1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ipsec.h" 69 70 #include <sys/param.h> 71 #include <sys/kernel.h> 72 #include <sys/malloc.h> 73 #include <sys/mbuf.h> 74 #include <sys/errno.h> 75 #include <sys/priv.h> 76 #include <sys/proc.h> 77 #include <sys/protosw.h> 78 #include <sys/socket.h> 79 #include <sys/socketvar.h> 80 #include <sys/syslog.h> 81 #include <sys/ucred.h> 82 83 #include <net/if.h> 84 #include <net/netisr.h> 85 #include <net/route.h> 86 #include <net/pfil.h> 87 #include <net/vnet.h> 88 89 #include <netinet/in.h> 90 #include <netinet/in_var.h> 91 #include <netinet6/in6_var.h> 92 #include <netinet/ip6.h> 93 #include <netinet/icmp6.h> 94 #include <netinet6/ip6_var.h> 95 #include <netinet/in_pcb.h> 96 #include <netinet/tcp_var.h> 97 #include <netinet6/nd6.h> 98 99 #ifdef IPSEC 100 #include <netipsec/ipsec.h> 101 #include <netipsec/ipsec6.h> 102 #include <netipsec/key.h> 103 #include <netinet6/ip6_ipsec.h> 104 #endif /* IPSEC */ 105 106 #include <netinet6/ip6protosw.h> 107 #include <netinet6/scope6_var.h> 108 109 extern int in6_mcast_loop; 110 111 struct ip6_exthdrs { 112 struct mbuf *ip6e_ip6; 113 struct mbuf *ip6e_hbh; 114 struct mbuf *ip6e_dest1; 115 struct mbuf *ip6e_rthdr; 116 struct mbuf *ip6e_dest2; 117 }; 118 119 static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **, 120 struct ucred *, int)); 121 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 122 struct socket *, struct sockopt *)); 123 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 124 static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *, 125 struct ucred *, int, int, int)); 126 127 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 128 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 129 struct ip6_frag **)); 130 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 131 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 132 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *, 133 struct ifnet *, struct in6_addr *, u_long *, int *)); 134 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 135 136 137 /* 138 * Make an extension header from option data. hp is the source, and 139 * mp is the destination. 140 */ 141 #define MAKE_EXTHDR(hp, mp) \ 142 do { \ 143 if (hp) { \ 144 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 145 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 146 ((eh)->ip6e_len + 1) << 3); \ 147 if (error) \ 148 goto freehdrs; \ 149 } \ 150 } while (/*CONSTCOND*/ 0) 151 152 /* 153 * Form a chain of extension headers. 154 * m is the extension header mbuf 155 * mp is the previous mbuf in the chain 156 * p is the next header 157 * i is the type of option. 158 */ 159 #define MAKE_CHAIN(m, mp, p, i)\ 160 do {\ 161 if (m) {\ 162 if (!hdrsplit) \ 163 panic("assumption failed: hdr not split"); \ 164 *mtod((m), u_char *) = *(p);\ 165 *(p) = (i);\ 166 p = mtod((m), u_char *);\ 167 (m)->m_next = (mp)->m_next;\ 168 (mp)->m_next = (m);\ 169 (mp) = (m);\ 170 }\ 171 } while (/*CONSTCOND*/ 0) 172 173 /* 174 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 175 * header (with pri, len, nxt, hlim, src, dst). 176 * This function may modify ver and hlim only. 177 * The mbuf chain containing the packet will be freed. 178 * The mbuf opt, if present, will not be freed. 179 * 180 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 181 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 182 * which is rt_rmx.rmx_mtu. 183 * 184 * ifpp - XXX: just for statistics 185 */ 186 int 187 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 188 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 189 struct ifnet **ifpp, struct inpcb *inp) 190 { 191 struct ip6_hdr *ip6, *mhip6; 192 struct ifnet *ifp, *origifp; 193 struct mbuf *m = m0; 194 struct mbuf *mprev = NULL; 195 int hlen, tlen, len, off; 196 struct route_in6 ip6route; 197 struct rtentry *rt = NULL; 198 struct sockaddr_in6 *dst, src_sa, dst_sa; 199 struct in6_addr odst; 200 int error = 0; 201 struct in6_ifaddr *ia = NULL; 202 u_long mtu; 203 int alwaysfrag, dontfrag; 204 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 205 struct ip6_exthdrs exthdrs; 206 struct in6_addr finaldst, src0, dst0; 207 u_int32_t zone; 208 struct route_in6 *ro_pmtu = NULL; 209 int hdrsplit = 0; 210 int needipsec = 0; 211 #ifdef IPSEC 212 struct ipsec_output_state state; 213 struct ip6_rthdr *rh = NULL; 214 int needipsectun = 0; 215 int segleft_org = 0; 216 struct secpolicy *sp = NULL; 217 #endif /* IPSEC */ 218 219 ip6 = mtod(m, struct ip6_hdr *); 220 if (ip6 == NULL) { 221 printf ("ip6 is NULL"); 222 goto bad; 223 } 224 225 finaldst = ip6->ip6_dst; 226 227 bzero(&exthdrs, sizeof(exthdrs)); 228 229 if (opt) { 230 /* Hop-by-Hop options header */ 231 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 232 /* Destination options header(1st part) */ 233 if (opt->ip6po_rthdr) { 234 /* 235 * Destination options header(1st part) 236 * This only makes sense with a routing header. 237 * See Section 9.2 of RFC 3542. 238 * Disabling this part just for MIP6 convenience is 239 * a bad idea. We need to think carefully about a 240 * way to make the advanced API coexist with MIP6 241 * options, which might automatically be inserted in 242 * the kernel. 243 */ 244 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 245 } 246 /* Routing header */ 247 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 248 /* Destination options header(2nd part) */ 249 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 250 } 251 252 /* 253 * IPSec checking which handles several cases. 254 * FAST IPSEC: We re-injected the packet. 255 */ 256 #ifdef IPSEC 257 switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp)) 258 { 259 case 1: /* Bad packet */ 260 goto freehdrs; 261 case -1: /* Do IPSec */ 262 needipsec = 1; 263 case 0: /* No IPSec */ 264 default: 265 break; 266 } 267 #endif /* IPSEC */ 268 269 /* 270 * Calculate the total length of the extension header chain. 271 * Keep the length of the unfragmentable part for fragmentation. 272 */ 273 optlen = 0; 274 if (exthdrs.ip6e_hbh) 275 optlen += exthdrs.ip6e_hbh->m_len; 276 if (exthdrs.ip6e_dest1) 277 optlen += exthdrs.ip6e_dest1->m_len; 278 if (exthdrs.ip6e_rthdr) 279 optlen += exthdrs.ip6e_rthdr->m_len; 280 unfragpartlen = optlen + sizeof(struct ip6_hdr); 281 282 /* NOTE: we don't add AH/ESP length here. do that later. */ 283 if (exthdrs.ip6e_dest2) 284 optlen += exthdrs.ip6e_dest2->m_len; 285 286 /* 287 * If we need IPsec, or there is at least one extension header, 288 * separate IP6 header from the payload. 289 */ 290 if ((needipsec || optlen) && !hdrsplit) { 291 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 292 m = NULL; 293 goto freehdrs; 294 } 295 m = exthdrs.ip6e_ip6; 296 hdrsplit++; 297 } 298 299 /* adjust pointer */ 300 ip6 = mtod(m, struct ip6_hdr *); 301 302 /* adjust mbuf packet header length */ 303 m->m_pkthdr.len += optlen; 304 plen = m->m_pkthdr.len - sizeof(*ip6); 305 306 /* If this is a jumbo payload, insert a jumbo payload option. */ 307 if (plen > IPV6_MAXPACKET) { 308 if (!hdrsplit) { 309 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 310 m = NULL; 311 goto freehdrs; 312 } 313 m = exthdrs.ip6e_ip6; 314 hdrsplit++; 315 } 316 /* adjust pointer */ 317 ip6 = mtod(m, struct ip6_hdr *); 318 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 319 goto freehdrs; 320 ip6->ip6_plen = 0; 321 } else 322 ip6->ip6_plen = htons(plen); 323 324 /* 325 * Concatenate headers and fill in next header fields. 326 * Here we have, on "m" 327 * IPv6 payload 328 * and we insert headers accordingly. Finally, we should be getting: 329 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 330 * 331 * during the header composing process, "m" points to IPv6 header. 332 * "mprev" points to an extension header prior to esp. 333 */ 334 u_char *nexthdrp = &ip6->ip6_nxt; 335 mprev = m; 336 337 /* 338 * we treat dest2 specially. this makes IPsec processing 339 * much easier. the goal here is to make mprev point the 340 * mbuf prior to dest2. 341 * 342 * result: IPv6 dest2 payload 343 * m and mprev will point to IPv6 header. 344 */ 345 if (exthdrs.ip6e_dest2) { 346 if (!hdrsplit) 347 panic("assumption failed: hdr not split"); 348 exthdrs.ip6e_dest2->m_next = m->m_next; 349 m->m_next = exthdrs.ip6e_dest2; 350 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 351 ip6->ip6_nxt = IPPROTO_DSTOPTS; 352 } 353 354 /* 355 * result: IPv6 hbh dest1 rthdr dest2 payload 356 * m will point to IPv6 header. mprev will point to the 357 * extension header prior to dest2 (rthdr in the above case). 358 */ 359 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 360 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 361 IPPROTO_DSTOPTS); 362 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 363 IPPROTO_ROUTING); 364 365 #ifdef IPSEC 366 if (!needipsec) 367 goto skip_ipsec2; 368 369 /* 370 * pointers after IPsec headers are not valid any more. 371 * other pointers need a great care too. 372 * (IPsec routines should not mangle mbufs prior to AH/ESP) 373 */ 374 exthdrs.ip6e_dest2 = NULL; 375 376 if (exthdrs.ip6e_rthdr) { 377 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 378 segleft_org = rh->ip6r_segleft; 379 rh->ip6r_segleft = 0; 380 } 381 382 bzero(&state, sizeof(state)); 383 state.m = m; 384 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 385 &needipsectun); 386 m = state.m; 387 if (error == EJUSTRETURN) { 388 /* 389 * We had a SP with a level of 'use' and no SA. We 390 * will just continue to process the packet without 391 * IPsec processing. 392 */ 393 ; 394 } else if (error) { 395 /* mbuf is already reclaimed in ipsec6_output_trans. */ 396 m = NULL; 397 switch (error) { 398 case EHOSTUNREACH: 399 case ENETUNREACH: 400 case EMSGSIZE: 401 case ENOBUFS: 402 case ENOMEM: 403 break; 404 default: 405 printf("[%s:%d] (ipsec): error code %d\n", 406 __func__, __LINE__, error); 407 /* FALLTHROUGH */ 408 case ENOENT: 409 /* don't show these error codes to the user */ 410 error = 0; 411 break; 412 } 413 goto bad; 414 } else if (!needipsectun) { 415 /* 416 * In the FAST IPSec case we have already 417 * re-injected the packet and it has been freed 418 * by the ipsec_done() function. So, just clean 419 * up after ourselves. 420 */ 421 m = NULL; 422 goto done; 423 } 424 if (exthdrs.ip6e_rthdr) { 425 /* ah6_output doesn't modify mbuf chain */ 426 rh->ip6r_segleft = segleft_org; 427 } 428 skip_ipsec2:; 429 #endif /* IPSEC */ 430 431 /* 432 * If there is a routing header, discard the packet. 433 */ 434 if (exthdrs.ip6e_rthdr) { 435 error = EINVAL; 436 goto bad; 437 } 438 439 /* Source address validation */ 440 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 441 (flags & IPV6_UNSPECSRC) == 0) { 442 error = EOPNOTSUPP; 443 V_ip6stat.ip6s_badscope++; 444 goto bad; 445 } 446 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 447 error = EOPNOTSUPP; 448 V_ip6stat.ip6s_badscope++; 449 goto bad; 450 } 451 452 V_ip6stat.ip6s_localout++; 453 454 /* 455 * Route packet. 456 */ 457 if (ro == 0) { 458 ro = &ip6route; 459 bzero((caddr_t)ro, sizeof(*ro)); 460 } 461 ro_pmtu = ro; 462 if (opt && opt->ip6po_rthdr) 463 ro = &opt->ip6po_route; 464 dst = (struct sockaddr_in6 *)&ro->ro_dst; 465 466 again: 467 /* 468 * if specified, try to fill in the traffic class field. 469 * do not override if a non-zero value is already set. 470 * we check the diffserv field and the ecn field separately. 471 */ 472 if (opt && opt->ip6po_tclass >= 0) { 473 int mask = 0; 474 475 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 476 mask |= 0xfc; 477 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 478 mask |= 0x03; 479 if (mask != 0) 480 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 481 } 482 483 /* fill in or override the hop limit field, if necessary. */ 484 if (opt && opt->ip6po_hlim != -1) 485 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 486 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 487 if (im6o != NULL) 488 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 489 else 490 ip6->ip6_hlim = V_ip6_defmcasthlim; 491 } 492 493 #ifdef IPSEC 494 /* 495 * We may re-inject packets into the stack here. 496 */ 497 if (needipsec && needipsectun) { 498 struct ipsec_output_state state; 499 500 /* 501 * All the extension headers will become inaccessible 502 * (since they can be encrypted). 503 * Don't panic, we need no more updates to extension headers 504 * on inner IPv6 packet (since they are now encapsulated). 505 * 506 * IPv6 [ESP|AH] IPv6 [extension headers] payload 507 */ 508 bzero(&exthdrs, sizeof(exthdrs)); 509 exthdrs.ip6e_ip6 = m; 510 511 bzero(&state, sizeof(state)); 512 state.m = m; 513 state.ro = (struct route *)ro; 514 state.dst = (struct sockaddr *)dst; 515 516 error = ipsec6_output_tunnel(&state, sp, flags); 517 518 m = state.m; 519 ro = (struct route_in6 *)state.ro; 520 dst = (struct sockaddr_in6 *)state.dst; 521 if (error == EJUSTRETURN) { 522 /* 523 * We had a SP with a level of 'use' and no SA. We 524 * will just continue to process the packet without 525 * IPsec processing. 526 */ 527 ; 528 } else if (error) { 529 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 530 m0 = m = NULL; 531 m = NULL; 532 switch (error) { 533 case EHOSTUNREACH: 534 case ENETUNREACH: 535 case EMSGSIZE: 536 case ENOBUFS: 537 case ENOMEM: 538 break; 539 default: 540 printf("[%s:%d] (ipsec): error code %d\n", 541 __func__, __LINE__, error); 542 /* FALLTHROUGH */ 543 case ENOENT: 544 /* don't show these error codes to the user */ 545 error = 0; 546 break; 547 } 548 goto bad; 549 } else { 550 /* 551 * In the FAST IPSec case we have already 552 * re-injected the packet and it has been freed 553 * by the ipsec_done() function. So, just clean 554 * up after ourselves. 555 */ 556 m = NULL; 557 goto done; 558 } 559 560 exthdrs.ip6e_ip6 = m; 561 } 562 #endif /* IPSEC */ 563 564 /* adjust pointer */ 565 ip6 = mtod(m, struct ip6_hdr *); 566 567 bzero(&dst_sa, sizeof(dst_sa)); 568 dst_sa.sin6_family = AF_INET6; 569 dst_sa.sin6_len = sizeof(dst_sa); 570 dst_sa.sin6_addr = ip6->ip6_dst; 571 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, 572 &ifp, &rt)) != 0) { 573 switch (error) { 574 case EHOSTUNREACH: 575 V_ip6stat.ip6s_noroute++; 576 break; 577 case EADDRNOTAVAIL: 578 default: 579 break; /* XXX statistics? */ 580 } 581 if (ifp != NULL) 582 in6_ifstat_inc(ifp, ifs6_out_discard); 583 goto bad; 584 } 585 if (rt == NULL) { 586 /* 587 * If in6_selectroute() does not return a route entry, 588 * dst may not have been updated. 589 */ 590 *dst = dst_sa; /* XXX */ 591 } 592 593 /* 594 * then rt (for unicast) and ifp must be non-NULL valid values. 595 */ 596 if ((flags & IPV6_FORWARDING) == 0) { 597 /* XXX: the FORWARDING flag can be set for mrouting. */ 598 in6_ifstat_inc(ifp, ifs6_out_request); 599 } 600 if (rt != NULL) { 601 ia = (struct in6_ifaddr *)(rt->rt_ifa); 602 rt->rt_use++; 603 } 604 605 606 /* 607 * The outgoing interface must be in the zone of source and 608 * destination addresses. 609 */ 610 origifp = ifp; 611 612 src0 = ip6->ip6_src; 613 if (in6_setscope(&src0, origifp, &zone)) 614 goto badscope; 615 bzero(&src_sa, sizeof(src_sa)); 616 src_sa.sin6_family = AF_INET6; 617 src_sa.sin6_len = sizeof(src_sa); 618 src_sa.sin6_addr = ip6->ip6_src; 619 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 620 goto badscope; 621 622 dst0 = ip6->ip6_dst; 623 if (in6_setscope(&dst0, origifp, &zone)) 624 goto badscope; 625 /* re-initialize to be sure */ 626 bzero(&dst_sa, sizeof(dst_sa)); 627 dst_sa.sin6_family = AF_INET6; 628 dst_sa.sin6_len = sizeof(dst_sa); 629 dst_sa.sin6_addr = ip6->ip6_dst; 630 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 631 goto badscope; 632 } 633 634 /* We should use ia_ifp to support the case of 635 * sending packets to an address of our own. 636 */ 637 if (ia != NULL && ia->ia_ifp) 638 ifp = ia->ia_ifp; 639 640 /* scope check is done. */ 641 goto routefound; 642 643 badscope: 644 V_ip6stat.ip6s_badscope++; 645 in6_ifstat_inc(origifp, ifs6_out_discard); 646 if (error == 0) 647 error = EHOSTUNREACH; /* XXX */ 648 goto bad; 649 650 routefound: 651 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 652 if (opt && opt->ip6po_nextroute.ro_rt) { 653 /* 654 * The nexthop is explicitly specified by the 655 * application. We assume the next hop is an IPv6 656 * address. 657 */ 658 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 659 } 660 else if ((rt->rt_flags & RTF_GATEWAY)) 661 dst = (struct sockaddr_in6 *)rt->rt_gateway; 662 } 663 664 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 665 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 666 } else { 667 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 668 in6_ifstat_inc(ifp, ifs6_out_mcast); 669 /* 670 * Confirm that the outgoing interface supports multicast. 671 */ 672 if (!(ifp->if_flags & IFF_MULTICAST)) { 673 V_ip6stat.ip6s_noroute++; 674 in6_ifstat_inc(ifp, ifs6_out_discard); 675 error = ENETUNREACH; 676 goto bad; 677 } 678 if ((im6o == NULL && in6_mcast_loop) || 679 (im6o && im6o->im6o_multicast_loop)) { 680 /* 681 * Loop back multicast datagram if not expressly 682 * forbidden to do so, even if we have not joined 683 * the address; protocols will filter it later, 684 * thus deferring a hash lookup and lock acquisition 685 * at the expense of an m_copym(). 686 */ 687 ip6_mloopback(ifp, m, dst); 688 } else { 689 /* 690 * If we are acting as a multicast router, perform 691 * multicast forwarding as if the packet had just 692 * arrived on the interface to which we are about 693 * to send. The multicast forwarding function 694 * recursively calls this function, using the 695 * IPV6_FORWARDING flag to prevent infinite recursion. 696 * 697 * Multicasts that are looped back by ip6_mloopback(), 698 * above, will be forwarded by the ip6_input() routine, 699 * if necessary. 700 */ 701 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 702 /* 703 * XXX: ip6_mforward expects that rcvif is NULL 704 * when it is called from the originating path. 705 * However, it is not always the case, since 706 * some versions of MGETHDR() does not 707 * initialize the field. 708 */ 709 m->m_pkthdr.rcvif = NULL; 710 if (ip6_mforward(ip6, ifp, m) != 0) { 711 m_freem(m); 712 goto done; 713 } 714 } 715 } 716 /* 717 * Multicasts with a hoplimit of zero may be looped back, 718 * above, but must not be transmitted on a network. 719 * Also, multicasts addressed to the loopback interface 720 * are not sent -- the above call to ip6_mloopback() will 721 * loop back a copy if this host actually belongs to the 722 * destination group on the loopback interface. 723 */ 724 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 725 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 726 m_freem(m); 727 goto done; 728 } 729 } 730 731 /* 732 * Fill the outgoing inteface to tell the upper layer 733 * to increment per-interface statistics. 734 */ 735 if (ifpp) 736 *ifpp = ifp; 737 738 /* Determine path MTU. */ 739 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 740 &alwaysfrag)) != 0) 741 goto bad; 742 743 /* 744 * The caller of this function may specify to use the minimum MTU 745 * in some cases. 746 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 747 * setting. The logic is a bit complicated; by default, unicast 748 * packets will follow path MTU while multicast packets will be sent at 749 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 750 * including unicast ones will be sent at the minimum MTU. Multicast 751 * packets will always be sent at the minimum MTU unless 752 * IP6PO_MINMTU_DISABLE is explicitly specified. 753 * See RFC 3542 for more details. 754 */ 755 if (mtu > IPV6_MMTU) { 756 if ((flags & IPV6_MINMTU)) 757 mtu = IPV6_MMTU; 758 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 759 mtu = IPV6_MMTU; 760 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 761 (opt == NULL || 762 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 763 mtu = IPV6_MMTU; 764 } 765 } 766 767 /* 768 * clear embedded scope identifiers if necessary. 769 * in6_clearscope will touch the addresses only when necessary. 770 */ 771 in6_clearscope(&ip6->ip6_src); 772 in6_clearscope(&ip6->ip6_dst); 773 774 /* 775 * If the outgoing packet contains a hop-by-hop options header, 776 * it must be examined and processed even by the source node. 777 * (RFC 2460, section 4.) 778 */ 779 if (exthdrs.ip6e_hbh) { 780 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 781 u_int32_t dummy; /* XXX unused */ 782 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 783 784 #ifdef DIAGNOSTIC 785 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 786 panic("ip6e_hbh is not continuous"); 787 #endif 788 /* 789 * XXX: if we have to send an ICMPv6 error to the sender, 790 * we need the M_LOOP flag since icmp6_error() expects 791 * the IPv6 and the hop-by-hop options header are 792 * continuous unless the flag is set. 793 */ 794 m->m_flags |= M_LOOP; 795 m->m_pkthdr.rcvif = ifp; 796 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 797 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 798 &dummy, &plen) < 0) { 799 /* m was already freed at this point */ 800 error = EINVAL;/* better error? */ 801 goto done; 802 } 803 m->m_flags &= ~M_LOOP; /* XXX */ 804 m->m_pkthdr.rcvif = NULL; 805 } 806 807 /* Jump over all PFIL processing if hooks are not active. */ 808 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 809 goto passout; 810 811 odst = ip6->ip6_dst; 812 /* Run through list of hooks for output packets. */ 813 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 814 if (error != 0 || m == NULL) 815 goto done; 816 ip6 = mtod(m, struct ip6_hdr *); 817 818 /* See if destination IP address was changed by packet filter. */ 819 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 820 m->m_flags |= M_SKIP_FIREWALL; 821 /* If destination is now ourself drop to ip6_input(). */ 822 if (in6_localaddr(&ip6->ip6_dst)) { 823 if (m->m_pkthdr.rcvif == NULL) 824 m->m_pkthdr.rcvif = V_loif; 825 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 826 m->m_pkthdr.csum_flags |= 827 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 828 m->m_pkthdr.csum_data = 0xffff; 829 } 830 m->m_pkthdr.csum_flags |= 831 CSUM_IP_CHECKED | CSUM_IP_VALID; 832 error = netisr_queue(NETISR_IPV6, m); 833 goto done; 834 } else 835 goto again; /* Redo the routing table lookup. */ 836 } 837 838 /* XXX: IPFIREWALL_FORWARD */ 839 840 passout: 841 /* 842 * Send the packet to the outgoing interface. 843 * If necessary, do IPv6 fragmentation before sending. 844 * 845 * the logic here is rather complex: 846 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 847 * 1-a: send as is if tlen <= path mtu 848 * 1-b: fragment if tlen > path mtu 849 * 850 * 2: if user asks us not to fragment (dontfrag == 1) 851 * 2-a: send as is if tlen <= interface mtu 852 * 2-b: error if tlen > interface mtu 853 * 854 * 3: if we always need to attach fragment header (alwaysfrag == 1) 855 * always fragment 856 * 857 * 4: if dontfrag == 1 && alwaysfrag == 1 858 * error, as we cannot handle this conflicting request 859 */ 860 tlen = m->m_pkthdr.len; 861 862 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 863 dontfrag = 1; 864 else 865 dontfrag = 0; 866 if (dontfrag && alwaysfrag) { /* case 4 */ 867 /* conflicting request - can't transmit */ 868 error = EMSGSIZE; 869 goto bad; 870 } 871 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */ 872 /* 873 * Even if the DONTFRAG option is specified, we cannot send the 874 * packet when the data length is larger than the MTU of the 875 * outgoing interface. 876 * Notify the error by sending IPV6_PATHMTU ancillary data as 877 * well as returning an error code (the latter is not described 878 * in the API spec.) 879 */ 880 u_int32_t mtu32; 881 struct ip6ctlparam ip6cp; 882 883 mtu32 = (u_int32_t)mtu; 884 bzero(&ip6cp, sizeof(ip6cp)); 885 ip6cp.ip6c_cmdarg = (void *)&mtu32; 886 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 887 (void *)&ip6cp); 888 889 error = EMSGSIZE; 890 goto bad; 891 } 892 893 /* 894 * transmit packet without fragmentation 895 */ 896 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 897 struct in6_ifaddr *ia6; 898 899 ip6 = mtod(m, struct ip6_hdr *); 900 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 901 if (ia6) { 902 /* Record statistics for this interface address. */ 903 ia6->ia_ifa.if_opackets++; 904 ia6->ia_ifa.if_obytes += m->m_pkthdr.len; 905 ifa_free(&ia6->ia_ifa); 906 } 907 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 908 goto done; 909 } 910 911 /* 912 * try to fragment the packet. case 1-b and 3 913 */ 914 if (mtu < IPV6_MMTU) { 915 /* path MTU cannot be less than IPV6_MMTU */ 916 error = EMSGSIZE; 917 in6_ifstat_inc(ifp, ifs6_out_fragfail); 918 goto bad; 919 } else if (ip6->ip6_plen == 0) { 920 /* jumbo payload cannot be fragmented */ 921 error = EMSGSIZE; 922 in6_ifstat_inc(ifp, ifs6_out_fragfail); 923 goto bad; 924 } else { 925 struct mbuf **mnext, *m_frgpart; 926 struct ip6_frag *ip6f; 927 u_int32_t id = htonl(ip6_randomid()); 928 u_char nextproto; 929 930 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len; 931 932 /* 933 * Too large for the destination or interface; 934 * fragment if possible. 935 * Must be able to put at least 8 bytes per fragment. 936 */ 937 hlen = unfragpartlen; 938 if (mtu > IPV6_MAXPACKET) 939 mtu = IPV6_MAXPACKET; 940 941 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 942 if (len < 8) { 943 error = EMSGSIZE; 944 in6_ifstat_inc(ifp, ifs6_out_fragfail); 945 goto bad; 946 } 947 948 /* 949 * Verify that we have any chance at all of being able to queue 950 * the packet or packet fragments 951 */ 952 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen) 953 < tlen /* - hlen */)) { 954 error = ENOBUFS; 955 V_ip6stat.ip6s_odropped++; 956 goto bad; 957 } 958 959 mnext = &m->m_nextpkt; 960 961 /* 962 * Change the next header field of the last header in the 963 * unfragmentable part. 964 */ 965 if (exthdrs.ip6e_rthdr) { 966 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 967 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 968 } else if (exthdrs.ip6e_dest1) { 969 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 970 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 971 } else if (exthdrs.ip6e_hbh) { 972 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 973 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 974 } else { 975 nextproto = ip6->ip6_nxt; 976 ip6->ip6_nxt = IPPROTO_FRAGMENT; 977 } 978 979 /* 980 * Loop through length of segment after first fragment, 981 * make new header and copy data of each part and link onto 982 * chain. 983 */ 984 m0 = m; 985 for (off = hlen; off < tlen; off += len) { 986 MGETHDR(m, M_DONTWAIT, MT_HEADER); 987 if (!m) { 988 error = ENOBUFS; 989 V_ip6stat.ip6s_odropped++; 990 goto sendorfree; 991 } 992 m->m_pkthdr.rcvif = NULL; 993 m->m_flags = m0->m_flags & M_COPYFLAGS; 994 *mnext = m; 995 mnext = &m->m_nextpkt; 996 m->m_data += max_linkhdr; 997 mhip6 = mtod(m, struct ip6_hdr *); 998 *mhip6 = *ip6; 999 m->m_len = sizeof(*mhip6); 1000 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1001 if (error) { 1002 V_ip6stat.ip6s_odropped++; 1003 goto sendorfree; 1004 } 1005 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 1006 if (off + len >= tlen) 1007 len = tlen - off; 1008 else 1009 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1010 mhip6->ip6_plen = htons((u_short)(len + hlen + 1011 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1012 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1013 error = ENOBUFS; 1014 V_ip6stat.ip6s_odropped++; 1015 goto sendorfree; 1016 } 1017 m_cat(m, m_frgpart); 1018 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1019 m->m_pkthdr.rcvif = NULL; 1020 ip6f->ip6f_reserved = 0; 1021 ip6f->ip6f_ident = id; 1022 ip6f->ip6f_nxt = nextproto; 1023 V_ip6stat.ip6s_ofragments++; 1024 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1025 } 1026 1027 in6_ifstat_inc(ifp, ifs6_out_fragok); 1028 } 1029 1030 /* 1031 * Remove leading garbages. 1032 */ 1033 sendorfree: 1034 m = m0->m_nextpkt; 1035 m0->m_nextpkt = 0; 1036 m_freem(m0); 1037 for (m0 = m; m; m = m0) { 1038 m0 = m->m_nextpkt; 1039 m->m_nextpkt = 0; 1040 if (error == 0) { 1041 /* Record statistics for this interface address. */ 1042 if (ia) { 1043 ia->ia_ifa.if_opackets++; 1044 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 1045 } 1046 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1047 } else 1048 m_freem(m); 1049 } 1050 1051 if (error == 0) 1052 V_ip6stat.ip6s_fragmented++; 1053 1054 done: 1055 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1056 RTFREE(ro->ro_rt); 1057 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1058 RTFREE(ro_pmtu->ro_rt); 1059 } 1060 #ifdef IPSEC 1061 if (sp != NULL) 1062 KEY_FREESP(&sp); 1063 #endif 1064 1065 return (error); 1066 1067 freehdrs: 1068 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1069 m_freem(exthdrs.ip6e_dest1); 1070 m_freem(exthdrs.ip6e_rthdr); 1071 m_freem(exthdrs.ip6e_dest2); 1072 /* FALLTHROUGH */ 1073 bad: 1074 if (m) 1075 m_freem(m); 1076 goto done; 1077 } 1078 1079 static int 1080 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1081 { 1082 struct mbuf *m; 1083 1084 if (hlen > MCLBYTES) 1085 return (ENOBUFS); /* XXX */ 1086 1087 MGET(m, M_DONTWAIT, MT_DATA); 1088 if (!m) 1089 return (ENOBUFS); 1090 1091 if (hlen > MLEN) { 1092 MCLGET(m, M_DONTWAIT); 1093 if ((m->m_flags & M_EXT) == 0) { 1094 m_free(m); 1095 return (ENOBUFS); 1096 } 1097 } 1098 m->m_len = hlen; 1099 if (hdr) 1100 bcopy(hdr, mtod(m, caddr_t), hlen); 1101 1102 *mp = m; 1103 return (0); 1104 } 1105 1106 /* 1107 * Insert jumbo payload option. 1108 */ 1109 static int 1110 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1111 { 1112 struct mbuf *mopt; 1113 u_char *optbuf; 1114 u_int32_t v; 1115 1116 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1117 1118 /* 1119 * If there is no hop-by-hop options header, allocate new one. 1120 * If there is one but it doesn't have enough space to store the 1121 * jumbo payload option, allocate a cluster to store the whole options. 1122 * Otherwise, use it to store the options. 1123 */ 1124 if (exthdrs->ip6e_hbh == 0) { 1125 MGET(mopt, M_DONTWAIT, MT_DATA); 1126 if (mopt == 0) 1127 return (ENOBUFS); 1128 mopt->m_len = JUMBOOPTLEN; 1129 optbuf = mtod(mopt, u_char *); 1130 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1131 exthdrs->ip6e_hbh = mopt; 1132 } else { 1133 struct ip6_hbh *hbh; 1134 1135 mopt = exthdrs->ip6e_hbh; 1136 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1137 /* 1138 * XXX assumption: 1139 * - exthdrs->ip6e_hbh is not referenced from places 1140 * other than exthdrs. 1141 * - exthdrs->ip6e_hbh is not an mbuf chain. 1142 */ 1143 int oldoptlen = mopt->m_len; 1144 struct mbuf *n; 1145 1146 /* 1147 * XXX: give up if the whole (new) hbh header does 1148 * not fit even in an mbuf cluster. 1149 */ 1150 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1151 return (ENOBUFS); 1152 1153 /* 1154 * As a consequence, we must always prepare a cluster 1155 * at this point. 1156 */ 1157 MGET(n, M_DONTWAIT, MT_DATA); 1158 if (n) { 1159 MCLGET(n, M_DONTWAIT); 1160 if ((n->m_flags & M_EXT) == 0) { 1161 m_freem(n); 1162 n = NULL; 1163 } 1164 } 1165 if (!n) 1166 return (ENOBUFS); 1167 n->m_len = oldoptlen + JUMBOOPTLEN; 1168 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1169 oldoptlen); 1170 optbuf = mtod(n, caddr_t) + oldoptlen; 1171 m_freem(mopt); 1172 mopt = exthdrs->ip6e_hbh = n; 1173 } else { 1174 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1175 mopt->m_len += JUMBOOPTLEN; 1176 } 1177 optbuf[0] = IP6OPT_PADN; 1178 optbuf[1] = 1; 1179 1180 /* 1181 * Adjust the header length according to the pad and 1182 * the jumbo payload option. 1183 */ 1184 hbh = mtod(mopt, struct ip6_hbh *); 1185 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1186 } 1187 1188 /* fill in the option. */ 1189 optbuf[2] = IP6OPT_JUMBO; 1190 optbuf[3] = 4; 1191 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1192 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1193 1194 /* finally, adjust the packet header length */ 1195 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1196 1197 return (0); 1198 #undef JUMBOOPTLEN 1199 } 1200 1201 /* 1202 * Insert fragment header and copy unfragmentable header portions. 1203 */ 1204 static int 1205 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1206 struct ip6_frag **frghdrp) 1207 { 1208 struct mbuf *n, *mlast; 1209 1210 if (hlen > sizeof(struct ip6_hdr)) { 1211 n = m_copym(m0, sizeof(struct ip6_hdr), 1212 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1213 if (n == 0) 1214 return (ENOBUFS); 1215 m->m_next = n; 1216 } else 1217 n = m; 1218 1219 /* Search for the last mbuf of unfragmentable part. */ 1220 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1221 ; 1222 1223 if ((mlast->m_flags & M_EXT) == 0 && 1224 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1225 /* use the trailing space of the last mbuf for the fragment hdr */ 1226 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1227 mlast->m_len); 1228 mlast->m_len += sizeof(struct ip6_frag); 1229 m->m_pkthdr.len += sizeof(struct ip6_frag); 1230 } else { 1231 /* allocate a new mbuf for the fragment header */ 1232 struct mbuf *mfrg; 1233 1234 MGET(mfrg, M_DONTWAIT, MT_DATA); 1235 if (mfrg == 0) 1236 return (ENOBUFS); 1237 mfrg->m_len = sizeof(struct ip6_frag); 1238 *frghdrp = mtod(mfrg, struct ip6_frag *); 1239 mlast->m_next = mfrg; 1240 } 1241 1242 return (0); 1243 } 1244 1245 static int 1246 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, 1247 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, 1248 int *alwaysfragp) 1249 { 1250 u_int32_t mtu = 0; 1251 int alwaysfrag = 0; 1252 int error = 0; 1253 1254 if (ro_pmtu != ro) { 1255 /* The first hop and the final destination may differ. */ 1256 struct sockaddr_in6 *sa6_dst = 1257 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1258 if (ro_pmtu->ro_rt && 1259 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1260 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1261 RTFREE(ro_pmtu->ro_rt); 1262 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1263 } 1264 if (ro_pmtu->ro_rt == NULL) { 1265 bzero(sa6_dst, sizeof(*sa6_dst)); 1266 sa6_dst->sin6_family = AF_INET6; 1267 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1268 sa6_dst->sin6_addr = *dst; 1269 1270 rtalloc((struct route *)ro_pmtu); 1271 } 1272 } 1273 if (ro_pmtu->ro_rt) { 1274 u_int32_t ifmtu; 1275 struct in_conninfo inc; 1276 1277 bzero(&inc, sizeof(inc)); 1278 inc.inc_flags |= INC_ISIPV6; 1279 inc.inc6_faddr = *dst; 1280 1281 if (ifp == NULL) 1282 ifp = ro_pmtu->ro_rt->rt_ifp; 1283 ifmtu = IN6_LINKMTU(ifp); 1284 mtu = tcp_hc_getmtu(&inc); 1285 if (mtu) 1286 mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu); 1287 else 1288 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 1289 if (mtu == 0) 1290 mtu = ifmtu; 1291 else if (mtu < IPV6_MMTU) { 1292 /* 1293 * RFC2460 section 5, last paragraph: 1294 * if we record ICMPv6 too big message with 1295 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1296 * or smaller, with framgent header attached. 1297 * (fragment header is needed regardless from the 1298 * packet size, for translators to identify packets) 1299 */ 1300 alwaysfrag = 1; 1301 mtu = IPV6_MMTU; 1302 } else if (mtu > ifmtu) { 1303 /* 1304 * The MTU on the route is larger than the MTU on 1305 * the interface! This shouldn't happen, unless the 1306 * MTU of the interface has been changed after the 1307 * interface was brought up. Change the MTU in the 1308 * route to match the interface MTU (as long as the 1309 * field isn't locked). 1310 */ 1311 mtu = ifmtu; 1312 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; 1313 } 1314 } else if (ifp) { 1315 mtu = IN6_LINKMTU(ifp); 1316 } else 1317 error = EHOSTUNREACH; /* XXX */ 1318 1319 *mtup = mtu; 1320 if (alwaysfragp) 1321 *alwaysfragp = alwaysfrag; 1322 return (error); 1323 } 1324 1325 /* 1326 * IP6 socket option processing. 1327 */ 1328 int 1329 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1330 { 1331 int optdatalen, uproto; 1332 void *optdata; 1333 struct inpcb *in6p = sotoinpcb(so); 1334 int error, optval; 1335 int level, op, optname; 1336 int optlen; 1337 struct thread *td; 1338 1339 level = sopt->sopt_level; 1340 op = sopt->sopt_dir; 1341 optname = sopt->sopt_name; 1342 optlen = sopt->sopt_valsize; 1343 td = sopt->sopt_td; 1344 error = 0; 1345 optval = 0; 1346 uproto = (int)so->so_proto->pr_protocol; 1347 1348 if (level == IPPROTO_IPV6) { 1349 switch (op) { 1350 1351 case SOPT_SET: 1352 switch (optname) { 1353 case IPV6_2292PKTOPTIONS: 1354 #ifdef IPV6_PKTOPTIONS 1355 case IPV6_PKTOPTIONS: 1356 #endif 1357 { 1358 struct mbuf *m; 1359 1360 error = soopt_getm(sopt, &m); /* XXX */ 1361 if (error != 0) 1362 break; 1363 error = soopt_mcopyin(sopt, m); /* XXX */ 1364 if (error != 0) 1365 break; 1366 error = ip6_pcbopts(&in6p->in6p_outputopts, 1367 m, so, sopt); 1368 m_freem(m); /* XXX */ 1369 break; 1370 } 1371 1372 /* 1373 * Use of some Hop-by-Hop options or some 1374 * Destination options, might require special 1375 * privilege. That is, normal applications 1376 * (without special privilege) might be forbidden 1377 * from setting certain options in outgoing packets, 1378 * and might never see certain options in received 1379 * packets. [RFC 2292 Section 6] 1380 * KAME specific note: 1381 * KAME prevents non-privileged users from sending or 1382 * receiving ANY hbh/dst options in order to avoid 1383 * overhead of parsing options in the kernel. 1384 */ 1385 case IPV6_RECVHOPOPTS: 1386 case IPV6_RECVDSTOPTS: 1387 case IPV6_RECVRTHDRDSTOPTS: 1388 if (td != NULL) { 1389 error = priv_check(td, 1390 PRIV_NETINET_SETHDROPTS); 1391 if (error) 1392 break; 1393 } 1394 /* FALLTHROUGH */ 1395 case IPV6_UNICAST_HOPS: 1396 case IPV6_HOPLIMIT: 1397 case IPV6_FAITH: 1398 1399 case IPV6_RECVPKTINFO: 1400 case IPV6_RECVHOPLIMIT: 1401 case IPV6_RECVRTHDR: 1402 case IPV6_RECVPATHMTU: 1403 case IPV6_RECVTCLASS: 1404 case IPV6_V6ONLY: 1405 case IPV6_AUTOFLOWLABEL: 1406 case IPV6_BINDANY: 1407 if (optname == IPV6_BINDANY && td != NULL) { 1408 error = priv_check(td, 1409 PRIV_NETINET_BINDANY); 1410 if (error) 1411 break; 1412 } 1413 1414 if (optlen != sizeof(int)) { 1415 error = EINVAL; 1416 break; 1417 } 1418 error = sooptcopyin(sopt, &optval, 1419 sizeof optval, sizeof optval); 1420 if (error) 1421 break; 1422 switch (optname) { 1423 1424 case IPV6_UNICAST_HOPS: 1425 if (optval < -1 || optval >= 256) 1426 error = EINVAL; 1427 else { 1428 /* -1 = kernel default */ 1429 in6p->in6p_hops = optval; 1430 if ((in6p->inp_vflag & 1431 INP_IPV4) != 0) 1432 in6p->inp_ip_ttl = optval; 1433 } 1434 break; 1435 #define OPTSET(bit) \ 1436 do { \ 1437 if (optval) \ 1438 in6p->inp_flags |= (bit); \ 1439 else \ 1440 in6p->inp_flags &= ~(bit); \ 1441 } while (/*CONSTCOND*/ 0) 1442 #define OPTSET2292(bit) \ 1443 do { \ 1444 in6p->inp_flags |= IN6P_RFC2292; \ 1445 if (optval) \ 1446 in6p->inp_flags |= (bit); \ 1447 else \ 1448 in6p->inp_flags &= ~(bit); \ 1449 } while (/*CONSTCOND*/ 0) 1450 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1451 1452 case IPV6_RECVPKTINFO: 1453 /* cannot mix with RFC2292 */ 1454 if (OPTBIT(IN6P_RFC2292)) { 1455 error = EINVAL; 1456 break; 1457 } 1458 OPTSET(IN6P_PKTINFO); 1459 break; 1460 1461 case IPV6_HOPLIMIT: 1462 { 1463 struct ip6_pktopts **optp; 1464 1465 /* cannot mix with RFC2292 */ 1466 if (OPTBIT(IN6P_RFC2292)) { 1467 error = EINVAL; 1468 break; 1469 } 1470 optp = &in6p->in6p_outputopts; 1471 error = ip6_pcbopt(IPV6_HOPLIMIT, 1472 (u_char *)&optval, sizeof(optval), 1473 optp, (td != NULL) ? td->td_ucred : 1474 NULL, uproto); 1475 break; 1476 } 1477 1478 case IPV6_RECVHOPLIMIT: 1479 /* cannot mix with RFC2292 */ 1480 if (OPTBIT(IN6P_RFC2292)) { 1481 error = EINVAL; 1482 break; 1483 } 1484 OPTSET(IN6P_HOPLIMIT); 1485 break; 1486 1487 case IPV6_RECVHOPOPTS: 1488 /* cannot mix with RFC2292 */ 1489 if (OPTBIT(IN6P_RFC2292)) { 1490 error = EINVAL; 1491 break; 1492 } 1493 OPTSET(IN6P_HOPOPTS); 1494 break; 1495 1496 case IPV6_RECVDSTOPTS: 1497 /* cannot mix with RFC2292 */ 1498 if (OPTBIT(IN6P_RFC2292)) { 1499 error = EINVAL; 1500 break; 1501 } 1502 OPTSET(IN6P_DSTOPTS); 1503 break; 1504 1505 case IPV6_RECVRTHDRDSTOPTS: 1506 /* cannot mix with RFC2292 */ 1507 if (OPTBIT(IN6P_RFC2292)) { 1508 error = EINVAL; 1509 break; 1510 } 1511 OPTSET(IN6P_RTHDRDSTOPTS); 1512 break; 1513 1514 case IPV6_RECVRTHDR: 1515 /* cannot mix with RFC2292 */ 1516 if (OPTBIT(IN6P_RFC2292)) { 1517 error = EINVAL; 1518 break; 1519 } 1520 OPTSET(IN6P_RTHDR); 1521 break; 1522 1523 case IPV6_FAITH: 1524 OPTSET(INP_FAITH); 1525 break; 1526 1527 case IPV6_RECVPATHMTU: 1528 /* 1529 * We ignore this option for TCP 1530 * sockets. 1531 * (RFC3542 leaves this case 1532 * unspecified.) 1533 */ 1534 if (uproto != IPPROTO_TCP) 1535 OPTSET(IN6P_MTU); 1536 break; 1537 1538 case IPV6_V6ONLY: 1539 /* 1540 * make setsockopt(IPV6_V6ONLY) 1541 * available only prior to bind(2). 1542 * see ipng mailing list, Jun 22 2001. 1543 */ 1544 if (in6p->inp_lport || 1545 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1546 error = EINVAL; 1547 break; 1548 } 1549 OPTSET(IN6P_IPV6_V6ONLY); 1550 if (optval) 1551 in6p->inp_vflag &= ~INP_IPV4; 1552 else 1553 in6p->inp_vflag |= INP_IPV4; 1554 break; 1555 case IPV6_RECVTCLASS: 1556 /* cannot mix with RFC2292 XXX */ 1557 if (OPTBIT(IN6P_RFC2292)) { 1558 error = EINVAL; 1559 break; 1560 } 1561 OPTSET(IN6P_TCLASS); 1562 break; 1563 case IPV6_AUTOFLOWLABEL: 1564 OPTSET(IN6P_AUTOFLOWLABEL); 1565 break; 1566 1567 case IPV6_BINDANY: 1568 OPTSET(INP_BINDANY); 1569 break; 1570 } 1571 break; 1572 1573 case IPV6_TCLASS: 1574 case IPV6_DONTFRAG: 1575 case IPV6_USE_MIN_MTU: 1576 case IPV6_PREFER_TEMPADDR: 1577 if (optlen != sizeof(optval)) { 1578 error = EINVAL; 1579 break; 1580 } 1581 error = sooptcopyin(sopt, &optval, 1582 sizeof optval, sizeof optval); 1583 if (error) 1584 break; 1585 { 1586 struct ip6_pktopts **optp; 1587 optp = &in6p->in6p_outputopts; 1588 error = ip6_pcbopt(optname, 1589 (u_char *)&optval, sizeof(optval), 1590 optp, (td != NULL) ? td->td_ucred : 1591 NULL, uproto); 1592 break; 1593 } 1594 1595 case IPV6_2292PKTINFO: 1596 case IPV6_2292HOPLIMIT: 1597 case IPV6_2292HOPOPTS: 1598 case IPV6_2292DSTOPTS: 1599 case IPV6_2292RTHDR: 1600 /* RFC 2292 */ 1601 if (optlen != sizeof(int)) { 1602 error = EINVAL; 1603 break; 1604 } 1605 error = sooptcopyin(sopt, &optval, 1606 sizeof optval, sizeof optval); 1607 if (error) 1608 break; 1609 switch (optname) { 1610 case IPV6_2292PKTINFO: 1611 OPTSET2292(IN6P_PKTINFO); 1612 break; 1613 case IPV6_2292HOPLIMIT: 1614 OPTSET2292(IN6P_HOPLIMIT); 1615 break; 1616 case IPV6_2292HOPOPTS: 1617 /* 1618 * Check super-user privilege. 1619 * See comments for IPV6_RECVHOPOPTS. 1620 */ 1621 if (td != NULL) { 1622 error = priv_check(td, 1623 PRIV_NETINET_SETHDROPTS); 1624 if (error) 1625 return (error); 1626 } 1627 OPTSET2292(IN6P_HOPOPTS); 1628 break; 1629 case IPV6_2292DSTOPTS: 1630 if (td != NULL) { 1631 error = priv_check(td, 1632 PRIV_NETINET_SETHDROPTS); 1633 if (error) 1634 return (error); 1635 } 1636 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1637 break; 1638 case IPV6_2292RTHDR: 1639 OPTSET2292(IN6P_RTHDR); 1640 break; 1641 } 1642 break; 1643 case IPV6_PKTINFO: 1644 case IPV6_HOPOPTS: 1645 case IPV6_RTHDR: 1646 case IPV6_DSTOPTS: 1647 case IPV6_RTHDRDSTOPTS: 1648 case IPV6_NEXTHOP: 1649 { 1650 /* new advanced API (RFC3542) */ 1651 u_char *optbuf; 1652 u_char optbuf_storage[MCLBYTES]; 1653 int optlen; 1654 struct ip6_pktopts **optp; 1655 1656 /* cannot mix with RFC2292 */ 1657 if (OPTBIT(IN6P_RFC2292)) { 1658 error = EINVAL; 1659 break; 1660 } 1661 1662 /* 1663 * We only ensure valsize is not too large 1664 * here. Further validation will be done 1665 * later. 1666 */ 1667 error = sooptcopyin(sopt, optbuf_storage, 1668 sizeof(optbuf_storage), 0); 1669 if (error) 1670 break; 1671 optlen = sopt->sopt_valsize; 1672 optbuf = optbuf_storage; 1673 optp = &in6p->in6p_outputopts; 1674 error = ip6_pcbopt(optname, optbuf, optlen, 1675 optp, (td != NULL) ? td->td_ucred : NULL, 1676 uproto); 1677 break; 1678 } 1679 #undef OPTSET 1680 1681 case IPV6_MULTICAST_IF: 1682 case IPV6_MULTICAST_HOPS: 1683 case IPV6_MULTICAST_LOOP: 1684 case IPV6_JOIN_GROUP: 1685 case IPV6_LEAVE_GROUP: 1686 case IPV6_MSFILTER: 1687 case MCAST_BLOCK_SOURCE: 1688 case MCAST_UNBLOCK_SOURCE: 1689 case MCAST_JOIN_GROUP: 1690 case MCAST_LEAVE_GROUP: 1691 case MCAST_JOIN_SOURCE_GROUP: 1692 case MCAST_LEAVE_SOURCE_GROUP: 1693 error = ip6_setmoptions(in6p, sopt); 1694 break; 1695 1696 case IPV6_PORTRANGE: 1697 error = sooptcopyin(sopt, &optval, 1698 sizeof optval, sizeof optval); 1699 if (error) 1700 break; 1701 1702 switch (optval) { 1703 case IPV6_PORTRANGE_DEFAULT: 1704 in6p->inp_flags &= ~(INP_LOWPORT); 1705 in6p->inp_flags &= ~(INP_HIGHPORT); 1706 break; 1707 1708 case IPV6_PORTRANGE_HIGH: 1709 in6p->inp_flags &= ~(INP_LOWPORT); 1710 in6p->inp_flags |= INP_HIGHPORT; 1711 break; 1712 1713 case IPV6_PORTRANGE_LOW: 1714 in6p->inp_flags &= ~(INP_HIGHPORT); 1715 in6p->inp_flags |= INP_LOWPORT; 1716 break; 1717 1718 default: 1719 error = EINVAL; 1720 break; 1721 } 1722 break; 1723 1724 #ifdef IPSEC 1725 case IPV6_IPSEC_POLICY: 1726 { 1727 caddr_t req; 1728 struct mbuf *m; 1729 1730 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1731 break; 1732 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1733 break; 1734 req = mtod(m, caddr_t); 1735 error = ipsec_set_policy(in6p, optname, req, 1736 m->m_len, (sopt->sopt_td != NULL) ? 1737 sopt->sopt_td->td_ucred : NULL); 1738 m_freem(m); 1739 break; 1740 } 1741 #endif /* IPSEC */ 1742 1743 default: 1744 error = ENOPROTOOPT; 1745 break; 1746 } 1747 break; 1748 1749 case SOPT_GET: 1750 switch (optname) { 1751 1752 case IPV6_2292PKTOPTIONS: 1753 #ifdef IPV6_PKTOPTIONS 1754 case IPV6_PKTOPTIONS: 1755 #endif 1756 /* 1757 * RFC3542 (effectively) deprecated the 1758 * semantics of the 2292-style pktoptions. 1759 * Since it was not reliable in nature (i.e., 1760 * applications had to expect the lack of some 1761 * information after all), it would make sense 1762 * to simplify this part by always returning 1763 * empty data. 1764 */ 1765 sopt->sopt_valsize = 0; 1766 break; 1767 1768 case IPV6_RECVHOPOPTS: 1769 case IPV6_RECVDSTOPTS: 1770 case IPV6_RECVRTHDRDSTOPTS: 1771 case IPV6_UNICAST_HOPS: 1772 case IPV6_RECVPKTINFO: 1773 case IPV6_RECVHOPLIMIT: 1774 case IPV6_RECVRTHDR: 1775 case IPV6_RECVPATHMTU: 1776 1777 case IPV6_FAITH: 1778 case IPV6_V6ONLY: 1779 case IPV6_PORTRANGE: 1780 case IPV6_RECVTCLASS: 1781 case IPV6_AUTOFLOWLABEL: 1782 switch (optname) { 1783 1784 case IPV6_RECVHOPOPTS: 1785 optval = OPTBIT(IN6P_HOPOPTS); 1786 break; 1787 1788 case IPV6_RECVDSTOPTS: 1789 optval = OPTBIT(IN6P_DSTOPTS); 1790 break; 1791 1792 case IPV6_RECVRTHDRDSTOPTS: 1793 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1794 break; 1795 1796 case IPV6_UNICAST_HOPS: 1797 optval = in6p->in6p_hops; 1798 break; 1799 1800 case IPV6_RECVPKTINFO: 1801 optval = OPTBIT(IN6P_PKTINFO); 1802 break; 1803 1804 case IPV6_RECVHOPLIMIT: 1805 optval = OPTBIT(IN6P_HOPLIMIT); 1806 break; 1807 1808 case IPV6_RECVRTHDR: 1809 optval = OPTBIT(IN6P_RTHDR); 1810 break; 1811 1812 case IPV6_RECVPATHMTU: 1813 optval = OPTBIT(IN6P_MTU); 1814 break; 1815 1816 case IPV6_FAITH: 1817 optval = OPTBIT(INP_FAITH); 1818 break; 1819 1820 case IPV6_V6ONLY: 1821 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1822 break; 1823 1824 case IPV6_PORTRANGE: 1825 { 1826 int flags; 1827 flags = in6p->inp_flags; 1828 if (flags & INP_HIGHPORT) 1829 optval = IPV6_PORTRANGE_HIGH; 1830 else if (flags & INP_LOWPORT) 1831 optval = IPV6_PORTRANGE_LOW; 1832 else 1833 optval = 0; 1834 break; 1835 } 1836 case IPV6_RECVTCLASS: 1837 optval = OPTBIT(IN6P_TCLASS); 1838 break; 1839 1840 case IPV6_AUTOFLOWLABEL: 1841 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1842 break; 1843 1844 case IPV6_BINDANY: 1845 optval = OPTBIT(INP_BINDANY); 1846 break; 1847 } 1848 if (error) 1849 break; 1850 error = sooptcopyout(sopt, &optval, 1851 sizeof optval); 1852 break; 1853 1854 case IPV6_PATHMTU: 1855 { 1856 u_long pmtu = 0; 1857 struct ip6_mtuinfo mtuinfo; 1858 struct route_in6 sro; 1859 1860 bzero(&sro, sizeof(sro)); 1861 1862 if (!(so->so_state & SS_ISCONNECTED)) 1863 return (ENOTCONN); 1864 /* 1865 * XXX: we dot not consider the case of source 1866 * routing, or optional information to specify 1867 * the outgoing interface. 1868 */ 1869 error = ip6_getpmtu(&sro, NULL, NULL, 1870 &in6p->in6p_faddr, &pmtu, NULL); 1871 if (sro.ro_rt) 1872 RTFREE(sro.ro_rt); 1873 if (error) 1874 break; 1875 if (pmtu > IPV6_MAXPACKET) 1876 pmtu = IPV6_MAXPACKET; 1877 1878 bzero(&mtuinfo, sizeof(mtuinfo)); 1879 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1880 optdata = (void *)&mtuinfo; 1881 optdatalen = sizeof(mtuinfo); 1882 error = sooptcopyout(sopt, optdata, 1883 optdatalen); 1884 break; 1885 } 1886 1887 case IPV6_2292PKTINFO: 1888 case IPV6_2292HOPLIMIT: 1889 case IPV6_2292HOPOPTS: 1890 case IPV6_2292RTHDR: 1891 case IPV6_2292DSTOPTS: 1892 switch (optname) { 1893 case IPV6_2292PKTINFO: 1894 optval = OPTBIT(IN6P_PKTINFO); 1895 break; 1896 case IPV6_2292HOPLIMIT: 1897 optval = OPTBIT(IN6P_HOPLIMIT); 1898 break; 1899 case IPV6_2292HOPOPTS: 1900 optval = OPTBIT(IN6P_HOPOPTS); 1901 break; 1902 case IPV6_2292RTHDR: 1903 optval = OPTBIT(IN6P_RTHDR); 1904 break; 1905 case IPV6_2292DSTOPTS: 1906 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1907 break; 1908 } 1909 error = sooptcopyout(sopt, &optval, 1910 sizeof optval); 1911 break; 1912 case IPV6_PKTINFO: 1913 case IPV6_HOPOPTS: 1914 case IPV6_RTHDR: 1915 case IPV6_DSTOPTS: 1916 case IPV6_RTHDRDSTOPTS: 1917 case IPV6_NEXTHOP: 1918 case IPV6_TCLASS: 1919 case IPV6_DONTFRAG: 1920 case IPV6_USE_MIN_MTU: 1921 case IPV6_PREFER_TEMPADDR: 1922 error = ip6_getpcbopt(in6p->in6p_outputopts, 1923 optname, sopt); 1924 break; 1925 1926 case IPV6_MULTICAST_IF: 1927 case IPV6_MULTICAST_HOPS: 1928 case IPV6_MULTICAST_LOOP: 1929 case IPV6_MSFILTER: 1930 error = ip6_getmoptions(in6p, sopt); 1931 break; 1932 1933 #ifdef IPSEC 1934 case IPV6_IPSEC_POLICY: 1935 { 1936 caddr_t req = NULL; 1937 size_t len = 0; 1938 struct mbuf *m = NULL; 1939 struct mbuf **mp = &m; 1940 size_t ovalsize = sopt->sopt_valsize; 1941 caddr_t oval = (caddr_t)sopt->sopt_val; 1942 1943 error = soopt_getm(sopt, &m); /* XXX */ 1944 if (error != 0) 1945 break; 1946 error = soopt_mcopyin(sopt, m); /* XXX */ 1947 if (error != 0) 1948 break; 1949 sopt->sopt_valsize = ovalsize; 1950 sopt->sopt_val = oval; 1951 if (m) { 1952 req = mtod(m, caddr_t); 1953 len = m->m_len; 1954 } 1955 error = ipsec_get_policy(in6p, req, len, mp); 1956 if (error == 0) 1957 error = soopt_mcopyout(sopt, m); /* XXX */ 1958 if (error == 0 && m) 1959 m_freem(m); 1960 break; 1961 } 1962 #endif /* IPSEC */ 1963 1964 default: 1965 error = ENOPROTOOPT; 1966 break; 1967 } 1968 break; 1969 } 1970 } else { /* level != IPPROTO_IPV6 */ 1971 error = EINVAL; 1972 } 1973 return (error); 1974 } 1975 1976 int 1977 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 1978 { 1979 int error = 0, optval, optlen; 1980 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 1981 struct inpcb *in6p = sotoinpcb(so); 1982 int level, op, optname; 1983 1984 level = sopt->sopt_level; 1985 op = sopt->sopt_dir; 1986 optname = sopt->sopt_name; 1987 optlen = sopt->sopt_valsize; 1988 1989 if (level != IPPROTO_IPV6) { 1990 return (EINVAL); 1991 } 1992 1993 switch (optname) { 1994 case IPV6_CHECKSUM: 1995 /* 1996 * For ICMPv6 sockets, no modification allowed for checksum 1997 * offset, permit "no change" values to help existing apps. 1998 * 1999 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2000 * for an ICMPv6 socket will fail." 2001 * The current behavior does not meet RFC3542. 2002 */ 2003 switch (op) { 2004 case SOPT_SET: 2005 if (optlen != sizeof(int)) { 2006 error = EINVAL; 2007 break; 2008 } 2009 error = sooptcopyin(sopt, &optval, sizeof(optval), 2010 sizeof(optval)); 2011 if (error) 2012 break; 2013 if ((optval % 2) != 0) { 2014 /* the API assumes even offset values */ 2015 error = EINVAL; 2016 } else if (so->so_proto->pr_protocol == 2017 IPPROTO_ICMPV6) { 2018 if (optval != icmp6off) 2019 error = EINVAL; 2020 } else 2021 in6p->in6p_cksum = optval; 2022 break; 2023 2024 case SOPT_GET: 2025 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2026 optval = icmp6off; 2027 else 2028 optval = in6p->in6p_cksum; 2029 2030 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2031 break; 2032 2033 default: 2034 error = EINVAL; 2035 break; 2036 } 2037 break; 2038 2039 default: 2040 error = ENOPROTOOPT; 2041 break; 2042 } 2043 2044 return (error); 2045 } 2046 2047 /* 2048 * Set up IP6 options in pcb for insertion in output packets or 2049 * specifying behavior of outgoing packets. 2050 */ 2051 static int 2052 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2053 struct socket *so, struct sockopt *sopt) 2054 { 2055 struct ip6_pktopts *opt = *pktopt; 2056 int error = 0; 2057 struct thread *td = sopt->sopt_td; 2058 2059 /* turn off any old options. */ 2060 if (opt) { 2061 #ifdef DIAGNOSTIC 2062 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2063 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2064 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2065 printf("ip6_pcbopts: all specified options are cleared.\n"); 2066 #endif 2067 ip6_clearpktopts(opt, -1); 2068 } else 2069 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2070 *pktopt = NULL; 2071 2072 if (!m || m->m_len == 0) { 2073 /* 2074 * Only turning off any previous options, regardless of 2075 * whether the opt is just created or given. 2076 */ 2077 free(opt, M_IP6OPT); 2078 return (0); 2079 } 2080 2081 /* set options specified by user. */ 2082 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2083 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2084 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2085 free(opt, M_IP6OPT); 2086 return (error); 2087 } 2088 *pktopt = opt; 2089 return (0); 2090 } 2091 2092 /* 2093 * initialize ip6_pktopts. beware that there are non-zero default values in 2094 * the struct. 2095 */ 2096 void 2097 ip6_initpktopts(struct ip6_pktopts *opt) 2098 { 2099 2100 bzero(opt, sizeof(*opt)); 2101 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2102 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2103 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2104 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2105 } 2106 2107 static int 2108 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2109 struct ucred *cred, int uproto) 2110 { 2111 struct ip6_pktopts *opt; 2112 2113 if (*pktopt == NULL) { 2114 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2115 M_WAITOK); 2116 ip6_initpktopts(*pktopt); 2117 } 2118 opt = *pktopt; 2119 2120 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2121 } 2122 2123 static int 2124 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2125 { 2126 void *optdata = NULL; 2127 int optdatalen = 0; 2128 struct ip6_ext *ip6e; 2129 int error = 0; 2130 struct in6_pktinfo null_pktinfo; 2131 int deftclass = 0, on; 2132 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2133 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2134 2135 switch (optname) { 2136 case IPV6_PKTINFO: 2137 if (pktopt && pktopt->ip6po_pktinfo) 2138 optdata = (void *)pktopt->ip6po_pktinfo; 2139 else { 2140 /* XXX: we don't have to do this every time... */ 2141 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2142 optdata = (void *)&null_pktinfo; 2143 } 2144 optdatalen = sizeof(struct in6_pktinfo); 2145 break; 2146 case IPV6_TCLASS: 2147 if (pktopt && pktopt->ip6po_tclass >= 0) 2148 optdata = (void *)&pktopt->ip6po_tclass; 2149 else 2150 optdata = (void *)&deftclass; 2151 optdatalen = sizeof(int); 2152 break; 2153 case IPV6_HOPOPTS: 2154 if (pktopt && pktopt->ip6po_hbh) { 2155 optdata = (void *)pktopt->ip6po_hbh; 2156 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2157 optdatalen = (ip6e->ip6e_len + 1) << 3; 2158 } 2159 break; 2160 case IPV6_RTHDR: 2161 if (pktopt && pktopt->ip6po_rthdr) { 2162 optdata = (void *)pktopt->ip6po_rthdr; 2163 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2164 optdatalen = (ip6e->ip6e_len + 1) << 3; 2165 } 2166 break; 2167 case IPV6_RTHDRDSTOPTS: 2168 if (pktopt && pktopt->ip6po_dest1) { 2169 optdata = (void *)pktopt->ip6po_dest1; 2170 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2171 optdatalen = (ip6e->ip6e_len + 1) << 3; 2172 } 2173 break; 2174 case IPV6_DSTOPTS: 2175 if (pktopt && pktopt->ip6po_dest2) { 2176 optdata = (void *)pktopt->ip6po_dest2; 2177 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2178 optdatalen = (ip6e->ip6e_len + 1) << 3; 2179 } 2180 break; 2181 case IPV6_NEXTHOP: 2182 if (pktopt && pktopt->ip6po_nexthop) { 2183 optdata = (void *)pktopt->ip6po_nexthop; 2184 optdatalen = pktopt->ip6po_nexthop->sa_len; 2185 } 2186 break; 2187 case IPV6_USE_MIN_MTU: 2188 if (pktopt) 2189 optdata = (void *)&pktopt->ip6po_minmtu; 2190 else 2191 optdata = (void *)&defminmtu; 2192 optdatalen = sizeof(int); 2193 break; 2194 case IPV6_DONTFRAG: 2195 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2196 on = 1; 2197 else 2198 on = 0; 2199 optdata = (void *)&on; 2200 optdatalen = sizeof(on); 2201 break; 2202 case IPV6_PREFER_TEMPADDR: 2203 if (pktopt) 2204 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2205 else 2206 optdata = (void *)&defpreftemp; 2207 optdatalen = sizeof(int); 2208 break; 2209 default: /* should not happen */ 2210 #ifdef DIAGNOSTIC 2211 panic("ip6_getpcbopt: unexpected option\n"); 2212 #endif 2213 return (ENOPROTOOPT); 2214 } 2215 2216 error = sooptcopyout(sopt, optdata, optdatalen); 2217 2218 return (error); 2219 } 2220 2221 void 2222 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2223 { 2224 if (pktopt == NULL) 2225 return; 2226 2227 if (optname == -1 || optname == IPV6_PKTINFO) { 2228 if (pktopt->ip6po_pktinfo) 2229 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2230 pktopt->ip6po_pktinfo = NULL; 2231 } 2232 if (optname == -1 || optname == IPV6_HOPLIMIT) 2233 pktopt->ip6po_hlim = -1; 2234 if (optname == -1 || optname == IPV6_TCLASS) 2235 pktopt->ip6po_tclass = -1; 2236 if (optname == -1 || optname == IPV6_NEXTHOP) { 2237 if (pktopt->ip6po_nextroute.ro_rt) { 2238 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2239 pktopt->ip6po_nextroute.ro_rt = NULL; 2240 } 2241 if (pktopt->ip6po_nexthop) 2242 free(pktopt->ip6po_nexthop, M_IP6OPT); 2243 pktopt->ip6po_nexthop = NULL; 2244 } 2245 if (optname == -1 || optname == IPV6_HOPOPTS) { 2246 if (pktopt->ip6po_hbh) 2247 free(pktopt->ip6po_hbh, M_IP6OPT); 2248 pktopt->ip6po_hbh = NULL; 2249 } 2250 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2251 if (pktopt->ip6po_dest1) 2252 free(pktopt->ip6po_dest1, M_IP6OPT); 2253 pktopt->ip6po_dest1 = NULL; 2254 } 2255 if (optname == -1 || optname == IPV6_RTHDR) { 2256 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2257 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2258 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2259 if (pktopt->ip6po_route.ro_rt) { 2260 RTFREE(pktopt->ip6po_route.ro_rt); 2261 pktopt->ip6po_route.ro_rt = NULL; 2262 } 2263 } 2264 if (optname == -1 || optname == IPV6_DSTOPTS) { 2265 if (pktopt->ip6po_dest2) 2266 free(pktopt->ip6po_dest2, M_IP6OPT); 2267 pktopt->ip6po_dest2 = NULL; 2268 } 2269 } 2270 2271 #define PKTOPT_EXTHDRCPY(type) \ 2272 do {\ 2273 if (src->type) {\ 2274 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2275 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2276 if (dst->type == NULL && canwait == M_NOWAIT)\ 2277 goto bad;\ 2278 bcopy(src->type, dst->type, hlen);\ 2279 }\ 2280 } while (/*CONSTCOND*/ 0) 2281 2282 static int 2283 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2284 { 2285 if (dst == NULL || src == NULL) { 2286 printf("ip6_clearpktopts: invalid argument\n"); 2287 return (EINVAL); 2288 } 2289 2290 dst->ip6po_hlim = src->ip6po_hlim; 2291 dst->ip6po_tclass = src->ip6po_tclass; 2292 dst->ip6po_flags = src->ip6po_flags; 2293 if (src->ip6po_pktinfo) { 2294 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2295 M_IP6OPT, canwait); 2296 if (dst->ip6po_pktinfo == NULL) 2297 goto bad; 2298 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2299 } 2300 if (src->ip6po_nexthop) { 2301 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2302 M_IP6OPT, canwait); 2303 if (dst->ip6po_nexthop == NULL) 2304 goto bad; 2305 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2306 src->ip6po_nexthop->sa_len); 2307 } 2308 PKTOPT_EXTHDRCPY(ip6po_hbh); 2309 PKTOPT_EXTHDRCPY(ip6po_dest1); 2310 PKTOPT_EXTHDRCPY(ip6po_dest2); 2311 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2312 return (0); 2313 2314 bad: 2315 ip6_clearpktopts(dst, -1); 2316 return (ENOBUFS); 2317 } 2318 #undef PKTOPT_EXTHDRCPY 2319 2320 struct ip6_pktopts * 2321 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2322 { 2323 int error; 2324 struct ip6_pktopts *dst; 2325 2326 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2327 if (dst == NULL) 2328 return (NULL); 2329 ip6_initpktopts(dst); 2330 2331 if ((error = copypktopts(dst, src, canwait)) != 0) { 2332 free(dst, M_IP6OPT); 2333 return (NULL); 2334 } 2335 2336 return (dst); 2337 } 2338 2339 void 2340 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2341 { 2342 if (pktopt == NULL) 2343 return; 2344 2345 ip6_clearpktopts(pktopt, -1); 2346 2347 free(pktopt, M_IP6OPT); 2348 } 2349 2350 /* 2351 * Set IPv6 outgoing packet options based on advanced API. 2352 */ 2353 int 2354 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2355 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2356 { 2357 struct cmsghdr *cm = 0; 2358 2359 if (control == NULL || opt == NULL) 2360 return (EINVAL); 2361 2362 ip6_initpktopts(opt); 2363 if (stickyopt) { 2364 int error; 2365 2366 /* 2367 * If stickyopt is provided, make a local copy of the options 2368 * for this particular packet, then override them by ancillary 2369 * objects. 2370 * XXX: copypktopts() does not copy the cached route to a next 2371 * hop (if any). This is not very good in terms of efficiency, 2372 * but we can allow this since this option should be rarely 2373 * used. 2374 */ 2375 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2376 return (error); 2377 } 2378 2379 /* 2380 * XXX: Currently, we assume all the optional information is stored 2381 * in a single mbuf. 2382 */ 2383 if (control->m_next) 2384 return (EINVAL); 2385 2386 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2387 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2388 int error; 2389 2390 if (control->m_len < CMSG_LEN(0)) 2391 return (EINVAL); 2392 2393 cm = mtod(control, struct cmsghdr *); 2394 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2395 return (EINVAL); 2396 if (cm->cmsg_level != IPPROTO_IPV6) 2397 continue; 2398 2399 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2400 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2401 if (error) 2402 return (error); 2403 } 2404 2405 return (0); 2406 } 2407 2408 /* 2409 * Set a particular packet option, as a sticky option or an ancillary data 2410 * item. "len" can be 0 only when it's a sticky option. 2411 * We have 4 cases of combination of "sticky" and "cmsg": 2412 * "sticky=0, cmsg=0": impossible 2413 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2414 * "sticky=1, cmsg=0": RFC3542 socket option 2415 * "sticky=1, cmsg=1": RFC2292 socket option 2416 */ 2417 static int 2418 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2419 struct ucred *cred, int sticky, int cmsg, int uproto) 2420 { 2421 int minmtupolicy, preftemp; 2422 int error; 2423 2424 if (!sticky && !cmsg) { 2425 #ifdef DIAGNOSTIC 2426 printf("ip6_setpktopt: impossible case\n"); 2427 #endif 2428 return (EINVAL); 2429 } 2430 2431 /* 2432 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2433 * not be specified in the context of RFC3542. Conversely, 2434 * RFC3542 types should not be specified in the context of RFC2292. 2435 */ 2436 if (!cmsg) { 2437 switch (optname) { 2438 case IPV6_2292PKTINFO: 2439 case IPV6_2292HOPLIMIT: 2440 case IPV6_2292NEXTHOP: 2441 case IPV6_2292HOPOPTS: 2442 case IPV6_2292DSTOPTS: 2443 case IPV6_2292RTHDR: 2444 case IPV6_2292PKTOPTIONS: 2445 return (ENOPROTOOPT); 2446 } 2447 } 2448 if (sticky && cmsg) { 2449 switch (optname) { 2450 case IPV6_PKTINFO: 2451 case IPV6_HOPLIMIT: 2452 case IPV6_NEXTHOP: 2453 case IPV6_HOPOPTS: 2454 case IPV6_DSTOPTS: 2455 case IPV6_RTHDRDSTOPTS: 2456 case IPV6_RTHDR: 2457 case IPV6_USE_MIN_MTU: 2458 case IPV6_DONTFRAG: 2459 case IPV6_TCLASS: 2460 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2461 return (ENOPROTOOPT); 2462 } 2463 } 2464 2465 switch (optname) { 2466 case IPV6_2292PKTINFO: 2467 case IPV6_PKTINFO: 2468 { 2469 struct ifnet *ifp = NULL; 2470 struct in6_pktinfo *pktinfo; 2471 2472 if (len != sizeof(struct in6_pktinfo)) 2473 return (EINVAL); 2474 2475 pktinfo = (struct in6_pktinfo *)buf; 2476 2477 /* 2478 * An application can clear any sticky IPV6_PKTINFO option by 2479 * doing a "regular" setsockopt with ipi6_addr being 2480 * in6addr_any and ipi6_ifindex being zero. 2481 * [RFC 3542, Section 6] 2482 */ 2483 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2484 pktinfo->ipi6_ifindex == 0 && 2485 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2486 ip6_clearpktopts(opt, optname); 2487 break; 2488 } 2489 2490 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2491 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2492 return (EINVAL); 2493 } 2494 2495 /* validate the interface index if specified. */ 2496 if (pktinfo->ipi6_ifindex > V_if_index || 2497 pktinfo->ipi6_ifindex < 0) { 2498 return (ENXIO); 2499 } 2500 if (pktinfo->ipi6_ifindex) { 2501 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2502 if (ifp == NULL) 2503 return (ENXIO); 2504 } 2505 2506 /* 2507 * We store the address anyway, and let in6_selectsrc() 2508 * validate the specified address. This is because ipi6_addr 2509 * may not have enough information about its scope zone, and 2510 * we may need additional information (such as outgoing 2511 * interface or the scope zone of a destination address) to 2512 * disambiguate the scope. 2513 * XXX: the delay of the validation may confuse the 2514 * application when it is used as a sticky option. 2515 */ 2516 if (opt->ip6po_pktinfo == NULL) { 2517 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2518 M_IP6OPT, M_NOWAIT); 2519 if (opt->ip6po_pktinfo == NULL) 2520 return (ENOBUFS); 2521 } 2522 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2523 break; 2524 } 2525 2526 case IPV6_2292HOPLIMIT: 2527 case IPV6_HOPLIMIT: 2528 { 2529 int *hlimp; 2530 2531 /* 2532 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2533 * to simplify the ordering among hoplimit options. 2534 */ 2535 if (optname == IPV6_HOPLIMIT && sticky) 2536 return (ENOPROTOOPT); 2537 2538 if (len != sizeof(int)) 2539 return (EINVAL); 2540 hlimp = (int *)buf; 2541 if (*hlimp < -1 || *hlimp > 255) 2542 return (EINVAL); 2543 2544 opt->ip6po_hlim = *hlimp; 2545 break; 2546 } 2547 2548 case IPV6_TCLASS: 2549 { 2550 int tclass; 2551 2552 if (len != sizeof(int)) 2553 return (EINVAL); 2554 tclass = *(int *)buf; 2555 if (tclass < -1 || tclass > 255) 2556 return (EINVAL); 2557 2558 opt->ip6po_tclass = tclass; 2559 break; 2560 } 2561 2562 case IPV6_2292NEXTHOP: 2563 case IPV6_NEXTHOP: 2564 if (cred != NULL) { 2565 error = priv_check_cred(cred, 2566 PRIV_NETINET_SETHDROPTS, 0); 2567 if (error) 2568 return (error); 2569 } 2570 2571 if (len == 0) { /* just remove the option */ 2572 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2573 break; 2574 } 2575 2576 /* check if cmsg_len is large enough for sa_len */ 2577 if (len < sizeof(struct sockaddr) || len < *buf) 2578 return (EINVAL); 2579 2580 switch (((struct sockaddr *)buf)->sa_family) { 2581 case AF_INET6: 2582 { 2583 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2584 int error; 2585 2586 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2587 return (EINVAL); 2588 2589 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2590 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2591 return (EINVAL); 2592 } 2593 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2594 != 0) { 2595 return (error); 2596 } 2597 break; 2598 } 2599 case AF_LINK: /* should eventually be supported */ 2600 default: 2601 return (EAFNOSUPPORT); 2602 } 2603 2604 /* turn off the previous option, then set the new option. */ 2605 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2606 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2607 if (opt->ip6po_nexthop == NULL) 2608 return (ENOBUFS); 2609 bcopy(buf, opt->ip6po_nexthop, *buf); 2610 break; 2611 2612 case IPV6_2292HOPOPTS: 2613 case IPV6_HOPOPTS: 2614 { 2615 struct ip6_hbh *hbh; 2616 int hbhlen; 2617 2618 /* 2619 * XXX: We don't allow a non-privileged user to set ANY HbH 2620 * options, since per-option restriction has too much 2621 * overhead. 2622 */ 2623 if (cred != NULL) { 2624 error = priv_check_cred(cred, 2625 PRIV_NETINET_SETHDROPTS, 0); 2626 if (error) 2627 return (error); 2628 } 2629 2630 if (len == 0) { 2631 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2632 break; /* just remove the option */ 2633 } 2634 2635 /* message length validation */ 2636 if (len < sizeof(struct ip6_hbh)) 2637 return (EINVAL); 2638 hbh = (struct ip6_hbh *)buf; 2639 hbhlen = (hbh->ip6h_len + 1) << 3; 2640 if (len != hbhlen) 2641 return (EINVAL); 2642 2643 /* turn off the previous option, then set the new option. */ 2644 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2645 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2646 if (opt->ip6po_hbh == NULL) 2647 return (ENOBUFS); 2648 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2649 2650 break; 2651 } 2652 2653 case IPV6_2292DSTOPTS: 2654 case IPV6_DSTOPTS: 2655 case IPV6_RTHDRDSTOPTS: 2656 { 2657 struct ip6_dest *dest, **newdest = NULL; 2658 int destlen; 2659 2660 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2661 error = priv_check_cred(cred, 2662 PRIV_NETINET_SETHDROPTS, 0); 2663 if (error) 2664 return (error); 2665 } 2666 2667 if (len == 0) { 2668 ip6_clearpktopts(opt, optname); 2669 break; /* just remove the option */ 2670 } 2671 2672 /* message length validation */ 2673 if (len < sizeof(struct ip6_dest)) 2674 return (EINVAL); 2675 dest = (struct ip6_dest *)buf; 2676 destlen = (dest->ip6d_len + 1) << 3; 2677 if (len != destlen) 2678 return (EINVAL); 2679 2680 /* 2681 * Determine the position that the destination options header 2682 * should be inserted; before or after the routing header. 2683 */ 2684 switch (optname) { 2685 case IPV6_2292DSTOPTS: 2686 /* 2687 * The old advacned API is ambiguous on this point. 2688 * Our approach is to determine the position based 2689 * according to the existence of a routing header. 2690 * Note, however, that this depends on the order of the 2691 * extension headers in the ancillary data; the 1st 2692 * part of the destination options header must appear 2693 * before the routing header in the ancillary data, 2694 * too. 2695 * RFC3542 solved the ambiguity by introducing 2696 * separate ancillary data or option types. 2697 */ 2698 if (opt->ip6po_rthdr == NULL) 2699 newdest = &opt->ip6po_dest1; 2700 else 2701 newdest = &opt->ip6po_dest2; 2702 break; 2703 case IPV6_RTHDRDSTOPTS: 2704 newdest = &opt->ip6po_dest1; 2705 break; 2706 case IPV6_DSTOPTS: 2707 newdest = &opt->ip6po_dest2; 2708 break; 2709 } 2710 2711 /* turn off the previous option, then set the new option. */ 2712 ip6_clearpktopts(opt, optname); 2713 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2714 if (*newdest == NULL) 2715 return (ENOBUFS); 2716 bcopy(dest, *newdest, destlen); 2717 2718 break; 2719 } 2720 2721 case IPV6_2292RTHDR: 2722 case IPV6_RTHDR: 2723 { 2724 struct ip6_rthdr *rth; 2725 int rthlen; 2726 2727 if (len == 0) { 2728 ip6_clearpktopts(opt, IPV6_RTHDR); 2729 break; /* just remove the option */ 2730 } 2731 2732 /* message length validation */ 2733 if (len < sizeof(struct ip6_rthdr)) 2734 return (EINVAL); 2735 rth = (struct ip6_rthdr *)buf; 2736 rthlen = (rth->ip6r_len + 1) << 3; 2737 if (len != rthlen) 2738 return (EINVAL); 2739 2740 switch (rth->ip6r_type) { 2741 case IPV6_RTHDR_TYPE_0: 2742 if (rth->ip6r_len == 0) /* must contain one addr */ 2743 return (EINVAL); 2744 if (rth->ip6r_len % 2) /* length must be even */ 2745 return (EINVAL); 2746 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2747 return (EINVAL); 2748 break; 2749 default: 2750 return (EINVAL); /* not supported */ 2751 } 2752 2753 /* turn off the previous option */ 2754 ip6_clearpktopts(opt, IPV6_RTHDR); 2755 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2756 if (opt->ip6po_rthdr == NULL) 2757 return (ENOBUFS); 2758 bcopy(rth, opt->ip6po_rthdr, rthlen); 2759 2760 break; 2761 } 2762 2763 case IPV6_USE_MIN_MTU: 2764 if (len != sizeof(int)) 2765 return (EINVAL); 2766 minmtupolicy = *(int *)buf; 2767 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2768 minmtupolicy != IP6PO_MINMTU_DISABLE && 2769 minmtupolicy != IP6PO_MINMTU_ALL) { 2770 return (EINVAL); 2771 } 2772 opt->ip6po_minmtu = minmtupolicy; 2773 break; 2774 2775 case IPV6_DONTFRAG: 2776 if (len != sizeof(int)) 2777 return (EINVAL); 2778 2779 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2780 /* 2781 * we ignore this option for TCP sockets. 2782 * (RFC3542 leaves this case unspecified.) 2783 */ 2784 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2785 } else 2786 opt->ip6po_flags |= IP6PO_DONTFRAG; 2787 break; 2788 2789 case IPV6_PREFER_TEMPADDR: 2790 if (len != sizeof(int)) 2791 return (EINVAL); 2792 preftemp = *(int *)buf; 2793 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 2794 preftemp != IP6PO_TEMPADDR_NOTPREFER && 2795 preftemp != IP6PO_TEMPADDR_PREFER) { 2796 return (EINVAL); 2797 } 2798 opt->ip6po_prefer_tempaddr = preftemp; 2799 break; 2800 2801 default: 2802 return (ENOPROTOOPT); 2803 } /* end of switch */ 2804 2805 return (0); 2806 } 2807 2808 /* 2809 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2810 * packet to the input queue of a specified interface. Note that this 2811 * calls the output routine of the loopback "driver", but with an interface 2812 * pointer that might NOT be &loif -- easier than replicating that code here. 2813 */ 2814 void 2815 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 2816 { 2817 struct mbuf *copym; 2818 struct ip6_hdr *ip6; 2819 2820 copym = m_copy(m, 0, M_COPYALL); 2821 if (copym == NULL) 2822 return; 2823 2824 /* 2825 * Make sure to deep-copy IPv6 header portion in case the data 2826 * is in an mbuf cluster, so that we can safely override the IPv6 2827 * header portion later. 2828 */ 2829 if ((copym->m_flags & M_EXT) != 0 || 2830 copym->m_len < sizeof(struct ip6_hdr)) { 2831 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2832 if (copym == NULL) 2833 return; 2834 } 2835 2836 #ifdef DIAGNOSTIC 2837 if (copym->m_len < sizeof(*ip6)) { 2838 m_freem(copym); 2839 return; 2840 } 2841 #endif 2842 2843 ip6 = mtod(copym, struct ip6_hdr *); 2844 /* 2845 * clear embedded scope identifiers if necessary. 2846 * in6_clearscope will touch the addresses only when necessary. 2847 */ 2848 in6_clearscope(&ip6->ip6_src); 2849 in6_clearscope(&ip6->ip6_dst); 2850 2851 (void)if_simloop(ifp, copym, dst->sin6_family, 0); 2852 } 2853 2854 /* 2855 * Chop IPv6 header off from the payload. 2856 */ 2857 static int 2858 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 2859 { 2860 struct mbuf *mh; 2861 struct ip6_hdr *ip6; 2862 2863 ip6 = mtod(m, struct ip6_hdr *); 2864 if (m->m_len > sizeof(*ip6)) { 2865 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 2866 if (mh == 0) { 2867 m_freem(m); 2868 return ENOBUFS; 2869 } 2870 M_MOVE_PKTHDR(mh, m); 2871 MH_ALIGN(mh, sizeof(*ip6)); 2872 m->m_len -= sizeof(*ip6); 2873 m->m_data += sizeof(*ip6); 2874 mh->m_next = m; 2875 m = mh; 2876 m->m_len = sizeof(*ip6); 2877 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2878 } 2879 exthdrs->ip6e_ip6 = m; 2880 return 0; 2881 } 2882 2883 /* 2884 * Compute IPv6 extension header length. 2885 */ 2886 int 2887 ip6_optlen(struct inpcb *in6p) 2888 { 2889 int len; 2890 2891 if (!in6p->in6p_outputopts) 2892 return 0; 2893 2894 len = 0; 2895 #define elen(x) \ 2896 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2897 2898 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2899 if (in6p->in6p_outputopts->ip6po_rthdr) 2900 /* dest1 is valid with rthdr only */ 2901 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2902 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2903 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2904 return len; 2905 #undef elen 2906 } 2907