); 747 goto done; 748 } 749 if (!m) { 750 error = EACCES; 751 goto done; 752 } 753 } 754 #endif 755 756 /* 757 * If the outgoing packet contains a hop-by-hop options header, 758 * it must be examined and processed even by the source node. 759 * (RFC 2460, section 4.) 760 */ 761 if (exthdrs.ip6e_hbh) { 762 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, 763 struct ip6_hbh *); 764 u_int32_t dummy1; /* XXX unused */ 765 u_int32_t dummy2; /* XXX unused */ 766 767 /* 768 * XXX: if we have to send an ICMPv6 error to the sender, 769 * we need the M_LOOP flag since icmp6_error() expects 770 * the IPv6 and the hop-by-hop options header are 771 * continuous unless the flag is set. 772 */ 773 m->m_flags |= M_LOOP; 774 m->m_pkthdr.rcvif = ifp; 775 if (ip6_process_hopopts(m, 776 (u_int8_t *)(hbh + 1), 777 ((hbh->ip6h_len + 1) << 3) - 778 sizeof(struct ip6_hbh), 779 &dummy1, &dummy2) < 0) { 780 /* m was already freed at this point */ 781 error = EINVAL;/* better error? */ 782 goto done; 783 } 784 m->m_flags &= ~M_LOOP; /* XXX */ 785 m->m_pkthdr.rcvif = NULL; 786 } 787 788 /* 789 * Send the packet to the outgoing interface. 790 * If necessary, do IPv6 fragmentation before sending. 791 */ 792 tlen = m->m_pkthdr.len; 793 if (tlen <= mtu 794 #ifdef notyet 795 /* 796 * On any link that cannot convey a 1280-octet packet in one piece, 797 * link-specific fragmentation and reassembly must be provided at 798 * a layer below IPv6. [RFC 2460, sec.5] 799 * Thus if the interface has ability of link-level fragmentation, 800 * we can just send the packet even if the packet size is 801 * larger than the link's MTU. 802 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet... 803 */ 804 805 || ifp->if_flags & IFF_FRAGMENTABLE 806 #endif 807 ) 808 { 809 #if defined(__NetBSD__) && defined(IFA_STATS) 810 if (IFA_STATS) { 811 struct in6_ifaddr *ia6; 812 ip6 = mtod(m, struct ip6_hdr *); 813 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 814 if (ia6) { 815 ia->ia_ifa.ifa_data.ifad_outbytes += 816 m->m_pkthdr.len; 817 } 818 } 819 #endif 820 error = nd6_output(ifp, m, dst, ro->ro_rt); 821 goto done; 822 } else if (mtu < IPV6_MMTU) { 823 /* 824 * note that path MTU is never less than IPV6_MMTU 825 * (see icmp6_input). 826 */ 827 error = EMSGSIZE; 828 in6_ifstat_inc(ifp, ifs6_out_fragfail); 829 goto bad; 830 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ 831 error = EMSGSIZE; 832 in6_ifstat_inc(ifp, ifs6_out_fragfail); 833 goto bad; 834 } else { 835 struct mbuf **mnext, *m_frgpart; 836 struct ip6_frag *ip6f; 837 u_int32_t id = htonl(ip6_id++); 838 u_char nextproto; 839 840 /* 841 * Too large for the destination or interface; 842 * fragment if possible. 843 * Must be able to put at least 8 bytes per fragment. 844 */ 845 hlen = unfragpartlen; 846 if (mtu > IPV6_MAXPACKET) 847 mtu = IPV6_MAXPACKET; 848 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 849 if (len < 8) { 850 error = EMSGSIZE; 851 in6_ifstat_inc(ifp, ifs6_out_fragfail); 852 goto bad; 853 } 854 855 mnext = &m->m_nextpkt; 856 857 /* 858 * Change the next header field of the last header in the 859 * unfragmentable part. 860 */ 861 if (exthdrs.ip6e_rthdr) { 862 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 863 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 864 } else if (exthdrs.ip6e_dest1) { 865 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 866 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 867 } else if (exthdrs.ip6e_hbh) { 868 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 869 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 870 } else { 871 nextproto = ip6->ip6_nxt; 872 ip6->ip6_nxt = IPPROTO_FRAGMENT; 873 } 874 875 /* 876 * Loop through length of segment after first fragment, 877 * make new header and copy data of each part and link onto chain. 878 */ 879 m0 = m; 880 for (off = hlen; off < tlen; off += len) { 881 MGETHDR(m, M_DONTWAIT, MT_HEADER); 882 if (!m) { 883 error = ENOBUFS; 884 ip6stat.ip6s_odropped++; 885 goto sendorfree; 886 } 887 m->m_flags = m0->m_flags & M_COPYFLAGS; 888 *mnext = m; 889 mnext = &m->m_nextpkt; 890 m->m_data += max_linkhdr; 891 mhip6 = mtod(m, struct ip6_hdr *); 892 *mhip6 = *ip6; 893 m->m_len = sizeof(*mhip6); 894 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 895 if (error) { 896 ip6stat.ip6s_odropped++; 897 goto sendorfree; 898 } 899 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 900 if (off + len >= tlen) 901 len = tlen - off; 902 else 903 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 904 mhip6->ip6_plen = htons((u_short)(len + hlen + 905 sizeof(*ip6f) - 906 sizeof(struct ip6_hdr))); 907 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 908 error = ENOBUFS; 909 ip6stat.ip6s_odropped++; 910 goto sendorfree; 911 } 912 m_cat(m, m_frgpart); 913 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 914 m->m_pkthdr.rcvif = (struct ifnet *)0; 915 ip6f->ip6f_reserved = 0; 916 ip6f->ip6f_ident = id; 917 ip6f->ip6f_nxt = nextproto; 918 ip6stat.ip6s_ofragments++; 919 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 920 } 921 922 in6_ifstat_inc(ifp, ifs6_out_fragok); 923 } 924 925 /* 926 * Remove leading garbages. 927 */ 928 sendorfree: 929 m = m0->m_nextpkt; 930 m0->m_nextpkt = 0; 931 m_freem(m0); 932 for (m0 = m; m; m = m0) { 933 m0 = m->m_nextpkt; 934 m->m_nextpkt = 0; 935 if (error == 0) { 936 #if defined(__NetBSD__) && defined(IFA_STATS) 937 if (IFA_STATS) { 938 struct in6_ifaddr *ia6; 939 ip6 = mtod(m, struct ip6_hdr *); 940 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 941 if (ia6) { 942 ia->ia_ifa.ifa_data.ifad_outbytes += 943 m->m_pkthdr.len; 944 } 945 } 946 #endif 947 error = nd6_output(ifp, m, dst, ro->ro_rt); 948 } else 949 m_freem(m); 950 } 951 952 if (error == 0) 953 ip6stat.ip6s_fragmented++; 954 955 done: 956 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 957 RTFREE(ro->ro_rt); 958 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 959 RTFREE(ro_pmtu->ro_rt); 960 } 961 962 #ifdef IPSEC 963 if (sp != NULL) 964 key_freesp(sp); 965 #endif /* IPSEC */ 966 967 return(error); 968 969 freehdrs: 970 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 971 m_freem(exthdrs.ip6e_dest1); 972 m_freem(exthdrs.ip6e_rthdr); 973 m_freem(exthdrs.ip6e_dest2); 974 /* fall through */ 975 bad: 976 m_freem(m); 977 goto done; 978 } 979 980 static int 981 ip6_copyexthdr(mp, hdr, hlen) 982 struct mbuf **mp; 983 caddr_t hdr; 984 int hlen; 985 { 986 struct mbuf *m; 987 988 if (hlen > MCLBYTES) 989 return(ENOBUFS); /* XXX */ 990 991 MGET(m, M_DONTWAIT, MT_DATA); 992 if (!m) 993 return(ENOBUFS); 994 995 if (hlen > MLEN) { 996 MCLGET(m, M_DONTWAIT); 997 if ((m->m_flags & M_EXT) == 0) { 998 m_free(m); 999 return(ENOBUFS); 1000 } 1001 } 1002 m->m_len = hlen; 1003 if (hdr) 1004 bcopy(hdr, mtod(m, caddr_t), hlen); 1005 1006 *mp = m; 1007 return(0); 1008 } 1009 1010 /* 1011 * Insert jumbo payload option. 1012 */ 1013 static int 1014 ip6_insert_jumboopt(exthdrs, plen) 1015 struct ip6_exthdrs *exthdrs; 1016 u_int32_t plen; 1017 { 1018 struct mbuf *mopt; 1019 u_char *optbuf; 1020 1021 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1022 1023 /* 1024 * If there is no hop-by-hop options header, allocate new one. 1025 * If there is one but it doesn't have enough space to store the 1026 * jumbo payload option, allocate a cluster to store the whole options. 1027 * Otherwise, use it to store the options. 1028 */ 1029 if (exthdrs->ip6e_hbh == 0) { 1030 MGET(mopt, M_DONTWAIT, MT_DATA); 1031 if (mopt == 0) 1032 return(ENOBUFS); 1033 mopt->m_len = JUMBOOPTLEN; 1034 optbuf = mtod(mopt, u_char *); 1035 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1036 exthdrs->ip6e_hbh = mopt; 1037 } else { 1038 struct ip6_hbh *hbh; 1039 1040 mopt = exthdrs->ip6e_hbh; 1041 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1042 caddr_t oldoptp = mtod(mopt, caddr_t); 1043 int oldoptlen = mopt->m_len; 1044 1045 if (mopt->m_flags & M_EXT) 1046 return(ENOBUFS); /* XXX */ 1047 MCLGET(mopt, M_DONTWAIT); 1048 if ((mopt->m_flags & M_EXT) == 0) 1049 return(ENOBUFS); 1050 1051 bcopy(oldoptp, mtod(mopt, caddr_t), oldoptlen); 1052 optbuf = mtod(mopt, caddr_t) + oldoptlen; 1053 mopt->m_len = oldoptlen + JUMBOOPTLEN; 1054 } else { 1055 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1056 mopt->m_len += JUMBOOPTLEN; 1057 } 1058 optbuf[0] = IP6OPT_PADN; 1059 optbuf[1] = 1; 1060 1061 /* 1062 * Adjust the header length according to the pad and 1063 * the jumbo payload option. 1064 */ 1065 hbh = mtod(mopt, struct ip6_hbh *); 1066 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1067 } 1068 1069 /* fill in the option. */ 1070 optbuf[2] = IP6OPT_JUMBO; 1071 optbuf[3] = 4; 1072 *(u_int32_t *)&optbuf[4] = htonl(plen + JUMBOOPTLEN); 1073 1074 /* finally, adjust the packet header length */ 1075 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1076 1077 return(0); 1078 #undef JUMBOOPTLEN 1079 } 1080 1081 /* 1082 * Insert fragment header and copy unfragmentable header portions. 1083 */ 1084 static int 1085 ip6_insertfraghdr(m0, m, hlen, frghdrp) 1086 struct mbuf *m0, *m; 1087 int hlen; 1088 struct ip6_frag **frghdrp; 1089 { 1090 struct mbuf *n, *mlast; 1091 1092 if (hlen > sizeof(struct ip6_hdr)) { 1093 n = m_copym(m0, sizeof(struct ip6_hdr), 1094 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1095 if (n == 0) 1096 return(ENOBUFS); 1097 m->m_next = n; 1098 } else 1099 n = m; 1100 1101 /* Search for the last mbuf of unfragmentable part. */ 1102 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1103 ; 1104 1105 if ((mlast->m_flags & M_EXT) == 0 && 1106 M_TRAILINGSPACE(mlast) < sizeof(struct ip6_frag)) { 1107 /* use the trailing space of the last mbuf for the fragment hdr */ 1108 *frghdrp = 1109 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); 1110 mlast->m_len += sizeof(struct ip6_frag); 1111 m->m_pkthdr.len += sizeof(struct ip6_frag); 1112 } else { 1113 /* allocate a new mbuf for the fragment header */ 1114 struct mbuf *mfrg; 1115 1116 MGET(mfrg, M_DONTWAIT, MT_DATA); 1117 if (mfrg == 0) 1118 return(ENOBUFS); 1119 mfrg->m_len = sizeof(struct ip6_frag); 1120 *frghdrp = mtod(mfrg, struct ip6_frag *); 1121 mlast->m_next = mfrg; 1122 } 1123 1124 return(0); 1125 } 1126 1127 /* 1128 * IP6 socket option processing. 1129 */ 1130 int 1131 ip6_ctloutput(so, sopt) 1132 struct socket *so; 1133 struct sockopt *sopt; 1134 { 1135 int privileged; 1136 register struct inpcb *in6p = sotoinpcb(so); 1137 int error, optval; 1138 int level, op, optname; 1139 int optlen; 1140 struct proc *p; 1141 1142 if (sopt) { 1143 level = sopt->sopt_level; 1144 op = sopt->sopt_dir; 1145 optname = sopt->sopt_name; 1146 optlen = sopt->sopt_valsize; 1147 p = sopt->sopt_p; 1148 } else { 1149 panic("ip6_ctloutput: arg soopt is NULL"); 1150 } 1151 error = optval = 0; 1152 1153 privileged = (p == 0 || suser(p)) ? 0 : 1; 1154 1155 if (level == IPPROTO_IPV6) { 1156 switch (op) { 1157 case SOPT_SET: 1158 switch (optname) { 1159 case IPV6_PKTOPTIONS: 1160 { 1161 struct mbuf *m; 1162 1163 error = soopt_getm(sopt, &m); /* XXX */ 1164 if (error != NULL) 1165 break; 1166 error = soopt_mcopyin(sopt, m); /* XXX */ 1167 if (error != NULL) 1168 break; 1169 return (ip6_pcbopts(&in6p->in6p_outputopts, 1170 m, so, sopt)); 1171 } 1172 case IPV6_HOPOPTS: 1173 case IPV6_DSTOPTS: 1174 if (!privileged) { 1175 error = EPERM; 1176 break; 1177 } 1178 /* fall through */ 1179 case IPV6_UNICAST_HOPS: 1180 case IPV6_RECVOPTS: 1181 case IPV6_RECVRETOPTS: 1182 case IPV6_RECVDSTADDR: 1183 case IPV6_PKTINFO: 1184 case IPV6_HOPLIMIT: 1185 case IPV6_RTHDR: 1186 case IPV6_CHECKSUM: 1187 case IPV6_FAITH: 1188 case IPV6_BINDV6ONLY: 1189 if (optlen != sizeof(int)) 1190 error = EINVAL; 1191 else { 1192 error = sooptcopyin(sopt, &optval, 1193 sizeof optval, sizeof optval); 1194 if (error) 1195 break; 1196 switch (optname) { 1197 1198 case IPV6_UNICAST_HOPS: 1199 if (optval < -1 || optval >= 256) 1200 error = EINVAL; 1201 else { 1202 /* -1 = kernel default */ 1203 in6p->in6p_hops = optval; 1204 if ((in6p->in6p_vflag & 1205 INP_IPV4) != 0) 1206 in6p->inp_ip_ttl = optval; 1207 } 1208 break; 1209 #define OPTSET(bit) \ 1210 if (optval) \ 1211 in6p->in6p_flags |= bit; \ 1212 else \ 1213 in6p->in6p_flags &= ~bit; 1214 1215 case IPV6_RECVOPTS: 1216 OPTSET(IN6P_RECVOPTS); 1217 break; 1218 1219 case IPV6_RECVRETOPTS: 1220 OPTSET(IN6P_RECVRETOPTS); 1221 break; 1222 1223 case IPV6_RECVDSTADDR: 1224 OPTSET(IN6P_RECVDSTADDR); 1225 break; 1226 1227 case IPV6_PKTINFO: 1228 OPTSET(IN6P_PKTINFO); 1229 break; 1230 1231 case IPV6_HOPLIMIT: 1232 OPTSET(IN6P_HOPLIMIT); 1233 break; 1234 1235 case IPV6_HOPOPTS: 1236 OPTSET(IN6P_HOPOPTS); 1237 break; 1238 1239 case IPV6_DSTOPTS: 1240 OPTSET(IN6P_DSTOPTS); 1241 break; 1242 1243 case IPV6_RTHDR: 1244 OPTSET(IN6P_RTHDR); 1245 break; 1246 1247 case IPV6_CHECKSUM: 1248 in6p->in6p_cksum = optval; 1249 break; 1250 1251 case IPV6_FAITH: 1252 OPTSET(IN6P_FAITH); 1253 break; 1254 1255 case IPV6_BINDV6ONLY: 1256 OPTSET(IN6P_BINDV6ONLY); 1257 break; 1258 } 1259 } 1260 break; 1261 #undef OPTSET 1262 1263 case IPV6_MULTICAST_IF: 1264 case IPV6_MULTICAST_HOPS: 1265 case IPV6_MULTICAST_LOOP: 1266 case IPV6_JOIN_GROUP: 1267 case IPV6_LEAVE_GROUP: 1268 { 1269 struct mbuf *m; 1270 if (sopt->sopt_valsize > MLEN) { 1271 error = EMSGSIZE; 1272 break; 1273 } 1274 /* XXX */ 1275 MGET(m, sopt->sopt_p ? M_WAIT : M_DONTWAIT, MT_HEADER); 1276 if (m == 0) { 1277 error = ENOBUFS; 1278 break; 1279 } 1280 m->m_len = sopt->sopt_valsize; 1281 error = sooptcopyin(sopt, mtod(m, char *), 1282 m->m_len, m->m_len); 1283 error = ip6_setmoptions(sopt->sopt_name, 1284 &in6p->in6p_moptions, 1285 m); 1286 (void)m_free(m); 1287 } 1288 break; 1289 1290 case IPV6_PORTRANGE: 1291 error = sooptcopyin(sopt, &optval, sizeof optval, 1292 sizeof optval); 1293 if (error) 1294 break; 1295 1296 switch (optval) { 1297 case IPV6_PORTRANGE_DEFAULT: 1298 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1299 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1300 break; 1301 1302 case IPV6_PORTRANGE_HIGH: 1303 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1304 in6p->in6p_flags |= IN6P_HIGHPORT; 1305 break; 1306 1307 case IPV6_PORTRANGE_LOW: 1308 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1309 in6p->in6p_flags |= IN6P_LOWPORT; 1310 break; 1311 1312 default: 1313 error = EINVAL; 1314 break; 1315 } 1316 break; 1317 1318 #ifdef IPSEC 1319 case IPV6_IPSEC_POLICY: 1320 { 1321 caddr_t req = NULL; 1322 struct mbuf *m; 1323 1324 if (error = soopt_getm(sopt, &m)) /* XXX */ 1325 break; 1326 if (error = soopt_mcopyin(sopt, m)) /* XXX */ 1327 break; 1328 if (m != 0) 1329 req = mtod(m, caddr_t); 1330 error = ipsec6_set_policy(in6p, optname, req, 1331 privileged); 1332 m_freem(m); 1333 } 1334 break; 1335 #endif /* IPSEC */ 1336 1337 #ifdef IPV6FIREWALL 1338 case IPV6_FW_ADD: 1339 case IPV6_FW_DEL: 1340 case IPV6_FW_FLUSH: 1341 case IPV6_FW_ZERO: 1342 { 1343 struct mbuf *m; 1344 struct mbuf **mp = &m; 1345 1346 if (ip6_fw_ctl_ptr == NULL) 1347 return EINVAL; 1348 if (error = soopt_getm(sopt, &m)) /* XXX */ 1349 break; 1350 if (error = soopt_mcopyin(sopt, m)) /* XXX */ 1351 break; 1352 error = (*ip6_fw_ctl_ptr)(optname, mp); 1353 m = *mp; 1354 } 1355 break; 1356 #endif 1357 1358 default: 1359 error = ENOPROTOOPT; 1360 break; 1361 } 1362 break; 1363 1364 case SOPT_GET: 1365 switch (optname) { 1366 1367 case IPV6_OPTIONS: 1368 case IPV6_RETOPTS: 1369 error = ENOPROTOOPT; 1370 break; 1371 1372 case IPV6_PKTOPTIONS: 1373 if (in6p->in6p_options) { 1374 error = soopt_mcopyout(sopt, 1375 in6p->in6p_options); 1376 } else 1377 sopt->sopt_valsize = 0; 1378 break; 1379 1380 case IPV6_HOPOPTS: 1381 case IPV6_DSTOPTS: 1382 if (!privileged) { 1383 error = EPERM; 1384 break; 1385 } 1386 /* fall through */ 1387 case IPV6_UNICAST_HOPS: 1388 case IPV6_RECVOPTS: 1389 case IPV6_RECVRETOPTS: 1390 case IPV6_RECVDSTADDR: 1391 case IPV6_PKTINFO: 1392 case IPV6_HOPLIMIT: 1393 case IPV6_RTHDR: 1394 case IPV6_CHECKSUM: 1395 case IPV6_FAITH: 1396 case IPV6_BINDV6ONLY: 1397 switch (optname) { 1398 1399 case IPV6_UNICAST_HOPS: 1400 optval = in6p->in6p_hops; 1401 break; 1402 1403 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0) 1404 1405 case IPV6_RECVOPTS: 1406 optval = OPTBIT(IN6P_RECVOPTS); 1407 break; 1408 1409 case IPV6_RECVRETOPTS: 1410 optval = OPTBIT(IN6P_RECVRETOPTS); 1411 break; 1412 1413 case IPV6_RECVDSTADDR: 1414 optval = OPTBIT(IN6P_RECVDSTADDR); 1415 break; 1416 1417 case IPV6_PKTINFO: 1418 optval = OPTBIT(IN6P_PKTINFO); 1419 break; 1420 1421 case IPV6_HOPLIMIT: 1422 optval = OPTBIT(IN6P_HOPLIMIT); 1423 break; 1424 1425 case IPV6_HOPOPTS: 1426 optval = OPTBIT(IN6P_HOPOPTS); 1427 break; 1428 1429 case IPV6_DSTOPTS: 1430 optval = OPTBIT(IN6P_DSTOPTS); 1431 break; 1432 1433 case IPV6_RTHDR: 1434 optval = OPTBIT(IN6P_RTHDR); 1435 break; 1436 1437 case IPV6_CHECKSUM: 1438 optval = in6p->in6p_cksum; 1439 break; 1440 1441 case IPV6_FAITH: 1442 optval = OPTBIT(IN6P_FAITH); 1443 break; 1444 1445 case IPV6_BINDV6ONLY: 1446 optval = OPTBIT(IN6P_BINDV6ONLY); 1447 break; 1448 1449 case IPV6_PORTRANGE: 1450 { 1451 int flags; 1452 1453 flags = in6p->in6p_flags; 1454 if (flags & IN6P_HIGHPORT) 1455 optval = IPV6_PORTRANGE_HIGH; 1456 else if (flags & IN6P_LOWPORT) 1457 optval = IPV6_PORTRANGE_LOW; 1458 else 1459 optval = 0; 1460 break; 1461 } 1462 } 1463 error = sooptcopyout(sopt, &optval, 1464 sizeof optval); 1465 break; 1466 1467 case IPV6_MULTICAST_IF: 1468 case IPV6_MULTICAST_HOPS: 1469 case IPV6_MULTICAST_LOOP: 1470 case IPV6_JOIN_GROUP: 1471 case IPV6_LEAVE_GROUP: 1472 { 1473 struct mbuf *m; 1474 error = ip6_getmoptions(sopt->sopt_name, 1475 in6p->in6p_moptions, &m); 1476 if (error == 0) 1477 error = sooptcopyout(sopt, 1478 mtod(m, char *), m->m_len); 1479 m_freem(m); 1480 } 1481 break; 1482 1483 #ifdef IPSEC 1484 case IPV6_IPSEC_POLICY: 1485 { 1486 caddr_t req = NULL; 1487 int len = 0; 1488 struct mbuf *m; 1489 struct mbuf **mp = &m; 1490 1491 if (m != 0) { 1492 req = mtod(m, caddr_t); 1493 len = m->m_len; 1494 } 1495 error = ipsec6_get_policy(in6p, req, mp); 1496 if (error == 0) 1497 error = soopt_mcopyout(sopt, m); /*XXX*/ 1498 m_freem(m); 1499 break; 1500 } 1501 #endif /* IPSEC */ 1502 1503 #ifdef IPV6FIREWALL 1504 case IPV6_FW_GET: 1505 { 1506 struct mbuf *m; 1507 struct mbuf **mp = &m; 1508 1509 if (ip6_fw_ctl_ptr == NULL) 1510 { 1511 return EINVAL; 1512 } 1513 error = (*ip6_fw_ctl_ptr)(optname, mp); 1514 if (error == 0) 1515 error = soopt_mcopyout(sopt, m); /* XXX */ 1516 if (m) 1517 m_freem(m); 1518 } 1519 break; 1520 #endif 1521 1522 default: 1523 error = ENOPROTOOPT; 1524 break; 1525 } 1526 break; 1527 } 1528 } else { 1529 error = EINVAL; 1530 } 1531 return(error); 1532 } 1533 1534 /* 1535 * Set up IP6 options in pcb for insertion in output packets. 1536 * Store in mbuf with pointer in pcbopt, adding pseudo-option 1537 * with destination address if source routed. 1538 */ 1539 static int 1540 ip6_pcbopts(pktopt, m, so, sopt) 1541 struct ip6_pktopts **pktopt; 1542 register struct mbuf *m; 1543 struct socket *so; 1544 struct sockopt *sopt; 1545 { 1546 register struct ip6_pktopts *opt = *pktopt; 1547 int error = 0; 1548 struct proc *p = sopt->sopt_p; 1549 int priv = 0; 1550 1551 /* turn off any old options. */ 1552 if (opt) { 1553 if (opt->ip6po_m) 1554 (void)m_free(opt->ip6po_m); 1555 } else 1556 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 1557 *pktopt = 0; 1558 1559 if (!m || m->m_len == 0) { 1560 /* 1561 * Only turning off any previous options. 1562 */ 1563 if (opt) 1564 free(opt, M_IP6OPT); 1565 if (m) 1566 (void)m_free(m); 1567 return(0); 1568 } 1569 1570 /* set options specified by user. */ 1571 if (p && !suser(p)) 1572 priv = 1; 1573 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) { 1574 (void)m_free(m); 1575 return(error); 1576 } 1577 *pktopt = opt; 1578 return(0); 1579 } 1580 1581 /* 1582 * Set the IP6 multicast options in response to user setsockopt(). 1583 */ 1584 static int 1585 ip6_setmoptions(optname, im6op, m) 1586 int optname; 1587 struct ip6_moptions **im6op; 1588 struct mbuf *m; 1589 { 1590 int error = 0; 1591 u_int loop, ifindex; 1592 struct ipv6_mreq *mreq; 1593 struct ifnet *ifp; 1594 struct ip6_moptions *im6o = *im6op; 1595 struct route_in6 ro; 1596 struct sockaddr_in6 *dst; 1597 struct in6_multi_mship *imm; 1598 struct proc *p = curproc; /* XXX */ 1599 1600 if (im6o == NULL) { 1601 /* 1602 * No multicast option buffer attached to the pcb; 1603 * allocate one and initialize to default values. 1604 */ 1605 im6o = (struct ip6_moptions *) 1606 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1607 1608 if (im6o == NULL) 1609 return(ENOBUFS); 1610 *im6op = im6o; 1611 im6o->im6o_multicast_ifp = NULL; 1612 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1613 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1614 LIST_INIT(&im6o->im6o_memberships); 1615 } 1616 1617 switch (optname) { 1618 1619 case IPV6_MULTICAST_IF: 1620 /* 1621 * Select the interface for outgoing multicast packets. 1622 */ 1623 if (m == NULL || m->m_len != sizeof(u_int)) { 1624 error = EINVAL; 1625 break; 1626 } 1627 ifindex = *(mtod(m, u_int *)); 1628 if (ifindex < 0 || if_index < ifindex) { 1629 error = ENXIO; /* XXX EINVAL? */ 1630 break; 1631 } 1632 ifp = ifindex2ifnet[ifindex]; 1633 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1634 error = EADDRNOTAVAIL; 1635 break; 1636 } 1637 im6o->im6o_multicast_ifp = ifp; 1638 break; 1639 1640 case IPV6_MULTICAST_HOPS: 1641 { 1642 /* 1643 * Set the IP6 hoplimit for outgoing multicast packets. 1644 */ 1645 int optval; 1646 if (m == NULL || m->m_len != sizeof(int)) { 1647 error = EINVAL; 1648 break; 1649 } 1650 optval = *(mtod(m, u_int *)); 1651 if (optval < -1 || optval >= 256) 1652 error = EINVAL; 1653 else if (optval == -1) 1654 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1655 else 1656 im6o->im6o_multicast_hlim = optval; 1657 break; 1658 } 1659 1660 case IPV6_MULTICAST_LOOP: 1661 /* 1662 * Set the loopback flag for outgoing multicast packets. 1663 * Must be zero or one. 1664 */ 1665 if (m == NULL || m->m_len != sizeof(u_int) || 1666 (loop = *(mtod(m, u_int *))) > 1) { 1667 error = EINVAL; 1668 break; 1669 } 1670 im6o->im6o_multicast_loop = loop; 1671 break; 1672 1673 case IPV6_JOIN_GROUP: 1674 /* 1675 * Add a multicast group membership. 1676 * Group must be a valid IP6 multicast address. 1677 */ 1678 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1679 error = EINVAL; 1680 break; 1681 } 1682 mreq = mtod(m, struct ipv6_mreq *); 1683 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1684 /* 1685 * We use the unspecified address to specify to accept 1686 * all multicast addresses. Only super user is allowed 1687 * to do this. 1688 */ 1689 if (suser(p)) { 1690 error = EACCES; 1691 break; 1692 } 1693 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1694 error = EINVAL; 1695 break; 1696 } 1697 1698 /* 1699 * If the interface is specified, validate it. 1700 */ 1701 if (mreq->ipv6mr_interface < 0 1702 || if_index < mreq->ipv6mr_interface) { 1703 error = ENXIO; /* XXX EINVAL? */ 1704 break; 1705 } 1706 /* 1707 * If no interface was explicitly specified, choose an 1708 * appropriate one according to the given multicast address. 1709 */ 1710 if (mreq->ipv6mr_interface == 0) { 1711 /* 1712 * If the multicast address is in node-local scope, 1713 * the interface should be a loopback interface. 1714 * Otherwise, look up the routing table for the 1715 * address, and choose the outgoing interface. 1716 * XXX: is it a good approach? 1717 */ 1718 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) { 1719 ifp = &loif[0]; 1720 } else { 1721 ro.ro_rt = NULL; 1722 dst = (struct sockaddr_in6 *)&ro.ro_dst; 1723 bzero(dst, sizeof(*dst)); 1724 dst->sin6_len = sizeof(struct sockaddr_in6); 1725 dst->sin6_family = AF_INET6; 1726 dst->sin6_addr = mreq->ipv6mr_multiaddr; 1727 rtalloc((struct route *)&ro); 1728 if (ro.ro_rt == NULL) { 1729 error = EADDRNOTAVAIL; 1730 break; 1731 } 1732 ifp = ro.ro_rt->rt_ifp; 1733 rtfree(ro.ro_rt); 1734 } 1735 } else 1736 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1737 1738 /* 1739 * See if we found an interface, and confirm that it 1740 * supports multicast 1741 */ 1742 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1743 error = EADDRNOTAVAIL; 1744 break; 1745 } 1746 /* 1747 * Put interface index into the multicast address, 1748 * if the address has link-local scope. 1749 */ 1750 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1751 mreq->ipv6mr_multiaddr.s6_addr16[1] 1752 = htons(mreq->ipv6mr_interface); 1753 } 1754 /* 1755 * See if the membership already exists. 1756 */ 1757 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) 1758 if (imm->i6mm_maddr->in6m_ifp == ifp && 1759 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1760 &mreq->ipv6mr_multiaddr)) 1761 break; 1762 if (imm != NULL) { 1763 error = EADDRINUSE; 1764 break; 1765 } 1766 /* 1767 * Everything looks good; add a new record to the multicast 1768 * address list for the given interface. 1769 */ 1770 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK); 1771 if (imm == NULL) { 1772 error = ENOBUFS; 1773 break; 1774 } 1775 if ((imm->i6mm_maddr = 1776 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) { 1777 free(imm, M_IPMADDR); 1778 break; 1779 } 1780 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 1781 break; 1782 1783 case IPV6_LEAVE_GROUP: 1784 /* 1785 * Drop a multicast group membership. 1786 * Group must be a valid IP6 multicast address. 1787 */ 1788 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1789 error = EINVAL; 1790 break; 1791 } 1792 mreq = mtod(m, struct ipv6_mreq *); 1793 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1794 if (suser(p)) { 1795 error = EACCES; 1796 break; 1797 } 1798 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1799 error = EINVAL; 1800 break; 1801 } 1802 /* 1803 * If an interface address was specified, get a pointer 1804 * to its ifnet structure. 1805 */ 1806 if (mreq->ipv6mr_interface < 0 1807 || if_index < mreq->ipv6mr_interface) { 1808 error = ENXIO; /* XXX EINVAL? */ 1809 break; 1810 } 1811 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1812 /* 1813 * Put interface index into the multicast address, 1814 * if the address has link-local scope. 1815 */ 1816 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1817 mreq->ipv6mr_multiaddr.s6_addr16[1] 1818 = htons(mreq->ipv6mr_interface); 1819 } 1820 /* 1821 * Find the membership in the membership list. 1822 */ 1823 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) { 1824 if ((ifp == NULL || 1825 imm->i6mm_maddr->in6m_ifp == ifp) && 1826 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1827 &mreq->ipv6mr_multiaddr)) 1828 break; 1829 } 1830 if (imm == NULL) { 1831 /* Unable to resolve interface */ 1832 error = EADDRNOTAVAIL; 1833 break; 1834 } 1835 /* 1836 * Give up the multicast address record to which the 1837 * membership points. 1838 */ 1839 LIST_REMOVE(imm, i6mm_chain); 1840 in6_delmulti(imm->i6mm_maddr); 1841 free(imm, M_IPMADDR); 1842 break; 1843 1844 default: 1845 error = EOPNOTSUPP; 1846 break; 1847 } 1848 1849 /* 1850 * If all options have default values, no need to keep the mbuf. 1851 */ 1852 if (im6o->im6o_multicast_ifp == NULL && 1853 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 1854 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 1855 LIST_EMPTY(&im6o->im6o_memberships)) { 1856 free(*im6op, M_IPMOPTS); 1857 *im6op = NULL; 1858 } 1859 1860 return(error); 1861 } 1862 1863 /* 1864 * Return the IP6 multicast options in response to user getsockopt(). 1865 */ 1866 static int 1867 ip6_getmoptions(optname, im6o, mp) 1868 int optname; 1869 register struct ip6_moptions *im6o; 1870 register struct mbuf **mp; 1871 { 1872 u_int *hlim, *loop, *ifindex; 1873 1874 *mp = m_get(M_WAIT, MT_HEADER); /*XXX*/ 1875 1876 switch (optname) { 1877 1878 case IPV6_MULTICAST_IF: 1879 ifindex = mtod(*mp, u_int *); 1880 (*mp)->m_len = sizeof(u_int); 1881 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 1882 *ifindex = 0; 1883 else 1884 *ifindex = im6o->im6o_multicast_ifp->if_index; 1885 return(0); 1886 1887 case IPV6_MULTICAST_HOPS: 1888 hlim = mtod(*mp, u_int *); 1889 (*mp)->m_len = sizeof(u_int); 1890 if (im6o == NULL) 1891 *hlim = ip6_defmcasthlim; 1892 else 1893 *hlim = im6o->im6o_multicast_hlim; 1894 return(0); 1895 1896 case IPV6_MULTICAST_LOOP: 1897 loop = mtod(*mp, u_int *); 1898 (*mp)->m_len = sizeof(u_int); 1899 if (im6o == NULL) 1900 *loop = ip6_defmcasthlim; 1901 else 1902 *loop = im6o->im6o_multicast_loop; 1903 return(0); 1904 1905 default: 1906 return(EOPNOTSUPP); 1907 } 1908 } 1909 1910 /* 1911 * Discard the IP6 multicast options. 1912 */ 1913 void 1914 ip6_freemoptions(im6o) 1915 register struct ip6_moptions *im6o; 1916 { 1917 struct in6_multi_mship *imm; 1918 1919 if (im6o == NULL) 1920 return; 1921 1922 while ((imm = LIST_FIRST(&im6o->im6o_memberships)) != NULL) { 1923 LIST_REMOVE(imm, i6mm_chain); 1924 if (imm->i6mm_maddr) 1925 in6_delmulti(imm->i6mm_maddr); 1926 free(imm, M_IPMADDR); 1927 } 1928 free(im6o, M_IPMOPTS); 1929 } 1930 1931 /* 1932 * Set IPv6 outgoing packet options based on advanced API. 1933 */ 1934 int 1935 ip6_setpktoptions(control, opt, priv) 1936 struct mbuf *control; 1937 struct ip6_pktopts *opt; 1938 int priv; 1939 { 1940 register struct cmsghdr *cm = 0; 1941 1942 if (control == 0 || opt == 0) 1943 return(EINVAL); 1944 1945 bzero(opt, sizeof(*opt)); 1946 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */ 1947 1948 /* 1949 * XXX: Currently, we assume all the optional information is stored 1950 * in a single mbuf. 1951 */ 1952 if (control->m_next) 1953 return(EINVAL); 1954 1955 opt->ip6po_m = control; 1956 1957 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 1958 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1959 cm = mtod(control, struct cmsghdr *); 1960 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 1961 return(EINVAL); 1962 if (cm->cmsg_level != IPPROTO_IPV6) 1963 continue; 1964 1965 switch(cm->cmsg_type) { 1966 case IPV6_PKTINFO: 1967 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo))) 1968 return(EINVAL); 1969 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 1970 if (opt->ip6po_pktinfo->ipi6_ifindex && 1971 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr)) 1972 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] = 1973 htons(opt->ip6po_pktinfo->ipi6_ifindex); 1974 1975 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index 1976 || opt->ip6po_pktinfo->ipi6_ifindex < 0) { 1977 return(ENXIO); 1978 } 1979 1980 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) { 1981 struct ifaddr *ia; 1982 struct sockaddr_in6 sin6; 1983 1984 bzero(&sin6, sizeof(sin6)); 1985 sin6.sin6_len = sizeof(sin6); 1986 sin6.sin6_family = AF_INET6; 1987 sin6.sin6_addr = 1988 opt->ip6po_pktinfo->ipi6_addr; 1989 ia = ifa_ifwithaddr(sin6tosa(&sin6)); 1990 if (ia == NULL || 1991 (opt->ip6po_pktinfo->ipi6_ifindex && 1992 (ia->ifa_ifp->if_index != 1993 opt->ip6po_pktinfo->ipi6_ifindex))) { 1994 return(EADDRNOTAVAIL); 1995 } 1996 /* 1997 * Check if the requested source address is 1998 * indeed a unicast address assigned to the 1999 * node. 2000 */ 2001 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr)) 2002 return(EADDRNOTAVAIL); 2003 } 2004 break; 2005 2006 case IPV6_HOPLIMIT: 2007 if (cm->cmsg_len != CMSG_LEN(sizeof(int))) 2008 return(EINVAL); 2009 2010 opt->ip6po_hlim = *(int *)CMSG_DATA(cm); 2011 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255) 2012 return(EINVAL); 2013 break; 2014 2015 case IPV6_NEXTHOP: 2016 if (!priv) 2017 return(EPERM); 2018 if (cm->cmsg_len < sizeof(u_char) || 2019 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm))) 2020 return(EINVAL); 2021 2022 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm); 2023 2024 break; 2025 2026 case IPV6_HOPOPTS: 2027 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh))) 2028 return(EINVAL); 2029 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm); 2030 if (cm->cmsg_len != 2031 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3)) 2032 return(EINVAL); 2033 break; 2034 2035 case IPV6_DSTOPTS: 2036 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest))) 2037 return(EINVAL); 2038 2039 /* 2040 * If there is no routing header yet, the destination 2041 * options header should be put on the 1st part. 2042 * Otherwise, the header should be on the 2nd part. 2043 * (See RFC 2460, section 4.1) 2044 */ 2045 if (opt->ip6po_rthdr == NULL) { 2046 opt->ip6po_dest1 = 2047 (struct ip6_dest *)CMSG_DATA(cm); 2048 if (cm->cmsg_len != 2049 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1) 2050 << 3)) 2051 return(EINVAL); 2052 } else { 2053 opt->ip6po_dest2 = 2054 (struct ip6_dest *)CMSG_DATA(cm); 2055 if (cm->cmsg_len != 2056 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) 2057 << 3)) 2058 return(EINVAL); 2059 } 2060 break; 2061 2062 case IPV6_RTHDR: 2063 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr))) 2064 return(EINVAL); 2065 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm); 2066 if (cm->cmsg_len != 2067 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3)) 2068 return(EINVAL); 2069 switch(opt->ip6po_rthdr->ip6r_type) { 2070 case IPV6_RTHDR_TYPE_0: 2071 if (opt->ip6po_rthdr->ip6r_segleft == 0) 2072 return(EINVAL); 2073 break; 2074 default: 2075 return(EINVAL); 2076 } 2077 break; 2078 2079 default: 2080 return(ENOPROTOOPT); 2081 } 2082 } 2083 2084 return(0); 2085 } 2086 2087 /* 2088 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2089 * packet to the input queue of a specified interface. Note that this 2090 * calls the output routine of the loopback "driver", but with an interface 2091 * pointer that might NOT be &loif -- easier than replicating that code here. 2092 */ 2093 void 2094 ip6_mloopback(ifp, m, dst) 2095 struct ifnet *ifp; 2096 register struct mbuf *m; 2097 register struct sockaddr_in6 *dst; 2098 { 2099 struct mbuf *copym; 2100 2101 copym = m_copy(m, 0, M_COPYALL); 2102 if (copym != NULL) { 2103 (void)if_simloop(ifp, copym, (struct sockaddr *)dst, NULL); 2104 } 2105 } 2106 2107 /* 2108 * Chop IPv6 header off from the payload. 2109 */ 2110 static int 2111 ip6_splithdr(m, exthdrs) 2112 struct mbuf *m; 2113 struct ip6_exthdrs *exthdrs; 2114 { 2115 struct mbuf *mh; 2116 struct ip6_hdr *ip6; 2117 2118 ip6 = mtod(m, struct ip6_hdr *); 2119 if (m->m_len > sizeof(*ip6)) { 2120 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 2121 if (mh == 0) { 2122 m_freem(m); 2123 return ENOBUFS; 2124 } 2125 M_COPY_PKTHDR(mh, m); 2126 MH_ALIGN(mh, sizeof(*ip6)); 2127 m->m_flags &= ~M_PKTHDR; 2128 m->m_len -= sizeof(*ip6); 2129 m->m_data += sizeof(*ip6); 2130 mh->m_next = m; 2131 m = mh; 2132 m->m_len = sizeof(*ip6); 2133 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2134 } 2135 exthdrs->ip6e_ip6 = m; 2136 return 0; 2137 } 2138 2139 /* 2140 * Compute IPv6 extension header length. 2141 */ 2142 int 2143 ip6_optlen(in6p) 2144 struct in6pcb *in6p; 2145 { 2146 int len; 2147 2148 if (!in6p->in6p_outputopts) 2149 return 0; 2150 2151 len = 0; 2152 #define elen(x) \ 2153 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2154 2155 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2156 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2157 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2158 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2159 return len; 2160 #undef elen 2161 } 2162 2163