1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ipfw.h" 69 #include "opt_ipsec.h" 70 #include "opt_sctp.h" 71 #include "opt_route.h" 72 73 #include <sys/param.h> 74 #include <sys/kernel.h> 75 #include <sys/malloc.h> 76 #include <sys/mbuf.h> 77 #include <sys/errno.h> 78 #include <sys/priv.h> 79 #include <sys/proc.h> 80 #include <sys/protosw.h> 81 #include <sys/socket.h> 82 #include <sys/socketvar.h> 83 #include <sys/syslog.h> 84 #include <sys/ucred.h> 85 86 #include <machine/in_cksum.h> 87 88 #include <net/if.h> 89 #include <net/netisr.h> 90 #include <net/route.h> 91 #include <net/pfil.h> 92 #include <net/vnet.h> 93 94 #include <netinet/in.h> 95 #include <netinet/in_var.h> 96 #include <netinet/ip_var.h> 97 #include <netinet6/in6_var.h> 98 #include <netinet/ip6.h> 99 #include <netinet/icmp6.h> 100 #include <netinet6/ip6_var.h> 101 #include <netinet/in_pcb.h> 102 #include <netinet/tcp_var.h> 103 #include <netinet6/nd6.h> 104 105 #ifdef IPSEC 106 #include <netipsec/ipsec.h> 107 #include <netipsec/ipsec6.h> 108 #include <netipsec/key.h> 109 #include <netinet6/ip6_ipsec.h> 110 #endif /* IPSEC */ 111 #ifdef SCTP 112 #include <netinet/sctp.h> 113 #include <netinet/sctp_crc32.h> 114 #endif 115 116 #include <netinet6/ip6protosw.h> 117 #include <netinet6/scope6_var.h> 118 119 #ifdef FLOWTABLE 120 #include <net/flowtable.h> 121 #endif 122 123 extern int in6_mcast_loop; 124 125 struct ip6_exthdrs { 126 struct mbuf *ip6e_ip6; 127 struct mbuf *ip6e_hbh; 128 struct mbuf *ip6e_dest1; 129 struct mbuf *ip6e_rthdr; 130 struct mbuf *ip6e_dest2; 131 }; 132 133 static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **, 134 struct ucred *, int)); 135 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 136 struct socket *, struct sockopt *)); 137 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 138 static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *, 139 struct ucred *, int, int, int)); 140 141 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 142 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 143 struct ip6_frag **)); 144 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 145 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 146 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *, 147 struct ifnet *, struct in6_addr *, u_long *, int *, u_int)); 148 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 149 150 151 /* 152 * Make an extension header from option data. hp is the source, and 153 * mp is the destination. 154 */ 155 #define MAKE_EXTHDR(hp, mp) \ 156 do { \ 157 if (hp) { \ 158 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 159 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 160 ((eh)->ip6e_len + 1) << 3); \ 161 if (error) \ 162 goto freehdrs; \ 163 } \ 164 } while (/*CONSTCOND*/ 0) 165 166 /* 167 * Form a chain of extension headers. 168 * m is the extension header mbuf 169 * mp is the previous mbuf in the chain 170 * p is the next header 171 * i is the type of option. 172 */ 173 #define MAKE_CHAIN(m, mp, p, i)\ 174 do {\ 175 if (m) {\ 176 if (!hdrsplit) \ 177 panic("assumption failed: hdr not split"); \ 178 *mtod((m), u_char *) = *(p);\ 179 *(p) = (i);\ 180 p = mtod((m), u_char *);\ 181 (m)->m_next = (mp)->m_next;\ 182 (mp)->m_next = (m);\ 183 (mp) = (m);\ 184 }\ 185 } while (/*CONSTCOND*/ 0) 186 187 static void 188 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 189 { 190 u_short csum; 191 192 csum = in_cksum_skip(m, offset + plen, offset); 193 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 194 csum = 0xffff; 195 offset += m->m_pkthdr.csum_data; /* checksum offset */ 196 197 if (offset + sizeof(u_short) > m->m_len) { 198 printf("%s: delayed m_pullup, m->len: %d off: %d\n", 199 __func__, m->m_len, offset); 200 /* 201 * XXX this should not happen, but if it does, the correct 202 * behavior may be to insert the checksum in the appropriate 203 * next mbuf in the chain. 204 */ 205 return; 206 } 207 *(u_short *)(m->m_data + offset) = csum; 208 } 209 210 /* 211 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 212 * header (with pri, len, nxt, hlim, src, dst). 213 * This function may modify ver and hlim only. 214 * The mbuf chain containing the packet will be freed. 215 * The mbuf opt, if present, will not be freed. 216 * 217 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 218 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 219 * which is rt_rmx.rmx_mtu. 220 * 221 * ifpp - XXX: just for statistics 222 */ 223 int 224 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 225 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 226 struct ifnet **ifpp, struct inpcb *inp) 227 { 228 struct ip6_hdr *ip6, *mhip6; 229 struct ifnet *ifp, *origifp; 230 struct mbuf *m = m0; 231 struct mbuf *mprev = NULL; 232 int hlen, tlen, len, off; 233 struct route_in6 ip6route; 234 struct rtentry *rt = NULL; 235 struct sockaddr_in6 *dst, src_sa, dst_sa; 236 struct in6_addr odst; 237 int error = 0; 238 struct in6_ifaddr *ia = NULL; 239 u_long mtu; 240 int alwaysfrag, dontfrag; 241 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 242 struct ip6_exthdrs exthdrs; 243 struct in6_addr finaldst, src0, dst0; 244 u_int32_t zone; 245 struct route_in6 *ro_pmtu = NULL; 246 int flevalid = 0; 247 int hdrsplit = 0; 248 int needipsec = 0; 249 int sw_csum, tso; 250 #ifdef IPSEC 251 struct ipsec_output_state state; 252 struct ip6_rthdr *rh = NULL; 253 int needipsectun = 0; 254 int segleft_org = 0; 255 struct secpolicy *sp = NULL; 256 #endif /* IPSEC */ 257 #ifdef IPFIREWALL_FORWARD 258 struct m_tag *fwd_tag; 259 #endif 260 261 ip6 = mtod(m, struct ip6_hdr *); 262 if (ip6 == NULL) { 263 printf ("ip6 is NULL"); 264 goto bad; 265 } 266 267 if (inp != NULL) 268 M_SETFIB(m, inp->inp_inc.inc_fibnum); 269 270 finaldst = ip6->ip6_dst; 271 bzero(&exthdrs, sizeof(exthdrs)); 272 if (opt) { 273 /* Hop-by-Hop options header */ 274 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 275 /* Destination options header(1st part) */ 276 if (opt->ip6po_rthdr) { 277 /* 278 * Destination options header(1st part) 279 * This only makes sense with a routing header. 280 * See Section 9.2 of RFC 3542. 281 * Disabling this part just for MIP6 convenience is 282 * a bad idea. We need to think carefully about a 283 * way to make the advanced API coexist with MIP6 284 * options, which might automatically be inserted in 285 * the kernel. 286 */ 287 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 288 } 289 /* Routing header */ 290 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 291 /* Destination options header(2nd part) */ 292 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 293 } 294 295 /* 296 * IPSec checking which handles several cases. 297 * FAST IPSEC: We re-injected the packet. 298 */ 299 #ifdef IPSEC 300 switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp)) 301 { 302 case 1: /* Bad packet */ 303 goto freehdrs; 304 case -1: /* Do IPSec */ 305 needipsec = 1; 306 case 0: /* No IPSec */ 307 default: 308 break; 309 } 310 #endif /* IPSEC */ 311 312 /* 313 * Calculate the total length of the extension header chain. 314 * Keep the length of the unfragmentable part for fragmentation. 315 */ 316 optlen = 0; 317 if (exthdrs.ip6e_hbh) 318 optlen += exthdrs.ip6e_hbh->m_len; 319 if (exthdrs.ip6e_dest1) 320 optlen += exthdrs.ip6e_dest1->m_len; 321 if (exthdrs.ip6e_rthdr) 322 optlen += exthdrs.ip6e_rthdr->m_len; 323 unfragpartlen = optlen + sizeof(struct ip6_hdr); 324 325 /* NOTE: we don't add AH/ESP length here. do that later. */ 326 if (exthdrs.ip6e_dest2) 327 optlen += exthdrs.ip6e_dest2->m_len; 328 329 /* 330 * If we need IPsec, or there is at least one extension header, 331 * separate IP6 header from the payload. 332 */ 333 if ((needipsec || optlen) && !hdrsplit) { 334 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 335 m = NULL; 336 goto freehdrs; 337 } 338 m = exthdrs.ip6e_ip6; 339 hdrsplit++; 340 } 341 342 /* adjust pointer */ 343 ip6 = mtod(m, struct ip6_hdr *); 344 345 /* adjust mbuf packet header length */ 346 m->m_pkthdr.len += optlen; 347 plen = m->m_pkthdr.len - sizeof(*ip6); 348 349 /* If this is a jumbo payload, insert a jumbo payload option. */ 350 if (plen > IPV6_MAXPACKET) { 351 if (!hdrsplit) { 352 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 353 m = NULL; 354 goto freehdrs; 355 } 356 m = exthdrs.ip6e_ip6; 357 hdrsplit++; 358 } 359 /* adjust pointer */ 360 ip6 = mtod(m, struct ip6_hdr *); 361 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 362 goto freehdrs; 363 ip6->ip6_plen = 0; 364 } else 365 ip6->ip6_plen = htons(plen); 366 367 /* 368 * Concatenate headers and fill in next header fields. 369 * Here we have, on "m" 370 * IPv6 payload 371 * and we insert headers accordingly. Finally, we should be getting: 372 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 373 * 374 * during the header composing process, "m" points to IPv6 header. 375 * "mprev" points to an extension header prior to esp. 376 */ 377 u_char *nexthdrp = &ip6->ip6_nxt; 378 mprev = m; 379 380 /* 381 * we treat dest2 specially. this makes IPsec processing 382 * much easier. the goal here is to make mprev point the 383 * mbuf prior to dest2. 384 * 385 * result: IPv6 dest2 payload 386 * m and mprev will point to IPv6 header. 387 */ 388 if (exthdrs.ip6e_dest2) { 389 if (!hdrsplit) 390 panic("assumption failed: hdr not split"); 391 exthdrs.ip6e_dest2->m_next = m->m_next; 392 m->m_next = exthdrs.ip6e_dest2; 393 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 394 ip6->ip6_nxt = IPPROTO_DSTOPTS; 395 } 396 397 /* 398 * result: IPv6 hbh dest1 rthdr dest2 payload 399 * m will point to IPv6 header. mprev will point to the 400 * extension header prior to dest2 (rthdr in the above case). 401 */ 402 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 403 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 404 IPPROTO_DSTOPTS); 405 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 406 IPPROTO_ROUTING); 407 408 #ifdef IPSEC 409 if (!needipsec) 410 goto skip_ipsec2; 411 412 /* 413 * pointers after IPsec headers are not valid any more. 414 * other pointers need a great care too. 415 * (IPsec routines should not mangle mbufs prior to AH/ESP) 416 */ 417 exthdrs.ip6e_dest2 = NULL; 418 419 if (exthdrs.ip6e_rthdr) { 420 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 421 segleft_org = rh->ip6r_segleft; 422 rh->ip6r_segleft = 0; 423 } 424 425 bzero(&state, sizeof(state)); 426 state.m = m; 427 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 428 &needipsectun); 429 m = state.m; 430 if (error == EJUSTRETURN) { 431 /* 432 * We had a SP with a level of 'use' and no SA. We 433 * will just continue to process the packet without 434 * IPsec processing. 435 */ 436 ; 437 } else if (error) { 438 /* mbuf is already reclaimed in ipsec6_output_trans. */ 439 m = NULL; 440 switch (error) { 441 case EHOSTUNREACH: 442 case ENETUNREACH: 443 case EMSGSIZE: 444 case ENOBUFS: 445 case ENOMEM: 446 break; 447 default: 448 printf("[%s:%d] (ipsec): error code %d\n", 449 __func__, __LINE__, error); 450 /* FALLTHROUGH */ 451 case ENOENT: 452 /* don't show these error codes to the user */ 453 error = 0; 454 break; 455 } 456 goto bad; 457 } else if (!needipsectun) { 458 /* 459 * In the FAST IPSec case we have already 460 * re-injected the packet and it has been freed 461 * by the ipsec_done() function. So, just clean 462 * up after ourselves. 463 */ 464 m = NULL; 465 goto done; 466 } 467 if (exthdrs.ip6e_rthdr) { 468 /* ah6_output doesn't modify mbuf chain */ 469 rh->ip6r_segleft = segleft_org; 470 } 471 skip_ipsec2:; 472 #endif /* IPSEC */ 473 474 /* 475 * If there is a routing header, discard the packet. 476 */ 477 if (exthdrs.ip6e_rthdr) { 478 error = EINVAL; 479 goto bad; 480 } 481 482 /* Source address validation */ 483 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 484 (flags & IPV6_UNSPECSRC) == 0) { 485 error = EOPNOTSUPP; 486 V_ip6stat.ip6s_badscope++; 487 goto bad; 488 } 489 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 490 error = EOPNOTSUPP; 491 V_ip6stat.ip6s_badscope++; 492 goto bad; 493 } 494 495 V_ip6stat.ip6s_localout++; 496 497 /* 498 * Route packet. 499 */ 500 if (ro == 0) { 501 ro = &ip6route; 502 bzero((caddr_t)ro, sizeof(*ro)); 503 } 504 ro_pmtu = ro; 505 if (opt && opt->ip6po_rthdr) 506 ro = &opt->ip6po_route; 507 dst = (struct sockaddr_in6 *)&ro->ro_dst; 508 #ifdef FLOWTABLE 509 if (ro == &ip6route) { 510 struct flentry *fle; 511 512 /* 513 * The flow table returns route entries valid for up to 30 514 * seconds; we rely on the remainder of ip_output() taking no 515 * longer than that long for the stability of ro_rt. The 516 * flow ID assignment must have happened before this point. 517 */ 518 if ((fle = flowtable_lookup_mbuf(V_ip6_ft, m, AF_INET6)) != NULL) { 519 flow_to_route_in6(fle, ro); 520 if (ro->ro_rt != NULL && ro->ro_lle != NULL) 521 flevalid = 1; 522 } 523 } 524 #endif 525 again: 526 /* 527 * if specified, try to fill in the traffic class field. 528 * do not override if a non-zero value is already set. 529 * we check the diffserv field and the ecn field separately. 530 */ 531 if (opt && opt->ip6po_tclass >= 0) { 532 int mask = 0; 533 534 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 535 mask |= 0xfc; 536 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 537 mask |= 0x03; 538 if (mask != 0) 539 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 540 } 541 542 /* fill in or override the hop limit field, if necessary. */ 543 if (opt && opt->ip6po_hlim != -1) 544 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 545 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 546 if (im6o != NULL) 547 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 548 else 549 ip6->ip6_hlim = V_ip6_defmcasthlim; 550 } 551 552 #ifdef IPSEC 553 /* 554 * We may re-inject packets into the stack here. 555 */ 556 if (needipsec && needipsectun) { 557 struct ipsec_output_state state; 558 559 /* 560 * All the extension headers will become inaccessible 561 * (since they can be encrypted). 562 * Don't panic, we need no more updates to extension headers 563 * on inner IPv6 packet (since they are now encapsulated). 564 * 565 * IPv6 [ESP|AH] IPv6 [extension headers] payload 566 */ 567 bzero(&exthdrs, sizeof(exthdrs)); 568 exthdrs.ip6e_ip6 = m; 569 570 bzero(&state, sizeof(state)); 571 state.m = m; 572 state.ro = (struct route *)ro; 573 state.dst = (struct sockaddr *)dst; 574 575 error = ipsec6_output_tunnel(&state, sp, flags); 576 577 m = state.m; 578 ro = (struct route_in6 *)state.ro; 579 dst = (struct sockaddr_in6 *)state.dst; 580 if (error == EJUSTRETURN) { 581 /* 582 * We had a SP with a level of 'use' and no SA. We 583 * will just continue to process the packet without 584 * IPsec processing. 585 */ 586 ; 587 } else if (error) { 588 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 589 m0 = m = NULL; 590 m = NULL; 591 switch (error) { 592 case EHOSTUNREACH: 593 case ENETUNREACH: 594 case EMSGSIZE: 595 case ENOBUFS: 596 case ENOMEM: 597 break; 598 default: 599 printf("[%s:%d] (ipsec): error code %d\n", 600 __func__, __LINE__, error); 601 /* FALLTHROUGH */ 602 case ENOENT: 603 /* don't show these error codes to the user */ 604 error = 0; 605 break; 606 } 607 goto bad; 608 } else { 609 /* 610 * In the FAST IPSec case we have already 611 * re-injected the packet and it has been freed 612 * by the ipsec_done() function. So, just clean 613 * up after ourselves. 614 */ 615 m = NULL; 616 goto done; 617 } 618 619 exthdrs.ip6e_ip6 = m; 620 } 621 #endif /* IPSEC */ 622 623 /* adjust pointer */ 624 ip6 = mtod(m, struct ip6_hdr *); 625 626 bzero(&dst_sa, sizeof(dst_sa)); 627 dst_sa.sin6_family = AF_INET6; 628 dst_sa.sin6_len = sizeof(dst_sa); 629 dst_sa.sin6_addr = ip6->ip6_dst; 630 if (flevalid) { 631 rt = ro->ro_rt; 632 ifp = ro->ro_rt->rt_ifp; 633 } else if ((error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, 634 &ifp, &rt, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m))) != 0) { 635 switch (error) { 636 case EHOSTUNREACH: 637 V_ip6stat.ip6s_noroute++; 638 break; 639 case EADDRNOTAVAIL: 640 default: 641 break; /* XXX statistics? */ 642 } 643 if (ifp != NULL) 644 in6_ifstat_inc(ifp, ifs6_out_discard); 645 goto bad; 646 } 647 if (rt == NULL) { 648 /* 649 * If in6_selectroute() does not return a route entry, 650 * dst may not have been updated. 651 */ 652 *dst = dst_sa; /* XXX */ 653 } 654 655 /* 656 * then rt (for unicast) and ifp must be non-NULL valid values. 657 */ 658 if ((flags & IPV6_FORWARDING) == 0) { 659 /* XXX: the FORWARDING flag can be set for mrouting. */ 660 in6_ifstat_inc(ifp, ifs6_out_request); 661 } 662 if (rt != NULL) { 663 ia = (struct in6_ifaddr *)(rt->rt_ifa); 664 rt->rt_use++; 665 } 666 667 668 /* 669 * The outgoing interface must be in the zone of source and 670 * destination addresses. 671 */ 672 origifp = ifp; 673 674 src0 = ip6->ip6_src; 675 if (in6_setscope(&src0, origifp, &zone)) 676 goto badscope; 677 bzero(&src_sa, sizeof(src_sa)); 678 src_sa.sin6_family = AF_INET6; 679 src_sa.sin6_len = sizeof(src_sa); 680 src_sa.sin6_addr = ip6->ip6_src; 681 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 682 goto badscope; 683 684 dst0 = ip6->ip6_dst; 685 if (in6_setscope(&dst0, origifp, &zone)) 686 goto badscope; 687 /* re-initialize to be sure */ 688 bzero(&dst_sa, sizeof(dst_sa)); 689 dst_sa.sin6_family = AF_INET6; 690 dst_sa.sin6_len = sizeof(dst_sa); 691 dst_sa.sin6_addr = ip6->ip6_dst; 692 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 693 goto badscope; 694 } 695 696 /* We should use ia_ifp to support the case of 697 * sending packets to an address of our own. 698 */ 699 if (ia != NULL && ia->ia_ifp) 700 ifp = ia->ia_ifp; 701 702 /* scope check is done. */ 703 goto routefound; 704 705 badscope: 706 V_ip6stat.ip6s_badscope++; 707 in6_ifstat_inc(origifp, ifs6_out_discard); 708 if (error == 0) 709 error = EHOSTUNREACH; /* XXX */ 710 goto bad; 711 712 routefound: 713 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 714 if (opt && opt->ip6po_nextroute.ro_rt) { 715 /* 716 * The nexthop is explicitly specified by the 717 * application. We assume the next hop is an IPv6 718 * address. 719 */ 720 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 721 } 722 else if ((rt->rt_flags & RTF_GATEWAY)) 723 dst = (struct sockaddr_in6 *)rt->rt_gateway; 724 } 725 726 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 727 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 728 } else { 729 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 730 in6_ifstat_inc(ifp, ifs6_out_mcast); 731 /* 732 * Confirm that the outgoing interface supports multicast. 733 */ 734 if (!(ifp->if_flags & IFF_MULTICAST)) { 735 V_ip6stat.ip6s_noroute++; 736 in6_ifstat_inc(ifp, ifs6_out_discard); 737 error = ENETUNREACH; 738 goto bad; 739 } 740 if ((im6o == NULL && in6_mcast_loop) || 741 (im6o && im6o->im6o_multicast_loop)) { 742 /* 743 * Loop back multicast datagram if not expressly 744 * forbidden to do so, even if we have not joined 745 * the address; protocols will filter it later, 746 * thus deferring a hash lookup and lock acquisition 747 * at the expense of an m_copym(). 748 */ 749 ip6_mloopback(ifp, m, dst); 750 } else { 751 /* 752 * If we are acting as a multicast router, perform 753 * multicast forwarding as if the packet had just 754 * arrived on the interface to which we are about 755 * to send. The multicast forwarding function 756 * recursively calls this function, using the 757 * IPV6_FORWARDING flag to prevent infinite recursion. 758 * 759 * Multicasts that are looped back by ip6_mloopback(), 760 * above, will be forwarded by the ip6_input() routine, 761 * if necessary. 762 */ 763 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 764 /* 765 * XXX: ip6_mforward expects that rcvif is NULL 766 * when it is called from the originating path. 767 * However, it is not always the case, since 768 * some versions of MGETHDR() does not 769 * initialize the field. 770 */ 771 m->m_pkthdr.rcvif = NULL; 772 if (ip6_mforward(ip6, ifp, m) != 0) { 773 m_freem(m); 774 goto done; 775 } 776 } 777 } 778 /* 779 * Multicasts with a hoplimit of zero may be looped back, 780 * above, but must not be transmitted on a network. 781 * Also, multicasts addressed to the loopback interface 782 * are not sent -- the above call to ip6_mloopback() will 783 * loop back a copy if this host actually belongs to the 784 * destination group on the loopback interface. 785 */ 786 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 787 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 788 m_freem(m); 789 goto done; 790 } 791 } 792 793 /* 794 * Fill the outgoing inteface to tell the upper layer 795 * to increment per-interface statistics. 796 */ 797 if (ifpp) 798 *ifpp = ifp; 799 800 /* Determine path MTU. */ 801 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 802 &alwaysfrag, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m))) != 0) 803 goto bad; 804 805 /* 806 * The caller of this function may specify to use the minimum MTU 807 * in some cases. 808 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 809 * setting. The logic is a bit complicated; by default, unicast 810 * packets will follow path MTU while multicast packets will be sent at 811 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 812 * including unicast ones will be sent at the minimum MTU. Multicast 813 * packets will always be sent at the minimum MTU unless 814 * IP6PO_MINMTU_DISABLE is explicitly specified. 815 * See RFC 3542 for more details. 816 */ 817 if (mtu > IPV6_MMTU) { 818 if ((flags & IPV6_MINMTU)) 819 mtu = IPV6_MMTU; 820 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 821 mtu = IPV6_MMTU; 822 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 823 (opt == NULL || 824 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 825 mtu = IPV6_MMTU; 826 } 827 } 828 829 /* 830 * clear embedded scope identifiers if necessary. 831 * in6_clearscope will touch the addresses only when necessary. 832 */ 833 in6_clearscope(&ip6->ip6_src); 834 in6_clearscope(&ip6->ip6_dst); 835 836 /* 837 * If the outgoing packet contains a hop-by-hop options header, 838 * it must be examined and processed even by the source node. 839 * (RFC 2460, section 4.) 840 */ 841 if (exthdrs.ip6e_hbh) { 842 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 843 u_int32_t dummy; /* XXX unused */ 844 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 845 846 #ifdef DIAGNOSTIC 847 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 848 panic("ip6e_hbh is not contiguous"); 849 #endif 850 /* 851 * XXX: if we have to send an ICMPv6 error to the sender, 852 * we need the M_LOOP flag since icmp6_error() expects 853 * the IPv6 and the hop-by-hop options header are 854 * contiguous unless the flag is set. 855 */ 856 m->m_flags |= M_LOOP; 857 m->m_pkthdr.rcvif = ifp; 858 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 859 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 860 &dummy, &plen) < 0) { 861 /* m was already freed at this point */ 862 error = EINVAL;/* better error? */ 863 goto done; 864 } 865 m->m_flags &= ~M_LOOP; /* XXX */ 866 m->m_pkthdr.rcvif = NULL; 867 } 868 869 /* Jump over all PFIL processing if hooks are not active. */ 870 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 871 goto passout; 872 873 odst = ip6->ip6_dst; 874 /* Run through list of hooks for output packets. */ 875 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 876 if (error != 0 || m == NULL) 877 goto done; 878 ip6 = mtod(m, struct ip6_hdr *); 879 880 /* See if destination IP address was changed by packet filter. */ 881 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 882 m->m_flags |= M_SKIP_FIREWALL; 883 /* If destination is now ourself drop to ip6_input(). */ 884 if (in6_localip(&ip6->ip6_dst)) { 885 m->m_flags |= M_FASTFWD_OURS; 886 if (m->m_pkthdr.rcvif == NULL) 887 m->m_pkthdr.rcvif = V_loif; 888 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 889 m->m_pkthdr.csum_flags |= 890 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 891 m->m_pkthdr.csum_data = 0xffff; 892 } 893 #ifdef SCTP 894 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 895 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 896 #endif 897 error = netisr_queue(NETISR_IPV6, m); 898 goto done; 899 } else 900 goto again; /* Redo the routing table lookup. */ 901 } 902 903 #ifdef IPFIREWALL_FORWARD 904 /* See if local, if yes, send it to netisr. */ 905 if (m->m_flags & M_FASTFWD_OURS) { 906 if (m->m_pkthdr.rcvif == NULL) 907 m->m_pkthdr.rcvif = V_loif; 908 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 909 m->m_pkthdr.csum_flags |= 910 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 911 m->m_pkthdr.csum_data = 0xffff; 912 } 913 #ifdef SCTP 914 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 915 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 916 #endif 917 error = netisr_queue(NETISR_IPV6, m); 918 goto done; 919 } 920 /* Or forward to some other address? */ 921 fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL); 922 if (fwd_tag) { 923 dst = (struct sockaddr_in6 *)&ro->ro_dst; 924 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in6)); 925 m->m_flags |= M_SKIP_FIREWALL; 926 m_tag_delete(m, fwd_tag); 927 goto again; 928 } 929 #endif /* IPFIREWALL_FORWARD */ 930 931 passout: 932 /* 933 * Send the packet to the outgoing interface. 934 * If necessary, do IPv6 fragmentation before sending. 935 * 936 * the logic here is rather complex: 937 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 938 * 1-a: send as is if tlen <= path mtu 939 * 1-b: fragment if tlen > path mtu 940 * 941 * 2: if user asks us not to fragment (dontfrag == 1) 942 * 2-a: send as is if tlen <= interface mtu 943 * 2-b: error if tlen > interface mtu 944 * 945 * 3: if we always need to attach fragment header (alwaysfrag == 1) 946 * always fragment 947 * 948 * 4: if dontfrag == 1 && alwaysfrag == 1 949 * error, as we cannot handle this conflicting request 950 */ 951 sw_csum = m->m_pkthdr.csum_flags; 952 if (!hdrsplit) { 953 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 954 sw_csum &= ~ifp->if_hwassist; 955 } else 956 tso = 0; 957 /* 958 * If we added extension headers, we will not do TSO and calculate the 959 * checksums ourselves for now. 960 * XXX-BZ Need a framework to know when the NIC can handle it, even 961 * with ext. hdrs. 962 */ 963 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 964 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 965 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 966 } 967 #ifdef SCTP 968 if (sw_csum & CSUM_SCTP) { 969 sw_csum &= ~CSUM_SCTP; 970 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 971 } 972 #endif 973 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 974 tlen = m->m_pkthdr.len; 975 976 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 977 dontfrag = 1; 978 else 979 dontfrag = 0; 980 if (dontfrag && alwaysfrag) { /* case 4 */ 981 /* conflicting request - can't transmit */ 982 error = EMSGSIZE; 983 goto bad; 984 } 985 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 986 /* 987 * Even if the DONTFRAG option is specified, we cannot send the 988 * packet when the data length is larger than the MTU of the 989 * outgoing interface. 990 * Notify the error by sending IPV6_PATHMTU ancillary data as 991 * well as returning an error code (the latter is not described 992 * in the API spec.) 993 */ 994 u_int32_t mtu32; 995 struct ip6ctlparam ip6cp; 996 997 mtu32 = (u_int32_t)mtu; 998 bzero(&ip6cp, sizeof(ip6cp)); 999 ip6cp.ip6c_cmdarg = (void *)&mtu32; 1000 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 1001 (void *)&ip6cp); 1002 1003 error = EMSGSIZE; 1004 goto bad; 1005 } 1006 1007 /* 1008 * transmit packet without fragmentation 1009 */ 1010 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 1011 struct in6_ifaddr *ia6; 1012 1013 ip6 = mtod(m, struct ip6_hdr *); 1014 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1015 if (ia6) { 1016 /* Record statistics for this interface address. */ 1017 ia6->ia_ifa.if_opackets++; 1018 ia6->ia_ifa.if_obytes += m->m_pkthdr.len; 1019 ifa_free(&ia6->ia_ifa); 1020 } 1021 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1022 goto done; 1023 } 1024 1025 /* 1026 * try to fragment the packet. case 1-b and 3 1027 */ 1028 if (mtu < IPV6_MMTU) { 1029 /* path MTU cannot be less than IPV6_MMTU */ 1030 error = EMSGSIZE; 1031 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1032 goto bad; 1033 } else if (ip6->ip6_plen == 0) { 1034 /* jumbo payload cannot be fragmented */ 1035 error = EMSGSIZE; 1036 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1037 goto bad; 1038 } else { 1039 struct mbuf **mnext, *m_frgpart; 1040 struct ip6_frag *ip6f; 1041 u_int32_t id = htonl(ip6_randomid()); 1042 u_char nextproto; 1043 1044 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len; 1045 1046 /* 1047 * Too large for the destination or interface; 1048 * fragment if possible. 1049 * Must be able to put at least 8 bytes per fragment. 1050 */ 1051 hlen = unfragpartlen; 1052 if (mtu > IPV6_MAXPACKET) 1053 mtu = IPV6_MAXPACKET; 1054 1055 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 1056 if (len < 8) { 1057 error = EMSGSIZE; 1058 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1059 goto bad; 1060 } 1061 1062 /* 1063 * Verify that we have any chance at all of being able to queue 1064 * the packet or packet fragments 1065 */ 1066 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen) 1067 < tlen /* - hlen */)) { 1068 error = ENOBUFS; 1069 V_ip6stat.ip6s_odropped++; 1070 goto bad; 1071 } 1072 1073 1074 /* 1075 * If the interface will not calculate checksums on 1076 * fragmented packets, then do it here. 1077 * XXX-BZ handle the hw offloading case. Need flags. 1078 */ 1079 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1080 in6_delayed_cksum(m, plen, hlen); 1081 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 1082 } 1083 #ifdef SCTP 1084 if (m->m_pkthdr.csum_flags & CSUM_SCTP) { 1085 sctp_delayed_cksum(m, hlen); 1086 m->m_pkthdr.csum_flags &= ~CSUM_SCTP; 1087 } 1088 #endif 1089 mnext = &m->m_nextpkt; 1090 1091 /* 1092 * Change the next header field of the last header in the 1093 * unfragmentable part. 1094 */ 1095 if (exthdrs.ip6e_rthdr) { 1096 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1097 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1098 } else if (exthdrs.ip6e_dest1) { 1099 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1100 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1101 } else if (exthdrs.ip6e_hbh) { 1102 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1103 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1104 } else { 1105 nextproto = ip6->ip6_nxt; 1106 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1107 } 1108 1109 /* 1110 * Loop through length of segment after first fragment, 1111 * make new header and copy data of each part and link onto 1112 * chain. 1113 */ 1114 m0 = m; 1115 for (off = hlen; off < tlen; off += len) { 1116 MGETHDR(m, M_DONTWAIT, MT_HEADER); 1117 if (!m) { 1118 error = ENOBUFS; 1119 V_ip6stat.ip6s_odropped++; 1120 goto sendorfree; 1121 } 1122 m->m_pkthdr.rcvif = NULL; 1123 m->m_flags = m0->m_flags & M_COPYFLAGS; /* incl. FIB */ 1124 *mnext = m; 1125 mnext = &m->m_nextpkt; 1126 m->m_data += max_linkhdr; 1127 mhip6 = mtod(m, struct ip6_hdr *); 1128 *mhip6 = *ip6; 1129 m->m_len = sizeof(*mhip6); 1130 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1131 if (error) { 1132 V_ip6stat.ip6s_odropped++; 1133 goto sendorfree; 1134 } 1135 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 1136 if (off + len >= tlen) 1137 len = tlen - off; 1138 else 1139 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1140 mhip6->ip6_plen = htons((u_short)(len + hlen + 1141 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1142 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1143 error = ENOBUFS; 1144 V_ip6stat.ip6s_odropped++; 1145 goto sendorfree; 1146 } 1147 m_cat(m, m_frgpart); 1148 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1149 m->m_pkthdr.rcvif = NULL; 1150 ip6f->ip6f_reserved = 0; 1151 ip6f->ip6f_ident = id; 1152 ip6f->ip6f_nxt = nextproto; 1153 V_ip6stat.ip6s_ofragments++; 1154 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1155 } 1156 1157 in6_ifstat_inc(ifp, ifs6_out_fragok); 1158 } 1159 1160 /* 1161 * Remove leading garbages. 1162 */ 1163 sendorfree: 1164 m = m0->m_nextpkt; 1165 m0->m_nextpkt = 0; 1166 m_freem(m0); 1167 for (m0 = m; m; m = m0) { 1168 m0 = m->m_nextpkt; 1169 m->m_nextpkt = 0; 1170 if (error == 0) { 1171 /* Record statistics for this interface address. */ 1172 if (ia) { 1173 ia->ia_ifa.if_opackets++; 1174 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 1175 } 1176 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1177 } else 1178 m_freem(m); 1179 } 1180 1181 if (error == 0) 1182 V_ip6stat.ip6s_fragmented++; 1183 1184 done: 1185 if (ro == &ip6route && ro->ro_rt && flevalid == 0) { 1186 /* brace necessary for RTFREE */ 1187 RTFREE(ro->ro_rt); 1188 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt && 1189 ((flevalid == 0) || (ro_pmtu != ro))) { 1190 RTFREE(ro_pmtu->ro_rt); 1191 } 1192 #ifdef IPSEC 1193 if (sp != NULL) 1194 KEY_FREESP(&sp); 1195 #endif 1196 1197 return (error); 1198 1199 freehdrs: 1200 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1201 m_freem(exthdrs.ip6e_dest1); 1202 m_freem(exthdrs.ip6e_rthdr); 1203 m_freem(exthdrs.ip6e_dest2); 1204 /* FALLTHROUGH */ 1205 bad: 1206 if (m) 1207 m_freem(m); 1208 goto done; 1209 } 1210 1211 static int 1212 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1213 { 1214 struct mbuf *m; 1215 1216 if (hlen > MCLBYTES) 1217 return (ENOBUFS); /* XXX */ 1218 1219 MGET(m, M_DONTWAIT, MT_DATA); 1220 if (!m) 1221 return (ENOBUFS); 1222 1223 if (hlen > MLEN) { 1224 MCLGET(m, M_DONTWAIT); 1225 if ((m->m_flags & M_EXT) == 0) { 1226 m_free(m); 1227 return (ENOBUFS); 1228 } 1229 } 1230 m->m_len = hlen; 1231 if (hdr) 1232 bcopy(hdr, mtod(m, caddr_t), hlen); 1233 1234 *mp = m; 1235 return (0); 1236 } 1237 1238 /* 1239 * Insert jumbo payload option. 1240 */ 1241 static int 1242 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1243 { 1244 struct mbuf *mopt; 1245 u_char *optbuf; 1246 u_int32_t v; 1247 1248 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1249 1250 /* 1251 * If there is no hop-by-hop options header, allocate new one. 1252 * If there is one but it doesn't have enough space to store the 1253 * jumbo payload option, allocate a cluster to store the whole options. 1254 * Otherwise, use it to store the options. 1255 */ 1256 if (exthdrs->ip6e_hbh == 0) { 1257 MGET(mopt, M_DONTWAIT, MT_DATA); 1258 if (mopt == 0) 1259 return (ENOBUFS); 1260 mopt->m_len = JUMBOOPTLEN; 1261 optbuf = mtod(mopt, u_char *); 1262 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1263 exthdrs->ip6e_hbh = mopt; 1264 } else { 1265 struct ip6_hbh *hbh; 1266 1267 mopt = exthdrs->ip6e_hbh; 1268 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1269 /* 1270 * XXX assumption: 1271 * - exthdrs->ip6e_hbh is not referenced from places 1272 * other than exthdrs. 1273 * - exthdrs->ip6e_hbh is not an mbuf chain. 1274 */ 1275 int oldoptlen = mopt->m_len; 1276 struct mbuf *n; 1277 1278 /* 1279 * XXX: give up if the whole (new) hbh header does 1280 * not fit even in an mbuf cluster. 1281 */ 1282 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1283 return (ENOBUFS); 1284 1285 /* 1286 * As a consequence, we must always prepare a cluster 1287 * at this point. 1288 */ 1289 MGET(n, M_DONTWAIT, MT_DATA); 1290 if (n) { 1291 MCLGET(n, M_DONTWAIT); 1292 if ((n->m_flags & M_EXT) == 0) { 1293 m_freem(n); 1294 n = NULL; 1295 } 1296 } 1297 if (!n) 1298 return (ENOBUFS); 1299 n->m_len = oldoptlen + JUMBOOPTLEN; 1300 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1301 oldoptlen); 1302 optbuf = mtod(n, caddr_t) + oldoptlen; 1303 m_freem(mopt); 1304 mopt = exthdrs->ip6e_hbh = n; 1305 } else { 1306 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1307 mopt->m_len += JUMBOOPTLEN; 1308 } 1309 optbuf[0] = IP6OPT_PADN; 1310 optbuf[1] = 1; 1311 1312 /* 1313 * Adjust the header length according to the pad and 1314 * the jumbo payload option. 1315 */ 1316 hbh = mtod(mopt, struct ip6_hbh *); 1317 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1318 } 1319 1320 /* fill in the option. */ 1321 optbuf[2] = IP6OPT_JUMBO; 1322 optbuf[3] = 4; 1323 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1324 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1325 1326 /* finally, adjust the packet header length */ 1327 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1328 1329 return (0); 1330 #undef JUMBOOPTLEN 1331 } 1332 1333 /* 1334 * Insert fragment header and copy unfragmentable header portions. 1335 */ 1336 static int 1337 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1338 struct ip6_frag **frghdrp) 1339 { 1340 struct mbuf *n, *mlast; 1341 1342 if (hlen > sizeof(struct ip6_hdr)) { 1343 n = m_copym(m0, sizeof(struct ip6_hdr), 1344 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1345 if (n == 0) 1346 return (ENOBUFS); 1347 m->m_next = n; 1348 } else 1349 n = m; 1350 1351 /* Search for the last mbuf of unfragmentable part. */ 1352 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1353 ; 1354 1355 if ((mlast->m_flags & M_EXT) == 0 && 1356 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1357 /* use the trailing space of the last mbuf for the fragment hdr */ 1358 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1359 mlast->m_len); 1360 mlast->m_len += sizeof(struct ip6_frag); 1361 m->m_pkthdr.len += sizeof(struct ip6_frag); 1362 } else { 1363 /* allocate a new mbuf for the fragment header */ 1364 struct mbuf *mfrg; 1365 1366 MGET(mfrg, M_DONTWAIT, MT_DATA); 1367 if (mfrg == 0) 1368 return (ENOBUFS); 1369 mfrg->m_len = sizeof(struct ip6_frag); 1370 *frghdrp = mtod(mfrg, struct ip6_frag *); 1371 mlast->m_next = mfrg; 1372 } 1373 1374 return (0); 1375 } 1376 1377 static int 1378 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, 1379 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, 1380 int *alwaysfragp, u_int fibnum) 1381 { 1382 u_int32_t mtu = 0; 1383 int alwaysfrag = 0; 1384 int error = 0; 1385 1386 if (ro_pmtu != ro) { 1387 /* The first hop and the final destination may differ. */ 1388 struct sockaddr_in6 *sa6_dst = 1389 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1390 if (ro_pmtu->ro_rt && 1391 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1392 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1393 RTFREE(ro_pmtu->ro_rt); 1394 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1395 } 1396 if (ro_pmtu->ro_rt == NULL) { 1397 bzero(sa6_dst, sizeof(*sa6_dst)); 1398 sa6_dst->sin6_family = AF_INET6; 1399 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1400 sa6_dst->sin6_addr = *dst; 1401 1402 in6_rtalloc(ro_pmtu, fibnum); 1403 } 1404 } 1405 if (ro_pmtu->ro_rt) { 1406 u_int32_t ifmtu; 1407 struct in_conninfo inc; 1408 1409 bzero(&inc, sizeof(inc)); 1410 inc.inc_flags |= INC_ISIPV6; 1411 inc.inc6_faddr = *dst; 1412 1413 if (ifp == NULL) 1414 ifp = ro_pmtu->ro_rt->rt_ifp; 1415 ifmtu = IN6_LINKMTU(ifp); 1416 mtu = tcp_hc_getmtu(&inc); 1417 if (mtu) 1418 mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu); 1419 else 1420 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 1421 if (mtu == 0) 1422 mtu = ifmtu; 1423 else if (mtu < IPV6_MMTU) { 1424 /* 1425 * RFC2460 section 5, last paragraph: 1426 * if we record ICMPv6 too big message with 1427 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1428 * or smaller, with framgent header attached. 1429 * (fragment header is needed regardless from the 1430 * packet size, for translators to identify packets) 1431 */ 1432 alwaysfrag = 1; 1433 mtu = IPV6_MMTU; 1434 } else if (mtu > ifmtu) { 1435 /* 1436 * The MTU on the route is larger than the MTU on 1437 * the interface! This shouldn't happen, unless the 1438 * MTU of the interface has been changed after the 1439 * interface was brought up. Change the MTU in the 1440 * route to match the interface MTU (as long as the 1441 * field isn't locked). 1442 */ 1443 mtu = ifmtu; 1444 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; 1445 } 1446 } else if (ifp) { 1447 mtu = IN6_LINKMTU(ifp); 1448 } else 1449 error = EHOSTUNREACH; /* XXX */ 1450 1451 *mtup = mtu; 1452 if (alwaysfragp) 1453 *alwaysfragp = alwaysfrag; 1454 return (error); 1455 } 1456 1457 /* 1458 * IP6 socket option processing. 1459 */ 1460 int 1461 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1462 { 1463 int optdatalen, uproto; 1464 void *optdata; 1465 struct inpcb *in6p = sotoinpcb(so); 1466 int error, optval; 1467 int level, op, optname; 1468 int optlen; 1469 struct thread *td; 1470 1471 level = sopt->sopt_level; 1472 op = sopt->sopt_dir; 1473 optname = sopt->sopt_name; 1474 optlen = sopt->sopt_valsize; 1475 td = sopt->sopt_td; 1476 error = 0; 1477 optval = 0; 1478 uproto = (int)so->so_proto->pr_protocol; 1479 1480 if (level != IPPROTO_IPV6) { 1481 error = EINVAL; 1482 1483 if (sopt->sopt_level == SOL_SOCKET && 1484 sopt->sopt_dir == SOPT_SET) { 1485 switch (sopt->sopt_name) { 1486 case SO_REUSEADDR: 1487 INP_WLOCK(in6p); 1488 if (IN_MULTICAST(ntohl(in6p->inp_laddr.s_addr))) { 1489 if ((so->so_options & 1490 (SO_REUSEADDR | SO_REUSEPORT)) != 0) 1491 in6p->inp_flags2 |= INP_REUSEPORT; 1492 else 1493 in6p->inp_flags2 &= ~INP_REUSEPORT; 1494 } 1495 INP_WUNLOCK(in6p); 1496 error = 0; 1497 break; 1498 case SO_REUSEPORT: 1499 INP_WLOCK(in6p); 1500 if ((so->so_options & SO_REUSEPORT) != 0) 1501 in6p->inp_flags2 |= INP_REUSEPORT; 1502 else 1503 in6p->inp_flags2 &= ~INP_REUSEPORT; 1504 INP_WUNLOCK(in6p); 1505 error = 0; 1506 break; 1507 case SO_SETFIB: 1508 INP_WLOCK(in6p); 1509 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1510 INP_WUNLOCK(in6p); 1511 error = 0; 1512 break; 1513 default: 1514 break; 1515 } 1516 } 1517 } else { /* level == IPPROTO_IPV6 */ 1518 switch (op) { 1519 1520 case SOPT_SET: 1521 switch (optname) { 1522 case IPV6_2292PKTOPTIONS: 1523 #ifdef IPV6_PKTOPTIONS 1524 case IPV6_PKTOPTIONS: 1525 #endif 1526 { 1527 struct mbuf *m; 1528 1529 error = soopt_getm(sopt, &m); /* XXX */ 1530 if (error != 0) 1531 break; 1532 error = soopt_mcopyin(sopt, m); /* XXX */ 1533 if (error != 0) 1534 break; 1535 error = ip6_pcbopts(&in6p->in6p_outputopts, 1536 m, so, sopt); 1537 m_freem(m); /* XXX */ 1538 break; 1539 } 1540 1541 /* 1542 * Use of some Hop-by-Hop options or some 1543 * Destination options, might require special 1544 * privilege. That is, normal applications 1545 * (without special privilege) might be forbidden 1546 * from setting certain options in outgoing packets, 1547 * and might never see certain options in received 1548 * packets. [RFC 2292 Section 6] 1549 * KAME specific note: 1550 * KAME prevents non-privileged users from sending or 1551 * receiving ANY hbh/dst options in order to avoid 1552 * overhead of parsing options in the kernel. 1553 */ 1554 case IPV6_RECVHOPOPTS: 1555 case IPV6_RECVDSTOPTS: 1556 case IPV6_RECVRTHDRDSTOPTS: 1557 if (td != NULL) { 1558 error = priv_check(td, 1559 PRIV_NETINET_SETHDROPTS); 1560 if (error) 1561 break; 1562 } 1563 /* FALLTHROUGH */ 1564 case IPV6_UNICAST_HOPS: 1565 case IPV6_HOPLIMIT: 1566 case IPV6_FAITH: 1567 1568 case IPV6_RECVPKTINFO: 1569 case IPV6_RECVHOPLIMIT: 1570 case IPV6_RECVRTHDR: 1571 case IPV6_RECVPATHMTU: 1572 case IPV6_RECVTCLASS: 1573 case IPV6_V6ONLY: 1574 case IPV6_AUTOFLOWLABEL: 1575 case IPV6_BINDANY: 1576 if (optname == IPV6_BINDANY && td != NULL) { 1577 error = priv_check(td, 1578 PRIV_NETINET_BINDANY); 1579 if (error) 1580 break; 1581 } 1582 1583 if (optlen != sizeof(int)) { 1584 error = EINVAL; 1585 break; 1586 } 1587 error = sooptcopyin(sopt, &optval, 1588 sizeof optval, sizeof optval); 1589 if (error) 1590 break; 1591 switch (optname) { 1592 1593 case IPV6_UNICAST_HOPS: 1594 if (optval < -1 || optval >= 256) 1595 error = EINVAL; 1596 else { 1597 /* -1 = kernel default */ 1598 in6p->in6p_hops = optval; 1599 if ((in6p->inp_vflag & 1600 INP_IPV4) != 0) 1601 in6p->inp_ip_ttl = optval; 1602 } 1603 break; 1604 #define OPTSET(bit) \ 1605 do { \ 1606 if (optval) \ 1607 in6p->inp_flags |= (bit); \ 1608 else \ 1609 in6p->inp_flags &= ~(bit); \ 1610 } while (/*CONSTCOND*/ 0) 1611 #define OPTSET2292(bit) \ 1612 do { \ 1613 in6p->inp_flags |= IN6P_RFC2292; \ 1614 if (optval) \ 1615 in6p->inp_flags |= (bit); \ 1616 else \ 1617 in6p->inp_flags &= ~(bit); \ 1618 } while (/*CONSTCOND*/ 0) 1619 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1620 1621 case IPV6_RECVPKTINFO: 1622 /* cannot mix with RFC2292 */ 1623 if (OPTBIT(IN6P_RFC2292)) { 1624 error = EINVAL; 1625 break; 1626 } 1627 OPTSET(IN6P_PKTINFO); 1628 break; 1629 1630 case IPV6_HOPLIMIT: 1631 { 1632 struct ip6_pktopts **optp; 1633 1634 /* cannot mix with RFC2292 */ 1635 if (OPTBIT(IN6P_RFC2292)) { 1636 error = EINVAL; 1637 break; 1638 } 1639 optp = &in6p->in6p_outputopts; 1640 error = ip6_pcbopt(IPV6_HOPLIMIT, 1641 (u_char *)&optval, sizeof(optval), 1642 optp, (td != NULL) ? td->td_ucred : 1643 NULL, uproto); 1644 break; 1645 } 1646 1647 case IPV6_RECVHOPLIMIT: 1648 /* cannot mix with RFC2292 */ 1649 if (OPTBIT(IN6P_RFC2292)) { 1650 error = EINVAL; 1651 break; 1652 } 1653 OPTSET(IN6P_HOPLIMIT); 1654 break; 1655 1656 case IPV6_RECVHOPOPTS: 1657 /* cannot mix with RFC2292 */ 1658 if (OPTBIT(IN6P_RFC2292)) { 1659 error = EINVAL; 1660 break; 1661 } 1662 OPTSET(IN6P_HOPOPTS); 1663 break; 1664 1665 case IPV6_RECVDSTOPTS: 1666 /* cannot mix with RFC2292 */ 1667 if (OPTBIT(IN6P_RFC2292)) { 1668 error = EINVAL; 1669 break; 1670 } 1671 OPTSET(IN6P_DSTOPTS); 1672 break; 1673 1674 case IPV6_RECVRTHDRDSTOPTS: 1675 /* cannot mix with RFC2292 */ 1676 if (OPTBIT(IN6P_RFC2292)) { 1677 error = EINVAL; 1678 break; 1679 } 1680 OPTSET(IN6P_RTHDRDSTOPTS); 1681 break; 1682 1683 case IPV6_RECVRTHDR: 1684 /* cannot mix with RFC2292 */ 1685 if (OPTBIT(IN6P_RFC2292)) { 1686 error = EINVAL; 1687 break; 1688 } 1689 OPTSET(IN6P_RTHDR); 1690 break; 1691 1692 case IPV6_FAITH: 1693 OPTSET(INP_FAITH); 1694 break; 1695 1696 case IPV6_RECVPATHMTU: 1697 /* 1698 * We ignore this option for TCP 1699 * sockets. 1700 * (RFC3542 leaves this case 1701 * unspecified.) 1702 */ 1703 if (uproto != IPPROTO_TCP) 1704 OPTSET(IN6P_MTU); 1705 break; 1706 1707 case IPV6_V6ONLY: 1708 /* 1709 * make setsockopt(IPV6_V6ONLY) 1710 * available only prior to bind(2). 1711 * see ipng mailing list, Jun 22 2001. 1712 */ 1713 if (in6p->inp_lport || 1714 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1715 error = EINVAL; 1716 break; 1717 } 1718 OPTSET(IN6P_IPV6_V6ONLY); 1719 if (optval) 1720 in6p->inp_vflag &= ~INP_IPV4; 1721 else 1722 in6p->inp_vflag |= INP_IPV4; 1723 break; 1724 case IPV6_RECVTCLASS: 1725 /* cannot mix with RFC2292 XXX */ 1726 if (OPTBIT(IN6P_RFC2292)) { 1727 error = EINVAL; 1728 break; 1729 } 1730 OPTSET(IN6P_TCLASS); 1731 break; 1732 case IPV6_AUTOFLOWLABEL: 1733 OPTSET(IN6P_AUTOFLOWLABEL); 1734 break; 1735 1736 case IPV6_BINDANY: 1737 OPTSET(INP_BINDANY); 1738 break; 1739 } 1740 break; 1741 1742 case IPV6_TCLASS: 1743 case IPV6_DONTFRAG: 1744 case IPV6_USE_MIN_MTU: 1745 case IPV6_PREFER_TEMPADDR: 1746 if (optlen != sizeof(optval)) { 1747 error = EINVAL; 1748 break; 1749 } 1750 error = sooptcopyin(sopt, &optval, 1751 sizeof optval, sizeof optval); 1752 if (error) 1753 break; 1754 { 1755 struct ip6_pktopts **optp; 1756 optp = &in6p->in6p_outputopts; 1757 error = ip6_pcbopt(optname, 1758 (u_char *)&optval, sizeof(optval), 1759 optp, (td != NULL) ? td->td_ucred : 1760 NULL, uproto); 1761 break; 1762 } 1763 1764 case IPV6_2292PKTINFO: 1765 case IPV6_2292HOPLIMIT: 1766 case IPV6_2292HOPOPTS: 1767 case IPV6_2292DSTOPTS: 1768 case IPV6_2292RTHDR: 1769 /* RFC 2292 */ 1770 if (optlen != sizeof(int)) { 1771 error = EINVAL; 1772 break; 1773 } 1774 error = sooptcopyin(sopt, &optval, 1775 sizeof optval, sizeof optval); 1776 if (error) 1777 break; 1778 switch (optname) { 1779 case IPV6_2292PKTINFO: 1780 OPTSET2292(IN6P_PKTINFO); 1781 break; 1782 case IPV6_2292HOPLIMIT: 1783 OPTSET2292(IN6P_HOPLIMIT); 1784 break; 1785 case IPV6_2292HOPOPTS: 1786 /* 1787 * Check super-user privilege. 1788 * See comments for IPV6_RECVHOPOPTS. 1789 */ 1790 if (td != NULL) { 1791 error = priv_check(td, 1792 PRIV_NETINET_SETHDROPTS); 1793 if (error) 1794 return (error); 1795 } 1796 OPTSET2292(IN6P_HOPOPTS); 1797 break; 1798 case IPV6_2292DSTOPTS: 1799 if (td != NULL) { 1800 error = priv_check(td, 1801 PRIV_NETINET_SETHDROPTS); 1802 if (error) 1803 return (error); 1804 } 1805 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1806 break; 1807 case IPV6_2292RTHDR: 1808 OPTSET2292(IN6P_RTHDR); 1809 break; 1810 } 1811 break; 1812 case IPV6_PKTINFO: 1813 case IPV6_HOPOPTS: 1814 case IPV6_RTHDR: 1815 case IPV6_DSTOPTS: 1816 case IPV6_RTHDRDSTOPTS: 1817 case IPV6_NEXTHOP: 1818 { 1819 /* new advanced API (RFC3542) */ 1820 u_char *optbuf; 1821 u_char optbuf_storage[MCLBYTES]; 1822 int optlen; 1823 struct ip6_pktopts **optp; 1824 1825 /* cannot mix with RFC2292 */ 1826 if (OPTBIT(IN6P_RFC2292)) { 1827 error = EINVAL; 1828 break; 1829 } 1830 1831 /* 1832 * We only ensure valsize is not too large 1833 * here. Further validation will be done 1834 * later. 1835 */ 1836 error = sooptcopyin(sopt, optbuf_storage, 1837 sizeof(optbuf_storage), 0); 1838 if (error) 1839 break; 1840 optlen = sopt->sopt_valsize; 1841 optbuf = optbuf_storage; 1842 optp = &in6p->in6p_outputopts; 1843 error = ip6_pcbopt(optname, optbuf, optlen, 1844 optp, (td != NULL) ? td->td_ucred : NULL, 1845 uproto); 1846 break; 1847 } 1848 #undef OPTSET 1849 1850 case IPV6_MULTICAST_IF: 1851 case IPV6_MULTICAST_HOPS: 1852 case IPV6_MULTICAST_LOOP: 1853 case IPV6_JOIN_GROUP: 1854 case IPV6_LEAVE_GROUP: 1855 case IPV6_MSFILTER: 1856 case MCAST_BLOCK_SOURCE: 1857 case MCAST_UNBLOCK_SOURCE: 1858 case MCAST_JOIN_GROUP: 1859 case MCAST_LEAVE_GROUP: 1860 case MCAST_JOIN_SOURCE_GROUP: 1861 case MCAST_LEAVE_SOURCE_GROUP: 1862 error = ip6_setmoptions(in6p, sopt); 1863 break; 1864 1865 case IPV6_PORTRANGE: 1866 error = sooptcopyin(sopt, &optval, 1867 sizeof optval, sizeof optval); 1868 if (error) 1869 break; 1870 1871 switch (optval) { 1872 case IPV6_PORTRANGE_DEFAULT: 1873 in6p->inp_flags &= ~(INP_LOWPORT); 1874 in6p->inp_flags &= ~(INP_HIGHPORT); 1875 break; 1876 1877 case IPV6_PORTRANGE_HIGH: 1878 in6p->inp_flags &= ~(INP_LOWPORT); 1879 in6p->inp_flags |= INP_HIGHPORT; 1880 break; 1881 1882 case IPV6_PORTRANGE_LOW: 1883 in6p->inp_flags &= ~(INP_HIGHPORT); 1884 in6p->inp_flags |= INP_LOWPORT; 1885 break; 1886 1887 default: 1888 error = EINVAL; 1889 break; 1890 } 1891 break; 1892 1893 #ifdef IPSEC 1894 case IPV6_IPSEC_POLICY: 1895 { 1896 caddr_t req; 1897 struct mbuf *m; 1898 1899 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1900 break; 1901 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1902 break; 1903 req = mtod(m, caddr_t); 1904 error = ipsec_set_policy(in6p, optname, req, 1905 m->m_len, (sopt->sopt_td != NULL) ? 1906 sopt->sopt_td->td_ucred : NULL); 1907 m_freem(m); 1908 break; 1909 } 1910 #endif /* IPSEC */ 1911 1912 default: 1913 error = ENOPROTOOPT; 1914 break; 1915 } 1916 break; 1917 1918 case SOPT_GET: 1919 switch (optname) { 1920 1921 case IPV6_2292PKTOPTIONS: 1922 #ifdef IPV6_PKTOPTIONS 1923 case IPV6_PKTOPTIONS: 1924 #endif 1925 /* 1926 * RFC3542 (effectively) deprecated the 1927 * semantics of the 2292-style pktoptions. 1928 * Since it was not reliable in nature (i.e., 1929 * applications had to expect the lack of some 1930 * information after all), it would make sense 1931 * to simplify this part by always returning 1932 * empty data. 1933 */ 1934 sopt->sopt_valsize = 0; 1935 break; 1936 1937 case IPV6_RECVHOPOPTS: 1938 case IPV6_RECVDSTOPTS: 1939 case IPV6_RECVRTHDRDSTOPTS: 1940 case IPV6_UNICAST_HOPS: 1941 case IPV6_RECVPKTINFO: 1942 case IPV6_RECVHOPLIMIT: 1943 case IPV6_RECVRTHDR: 1944 case IPV6_RECVPATHMTU: 1945 1946 case IPV6_FAITH: 1947 case IPV6_V6ONLY: 1948 case IPV6_PORTRANGE: 1949 case IPV6_RECVTCLASS: 1950 case IPV6_AUTOFLOWLABEL: 1951 case IPV6_BINDANY: 1952 switch (optname) { 1953 1954 case IPV6_RECVHOPOPTS: 1955 optval = OPTBIT(IN6P_HOPOPTS); 1956 break; 1957 1958 case IPV6_RECVDSTOPTS: 1959 optval = OPTBIT(IN6P_DSTOPTS); 1960 break; 1961 1962 case IPV6_RECVRTHDRDSTOPTS: 1963 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1964 break; 1965 1966 case IPV6_UNICAST_HOPS: 1967 optval = in6p->in6p_hops; 1968 break; 1969 1970 case IPV6_RECVPKTINFO: 1971 optval = OPTBIT(IN6P_PKTINFO); 1972 break; 1973 1974 case IPV6_RECVHOPLIMIT: 1975 optval = OPTBIT(IN6P_HOPLIMIT); 1976 break; 1977 1978 case IPV6_RECVRTHDR: 1979 optval = OPTBIT(IN6P_RTHDR); 1980 break; 1981 1982 case IPV6_RECVPATHMTU: 1983 optval = OPTBIT(IN6P_MTU); 1984 break; 1985 1986 case IPV6_FAITH: 1987 optval = OPTBIT(INP_FAITH); 1988 break; 1989 1990 case IPV6_V6ONLY: 1991 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1992 break; 1993 1994 case IPV6_PORTRANGE: 1995 { 1996 int flags; 1997 flags = in6p->inp_flags; 1998 if (flags & INP_HIGHPORT) 1999 optval = IPV6_PORTRANGE_HIGH; 2000 else if (flags & INP_LOWPORT) 2001 optval = IPV6_PORTRANGE_LOW; 2002 else 2003 optval = 0; 2004 break; 2005 } 2006 case IPV6_RECVTCLASS: 2007 optval = OPTBIT(IN6P_TCLASS); 2008 break; 2009 2010 case IPV6_AUTOFLOWLABEL: 2011 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2012 break; 2013 2014 case IPV6_BINDANY: 2015 optval = OPTBIT(INP_BINDANY); 2016 break; 2017 } 2018 if (error) 2019 break; 2020 error = sooptcopyout(sopt, &optval, 2021 sizeof optval); 2022 break; 2023 2024 case IPV6_PATHMTU: 2025 { 2026 u_long pmtu = 0; 2027 struct ip6_mtuinfo mtuinfo; 2028 struct route_in6 sro; 2029 2030 bzero(&sro, sizeof(sro)); 2031 2032 if (!(so->so_state & SS_ISCONNECTED)) 2033 return (ENOTCONN); 2034 /* 2035 * XXX: we dot not consider the case of source 2036 * routing, or optional information to specify 2037 * the outgoing interface. 2038 */ 2039 error = ip6_getpmtu(&sro, NULL, NULL, 2040 &in6p->in6p_faddr, &pmtu, NULL, 2041 so->so_fibnum); 2042 if (sro.ro_rt) 2043 RTFREE(sro.ro_rt); 2044 if (error) 2045 break; 2046 if (pmtu > IPV6_MAXPACKET) 2047 pmtu = IPV6_MAXPACKET; 2048 2049 bzero(&mtuinfo, sizeof(mtuinfo)); 2050 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2051 optdata = (void *)&mtuinfo; 2052 optdatalen = sizeof(mtuinfo); 2053 error = sooptcopyout(sopt, optdata, 2054 optdatalen); 2055 break; 2056 } 2057 2058 case IPV6_2292PKTINFO: 2059 case IPV6_2292HOPLIMIT: 2060 case IPV6_2292HOPOPTS: 2061 case IPV6_2292RTHDR: 2062 case IPV6_2292DSTOPTS: 2063 switch (optname) { 2064 case IPV6_2292PKTINFO: 2065 optval = OPTBIT(IN6P_PKTINFO); 2066 break; 2067 case IPV6_2292HOPLIMIT: 2068 optval = OPTBIT(IN6P_HOPLIMIT); 2069 break; 2070 case IPV6_2292HOPOPTS: 2071 optval = OPTBIT(IN6P_HOPOPTS); 2072 break; 2073 case IPV6_2292RTHDR: 2074 optval = OPTBIT(IN6P_RTHDR); 2075 break; 2076 case IPV6_2292DSTOPTS: 2077 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2078 break; 2079 } 2080 error = sooptcopyout(sopt, &optval, 2081 sizeof optval); 2082 break; 2083 case IPV6_PKTINFO: 2084 case IPV6_HOPOPTS: 2085 case IPV6_RTHDR: 2086 case IPV6_DSTOPTS: 2087 case IPV6_RTHDRDSTOPTS: 2088 case IPV6_NEXTHOP: 2089 case IPV6_TCLASS: 2090 case IPV6_DONTFRAG: 2091 case IPV6_USE_MIN_MTU: 2092 case IPV6_PREFER_TEMPADDR: 2093 error = ip6_getpcbopt(in6p->in6p_outputopts, 2094 optname, sopt); 2095 break; 2096 2097 case IPV6_MULTICAST_IF: 2098 case IPV6_MULTICAST_HOPS: 2099 case IPV6_MULTICAST_LOOP: 2100 case IPV6_MSFILTER: 2101 error = ip6_getmoptions(in6p, sopt); 2102 break; 2103 2104 #ifdef IPSEC 2105 case IPV6_IPSEC_POLICY: 2106 { 2107 caddr_t req = NULL; 2108 size_t len = 0; 2109 struct mbuf *m = NULL; 2110 struct mbuf **mp = &m; 2111 size_t ovalsize = sopt->sopt_valsize; 2112 caddr_t oval = (caddr_t)sopt->sopt_val; 2113 2114 error = soopt_getm(sopt, &m); /* XXX */ 2115 if (error != 0) 2116 break; 2117 error = soopt_mcopyin(sopt, m); /* XXX */ 2118 if (error != 0) 2119 break; 2120 sopt->sopt_valsize = ovalsize; 2121 sopt->sopt_val = oval; 2122 if (m) { 2123 req = mtod(m, caddr_t); 2124 len = m->m_len; 2125 } 2126 error = ipsec_get_policy(in6p, req, len, mp); 2127 if (error == 0) 2128 error = soopt_mcopyout(sopt, m); /* XXX */ 2129 if (error == 0 && m) 2130 m_freem(m); 2131 break; 2132 } 2133 #endif /* IPSEC */ 2134 2135 default: 2136 error = ENOPROTOOPT; 2137 break; 2138 } 2139 break; 2140 } 2141 } 2142 return (error); 2143 } 2144 2145 int 2146 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2147 { 2148 int error = 0, optval, optlen; 2149 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2150 struct inpcb *in6p = sotoinpcb(so); 2151 int level, op, optname; 2152 2153 level = sopt->sopt_level; 2154 op = sopt->sopt_dir; 2155 optname = sopt->sopt_name; 2156 optlen = sopt->sopt_valsize; 2157 2158 if (level != IPPROTO_IPV6) { 2159 return (EINVAL); 2160 } 2161 2162 switch (optname) { 2163 case IPV6_CHECKSUM: 2164 /* 2165 * For ICMPv6 sockets, no modification allowed for checksum 2166 * offset, permit "no change" values to help existing apps. 2167 * 2168 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2169 * for an ICMPv6 socket will fail." 2170 * The current behavior does not meet RFC3542. 2171 */ 2172 switch (op) { 2173 case SOPT_SET: 2174 if (optlen != sizeof(int)) { 2175 error = EINVAL; 2176 break; 2177 } 2178 error = sooptcopyin(sopt, &optval, sizeof(optval), 2179 sizeof(optval)); 2180 if (error) 2181 break; 2182 if ((optval % 2) != 0) { 2183 /* the API assumes even offset values */ 2184 error = EINVAL; 2185 } else if (so->so_proto->pr_protocol == 2186 IPPROTO_ICMPV6) { 2187 if (optval != icmp6off) 2188 error = EINVAL; 2189 } else 2190 in6p->in6p_cksum = optval; 2191 break; 2192 2193 case SOPT_GET: 2194 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2195 optval = icmp6off; 2196 else 2197 optval = in6p->in6p_cksum; 2198 2199 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2200 break; 2201 2202 default: 2203 error = EINVAL; 2204 break; 2205 } 2206 break; 2207 2208 default: 2209 error = ENOPROTOOPT; 2210 break; 2211 } 2212 2213 return (error); 2214 } 2215 2216 /* 2217 * Set up IP6 options in pcb for insertion in output packets or 2218 * specifying behavior of outgoing packets. 2219 */ 2220 static int 2221 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2222 struct socket *so, struct sockopt *sopt) 2223 { 2224 struct ip6_pktopts *opt = *pktopt; 2225 int error = 0; 2226 struct thread *td = sopt->sopt_td; 2227 2228 /* turn off any old options. */ 2229 if (opt) { 2230 #ifdef DIAGNOSTIC 2231 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2232 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2233 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2234 printf("ip6_pcbopts: all specified options are cleared.\n"); 2235 #endif 2236 ip6_clearpktopts(opt, -1); 2237 } else 2238 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2239 *pktopt = NULL; 2240 2241 if (!m || m->m_len == 0) { 2242 /* 2243 * Only turning off any previous options, regardless of 2244 * whether the opt is just created or given. 2245 */ 2246 free(opt, M_IP6OPT); 2247 return (0); 2248 } 2249 2250 /* set options specified by user. */ 2251 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2252 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2253 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2254 free(opt, M_IP6OPT); 2255 return (error); 2256 } 2257 *pktopt = opt; 2258 return (0); 2259 } 2260 2261 /* 2262 * initialize ip6_pktopts. beware that there are non-zero default values in 2263 * the struct. 2264 */ 2265 void 2266 ip6_initpktopts(struct ip6_pktopts *opt) 2267 { 2268 2269 bzero(opt, sizeof(*opt)); 2270 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2271 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2272 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2273 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2274 } 2275 2276 static int 2277 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2278 struct ucred *cred, int uproto) 2279 { 2280 struct ip6_pktopts *opt; 2281 2282 if (*pktopt == NULL) { 2283 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2284 M_WAITOK); 2285 ip6_initpktopts(*pktopt); 2286 } 2287 opt = *pktopt; 2288 2289 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2290 } 2291 2292 static int 2293 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2294 { 2295 void *optdata = NULL; 2296 int optdatalen = 0; 2297 struct ip6_ext *ip6e; 2298 int error = 0; 2299 struct in6_pktinfo null_pktinfo; 2300 int deftclass = 0, on; 2301 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2302 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2303 2304 switch (optname) { 2305 case IPV6_PKTINFO: 2306 if (pktopt && pktopt->ip6po_pktinfo) 2307 optdata = (void *)pktopt->ip6po_pktinfo; 2308 else { 2309 /* XXX: we don't have to do this every time... */ 2310 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2311 optdata = (void *)&null_pktinfo; 2312 } 2313 optdatalen = sizeof(struct in6_pktinfo); 2314 break; 2315 case IPV6_TCLASS: 2316 if (pktopt && pktopt->ip6po_tclass >= 0) 2317 optdata = (void *)&pktopt->ip6po_tclass; 2318 else 2319 optdata = (void *)&deftclass; 2320 optdatalen = sizeof(int); 2321 break; 2322 case IPV6_HOPOPTS: 2323 if (pktopt && pktopt->ip6po_hbh) { 2324 optdata = (void *)pktopt->ip6po_hbh; 2325 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2326 optdatalen = (ip6e->ip6e_len + 1) << 3; 2327 } 2328 break; 2329 case IPV6_RTHDR: 2330 if (pktopt && pktopt->ip6po_rthdr) { 2331 optdata = (void *)pktopt->ip6po_rthdr; 2332 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2333 optdatalen = (ip6e->ip6e_len + 1) << 3; 2334 } 2335 break; 2336 case IPV6_RTHDRDSTOPTS: 2337 if (pktopt && pktopt->ip6po_dest1) { 2338 optdata = (void *)pktopt->ip6po_dest1; 2339 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2340 optdatalen = (ip6e->ip6e_len + 1) << 3; 2341 } 2342 break; 2343 case IPV6_DSTOPTS: 2344 if (pktopt && pktopt->ip6po_dest2) { 2345 optdata = (void *)pktopt->ip6po_dest2; 2346 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2347 optdatalen = (ip6e->ip6e_len + 1) << 3; 2348 } 2349 break; 2350 case IPV6_NEXTHOP: 2351 if (pktopt && pktopt->ip6po_nexthop) { 2352 optdata = (void *)pktopt->ip6po_nexthop; 2353 optdatalen = pktopt->ip6po_nexthop->sa_len; 2354 } 2355 break; 2356 case IPV6_USE_MIN_MTU: 2357 if (pktopt) 2358 optdata = (void *)&pktopt->ip6po_minmtu; 2359 else 2360 optdata = (void *)&defminmtu; 2361 optdatalen = sizeof(int); 2362 break; 2363 case IPV6_DONTFRAG: 2364 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2365 on = 1; 2366 else 2367 on = 0; 2368 optdata = (void *)&on; 2369 optdatalen = sizeof(on); 2370 break; 2371 case IPV6_PREFER_TEMPADDR: 2372 if (pktopt) 2373 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2374 else 2375 optdata = (void *)&defpreftemp; 2376 optdatalen = sizeof(int); 2377 break; 2378 default: /* should not happen */ 2379 #ifdef DIAGNOSTIC 2380 panic("ip6_getpcbopt: unexpected option\n"); 2381 #endif 2382 return (ENOPROTOOPT); 2383 } 2384 2385 error = sooptcopyout(sopt, optdata, optdatalen); 2386 2387 return (error); 2388 } 2389 2390 void 2391 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2392 { 2393 if (pktopt == NULL) 2394 return; 2395 2396 if (optname == -1 || optname == IPV6_PKTINFO) { 2397 if (pktopt->ip6po_pktinfo) 2398 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2399 pktopt->ip6po_pktinfo = NULL; 2400 } 2401 if (optname == -1 || optname == IPV6_HOPLIMIT) 2402 pktopt->ip6po_hlim = -1; 2403 if (optname == -1 || optname == IPV6_TCLASS) 2404 pktopt->ip6po_tclass = -1; 2405 if (optname == -1 || optname == IPV6_NEXTHOP) { 2406 if (pktopt->ip6po_nextroute.ro_rt) { 2407 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2408 pktopt->ip6po_nextroute.ro_rt = NULL; 2409 } 2410 if (pktopt->ip6po_nexthop) 2411 free(pktopt->ip6po_nexthop, M_IP6OPT); 2412 pktopt->ip6po_nexthop = NULL; 2413 } 2414 if (optname == -1 || optname == IPV6_HOPOPTS) { 2415 if (pktopt->ip6po_hbh) 2416 free(pktopt->ip6po_hbh, M_IP6OPT); 2417 pktopt->ip6po_hbh = NULL; 2418 } 2419 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2420 if (pktopt->ip6po_dest1) 2421 free(pktopt->ip6po_dest1, M_IP6OPT); 2422 pktopt->ip6po_dest1 = NULL; 2423 } 2424 if (optname == -1 || optname == IPV6_RTHDR) { 2425 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2426 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2427 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2428 if (pktopt->ip6po_route.ro_rt) { 2429 RTFREE(pktopt->ip6po_route.ro_rt); 2430 pktopt->ip6po_route.ro_rt = NULL; 2431 } 2432 } 2433 if (optname == -1 || optname == IPV6_DSTOPTS) { 2434 if (pktopt->ip6po_dest2) 2435 free(pktopt->ip6po_dest2, M_IP6OPT); 2436 pktopt->ip6po_dest2 = NULL; 2437 } 2438 } 2439 2440 #define PKTOPT_EXTHDRCPY(type) \ 2441 do {\ 2442 if (src->type) {\ 2443 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2444 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2445 if (dst->type == NULL && canwait == M_NOWAIT)\ 2446 goto bad;\ 2447 bcopy(src->type, dst->type, hlen);\ 2448 }\ 2449 } while (/*CONSTCOND*/ 0) 2450 2451 static int 2452 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2453 { 2454 if (dst == NULL || src == NULL) { 2455 printf("ip6_clearpktopts: invalid argument\n"); 2456 return (EINVAL); 2457 } 2458 2459 dst->ip6po_hlim = src->ip6po_hlim; 2460 dst->ip6po_tclass = src->ip6po_tclass; 2461 dst->ip6po_flags = src->ip6po_flags; 2462 dst->ip6po_minmtu = src->ip6po_minmtu; 2463 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2464 if (src->ip6po_pktinfo) { 2465 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2466 M_IP6OPT, canwait); 2467 if (dst->ip6po_pktinfo == NULL) 2468 goto bad; 2469 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2470 } 2471 if (src->ip6po_nexthop) { 2472 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2473 M_IP6OPT, canwait); 2474 if (dst->ip6po_nexthop == NULL) 2475 goto bad; 2476 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2477 src->ip6po_nexthop->sa_len); 2478 } 2479 PKTOPT_EXTHDRCPY(ip6po_hbh); 2480 PKTOPT_EXTHDRCPY(ip6po_dest1); 2481 PKTOPT_EXTHDRCPY(ip6po_dest2); 2482 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2483 return (0); 2484 2485 bad: 2486 ip6_clearpktopts(dst, -1); 2487 return (ENOBUFS); 2488 } 2489 #undef PKTOPT_EXTHDRCPY 2490 2491 struct ip6_pktopts * 2492 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2493 { 2494 int error; 2495 struct ip6_pktopts *dst; 2496 2497 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2498 if (dst == NULL) 2499 return (NULL); 2500 ip6_initpktopts(dst); 2501 2502 if ((error = copypktopts(dst, src, canwait)) != 0) { 2503 free(dst, M_IP6OPT); 2504 return (NULL); 2505 } 2506 2507 return (dst); 2508 } 2509 2510 void 2511 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2512 { 2513 if (pktopt == NULL) 2514 return; 2515 2516 ip6_clearpktopts(pktopt, -1); 2517 2518 free(pktopt, M_IP6OPT); 2519 } 2520 2521 /* 2522 * Set IPv6 outgoing packet options based on advanced API. 2523 */ 2524 int 2525 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2526 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2527 { 2528 struct cmsghdr *cm = 0; 2529 2530 if (control == NULL || opt == NULL) 2531 return (EINVAL); 2532 2533 ip6_initpktopts(opt); 2534 if (stickyopt) { 2535 int error; 2536 2537 /* 2538 * If stickyopt is provided, make a local copy of the options 2539 * for this particular packet, then override them by ancillary 2540 * objects. 2541 * XXX: copypktopts() does not copy the cached route to a next 2542 * hop (if any). This is not very good in terms of efficiency, 2543 * but we can allow this since this option should be rarely 2544 * used. 2545 */ 2546 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2547 return (error); 2548 } 2549 2550 /* 2551 * XXX: Currently, we assume all the optional information is stored 2552 * in a single mbuf. 2553 */ 2554 if (control->m_next) 2555 return (EINVAL); 2556 2557 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2558 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2559 int error; 2560 2561 if (control->m_len < CMSG_LEN(0)) 2562 return (EINVAL); 2563 2564 cm = mtod(control, struct cmsghdr *); 2565 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2566 return (EINVAL); 2567 if (cm->cmsg_level != IPPROTO_IPV6) 2568 continue; 2569 2570 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2571 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2572 if (error) 2573 return (error); 2574 } 2575 2576 return (0); 2577 } 2578 2579 /* 2580 * Set a particular packet option, as a sticky option or an ancillary data 2581 * item. "len" can be 0 only when it's a sticky option. 2582 * We have 4 cases of combination of "sticky" and "cmsg": 2583 * "sticky=0, cmsg=0": impossible 2584 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2585 * "sticky=1, cmsg=0": RFC3542 socket option 2586 * "sticky=1, cmsg=1": RFC2292 socket option 2587 */ 2588 static int 2589 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2590 struct ucred *cred, int sticky, int cmsg, int uproto) 2591 { 2592 int minmtupolicy, preftemp; 2593 int error; 2594 2595 if (!sticky && !cmsg) { 2596 #ifdef DIAGNOSTIC 2597 printf("ip6_setpktopt: impossible case\n"); 2598 #endif 2599 return (EINVAL); 2600 } 2601 2602 /* 2603 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2604 * not be specified in the context of RFC3542. Conversely, 2605 * RFC3542 types should not be specified in the context of RFC2292. 2606 */ 2607 if (!cmsg) { 2608 switch (optname) { 2609 case IPV6_2292PKTINFO: 2610 case IPV6_2292HOPLIMIT: 2611 case IPV6_2292NEXTHOP: 2612 case IPV6_2292HOPOPTS: 2613 case IPV6_2292DSTOPTS: 2614 case IPV6_2292RTHDR: 2615 case IPV6_2292PKTOPTIONS: 2616 return (ENOPROTOOPT); 2617 } 2618 } 2619 if (sticky && cmsg) { 2620 switch (optname) { 2621 case IPV6_PKTINFO: 2622 case IPV6_HOPLIMIT: 2623 case IPV6_NEXTHOP: 2624 case IPV6_HOPOPTS: 2625 case IPV6_DSTOPTS: 2626 case IPV6_RTHDRDSTOPTS: 2627 case IPV6_RTHDR: 2628 case IPV6_USE_MIN_MTU: 2629 case IPV6_DONTFRAG: 2630 case IPV6_TCLASS: 2631 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2632 return (ENOPROTOOPT); 2633 } 2634 } 2635 2636 switch (optname) { 2637 case IPV6_2292PKTINFO: 2638 case IPV6_PKTINFO: 2639 { 2640 struct ifnet *ifp = NULL; 2641 struct in6_pktinfo *pktinfo; 2642 2643 if (len != sizeof(struct in6_pktinfo)) 2644 return (EINVAL); 2645 2646 pktinfo = (struct in6_pktinfo *)buf; 2647 2648 /* 2649 * An application can clear any sticky IPV6_PKTINFO option by 2650 * doing a "regular" setsockopt with ipi6_addr being 2651 * in6addr_any and ipi6_ifindex being zero. 2652 * [RFC 3542, Section 6] 2653 */ 2654 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2655 pktinfo->ipi6_ifindex == 0 && 2656 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2657 ip6_clearpktopts(opt, optname); 2658 break; 2659 } 2660 2661 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2662 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2663 return (EINVAL); 2664 } 2665 2666 /* validate the interface index if specified. */ 2667 if (pktinfo->ipi6_ifindex > V_if_index || 2668 pktinfo->ipi6_ifindex < 0) { 2669 return (ENXIO); 2670 } 2671 if (pktinfo->ipi6_ifindex) { 2672 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2673 if (ifp == NULL) 2674 return (ENXIO); 2675 } 2676 2677 /* 2678 * We store the address anyway, and let in6_selectsrc() 2679 * validate the specified address. This is because ipi6_addr 2680 * may not have enough information about its scope zone, and 2681 * we may need additional information (such as outgoing 2682 * interface or the scope zone of a destination address) to 2683 * disambiguate the scope. 2684 * XXX: the delay of the validation may confuse the 2685 * application when it is used as a sticky option. 2686 */ 2687 if (opt->ip6po_pktinfo == NULL) { 2688 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2689 M_IP6OPT, M_NOWAIT); 2690 if (opt->ip6po_pktinfo == NULL) 2691 return (ENOBUFS); 2692 } 2693 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2694 break; 2695 } 2696 2697 case IPV6_2292HOPLIMIT: 2698 case IPV6_HOPLIMIT: 2699 { 2700 int *hlimp; 2701 2702 /* 2703 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2704 * to simplify the ordering among hoplimit options. 2705 */ 2706 if (optname == IPV6_HOPLIMIT && sticky) 2707 return (ENOPROTOOPT); 2708 2709 if (len != sizeof(int)) 2710 return (EINVAL); 2711 hlimp = (int *)buf; 2712 if (*hlimp < -1 || *hlimp > 255) 2713 return (EINVAL); 2714 2715 opt->ip6po_hlim = *hlimp; 2716 break; 2717 } 2718 2719 case IPV6_TCLASS: 2720 { 2721 int tclass; 2722 2723 if (len != sizeof(int)) 2724 return (EINVAL); 2725 tclass = *(int *)buf; 2726 if (tclass < -1 || tclass > 255) 2727 return (EINVAL); 2728 2729 opt->ip6po_tclass = tclass; 2730 break; 2731 } 2732 2733 case IPV6_2292NEXTHOP: 2734 case IPV6_NEXTHOP: 2735 if (cred != NULL) { 2736 error = priv_check_cred(cred, 2737 PRIV_NETINET_SETHDROPTS, 0); 2738 if (error) 2739 return (error); 2740 } 2741 2742 if (len == 0) { /* just remove the option */ 2743 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2744 break; 2745 } 2746 2747 /* check if cmsg_len is large enough for sa_len */ 2748 if (len < sizeof(struct sockaddr) || len < *buf) 2749 return (EINVAL); 2750 2751 switch (((struct sockaddr *)buf)->sa_family) { 2752 case AF_INET6: 2753 { 2754 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2755 int error; 2756 2757 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2758 return (EINVAL); 2759 2760 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2761 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2762 return (EINVAL); 2763 } 2764 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2765 != 0) { 2766 return (error); 2767 } 2768 break; 2769 } 2770 case AF_LINK: /* should eventually be supported */ 2771 default: 2772 return (EAFNOSUPPORT); 2773 } 2774 2775 /* turn off the previous option, then set the new option. */ 2776 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2777 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2778 if (opt->ip6po_nexthop == NULL) 2779 return (ENOBUFS); 2780 bcopy(buf, opt->ip6po_nexthop, *buf); 2781 break; 2782 2783 case IPV6_2292HOPOPTS: 2784 case IPV6_HOPOPTS: 2785 { 2786 struct ip6_hbh *hbh; 2787 int hbhlen; 2788 2789 /* 2790 * XXX: We don't allow a non-privileged user to set ANY HbH 2791 * options, since per-option restriction has too much 2792 * overhead. 2793 */ 2794 if (cred != NULL) { 2795 error = priv_check_cred(cred, 2796 PRIV_NETINET_SETHDROPTS, 0); 2797 if (error) 2798 return (error); 2799 } 2800 2801 if (len == 0) { 2802 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2803 break; /* just remove the option */ 2804 } 2805 2806 /* message length validation */ 2807 if (len < sizeof(struct ip6_hbh)) 2808 return (EINVAL); 2809 hbh = (struct ip6_hbh *)buf; 2810 hbhlen = (hbh->ip6h_len + 1) << 3; 2811 if (len != hbhlen) 2812 return (EINVAL); 2813 2814 /* turn off the previous option, then set the new option. */ 2815 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2816 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2817 if (opt->ip6po_hbh == NULL) 2818 return (ENOBUFS); 2819 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2820 2821 break; 2822 } 2823 2824 case IPV6_2292DSTOPTS: 2825 case IPV6_DSTOPTS: 2826 case IPV6_RTHDRDSTOPTS: 2827 { 2828 struct ip6_dest *dest, **newdest = NULL; 2829 int destlen; 2830 2831 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2832 error = priv_check_cred(cred, 2833 PRIV_NETINET_SETHDROPTS, 0); 2834 if (error) 2835 return (error); 2836 } 2837 2838 if (len == 0) { 2839 ip6_clearpktopts(opt, optname); 2840 break; /* just remove the option */ 2841 } 2842 2843 /* message length validation */ 2844 if (len < sizeof(struct ip6_dest)) 2845 return (EINVAL); 2846 dest = (struct ip6_dest *)buf; 2847 destlen = (dest->ip6d_len + 1) << 3; 2848 if (len != destlen) 2849 return (EINVAL); 2850 2851 /* 2852 * Determine the position that the destination options header 2853 * should be inserted; before or after the routing header. 2854 */ 2855 switch (optname) { 2856 case IPV6_2292DSTOPTS: 2857 /* 2858 * The old advacned API is ambiguous on this point. 2859 * Our approach is to determine the position based 2860 * according to the existence of a routing header. 2861 * Note, however, that this depends on the order of the 2862 * extension headers in the ancillary data; the 1st 2863 * part of the destination options header must appear 2864 * before the routing header in the ancillary data, 2865 * too. 2866 * RFC3542 solved the ambiguity by introducing 2867 * separate ancillary data or option types. 2868 */ 2869 if (opt->ip6po_rthdr == NULL) 2870 newdest = &opt->ip6po_dest1; 2871 else 2872 newdest = &opt->ip6po_dest2; 2873 break; 2874 case IPV6_RTHDRDSTOPTS: 2875 newdest = &opt->ip6po_dest1; 2876 break; 2877 case IPV6_DSTOPTS: 2878 newdest = &opt->ip6po_dest2; 2879 break; 2880 } 2881 2882 /* turn off the previous option, then set the new option. */ 2883 ip6_clearpktopts(opt, optname); 2884 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2885 if (*newdest == NULL) 2886 return (ENOBUFS); 2887 bcopy(dest, *newdest, destlen); 2888 2889 break; 2890 } 2891 2892 case IPV6_2292RTHDR: 2893 case IPV6_RTHDR: 2894 { 2895 struct ip6_rthdr *rth; 2896 int rthlen; 2897 2898 if (len == 0) { 2899 ip6_clearpktopts(opt, IPV6_RTHDR); 2900 break; /* just remove the option */ 2901 } 2902 2903 /* message length validation */ 2904 if (len < sizeof(struct ip6_rthdr)) 2905 return (EINVAL); 2906 rth = (struct ip6_rthdr *)buf; 2907 rthlen = (rth->ip6r_len + 1) << 3; 2908 if (len != rthlen) 2909 return (EINVAL); 2910 2911 switch (rth->ip6r_type) { 2912 case IPV6_RTHDR_TYPE_0: 2913 if (rth->ip6r_len == 0) /* must contain one addr */ 2914 return (EINVAL); 2915 if (rth->ip6r_len % 2) /* length must be even */ 2916 return (EINVAL); 2917 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2918 return (EINVAL); 2919 break; 2920 default: 2921 return (EINVAL); /* not supported */ 2922 } 2923 2924 /* turn off the previous option */ 2925 ip6_clearpktopts(opt, IPV6_RTHDR); 2926 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2927 if (opt->ip6po_rthdr == NULL) 2928 return (ENOBUFS); 2929 bcopy(rth, opt->ip6po_rthdr, rthlen); 2930 2931 break; 2932 } 2933 2934 case IPV6_USE_MIN_MTU: 2935 if (len != sizeof(int)) 2936 return (EINVAL); 2937 minmtupolicy = *(int *)buf; 2938 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2939 minmtupolicy != IP6PO_MINMTU_DISABLE && 2940 minmtupolicy != IP6PO_MINMTU_ALL) { 2941 return (EINVAL); 2942 } 2943 opt->ip6po_minmtu = minmtupolicy; 2944 break; 2945 2946 case IPV6_DONTFRAG: 2947 if (len != sizeof(int)) 2948 return (EINVAL); 2949 2950 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2951 /* 2952 * we ignore this option for TCP sockets. 2953 * (RFC3542 leaves this case unspecified.) 2954 */ 2955 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2956 } else 2957 opt->ip6po_flags |= IP6PO_DONTFRAG; 2958 break; 2959 2960 case IPV6_PREFER_TEMPADDR: 2961 if (len != sizeof(int)) 2962 return (EINVAL); 2963 preftemp = *(int *)buf; 2964 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 2965 preftemp != IP6PO_TEMPADDR_NOTPREFER && 2966 preftemp != IP6PO_TEMPADDR_PREFER) { 2967 return (EINVAL); 2968 } 2969 opt->ip6po_prefer_tempaddr = preftemp; 2970 break; 2971 2972 default: 2973 return (ENOPROTOOPT); 2974 } /* end of switch */ 2975 2976 return (0); 2977 } 2978 2979 /* 2980 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2981 * packet to the input queue of a specified interface. Note that this 2982 * calls the output routine of the loopback "driver", but with an interface 2983 * pointer that might NOT be &loif -- easier than replicating that code here. 2984 */ 2985 void 2986 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 2987 { 2988 struct mbuf *copym; 2989 struct ip6_hdr *ip6; 2990 2991 copym = m_copy(m, 0, M_COPYALL); 2992 if (copym == NULL) 2993 return; 2994 2995 /* 2996 * Make sure to deep-copy IPv6 header portion in case the data 2997 * is in an mbuf cluster, so that we can safely override the IPv6 2998 * header portion later. 2999 */ 3000 if ((copym->m_flags & M_EXT) != 0 || 3001 copym->m_len < sizeof(struct ip6_hdr)) { 3002 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3003 if (copym == NULL) 3004 return; 3005 } 3006 3007 #ifdef DIAGNOSTIC 3008 if (copym->m_len < sizeof(*ip6)) { 3009 m_freem(copym); 3010 return; 3011 } 3012 #endif 3013 3014 ip6 = mtod(copym, struct ip6_hdr *); 3015 /* 3016 * clear embedded scope identifiers if necessary. 3017 * in6_clearscope will touch the addresses only when necessary. 3018 */ 3019 in6_clearscope(&ip6->ip6_src); 3020 in6_clearscope(&ip6->ip6_dst); 3021 3022 (void)if_simloop(ifp, copym, dst->sin6_family, 0); 3023 } 3024 3025 /* 3026 * Chop IPv6 header off from the payload. 3027 */ 3028 static int 3029 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3030 { 3031 struct mbuf *mh; 3032 struct ip6_hdr *ip6; 3033 3034 ip6 = mtod(m, struct ip6_hdr *); 3035 if (m->m_len > sizeof(*ip6)) { 3036 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3037 if (mh == 0) { 3038 m_freem(m); 3039 return ENOBUFS; 3040 } 3041 M_MOVE_PKTHDR(mh, m); 3042 MH_ALIGN(mh, sizeof(*ip6)); 3043 m->m_len -= sizeof(*ip6); 3044 m->m_data += sizeof(*ip6); 3045 mh->m_next = m; 3046 m = mh; 3047 m->m_len = sizeof(*ip6); 3048 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3049 } 3050 exthdrs->ip6e_ip6 = m; 3051 return 0; 3052 } 3053 3054 /* 3055 * Compute IPv6 extension header length. 3056 */ 3057 int 3058 ip6_optlen(struct inpcb *in6p) 3059 { 3060 int len; 3061 3062 if (!in6p->in6p_outputopts) 3063 return 0; 3064 3065 len = 0; 3066 #define elen(x) \ 3067 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3068 3069 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3070 if (in6p->in6p_outputopts->ip6po_rthdr) 3071 /* dest1 is valid with rthdr only */ 3072 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3073 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3074 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3075 return len; 3076 #undef elen 3077 } 3078