1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ratelimit.h" 69 #include "opt_ipsec.h" 70 #include "opt_sctp.h" 71 #include "opt_route.h" 72 #include "opt_rss.h" 73 74 #include <sys/param.h> 75 #include <sys/kernel.h> 76 #include <sys/malloc.h> 77 #include <sys/mbuf.h> 78 #include <sys/errno.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/protosw.h> 82 #include <sys/socket.h> 83 #include <sys/socketvar.h> 84 #include <sys/syslog.h> 85 #include <sys/ucred.h> 86 87 #include <machine/in_cksum.h> 88 89 #include <net/if.h> 90 #include <net/if_var.h> 91 #include <net/if_llatbl.h> 92 #include <net/netisr.h> 93 #include <net/route.h> 94 #include <net/pfil.h> 95 #include <net/rss_config.h> 96 #include <net/vnet.h> 97 98 #include <netinet/in.h> 99 #include <netinet/in_var.h> 100 #include <netinet/ip_var.h> 101 #include <netinet6/in6_fib.h> 102 #include <netinet6/in6_var.h> 103 #include <netinet/ip6.h> 104 #include <netinet/icmp6.h> 105 #include <netinet6/ip6_var.h> 106 #include <netinet/in_pcb.h> 107 #include <netinet/tcp_var.h> 108 #include <netinet6/nd6.h> 109 #include <netinet6/in6_rss.h> 110 111 #include <netipsec/ipsec_support.h> 112 #ifdef SCTP 113 #include <netinet/sctp.h> 114 #include <netinet/sctp_crc32.h> 115 #endif 116 117 #include <netinet6/ip6protosw.h> 118 #include <netinet6/scope6_var.h> 119 120 #ifdef FLOWTABLE 121 #include <net/flowtable.h> 122 #endif 123 124 extern int in6_mcast_loop; 125 126 struct ip6_exthdrs { 127 struct mbuf *ip6e_ip6; 128 struct mbuf *ip6e_hbh; 129 struct mbuf *ip6e_dest1; 130 struct mbuf *ip6e_rthdr; 131 struct mbuf *ip6e_dest2; 132 }; 133 134 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 135 136 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 137 struct ucred *, int); 138 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 139 struct socket *, struct sockopt *); 140 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 141 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 142 struct ucred *, int, int, int); 143 144 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 145 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 146 struct ip6_frag **); 147 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 148 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 149 static int ip6_getpmtu(struct route_in6 *, int, 150 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 151 u_int); 152 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 153 u_long *, int *, u_int); 154 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 155 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 156 157 158 /* 159 * Make an extension header from option data. hp is the source, and 160 * mp is the destination. 161 */ 162 #define MAKE_EXTHDR(hp, mp) \ 163 do { \ 164 if (hp) { \ 165 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 166 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 167 ((eh)->ip6e_len + 1) << 3); \ 168 if (error) \ 169 goto freehdrs; \ 170 } \ 171 } while (/*CONSTCOND*/ 0) 172 173 /* 174 * Form a chain of extension headers. 175 * m is the extension header mbuf 176 * mp is the previous mbuf in the chain 177 * p is the next header 178 * i is the type of option. 179 */ 180 #define MAKE_CHAIN(m, mp, p, i)\ 181 do {\ 182 if (m) {\ 183 if (!hdrsplit) \ 184 panic("assumption failed: hdr not split"); \ 185 *mtod((m), u_char *) = *(p);\ 186 *(p) = (i);\ 187 p = mtod((m), u_char *);\ 188 (m)->m_next = (mp)->m_next;\ 189 (mp)->m_next = (m);\ 190 (mp) = (m);\ 191 }\ 192 } while (/*CONSTCOND*/ 0) 193 194 void 195 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 196 { 197 u_short csum; 198 199 csum = in_cksum_skip(m, offset + plen, offset); 200 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 201 csum = 0xffff; 202 offset += m->m_pkthdr.csum_data; /* checksum offset */ 203 204 if (offset + sizeof(u_short) > m->m_len) { 205 printf("%s: delayed m_pullup, m->len: %d plen %u off %u " 206 "csum_flags=%b\n", __func__, m->m_len, plen, offset, 207 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 208 /* 209 * XXX this should not happen, but if it does, the correct 210 * behavior may be to insert the checksum in the appropriate 211 * next mbuf in the chain. 212 */ 213 return; 214 } 215 *(u_short *)(m->m_data + offset) = csum; 216 } 217 218 int 219 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 220 int mtu, uint32_t id) 221 { 222 struct mbuf *m, **mnext, *m_frgpart; 223 struct ip6_hdr *ip6, *mhip6; 224 struct ip6_frag *ip6f; 225 int off; 226 int error; 227 int tlen = m0->m_pkthdr.len; 228 229 m = m0; 230 ip6 = mtod(m, struct ip6_hdr *); 231 mnext = &m->m_nextpkt; 232 233 for (off = hlen; off < tlen; off += mtu) { 234 m = m_gethdr(M_NOWAIT, MT_DATA); 235 if (!m) { 236 IP6STAT_INC(ip6s_odropped); 237 return (ENOBUFS); 238 } 239 m->m_flags = m0->m_flags & M_COPYFLAGS; 240 *mnext = m; 241 mnext = &m->m_nextpkt; 242 m->m_data += max_linkhdr; 243 mhip6 = mtod(m, struct ip6_hdr *); 244 *mhip6 = *ip6; 245 m->m_len = sizeof(*mhip6); 246 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 247 if (error) { 248 IP6STAT_INC(ip6s_odropped); 249 return (error); 250 } 251 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 252 if (off + mtu >= tlen) 253 mtu = tlen - off; 254 else 255 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 256 mhip6->ip6_plen = htons((u_short)(mtu + hlen + 257 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 258 if ((m_frgpart = m_copym(m0, off, mtu, M_NOWAIT)) == NULL) { 259 IP6STAT_INC(ip6s_odropped); 260 return (ENOBUFS); 261 } 262 m_cat(m, m_frgpart); 263 m->m_pkthdr.len = mtu + hlen + sizeof(*ip6f); 264 m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; 265 m->m_pkthdr.rcvif = NULL; 266 ip6f->ip6f_reserved = 0; 267 ip6f->ip6f_ident = id; 268 ip6f->ip6f_nxt = nextproto; 269 IP6STAT_INC(ip6s_ofragments); 270 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 271 } 272 273 return (0); 274 } 275 276 /* 277 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 278 * header (with pri, len, nxt, hlim, src, dst). 279 * This function may modify ver and hlim only. 280 * The mbuf chain containing the packet will be freed. 281 * The mbuf opt, if present, will not be freed. 282 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 283 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 284 * then result of route lookup is stored in ro->ro_rt. 285 * 286 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 287 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 288 * which is rt_mtu. 289 * 290 * ifpp - XXX: just for statistics 291 */ 292 /* 293 * XXX TODO: no flowid is assigned for outbound flows? 294 */ 295 int 296 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 297 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 298 struct ifnet **ifpp, struct inpcb *inp) 299 { 300 struct ip6_hdr *ip6; 301 struct ifnet *ifp, *origifp; 302 struct mbuf *m = m0; 303 struct mbuf *mprev = NULL; 304 int hlen, tlen, len; 305 struct route_in6 ip6route; 306 struct rtentry *rt = NULL; 307 struct sockaddr_in6 *dst, src_sa, dst_sa; 308 struct in6_addr odst; 309 int error = 0; 310 struct in6_ifaddr *ia = NULL; 311 u_long mtu; 312 int alwaysfrag, dontfrag; 313 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 314 struct ip6_exthdrs exthdrs; 315 struct in6_addr src0, dst0; 316 u_int32_t zone; 317 struct route_in6 *ro_pmtu = NULL; 318 int hdrsplit = 0; 319 int sw_csum, tso; 320 int needfiblookup; 321 uint32_t fibnum; 322 struct m_tag *fwd_tag = NULL; 323 uint32_t id; 324 325 if (inp != NULL) { 326 M_SETFIB(m, inp->inp_inc.inc_fibnum); 327 if ((flags & IP_NODEFAULTFLOWID) == 0) { 328 /* unconditionally set flowid */ 329 m->m_pkthdr.flowid = inp->inp_flowid; 330 M_HASHTYPE_SET(m, inp->inp_flowtype); 331 } 332 } 333 334 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 335 /* 336 * IPSec checking which handles several cases. 337 * FAST IPSEC: We re-injected the packet. 338 * XXX: need scope argument. 339 */ 340 if (IPSEC_ENABLED(ipv6)) { 341 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 342 if (error == EINPROGRESS) 343 error = 0; 344 goto done; 345 } 346 } 347 #endif /* IPSEC */ 348 349 bzero(&exthdrs, sizeof(exthdrs)); 350 if (opt) { 351 /* Hop-by-Hop options header */ 352 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 353 /* Destination options header(1st part) */ 354 if (opt->ip6po_rthdr) { 355 /* 356 * Destination options header(1st part) 357 * This only makes sense with a routing header. 358 * See Section 9.2 of RFC 3542. 359 * Disabling this part just for MIP6 convenience is 360 * a bad idea. We need to think carefully about a 361 * way to make the advanced API coexist with MIP6 362 * options, which might automatically be inserted in 363 * the kernel. 364 */ 365 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 366 } 367 /* Routing header */ 368 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 369 /* Destination options header(2nd part) */ 370 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 371 } 372 373 /* 374 * Calculate the total length of the extension header chain. 375 * Keep the length of the unfragmentable part for fragmentation. 376 */ 377 optlen = 0; 378 if (exthdrs.ip6e_hbh) 379 optlen += exthdrs.ip6e_hbh->m_len; 380 if (exthdrs.ip6e_dest1) 381 optlen += exthdrs.ip6e_dest1->m_len; 382 if (exthdrs.ip6e_rthdr) 383 optlen += exthdrs.ip6e_rthdr->m_len; 384 unfragpartlen = optlen + sizeof(struct ip6_hdr); 385 386 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 387 if (exthdrs.ip6e_dest2) 388 optlen += exthdrs.ip6e_dest2->m_len; 389 390 /* 391 * If there is at least one extension header, 392 * separate IP6 header from the payload. 393 */ 394 if (optlen && !hdrsplit) { 395 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 396 m = NULL; 397 goto freehdrs; 398 } 399 m = exthdrs.ip6e_ip6; 400 hdrsplit++; 401 } 402 403 ip6 = mtod(m, struct ip6_hdr *); 404 405 /* adjust mbuf packet header length */ 406 m->m_pkthdr.len += optlen; 407 plen = m->m_pkthdr.len - sizeof(*ip6); 408 409 /* If this is a jumbo payload, insert a jumbo payload option. */ 410 if (plen > IPV6_MAXPACKET) { 411 if (!hdrsplit) { 412 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 413 m = NULL; 414 goto freehdrs; 415 } 416 m = exthdrs.ip6e_ip6; 417 hdrsplit++; 418 } 419 /* adjust pointer */ 420 ip6 = mtod(m, struct ip6_hdr *); 421 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 422 goto freehdrs; 423 ip6->ip6_plen = 0; 424 } else 425 ip6->ip6_plen = htons(plen); 426 427 /* 428 * Concatenate headers and fill in next header fields. 429 * Here we have, on "m" 430 * IPv6 payload 431 * and we insert headers accordingly. Finally, we should be getting: 432 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 433 * 434 * during the header composing process, "m" points to IPv6 header. 435 * "mprev" points to an extension header prior to esp. 436 */ 437 u_char *nexthdrp = &ip6->ip6_nxt; 438 mprev = m; 439 440 /* 441 * we treat dest2 specially. this makes IPsec processing 442 * much easier. the goal here is to make mprev point the 443 * mbuf prior to dest2. 444 * 445 * result: IPv6 dest2 payload 446 * m and mprev will point to IPv6 header. 447 */ 448 if (exthdrs.ip6e_dest2) { 449 if (!hdrsplit) 450 panic("assumption failed: hdr not split"); 451 exthdrs.ip6e_dest2->m_next = m->m_next; 452 m->m_next = exthdrs.ip6e_dest2; 453 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 454 ip6->ip6_nxt = IPPROTO_DSTOPTS; 455 } 456 457 /* 458 * result: IPv6 hbh dest1 rthdr dest2 payload 459 * m will point to IPv6 header. mprev will point to the 460 * extension header prior to dest2 (rthdr in the above case). 461 */ 462 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 463 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 464 IPPROTO_DSTOPTS); 465 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 466 IPPROTO_ROUTING); 467 468 /* 469 * If there is a routing header, discard the packet. 470 */ 471 if (exthdrs.ip6e_rthdr) { 472 error = EINVAL; 473 goto bad; 474 } 475 476 /* Source address validation */ 477 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 478 (flags & IPV6_UNSPECSRC) == 0) { 479 error = EOPNOTSUPP; 480 IP6STAT_INC(ip6s_badscope); 481 goto bad; 482 } 483 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 484 error = EOPNOTSUPP; 485 IP6STAT_INC(ip6s_badscope); 486 goto bad; 487 } 488 489 IP6STAT_INC(ip6s_localout); 490 491 /* 492 * Route packet. 493 */ 494 if (ro == NULL) { 495 ro = &ip6route; 496 bzero((caddr_t)ro, sizeof(*ro)); 497 } 498 ro_pmtu = ro; 499 if (opt && opt->ip6po_rthdr) 500 ro = &opt->ip6po_route; 501 dst = (struct sockaddr_in6 *)&ro->ro_dst; 502 #ifdef FLOWTABLE 503 if (ro->ro_rt == NULL) 504 (void )flowtable_lookup(AF_INET6, m, (struct route *)ro); 505 #endif 506 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 507 again: 508 /* 509 * if specified, try to fill in the traffic class field. 510 * do not override if a non-zero value is already set. 511 * we check the diffserv field and the ecn field separately. 512 */ 513 if (opt && opt->ip6po_tclass >= 0) { 514 int mask = 0; 515 516 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 517 mask |= 0xfc; 518 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 519 mask |= 0x03; 520 if (mask != 0) 521 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 522 } 523 524 /* fill in or override the hop limit field, if necessary. */ 525 if (opt && opt->ip6po_hlim != -1) 526 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 527 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 528 if (im6o != NULL) 529 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 530 else 531 ip6->ip6_hlim = V_ip6_defmcasthlim; 532 } 533 /* 534 * Validate route against routing table additions; 535 * a better/more specific route might have been added. 536 * Make sure address family is set in route. 537 */ 538 if (inp) { 539 ro->ro_dst.sin6_family = AF_INET6; 540 RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, fibnum); 541 } 542 if (ro->ro_rt && fwd_tag == NULL && (ro->ro_rt->rt_flags & RTF_UP) && 543 ro->ro_dst.sin6_family == AF_INET6 && 544 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 545 rt = ro->ro_rt; 546 ifp = ro->ro_rt->rt_ifp; 547 } else { 548 if (ro->ro_lle) 549 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 550 ro->ro_lle = NULL; 551 if (fwd_tag == NULL) { 552 bzero(&dst_sa, sizeof(dst_sa)); 553 dst_sa.sin6_family = AF_INET6; 554 dst_sa.sin6_len = sizeof(dst_sa); 555 dst_sa.sin6_addr = ip6->ip6_dst; 556 } 557 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 558 &rt, fibnum); 559 if (error != 0) { 560 if (ifp != NULL) 561 in6_ifstat_inc(ifp, ifs6_out_discard); 562 goto bad; 563 } 564 } 565 if (rt == NULL) { 566 /* 567 * If in6_selectroute() does not return a route entry, 568 * dst may not have been updated. 569 */ 570 *dst = dst_sa; /* XXX */ 571 } 572 573 /* 574 * then rt (for unicast) and ifp must be non-NULL valid values. 575 */ 576 if ((flags & IPV6_FORWARDING) == 0) { 577 /* XXX: the FORWARDING flag can be set for mrouting. */ 578 in6_ifstat_inc(ifp, ifs6_out_request); 579 } 580 if (rt != NULL) { 581 ia = (struct in6_ifaddr *)(rt->rt_ifa); 582 counter_u64_add(rt->rt_pksent, 1); 583 } 584 585 586 /* 587 * The outgoing interface must be in the zone of source and 588 * destination addresses. 589 */ 590 origifp = ifp; 591 592 src0 = ip6->ip6_src; 593 if (in6_setscope(&src0, origifp, &zone)) 594 goto badscope; 595 bzero(&src_sa, sizeof(src_sa)); 596 src_sa.sin6_family = AF_INET6; 597 src_sa.sin6_len = sizeof(src_sa); 598 src_sa.sin6_addr = ip6->ip6_src; 599 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 600 goto badscope; 601 602 dst0 = ip6->ip6_dst; 603 if (in6_setscope(&dst0, origifp, &zone)) 604 goto badscope; 605 /* re-initialize to be sure */ 606 bzero(&dst_sa, sizeof(dst_sa)); 607 dst_sa.sin6_family = AF_INET6; 608 dst_sa.sin6_len = sizeof(dst_sa); 609 dst_sa.sin6_addr = ip6->ip6_dst; 610 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 611 goto badscope; 612 } 613 614 /* We should use ia_ifp to support the case of 615 * sending packets to an address of our own. 616 */ 617 if (ia != NULL && ia->ia_ifp) 618 ifp = ia->ia_ifp; 619 620 /* scope check is done. */ 621 goto routefound; 622 623 badscope: 624 IP6STAT_INC(ip6s_badscope); 625 in6_ifstat_inc(origifp, ifs6_out_discard); 626 if (error == 0) 627 error = EHOSTUNREACH; /* XXX */ 628 goto bad; 629 630 routefound: 631 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 632 if (opt && opt->ip6po_nextroute.ro_rt) { 633 /* 634 * The nexthop is explicitly specified by the 635 * application. We assume the next hop is an IPv6 636 * address. 637 */ 638 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 639 } 640 else if ((rt->rt_flags & RTF_GATEWAY)) 641 dst = (struct sockaddr_in6 *)rt->rt_gateway; 642 } 643 644 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 645 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 646 } else { 647 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 648 in6_ifstat_inc(ifp, ifs6_out_mcast); 649 /* 650 * Confirm that the outgoing interface supports multicast. 651 */ 652 if (!(ifp->if_flags & IFF_MULTICAST)) { 653 IP6STAT_INC(ip6s_noroute); 654 in6_ifstat_inc(ifp, ifs6_out_discard); 655 error = ENETUNREACH; 656 goto bad; 657 } 658 if ((im6o == NULL && in6_mcast_loop) || 659 (im6o && im6o->im6o_multicast_loop)) { 660 /* 661 * Loop back multicast datagram if not expressly 662 * forbidden to do so, even if we have not joined 663 * the address; protocols will filter it later, 664 * thus deferring a hash lookup and lock acquisition 665 * at the expense of an m_copym(). 666 */ 667 ip6_mloopback(ifp, m); 668 } else { 669 /* 670 * If we are acting as a multicast router, perform 671 * multicast forwarding as if the packet had just 672 * arrived on the interface to which we are about 673 * to send. The multicast forwarding function 674 * recursively calls this function, using the 675 * IPV6_FORWARDING flag to prevent infinite recursion. 676 * 677 * Multicasts that are looped back by ip6_mloopback(), 678 * above, will be forwarded by the ip6_input() routine, 679 * if necessary. 680 */ 681 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 682 /* 683 * XXX: ip6_mforward expects that rcvif is NULL 684 * when it is called from the originating path. 685 * However, it may not always be the case. 686 */ 687 m->m_pkthdr.rcvif = NULL; 688 if (ip6_mforward(ip6, ifp, m) != 0) { 689 m_freem(m); 690 goto done; 691 } 692 } 693 } 694 /* 695 * Multicasts with a hoplimit of zero may be looped back, 696 * above, but must not be transmitted on a network. 697 * Also, multicasts addressed to the loopback interface 698 * are not sent -- the above call to ip6_mloopback() will 699 * loop back a copy if this host actually belongs to the 700 * destination group on the loopback interface. 701 */ 702 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 703 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 704 m_freem(m); 705 goto done; 706 } 707 } 708 709 /* 710 * Fill the outgoing inteface to tell the upper layer 711 * to increment per-interface statistics. 712 */ 713 if (ifpp) 714 *ifpp = ifp; 715 716 /* Determine path MTU. */ 717 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 718 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 719 goto bad; 720 721 /* 722 * The caller of this function may specify to use the minimum MTU 723 * in some cases. 724 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 725 * setting. The logic is a bit complicated; by default, unicast 726 * packets will follow path MTU while multicast packets will be sent at 727 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 728 * including unicast ones will be sent at the minimum MTU. Multicast 729 * packets will always be sent at the minimum MTU unless 730 * IP6PO_MINMTU_DISABLE is explicitly specified. 731 * See RFC 3542 for more details. 732 */ 733 if (mtu > IPV6_MMTU) { 734 if ((flags & IPV6_MINMTU)) 735 mtu = IPV6_MMTU; 736 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 737 mtu = IPV6_MMTU; 738 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 739 (opt == NULL || 740 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 741 mtu = IPV6_MMTU; 742 } 743 } 744 745 /* 746 * clear embedded scope identifiers if necessary. 747 * in6_clearscope will touch the addresses only when necessary. 748 */ 749 in6_clearscope(&ip6->ip6_src); 750 in6_clearscope(&ip6->ip6_dst); 751 752 /* 753 * If the outgoing packet contains a hop-by-hop options header, 754 * it must be examined and processed even by the source node. 755 * (RFC 2460, section 4.) 756 */ 757 if (exthdrs.ip6e_hbh) { 758 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 759 u_int32_t dummy; /* XXX unused */ 760 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 761 762 #ifdef DIAGNOSTIC 763 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 764 panic("ip6e_hbh is not contiguous"); 765 #endif 766 /* 767 * XXX: if we have to send an ICMPv6 error to the sender, 768 * we need the M_LOOP flag since icmp6_error() expects 769 * the IPv6 and the hop-by-hop options header are 770 * contiguous unless the flag is set. 771 */ 772 m->m_flags |= M_LOOP; 773 m->m_pkthdr.rcvif = ifp; 774 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 775 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 776 &dummy, &plen) < 0) { 777 /* m was already freed at this point */ 778 error = EINVAL;/* better error? */ 779 goto done; 780 } 781 m->m_flags &= ~M_LOOP; /* XXX */ 782 m->m_pkthdr.rcvif = NULL; 783 } 784 785 /* Jump over all PFIL processing if hooks are not active. */ 786 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 787 goto passout; 788 789 odst = ip6->ip6_dst; 790 /* Run through list of hooks for output packets. */ 791 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 792 if (error != 0 || m == NULL) 793 goto done; 794 /* adjust pointer */ 795 ip6 = mtod(m, struct ip6_hdr *); 796 797 needfiblookup = 0; 798 /* See if destination IP address was changed by packet filter. */ 799 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 800 m->m_flags |= M_SKIP_FIREWALL; 801 /* If destination is now ourself drop to ip6_input(). */ 802 if (in6_localip(&ip6->ip6_dst)) { 803 m->m_flags |= M_FASTFWD_OURS; 804 if (m->m_pkthdr.rcvif == NULL) 805 m->m_pkthdr.rcvif = V_loif; 806 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 807 m->m_pkthdr.csum_flags |= 808 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 809 m->m_pkthdr.csum_data = 0xffff; 810 } 811 #ifdef SCTP 812 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 813 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 814 #endif 815 error = netisr_queue(NETISR_IPV6, m); 816 goto done; 817 } else { 818 RO_RTFREE(ro); 819 needfiblookup = 1; /* Redo the routing table lookup. */ 820 if (ro->ro_lle) 821 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 822 ro->ro_lle = NULL; 823 } 824 } 825 /* See if fib was changed by packet filter. */ 826 if (fibnum != M_GETFIB(m)) { 827 m->m_flags |= M_SKIP_FIREWALL; 828 fibnum = M_GETFIB(m); 829 RO_RTFREE(ro); 830 needfiblookup = 1; 831 if (ro->ro_lle) 832 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 833 ro->ro_lle = NULL; 834 } 835 if (needfiblookup) 836 goto again; 837 838 /* See if local, if yes, send it to netisr. */ 839 if (m->m_flags & M_FASTFWD_OURS) { 840 if (m->m_pkthdr.rcvif == NULL) 841 m->m_pkthdr.rcvif = V_loif; 842 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 843 m->m_pkthdr.csum_flags |= 844 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 845 m->m_pkthdr.csum_data = 0xffff; 846 } 847 #ifdef SCTP 848 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 849 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 850 #endif 851 error = netisr_queue(NETISR_IPV6, m); 852 goto done; 853 } 854 /* Or forward to some other address? */ 855 if ((m->m_flags & M_IP6_NEXTHOP) && 856 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 857 dst = (struct sockaddr_in6 *)&ro->ro_dst; 858 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 859 m->m_flags |= M_SKIP_FIREWALL; 860 m->m_flags &= ~M_IP6_NEXTHOP; 861 m_tag_delete(m, fwd_tag); 862 goto again; 863 } 864 865 passout: 866 /* 867 * Send the packet to the outgoing interface. 868 * If necessary, do IPv6 fragmentation before sending. 869 * 870 * the logic here is rather complex: 871 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 872 * 1-a: send as is if tlen <= path mtu 873 * 1-b: fragment if tlen > path mtu 874 * 875 * 2: if user asks us not to fragment (dontfrag == 1) 876 * 2-a: send as is if tlen <= interface mtu 877 * 2-b: error if tlen > interface mtu 878 * 879 * 3: if we always need to attach fragment header (alwaysfrag == 1) 880 * always fragment 881 * 882 * 4: if dontfrag == 1 && alwaysfrag == 1 883 * error, as we cannot handle this conflicting request 884 */ 885 sw_csum = m->m_pkthdr.csum_flags; 886 if (!hdrsplit) { 887 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 888 sw_csum &= ~ifp->if_hwassist; 889 } else 890 tso = 0; 891 /* 892 * If we added extension headers, we will not do TSO and calculate the 893 * checksums ourselves for now. 894 * XXX-BZ Need a framework to know when the NIC can handle it, even 895 * with ext. hdrs. 896 */ 897 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 898 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 899 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 900 } 901 #ifdef SCTP 902 if (sw_csum & CSUM_SCTP_IPV6) { 903 sw_csum &= ~CSUM_SCTP_IPV6; 904 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 905 } 906 #endif 907 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 908 tlen = m->m_pkthdr.len; 909 910 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 911 dontfrag = 1; 912 else 913 dontfrag = 0; 914 if (dontfrag && alwaysfrag) { /* case 4 */ 915 /* conflicting request - can't transmit */ 916 error = EMSGSIZE; 917 goto bad; 918 } 919 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 920 /* 921 * Even if the DONTFRAG option is specified, we cannot send the 922 * packet when the data length is larger than the MTU of the 923 * outgoing interface. 924 * Notify the error by sending IPV6_PATHMTU ancillary data if 925 * application wanted to know the MTU value. Also return an 926 * error code (this is not described in the API spec). 927 */ 928 if (inp != NULL) 929 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 930 error = EMSGSIZE; 931 goto bad; 932 } 933 934 /* 935 * transmit packet without fragmentation 936 */ 937 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 938 struct in6_ifaddr *ia6; 939 940 ip6 = mtod(m, struct ip6_hdr *); 941 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 942 if (ia6) { 943 /* Record statistics for this interface address. */ 944 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 945 counter_u64_add(ia6->ia_ifa.ifa_obytes, 946 m->m_pkthdr.len); 947 ifa_free(&ia6->ia_ifa); 948 } 949 #ifdef RATELIMIT 950 if (inp != NULL) { 951 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 952 in_pcboutput_txrtlmt(inp, ifp, m); 953 /* stamp send tag on mbuf */ 954 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 955 } else { 956 m->m_pkthdr.snd_tag = NULL; 957 } 958 #endif 959 error = nd6_output_ifp(ifp, origifp, m, dst, 960 (struct route *)ro); 961 #ifdef RATELIMIT 962 /* check for route change */ 963 if (error == EAGAIN) 964 in_pcboutput_eagain(inp); 965 #endif 966 goto done; 967 } 968 969 /* 970 * try to fragment the packet. case 1-b and 3 971 */ 972 if (mtu < IPV6_MMTU) { 973 /* path MTU cannot be less than IPV6_MMTU */ 974 error = EMSGSIZE; 975 in6_ifstat_inc(ifp, ifs6_out_fragfail); 976 goto bad; 977 } else if (ip6->ip6_plen == 0) { 978 /* jumbo payload cannot be fragmented */ 979 error = EMSGSIZE; 980 in6_ifstat_inc(ifp, ifs6_out_fragfail); 981 goto bad; 982 } else { 983 u_char nextproto; 984 985 /* 986 * Too large for the destination or interface; 987 * fragment if possible. 988 * Must be able to put at least 8 bytes per fragment. 989 */ 990 hlen = unfragpartlen; 991 if (mtu > IPV6_MAXPACKET) 992 mtu = IPV6_MAXPACKET; 993 994 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 995 if (len < 8) { 996 error = EMSGSIZE; 997 in6_ifstat_inc(ifp, ifs6_out_fragfail); 998 goto bad; 999 } 1000 1001 /* 1002 * If the interface will not calculate checksums on 1003 * fragmented packets, then do it here. 1004 * XXX-BZ handle the hw offloading case. Need flags. 1005 */ 1006 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1007 in6_delayed_cksum(m, plen, hlen); 1008 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 1009 } 1010 #ifdef SCTP 1011 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 1012 sctp_delayed_cksum(m, hlen); 1013 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 1014 } 1015 #endif 1016 /* 1017 * Change the next header field of the last header in the 1018 * unfragmentable part. 1019 */ 1020 if (exthdrs.ip6e_rthdr) { 1021 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1022 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1023 } else if (exthdrs.ip6e_dest1) { 1024 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1025 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1026 } else if (exthdrs.ip6e_hbh) { 1027 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1028 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1029 } else { 1030 nextproto = ip6->ip6_nxt; 1031 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1032 } 1033 1034 /* 1035 * Loop through length of segment after first fragment, 1036 * make new header and copy data of each part and link onto 1037 * chain. 1038 */ 1039 m0 = m; 1040 id = htonl(ip6_randomid()); 1041 if ((error = ip6_fragment(ifp, m, hlen, nextproto, len, id))) 1042 goto sendorfree; 1043 1044 in6_ifstat_inc(ifp, ifs6_out_fragok); 1045 } 1046 1047 /* 1048 * Remove leading garbages. 1049 */ 1050 sendorfree: 1051 m = m0->m_nextpkt; 1052 m0->m_nextpkt = 0; 1053 m_freem(m0); 1054 for (m0 = m; m; m = m0) { 1055 m0 = m->m_nextpkt; 1056 m->m_nextpkt = 0; 1057 if (error == 0) { 1058 /* Record statistics for this interface address. */ 1059 if (ia) { 1060 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1061 counter_u64_add(ia->ia_ifa.ifa_obytes, 1062 m->m_pkthdr.len); 1063 } 1064 #ifdef RATELIMIT 1065 if (inp != NULL) { 1066 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 1067 in_pcboutput_txrtlmt(inp, ifp, m); 1068 /* stamp send tag on mbuf */ 1069 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 1070 } else { 1071 m->m_pkthdr.snd_tag = NULL; 1072 } 1073 #endif 1074 error = nd6_output_ifp(ifp, origifp, m, dst, 1075 (struct route *)ro); 1076 #ifdef RATELIMIT 1077 /* check for route change */ 1078 if (error == EAGAIN) 1079 in_pcboutput_eagain(inp); 1080 #endif 1081 } else 1082 m_freem(m); 1083 } 1084 1085 if (error == 0) 1086 IP6STAT_INC(ip6s_fragmented); 1087 1088 done: 1089 if (ro == &ip6route) 1090 RO_RTFREE(ro); 1091 return (error); 1092 1093 freehdrs: 1094 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1095 m_freem(exthdrs.ip6e_dest1); 1096 m_freem(exthdrs.ip6e_rthdr); 1097 m_freem(exthdrs.ip6e_dest2); 1098 /* FALLTHROUGH */ 1099 bad: 1100 if (m) 1101 m_freem(m); 1102 goto done; 1103 } 1104 1105 static int 1106 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1107 { 1108 struct mbuf *m; 1109 1110 if (hlen > MCLBYTES) 1111 return (ENOBUFS); /* XXX */ 1112 1113 if (hlen > MLEN) 1114 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1115 else 1116 m = m_get(M_NOWAIT, MT_DATA); 1117 if (m == NULL) 1118 return (ENOBUFS); 1119 m->m_len = hlen; 1120 if (hdr) 1121 bcopy(hdr, mtod(m, caddr_t), hlen); 1122 1123 *mp = m; 1124 return (0); 1125 } 1126 1127 /* 1128 * Insert jumbo payload option. 1129 */ 1130 static int 1131 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1132 { 1133 struct mbuf *mopt; 1134 u_char *optbuf; 1135 u_int32_t v; 1136 1137 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1138 1139 /* 1140 * If there is no hop-by-hop options header, allocate new one. 1141 * If there is one but it doesn't have enough space to store the 1142 * jumbo payload option, allocate a cluster to store the whole options. 1143 * Otherwise, use it to store the options. 1144 */ 1145 if (exthdrs->ip6e_hbh == NULL) { 1146 mopt = m_get(M_NOWAIT, MT_DATA); 1147 if (mopt == NULL) 1148 return (ENOBUFS); 1149 mopt->m_len = JUMBOOPTLEN; 1150 optbuf = mtod(mopt, u_char *); 1151 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1152 exthdrs->ip6e_hbh = mopt; 1153 } else { 1154 struct ip6_hbh *hbh; 1155 1156 mopt = exthdrs->ip6e_hbh; 1157 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1158 /* 1159 * XXX assumption: 1160 * - exthdrs->ip6e_hbh is not referenced from places 1161 * other than exthdrs. 1162 * - exthdrs->ip6e_hbh is not an mbuf chain. 1163 */ 1164 int oldoptlen = mopt->m_len; 1165 struct mbuf *n; 1166 1167 /* 1168 * XXX: give up if the whole (new) hbh header does 1169 * not fit even in an mbuf cluster. 1170 */ 1171 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1172 return (ENOBUFS); 1173 1174 /* 1175 * As a consequence, we must always prepare a cluster 1176 * at this point. 1177 */ 1178 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1179 if (n == NULL) 1180 return (ENOBUFS); 1181 n->m_len = oldoptlen + JUMBOOPTLEN; 1182 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1183 oldoptlen); 1184 optbuf = mtod(n, caddr_t) + oldoptlen; 1185 m_freem(mopt); 1186 mopt = exthdrs->ip6e_hbh = n; 1187 } else { 1188 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1189 mopt->m_len += JUMBOOPTLEN; 1190 } 1191 optbuf[0] = IP6OPT_PADN; 1192 optbuf[1] = 1; 1193 1194 /* 1195 * Adjust the header length according to the pad and 1196 * the jumbo payload option. 1197 */ 1198 hbh = mtod(mopt, struct ip6_hbh *); 1199 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1200 } 1201 1202 /* fill in the option. */ 1203 optbuf[2] = IP6OPT_JUMBO; 1204 optbuf[3] = 4; 1205 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1206 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1207 1208 /* finally, adjust the packet header length */ 1209 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1210 1211 return (0); 1212 #undef JUMBOOPTLEN 1213 } 1214 1215 /* 1216 * Insert fragment header and copy unfragmentable header portions. 1217 */ 1218 static int 1219 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1220 struct ip6_frag **frghdrp) 1221 { 1222 struct mbuf *n, *mlast; 1223 1224 if (hlen > sizeof(struct ip6_hdr)) { 1225 n = m_copym(m0, sizeof(struct ip6_hdr), 1226 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1227 if (n == NULL) 1228 return (ENOBUFS); 1229 m->m_next = n; 1230 } else 1231 n = m; 1232 1233 /* Search for the last mbuf of unfragmentable part. */ 1234 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1235 ; 1236 1237 if (M_WRITABLE(mlast) && 1238 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1239 /* use the trailing space of the last mbuf for the fragment hdr */ 1240 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1241 mlast->m_len); 1242 mlast->m_len += sizeof(struct ip6_frag); 1243 m->m_pkthdr.len += sizeof(struct ip6_frag); 1244 } else { 1245 /* allocate a new mbuf for the fragment header */ 1246 struct mbuf *mfrg; 1247 1248 mfrg = m_get(M_NOWAIT, MT_DATA); 1249 if (mfrg == NULL) 1250 return (ENOBUFS); 1251 mfrg->m_len = sizeof(struct ip6_frag); 1252 *frghdrp = mtod(mfrg, struct ip6_frag *); 1253 mlast->m_next = mfrg; 1254 } 1255 1256 return (0); 1257 } 1258 1259 /* 1260 * Calculates IPv6 path mtu for destination @dst. 1261 * Resulting MTU is stored in @mtup. 1262 * 1263 * Returns 0 on success. 1264 */ 1265 static int 1266 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1267 { 1268 struct nhop6_extended nh6; 1269 struct in6_addr kdst; 1270 uint32_t scopeid; 1271 struct ifnet *ifp; 1272 u_long mtu; 1273 int error; 1274 1275 in6_splitscope(dst, &kdst, &scopeid); 1276 if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0) 1277 return (EHOSTUNREACH); 1278 1279 ifp = nh6.nh_ifp; 1280 mtu = nh6.nh_mtu; 1281 1282 error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL, 0); 1283 fib6_free_nh_ext(fibnum, &nh6); 1284 1285 return (error); 1286 } 1287 1288 /* 1289 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1290 * and cached data in @ro_pmtu. 1291 * MTU from (successful) route lookup is saved (along with dst) 1292 * inside @ro_pmtu to avoid subsequent route lookups after packet 1293 * filter processing. 1294 * 1295 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1296 * Returns 0 on success. 1297 */ 1298 static int 1299 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1300 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1301 int *alwaysfragp, u_int fibnum, u_int proto) 1302 { 1303 struct nhop6_basic nh6; 1304 struct in6_addr kdst; 1305 uint32_t scopeid; 1306 struct sockaddr_in6 *sa6_dst; 1307 u_long mtu; 1308 1309 mtu = 0; 1310 if (do_lookup) { 1311 1312 /* 1313 * Here ro_pmtu has final destination address, while 1314 * ro might represent immediate destination. 1315 * Use ro_pmtu destination since mtu might differ. 1316 */ 1317 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1318 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1319 ro_pmtu->ro_mtu = 0; 1320 1321 if (ro_pmtu->ro_mtu == 0) { 1322 bzero(sa6_dst, sizeof(*sa6_dst)); 1323 sa6_dst->sin6_family = AF_INET6; 1324 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1325 sa6_dst->sin6_addr = *dst; 1326 1327 in6_splitscope(dst, &kdst, &scopeid); 1328 if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0, 1329 &nh6) == 0) 1330 ro_pmtu->ro_mtu = nh6.nh_mtu; 1331 } 1332 1333 mtu = ro_pmtu->ro_mtu; 1334 } 1335 1336 if (ro_pmtu->ro_rt) 1337 mtu = ro_pmtu->ro_rt->rt_mtu; 1338 1339 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1340 } 1341 1342 /* 1343 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1344 * hostcache data for @dst. 1345 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1346 * 1347 * Returns 0 on success. 1348 */ 1349 static int 1350 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1351 u_long *mtup, int *alwaysfragp, u_int proto) 1352 { 1353 u_long mtu = 0; 1354 int alwaysfrag = 0; 1355 int error = 0; 1356 1357 if (rt_mtu > 0) { 1358 u_int32_t ifmtu; 1359 struct in_conninfo inc; 1360 1361 bzero(&inc, sizeof(inc)); 1362 inc.inc_flags |= INC_ISIPV6; 1363 inc.inc6_faddr = *dst; 1364 1365 ifmtu = IN6_LINKMTU(ifp); 1366 1367 /* TCP is known to react to pmtu changes so skip hc */ 1368 if (proto != IPPROTO_TCP) 1369 mtu = tcp_hc_getmtu(&inc); 1370 1371 if (mtu) 1372 mtu = min(mtu, rt_mtu); 1373 else 1374 mtu = rt_mtu; 1375 if (mtu == 0) 1376 mtu = ifmtu; 1377 else if (mtu < IPV6_MMTU) { 1378 /* 1379 * RFC2460 section 5, last paragraph: 1380 * if we record ICMPv6 too big message with 1381 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1382 * or smaller, with framgent header attached. 1383 * (fragment header is needed regardless from the 1384 * packet size, for translators to identify packets) 1385 */ 1386 alwaysfrag = 1; 1387 mtu = IPV6_MMTU; 1388 } 1389 } else if (ifp) { 1390 mtu = IN6_LINKMTU(ifp); 1391 } else 1392 error = EHOSTUNREACH; /* XXX */ 1393 1394 *mtup = mtu; 1395 if (alwaysfragp) 1396 *alwaysfragp = alwaysfrag; 1397 return (error); 1398 } 1399 1400 /* 1401 * IP6 socket option processing. 1402 */ 1403 int 1404 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1405 { 1406 int optdatalen, uproto; 1407 void *optdata; 1408 struct inpcb *in6p = sotoinpcb(so); 1409 int error, optval; 1410 int level, op, optname; 1411 int optlen; 1412 struct thread *td; 1413 #ifdef RSS 1414 uint32_t rss_bucket; 1415 int retval; 1416 #endif 1417 1418 /* 1419 * Don't use more than a quarter of mbuf clusters. N.B.: 1420 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1421 * on LP64 architectures, so cast to u_long to avoid undefined 1422 * behavior. ILP32 architectures cannot have nmbclusters 1423 * large enough to overflow for other reasons. 1424 */ 1425 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1426 1427 level = sopt->sopt_level; 1428 op = sopt->sopt_dir; 1429 optname = sopt->sopt_name; 1430 optlen = sopt->sopt_valsize; 1431 td = sopt->sopt_td; 1432 error = 0; 1433 optval = 0; 1434 uproto = (int)so->so_proto->pr_protocol; 1435 1436 if (level != IPPROTO_IPV6) { 1437 error = EINVAL; 1438 1439 if (sopt->sopt_level == SOL_SOCKET && 1440 sopt->sopt_dir == SOPT_SET) { 1441 switch (sopt->sopt_name) { 1442 case SO_REUSEADDR: 1443 INP_WLOCK(in6p); 1444 if ((so->so_options & SO_REUSEADDR) != 0) 1445 in6p->inp_flags2 |= INP_REUSEADDR; 1446 else 1447 in6p->inp_flags2 &= ~INP_REUSEADDR; 1448 INP_WUNLOCK(in6p); 1449 error = 0; 1450 break; 1451 case SO_REUSEPORT: 1452 INP_WLOCK(in6p); 1453 if ((so->so_options & SO_REUSEPORT) != 0) 1454 in6p->inp_flags2 |= INP_REUSEPORT; 1455 else 1456 in6p->inp_flags2 &= ~INP_REUSEPORT; 1457 INP_WUNLOCK(in6p); 1458 error = 0; 1459 break; 1460 case SO_SETFIB: 1461 INP_WLOCK(in6p); 1462 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1463 INP_WUNLOCK(in6p); 1464 error = 0; 1465 break; 1466 case SO_MAX_PACING_RATE: 1467 #ifdef RATELIMIT 1468 INP_WLOCK(in6p); 1469 in6p->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1470 INP_WUNLOCK(in6p); 1471 error = 0; 1472 #else 1473 error = EOPNOTSUPP; 1474 #endif 1475 break; 1476 default: 1477 break; 1478 } 1479 } 1480 } else { /* level == IPPROTO_IPV6 */ 1481 switch (op) { 1482 1483 case SOPT_SET: 1484 switch (optname) { 1485 case IPV6_2292PKTOPTIONS: 1486 #ifdef IPV6_PKTOPTIONS 1487 case IPV6_PKTOPTIONS: 1488 #endif 1489 { 1490 struct mbuf *m; 1491 1492 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1493 printf("ip6_ctloutput: mbuf limit hit\n"); 1494 error = ENOBUFS; 1495 break; 1496 } 1497 1498 error = soopt_getm(sopt, &m); /* XXX */ 1499 if (error != 0) 1500 break; 1501 error = soopt_mcopyin(sopt, m); /* XXX */ 1502 if (error != 0) 1503 break; 1504 error = ip6_pcbopts(&in6p->in6p_outputopts, 1505 m, so, sopt); 1506 m_freem(m); /* XXX */ 1507 break; 1508 } 1509 1510 /* 1511 * Use of some Hop-by-Hop options or some 1512 * Destination options, might require special 1513 * privilege. That is, normal applications 1514 * (without special privilege) might be forbidden 1515 * from setting certain options in outgoing packets, 1516 * and might never see certain options in received 1517 * packets. [RFC 2292 Section 6] 1518 * KAME specific note: 1519 * KAME prevents non-privileged users from sending or 1520 * receiving ANY hbh/dst options in order to avoid 1521 * overhead of parsing options in the kernel. 1522 */ 1523 case IPV6_RECVHOPOPTS: 1524 case IPV6_RECVDSTOPTS: 1525 case IPV6_RECVRTHDRDSTOPTS: 1526 if (td != NULL) { 1527 error = priv_check(td, 1528 PRIV_NETINET_SETHDROPTS); 1529 if (error) 1530 break; 1531 } 1532 /* FALLTHROUGH */ 1533 case IPV6_UNICAST_HOPS: 1534 case IPV6_HOPLIMIT: 1535 1536 case IPV6_RECVPKTINFO: 1537 case IPV6_RECVHOPLIMIT: 1538 case IPV6_RECVRTHDR: 1539 case IPV6_RECVPATHMTU: 1540 case IPV6_RECVTCLASS: 1541 case IPV6_RECVFLOWID: 1542 #ifdef RSS 1543 case IPV6_RECVRSSBUCKETID: 1544 #endif 1545 case IPV6_V6ONLY: 1546 case IPV6_AUTOFLOWLABEL: 1547 case IPV6_ORIGDSTADDR: 1548 case IPV6_BINDANY: 1549 case IPV6_BINDMULTI: 1550 #ifdef RSS 1551 case IPV6_RSS_LISTEN_BUCKET: 1552 #endif 1553 if (optname == IPV6_BINDANY && td != NULL) { 1554 error = priv_check(td, 1555 PRIV_NETINET_BINDANY); 1556 if (error) 1557 break; 1558 } 1559 1560 if (optlen != sizeof(int)) { 1561 error = EINVAL; 1562 break; 1563 } 1564 error = sooptcopyin(sopt, &optval, 1565 sizeof optval, sizeof optval); 1566 if (error) 1567 break; 1568 switch (optname) { 1569 1570 case IPV6_UNICAST_HOPS: 1571 if (optval < -1 || optval >= 256) 1572 error = EINVAL; 1573 else { 1574 /* -1 = kernel default */ 1575 in6p->in6p_hops = optval; 1576 if ((in6p->inp_vflag & 1577 INP_IPV4) != 0) 1578 in6p->inp_ip_ttl = optval; 1579 } 1580 break; 1581 #define OPTSET(bit) \ 1582 do { \ 1583 INP_WLOCK(in6p); \ 1584 if (optval) \ 1585 in6p->inp_flags |= (bit); \ 1586 else \ 1587 in6p->inp_flags &= ~(bit); \ 1588 INP_WUNLOCK(in6p); \ 1589 } while (/*CONSTCOND*/ 0) 1590 #define OPTSET2292(bit) \ 1591 do { \ 1592 INP_WLOCK(in6p); \ 1593 in6p->inp_flags |= IN6P_RFC2292; \ 1594 if (optval) \ 1595 in6p->inp_flags |= (bit); \ 1596 else \ 1597 in6p->inp_flags &= ~(bit); \ 1598 INP_WUNLOCK(in6p); \ 1599 } while (/*CONSTCOND*/ 0) 1600 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1601 1602 #define OPTSET2(bit, val) do { \ 1603 INP_WLOCK(in6p); \ 1604 if (val) \ 1605 in6p->inp_flags2 |= bit; \ 1606 else \ 1607 in6p->inp_flags2 &= ~bit; \ 1608 INP_WUNLOCK(in6p); \ 1609 } while (0) 1610 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) 1611 1612 case IPV6_RECVPKTINFO: 1613 /* cannot mix with RFC2292 */ 1614 if (OPTBIT(IN6P_RFC2292)) { 1615 error = EINVAL; 1616 break; 1617 } 1618 OPTSET(IN6P_PKTINFO); 1619 break; 1620 1621 case IPV6_HOPLIMIT: 1622 { 1623 struct ip6_pktopts **optp; 1624 1625 /* cannot mix with RFC2292 */ 1626 if (OPTBIT(IN6P_RFC2292)) { 1627 error = EINVAL; 1628 break; 1629 } 1630 optp = &in6p->in6p_outputopts; 1631 error = ip6_pcbopt(IPV6_HOPLIMIT, 1632 (u_char *)&optval, sizeof(optval), 1633 optp, (td != NULL) ? td->td_ucred : 1634 NULL, uproto); 1635 break; 1636 } 1637 1638 case IPV6_RECVHOPLIMIT: 1639 /* cannot mix with RFC2292 */ 1640 if (OPTBIT(IN6P_RFC2292)) { 1641 error = EINVAL; 1642 break; 1643 } 1644 OPTSET(IN6P_HOPLIMIT); 1645 break; 1646 1647 case IPV6_RECVHOPOPTS: 1648 /* cannot mix with RFC2292 */ 1649 if (OPTBIT(IN6P_RFC2292)) { 1650 error = EINVAL; 1651 break; 1652 } 1653 OPTSET(IN6P_HOPOPTS); 1654 break; 1655 1656 case IPV6_RECVDSTOPTS: 1657 /* cannot mix with RFC2292 */ 1658 if (OPTBIT(IN6P_RFC2292)) { 1659 error = EINVAL; 1660 break; 1661 } 1662 OPTSET(IN6P_DSTOPTS); 1663 break; 1664 1665 case IPV6_RECVRTHDRDSTOPTS: 1666 /* cannot mix with RFC2292 */ 1667 if (OPTBIT(IN6P_RFC2292)) { 1668 error = EINVAL; 1669 break; 1670 } 1671 OPTSET(IN6P_RTHDRDSTOPTS); 1672 break; 1673 1674 case IPV6_RECVRTHDR: 1675 /* cannot mix with RFC2292 */ 1676 if (OPTBIT(IN6P_RFC2292)) { 1677 error = EINVAL; 1678 break; 1679 } 1680 OPTSET(IN6P_RTHDR); 1681 break; 1682 1683 case IPV6_RECVPATHMTU: 1684 /* 1685 * We ignore this option for TCP 1686 * sockets. 1687 * (RFC3542 leaves this case 1688 * unspecified.) 1689 */ 1690 if (uproto != IPPROTO_TCP) 1691 OPTSET(IN6P_MTU); 1692 break; 1693 1694 case IPV6_RECVFLOWID: 1695 OPTSET2(INP_RECVFLOWID, optval); 1696 break; 1697 1698 #ifdef RSS 1699 case IPV6_RECVRSSBUCKETID: 1700 OPTSET2(INP_RECVRSSBUCKETID, optval); 1701 break; 1702 #endif 1703 1704 case IPV6_V6ONLY: 1705 /* 1706 * make setsockopt(IPV6_V6ONLY) 1707 * available only prior to bind(2). 1708 * see ipng mailing list, Jun 22 2001. 1709 */ 1710 if (in6p->inp_lport || 1711 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1712 error = EINVAL; 1713 break; 1714 } 1715 OPTSET(IN6P_IPV6_V6ONLY); 1716 if (optval) 1717 in6p->inp_vflag &= ~INP_IPV4; 1718 else 1719 in6p->inp_vflag |= INP_IPV4; 1720 break; 1721 case IPV6_RECVTCLASS: 1722 /* cannot mix with RFC2292 XXX */ 1723 if (OPTBIT(IN6P_RFC2292)) { 1724 error = EINVAL; 1725 break; 1726 } 1727 OPTSET(IN6P_TCLASS); 1728 break; 1729 case IPV6_AUTOFLOWLABEL: 1730 OPTSET(IN6P_AUTOFLOWLABEL); 1731 break; 1732 1733 case IPV6_ORIGDSTADDR: 1734 OPTSET2(INP_ORIGDSTADDR, optval); 1735 break; 1736 case IPV6_BINDANY: 1737 OPTSET(INP_BINDANY); 1738 break; 1739 1740 case IPV6_BINDMULTI: 1741 OPTSET2(INP_BINDMULTI, optval); 1742 break; 1743 #ifdef RSS 1744 case IPV6_RSS_LISTEN_BUCKET: 1745 if ((optval >= 0) && 1746 (optval < rss_getnumbuckets())) { 1747 in6p->inp_rss_listen_bucket = optval; 1748 OPTSET2(INP_RSS_BUCKET_SET, 1); 1749 } else { 1750 error = EINVAL; 1751 } 1752 break; 1753 #endif 1754 } 1755 break; 1756 1757 case IPV6_TCLASS: 1758 case IPV6_DONTFRAG: 1759 case IPV6_USE_MIN_MTU: 1760 case IPV6_PREFER_TEMPADDR: 1761 if (optlen != sizeof(optval)) { 1762 error = EINVAL; 1763 break; 1764 } 1765 error = sooptcopyin(sopt, &optval, 1766 sizeof optval, sizeof optval); 1767 if (error) 1768 break; 1769 { 1770 struct ip6_pktopts **optp; 1771 optp = &in6p->in6p_outputopts; 1772 error = ip6_pcbopt(optname, 1773 (u_char *)&optval, sizeof(optval), 1774 optp, (td != NULL) ? td->td_ucred : 1775 NULL, uproto); 1776 break; 1777 } 1778 1779 case IPV6_2292PKTINFO: 1780 case IPV6_2292HOPLIMIT: 1781 case IPV6_2292HOPOPTS: 1782 case IPV6_2292DSTOPTS: 1783 case IPV6_2292RTHDR: 1784 /* RFC 2292 */ 1785 if (optlen != sizeof(int)) { 1786 error = EINVAL; 1787 break; 1788 } 1789 error = sooptcopyin(sopt, &optval, 1790 sizeof optval, sizeof optval); 1791 if (error) 1792 break; 1793 switch (optname) { 1794 case IPV6_2292PKTINFO: 1795 OPTSET2292(IN6P_PKTINFO); 1796 break; 1797 case IPV6_2292HOPLIMIT: 1798 OPTSET2292(IN6P_HOPLIMIT); 1799 break; 1800 case IPV6_2292HOPOPTS: 1801 /* 1802 * Check super-user privilege. 1803 * See comments for IPV6_RECVHOPOPTS. 1804 */ 1805 if (td != NULL) { 1806 error = priv_check(td, 1807 PRIV_NETINET_SETHDROPTS); 1808 if (error) 1809 return (error); 1810 } 1811 OPTSET2292(IN6P_HOPOPTS); 1812 break; 1813 case IPV6_2292DSTOPTS: 1814 if (td != NULL) { 1815 error = priv_check(td, 1816 PRIV_NETINET_SETHDROPTS); 1817 if (error) 1818 return (error); 1819 } 1820 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1821 break; 1822 case IPV6_2292RTHDR: 1823 OPTSET2292(IN6P_RTHDR); 1824 break; 1825 } 1826 break; 1827 case IPV6_PKTINFO: 1828 case IPV6_HOPOPTS: 1829 case IPV6_RTHDR: 1830 case IPV6_DSTOPTS: 1831 case IPV6_RTHDRDSTOPTS: 1832 case IPV6_NEXTHOP: 1833 { 1834 /* new advanced API (RFC3542) */ 1835 u_char *optbuf; 1836 u_char optbuf_storage[MCLBYTES]; 1837 int optlen; 1838 struct ip6_pktopts **optp; 1839 1840 /* cannot mix with RFC2292 */ 1841 if (OPTBIT(IN6P_RFC2292)) { 1842 error = EINVAL; 1843 break; 1844 } 1845 1846 /* 1847 * We only ensure valsize is not too large 1848 * here. Further validation will be done 1849 * later. 1850 */ 1851 error = sooptcopyin(sopt, optbuf_storage, 1852 sizeof(optbuf_storage), 0); 1853 if (error) 1854 break; 1855 optlen = sopt->sopt_valsize; 1856 optbuf = optbuf_storage; 1857 optp = &in6p->in6p_outputopts; 1858 error = ip6_pcbopt(optname, optbuf, optlen, 1859 optp, (td != NULL) ? td->td_ucred : NULL, 1860 uproto); 1861 break; 1862 } 1863 #undef OPTSET 1864 1865 case IPV6_MULTICAST_IF: 1866 case IPV6_MULTICAST_HOPS: 1867 case IPV6_MULTICAST_LOOP: 1868 case IPV6_JOIN_GROUP: 1869 case IPV6_LEAVE_GROUP: 1870 case IPV6_MSFILTER: 1871 case MCAST_BLOCK_SOURCE: 1872 case MCAST_UNBLOCK_SOURCE: 1873 case MCAST_JOIN_GROUP: 1874 case MCAST_LEAVE_GROUP: 1875 case MCAST_JOIN_SOURCE_GROUP: 1876 case MCAST_LEAVE_SOURCE_GROUP: 1877 error = ip6_setmoptions(in6p, sopt); 1878 break; 1879 1880 case IPV6_PORTRANGE: 1881 error = sooptcopyin(sopt, &optval, 1882 sizeof optval, sizeof optval); 1883 if (error) 1884 break; 1885 1886 INP_WLOCK(in6p); 1887 switch (optval) { 1888 case IPV6_PORTRANGE_DEFAULT: 1889 in6p->inp_flags &= ~(INP_LOWPORT); 1890 in6p->inp_flags &= ~(INP_HIGHPORT); 1891 break; 1892 1893 case IPV6_PORTRANGE_HIGH: 1894 in6p->inp_flags &= ~(INP_LOWPORT); 1895 in6p->inp_flags |= INP_HIGHPORT; 1896 break; 1897 1898 case IPV6_PORTRANGE_LOW: 1899 in6p->inp_flags &= ~(INP_HIGHPORT); 1900 in6p->inp_flags |= INP_LOWPORT; 1901 break; 1902 1903 default: 1904 error = EINVAL; 1905 break; 1906 } 1907 INP_WUNLOCK(in6p); 1908 break; 1909 1910 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1911 case IPV6_IPSEC_POLICY: 1912 if (IPSEC_ENABLED(ipv6)) { 1913 error = IPSEC_PCBCTL(ipv6, in6p, sopt); 1914 break; 1915 } 1916 /* FALLTHROUGH */ 1917 #endif /* IPSEC */ 1918 1919 default: 1920 error = ENOPROTOOPT; 1921 break; 1922 } 1923 break; 1924 1925 case SOPT_GET: 1926 switch (optname) { 1927 1928 case IPV6_2292PKTOPTIONS: 1929 #ifdef IPV6_PKTOPTIONS 1930 case IPV6_PKTOPTIONS: 1931 #endif 1932 /* 1933 * RFC3542 (effectively) deprecated the 1934 * semantics of the 2292-style pktoptions. 1935 * Since it was not reliable in nature (i.e., 1936 * applications had to expect the lack of some 1937 * information after all), it would make sense 1938 * to simplify this part by always returning 1939 * empty data. 1940 */ 1941 sopt->sopt_valsize = 0; 1942 break; 1943 1944 case IPV6_RECVHOPOPTS: 1945 case IPV6_RECVDSTOPTS: 1946 case IPV6_RECVRTHDRDSTOPTS: 1947 case IPV6_UNICAST_HOPS: 1948 case IPV6_RECVPKTINFO: 1949 case IPV6_RECVHOPLIMIT: 1950 case IPV6_RECVRTHDR: 1951 case IPV6_RECVPATHMTU: 1952 1953 case IPV6_V6ONLY: 1954 case IPV6_PORTRANGE: 1955 case IPV6_RECVTCLASS: 1956 case IPV6_AUTOFLOWLABEL: 1957 case IPV6_BINDANY: 1958 case IPV6_FLOWID: 1959 case IPV6_FLOWTYPE: 1960 case IPV6_RECVFLOWID: 1961 #ifdef RSS 1962 case IPV6_RSSBUCKETID: 1963 case IPV6_RECVRSSBUCKETID: 1964 #endif 1965 case IPV6_BINDMULTI: 1966 switch (optname) { 1967 1968 case IPV6_RECVHOPOPTS: 1969 optval = OPTBIT(IN6P_HOPOPTS); 1970 break; 1971 1972 case IPV6_RECVDSTOPTS: 1973 optval = OPTBIT(IN6P_DSTOPTS); 1974 break; 1975 1976 case IPV6_RECVRTHDRDSTOPTS: 1977 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1978 break; 1979 1980 case IPV6_UNICAST_HOPS: 1981 optval = in6p->in6p_hops; 1982 break; 1983 1984 case IPV6_RECVPKTINFO: 1985 optval = OPTBIT(IN6P_PKTINFO); 1986 break; 1987 1988 case IPV6_RECVHOPLIMIT: 1989 optval = OPTBIT(IN6P_HOPLIMIT); 1990 break; 1991 1992 case IPV6_RECVRTHDR: 1993 optval = OPTBIT(IN6P_RTHDR); 1994 break; 1995 1996 case IPV6_RECVPATHMTU: 1997 optval = OPTBIT(IN6P_MTU); 1998 break; 1999 2000 case IPV6_V6ONLY: 2001 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2002 break; 2003 2004 case IPV6_PORTRANGE: 2005 { 2006 int flags; 2007 flags = in6p->inp_flags; 2008 if (flags & INP_HIGHPORT) 2009 optval = IPV6_PORTRANGE_HIGH; 2010 else if (flags & INP_LOWPORT) 2011 optval = IPV6_PORTRANGE_LOW; 2012 else 2013 optval = 0; 2014 break; 2015 } 2016 case IPV6_RECVTCLASS: 2017 optval = OPTBIT(IN6P_TCLASS); 2018 break; 2019 2020 case IPV6_AUTOFLOWLABEL: 2021 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2022 break; 2023 2024 case IPV6_ORIGDSTADDR: 2025 optval = OPTBIT2(INP_ORIGDSTADDR); 2026 break; 2027 2028 case IPV6_BINDANY: 2029 optval = OPTBIT(INP_BINDANY); 2030 break; 2031 2032 case IPV6_FLOWID: 2033 optval = in6p->inp_flowid; 2034 break; 2035 2036 case IPV6_FLOWTYPE: 2037 optval = in6p->inp_flowtype; 2038 break; 2039 2040 case IPV6_RECVFLOWID: 2041 optval = OPTBIT2(INP_RECVFLOWID); 2042 break; 2043 #ifdef RSS 2044 case IPV6_RSSBUCKETID: 2045 retval = 2046 rss_hash2bucket(in6p->inp_flowid, 2047 in6p->inp_flowtype, 2048 &rss_bucket); 2049 if (retval == 0) 2050 optval = rss_bucket; 2051 else 2052 error = EINVAL; 2053 break; 2054 2055 case IPV6_RECVRSSBUCKETID: 2056 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2057 break; 2058 #endif 2059 2060 case IPV6_BINDMULTI: 2061 optval = OPTBIT2(INP_BINDMULTI); 2062 break; 2063 2064 } 2065 if (error) 2066 break; 2067 error = sooptcopyout(sopt, &optval, 2068 sizeof optval); 2069 break; 2070 2071 case IPV6_PATHMTU: 2072 { 2073 u_long pmtu = 0; 2074 struct ip6_mtuinfo mtuinfo; 2075 2076 if (!(so->so_state & SS_ISCONNECTED)) 2077 return (ENOTCONN); 2078 /* 2079 * XXX: we dot not consider the case of source 2080 * routing, or optional information to specify 2081 * the outgoing interface. 2082 */ 2083 error = ip6_getpmtu_ctl(so->so_fibnum, 2084 &in6p->in6p_faddr, &pmtu); 2085 if (error) 2086 break; 2087 if (pmtu > IPV6_MAXPACKET) 2088 pmtu = IPV6_MAXPACKET; 2089 2090 bzero(&mtuinfo, sizeof(mtuinfo)); 2091 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2092 optdata = (void *)&mtuinfo; 2093 optdatalen = sizeof(mtuinfo); 2094 error = sooptcopyout(sopt, optdata, 2095 optdatalen); 2096 break; 2097 } 2098 2099 case IPV6_2292PKTINFO: 2100 case IPV6_2292HOPLIMIT: 2101 case IPV6_2292HOPOPTS: 2102 case IPV6_2292RTHDR: 2103 case IPV6_2292DSTOPTS: 2104 switch (optname) { 2105 case IPV6_2292PKTINFO: 2106 optval = OPTBIT(IN6P_PKTINFO); 2107 break; 2108 case IPV6_2292HOPLIMIT: 2109 optval = OPTBIT(IN6P_HOPLIMIT); 2110 break; 2111 case IPV6_2292HOPOPTS: 2112 optval = OPTBIT(IN6P_HOPOPTS); 2113 break; 2114 case IPV6_2292RTHDR: 2115 optval = OPTBIT(IN6P_RTHDR); 2116 break; 2117 case IPV6_2292DSTOPTS: 2118 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2119 break; 2120 } 2121 error = sooptcopyout(sopt, &optval, 2122 sizeof optval); 2123 break; 2124 case IPV6_PKTINFO: 2125 case IPV6_HOPOPTS: 2126 case IPV6_RTHDR: 2127 case IPV6_DSTOPTS: 2128 case IPV6_RTHDRDSTOPTS: 2129 case IPV6_NEXTHOP: 2130 case IPV6_TCLASS: 2131 case IPV6_DONTFRAG: 2132 case IPV6_USE_MIN_MTU: 2133 case IPV6_PREFER_TEMPADDR: 2134 error = ip6_getpcbopt(in6p->in6p_outputopts, 2135 optname, sopt); 2136 break; 2137 2138 case IPV6_MULTICAST_IF: 2139 case IPV6_MULTICAST_HOPS: 2140 case IPV6_MULTICAST_LOOP: 2141 case IPV6_MSFILTER: 2142 error = ip6_getmoptions(in6p, sopt); 2143 break; 2144 2145 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2146 case IPV6_IPSEC_POLICY: 2147 if (IPSEC_ENABLED(ipv6)) { 2148 error = IPSEC_PCBCTL(ipv6, in6p, sopt); 2149 break; 2150 } 2151 /* FALLTHROUGH */ 2152 #endif /* IPSEC */ 2153 default: 2154 error = ENOPROTOOPT; 2155 break; 2156 } 2157 break; 2158 } 2159 } 2160 return (error); 2161 } 2162 2163 int 2164 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2165 { 2166 int error = 0, optval, optlen; 2167 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2168 struct inpcb *in6p = sotoinpcb(so); 2169 int level, op, optname; 2170 2171 level = sopt->sopt_level; 2172 op = sopt->sopt_dir; 2173 optname = sopt->sopt_name; 2174 optlen = sopt->sopt_valsize; 2175 2176 if (level != IPPROTO_IPV6) { 2177 return (EINVAL); 2178 } 2179 2180 switch (optname) { 2181 case IPV6_CHECKSUM: 2182 /* 2183 * For ICMPv6 sockets, no modification allowed for checksum 2184 * offset, permit "no change" values to help existing apps. 2185 * 2186 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2187 * for an ICMPv6 socket will fail." 2188 * The current behavior does not meet RFC3542. 2189 */ 2190 switch (op) { 2191 case SOPT_SET: 2192 if (optlen != sizeof(int)) { 2193 error = EINVAL; 2194 break; 2195 } 2196 error = sooptcopyin(sopt, &optval, sizeof(optval), 2197 sizeof(optval)); 2198 if (error) 2199 break; 2200 if ((optval % 2) != 0) { 2201 /* the API assumes even offset values */ 2202 error = EINVAL; 2203 } else if (so->so_proto->pr_protocol == 2204 IPPROTO_ICMPV6) { 2205 if (optval != icmp6off) 2206 error = EINVAL; 2207 } else 2208 in6p->in6p_cksum = optval; 2209 break; 2210 2211 case SOPT_GET: 2212 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2213 optval = icmp6off; 2214 else 2215 optval = in6p->in6p_cksum; 2216 2217 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2218 break; 2219 2220 default: 2221 error = EINVAL; 2222 break; 2223 } 2224 break; 2225 2226 default: 2227 error = ENOPROTOOPT; 2228 break; 2229 } 2230 2231 return (error); 2232 } 2233 2234 /* 2235 * Set up IP6 options in pcb for insertion in output packets or 2236 * specifying behavior of outgoing packets. 2237 */ 2238 static int 2239 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2240 struct socket *so, struct sockopt *sopt) 2241 { 2242 struct ip6_pktopts *opt = *pktopt; 2243 int error = 0; 2244 struct thread *td = sopt->sopt_td; 2245 2246 /* turn off any old options. */ 2247 if (opt) { 2248 #ifdef DIAGNOSTIC 2249 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2250 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2251 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2252 printf("ip6_pcbopts: all specified options are cleared.\n"); 2253 #endif 2254 ip6_clearpktopts(opt, -1); 2255 } else 2256 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2257 *pktopt = NULL; 2258 2259 if (!m || m->m_len == 0) { 2260 /* 2261 * Only turning off any previous options, regardless of 2262 * whether the opt is just created or given. 2263 */ 2264 free(opt, M_IP6OPT); 2265 return (0); 2266 } 2267 2268 /* set options specified by user. */ 2269 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2270 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2271 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2272 free(opt, M_IP6OPT); 2273 return (error); 2274 } 2275 *pktopt = opt; 2276 return (0); 2277 } 2278 2279 /* 2280 * initialize ip6_pktopts. beware that there are non-zero default values in 2281 * the struct. 2282 */ 2283 void 2284 ip6_initpktopts(struct ip6_pktopts *opt) 2285 { 2286 2287 bzero(opt, sizeof(*opt)); 2288 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2289 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2290 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2291 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2292 } 2293 2294 static int 2295 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2296 struct ucred *cred, int uproto) 2297 { 2298 struct ip6_pktopts *opt; 2299 2300 if (*pktopt == NULL) { 2301 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2302 M_WAITOK); 2303 ip6_initpktopts(*pktopt); 2304 } 2305 opt = *pktopt; 2306 2307 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2308 } 2309 2310 static int 2311 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2312 { 2313 void *optdata = NULL; 2314 int optdatalen = 0; 2315 struct ip6_ext *ip6e; 2316 int error = 0; 2317 struct in6_pktinfo null_pktinfo; 2318 int deftclass = 0, on; 2319 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2320 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2321 2322 switch (optname) { 2323 case IPV6_PKTINFO: 2324 optdata = (void *)&null_pktinfo; 2325 if (pktopt && pktopt->ip6po_pktinfo) { 2326 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2327 sizeof(null_pktinfo)); 2328 in6_clearscope(&null_pktinfo.ipi6_addr); 2329 } else { 2330 /* XXX: we don't have to do this every time... */ 2331 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2332 } 2333 optdatalen = sizeof(struct in6_pktinfo); 2334 break; 2335 case IPV6_TCLASS: 2336 if (pktopt && pktopt->ip6po_tclass >= 0) 2337 optdata = (void *)&pktopt->ip6po_tclass; 2338 else 2339 optdata = (void *)&deftclass; 2340 optdatalen = sizeof(int); 2341 break; 2342 case IPV6_HOPOPTS: 2343 if (pktopt && pktopt->ip6po_hbh) { 2344 optdata = (void *)pktopt->ip6po_hbh; 2345 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2346 optdatalen = (ip6e->ip6e_len + 1) << 3; 2347 } 2348 break; 2349 case IPV6_RTHDR: 2350 if (pktopt && pktopt->ip6po_rthdr) { 2351 optdata = (void *)pktopt->ip6po_rthdr; 2352 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2353 optdatalen = (ip6e->ip6e_len + 1) << 3; 2354 } 2355 break; 2356 case IPV6_RTHDRDSTOPTS: 2357 if (pktopt && pktopt->ip6po_dest1) { 2358 optdata = (void *)pktopt->ip6po_dest1; 2359 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2360 optdatalen = (ip6e->ip6e_len + 1) << 3; 2361 } 2362 break; 2363 case IPV6_DSTOPTS: 2364 if (pktopt && pktopt->ip6po_dest2) { 2365 optdata = (void *)pktopt->ip6po_dest2; 2366 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2367 optdatalen = (ip6e->ip6e_len + 1) << 3; 2368 } 2369 break; 2370 case IPV6_NEXTHOP: 2371 if (pktopt && pktopt->ip6po_nexthop) { 2372 optdata = (void *)pktopt->ip6po_nexthop; 2373 optdatalen = pktopt->ip6po_nexthop->sa_len; 2374 } 2375 break; 2376 case IPV6_USE_MIN_MTU: 2377 if (pktopt) 2378 optdata = (void *)&pktopt->ip6po_minmtu; 2379 else 2380 optdata = (void *)&defminmtu; 2381 optdatalen = sizeof(int); 2382 break; 2383 case IPV6_DONTFRAG: 2384 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2385 on = 1; 2386 else 2387 on = 0; 2388 optdata = (void *)&on; 2389 optdatalen = sizeof(on); 2390 break; 2391 case IPV6_PREFER_TEMPADDR: 2392 if (pktopt) 2393 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2394 else 2395 optdata = (void *)&defpreftemp; 2396 optdatalen = sizeof(int); 2397 break; 2398 default: /* should not happen */ 2399 #ifdef DIAGNOSTIC 2400 panic("ip6_getpcbopt: unexpected option\n"); 2401 #endif 2402 return (ENOPROTOOPT); 2403 } 2404 2405 error = sooptcopyout(sopt, optdata, optdatalen); 2406 2407 return (error); 2408 } 2409 2410 void 2411 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2412 { 2413 if (pktopt == NULL) 2414 return; 2415 2416 if (optname == -1 || optname == IPV6_PKTINFO) { 2417 if (pktopt->ip6po_pktinfo) 2418 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2419 pktopt->ip6po_pktinfo = NULL; 2420 } 2421 if (optname == -1 || optname == IPV6_HOPLIMIT) 2422 pktopt->ip6po_hlim = -1; 2423 if (optname == -1 || optname == IPV6_TCLASS) 2424 pktopt->ip6po_tclass = -1; 2425 if (optname == -1 || optname == IPV6_NEXTHOP) { 2426 if (pktopt->ip6po_nextroute.ro_rt) { 2427 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2428 pktopt->ip6po_nextroute.ro_rt = NULL; 2429 } 2430 if (pktopt->ip6po_nexthop) 2431 free(pktopt->ip6po_nexthop, M_IP6OPT); 2432 pktopt->ip6po_nexthop = NULL; 2433 } 2434 if (optname == -1 || optname == IPV6_HOPOPTS) { 2435 if (pktopt->ip6po_hbh) 2436 free(pktopt->ip6po_hbh, M_IP6OPT); 2437 pktopt->ip6po_hbh = NULL; 2438 } 2439 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2440 if (pktopt->ip6po_dest1) 2441 free(pktopt->ip6po_dest1, M_IP6OPT); 2442 pktopt->ip6po_dest1 = NULL; 2443 } 2444 if (optname == -1 || optname == IPV6_RTHDR) { 2445 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2446 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2447 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2448 if (pktopt->ip6po_route.ro_rt) { 2449 RTFREE(pktopt->ip6po_route.ro_rt); 2450 pktopt->ip6po_route.ro_rt = NULL; 2451 } 2452 } 2453 if (optname == -1 || optname == IPV6_DSTOPTS) { 2454 if (pktopt->ip6po_dest2) 2455 free(pktopt->ip6po_dest2, M_IP6OPT); 2456 pktopt->ip6po_dest2 = NULL; 2457 } 2458 } 2459 2460 #define PKTOPT_EXTHDRCPY(type) \ 2461 do {\ 2462 if (src->type) {\ 2463 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2464 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2465 if (dst->type == NULL && canwait == M_NOWAIT)\ 2466 goto bad;\ 2467 bcopy(src->type, dst->type, hlen);\ 2468 }\ 2469 } while (/*CONSTCOND*/ 0) 2470 2471 static int 2472 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2473 { 2474 if (dst == NULL || src == NULL) { 2475 printf("ip6_clearpktopts: invalid argument\n"); 2476 return (EINVAL); 2477 } 2478 2479 dst->ip6po_hlim = src->ip6po_hlim; 2480 dst->ip6po_tclass = src->ip6po_tclass; 2481 dst->ip6po_flags = src->ip6po_flags; 2482 dst->ip6po_minmtu = src->ip6po_minmtu; 2483 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2484 if (src->ip6po_pktinfo) { 2485 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2486 M_IP6OPT, canwait); 2487 if (dst->ip6po_pktinfo == NULL) 2488 goto bad; 2489 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2490 } 2491 if (src->ip6po_nexthop) { 2492 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2493 M_IP6OPT, canwait); 2494 if (dst->ip6po_nexthop == NULL) 2495 goto bad; 2496 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2497 src->ip6po_nexthop->sa_len); 2498 } 2499 PKTOPT_EXTHDRCPY(ip6po_hbh); 2500 PKTOPT_EXTHDRCPY(ip6po_dest1); 2501 PKTOPT_EXTHDRCPY(ip6po_dest2); 2502 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2503 return (0); 2504 2505 bad: 2506 ip6_clearpktopts(dst, -1); 2507 return (ENOBUFS); 2508 } 2509 #undef PKTOPT_EXTHDRCPY 2510 2511 struct ip6_pktopts * 2512 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2513 { 2514 int error; 2515 struct ip6_pktopts *dst; 2516 2517 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2518 if (dst == NULL) 2519 return (NULL); 2520 ip6_initpktopts(dst); 2521 2522 if ((error = copypktopts(dst, src, canwait)) != 0) { 2523 free(dst, M_IP6OPT); 2524 return (NULL); 2525 } 2526 2527 return (dst); 2528 } 2529 2530 void 2531 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2532 { 2533 if (pktopt == NULL) 2534 return; 2535 2536 ip6_clearpktopts(pktopt, -1); 2537 2538 free(pktopt, M_IP6OPT); 2539 } 2540 2541 /* 2542 * Set IPv6 outgoing packet options based on advanced API. 2543 */ 2544 int 2545 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2546 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2547 { 2548 struct cmsghdr *cm = NULL; 2549 2550 if (control == NULL || opt == NULL) 2551 return (EINVAL); 2552 2553 ip6_initpktopts(opt); 2554 if (stickyopt) { 2555 int error; 2556 2557 /* 2558 * If stickyopt is provided, make a local copy of the options 2559 * for this particular packet, then override them by ancillary 2560 * objects. 2561 * XXX: copypktopts() does not copy the cached route to a next 2562 * hop (if any). This is not very good in terms of efficiency, 2563 * but we can allow this since this option should be rarely 2564 * used. 2565 */ 2566 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2567 return (error); 2568 } 2569 2570 /* 2571 * XXX: Currently, we assume all the optional information is stored 2572 * in a single mbuf. 2573 */ 2574 if (control->m_next) 2575 return (EINVAL); 2576 2577 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2578 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2579 int error; 2580 2581 if (control->m_len < CMSG_LEN(0)) 2582 return (EINVAL); 2583 2584 cm = mtod(control, struct cmsghdr *); 2585 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2586 return (EINVAL); 2587 if (cm->cmsg_level != IPPROTO_IPV6) 2588 continue; 2589 2590 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2591 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2592 if (error) 2593 return (error); 2594 } 2595 2596 return (0); 2597 } 2598 2599 /* 2600 * Set a particular packet option, as a sticky option or an ancillary data 2601 * item. "len" can be 0 only when it's a sticky option. 2602 * We have 4 cases of combination of "sticky" and "cmsg": 2603 * "sticky=0, cmsg=0": impossible 2604 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2605 * "sticky=1, cmsg=0": RFC3542 socket option 2606 * "sticky=1, cmsg=1": RFC2292 socket option 2607 */ 2608 static int 2609 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2610 struct ucred *cred, int sticky, int cmsg, int uproto) 2611 { 2612 int minmtupolicy, preftemp; 2613 int error; 2614 2615 if (!sticky && !cmsg) { 2616 #ifdef DIAGNOSTIC 2617 printf("ip6_setpktopt: impossible case\n"); 2618 #endif 2619 return (EINVAL); 2620 } 2621 2622 /* 2623 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2624 * not be specified in the context of RFC3542. Conversely, 2625 * RFC3542 types should not be specified in the context of RFC2292. 2626 */ 2627 if (!cmsg) { 2628 switch (optname) { 2629 case IPV6_2292PKTINFO: 2630 case IPV6_2292HOPLIMIT: 2631 case IPV6_2292NEXTHOP: 2632 case IPV6_2292HOPOPTS: 2633 case IPV6_2292DSTOPTS: 2634 case IPV6_2292RTHDR: 2635 case IPV6_2292PKTOPTIONS: 2636 return (ENOPROTOOPT); 2637 } 2638 } 2639 if (sticky && cmsg) { 2640 switch (optname) { 2641 case IPV6_PKTINFO: 2642 case IPV6_HOPLIMIT: 2643 case IPV6_NEXTHOP: 2644 case IPV6_HOPOPTS: 2645 case IPV6_DSTOPTS: 2646 case IPV6_RTHDRDSTOPTS: 2647 case IPV6_RTHDR: 2648 case IPV6_USE_MIN_MTU: 2649 case IPV6_DONTFRAG: 2650 case IPV6_TCLASS: 2651 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2652 return (ENOPROTOOPT); 2653 } 2654 } 2655 2656 switch (optname) { 2657 case IPV6_2292PKTINFO: 2658 case IPV6_PKTINFO: 2659 { 2660 struct ifnet *ifp = NULL; 2661 struct in6_pktinfo *pktinfo; 2662 2663 if (len != sizeof(struct in6_pktinfo)) 2664 return (EINVAL); 2665 2666 pktinfo = (struct in6_pktinfo *)buf; 2667 2668 /* 2669 * An application can clear any sticky IPV6_PKTINFO option by 2670 * doing a "regular" setsockopt with ipi6_addr being 2671 * in6addr_any and ipi6_ifindex being zero. 2672 * [RFC 3542, Section 6] 2673 */ 2674 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2675 pktinfo->ipi6_ifindex == 0 && 2676 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2677 ip6_clearpktopts(opt, optname); 2678 break; 2679 } 2680 2681 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2682 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2683 return (EINVAL); 2684 } 2685 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2686 return (EINVAL); 2687 /* validate the interface index if specified. */ 2688 if (pktinfo->ipi6_ifindex > V_if_index) 2689 return (ENXIO); 2690 if (pktinfo->ipi6_ifindex) { 2691 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2692 if (ifp == NULL) 2693 return (ENXIO); 2694 } 2695 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2696 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2697 return (ENETDOWN); 2698 2699 if (ifp != NULL && 2700 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2701 struct in6_ifaddr *ia; 2702 2703 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2704 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2705 if (ia == NULL) 2706 return (EADDRNOTAVAIL); 2707 ifa_free(&ia->ia_ifa); 2708 } 2709 /* 2710 * We store the address anyway, and let in6_selectsrc() 2711 * validate the specified address. This is because ipi6_addr 2712 * may not have enough information about its scope zone, and 2713 * we may need additional information (such as outgoing 2714 * interface or the scope zone of a destination address) to 2715 * disambiguate the scope. 2716 * XXX: the delay of the validation may confuse the 2717 * application when it is used as a sticky option. 2718 */ 2719 if (opt->ip6po_pktinfo == NULL) { 2720 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2721 M_IP6OPT, M_NOWAIT); 2722 if (opt->ip6po_pktinfo == NULL) 2723 return (ENOBUFS); 2724 } 2725 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2726 break; 2727 } 2728 2729 case IPV6_2292HOPLIMIT: 2730 case IPV6_HOPLIMIT: 2731 { 2732 int *hlimp; 2733 2734 /* 2735 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2736 * to simplify the ordering among hoplimit options. 2737 */ 2738 if (optname == IPV6_HOPLIMIT && sticky) 2739 return (ENOPROTOOPT); 2740 2741 if (len != sizeof(int)) 2742 return (EINVAL); 2743 hlimp = (int *)buf; 2744 if (*hlimp < -1 || *hlimp > 255) 2745 return (EINVAL); 2746 2747 opt->ip6po_hlim = *hlimp; 2748 break; 2749 } 2750 2751 case IPV6_TCLASS: 2752 { 2753 int tclass; 2754 2755 if (len != sizeof(int)) 2756 return (EINVAL); 2757 tclass = *(int *)buf; 2758 if (tclass < -1 || tclass > 255) 2759 return (EINVAL); 2760 2761 opt->ip6po_tclass = tclass; 2762 break; 2763 } 2764 2765 case IPV6_2292NEXTHOP: 2766 case IPV6_NEXTHOP: 2767 if (cred != NULL) { 2768 error = priv_check_cred(cred, 2769 PRIV_NETINET_SETHDROPTS, 0); 2770 if (error) 2771 return (error); 2772 } 2773 2774 if (len == 0) { /* just remove the option */ 2775 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2776 break; 2777 } 2778 2779 /* check if cmsg_len is large enough for sa_len */ 2780 if (len < sizeof(struct sockaddr) || len < *buf) 2781 return (EINVAL); 2782 2783 switch (((struct sockaddr *)buf)->sa_family) { 2784 case AF_INET6: 2785 { 2786 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2787 int error; 2788 2789 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2790 return (EINVAL); 2791 2792 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2793 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2794 return (EINVAL); 2795 } 2796 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2797 != 0) { 2798 return (error); 2799 } 2800 break; 2801 } 2802 case AF_LINK: /* should eventually be supported */ 2803 default: 2804 return (EAFNOSUPPORT); 2805 } 2806 2807 /* turn off the previous option, then set the new option. */ 2808 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2809 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2810 if (opt->ip6po_nexthop == NULL) 2811 return (ENOBUFS); 2812 bcopy(buf, opt->ip6po_nexthop, *buf); 2813 break; 2814 2815 case IPV6_2292HOPOPTS: 2816 case IPV6_HOPOPTS: 2817 { 2818 struct ip6_hbh *hbh; 2819 int hbhlen; 2820 2821 /* 2822 * XXX: We don't allow a non-privileged user to set ANY HbH 2823 * options, since per-option restriction has too much 2824 * overhead. 2825 */ 2826 if (cred != NULL) { 2827 error = priv_check_cred(cred, 2828 PRIV_NETINET_SETHDROPTS, 0); 2829 if (error) 2830 return (error); 2831 } 2832 2833 if (len == 0) { 2834 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2835 break; /* just remove the option */ 2836 } 2837 2838 /* message length validation */ 2839 if (len < sizeof(struct ip6_hbh)) 2840 return (EINVAL); 2841 hbh = (struct ip6_hbh *)buf; 2842 hbhlen = (hbh->ip6h_len + 1) << 3; 2843 if (len != hbhlen) 2844 return (EINVAL); 2845 2846 /* turn off the previous option, then set the new option. */ 2847 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2848 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2849 if (opt->ip6po_hbh == NULL) 2850 return (ENOBUFS); 2851 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2852 2853 break; 2854 } 2855 2856 case IPV6_2292DSTOPTS: 2857 case IPV6_DSTOPTS: 2858 case IPV6_RTHDRDSTOPTS: 2859 { 2860 struct ip6_dest *dest, **newdest = NULL; 2861 int destlen; 2862 2863 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2864 error = priv_check_cred(cred, 2865 PRIV_NETINET_SETHDROPTS, 0); 2866 if (error) 2867 return (error); 2868 } 2869 2870 if (len == 0) { 2871 ip6_clearpktopts(opt, optname); 2872 break; /* just remove the option */ 2873 } 2874 2875 /* message length validation */ 2876 if (len < sizeof(struct ip6_dest)) 2877 return (EINVAL); 2878 dest = (struct ip6_dest *)buf; 2879 destlen = (dest->ip6d_len + 1) << 3; 2880 if (len != destlen) 2881 return (EINVAL); 2882 2883 /* 2884 * Determine the position that the destination options header 2885 * should be inserted; before or after the routing header. 2886 */ 2887 switch (optname) { 2888 case IPV6_2292DSTOPTS: 2889 /* 2890 * The old advacned API is ambiguous on this point. 2891 * Our approach is to determine the position based 2892 * according to the existence of a routing header. 2893 * Note, however, that this depends on the order of the 2894 * extension headers in the ancillary data; the 1st 2895 * part of the destination options header must appear 2896 * before the routing header in the ancillary data, 2897 * too. 2898 * RFC3542 solved the ambiguity by introducing 2899 * separate ancillary data or option types. 2900 */ 2901 if (opt->ip6po_rthdr == NULL) 2902 newdest = &opt->ip6po_dest1; 2903 else 2904 newdest = &opt->ip6po_dest2; 2905 break; 2906 case IPV6_RTHDRDSTOPTS: 2907 newdest = &opt->ip6po_dest1; 2908 break; 2909 case IPV6_DSTOPTS: 2910 newdest = &opt->ip6po_dest2; 2911 break; 2912 } 2913 2914 /* turn off the previous option, then set the new option. */ 2915 ip6_clearpktopts(opt, optname); 2916 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2917 if (*newdest == NULL) 2918 return (ENOBUFS); 2919 bcopy(dest, *newdest, destlen); 2920 2921 break; 2922 } 2923 2924 case IPV6_2292RTHDR: 2925 case IPV6_RTHDR: 2926 { 2927 struct ip6_rthdr *rth; 2928 int rthlen; 2929 2930 if (len == 0) { 2931 ip6_clearpktopts(opt, IPV6_RTHDR); 2932 break; /* just remove the option */ 2933 } 2934 2935 /* message length validation */ 2936 if (len < sizeof(struct ip6_rthdr)) 2937 return (EINVAL); 2938 rth = (struct ip6_rthdr *)buf; 2939 rthlen = (rth->ip6r_len + 1) << 3; 2940 if (len != rthlen) 2941 return (EINVAL); 2942 2943 switch (rth->ip6r_type) { 2944 case IPV6_RTHDR_TYPE_0: 2945 if (rth->ip6r_len == 0) /* must contain one addr */ 2946 return (EINVAL); 2947 if (rth->ip6r_len % 2) /* length must be even */ 2948 return (EINVAL); 2949 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2950 return (EINVAL); 2951 break; 2952 default: 2953 return (EINVAL); /* not supported */ 2954 } 2955 2956 /* turn off the previous option */ 2957 ip6_clearpktopts(opt, IPV6_RTHDR); 2958 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2959 if (opt->ip6po_rthdr == NULL) 2960 return (ENOBUFS); 2961 bcopy(rth, opt->ip6po_rthdr, rthlen); 2962 2963 break; 2964 } 2965 2966 case IPV6_USE_MIN_MTU: 2967 if (len != sizeof(int)) 2968 return (EINVAL); 2969 minmtupolicy = *(int *)buf; 2970 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2971 minmtupolicy != IP6PO_MINMTU_DISABLE && 2972 minmtupolicy != IP6PO_MINMTU_ALL) { 2973 return (EINVAL); 2974 } 2975 opt->ip6po_minmtu = minmtupolicy; 2976 break; 2977 2978 case IPV6_DONTFRAG: 2979 if (len != sizeof(int)) 2980 return (EINVAL); 2981 2982 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2983 /* 2984 * we ignore this option for TCP sockets. 2985 * (RFC3542 leaves this case unspecified.) 2986 */ 2987 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2988 } else 2989 opt->ip6po_flags |= IP6PO_DONTFRAG; 2990 break; 2991 2992 case IPV6_PREFER_TEMPADDR: 2993 if (len != sizeof(int)) 2994 return (EINVAL); 2995 preftemp = *(int *)buf; 2996 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 2997 preftemp != IP6PO_TEMPADDR_NOTPREFER && 2998 preftemp != IP6PO_TEMPADDR_PREFER) { 2999 return (EINVAL); 3000 } 3001 opt->ip6po_prefer_tempaddr = preftemp; 3002 break; 3003 3004 default: 3005 return (ENOPROTOOPT); 3006 } /* end of switch */ 3007 3008 return (0); 3009 } 3010 3011 /* 3012 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3013 * packet to the input queue of a specified interface. Note that this 3014 * calls the output routine of the loopback "driver", but with an interface 3015 * pointer that might NOT be &loif -- easier than replicating that code here. 3016 */ 3017 void 3018 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3019 { 3020 struct mbuf *copym; 3021 struct ip6_hdr *ip6; 3022 3023 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3024 if (copym == NULL) 3025 return; 3026 3027 /* 3028 * Make sure to deep-copy IPv6 header portion in case the data 3029 * is in an mbuf cluster, so that we can safely override the IPv6 3030 * header portion later. 3031 */ 3032 if (!M_WRITABLE(copym) || 3033 copym->m_len < sizeof(struct ip6_hdr)) { 3034 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3035 if (copym == NULL) 3036 return; 3037 } 3038 ip6 = mtod(copym, struct ip6_hdr *); 3039 /* 3040 * clear embedded scope identifiers if necessary. 3041 * in6_clearscope will touch the addresses only when necessary. 3042 */ 3043 in6_clearscope(&ip6->ip6_src); 3044 in6_clearscope(&ip6->ip6_dst); 3045 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3046 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3047 CSUM_PSEUDO_HDR; 3048 copym->m_pkthdr.csum_data = 0xffff; 3049 } 3050 if_simloop(ifp, copym, AF_INET6, 0); 3051 } 3052 3053 /* 3054 * Chop IPv6 header off from the payload. 3055 */ 3056 static int 3057 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3058 { 3059 struct mbuf *mh; 3060 struct ip6_hdr *ip6; 3061 3062 ip6 = mtod(m, struct ip6_hdr *); 3063 if (m->m_len > sizeof(*ip6)) { 3064 mh = m_gethdr(M_NOWAIT, MT_DATA); 3065 if (mh == NULL) { 3066 m_freem(m); 3067 return ENOBUFS; 3068 } 3069 m_move_pkthdr(mh, m); 3070 M_ALIGN(mh, sizeof(*ip6)); 3071 m->m_len -= sizeof(*ip6); 3072 m->m_data += sizeof(*ip6); 3073 mh->m_next = m; 3074 m = mh; 3075 m->m_len = sizeof(*ip6); 3076 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3077 } 3078 exthdrs->ip6e_ip6 = m; 3079 return 0; 3080 } 3081 3082 /* 3083 * Compute IPv6 extension header length. 3084 */ 3085 int 3086 ip6_optlen(struct inpcb *in6p) 3087 { 3088 int len; 3089 3090 if (!in6p->in6p_outputopts) 3091 return 0; 3092 3093 len = 0; 3094 #define elen(x) \ 3095 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3096 3097 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3098 if (in6p->in6p_outputopts->ip6po_rthdr) 3099 /* dest1 is valid with rthdr only */ 3100 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3101 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3102 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3103 return len; 3104 #undef elen 3105 } 3106