1 /* $FreeBSD$ */ 2 /* $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Berkeley and its contributors. 49 * 4. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 66 */ 67 68 #include "opt_ip6fw.h" 69 #include "opt_inet.h" 70 #include "opt_inet6.h" 71 #include "opt_ipsec.h" 72 #include "opt_pfil_hooks.h" 73 74 #include <sys/param.h> 75 #include <sys/malloc.h> 76 #include <sys/mbuf.h> 77 #include <sys/proc.h> 78 #include <sys/errno.h> 79 #include <sys/protosw.h> 80 #include <sys/socket.h> 81 #include <sys/socketvar.h> 82 #include <sys/systm.h> 83 #include <sys/kernel.h> 84 85 #include <net/if.h> 86 #include <net/route.h> 87 #ifdef PFIL_HOOKS 88 #include <net/pfil.h> 89 #endif 90 91 #include <netinet/in.h> 92 #include <netinet/in_var.h> 93 #include <netinet6/in6_var.h> 94 #include <netinet/ip6.h> 95 #include <netinet/icmp6.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet/in_pcb.h> 98 #include <netinet6/nd6.h> 99 100 #ifdef IPSEC 101 #include <netinet6/ipsec.h> 102 #ifdef INET6 103 #include <netinet6/ipsec6.h> 104 #endif 105 #include <netkey/key.h> 106 #endif /* IPSEC */ 107 108 #ifdef FAST_IPSEC 109 #include <netipsec/ipsec.h> 110 #include <netipsec/ipsec6.h> 111 #include <netipsec/key.h> 112 #endif /* FAST_IPSEC */ 113 114 #include <netinet6/ip6_fw.h> 115 116 #include <net/net_osdep.h> 117 118 #include <netinet6/ip6protosw.h> 119 120 static MALLOC_DEFINE(M_IPMOPTS, "ip6_moptions", "internet multicast options"); 121 122 struct ip6_exthdrs { 123 struct mbuf *ip6e_ip6; 124 struct mbuf *ip6e_hbh; 125 struct mbuf *ip6e_dest1; 126 struct mbuf *ip6e_rthdr; 127 struct mbuf *ip6e_dest2; 128 }; 129 130 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 131 struct socket *, struct sockopt *sopt)); 132 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *)); 133 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **)); 134 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int)); 135 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 136 struct ip6_frag **)); 137 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t)); 138 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *)); 139 140 /* 141 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 142 * header (with pri, len, nxt, hlim, src, dst). 143 * This function may modify ver and hlim only. 144 * The mbuf chain containing the packet will be freed. 145 * The mbuf opt, if present, will not be freed. 146 * 147 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 148 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 149 * which is rt_rmx.rmx_mtu. 150 */ 151 int 152 ip6_output(m0, opt, ro, flags, im6o, ifpp, inp) 153 struct mbuf *m0; 154 struct ip6_pktopts *opt; 155 struct route_in6 *ro; 156 int flags; 157 struct ip6_moptions *im6o; 158 struct ifnet **ifpp; /* XXX: just for statistics */ 159 struct inpcb *inp; 160 { 161 struct ip6_hdr *ip6, *mhip6; 162 struct ifnet *ifp, *origifp; 163 struct mbuf *m = m0; 164 int hlen, tlen, len, off; 165 struct route_in6 ip6route; 166 struct sockaddr_in6 *dst; 167 int error = 0; 168 struct in6_ifaddr *ia = NULL; 169 u_long mtu; 170 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 171 struct ip6_exthdrs exthdrs; 172 struct in6_addr finaldst; 173 struct route_in6 *ro_pmtu = NULL; 174 int hdrsplit = 0; 175 int needipsec = 0; 176 #ifdef PFIL_HOOKS 177 struct packet_filter_hook *pfh; 178 struct mbuf *m1; 179 int rv; 180 #endif /* PFIL_HOOKS */ 181 #ifdef IPSEC 182 int needipsectun = 0; 183 struct secpolicy *sp = NULL; 184 struct socket *so = inp ? inp->inp_socket : NULL; 185 186 ip6 = mtod(m, struct ip6_hdr *); 187 #endif /* IPSEC */ 188 #ifdef FAST_IPSEC 189 int needipsectun = 0; 190 struct secpolicy *sp = NULL; 191 192 ip6 = mtod(m, struct ip6_hdr *); 193 #endif /* FAST_IPSEC */ 194 195 #define MAKE_EXTHDR(hp, mp) \ 196 do { \ 197 if (hp) { \ 198 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 199 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 200 ((eh)->ip6e_len + 1) << 3); \ 201 if (error) \ 202 goto freehdrs; \ 203 } \ 204 } while (0) 205 206 bzero(&exthdrs, sizeof(exthdrs)); 207 208 if (opt) { 209 /* Hop-by-Hop options header */ 210 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 211 /* Destination options header(1st part) */ 212 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 213 /* Routing header */ 214 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 215 /* Destination options header(2nd part) */ 216 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 217 } 218 219 #ifdef IPSEC 220 /* get a security policy for this packet */ 221 if (so == NULL) 222 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 223 else 224 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 225 226 if (sp == NULL) { 227 ipsec6stat.out_inval++; 228 goto freehdrs; 229 } 230 231 error = 0; 232 233 /* check policy */ 234 switch (sp->policy) { 235 case IPSEC_POLICY_DISCARD: 236 /* 237 * This packet is just discarded. 238 */ 239 ipsec6stat.out_polvio++; 240 goto freehdrs; 241 242 case IPSEC_POLICY_BYPASS: 243 case IPSEC_POLICY_NONE: 244 /* no need to do IPsec. */ 245 needipsec = 0; 246 break; 247 248 case IPSEC_POLICY_IPSEC: 249 if (sp->req == NULL) { 250 /* acquire a policy */ 251 error = key_spdacquire(sp); 252 goto freehdrs; 253 } 254 needipsec = 1; 255 break; 256 257 case IPSEC_POLICY_ENTRUST: 258 default: 259 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 260 } 261 #endif /* IPSEC */ 262 #ifdef FAST_IPSEC 263 /* get a security policy for this packet */ 264 if (inp == NULL) 265 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 266 else 267 sp = ipsec_getpolicybysock(m, IPSEC_DIR_OUTBOUND, inp, &error); 268 269 if (sp == NULL) { 270 newipsecstat.ips_out_inval++; 271 goto freehdrs; 272 } 273 274 error = 0; 275 276 /* check policy */ 277 switch (sp->policy) { 278 case IPSEC_POLICY_DISCARD: 279 /* 280 * This packet is just discarded. 281 */ 282 newipsecstat.ips_out_polvio++; 283 goto freehdrs; 284 285 case IPSEC_POLICY_BYPASS: 286 case IPSEC_POLICY_NONE: 287 /* no need to do IPsec. */ 288 needipsec = 0; 289 break; 290 291 case IPSEC_POLICY_IPSEC: 292 if (sp->req == NULL) { 293 /* acquire a policy */ 294 error = key_spdacquire(sp); 295 goto freehdrs; 296 } 297 needipsec = 1; 298 break; 299 300 case IPSEC_POLICY_ENTRUST: 301 default: 302 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 303 } 304 #endif /* FAST_IPSEC */ 305 306 /* 307 * Calculate the total length of the extension header chain. 308 * Keep the length of the unfragmentable part for fragmentation. 309 */ 310 optlen = 0; 311 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 312 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 313 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 314 unfragpartlen = optlen + sizeof(struct ip6_hdr); 315 /* NOTE: we don't add AH/ESP length here. do that later. */ 316 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 317 318 /* 319 * If we need IPsec, or there is at least one extension header, 320 * separate IP6 header from the payload. 321 */ 322 if ((needipsec || optlen) && !hdrsplit) { 323 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 324 m = NULL; 325 goto freehdrs; 326 } 327 m = exthdrs.ip6e_ip6; 328 hdrsplit++; 329 } 330 331 /* adjust pointer */ 332 ip6 = mtod(m, struct ip6_hdr *); 333 334 /* adjust mbuf packet header length */ 335 m->m_pkthdr.len += optlen; 336 plen = m->m_pkthdr.len - sizeof(*ip6); 337 338 /* If this is a jumbo payload, insert a jumbo payload option. */ 339 if (plen > IPV6_MAXPACKET) { 340 if (!hdrsplit) { 341 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 342 m = NULL; 343 goto freehdrs; 344 } 345 m = exthdrs.ip6e_ip6; 346 hdrsplit++; 347 } 348 /* adjust pointer */ 349 ip6 = mtod(m, struct ip6_hdr *); 350 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 351 goto freehdrs; 352 ip6->ip6_plen = 0; 353 } else 354 ip6->ip6_plen = htons(plen); 355 356 /* 357 * Concatenate headers and fill in next header fields. 358 * Here we have, on "m" 359 * IPv6 payload 360 * and we insert headers accordingly. Finally, we should be getting: 361 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 362 * 363 * during the header composing process, "m" points to IPv6 header. 364 * "mprev" points to an extension header prior to esp. 365 */ 366 { 367 u_char *nexthdrp = &ip6->ip6_nxt; 368 struct mbuf *mprev = m; 369 370 /* 371 * we treat dest2 specially. this makes IPsec processing 372 * much easier. the goal here is to make mprev point the 373 * mbuf prior to dest2. 374 * 375 * result: IPv6 dest2 payload 376 * m and mprev will point to IPv6 header. 377 */ 378 if (exthdrs.ip6e_dest2) { 379 if (!hdrsplit) 380 panic("assumption failed: hdr not split"); 381 exthdrs.ip6e_dest2->m_next = m->m_next; 382 m->m_next = exthdrs.ip6e_dest2; 383 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 384 ip6->ip6_nxt = IPPROTO_DSTOPTS; 385 } 386 387 #define MAKE_CHAIN(m, mp, p, i)\ 388 do {\ 389 if (m) {\ 390 if (!hdrsplit) \ 391 panic("assumption failed: hdr not split"); \ 392 *mtod((m), u_char *) = *(p);\ 393 *(p) = (i);\ 394 p = mtod((m), u_char *);\ 395 (m)->m_next = (mp)->m_next;\ 396 (mp)->m_next = (m);\ 397 (mp) = (m);\ 398 }\ 399 } while (0) 400 /* 401 * result: IPv6 hbh dest1 rthdr dest2 payload 402 * m will point to IPv6 header. mprev will point to the 403 * extension header prior to dest2 (rthdr in the above case). 404 */ 405 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, 406 nexthdrp, IPPROTO_HOPOPTS); 407 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, 408 nexthdrp, IPPROTO_DSTOPTS); 409 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, 410 nexthdrp, IPPROTO_ROUTING); 411 412 #if defined(IPSEC) || defined(FAST_IPSEC) 413 if (!needipsec) 414 goto skip_ipsec2; 415 416 /* 417 * pointers after IPsec headers are not valid any more. 418 * other pointers need a great care too. 419 * (IPsec routines should not mangle mbufs prior to AH/ESP) 420 */ 421 exthdrs.ip6e_dest2 = NULL; 422 423 { 424 struct ip6_rthdr *rh = NULL; 425 int segleft_org = 0; 426 struct ipsec_output_state state; 427 428 if (exthdrs.ip6e_rthdr) { 429 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 430 segleft_org = rh->ip6r_segleft; 431 rh->ip6r_segleft = 0; 432 } 433 434 bzero(&state, sizeof(state)); 435 state.m = m; 436 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 437 &needipsectun); 438 m = state.m; 439 if (error) { 440 /* mbuf is already reclaimed in ipsec6_output_trans. */ 441 m = NULL; 442 switch (error) { 443 case EHOSTUNREACH: 444 case ENETUNREACH: 445 case EMSGSIZE: 446 case ENOBUFS: 447 case ENOMEM: 448 break; 449 default: 450 printf("ip6_output (ipsec): error code %d\n", error); 451 /* fall through */ 452 case ENOENT: 453 /* don't show these error codes to the user */ 454 error = 0; 455 break; 456 } 457 goto bad; 458 } 459 if (exthdrs.ip6e_rthdr) { 460 /* ah6_output doesn't modify mbuf chain */ 461 rh->ip6r_segleft = segleft_org; 462 } 463 } 464 skip_ipsec2:; 465 #endif 466 } 467 468 /* 469 * If there is a routing header, replace destination address field 470 * with the first hop of the routing header. 471 */ 472 if (exthdrs.ip6e_rthdr) { 473 struct ip6_rthdr *rh = 474 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 475 struct ip6_rthdr *)); 476 struct ip6_rthdr0 *rh0; 477 478 finaldst = ip6->ip6_dst; 479 switch (rh->ip6r_type) { 480 case IPV6_RTHDR_TYPE_0: 481 rh0 = (struct ip6_rthdr0 *)rh; 482 ip6->ip6_dst = rh0->ip6r0_addr[0]; 483 bcopy((caddr_t)&rh0->ip6r0_addr[1], 484 (caddr_t)&rh0->ip6r0_addr[0], 485 sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1) 486 ); 487 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst; 488 break; 489 default: /* is it possible? */ 490 error = EINVAL; 491 goto bad; 492 } 493 } 494 495 /* Source address validation */ 496 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 497 (flags & IPV6_DADOUTPUT) == 0) { 498 error = EOPNOTSUPP; 499 ip6stat.ip6s_badscope++; 500 goto bad; 501 } 502 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 503 error = EOPNOTSUPP; 504 ip6stat.ip6s_badscope++; 505 goto bad; 506 } 507 508 ip6stat.ip6s_localout++; 509 510 /* 511 * Route packet. 512 */ 513 if (ro == 0) { 514 ro = &ip6route; 515 bzero((caddr_t)ro, sizeof(*ro)); 516 } 517 ro_pmtu = ro; 518 if (opt && opt->ip6po_rthdr) 519 ro = &opt->ip6po_route; 520 dst = (struct sockaddr_in6 *)&ro->ro_dst; 521 /* 522 * If there is a cached route, 523 * check that it is to the same destination 524 * and is still up. If not, free it and try again. 525 */ 526 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 527 dst->sin6_family != AF_INET6 || 528 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 529 RTFREE(ro->ro_rt); 530 ro->ro_rt = (struct rtentry *)0; 531 } 532 if (ro->ro_rt == 0) { 533 bzero(dst, sizeof(*dst)); 534 dst->sin6_family = AF_INET6; 535 dst->sin6_len = sizeof(struct sockaddr_in6); 536 dst->sin6_addr = ip6->ip6_dst; 537 #ifdef SCOPEDROUTING 538 /* XXX: sin6_scope_id should already be fixed at this point */ 539 if (IN6_IS_SCOPE_LINKLOCAL(&dst->sin6_addr)) 540 dst->sin6_scope_id = ntohs(dst->sin6_addr.s6_addr16[1]); 541 #endif 542 } 543 #if defined(IPSEC) || defined(FAST_IPSEC) 544 if (needipsec && needipsectun) { 545 struct ipsec_output_state state; 546 547 /* 548 * All the extension headers will become inaccessible 549 * (since they can be encrypted). 550 * Don't panic, we need no more updates to extension headers 551 * on inner IPv6 packet (since they are now encapsulated). 552 * 553 * IPv6 [ESP|AH] IPv6 [extension headers] payload 554 */ 555 bzero(&exthdrs, sizeof(exthdrs)); 556 exthdrs.ip6e_ip6 = m; 557 558 bzero(&state, sizeof(state)); 559 state.m = m; 560 state.ro = (struct route *)ro; 561 state.dst = (struct sockaddr *)dst; 562 563 error = ipsec6_output_tunnel(&state, sp, flags); 564 565 m = state.m; 566 ro = (struct route_in6 *)state.ro; 567 dst = (struct sockaddr_in6 *)state.dst; 568 if (error) { 569 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 570 m0 = m = NULL; 571 m = NULL; 572 switch (error) { 573 case EHOSTUNREACH: 574 case ENETUNREACH: 575 case EMSGSIZE: 576 case ENOBUFS: 577 case ENOMEM: 578 break; 579 default: 580 printf("ip6_output (ipsec): error code %d\n", error); 581 /* fall through */ 582 case ENOENT: 583 /* don't show these error codes to the user */ 584 error = 0; 585 break; 586 } 587 goto bad; 588 } 589 590 exthdrs.ip6e_ip6 = m; 591 } 592 #endif /* IPSEC */ 593 594 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 595 /* Unicast */ 596 597 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 598 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 599 /* xxx 600 * interface selection comes here 601 * if an interface is specified from an upper layer, 602 * ifp must point it. 603 */ 604 if (ro->ro_rt == 0) { 605 /* 606 * non-bsdi always clone routes, if parent is 607 * PRF_CLONING. 608 */ 609 rtalloc((struct route *)ro); 610 } 611 if (ro->ro_rt == 0) { 612 ip6stat.ip6s_noroute++; 613 error = EHOSTUNREACH; 614 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 615 goto bad; 616 } 617 ia = ifatoia6(ro->ro_rt->rt_ifa); 618 ifp = ro->ro_rt->rt_ifp; 619 ro->ro_rt->rt_use++; 620 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 621 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 622 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 623 624 in6_ifstat_inc(ifp, ifs6_out_request); 625 626 /* 627 * Check if the outgoing interface conflicts with 628 * the interface specified by ifi6_ifindex (if specified). 629 * Note that loopback interface is always okay. 630 * (this may happen when we are sending a packet to one of 631 * our own addresses.) 632 */ 633 if (opt && opt->ip6po_pktinfo 634 && opt->ip6po_pktinfo->ipi6_ifindex) { 635 if (!(ifp->if_flags & IFF_LOOPBACK) 636 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 637 ip6stat.ip6s_noroute++; 638 in6_ifstat_inc(ifp, ifs6_out_discard); 639 error = EHOSTUNREACH; 640 goto bad; 641 } 642 } 643 644 if (opt && opt->ip6po_hlim != -1) 645 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 646 } else { 647 /* Multicast */ 648 struct in6_multi *in6m; 649 650 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 651 652 /* 653 * See if the caller provided any multicast options 654 */ 655 ifp = NULL; 656 if (im6o != NULL) { 657 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 658 if (im6o->im6o_multicast_ifp != NULL) 659 ifp = im6o->im6o_multicast_ifp; 660 } else 661 ip6->ip6_hlim = ip6_defmcasthlim; 662 663 /* 664 * See if the caller provided the outgoing interface 665 * as an ancillary data. 666 * Boundary check for ifindex is assumed to be already done. 667 */ 668 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 669 ifp = ifnet_byindex(opt->ip6po_pktinfo->ipi6_ifindex); 670 671 /* 672 * If the destination is a node-local scope multicast, 673 * the packet should be loop-backed only. 674 */ 675 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) { 676 /* 677 * If the outgoing interface is already specified, 678 * it should be a loopback interface. 679 */ 680 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) { 681 ip6stat.ip6s_badscope++; 682 error = ENETUNREACH; /* XXX: better error? */ 683 /* XXX correct ifp? */ 684 in6_ifstat_inc(ifp, ifs6_out_discard); 685 goto bad; 686 } else { 687 ifp = &loif[0]; 688 } 689 } 690 691 if (opt && opt->ip6po_hlim != -1) 692 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 693 694 /* 695 * If caller did not provide an interface lookup a 696 * default in the routing table. This is either a 697 * default for the speicfied group (i.e. a host 698 * route), or a multicast default (a route for the 699 * ``net'' ff00::/8). 700 */ 701 if (ifp == NULL) { 702 if (ro->ro_rt == 0) { 703 ro->ro_rt = rtalloc1((struct sockaddr *) 704 &ro->ro_dst, 0, 0UL); 705 } 706 if (ro->ro_rt == 0) { 707 ip6stat.ip6s_noroute++; 708 error = EHOSTUNREACH; 709 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 710 goto bad; 711 } 712 ia = ifatoia6(ro->ro_rt->rt_ifa); 713 ifp = ro->ro_rt->rt_ifp; 714 ro->ro_rt->rt_use++; 715 } 716 717 if ((flags & IPV6_FORWARDING) == 0) 718 in6_ifstat_inc(ifp, ifs6_out_request); 719 in6_ifstat_inc(ifp, ifs6_out_mcast); 720 721 /* 722 * Confirm that the outgoing interface supports multicast. 723 */ 724 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 725 ip6stat.ip6s_noroute++; 726 in6_ifstat_inc(ifp, ifs6_out_discard); 727 error = ENETUNREACH; 728 goto bad; 729 } 730 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 731 if (in6m != NULL && 732 (im6o == NULL || im6o->im6o_multicast_loop)) { 733 /* 734 * If we belong to the destination multicast group 735 * on the outgoing interface, and the caller did not 736 * forbid loopback, loop back a copy. 737 */ 738 ip6_mloopback(ifp, m, dst); 739 } else { 740 /* 741 * If we are acting as a multicast router, perform 742 * multicast forwarding as if the packet had just 743 * arrived on the interface to which we are about 744 * to send. The multicast forwarding function 745 * recursively calls this function, using the 746 * IPV6_FORWARDING flag to prevent infinite recursion. 747 * 748 * Multicasts that are looped back by ip6_mloopback(), 749 * above, will be forwarded by the ip6_input() routine, 750 * if necessary. 751 */ 752 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 753 if (ip6_mforward(ip6, ifp, m) != 0) { 754 m_freem(m); 755 goto done; 756 } 757 } 758 } 759 /* 760 * Multicasts with a hoplimit of zero may be looped back, 761 * above, but must not be transmitted on a network. 762 * Also, multicasts addressed to the loopback interface 763 * are not sent -- the above call to ip6_mloopback() will 764 * loop back a copy if this host actually belongs to the 765 * destination group on the loopback interface. 766 */ 767 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) { 768 m_freem(m); 769 goto done; 770 } 771 } 772 773 /* 774 * Fill the outgoing inteface to tell the upper layer 775 * to increment per-interface statistics. 776 */ 777 if (ifpp) 778 *ifpp = ifp; 779 780 /* 781 * Determine path MTU. 782 */ 783 if (ro_pmtu != ro) { 784 /* The first hop and the final destination may differ. */ 785 struct sockaddr_in6 *sin6_fin = 786 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 787 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 788 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr, 789 &finaldst))) { 790 RTFREE(ro_pmtu->ro_rt); 791 ro_pmtu->ro_rt = (struct rtentry *)0; 792 } 793 if (ro_pmtu->ro_rt == 0) { 794 bzero(sin6_fin, sizeof(*sin6_fin)); 795 sin6_fin->sin6_family = AF_INET6; 796 sin6_fin->sin6_len = sizeof(struct sockaddr_in6); 797 sin6_fin->sin6_addr = finaldst; 798 799 rtalloc((struct route *)ro_pmtu); 800 } 801 } 802 if (ro_pmtu->ro_rt != NULL) { 803 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu; 804 805 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 806 if (mtu > ifmtu || mtu == 0) { 807 /* 808 * The MTU on the route is larger than the MTU on 809 * the interface! This shouldn't happen, unless the 810 * MTU of the interface has been changed after the 811 * interface was brought up. Change the MTU in the 812 * route to match the interface MTU (as long as the 813 * field isn't locked). 814 * 815 * if MTU on the route is 0, we need to fix the MTU. 816 * this case happens with path MTU discovery timeouts. 817 */ 818 mtu = ifmtu; 819 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0) 820 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */ 821 } 822 } else { 823 mtu = nd_ifinfo[ifp->if_index].linkmtu; 824 } 825 826 /* 827 * advanced API (IPV6_USE_MIN_MTU) overrides mtu setting 828 */ 829 if ((flags & IPV6_MINMTU) != 0 && mtu > IPV6_MMTU) 830 mtu = IPV6_MMTU; 831 832 /* Fake scoped addresses */ 833 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 834 /* 835 * If source or destination address is a scoped address, and 836 * the packet is going to be sent to a loopback interface, 837 * we should keep the original interface. 838 */ 839 840 /* 841 * XXX: this is a very experimental and temporary solution. 842 * We eventually have sockaddr_in6 and use the sin6_scope_id 843 * field of the structure here. 844 * We rely on the consistency between two scope zone ids 845 * of source and destination, which should already be assured. 846 * Larger scopes than link will be supported in the future. 847 */ 848 origifp = NULL; 849 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 850 origifp = ifnet_byindex(ntohs(ip6->ip6_src.s6_addr16[1])); 851 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 852 origifp = ifnet_byindex(ntohs(ip6->ip6_dst.s6_addr16[1])); 853 /* 854 * XXX: origifp can be NULL even in those two cases above. 855 * For example, if we remove the (only) link-local address 856 * from the loopback interface, and try to send a link-local 857 * address without link-id information. Then the source 858 * address is ::1, and the destination address is the 859 * link-local address with its s6_addr16[1] being zero. 860 * What is worse, if the packet goes to the loopback interface 861 * by a default rejected route, the null pointer would be 862 * passed to looutput, and the kernel would hang. 863 * The following last resort would prevent such disaster. 864 */ 865 if (origifp == NULL) 866 origifp = ifp; 867 } 868 else 869 origifp = ifp; 870 #ifndef SCOPEDROUTING 871 /* 872 * clear embedded scope identifiers if necessary. 873 * in6_clearscope will touch the addresses only when necessary. 874 */ 875 in6_clearscope(&ip6->ip6_src); 876 in6_clearscope(&ip6->ip6_dst); 877 #endif 878 879 /* 880 * Check with the firewall... 881 */ 882 if (ip6_fw_enable && ip6_fw_chk_ptr) { 883 u_short port = 0; 884 m->m_pkthdr.rcvif = NULL; /* XXX */ 885 /* If ipfw says divert, we have to just drop packet */ 886 if ((*ip6_fw_chk_ptr)(&ip6, ifp, &port, &m)) { 887 m_freem(m); 888 goto done; 889 } 890 if (!m) { 891 error = EACCES; 892 goto done; 893 } 894 } 895 896 /* 897 * If the outgoing packet contains a hop-by-hop options header, 898 * it must be examined and processed even by the source node. 899 * (RFC 2460, section 4.) 900 */ 901 if (exthdrs.ip6e_hbh) { 902 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 903 u_int32_t dummy1; /* XXX unused */ 904 u_int32_t dummy2; /* XXX unused */ 905 906 #ifdef DIAGNOSTIC 907 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 908 panic("ip6e_hbh is not continuous"); 909 #endif 910 /* 911 * XXX: if we have to send an ICMPv6 error to the sender, 912 * we need the M_LOOP flag since icmp6_error() expects 913 * the IPv6 and the hop-by-hop options header are 914 * continuous unless the flag is set. 915 */ 916 m->m_flags |= M_LOOP; 917 m->m_pkthdr.rcvif = ifp; 918 if (ip6_process_hopopts(m, 919 (u_int8_t *)(hbh + 1), 920 ((hbh->ip6h_len + 1) << 3) - 921 sizeof(struct ip6_hbh), 922 &dummy1, &dummy2) < 0) { 923 /* m was already freed at this point */ 924 error = EINVAL;/* better error? */ 925 goto done; 926 } 927 m->m_flags &= ~M_LOOP; /* XXX */ 928 m->m_pkthdr.rcvif = NULL; 929 } 930 931 #ifdef PFIL_HOOKS 932 /* 933 * Run through list of hooks for output packets. 934 */ 935 m1 = m; 936 pfh = pfil_hook_get(PFIL_OUT, &inet6sw[ip6_protox[IPPROTO_IPV6]].pr_pfh); 937 for (; pfh; pfh = pfh->pfil_link.tqe_next) 938 if (pfh->pfil_func) { 939 rv = pfh->pfil_func(ip6, sizeof(*ip6), ifp, 1, &m1); 940 if (rv) { 941 error = EHOSTUNREACH; 942 goto done; 943 } 944 m = m1; 945 if (m == NULL) 946 goto done; 947 ip6 = mtod(m, struct ip6_hdr *); 948 } 949 #endif /* PFIL_HOOKS */ 950 /* 951 * Send the packet to the outgoing interface. 952 * If necessary, do IPv6 fragmentation before sending. 953 */ 954 tlen = m->m_pkthdr.len; 955 if (tlen <= mtu 956 #ifdef notyet 957 /* 958 * On any link that cannot convey a 1280-octet packet in one piece, 959 * link-specific fragmentation and reassembly must be provided at 960 * a layer below IPv6. [RFC 2460, sec.5] 961 * Thus if the interface has ability of link-level fragmentation, 962 * we can just send the packet even if the packet size is 963 * larger than the link's MTU. 964 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet... 965 */ 966 967 || ifp->if_flags & IFF_FRAGMENTABLE 968 #endif 969 ) 970 { 971 /* Record statistics for this interface address. */ 972 if (ia && !(flags & IPV6_FORWARDING)) { 973 ia->ia_ifa.if_opackets++; 974 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 975 } 976 #ifdef IPSEC 977 /* clean ipsec history once it goes out of the node */ 978 ipsec_delaux(m); 979 #endif 980 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 981 goto done; 982 } else if (mtu < IPV6_MMTU) { 983 /* 984 * note that path MTU is never less than IPV6_MMTU 985 * (see icmp6_input). 986 */ 987 error = EMSGSIZE; 988 in6_ifstat_inc(ifp, ifs6_out_fragfail); 989 goto bad; 990 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ 991 error = EMSGSIZE; 992 in6_ifstat_inc(ifp, ifs6_out_fragfail); 993 goto bad; 994 } else { 995 struct mbuf **mnext, *m_frgpart; 996 struct ip6_frag *ip6f; 997 u_int32_t id = htonl(ip6_id++); 998 u_char nextproto; 999 1000 /* 1001 * Too large for the destination or interface; 1002 * fragment if possible. 1003 * Must be able to put at least 8 bytes per fragment. 1004 */ 1005 hlen = unfragpartlen; 1006 if (mtu > IPV6_MAXPACKET) 1007 mtu = IPV6_MAXPACKET; 1008 1009 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 1010 if (len < 8) { 1011 error = EMSGSIZE; 1012 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1013 goto bad; 1014 } 1015 1016 mnext = &m->m_nextpkt; 1017 1018 /* 1019 * Change the next header field of the last header in the 1020 * unfragmentable part. 1021 */ 1022 if (exthdrs.ip6e_rthdr) { 1023 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1024 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1025 } else if (exthdrs.ip6e_dest1) { 1026 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1027 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1028 } else if (exthdrs.ip6e_hbh) { 1029 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1030 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1031 } else { 1032 nextproto = ip6->ip6_nxt; 1033 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1034 } 1035 1036 /* 1037 * Loop through length of segment after first fragment, 1038 * make new header and copy data of each part and link onto 1039 * chain. 1040 */ 1041 m0 = m; 1042 for (off = hlen; off < tlen; off += len) { 1043 MGETHDR(m, M_NOWAIT, MT_HEADER); 1044 if (!m) { 1045 error = ENOBUFS; 1046 ip6stat.ip6s_odropped++; 1047 goto sendorfree; 1048 } 1049 m->m_pkthdr.rcvif = NULL; 1050 m->m_flags = m0->m_flags & M_COPYFLAGS; 1051 *mnext = m; 1052 mnext = &m->m_nextpkt; 1053 m->m_data += max_linkhdr; 1054 mhip6 = mtod(m, struct ip6_hdr *); 1055 *mhip6 = *ip6; 1056 m->m_len = sizeof(*mhip6); 1057 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1058 if (error) { 1059 ip6stat.ip6s_odropped++; 1060 goto sendorfree; 1061 } 1062 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 1063 if (off + len >= tlen) 1064 len = tlen - off; 1065 else 1066 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1067 mhip6->ip6_plen = htons((u_short)(len + hlen + 1068 sizeof(*ip6f) - 1069 sizeof(struct ip6_hdr))); 1070 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1071 error = ENOBUFS; 1072 ip6stat.ip6s_odropped++; 1073 goto sendorfree; 1074 } 1075 m_cat(m, m_frgpart); 1076 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1077 m->m_pkthdr.rcvif = (struct ifnet *)0; 1078 ip6f->ip6f_reserved = 0; 1079 ip6f->ip6f_ident = id; 1080 ip6f->ip6f_nxt = nextproto; 1081 ip6stat.ip6s_ofragments++; 1082 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1083 } 1084 1085 in6_ifstat_inc(ifp, ifs6_out_fragok); 1086 } 1087 1088 /* 1089 * Remove leading garbages. 1090 */ 1091 sendorfree: 1092 m = m0->m_nextpkt; 1093 m0->m_nextpkt = 0; 1094 m_freem(m0); 1095 for (m0 = m; m; m = m0) { 1096 m0 = m->m_nextpkt; 1097 m->m_nextpkt = 0; 1098 if (error == 0) { 1099 /* Record statistics for this interface address. */ 1100 if (ia) { 1101 ia->ia_ifa.if_opackets++; 1102 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 1103 } 1104 #ifdef IPSEC 1105 /* clean ipsec history once it goes out of the node */ 1106 ipsec_delaux(m); 1107 #endif 1108 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1109 } else 1110 m_freem(m); 1111 } 1112 1113 if (error == 0) 1114 ip6stat.ip6s_fragmented++; 1115 1116 done: 1117 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1118 RTFREE(ro->ro_rt); 1119 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1120 RTFREE(ro_pmtu->ro_rt); 1121 } 1122 1123 #ifdef IPSEC 1124 if (sp != NULL) 1125 key_freesp(sp); 1126 #endif /* IPSEC */ 1127 #ifdef FAST_IPSEC 1128 if (sp != NULL) 1129 KEY_FREESP(&sp); 1130 #endif /* FAST_IPSEC */ 1131 1132 return(error); 1133 1134 freehdrs: 1135 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1136 m_freem(exthdrs.ip6e_dest1); 1137 m_freem(exthdrs.ip6e_rthdr); 1138 m_freem(exthdrs.ip6e_dest2); 1139 /* fall through */ 1140 bad: 1141 m_freem(m); 1142 goto done; 1143 } 1144 1145 static int 1146 ip6_copyexthdr(mp, hdr, hlen) 1147 struct mbuf **mp; 1148 caddr_t hdr; 1149 int hlen; 1150 { 1151 struct mbuf *m; 1152 1153 if (hlen > MCLBYTES) 1154 return(ENOBUFS); /* XXX */ 1155 1156 MGET(m, M_NOWAIT, MT_DATA); 1157 if (!m) 1158 return(ENOBUFS); 1159 1160 if (hlen > MLEN) { 1161 MCLGET(m, M_NOWAIT); 1162 if ((m->m_flags & M_EXT) == 0) { 1163 m_free(m); 1164 return(ENOBUFS); 1165 } 1166 } 1167 m->m_len = hlen; 1168 if (hdr) 1169 bcopy(hdr, mtod(m, caddr_t), hlen); 1170 1171 *mp = m; 1172 return(0); 1173 } 1174 1175 /* 1176 * Insert jumbo payload option. 1177 */ 1178 static int 1179 ip6_insert_jumboopt(exthdrs, plen) 1180 struct ip6_exthdrs *exthdrs; 1181 u_int32_t plen; 1182 { 1183 struct mbuf *mopt; 1184 u_char *optbuf; 1185 u_int32_t v; 1186 1187 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1188 1189 /* 1190 * If there is no hop-by-hop options header, allocate new one. 1191 * If there is one but it doesn't have enough space to store the 1192 * jumbo payload option, allocate a cluster to store the whole options. 1193 * Otherwise, use it to store the options. 1194 */ 1195 if (exthdrs->ip6e_hbh == 0) { 1196 MGET(mopt, M_NOWAIT, MT_DATA); 1197 if (mopt == 0) 1198 return(ENOBUFS); 1199 mopt->m_len = JUMBOOPTLEN; 1200 optbuf = mtod(mopt, u_char *); 1201 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1202 exthdrs->ip6e_hbh = mopt; 1203 } else { 1204 struct ip6_hbh *hbh; 1205 1206 mopt = exthdrs->ip6e_hbh; 1207 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1208 /* 1209 * XXX assumption: 1210 * - exthdrs->ip6e_hbh is not referenced from places 1211 * other than exthdrs. 1212 * - exthdrs->ip6e_hbh is not an mbuf chain. 1213 */ 1214 int oldoptlen = mopt->m_len; 1215 struct mbuf *n; 1216 1217 /* 1218 * XXX: give up if the whole (new) hbh header does 1219 * not fit even in an mbuf cluster. 1220 */ 1221 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1222 return(ENOBUFS); 1223 1224 /* 1225 * As a consequence, we must always prepare a cluster 1226 * at this point. 1227 */ 1228 MGET(n, M_NOWAIT, MT_DATA); 1229 if (n) { 1230 MCLGET(n, M_NOWAIT); 1231 if ((n->m_flags & M_EXT) == 0) { 1232 m_freem(n); 1233 n = NULL; 1234 } 1235 } 1236 if (!n) 1237 return(ENOBUFS); 1238 n->m_len = oldoptlen + JUMBOOPTLEN; 1239 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1240 oldoptlen); 1241 optbuf = mtod(n, caddr_t) + oldoptlen; 1242 m_freem(mopt); 1243 mopt = exthdrs->ip6e_hbh = n; 1244 } else { 1245 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1246 mopt->m_len += JUMBOOPTLEN; 1247 } 1248 optbuf[0] = IP6OPT_PADN; 1249 optbuf[1] = 1; 1250 1251 /* 1252 * Adjust the header length according to the pad and 1253 * the jumbo payload option. 1254 */ 1255 hbh = mtod(mopt, struct ip6_hbh *); 1256 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1257 } 1258 1259 /* fill in the option. */ 1260 optbuf[2] = IP6OPT_JUMBO; 1261 optbuf[3] = 4; 1262 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1263 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1264 1265 /* finally, adjust the packet header length */ 1266 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1267 1268 return(0); 1269 #undef JUMBOOPTLEN 1270 } 1271 1272 /* 1273 * Insert fragment header and copy unfragmentable header portions. 1274 */ 1275 static int 1276 ip6_insertfraghdr(m0, m, hlen, frghdrp) 1277 struct mbuf *m0, *m; 1278 int hlen; 1279 struct ip6_frag **frghdrp; 1280 { 1281 struct mbuf *n, *mlast; 1282 1283 if (hlen > sizeof(struct ip6_hdr)) { 1284 n = m_copym(m0, sizeof(struct ip6_hdr), 1285 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1286 if (n == 0) 1287 return(ENOBUFS); 1288 m->m_next = n; 1289 } else 1290 n = m; 1291 1292 /* Search for the last mbuf of unfragmentable part. */ 1293 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1294 ; 1295 1296 if ((mlast->m_flags & M_EXT) == 0 && 1297 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1298 /* use the trailing space of the last mbuf for the fragment hdr */ 1299 *frghdrp = 1300 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); 1301 mlast->m_len += sizeof(struct ip6_frag); 1302 m->m_pkthdr.len += sizeof(struct ip6_frag); 1303 } else { 1304 /* allocate a new mbuf for the fragment header */ 1305 struct mbuf *mfrg; 1306 1307 MGET(mfrg, M_NOWAIT, MT_DATA); 1308 if (mfrg == 0) 1309 return(ENOBUFS); 1310 mfrg->m_len = sizeof(struct ip6_frag); 1311 *frghdrp = mtod(mfrg, struct ip6_frag *); 1312 mlast->m_next = mfrg; 1313 } 1314 1315 return(0); 1316 } 1317 1318 /* 1319 * IP6 socket option processing. 1320 */ 1321 int 1322 ip6_ctloutput(so, sopt) 1323 struct socket *so; 1324 struct sockopt *sopt; 1325 { 1326 int privileged; 1327 struct inpcb *in6p = sotoinpcb(so); 1328 int error, optval; 1329 int level, op, optname; 1330 int optlen; 1331 struct thread *td; 1332 1333 if (sopt) { 1334 level = sopt->sopt_level; 1335 op = sopt->sopt_dir; 1336 optname = sopt->sopt_name; 1337 optlen = sopt->sopt_valsize; 1338 td = sopt->sopt_td; 1339 } else { 1340 panic("ip6_ctloutput: arg soopt is NULL"); 1341 } 1342 error = optval = 0; 1343 1344 privileged = (td == 0 || suser(td)) ? 0 : 1; 1345 1346 if (level == IPPROTO_IPV6) { 1347 switch (op) { 1348 1349 case SOPT_SET: 1350 switch (optname) { 1351 case IPV6_PKTOPTIONS: 1352 { 1353 struct mbuf *m; 1354 1355 error = soopt_getm(sopt, &m); /* XXX */ 1356 if (error != 0) 1357 break; 1358 error = soopt_mcopyin(sopt, m); /* XXX */ 1359 if (error != 0) 1360 break; 1361 error = ip6_pcbopts(&in6p->in6p_outputopts, 1362 m, so, sopt); 1363 m_freem(m); /* XXX */ 1364 break; 1365 } 1366 1367 /* 1368 * Use of some Hop-by-Hop options or some 1369 * Destination options, might require special 1370 * privilege. That is, normal applications 1371 * (without special privilege) might be forbidden 1372 * from setting certain options in outgoing packets, 1373 * and might never see certain options in received 1374 * packets. [RFC 2292 Section 6] 1375 * KAME specific note: 1376 * KAME prevents non-privileged users from sending or 1377 * receiving ANY hbh/dst options in order to avoid 1378 * overhead of parsing options in the kernel. 1379 */ 1380 case IPV6_UNICAST_HOPS: 1381 case IPV6_CHECKSUM: 1382 case IPV6_FAITH: 1383 1384 case IPV6_V6ONLY: 1385 if (optlen != sizeof(int)) { 1386 error = EINVAL; 1387 break; 1388 } 1389 error = sooptcopyin(sopt, &optval, 1390 sizeof optval, sizeof optval); 1391 if (error) 1392 break; 1393 switch (optname) { 1394 1395 case IPV6_UNICAST_HOPS: 1396 if (optval < -1 || optval >= 256) 1397 error = EINVAL; 1398 else { 1399 /* -1 = kernel default */ 1400 in6p->in6p_hops = optval; 1401 1402 if ((in6p->in6p_vflag & 1403 INP_IPV4) != 0) 1404 in6p->inp_ip_ttl = optval; 1405 } 1406 break; 1407 #define OPTSET(bit) \ 1408 do { \ 1409 if (optval) \ 1410 in6p->in6p_flags |= (bit); \ 1411 else \ 1412 in6p->in6p_flags &= ~(bit); \ 1413 } while (0) 1414 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1415 1416 case IPV6_CHECKSUM: 1417 in6p->in6p_cksum = optval; 1418 break; 1419 1420 case IPV6_FAITH: 1421 OPTSET(IN6P_FAITH); 1422 break; 1423 1424 case IPV6_V6ONLY: 1425 /* 1426 * make setsockopt(IPV6_V6ONLY) 1427 * available only prior to bind(2). 1428 * see ipng mailing list, Jun 22 2001. 1429 */ 1430 if (in6p->in6p_lport || 1431 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) 1432 { 1433 error = EINVAL; 1434 break; 1435 } 1436 OPTSET(IN6P_IPV6_V6ONLY); 1437 if (optval) 1438 in6p->in6p_vflag &= ~INP_IPV4; 1439 else 1440 in6p->in6p_vflag |= INP_IPV4; 1441 break; 1442 } 1443 break; 1444 1445 case IPV6_PKTINFO: 1446 case IPV6_HOPLIMIT: 1447 case IPV6_HOPOPTS: 1448 case IPV6_DSTOPTS: 1449 case IPV6_RTHDR: 1450 /* RFC 2292 */ 1451 if (optlen != sizeof(int)) { 1452 error = EINVAL; 1453 break; 1454 } 1455 error = sooptcopyin(sopt, &optval, 1456 sizeof optval, sizeof optval); 1457 if (error) 1458 break; 1459 switch (optname) { 1460 case IPV6_PKTINFO: 1461 OPTSET(IN6P_PKTINFO); 1462 break; 1463 case IPV6_HOPLIMIT: 1464 OPTSET(IN6P_HOPLIMIT); 1465 break; 1466 case IPV6_HOPOPTS: 1467 /* 1468 * Check super-user privilege. 1469 * See comments for IPV6_RECVHOPOPTS. 1470 */ 1471 if (!privileged) 1472 return(EPERM); 1473 OPTSET(IN6P_HOPOPTS); 1474 break; 1475 case IPV6_DSTOPTS: 1476 if (!privileged) 1477 return(EPERM); 1478 OPTSET(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1479 break; 1480 case IPV6_RTHDR: 1481 OPTSET(IN6P_RTHDR); 1482 break; 1483 } 1484 break; 1485 #undef OPTSET 1486 1487 case IPV6_MULTICAST_IF: 1488 case IPV6_MULTICAST_HOPS: 1489 case IPV6_MULTICAST_LOOP: 1490 case IPV6_JOIN_GROUP: 1491 case IPV6_LEAVE_GROUP: 1492 { 1493 struct mbuf *m; 1494 if (sopt->sopt_valsize > MLEN) { 1495 error = EMSGSIZE; 1496 break; 1497 } 1498 /* XXX */ 1499 MGET(m, sopt->sopt_td ? 0 : M_NOWAIT, MT_HEADER); 1500 if (m == 0) { 1501 error = ENOBUFS; 1502 break; 1503 } 1504 m->m_len = sopt->sopt_valsize; 1505 error = sooptcopyin(sopt, mtod(m, char *), 1506 m->m_len, m->m_len); 1507 error = ip6_setmoptions(sopt->sopt_name, 1508 &in6p->in6p_moptions, 1509 m); 1510 (void)m_free(m); 1511 } 1512 break; 1513 1514 case IPV6_PORTRANGE: 1515 error = sooptcopyin(sopt, &optval, 1516 sizeof optval, sizeof optval); 1517 if (error) 1518 break; 1519 1520 switch (optval) { 1521 case IPV6_PORTRANGE_DEFAULT: 1522 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1523 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1524 break; 1525 1526 case IPV6_PORTRANGE_HIGH: 1527 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1528 in6p->in6p_flags |= IN6P_HIGHPORT; 1529 break; 1530 1531 case IPV6_PORTRANGE_LOW: 1532 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1533 in6p->in6p_flags |= IN6P_LOWPORT; 1534 break; 1535 1536 default: 1537 error = EINVAL; 1538 break; 1539 } 1540 break; 1541 1542 #if defined(IPSEC) || defined(FAST_IPSEC) 1543 case IPV6_IPSEC_POLICY: 1544 { 1545 caddr_t req = NULL; 1546 size_t len = 0; 1547 struct mbuf *m; 1548 1549 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1550 break; 1551 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1552 break; 1553 if (m) { 1554 req = mtod(m, caddr_t); 1555 len = m->m_len; 1556 } 1557 error = ipsec6_set_policy(in6p, optname, req, 1558 len, privileged); 1559 m_freem(m); 1560 } 1561 break; 1562 #endif /* KAME IPSEC */ 1563 1564 case IPV6_FW_ADD: 1565 case IPV6_FW_DEL: 1566 case IPV6_FW_FLUSH: 1567 case IPV6_FW_ZERO: 1568 { 1569 struct mbuf *m; 1570 struct mbuf **mp = &m; 1571 1572 if (ip6_fw_ctl_ptr == NULL) 1573 return EINVAL; 1574 /* XXX */ 1575 if ((error = soopt_getm(sopt, &m)) != 0) 1576 break; 1577 /* XXX */ 1578 if ((error = soopt_mcopyin(sopt, m)) != 0) 1579 break; 1580 error = (*ip6_fw_ctl_ptr)(optname, mp); 1581 m = *mp; 1582 } 1583 break; 1584 1585 default: 1586 error = ENOPROTOOPT; 1587 break; 1588 } 1589 break; 1590 1591 case SOPT_GET: 1592 switch (optname) { 1593 1594 case IPV6_PKTOPTIONS: 1595 if (in6p->in6p_options) { 1596 struct mbuf *m; 1597 m = m_copym(in6p->in6p_options, 1598 0, M_COPYALL, 0); 1599 error = soopt_mcopyout(sopt, m); 1600 if (error == 0) 1601 m_freem(m); 1602 } else 1603 sopt->sopt_valsize = 0; 1604 break; 1605 1606 case IPV6_UNICAST_HOPS: 1607 case IPV6_CHECKSUM: 1608 1609 case IPV6_FAITH: 1610 case IPV6_V6ONLY: 1611 case IPV6_PORTRANGE: 1612 switch (optname) { 1613 1614 case IPV6_UNICAST_HOPS: 1615 optval = in6p->in6p_hops; 1616 break; 1617 1618 case IPV6_CHECKSUM: 1619 optval = in6p->in6p_cksum; 1620 break; 1621 1622 case IPV6_FAITH: 1623 optval = OPTBIT(IN6P_FAITH); 1624 break; 1625 1626 case IPV6_V6ONLY: 1627 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1628 break; 1629 1630 case IPV6_PORTRANGE: 1631 { 1632 int flags; 1633 flags = in6p->in6p_flags; 1634 if (flags & IN6P_HIGHPORT) 1635 optval = IPV6_PORTRANGE_HIGH; 1636 else if (flags & IN6P_LOWPORT) 1637 optval = IPV6_PORTRANGE_LOW; 1638 else 1639 optval = 0; 1640 break; 1641 } 1642 } 1643 error = sooptcopyout(sopt, &optval, 1644 sizeof optval); 1645 break; 1646 1647 case IPV6_PKTINFO: 1648 case IPV6_HOPLIMIT: 1649 case IPV6_HOPOPTS: 1650 case IPV6_RTHDR: 1651 case IPV6_DSTOPTS: 1652 if (optname == IPV6_HOPOPTS || 1653 optname == IPV6_DSTOPTS || 1654 !privileged) 1655 return(EPERM); 1656 switch (optname) { 1657 case IPV6_PKTINFO: 1658 optval = OPTBIT(IN6P_PKTINFO); 1659 break; 1660 case IPV6_HOPLIMIT: 1661 optval = OPTBIT(IN6P_HOPLIMIT); 1662 break; 1663 case IPV6_HOPOPTS: 1664 if (!privileged) 1665 return(EPERM); 1666 optval = OPTBIT(IN6P_HOPOPTS); 1667 break; 1668 case IPV6_RTHDR: 1669 optval = OPTBIT(IN6P_RTHDR); 1670 break; 1671 case IPV6_DSTOPTS: 1672 if (!privileged) 1673 return(EPERM); 1674 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1675 break; 1676 } 1677 error = sooptcopyout(sopt, &optval, 1678 sizeof optval); 1679 break; 1680 1681 case IPV6_MULTICAST_IF: 1682 case IPV6_MULTICAST_HOPS: 1683 case IPV6_MULTICAST_LOOP: 1684 case IPV6_JOIN_GROUP: 1685 case IPV6_LEAVE_GROUP: 1686 { 1687 struct mbuf *m; 1688 error = ip6_getmoptions(sopt->sopt_name, 1689 in6p->in6p_moptions, &m); 1690 if (error == 0) 1691 error = sooptcopyout(sopt, 1692 mtod(m, char *), m->m_len); 1693 m_freem(m); 1694 } 1695 break; 1696 1697 #if defined(IPSEC) || defined(FAST_IPSEC) 1698 case IPV6_IPSEC_POLICY: 1699 { 1700 caddr_t req = NULL; 1701 size_t len = 0; 1702 struct mbuf *m = NULL; 1703 struct mbuf **mp = &m; 1704 1705 error = soopt_getm(sopt, &m); /* XXX */ 1706 if (error != 0) 1707 break; 1708 error = soopt_mcopyin(sopt, m); /* XXX */ 1709 if (error != 0) 1710 break; 1711 if (m) { 1712 req = mtod(m, caddr_t); 1713 len = m->m_len; 1714 } 1715 error = ipsec6_get_policy(in6p, req, len, mp); 1716 if (error == 0) 1717 error = soopt_mcopyout(sopt, m); /*XXX*/ 1718 if (error == 0 && m) 1719 m_freem(m); 1720 break; 1721 } 1722 #endif /* KAME IPSEC */ 1723 1724 case IPV6_FW_GET: 1725 { 1726 struct mbuf *m; 1727 struct mbuf **mp = &m; 1728 1729 if (ip6_fw_ctl_ptr == NULL) 1730 { 1731 return EINVAL; 1732 } 1733 error = (*ip6_fw_ctl_ptr)(optname, mp); 1734 if (error == 0) 1735 error = soopt_mcopyout(sopt, m); /* XXX */ 1736 if (error == 0 && m) 1737 m_freem(m); 1738 } 1739 break; 1740 1741 default: 1742 error = ENOPROTOOPT; 1743 break; 1744 } 1745 break; 1746 } 1747 } else { 1748 error = EINVAL; 1749 } 1750 return(error); 1751 } 1752 1753 /* 1754 * Set up IP6 options in pcb for insertion in output packets or 1755 * specifying behavior of outgoing packets. 1756 */ 1757 static int 1758 ip6_pcbopts(pktopt, m, so, sopt) 1759 struct ip6_pktopts **pktopt; 1760 struct mbuf *m; 1761 struct socket *so; 1762 struct sockopt *sopt; 1763 { 1764 struct ip6_pktopts *opt = *pktopt; 1765 int error = 0; 1766 struct thread *td = sopt->sopt_td; 1767 int priv = 0; 1768 1769 /* turn off any old options. */ 1770 if (opt) { 1771 #ifdef DIAGNOSTIC 1772 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 1773 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 1774 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 1775 printf("ip6_pcbopts: all specified options are cleared.\n"); 1776 #endif 1777 ip6_clearpktopts(opt, 1, -1); 1778 } else 1779 opt = malloc(sizeof(*opt), M_IP6OPT, 0); 1780 *pktopt = NULL; 1781 1782 if (!m || m->m_len == 0) { 1783 /* 1784 * Only turning off any previous options, regardless of 1785 * whether the opt is just created or given. 1786 */ 1787 free(opt, M_IP6OPT); 1788 return(0); 1789 } 1790 1791 /* set options specified by user. */ 1792 if (td && !suser(td)) 1793 priv = 1; 1794 if ((error = ip6_setpktoptions(m, opt, priv, 1)) != 0) { 1795 ip6_clearpktopts(opt, 1, -1); /* XXX: discard all options */ 1796 free(opt, M_IP6OPT); 1797 return(error); 1798 } 1799 *pktopt = opt; 1800 return(0); 1801 } 1802 1803 /* 1804 * initialize ip6_pktopts. beware that there are non-zero default values in 1805 * the struct. 1806 */ 1807 void 1808 init_ip6pktopts(opt) 1809 struct ip6_pktopts *opt; 1810 { 1811 1812 bzero(opt, sizeof(*opt)); 1813 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 1814 } 1815 1816 void 1817 ip6_clearpktopts(pktopt, needfree, optname) 1818 struct ip6_pktopts *pktopt; 1819 int needfree, optname; 1820 { 1821 if (pktopt == NULL) 1822 return; 1823 1824 if (optname == -1) { 1825 if (needfree && pktopt->ip6po_pktinfo) 1826 free(pktopt->ip6po_pktinfo, M_IP6OPT); 1827 pktopt->ip6po_pktinfo = NULL; 1828 } 1829 if (optname == -1) 1830 pktopt->ip6po_hlim = -1; 1831 if (optname == -1) { 1832 if (needfree && pktopt->ip6po_nexthop) 1833 free(pktopt->ip6po_nexthop, M_IP6OPT); 1834 pktopt->ip6po_nexthop = NULL; 1835 } 1836 if (optname == -1) { 1837 if (needfree && pktopt->ip6po_hbh) 1838 free(pktopt->ip6po_hbh, M_IP6OPT); 1839 pktopt->ip6po_hbh = NULL; 1840 } 1841 if (optname == -1) { 1842 if (needfree && pktopt->ip6po_dest1) 1843 free(pktopt->ip6po_dest1, M_IP6OPT); 1844 pktopt->ip6po_dest1 = NULL; 1845 } 1846 if (optname == -1) { 1847 if (needfree && pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 1848 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 1849 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 1850 if (pktopt->ip6po_route.ro_rt) { 1851 RTFREE(pktopt->ip6po_route.ro_rt); 1852 pktopt->ip6po_route.ro_rt = NULL; 1853 } 1854 } 1855 if (optname == -1) { 1856 if (needfree && pktopt->ip6po_dest2) 1857 free(pktopt->ip6po_dest2, M_IP6OPT); 1858 pktopt->ip6po_dest2 = NULL; 1859 } 1860 } 1861 1862 #define PKTOPT_EXTHDRCPY(type) \ 1863 do {\ 1864 if (src->type) {\ 1865 int hlen =\ 1866 (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 1867 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 1868 if (dst->type == NULL && canwait == M_NOWAIT)\ 1869 goto bad;\ 1870 bcopy(src->type, dst->type, hlen);\ 1871 }\ 1872 } while (0) 1873 1874 struct ip6_pktopts * 1875 ip6_copypktopts(src, canwait) 1876 struct ip6_pktopts *src; 1877 int canwait; 1878 { 1879 struct ip6_pktopts *dst; 1880 1881 if (src == NULL) { 1882 printf("ip6_clearpktopts: invalid argument\n"); 1883 return(NULL); 1884 } 1885 1886 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 1887 if (dst == NULL && canwait == M_NOWAIT) 1888 return (NULL); 1889 bzero(dst, sizeof(*dst)); 1890 1891 dst->ip6po_hlim = src->ip6po_hlim; 1892 if (src->ip6po_pktinfo) { 1893 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 1894 M_IP6OPT, canwait); 1895 if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT) 1896 goto bad; 1897 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 1898 } 1899 if (src->ip6po_nexthop) { 1900 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 1901 M_IP6OPT, canwait); 1902 if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT) 1903 goto bad; 1904 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 1905 src->ip6po_nexthop->sa_len); 1906 } 1907 PKTOPT_EXTHDRCPY(ip6po_hbh); 1908 PKTOPT_EXTHDRCPY(ip6po_dest1); 1909 PKTOPT_EXTHDRCPY(ip6po_dest2); 1910 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 1911 return(dst); 1912 1913 bad: 1914 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); 1915 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); 1916 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); 1917 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); 1918 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); 1919 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); 1920 free(dst, M_IP6OPT); 1921 return(NULL); 1922 } 1923 #undef PKTOPT_EXTHDRCPY 1924 1925 void 1926 ip6_freepcbopts(pktopt) 1927 struct ip6_pktopts *pktopt; 1928 { 1929 if (pktopt == NULL) 1930 return; 1931 1932 ip6_clearpktopts(pktopt, 1, -1); 1933 1934 free(pktopt, M_IP6OPT); 1935 } 1936 1937 /* 1938 * Set the IP6 multicast options in response to user setsockopt(). 1939 */ 1940 static int 1941 ip6_setmoptions(optname, im6op, m) 1942 int optname; 1943 struct ip6_moptions **im6op; 1944 struct mbuf *m; 1945 { 1946 int error = 0; 1947 u_int loop, ifindex; 1948 struct ipv6_mreq *mreq; 1949 struct ifnet *ifp; 1950 struct ip6_moptions *im6o = *im6op; 1951 struct route_in6 ro; 1952 struct sockaddr_in6 *dst; 1953 struct in6_multi_mship *imm; 1954 struct thread *td = curthread; /* XXX */ 1955 1956 if (im6o == NULL) { 1957 /* 1958 * No multicast option buffer attached to the pcb; 1959 * allocate one and initialize to default values. 1960 */ 1961 im6o = (struct ip6_moptions *) 1962 malloc(sizeof(*im6o), M_IPMOPTS, 0); 1963 1964 if (im6o == NULL) 1965 return(ENOBUFS); 1966 *im6op = im6o; 1967 im6o->im6o_multicast_ifp = NULL; 1968 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1969 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1970 LIST_INIT(&im6o->im6o_memberships); 1971 } 1972 1973 switch (optname) { 1974 1975 case IPV6_MULTICAST_IF: 1976 /* 1977 * Select the interface for outgoing multicast packets. 1978 */ 1979 if (m == NULL || m->m_len != sizeof(u_int)) { 1980 error = EINVAL; 1981 break; 1982 } 1983 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 1984 if (ifindex < 0 || if_index < ifindex) { 1985 error = ENXIO; /* XXX EINVAL? */ 1986 break; 1987 } 1988 ifp = ifnet_byindex(ifindex); 1989 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1990 error = EADDRNOTAVAIL; 1991 break; 1992 } 1993 im6o->im6o_multicast_ifp = ifp; 1994 break; 1995 1996 case IPV6_MULTICAST_HOPS: 1997 { 1998 /* 1999 * Set the IP6 hoplimit for outgoing multicast packets. 2000 */ 2001 int optval; 2002 if (m == NULL || m->m_len != sizeof(int)) { 2003 error = EINVAL; 2004 break; 2005 } 2006 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 2007 if (optval < -1 || optval >= 256) 2008 error = EINVAL; 2009 else if (optval == -1) 2010 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2011 else 2012 im6o->im6o_multicast_hlim = optval; 2013 break; 2014 } 2015 2016 case IPV6_MULTICAST_LOOP: 2017 /* 2018 * Set the loopback flag for outgoing multicast packets. 2019 * Must be zero or one. 2020 */ 2021 if (m == NULL || m->m_len != sizeof(u_int)) { 2022 error = EINVAL; 2023 break; 2024 } 2025 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 2026 if (loop > 1) { 2027 error = EINVAL; 2028 break; 2029 } 2030 im6o->im6o_multicast_loop = loop; 2031 break; 2032 2033 case IPV6_JOIN_GROUP: 2034 /* 2035 * Add a multicast group membership. 2036 * Group must be a valid IP6 multicast address. 2037 */ 2038 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2039 error = EINVAL; 2040 break; 2041 } 2042 mreq = mtod(m, struct ipv6_mreq *); 2043 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2044 /* 2045 * We use the unspecified address to specify to accept 2046 * all multicast addresses. Only super user is allowed 2047 * to do this. 2048 */ 2049 if (suser(td)) 2050 { 2051 error = EACCES; 2052 break; 2053 } 2054 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2055 error = EINVAL; 2056 break; 2057 } 2058 2059 /* 2060 * If the interface is specified, validate it. 2061 */ 2062 if (mreq->ipv6mr_interface < 0 2063 || if_index < mreq->ipv6mr_interface) { 2064 error = ENXIO; /* XXX EINVAL? */ 2065 break; 2066 } 2067 /* 2068 * If no interface was explicitly specified, choose an 2069 * appropriate one according to the given multicast address. 2070 */ 2071 if (mreq->ipv6mr_interface == 0) { 2072 /* 2073 * If the multicast address is in node-local scope, 2074 * the interface should be a loopback interface. 2075 * Otherwise, look up the routing table for the 2076 * address, and choose the outgoing interface. 2077 * XXX: is it a good approach? 2078 */ 2079 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) { 2080 ifp = &loif[0]; 2081 } else { 2082 ro.ro_rt = NULL; 2083 dst = (struct sockaddr_in6 *)&ro.ro_dst; 2084 bzero(dst, sizeof(*dst)); 2085 dst->sin6_len = sizeof(struct sockaddr_in6); 2086 dst->sin6_family = AF_INET6; 2087 dst->sin6_addr = mreq->ipv6mr_multiaddr; 2088 rtalloc((struct route *)&ro); 2089 if (ro.ro_rt == NULL) { 2090 error = EADDRNOTAVAIL; 2091 break; 2092 } 2093 ifp = ro.ro_rt->rt_ifp; 2094 rtfree(ro.ro_rt); 2095 } 2096 } else 2097 ifp = ifnet_byindex(mreq->ipv6mr_interface); 2098 2099 /* 2100 * See if we found an interface, and confirm that it 2101 * supports multicast 2102 */ 2103 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2104 error = EADDRNOTAVAIL; 2105 break; 2106 } 2107 /* 2108 * Put interface index into the multicast address, 2109 * if the address has link-local scope. 2110 */ 2111 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2112 mreq->ipv6mr_multiaddr.s6_addr16[1] 2113 = htons(mreq->ipv6mr_interface); 2114 } 2115 /* 2116 * See if the membership already exists. 2117 */ 2118 for (imm = im6o->im6o_memberships.lh_first; 2119 imm != NULL; imm = imm->i6mm_chain.le_next) 2120 if (imm->i6mm_maddr->in6m_ifp == ifp && 2121 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2122 &mreq->ipv6mr_multiaddr)) 2123 break; 2124 if (imm != NULL) { 2125 error = EADDRINUSE; 2126 break; 2127 } 2128 /* 2129 * Everything looks good; add a new record to the multicast 2130 * address list for the given interface. 2131 */ 2132 imm = malloc(sizeof(*imm), M_IPMADDR, 0); 2133 if (imm == NULL) { 2134 error = ENOBUFS; 2135 break; 2136 } 2137 if ((imm->i6mm_maddr = 2138 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) { 2139 free(imm, M_IPMADDR); 2140 break; 2141 } 2142 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2143 break; 2144 2145 case IPV6_LEAVE_GROUP: 2146 /* 2147 * Drop a multicast group membership. 2148 * Group must be a valid IP6 multicast address. 2149 */ 2150 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2151 error = EINVAL; 2152 break; 2153 } 2154 mreq = mtod(m, struct ipv6_mreq *); 2155 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2156 if (suser(td)) { 2157 error = EACCES; 2158 break; 2159 } 2160 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2161 error = EINVAL; 2162 break; 2163 } 2164 /* 2165 * If an interface address was specified, get a pointer 2166 * to its ifnet structure. 2167 */ 2168 if (mreq->ipv6mr_interface < 0 2169 || if_index < mreq->ipv6mr_interface) { 2170 error = ENXIO; /* XXX EINVAL? */ 2171 break; 2172 } 2173 ifp = ifnet_byindex(mreq->ipv6mr_interface); 2174 /* 2175 * Put interface index into the multicast address, 2176 * if the address has link-local scope. 2177 */ 2178 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2179 mreq->ipv6mr_multiaddr.s6_addr16[1] 2180 = htons(mreq->ipv6mr_interface); 2181 } 2182 /* 2183 * Find the membership in the membership list. 2184 */ 2185 for (imm = im6o->im6o_memberships.lh_first; 2186 imm != NULL; imm = imm->i6mm_chain.le_next) { 2187 if ((ifp == NULL || 2188 imm->i6mm_maddr->in6m_ifp == ifp) && 2189 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2190 &mreq->ipv6mr_multiaddr)) 2191 break; 2192 } 2193 if (imm == NULL) { 2194 /* Unable to resolve interface */ 2195 error = EADDRNOTAVAIL; 2196 break; 2197 } 2198 /* 2199 * Give up the multicast address record to which the 2200 * membership points. 2201 */ 2202 LIST_REMOVE(imm, i6mm_chain); 2203 in6_delmulti(imm->i6mm_maddr); 2204 free(imm, M_IPMADDR); 2205 break; 2206 2207 default: 2208 error = EOPNOTSUPP; 2209 break; 2210 } 2211 2212 /* 2213 * If all options have default values, no need to keep the mbuf. 2214 */ 2215 if (im6o->im6o_multicast_ifp == NULL && 2216 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2217 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2218 im6o->im6o_memberships.lh_first == NULL) { 2219 free(*im6op, M_IPMOPTS); 2220 *im6op = NULL; 2221 } 2222 2223 return(error); 2224 } 2225 2226 /* 2227 * Return the IP6 multicast options in response to user getsockopt(). 2228 */ 2229 static int 2230 ip6_getmoptions(optname, im6o, mp) 2231 int optname; 2232 struct ip6_moptions *im6o; 2233 struct mbuf **mp; 2234 { 2235 u_int *hlim, *loop, *ifindex; 2236 2237 *mp = m_get(0, MT_HEADER); /* XXX */ 2238 2239 switch (optname) { 2240 2241 case IPV6_MULTICAST_IF: 2242 ifindex = mtod(*mp, u_int *); 2243 (*mp)->m_len = sizeof(u_int); 2244 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2245 *ifindex = 0; 2246 else 2247 *ifindex = im6o->im6o_multicast_ifp->if_index; 2248 return(0); 2249 2250 case IPV6_MULTICAST_HOPS: 2251 hlim = mtod(*mp, u_int *); 2252 (*mp)->m_len = sizeof(u_int); 2253 if (im6o == NULL) 2254 *hlim = ip6_defmcasthlim; 2255 else 2256 *hlim = im6o->im6o_multicast_hlim; 2257 return(0); 2258 2259 case IPV6_MULTICAST_LOOP: 2260 loop = mtod(*mp, u_int *); 2261 (*mp)->m_len = sizeof(u_int); 2262 if (im6o == NULL) 2263 *loop = ip6_defmcasthlim; 2264 else 2265 *loop = im6o->im6o_multicast_loop; 2266 return(0); 2267 2268 default: 2269 return(EOPNOTSUPP); 2270 } 2271 } 2272 2273 /* 2274 * Discard the IP6 multicast options. 2275 */ 2276 void 2277 ip6_freemoptions(im6o) 2278 struct ip6_moptions *im6o; 2279 { 2280 struct in6_multi_mship *imm; 2281 2282 if (im6o == NULL) 2283 return; 2284 2285 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2286 LIST_REMOVE(imm, i6mm_chain); 2287 if (imm->i6mm_maddr) 2288 in6_delmulti(imm->i6mm_maddr); 2289 free(imm, M_IPMADDR); 2290 } 2291 free(im6o, M_IPMOPTS); 2292 } 2293 2294 /* 2295 * Set IPv6 outgoing packet options based on advanced API. 2296 */ 2297 int 2298 ip6_setpktoptions(control, opt, priv, needcopy) 2299 struct mbuf *control; 2300 struct ip6_pktopts *opt; 2301 int priv, needcopy; 2302 { 2303 struct cmsghdr *cm = 0; 2304 2305 if (control == 0 || opt == 0) 2306 return(EINVAL); 2307 2308 init_ip6pktopts(opt); 2309 2310 /* 2311 * XXX: Currently, we assume all the optional information is stored 2312 * in a single mbuf. 2313 */ 2314 if (control->m_next) 2315 return(EINVAL); 2316 2317 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2318 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2319 cm = mtod(control, struct cmsghdr *); 2320 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2321 return(EINVAL); 2322 if (cm->cmsg_level != IPPROTO_IPV6) 2323 continue; 2324 2325 /* 2326 * XXX should check if RFC2292 API is mixed with 2292bis API 2327 */ 2328 switch (cm->cmsg_type) { 2329 case IPV6_PKTINFO: 2330 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo))) 2331 return(EINVAL); 2332 if (needcopy) { 2333 /* XXX: Is it really WAITOK? */ 2334 opt->ip6po_pktinfo = 2335 malloc(sizeof(struct in6_pktinfo), 2336 M_IP6OPT, 0); 2337 bcopy(CMSG_DATA(cm), opt->ip6po_pktinfo, 2338 sizeof(struct in6_pktinfo)); 2339 } else 2340 opt->ip6po_pktinfo = 2341 (struct in6_pktinfo *)CMSG_DATA(cm); 2342 if (opt->ip6po_pktinfo->ipi6_ifindex && 2343 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr)) 2344 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] = 2345 htons(opt->ip6po_pktinfo->ipi6_ifindex); 2346 2347 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index 2348 || opt->ip6po_pktinfo->ipi6_ifindex < 0) { 2349 return(ENXIO); 2350 } 2351 2352 /* 2353 * Check if the requested source address is indeed a 2354 * unicast address assigned to the node, and can be 2355 * used as the packet's source address. 2356 */ 2357 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) { 2358 struct in6_ifaddr *ia6; 2359 struct sockaddr_in6 sin6; 2360 2361 bzero(&sin6, sizeof(sin6)); 2362 sin6.sin6_len = sizeof(sin6); 2363 sin6.sin6_family = AF_INET6; 2364 sin6.sin6_addr = 2365 opt->ip6po_pktinfo->ipi6_addr; 2366 ia6 = (struct in6_ifaddr *)ifa_ifwithaddr(sin6tosa(&sin6)); 2367 if (ia6 == NULL || 2368 (ia6->ia6_flags & (IN6_IFF_ANYCAST | 2369 IN6_IFF_NOTREADY)) != 0) 2370 return(EADDRNOTAVAIL); 2371 } 2372 break; 2373 2374 case IPV6_HOPLIMIT: 2375 if (cm->cmsg_len != CMSG_LEN(sizeof(int))) 2376 return(EINVAL); 2377 2378 opt->ip6po_hlim = *(int *)CMSG_DATA(cm); 2379 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255) 2380 return(EINVAL); 2381 break; 2382 2383 case IPV6_NEXTHOP: 2384 if (!priv) 2385 return(EPERM); 2386 2387 if (cm->cmsg_len < sizeof(u_char) || 2388 /* check if cmsg_len is large enough for sa_len */ 2389 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm))) 2390 return(EINVAL); 2391 2392 if (needcopy) { 2393 opt->ip6po_nexthop = 2394 malloc(*CMSG_DATA(cm), 2395 M_IP6OPT, 0); 2396 bcopy(CMSG_DATA(cm), 2397 opt->ip6po_nexthop, 2398 *CMSG_DATA(cm)); 2399 } else 2400 opt->ip6po_nexthop = 2401 (struct sockaddr *)CMSG_DATA(cm); 2402 break; 2403 2404 case IPV6_HOPOPTS: 2405 { 2406 struct ip6_hbh *hbh; 2407 int hbhlen; 2408 2409 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh))) 2410 return(EINVAL); 2411 hbh = (struct ip6_hbh *)CMSG_DATA(cm); 2412 hbhlen = (hbh->ip6h_len + 1) << 3; 2413 if (cm->cmsg_len != CMSG_LEN(hbhlen)) 2414 return(EINVAL); 2415 2416 if (needcopy) { 2417 opt->ip6po_hbh = 2418 malloc(hbhlen, M_IP6OPT, 0); 2419 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2420 } else 2421 opt->ip6po_hbh = hbh; 2422 break; 2423 } 2424 2425 case IPV6_DSTOPTS: 2426 { 2427 struct ip6_dest *dest, **newdest; 2428 int destlen; 2429 2430 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest))) 2431 return(EINVAL); 2432 dest = (struct ip6_dest *)CMSG_DATA(cm); 2433 destlen = (dest->ip6d_len + 1) << 3; 2434 if (cm->cmsg_len != CMSG_LEN(destlen)) 2435 return(EINVAL); 2436 2437 /* 2438 * The old advacned API is ambiguous on this 2439 * point. Our approach is to determine the 2440 * position based according to the existence 2441 * of a routing header. Note, however, that 2442 * this depends on the order of the extension 2443 * headers in the ancillary data; the 1st part 2444 * of the destination options header must 2445 * appear before the routing header in the 2446 * ancillary data, too. 2447 * RFC2292bis solved the ambiguity by 2448 * introducing separate cmsg types. 2449 */ 2450 if (opt->ip6po_rthdr == NULL) 2451 newdest = &opt->ip6po_dest1; 2452 else 2453 newdest = &opt->ip6po_dest2; 2454 2455 if (needcopy) { 2456 *newdest = malloc(destlen, M_IP6OPT, 0); 2457 bcopy(dest, *newdest, destlen); 2458 } else 2459 *newdest = dest; 2460 2461 break; 2462 } 2463 2464 case IPV6_RTHDR: 2465 { 2466 struct ip6_rthdr *rth; 2467 int rthlen; 2468 2469 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr))) 2470 return(EINVAL); 2471 rth = (struct ip6_rthdr *)CMSG_DATA(cm); 2472 rthlen = (rth->ip6r_len + 1) << 3; 2473 if (cm->cmsg_len != CMSG_LEN(rthlen)) 2474 return(EINVAL); 2475 2476 switch (rth->ip6r_type) { 2477 case IPV6_RTHDR_TYPE_0: 2478 /* must contain one addr */ 2479 if (rth->ip6r_len == 0) 2480 return(EINVAL); 2481 /* length must be even */ 2482 if (rth->ip6r_len % 2) 2483 return(EINVAL); 2484 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2485 return(EINVAL); 2486 break; 2487 default: 2488 return(EINVAL); /* not supported */ 2489 } 2490 2491 if (needcopy) { 2492 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, 2493 0); 2494 bcopy(rth, opt->ip6po_rthdr, rthlen); 2495 } else 2496 opt->ip6po_rthdr = rth; 2497 2498 break; 2499 } 2500 2501 default: 2502 return(ENOPROTOOPT); 2503 } 2504 } 2505 2506 return(0); 2507 } 2508 2509 /* 2510 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2511 * packet to the input queue of a specified interface. Note that this 2512 * calls the output routine of the loopback "driver", but with an interface 2513 * pointer that might NOT be &loif -- easier than replicating that code here. 2514 */ 2515 void 2516 ip6_mloopback(ifp, m, dst) 2517 struct ifnet *ifp; 2518 struct mbuf *m; 2519 struct sockaddr_in6 *dst; 2520 { 2521 struct mbuf *copym; 2522 struct ip6_hdr *ip6; 2523 2524 copym = m_copy(m, 0, M_COPYALL); 2525 if (copym == NULL) 2526 return; 2527 2528 /* 2529 * Make sure to deep-copy IPv6 header portion in case the data 2530 * is in an mbuf cluster, so that we can safely override the IPv6 2531 * header portion later. 2532 */ 2533 if ((copym->m_flags & M_EXT) != 0 || 2534 copym->m_len < sizeof(struct ip6_hdr)) { 2535 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2536 if (copym == NULL) 2537 return; 2538 } 2539 2540 #ifdef DIAGNOSTIC 2541 if (copym->m_len < sizeof(*ip6)) { 2542 m_freem(copym); 2543 return; 2544 } 2545 #endif 2546 2547 ip6 = mtod(copym, struct ip6_hdr *); 2548 #ifndef SCOPEDROUTING 2549 /* 2550 * clear embedded scope identifiers if necessary. 2551 * in6_clearscope will touch the addresses only when necessary. 2552 */ 2553 in6_clearscope(&ip6->ip6_src); 2554 in6_clearscope(&ip6->ip6_dst); 2555 #endif 2556 2557 (void)if_simloop(ifp, copym, dst->sin6_family, 0); 2558 } 2559 2560 /* 2561 * Chop IPv6 header off from the payload. 2562 */ 2563 static int 2564 ip6_splithdr(m, exthdrs) 2565 struct mbuf *m; 2566 struct ip6_exthdrs *exthdrs; 2567 { 2568 struct mbuf *mh; 2569 struct ip6_hdr *ip6; 2570 2571 ip6 = mtod(m, struct ip6_hdr *); 2572 if (m->m_len > sizeof(*ip6)) { 2573 MGETHDR(mh, M_NOWAIT, MT_HEADER); 2574 if (mh == 0) { 2575 m_freem(m); 2576 return ENOBUFS; 2577 } 2578 M_MOVE_PKTHDR(mh, m); 2579 MH_ALIGN(mh, sizeof(*ip6)); 2580 m->m_len -= sizeof(*ip6); 2581 m->m_data += sizeof(*ip6); 2582 mh->m_next = m; 2583 m = mh; 2584 m->m_len = sizeof(*ip6); 2585 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2586 } 2587 exthdrs->ip6e_ip6 = m; 2588 return 0; 2589 } 2590 2591 /* 2592 * Compute IPv6 extension header length. 2593 */ 2594 int 2595 ip6_optlen(in6p) 2596 struct in6pcb *in6p; 2597 { 2598 int len; 2599 2600 if (!in6p->in6p_outputopts) 2601 return 0; 2602 2603 len = 0; 2604 #define elen(x) \ 2605 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2606 2607 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2608 if (in6p->in6p_outputopts->ip6po_rthdr) 2609 /* dest1 is valid with rthdr only */ 2610 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2611 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2612 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2613 return len; 2614 #undef elen 2615 } 2616