1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ipsec.h" 69 70 #include <sys/param.h> 71 #include <sys/kernel.h> 72 #include <sys/malloc.h> 73 #include <sys/mbuf.h> 74 #include <sys/errno.h> 75 #include <sys/priv.h> 76 #include <sys/proc.h> 77 #include <sys/protosw.h> 78 #include <sys/socket.h> 79 #include <sys/socketvar.h> 80 #include <sys/ucred.h> 81 #include <sys/vimage.h> 82 83 #include <net/if.h> 84 #include <net/netisr.h> 85 #include <net/route.h> 86 #include <net/pfil.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet6/in6_var.h> 91 #include <netinet/ip6.h> 92 #include <netinet/icmp6.h> 93 #include <netinet6/ip6_var.h> 94 #include <netinet/in_pcb.h> 95 #include <netinet/tcp_var.h> 96 #include <netinet6/nd6.h> 97 98 #ifdef IPSEC 99 #include <netipsec/ipsec.h> 100 #include <netipsec/ipsec6.h> 101 #include <netipsec/key.h> 102 #include <netinet6/ip6_ipsec.h> 103 #endif /* IPSEC */ 104 105 #include <netinet6/ip6protosw.h> 106 #include <netinet6/scope6_var.h> 107 108 static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "internet multicast options"); 109 110 struct ip6_exthdrs { 111 struct mbuf *ip6e_ip6; 112 struct mbuf *ip6e_hbh; 113 struct mbuf *ip6e_dest1; 114 struct mbuf *ip6e_rthdr; 115 struct mbuf *ip6e_dest2; 116 }; 117 118 static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **, 119 struct ucred *, int)); 120 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 121 struct socket *, struct sockopt *)); 122 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 123 static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *, 124 struct ucred *, int, int, int)); 125 126 static int ip6_setmoptions(int, struct ip6_moptions **, struct mbuf *); 127 static int ip6_getmoptions(int, struct ip6_moptions *, struct mbuf **); 128 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 129 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 130 struct ip6_frag **)); 131 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 132 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 133 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *, 134 struct ifnet *, struct in6_addr *, u_long *, int *)); 135 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 136 137 138 /* 139 * Make an extension header from option data. hp is the source, and 140 * mp is the destination. 141 */ 142 #define MAKE_EXTHDR(hp, mp) \ 143 do { \ 144 if (hp) { \ 145 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 146 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 147 ((eh)->ip6e_len + 1) << 3); \ 148 if (error) \ 149 goto freehdrs; \ 150 } \ 151 } while (/*CONSTCOND*/ 0) 152 153 /* 154 * Form a chain of extension headers. 155 * m is the extension header mbuf 156 * mp is the previous mbuf in the chain 157 * p is the next header 158 * i is the type of option. 159 */ 160 #define MAKE_CHAIN(m, mp, p, i)\ 161 do {\ 162 if (m) {\ 163 if (!hdrsplit) \ 164 panic("assumption failed: hdr not split"); \ 165 *mtod((m), u_char *) = *(p);\ 166 *(p) = (i);\ 167 p = mtod((m), u_char *);\ 168 (m)->m_next = (mp)->m_next;\ 169 (mp)->m_next = (m);\ 170 (mp) = (m);\ 171 }\ 172 } while (/*CONSTCOND*/ 0) 173 174 /* 175 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 176 * header (with pri, len, nxt, hlim, src, dst). 177 * This function may modify ver and hlim only. 178 * The mbuf chain containing the packet will be freed. 179 * The mbuf opt, if present, will not be freed. 180 * 181 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 182 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 183 * which is rt_rmx.rmx_mtu. 184 * 185 * ifpp - XXX: just for statistics 186 */ 187 int 188 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 189 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 190 struct ifnet **ifpp, struct inpcb *inp) 191 { 192 INIT_VNET_NET(curvnet); 193 INIT_VNET_INET6(curvnet); 194 struct ip6_hdr *ip6, *mhip6; 195 struct ifnet *ifp, *origifp; 196 struct mbuf *m = m0; 197 struct mbuf *mprev = NULL; 198 int hlen, tlen, len, off; 199 struct route_in6 ip6route; 200 struct rtentry *rt = NULL; 201 struct sockaddr_in6 *dst, src_sa, dst_sa; 202 struct in6_addr odst; 203 int error = 0; 204 struct in6_ifaddr *ia = NULL; 205 u_long mtu; 206 int alwaysfrag, dontfrag; 207 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 208 struct ip6_exthdrs exthdrs; 209 struct in6_addr finaldst, src0, dst0; 210 u_int32_t zone; 211 struct route_in6 *ro_pmtu = NULL; 212 int hdrsplit = 0; 213 int needipsec = 0; 214 #ifdef IPSEC 215 struct ipsec_output_state state; 216 struct ip6_rthdr *rh = NULL; 217 int needipsectun = 0; 218 int segleft_org = 0; 219 struct secpolicy *sp = NULL; 220 #endif /* IPSEC */ 221 222 ip6 = mtod(m, struct ip6_hdr *); 223 if (ip6 == NULL) { 224 printf ("ip6 is NULL"); 225 goto bad; 226 } 227 228 finaldst = ip6->ip6_dst; 229 230 bzero(&exthdrs, sizeof(exthdrs)); 231 232 if (opt) { 233 /* Hop-by-Hop options header */ 234 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 235 /* Destination options header(1st part) */ 236 if (opt->ip6po_rthdr) { 237 /* 238 * Destination options header(1st part) 239 * This only makes sense with a routing header. 240 * See Section 9.2 of RFC 3542. 241 * Disabling this part just for MIP6 convenience is 242 * a bad idea. We need to think carefully about a 243 * way to make the advanced API coexist with MIP6 244 * options, which might automatically be inserted in 245 * the kernel. 246 */ 247 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 248 } 249 /* Routing header */ 250 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 251 /* Destination options header(2nd part) */ 252 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 253 } 254 255 /* 256 * IPSec checking which handles several cases. 257 * FAST IPSEC: We re-injected the packet. 258 */ 259 #ifdef IPSEC 260 switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp)) 261 { 262 case 1: /* Bad packet */ 263 goto freehdrs; 264 case -1: /* Do IPSec */ 265 needipsec = 1; 266 case 0: /* No IPSec */ 267 default: 268 break; 269 } 270 #endif /* IPSEC */ 271 272 /* 273 * Calculate the total length of the extension header chain. 274 * Keep the length of the unfragmentable part for fragmentation. 275 */ 276 optlen = 0; 277 if (exthdrs.ip6e_hbh) 278 optlen += exthdrs.ip6e_hbh->m_len; 279 if (exthdrs.ip6e_dest1) 280 optlen += exthdrs.ip6e_dest1->m_len; 281 if (exthdrs.ip6e_rthdr) 282 optlen += exthdrs.ip6e_rthdr->m_len; 283 unfragpartlen = optlen + sizeof(struct ip6_hdr); 284 285 /* NOTE: we don't add AH/ESP length here. do that later. */ 286 if (exthdrs.ip6e_dest2) 287 optlen += exthdrs.ip6e_dest2->m_len; 288 289 /* 290 * If we need IPsec, or there is at least one extension header, 291 * separate IP6 header from the payload. 292 */ 293 if ((needipsec || optlen) && !hdrsplit) { 294 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 295 m = NULL; 296 goto freehdrs; 297 } 298 m = exthdrs.ip6e_ip6; 299 hdrsplit++; 300 } 301 302 /* adjust pointer */ 303 ip6 = mtod(m, struct ip6_hdr *); 304 305 /* adjust mbuf packet header length */ 306 m->m_pkthdr.len += optlen; 307 plen = m->m_pkthdr.len - sizeof(*ip6); 308 309 /* If this is a jumbo payload, insert a jumbo payload option. */ 310 if (plen > IPV6_MAXPACKET) { 311 if (!hdrsplit) { 312 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 313 m = NULL; 314 goto freehdrs; 315 } 316 m = exthdrs.ip6e_ip6; 317 hdrsplit++; 318 } 319 /* adjust pointer */ 320 ip6 = mtod(m, struct ip6_hdr *); 321 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 322 goto freehdrs; 323 ip6->ip6_plen = 0; 324 } else 325 ip6->ip6_plen = htons(plen); 326 327 /* 328 * Concatenate headers and fill in next header fields. 329 * Here we have, on "m" 330 * IPv6 payload 331 * and we insert headers accordingly. Finally, we should be getting: 332 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 333 * 334 * during the header composing process, "m" points to IPv6 header. 335 * "mprev" points to an extension header prior to esp. 336 */ 337 u_char *nexthdrp = &ip6->ip6_nxt; 338 mprev = m; 339 340 /* 341 * we treat dest2 specially. this makes IPsec processing 342 * much easier. the goal here is to make mprev point the 343 * mbuf prior to dest2. 344 * 345 * result: IPv6 dest2 payload 346 * m and mprev will point to IPv6 header. 347 */ 348 if (exthdrs.ip6e_dest2) { 349 if (!hdrsplit) 350 panic("assumption failed: hdr not split"); 351 exthdrs.ip6e_dest2->m_next = m->m_next; 352 m->m_next = exthdrs.ip6e_dest2; 353 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 354 ip6->ip6_nxt = IPPROTO_DSTOPTS; 355 } 356 357 /* 358 * result: IPv6 hbh dest1 rthdr dest2 payload 359 * m will point to IPv6 header. mprev will point to the 360 * extension header prior to dest2 (rthdr in the above case). 361 */ 362 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 363 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 364 IPPROTO_DSTOPTS); 365 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 366 IPPROTO_ROUTING); 367 368 #ifdef IPSEC 369 if (!needipsec) 370 goto skip_ipsec2; 371 372 /* 373 * pointers after IPsec headers are not valid any more. 374 * other pointers need a great care too. 375 * (IPsec routines should not mangle mbufs prior to AH/ESP) 376 */ 377 exthdrs.ip6e_dest2 = NULL; 378 379 if (exthdrs.ip6e_rthdr) { 380 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 381 segleft_org = rh->ip6r_segleft; 382 rh->ip6r_segleft = 0; 383 } 384 385 bzero(&state, sizeof(state)); 386 state.m = m; 387 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 388 &needipsectun); 389 m = state.m; 390 if (error == EJUSTRETURN) { 391 /* 392 * We had a SP with a level of 'use' and no SA. We 393 * will just continue to process the packet without 394 * IPsec processing. 395 */ 396 ; 397 } else if (error) { 398 /* mbuf is already reclaimed in ipsec6_output_trans. */ 399 m = NULL; 400 switch (error) { 401 case EHOSTUNREACH: 402 case ENETUNREACH: 403 case EMSGSIZE: 404 case ENOBUFS: 405 case ENOMEM: 406 break; 407 default: 408 printf("[%s:%d] (ipsec): error code %d\n", 409 __func__, __LINE__, error); 410 /* FALLTHROUGH */ 411 case ENOENT: 412 /* don't show these error codes to the user */ 413 error = 0; 414 break; 415 } 416 goto bad; 417 } else if (!needipsectun) { 418 /* 419 * In the FAST IPSec case we have already 420 * re-injected the packet and it has been freed 421 * by the ipsec_done() function. So, just clean 422 * up after ourselves. 423 */ 424 m = NULL; 425 goto done; 426 } 427 if (exthdrs.ip6e_rthdr) { 428 /* ah6_output doesn't modify mbuf chain */ 429 rh->ip6r_segleft = segleft_org; 430 } 431 skip_ipsec2:; 432 #endif /* IPSEC */ 433 434 /* 435 * If there is a routing header, replace the destination address field 436 * with the first hop of the routing header. 437 */ 438 if (exthdrs.ip6e_rthdr) { 439 struct ip6_rthdr *rh = 440 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 441 struct ip6_rthdr *)); 442 struct ip6_rthdr0 *rh0; 443 struct in6_addr *addr; 444 struct sockaddr_in6 sa; 445 446 switch (rh->ip6r_type) { 447 case IPV6_RTHDR_TYPE_0: 448 rh0 = (struct ip6_rthdr0 *)rh; 449 addr = (struct in6_addr *)(rh0 + 1); 450 451 /* 452 * construct a sockaddr_in6 form of 453 * the first hop. 454 * 455 * XXX: we may not have enough 456 * information about its scope zone; 457 * there is no standard API to pass 458 * the information from the 459 * application. 460 */ 461 bzero(&sa, sizeof(sa)); 462 sa.sin6_family = AF_INET6; 463 sa.sin6_len = sizeof(sa); 464 sa.sin6_addr = addr[0]; 465 if ((error = sa6_embedscope(&sa, 466 V_ip6_use_defzone)) != 0) { 467 goto bad; 468 } 469 ip6->ip6_dst = sa.sin6_addr; 470 bcopy(&addr[1], &addr[0], sizeof(struct in6_addr) 471 * (rh0->ip6r0_segleft - 1)); 472 addr[rh0->ip6r0_segleft - 1] = finaldst; 473 /* XXX */ 474 in6_clearscope(addr + rh0->ip6r0_segleft - 1); 475 break; 476 default: /* is it possible? */ 477 error = EINVAL; 478 goto bad; 479 } 480 } 481 482 /* Source address validation */ 483 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 484 (flags & IPV6_UNSPECSRC) == 0) { 485 error = EOPNOTSUPP; 486 V_ip6stat.ip6s_badscope++; 487 goto bad; 488 } 489 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 490 error = EOPNOTSUPP; 491 V_ip6stat.ip6s_badscope++; 492 goto bad; 493 } 494 495 V_ip6stat.ip6s_localout++; 496 497 /* 498 * Route packet. 499 */ 500 if (ro == 0) { 501 ro = &ip6route; 502 bzero((caddr_t)ro, sizeof(*ro)); 503 } 504 ro_pmtu = ro; 505 if (opt && opt->ip6po_rthdr) 506 ro = &opt->ip6po_route; 507 dst = (struct sockaddr_in6 *)&ro->ro_dst; 508 509 again: 510 /* 511 * if specified, try to fill in the traffic class field. 512 * do not override if a non-zero value is already set. 513 * we check the diffserv field and the ecn field separately. 514 */ 515 if (opt && opt->ip6po_tclass >= 0) { 516 int mask = 0; 517 518 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 519 mask |= 0xfc; 520 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 521 mask |= 0x03; 522 if (mask != 0) 523 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 524 } 525 526 /* fill in or override the hop limit field, if necessary. */ 527 if (opt && opt->ip6po_hlim != -1) 528 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 529 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 530 if (im6o != NULL) 531 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 532 else 533 ip6->ip6_hlim = V_ip6_defmcasthlim; 534 } 535 536 #ifdef IPSEC 537 /* 538 * We may re-inject packets into the stack here. 539 */ 540 if (needipsec && needipsectun) { 541 struct ipsec_output_state state; 542 543 /* 544 * All the extension headers will become inaccessible 545 * (since they can be encrypted). 546 * Don't panic, we need no more updates to extension headers 547 * on inner IPv6 packet (since they are now encapsulated). 548 * 549 * IPv6 [ESP|AH] IPv6 [extension headers] payload 550 */ 551 bzero(&exthdrs, sizeof(exthdrs)); 552 exthdrs.ip6e_ip6 = m; 553 554 bzero(&state, sizeof(state)); 555 state.m = m; 556 state.ro = (struct route *)ro; 557 state.dst = (struct sockaddr *)dst; 558 559 error = ipsec6_output_tunnel(&state, sp, flags); 560 561 m = state.m; 562 ro = (struct route_in6 *)state.ro; 563 dst = (struct sockaddr_in6 *)state.dst; 564 if (error == EJUSTRETURN) { 565 /* 566 * We had a SP with a level of 'use' and no SA. We 567 * will just continue to process the packet without 568 * IPsec processing. 569 */ 570 ; 571 } else if (error) { 572 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 573 m0 = m = NULL; 574 m = NULL; 575 switch (error) { 576 case EHOSTUNREACH: 577 case ENETUNREACH: 578 case EMSGSIZE: 579 case ENOBUFS: 580 case ENOMEM: 581 break; 582 default: 583 printf("[%s:%d] (ipsec): error code %d\n", 584 __func__, __LINE__, error); 585 /* FALLTHROUGH */ 586 case ENOENT: 587 /* don't show these error codes to the user */ 588 error = 0; 589 break; 590 } 591 goto bad; 592 } else { 593 /* 594 * In the FAST IPSec case we have already 595 * re-injected the packet and it has been freed 596 * by the ipsec_done() function. So, just clean 597 * up after ourselves. 598 */ 599 m = NULL; 600 goto done; 601 } 602 603 exthdrs.ip6e_ip6 = m; 604 } 605 #endif /* IPSEC */ 606 607 /* adjust pointer */ 608 ip6 = mtod(m, struct ip6_hdr *); 609 610 bzero(&dst_sa, sizeof(dst_sa)); 611 dst_sa.sin6_family = AF_INET6; 612 dst_sa.sin6_len = sizeof(dst_sa); 613 dst_sa.sin6_addr = ip6->ip6_dst; 614 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, 615 &ifp, &rt, 0)) != 0) { 616 switch (error) { 617 case EHOSTUNREACH: 618 V_ip6stat.ip6s_noroute++; 619 break; 620 case EADDRNOTAVAIL: 621 default: 622 break; /* XXX statistics? */ 623 } 624 if (ifp != NULL) 625 in6_ifstat_inc(ifp, ifs6_out_discard); 626 goto bad; 627 } 628 if (rt == NULL) { 629 /* 630 * If in6_selectroute() does not return a route entry, 631 * dst may not have been updated. 632 */ 633 *dst = dst_sa; /* XXX */ 634 } 635 636 /* 637 * then rt (for unicast) and ifp must be non-NULL valid values. 638 */ 639 if ((flags & IPV6_FORWARDING) == 0) { 640 /* XXX: the FORWARDING flag can be set for mrouting. */ 641 in6_ifstat_inc(ifp, ifs6_out_request); 642 } 643 if (rt != NULL) { 644 ia = (struct in6_ifaddr *)(rt->rt_ifa); 645 rt->rt_use++; 646 } 647 648 /* 649 * The outgoing interface must be in the zone of source and 650 * destination addresses. We should use ia_ifp to support the 651 * case of sending packets to an address of our own. 652 */ 653 if (ia != NULL && ia->ia_ifp) 654 origifp = ia->ia_ifp; 655 else 656 origifp = ifp; 657 658 src0 = ip6->ip6_src; 659 if (in6_setscope(&src0, origifp, &zone)) 660 goto badscope; 661 bzero(&src_sa, sizeof(src_sa)); 662 src_sa.sin6_family = AF_INET6; 663 src_sa.sin6_len = sizeof(src_sa); 664 src_sa.sin6_addr = ip6->ip6_src; 665 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 666 goto badscope; 667 668 dst0 = ip6->ip6_dst; 669 if (in6_setscope(&dst0, origifp, &zone)) 670 goto badscope; 671 /* re-initialize to be sure */ 672 bzero(&dst_sa, sizeof(dst_sa)); 673 dst_sa.sin6_family = AF_INET6; 674 dst_sa.sin6_len = sizeof(dst_sa); 675 dst_sa.sin6_addr = ip6->ip6_dst; 676 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 677 goto badscope; 678 } 679 680 /* scope check is done. */ 681 goto routefound; 682 683 badscope: 684 V_ip6stat.ip6s_badscope++; 685 in6_ifstat_inc(origifp, ifs6_out_discard); 686 if (error == 0) 687 error = EHOSTUNREACH; /* XXX */ 688 goto bad; 689 690 routefound: 691 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 692 if (opt && opt->ip6po_nextroute.ro_rt) { 693 /* 694 * The nexthop is explicitly specified by the 695 * application. We assume the next hop is an IPv6 696 * address. 697 */ 698 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 699 } 700 else if ((rt->rt_flags & RTF_GATEWAY)) 701 dst = (struct sockaddr_in6 *)rt->rt_gateway; 702 } 703 704 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 705 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 706 } else { 707 struct in6_multi *in6m; 708 709 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 710 711 in6_ifstat_inc(ifp, ifs6_out_mcast); 712 713 /* 714 * Confirm that the outgoing interface supports multicast. 715 */ 716 if (!(ifp->if_flags & IFF_MULTICAST)) { 717 V_ip6stat.ip6s_noroute++; 718 in6_ifstat_inc(ifp, ifs6_out_discard); 719 error = ENETUNREACH; 720 goto bad; 721 } 722 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 723 if (in6m != NULL && 724 (im6o == NULL || im6o->im6o_multicast_loop)) { 725 /* 726 * If we belong to the destination multicast group 727 * on the outgoing interface, and the caller did not 728 * forbid loopback, loop back a copy. 729 */ 730 ip6_mloopback(ifp, m, dst); 731 } else { 732 /* 733 * If we are acting as a multicast router, perform 734 * multicast forwarding as if the packet had just 735 * arrived on the interface to which we are about 736 * to send. The multicast forwarding function 737 * recursively calls this function, using the 738 * IPV6_FORWARDING flag to prevent infinite recursion. 739 * 740 * Multicasts that are looped back by ip6_mloopback(), 741 * above, will be forwarded by the ip6_input() routine, 742 * if necessary. 743 */ 744 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 745 /* 746 * XXX: ip6_mforward expects that rcvif is NULL 747 * when it is called from the originating path. 748 * However, it is not always the case, since 749 * some versions of MGETHDR() does not 750 * initialize the field. 751 */ 752 m->m_pkthdr.rcvif = NULL; 753 if (ip6_mforward(ip6, ifp, m) != 0) { 754 m_freem(m); 755 goto done; 756 } 757 } 758 } 759 /* 760 * Multicasts with a hoplimit of zero may be looped back, 761 * above, but must not be transmitted on a network. 762 * Also, multicasts addressed to the loopback interface 763 * are not sent -- the above call to ip6_mloopback() will 764 * loop back a copy if this host actually belongs to the 765 * destination group on the loopback interface. 766 */ 767 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 768 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 769 m_freem(m); 770 goto done; 771 } 772 } 773 774 /* 775 * Fill the outgoing inteface to tell the upper layer 776 * to increment per-interface statistics. 777 */ 778 if (ifpp) 779 *ifpp = ifp; 780 781 /* Determine path MTU. */ 782 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 783 &alwaysfrag)) != 0) 784 goto bad; 785 786 /* 787 * The caller of this function may specify to use the minimum MTU 788 * in some cases. 789 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 790 * setting. The logic is a bit complicated; by default, unicast 791 * packets will follow path MTU while multicast packets will be sent at 792 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 793 * including unicast ones will be sent at the minimum MTU. Multicast 794 * packets will always be sent at the minimum MTU unless 795 * IP6PO_MINMTU_DISABLE is explicitly specified. 796 * See RFC 3542 for more details. 797 */ 798 if (mtu > IPV6_MMTU) { 799 if ((flags & IPV6_MINMTU)) 800 mtu = IPV6_MMTU; 801 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 802 mtu = IPV6_MMTU; 803 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 804 (opt == NULL || 805 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 806 mtu = IPV6_MMTU; 807 } 808 } 809 810 /* 811 * clear embedded scope identifiers if necessary. 812 * in6_clearscope will touch the addresses only when necessary. 813 */ 814 in6_clearscope(&ip6->ip6_src); 815 in6_clearscope(&ip6->ip6_dst); 816 817 /* 818 * If the outgoing packet contains a hop-by-hop options header, 819 * it must be examined and processed even by the source node. 820 * (RFC 2460, section 4.) 821 */ 822 if (exthdrs.ip6e_hbh) { 823 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 824 u_int32_t dummy; /* XXX unused */ 825 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 826 827 #ifdef DIAGNOSTIC 828 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 829 panic("ip6e_hbh is not continuous"); 830 #endif 831 /* 832 * XXX: if we have to send an ICMPv6 error to the sender, 833 * we need the M_LOOP flag since icmp6_error() expects 834 * the IPv6 and the hop-by-hop options header are 835 * continuous unless the flag is set. 836 */ 837 m->m_flags |= M_LOOP; 838 m->m_pkthdr.rcvif = ifp; 839 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 840 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 841 &dummy, &plen) < 0) { 842 /* m was already freed at this point */ 843 error = EINVAL;/* better error? */ 844 goto done; 845 } 846 m->m_flags &= ~M_LOOP; /* XXX */ 847 m->m_pkthdr.rcvif = NULL; 848 } 849 850 /* Jump over all PFIL processing if hooks are not active. */ 851 if (!PFIL_HOOKED(&inet6_pfil_hook)) 852 goto passout; 853 854 odst = ip6->ip6_dst; 855 /* Run through list of hooks for output packets. */ 856 error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 857 if (error != 0 || m == NULL) 858 goto done; 859 ip6 = mtod(m, struct ip6_hdr *); 860 861 /* See if destination IP address was changed by packet filter. */ 862 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 863 m->m_flags |= M_SKIP_FIREWALL; 864 /* If destination is now ourself drop to ip6_input(). */ 865 if (in6_localaddr(&ip6->ip6_dst)) { 866 if (m->m_pkthdr.rcvif == NULL) 867 m->m_pkthdr.rcvif = V_loif; 868 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 869 m->m_pkthdr.csum_flags |= 870 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 871 m->m_pkthdr.csum_data = 0xffff; 872 } 873 m->m_pkthdr.csum_flags |= 874 CSUM_IP_CHECKED | CSUM_IP_VALID; 875 error = netisr_queue(NETISR_IPV6, m); 876 goto done; 877 } else 878 goto again; /* Redo the routing table lookup. */ 879 } 880 881 /* XXX: IPFIREWALL_FORWARD */ 882 883 passout: 884 /* 885 * Send the packet to the outgoing interface. 886 * If necessary, do IPv6 fragmentation before sending. 887 * 888 * the logic here is rather complex: 889 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 890 * 1-a: send as is if tlen <= path mtu 891 * 1-b: fragment if tlen > path mtu 892 * 893 * 2: if user asks us not to fragment (dontfrag == 1) 894 * 2-a: send as is if tlen <= interface mtu 895 * 2-b: error if tlen > interface mtu 896 * 897 * 3: if we always need to attach fragment header (alwaysfrag == 1) 898 * always fragment 899 * 900 * 4: if dontfrag == 1 && alwaysfrag == 1 901 * error, as we cannot handle this conflicting request 902 */ 903 tlen = m->m_pkthdr.len; 904 905 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 906 dontfrag = 1; 907 else 908 dontfrag = 0; 909 if (dontfrag && alwaysfrag) { /* case 4 */ 910 /* conflicting request - can't transmit */ 911 error = EMSGSIZE; 912 goto bad; 913 } 914 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */ 915 /* 916 * Even if the DONTFRAG option is specified, we cannot send the 917 * packet when the data length is larger than the MTU of the 918 * outgoing interface. 919 * Notify the error by sending IPV6_PATHMTU ancillary data as 920 * well as returning an error code (the latter is not described 921 * in the API spec.) 922 */ 923 u_int32_t mtu32; 924 struct ip6ctlparam ip6cp; 925 926 mtu32 = (u_int32_t)mtu; 927 bzero(&ip6cp, sizeof(ip6cp)); 928 ip6cp.ip6c_cmdarg = (void *)&mtu32; 929 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 930 (void *)&ip6cp); 931 932 error = EMSGSIZE; 933 goto bad; 934 } 935 936 /* 937 * transmit packet without fragmentation 938 */ 939 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 940 struct in6_ifaddr *ia6; 941 942 ip6 = mtod(m, struct ip6_hdr *); 943 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 944 if (ia6) { 945 /* Record statistics for this interface address. */ 946 ia6->ia_ifa.if_opackets++; 947 ia6->ia_ifa.if_obytes += m->m_pkthdr.len; 948 } 949 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 950 goto done; 951 } 952 953 /* 954 * try to fragment the packet. case 1-b and 3 955 */ 956 if (mtu < IPV6_MMTU) { 957 /* path MTU cannot be less than IPV6_MMTU */ 958 error = EMSGSIZE; 959 in6_ifstat_inc(ifp, ifs6_out_fragfail); 960 goto bad; 961 } else if (ip6->ip6_plen == 0) { 962 /* jumbo payload cannot be fragmented */ 963 error = EMSGSIZE; 964 in6_ifstat_inc(ifp, ifs6_out_fragfail); 965 goto bad; 966 } else { 967 struct mbuf **mnext, *m_frgpart; 968 struct ip6_frag *ip6f; 969 u_int32_t id = htonl(ip6_randomid()); 970 u_char nextproto; 971 972 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len; 973 974 /* 975 * Too large for the destination or interface; 976 * fragment if possible. 977 * Must be able to put at least 8 bytes per fragment. 978 */ 979 hlen = unfragpartlen; 980 if (mtu > IPV6_MAXPACKET) 981 mtu = IPV6_MAXPACKET; 982 983 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 984 if (len < 8) { 985 error = EMSGSIZE; 986 in6_ifstat_inc(ifp, ifs6_out_fragfail); 987 goto bad; 988 } 989 990 /* 991 * Verify that we have any chance at all of being able to queue 992 * the packet or packet fragments 993 */ 994 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen) 995 < tlen /* - hlen */)) { 996 error = ENOBUFS; 997 V_ip6stat.ip6s_odropped++; 998 goto bad; 999 } 1000 1001 mnext = &m->m_nextpkt; 1002 1003 /* 1004 * Change the next header field of the last header in the 1005 * unfragmentable part. 1006 */ 1007 if (exthdrs.ip6e_rthdr) { 1008 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1009 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1010 } else if (exthdrs.ip6e_dest1) { 1011 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1012 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1013 } else if (exthdrs.ip6e_hbh) { 1014 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1015 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1016 } else { 1017 nextproto = ip6->ip6_nxt; 1018 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1019 } 1020 1021 /* 1022 * Loop through length of segment after first fragment, 1023 * make new header and copy data of each part and link onto 1024 * chain. 1025 */ 1026 m0 = m; 1027 for (off = hlen; off < tlen; off += len) { 1028 MGETHDR(m, M_DONTWAIT, MT_HEADER); 1029 if (!m) { 1030 error = ENOBUFS; 1031 V_ip6stat.ip6s_odropped++; 1032 goto sendorfree; 1033 } 1034 m->m_pkthdr.rcvif = NULL; 1035 m->m_flags = m0->m_flags & M_COPYFLAGS; 1036 *mnext = m; 1037 mnext = &m->m_nextpkt; 1038 m->m_data += max_linkhdr; 1039 mhip6 = mtod(m, struct ip6_hdr *); 1040 *mhip6 = *ip6; 1041 m->m_len = sizeof(*mhip6); 1042 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1043 if (error) { 1044 V_ip6stat.ip6s_odropped++; 1045 goto sendorfree; 1046 } 1047 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 1048 if (off + len >= tlen) 1049 len = tlen - off; 1050 else 1051 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1052 mhip6->ip6_plen = htons((u_short)(len + hlen + 1053 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1054 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1055 error = ENOBUFS; 1056 V_ip6stat.ip6s_odropped++; 1057 goto sendorfree; 1058 } 1059 m_cat(m, m_frgpart); 1060 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1061 m->m_pkthdr.rcvif = NULL; 1062 ip6f->ip6f_reserved = 0; 1063 ip6f->ip6f_ident = id; 1064 ip6f->ip6f_nxt = nextproto; 1065 V_ip6stat.ip6s_ofragments++; 1066 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1067 } 1068 1069 in6_ifstat_inc(ifp, ifs6_out_fragok); 1070 } 1071 1072 /* 1073 * Remove leading garbages. 1074 */ 1075 sendorfree: 1076 m = m0->m_nextpkt; 1077 m0->m_nextpkt = 0; 1078 m_freem(m0); 1079 for (m0 = m; m; m = m0) { 1080 m0 = m->m_nextpkt; 1081 m->m_nextpkt = 0; 1082 if (error == 0) { 1083 /* Record statistics for this interface address. */ 1084 if (ia) { 1085 ia->ia_ifa.if_opackets++; 1086 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 1087 } 1088 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1089 } else 1090 m_freem(m); 1091 } 1092 1093 if (error == 0) 1094 V_ip6stat.ip6s_fragmented++; 1095 1096 done: 1097 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1098 RTFREE(ro->ro_rt); 1099 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1100 RTFREE(ro_pmtu->ro_rt); 1101 } 1102 #ifdef IPSEC 1103 if (sp != NULL) 1104 KEY_FREESP(&sp); 1105 #endif 1106 1107 return (error); 1108 1109 freehdrs: 1110 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1111 m_freem(exthdrs.ip6e_dest1); 1112 m_freem(exthdrs.ip6e_rthdr); 1113 m_freem(exthdrs.ip6e_dest2); 1114 /* FALLTHROUGH */ 1115 bad: 1116 if (m) 1117 m_freem(m); 1118 goto done; 1119 } 1120 1121 static int 1122 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1123 { 1124 struct mbuf *m; 1125 1126 if (hlen > MCLBYTES) 1127 return (ENOBUFS); /* XXX */ 1128 1129 MGET(m, M_DONTWAIT, MT_DATA); 1130 if (!m) 1131 return (ENOBUFS); 1132 1133 if (hlen > MLEN) { 1134 MCLGET(m, M_DONTWAIT); 1135 if ((m->m_flags & M_EXT) == 0) { 1136 m_free(m); 1137 return (ENOBUFS); 1138 } 1139 } 1140 m->m_len = hlen; 1141 if (hdr) 1142 bcopy(hdr, mtod(m, caddr_t), hlen); 1143 1144 *mp = m; 1145 return (0); 1146 } 1147 1148 /* 1149 * Insert jumbo payload option. 1150 */ 1151 static int 1152 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1153 { 1154 struct mbuf *mopt; 1155 u_char *optbuf; 1156 u_int32_t v; 1157 1158 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1159 1160 /* 1161 * If there is no hop-by-hop options header, allocate new one. 1162 * If there is one but it doesn't have enough space to store the 1163 * jumbo payload option, allocate a cluster to store the whole options. 1164 * Otherwise, use it to store the options. 1165 */ 1166 if (exthdrs->ip6e_hbh == 0) { 1167 MGET(mopt, M_DONTWAIT, MT_DATA); 1168 if (mopt == 0) 1169 return (ENOBUFS); 1170 mopt->m_len = JUMBOOPTLEN; 1171 optbuf = mtod(mopt, u_char *); 1172 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1173 exthdrs->ip6e_hbh = mopt; 1174 } else { 1175 struct ip6_hbh *hbh; 1176 1177 mopt = exthdrs->ip6e_hbh; 1178 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1179 /* 1180 * XXX assumption: 1181 * - exthdrs->ip6e_hbh is not referenced from places 1182 * other than exthdrs. 1183 * - exthdrs->ip6e_hbh is not an mbuf chain. 1184 */ 1185 int oldoptlen = mopt->m_len; 1186 struct mbuf *n; 1187 1188 /* 1189 * XXX: give up if the whole (new) hbh header does 1190 * not fit even in an mbuf cluster. 1191 */ 1192 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1193 return (ENOBUFS); 1194 1195 /* 1196 * As a consequence, we must always prepare a cluster 1197 * at this point. 1198 */ 1199 MGET(n, M_DONTWAIT, MT_DATA); 1200 if (n) { 1201 MCLGET(n, M_DONTWAIT); 1202 if ((n->m_flags & M_EXT) == 0) { 1203 m_freem(n); 1204 n = NULL; 1205 } 1206 } 1207 if (!n) 1208 return (ENOBUFS); 1209 n->m_len = oldoptlen + JUMBOOPTLEN; 1210 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1211 oldoptlen); 1212 optbuf = mtod(n, caddr_t) + oldoptlen; 1213 m_freem(mopt); 1214 mopt = exthdrs->ip6e_hbh = n; 1215 } else { 1216 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1217 mopt->m_len += JUMBOOPTLEN; 1218 } 1219 optbuf[0] = IP6OPT_PADN; 1220 optbuf[1] = 1; 1221 1222 /* 1223 * Adjust the header length according to the pad and 1224 * the jumbo payload option. 1225 */ 1226 hbh = mtod(mopt, struct ip6_hbh *); 1227 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1228 } 1229 1230 /* fill in the option. */ 1231 optbuf[2] = IP6OPT_JUMBO; 1232 optbuf[3] = 4; 1233 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1234 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1235 1236 /* finally, adjust the packet header length */ 1237 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1238 1239 return (0); 1240 #undef JUMBOOPTLEN 1241 } 1242 1243 /* 1244 * Insert fragment header and copy unfragmentable header portions. 1245 */ 1246 static int 1247 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1248 struct ip6_frag **frghdrp) 1249 { 1250 struct mbuf *n, *mlast; 1251 1252 if (hlen > sizeof(struct ip6_hdr)) { 1253 n = m_copym(m0, sizeof(struct ip6_hdr), 1254 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1255 if (n == 0) 1256 return (ENOBUFS); 1257 m->m_next = n; 1258 } else 1259 n = m; 1260 1261 /* Search for the last mbuf of unfragmentable part. */ 1262 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1263 ; 1264 1265 if ((mlast->m_flags & M_EXT) == 0 && 1266 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1267 /* use the trailing space of the last mbuf for the fragment hdr */ 1268 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1269 mlast->m_len); 1270 mlast->m_len += sizeof(struct ip6_frag); 1271 m->m_pkthdr.len += sizeof(struct ip6_frag); 1272 } else { 1273 /* allocate a new mbuf for the fragment header */ 1274 struct mbuf *mfrg; 1275 1276 MGET(mfrg, M_DONTWAIT, MT_DATA); 1277 if (mfrg == 0) 1278 return (ENOBUFS); 1279 mfrg->m_len = sizeof(struct ip6_frag); 1280 *frghdrp = mtod(mfrg, struct ip6_frag *); 1281 mlast->m_next = mfrg; 1282 } 1283 1284 return (0); 1285 } 1286 1287 static int 1288 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, 1289 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, 1290 int *alwaysfragp) 1291 { 1292 u_int32_t mtu = 0; 1293 int alwaysfrag = 0; 1294 int error = 0; 1295 1296 if (ro_pmtu != ro) { 1297 /* The first hop and the final destination may differ. */ 1298 struct sockaddr_in6 *sa6_dst = 1299 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1300 if (ro_pmtu->ro_rt && 1301 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1302 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1303 RTFREE(ro_pmtu->ro_rt); 1304 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1305 } 1306 if (ro_pmtu->ro_rt == NULL) { 1307 bzero(sa6_dst, sizeof(*sa6_dst)); 1308 sa6_dst->sin6_family = AF_INET6; 1309 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1310 sa6_dst->sin6_addr = *dst; 1311 1312 rtalloc((struct route *)ro_pmtu); 1313 } 1314 } 1315 if (ro_pmtu->ro_rt) { 1316 u_int32_t ifmtu; 1317 struct in_conninfo inc; 1318 1319 bzero(&inc, sizeof(inc)); 1320 inc.inc_flags = 1; /* IPv6 */ 1321 inc.inc6_faddr = *dst; 1322 1323 if (ifp == NULL) 1324 ifp = ro_pmtu->ro_rt->rt_ifp; 1325 ifmtu = IN6_LINKMTU(ifp); 1326 mtu = tcp_hc_getmtu(&inc); 1327 if (mtu) 1328 mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu); 1329 else 1330 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 1331 if (mtu == 0) 1332 mtu = ifmtu; 1333 else if (mtu < IPV6_MMTU) { 1334 /* 1335 * RFC2460 section 5, last paragraph: 1336 * if we record ICMPv6 too big message with 1337 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1338 * or smaller, with framgent header attached. 1339 * (fragment header is needed regardless from the 1340 * packet size, for translators to identify packets) 1341 */ 1342 alwaysfrag = 1; 1343 mtu = IPV6_MMTU; 1344 } else if (mtu > ifmtu) { 1345 /* 1346 * The MTU on the route is larger than the MTU on 1347 * the interface! This shouldn't happen, unless the 1348 * MTU of the interface has been changed after the 1349 * interface was brought up. Change the MTU in the 1350 * route to match the interface MTU (as long as the 1351 * field isn't locked). 1352 */ 1353 mtu = ifmtu; 1354 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; 1355 } 1356 } else if (ifp) { 1357 mtu = IN6_LINKMTU(ifp); 1358 } else 1359 error = EHOSTUNREACH; /* XXX */ 1360 1361 *mtup = mtu; 1362 if (alwaysfragp) 1363 *alwaysfragp = alwaysfrag; 1364 return (error); 1365 } 1366 1367 /* 1368 * IP6 socket option processing. 1369 */ 1370 int 1371 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1372 { 1373 int optdatalen, uproto; 1374 void *optdata; 1375 struct inpcb *in6p = sotoinpcb(so); 1376 int error, optval; 1377 int level, op, optname; 1378 int optlen; 1379 struct thread *td; 1380 1381 level = sopt->sopt_level; 1382 op = sopt->sopt_dir; 1383 optname = sopt->sopt_name; 1384 optlen = sopt->sopt_valsize; 1385 td = sopt->sopt_td; 1386 error = 0; 1387 optval = 0; 1388 uproto = (int)so->so_proto->pr_protocol; 1389 1390 if (level == IPPROTO_IPV6) { 1391 switch (op) { 1392 1393 case SOPT_SET: 1394 switch (optname) { 1395 case IPV6_2292PKTOPTIONS: 1396 #ifdef IPV6_PKTOPTIONS 1397 case IPV6_PKTOPTIONS: 1398 #endif 1399 { 1400 struct mbuf *m; 1401 1402 error = soopt_getm(sopt, &m); /* XXX */ 1403 if (error != 0) 1404 break; 1405 error = soopt_mcopyin(sopt, m); /* XXX */ 1406 if (error != 0) 1407 break; 1408 error = ip6_pcbopts(&in6p->in6p_outputopts, 1409 m, so, sopt); 1410 m_freem(m); /* XXX */ 1411 break; 1412 } 1413 1414 /* 1415 * Use of some Hop-by-Hop options or some 1416 * Destination options, might require special 1417 * privilege. That is, normal applications 1418 * (without special privilege) might be forbidden 1419 * from setting certain options in outgoing packets, 1420 * and might never see certain options in received 1421 * packets. [RFC 2292 Section 6] 1422 * KAME specific note: 1423 * KAME prevents non-privileged users from sending or 1424 * receiving ANY hbh/dst options in order to avoid 1425 * overhead of parsing options in the kernel. 1426 */ 1427 case IPV6_RECVHOPOPTS: 1428 case IPV6_RECVDSTOPTS: 1429 case IPV6_RECVRTHDRDSTOPTS: 1430 if (td != NULL) { 1431 error = priv_check(td, 1432 PRIV_NETINET_SETHDROPTS); 1433 if (error) 1434 break; 1435 } 1436 /* FALLTHROUGH */ 1437 case IPV6_UNICAST_HOPS: 1438 case IPV6_HOPLIMIT: 1439 case IPV6_FAITH: 1440 1441 case IPV6_RECVPKTINFO: 1442 case IPV6_RECVHOPLIMIT: 1443 case IPV6_RECVRTHDR: 1444 case IPV6_RECVPATHMTU: 1445 case IPV6_RECVTCLASS: 1446 case IPV6_V6ONLY: 1447 case IPV6_AUTOFLOWLABEL: 1448 if (optlen != sizeof(int)) { 1449 error = EINVAL; 1450 break; 1451 } 1452 error = sooptcopyin(sopt, &optval, 1453 sizeof optval, sizeof optval); 1454 if (error) 1455 break; 1456 switch (optname) { 1457 1458 case IPV6_UNICAST_HOPS: 1459 if (optval < -1 || optval >= 256) 1460 error = EINVAL; 1461 else { 1462 /* -1 = kernel default */ 1463 in6p->in6p_hops = optval; 1464 if ((in6p->in6p_vflag & 1465 INP_IPV4) != 0) 1466 in6p->inp_ip_ttl = optval; 1467 } 1468 break; 1469 #define OPTSET(bit) \ 1470 do { \ 1471 if (optval) \ 1472 in6p->in6p_flags |= (bit); \ 1473 else \ 1474 in6p->in6p_flags &= ~(bit); \ 1475 } while (/*CONSTCOND*/ 0) 1476 #define OPTSET2292(bit) \ 1477 do { \ 1478 in6p->in6p_flags |= IN6P_RFC2292; \ 1479 if (optval) \ 1480 in6p->in6p_flags |= (bit); \ 1481 else \ 1482 in6p->in6p_flags &= ~(bit); \ 1483 } while (/*CONSTCOND*/ 0) 1484 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1485 1486 case IPV6_RECVPKTINFO: 1487 /* cannot mix with RFC2292 */ 1488 if (OPTBIT(IN6P_RFC2292)) { 1489 error = EINVAL; 1490 break; 1491 } 1492 OPTSET(IN6P_PKTINFO); 1493 break; 1494 1495 case IPV6_HOPLIMIT: 1496 { 1497 struct ip6_pktopts **optp; 1498 1499 /* cannot mix with RFC2292 */ 1500 if (OPTBIT(IN6P_RFC2292)) { 1501 error = EINVAL; 1502 break; 1503 } 1504 optp = &in6p->in6p_outputopts; 1505 error = ip6_pcbopt(IPV6_HOPLIMIT, 1506 (u_char *)&optval, sizeof(optval), 1507 optp, (td != NULL) ? td->td_ucred : 1508 NULL, uproto); 1509 break; 1510 } 1511 1512 case IPV6_RECVHOPLIMIT: 1513 /* cannot mix with RFC2292 */ 1514 if (OPTBIT(IN6P_RFC2292)) { 1515 error = EINVAL; 1516 break; 1517 } 1518 OPTSET(IN6P_HOPLIMIT); 1519 break; 1520 1521 case IPV6_RECVHOPOPTS: 1522 /* cannot mix with RFC2292 */ 1523 if (OPTBIT(IN6P_RFC2292)) { 1524 error = EINVAL; 1525 break; 1526 } 1527 OPTSET(IN6P_HOPOPTS); 1528 break; 1529 1530 case IPV6_RECVDSTOPTS: 1531 /* cannot mix with RFC2292 */ 1532 if (OPTBIT(IN6P_RFC2292)) { 1533 error = EINVAL; 1534 break; 1535 } 1536 OPTSET(IN6P_DSTOPTS); 1537 break; 1538 1539 case IPV6_RECVRTHDRDSTOPTS: 1540 /* cannot mix with RFC2292 */ 1541 if (OPTBIT(IN6P_RFC2292)) { 1542 error = EINVAL; 1543 break; 1544 } 1545 OPTSET(IN6P_RTHDRDSTOPTS); 1546 break; 1547 1548 case IPV6_RECVRTHDR: 1549 /* cannot mix with RFC2292 */ 1550 if (OPTBIT(IN6P_RFC2292)) { 1551 error = EINVAL; 1552 break; 1553 } 1554 OPTSET(IN6P_RTHDR); 1555 break; 1556 1557 case IPV6_FAITH: 1558 OPTSET(IN6P_FAITH); 1559 break; 1560 1561 case IPV6_RECVPATHMTU: 1562 /* 1563 * We ignore this option for TCP 1564 * sockets. 1565 * (RFC3542 leaves this case 1566 * unspecified.) 1567 */ 1568 if (uproto != IPPROTO_TCP) 1569 OPTSET(IN6P_MTU); 1570 break; 1571 1572 case IPV6_V6ONLY: 1573 /* 1574 * make setsockopt(IPV6_V6ONLY) 1575 * available only prior to bind(2). 1576 * see ipng mailing list, Jun 22 2001. 1577 */ 1578 if (in6p->in6p_lport || 1579 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1580 error = EINVAL; 1581 break; 1582 } 1583 OPTSET(IN6P_IPV6_V6ONLY); 1584 if (optval) 1585 in6p->in6p_vflag &= ~INP_IPV4; 1586 else 1587 in6p->in6p_vflag |= INP_IPV4; 1588 break; 1589 case IPV6_RECVTCLASS: 1590 /* cannot mix with RFC2292 XXX */ 1591 if (OPTBIT(IN6P_RFC2292)) { 1592 error = EINVAL; 1593 break; 1594 } 1595 OPTSET(IN6P_TCLASS); 1596 break; 1597 case IPV6_AUTOFLOWLABEL: 1598 OPTSET(IN6P_AUTOFLOWLABEL); 1599 break; 1600 1601 } 1602 break; 1603 1604 case IPV6_TCLASS: 1605 case IPV6_DONTFRAG: 1606 case IPV6_USE_MIN_MTU: 1607 case IPV6_PREFER_TEMPADDR: 1608 if (optlen != sizeof(optval)) { 1609 error = EINVAL; 1610 break; 1611 } 1612 error = sooptcopyin(sopt, &optval, 1613 sizeof optval, sizeof optval); 1614 if (error) 1615 break; 1616 { 1617 struct ip6_pktopts **optp; 1618 optp = &in6p->in6p_outputopts; 1619 error = ip6_pcbopt(optname, 1620 (u_char *)&optval, sizeof(optval), 1621 optp, (td != NULL) ? td->td_ucred : 1622 NULL, uproto); 1623 break; 1624 } 1625 1626 case IPV6_2292PKTINFO: 1627 case IPV6_2292HOPLIMIT: 1628 case IPV6_2292HOPOPTS: 1629 case IPV6_2292DSTOPTS: 1630 case IPV6_2292RTHDR: 1631 /* RFC 2292 */ 1632 if (optlen != sizeof(int)) { 1633 error = EINVAL; 1634 break; 1635 } 1636 error = sooptcopyin(sopt, &optval, 1637 sizeof optval, sizeof optval); 1638 if (error) 1639 break; 1640 switch (optname) { 1641 case IPV6_2292PKTINFO: 1642 OPTSET2292(IN6P_PKTINFO); 1643 break; 1644 case IPV6_2292HOPLIMIT: 1645 OPTSET2292(IN6P_HOPLIMIT); 1646 break; 1647 case IPV6_2292HOPOPTS: 1648 /* 1649 * Check super-user privilege. 1650 * See comments for IPV6_RECVHOPOPTS. 1651 */ 1652 if (td != NULL) { 1653 error = priv_check(td, 1654 PRIV_NETINET_SETHDROPTS); 1655 if (error) 1656 return (error); 1657 } 1658 OPTSET2292(IN6P_HOPOPTS); 1659 break; 1660 case IPV6_2292DSTOPTS: 1661 if (td != NULL) { 1662 error = priv_check(td, 1663 PRIV_NETINET_SETHDROPTS); 1664 if (error) 1665 return (error); 1666 } 1667 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1668 break; 1669 case IPV6_2292RTHDR: 1670 OPTSET2292(IN6P_RTHDR); 1671 break; 1672 } 1673 break; 1674 case IPV6_PKTINFO: 1675 case IPV6_HOPOPTS: 1676 case IPV6_RTHDR: 1677 case IPV6_DSTOPTS: 1678 case IPV6_RTHDRDSTOPTS: 1679 case IPV6_NEXTHOP: 1680 { 1681 /* new advanced API (RFC3542) */ 1682 u_char *optbuf; 1683 u_char optbuf_storage[MCLBYTES]; 1684 int optlen; 1685 struct ip6_pktopts **optp; 1686 1687 /* cannot mix with RFC2292 */ 1688 if (OPTBIT(IN6P_RFC2292)) { 1689 error = EINVAL; 1690 break; 1691 } 1692 1693 /* 1694 * We only ensure valsize is not too large 1695 * here. Further validation will be done 1696 * later. 1697 */ 1698 error = sooptcopyin(sopt, optbuf_storage, 1699 sizeof(optbuf_storage), 0); 1700 if (error) 1701 break; 1702 optlen = sopt->sopt_valsize; 1703 optbuf = optbuf_storage; 1704 optp = &in6p->in6p_outputopts; 1705 error = ip6_pcbopt(optname, optbuf, optlen, 1706 optp, (td != NULL) ? td->td_ucred : NULL, 1707 uproto); 1708 break; 1709 } 1710 #undef OPTSET 1711 1712 case IPV6_MULTICAST_IF: 1713 case IPV6_MULTICAST_HOPS: 1714 case IPV6_MULTICAST_LOOP: 1715 case IPV6_JOIN_GROUP: 1716 case IPV6_LEAVE_GROUP: 1717 { 1718 if (sopt->sopt_valsize > MLEN) { 1719 error = EMSGSIZE; 1720 break; 1721 } 1722 /* XXX */ 1723 } 1724 /* FALLTHROUGH */ 1725 { 1726 struct mbuf *m; 1727 1728 if (sopt->sopt_valsize > MCLBYTES) { 1729 error = EMSGSIZE; 1730 break; 1731 } 1732 /* XXX */ 1733 MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA); 1734 if (m == 0) { 1735 error = ENOBUFS; 1736 break; 1737 } 1738 if (sopt->sopt_valsize > MLEN) { 1739 MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT); 1740 if ((m->m_flags & M_EXT) == 0) { 1741 m_free(m); 1742 error = ENOBUFS; 1743 break; 1744 } 1745 } 1746 m->m_len = sopt->sopt_valsize; 1747 error = sooptcopyin(sopt, mtod(m, char *), 1748 m->m_len, m->m_len); 1749 if (error) { 1750 (void)m_free(m); 1751 break; 1752 } 1753 error = ip6_setmoptions(sopt->sopt_name, 1754 &in6p->in6p_moptions, 1755 m); 1756 (void)m_free(m); 1757 } 1758 break; 1759 1760 case IPV6_PORTRANGE: 1761 error = sooptcopyin(sopt, &optval, 1762 sizeof optval, sizeof optval); 1763 if (error) 1764 break; 1765 1766 switch (optval) { 1767 case IPV6_PORTRANGE_DEFAULT: 1768 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1769 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1770 break; 1771 1772 case IPV6_PORTRANGE_HIGH: 1773 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1774 in6p->in6p_flags |= IN6P_HIGHPORT; 1775 break; 1776 1777 case IPV6_PORTRANGE_LOW: 1778 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1779 in6p->in6p_flags |= IN6P_LOWPORT; 1780 break; 1781 1782 default: 1783 error = EINVAL; 1784 break; 1785 } 1786 break; 1787 1788 #ifdef IPSEC 1789 case IPV6_IPSEC_POLICY: 1790 { 1791 caddr_t req; 1792 struct mbuf *m; 1793 1794 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1795 break; 1796 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1797 break; 1798 req = mtod(m, caddr_t); 1799 error = ipsec6_set_policy(in6p, optname, req, 1800 m->m_len, (sopt->sopt_td != NULL) ? 1801 sopt->sopt_td->td_ucred : NULL); 1802 m_freem(m); 1803 break; 1804 } 1805 #endif /* IPSEC */ 1806 1807 default: 1808 error = ENOPROTOOPT; 1809 break; 1810 } 1811 break; 1812 1813 case SOPT_GET: 1814 switch (optname) { 1815 1816 case IPV6_2292PKTOPTIONS: 1817 #ifdef IPV6_PKTOPTIONS 1818 case IPV6_PKTOPTIONS: 1819 #endif 1820 /* 1821 * RFC3542 (effectively) deprecated the 1822 * semantics of the 2292-style pktoptions. 1823 * Since it was not reliable in nature (i.e., 1824 * applications had to expect the lack of some 1825 * information after all), it would make sense 1826 * to simplify this part by always returning 1827 * empty data. 1828 */ 1829 sopt->sopt_valsize = 0; 1830 break; 1831 1832 case IPV6_RECVHOPOPTS: 1833 case IPV6_RECVDSTOPTS: 1834 case IPV6_RECVRTHDRDSTOPTS: 1835 case IPV6_UNICAST_HOPS: 1836 case IPV6_RECVPKTINFO: 1837 case IPV6_RECVHOPLIMIT: 1838 case IPV6_RECVRTHDR: 1839 case IPV6_RECVPATHMTU: 1840 1841 case IPV6_FAITH: 1842 case IPV6_V6ONLY: 1843 case IPV6_PORTRANGE: 1844 case IPV6_RECVTCLASS: 1845 case IPV6_AUTOFLOWLABEL: 1846 switch (optname) { 1847 1848 case IPV6_RECVHOPOPTS: 1849 optval = OPTBIT(IN6P_HOPOPTS); 1850 break; 1851 1852 case IPV6_RECVDSTOPTS: 1853 optval = OPTBIT(IN6P_DSTOPTS); 1854 break; 1855 1856 case IPV6_RECVRTHDRDSTOPTS: 1857 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1858 break; 1859 1860 case IPV6_UNICAST_HOPS: 1861 optval = in6p->in6p_hops; 1862 break; 1863 1864 case IPV6_RECVPKTINFO: 1865 optval = OPTBIT(IN6P_PKTINFO); 1866 break; 1867 1868 case IPV6_RECVHOPLIMIT: 1869 optval = OPTBIT(IN6P_HOPLIMIT); 1870 break; 1871 1872 case IPV6_RECVRTHDR: 1873 optval = OPTBIT(IN6P_RTHDR); 1874 break; 1875 1876 case IPV6_RECVPATHMTU: 1877 optval = OPTBIT(IN6P_MTU); 1878 break; 1879 1880 case IPV6_FAITH: 1881 optval = OPTBIT(IN6P_FAITH); 1882 break; 1883 1884 case IPV6_V6ONLY: 1885 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1886 break; 1887 1888 case IPV6_PORTRANGE: 1889 { 1890 int flags; 1891 flags = in6p->in6p_flags; 1892 if (flags & IN6P_HIGHPORT) 1893 optval = IPV6_PORTRANGE_HIGH; 1894 else if (flags & IN6P_LOWPORT) 1895 optval = IPV6_PORTRANGE_LOW; 1896 else 1897 optval = 0; 1898 break; 1899 } 1900 case IPV6_RECVTCLASS: 1901 optval = OPTBIT(IN6P_TCLASS); 1902 break; 1903 1904 case IPV6_AUTOFLOWLABEL: 1905 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1906 break; 1907 } 1908 if (error) 1909 break; 1910 error = sooptcopyout(sopt, &optval, 1911 sizeof optval); 1912 break; 1913 1914 case IPV6_PATHMTU: 1915 { 1916 u_long pmtu = 0; 1917 struct ip6_mtuinfo mtuinfo; 1918 struct route_in6 sro; 1919 1920 bzero(&sro, sizeof(sro)); 1921 1922 if (!(so->so_state & SS_ISCONNECTED)) 1923 return (ENOTCONN); 1924 /* 1925 * XXX: we dot not consider the case of source 1926 * routing, or optional information to specify 1927 * the outgoing interface. 1928 */ 1929 error = ip6_getpmtu(&sro, NULL, NULL, 1930 &in6p->in6p_faddr, &pmtu, NULL); 1931 if (sro.ro_rt) 1932 RTFREE(sro.ro_rt); 1933 if (error) 1934 break; 1935 if (pmtu > IPV6_MAXPACKET) 1936 pmtu = IPV6_MAXPACKET; 1937 1938 bzero(&mtuinfo, sizeof(mtuinfo)); 1939 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1940 optdata = (void *)&mtuinfo; 1941 optdatalen = sizeof(mtuinfo); 1942 error = sooptcopyout(sopt, optdata, 1943 optdatalen); 1944 break; 1945 } 1946 1947 case IPV6_2292PKTINFO: 1948 case IPV6_2292HOPLIMIT: 1949 case IPV6_2292HOPOPTS: 1950 case IPV6_2292RTHDR: 1951 case IPV6_2292DSTOPTS: 1952 switch (optname) { 1953 case IPV6_2292PKTINFO: 1954 optval = OPTBIT(IN6P_PKTINFO); 1955 break; 1956 case IPV6_2292HOPLIMIT: 1957 optval = OPTBIT(IN6P_HOPLIMIT); 1958 break; 1959 case IPV6_2292HOPOPTS: 1960 optval = OPTBIT(IN6P_HOPOPTS); 1961 break; 1962 case IPV6_2292RTHDR: 1963 optval = OPTBIT(IN6P_RTHDR); 1964 break; 1965 case IPV6_2292DSTOPTS: 1966 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1967 break; 1968 } 1969 error = sooptcopyout(sopt, &optval, 1970 sizeof optval); 1971 break; 1972 case IPV6_PKTINFO: 1973 case IPV6_HOPOPTS: 1974 case IPV6_RTHDR: 1975 case IPV6_DSTOPTS: 1976 case IPV6_RTHDRDSTOPTS: 1977 case IPV6_NEXTHOP: 1978 case IPV6_TCLASS: 1979 case IPV6_DONTFRAG: 1980 case IPV6_USE_MIN_MTU: 1981 case IPV6_PREFER_TEMPADDR: 1982 error = ip6_getpcbopt(in6p->in6p_outputopts, 1983 optname, sopt); 1984 break; 1985 1986 case IPV6_MULTICAST_IF: 1987 case IPV6_MULTICAST_HOPS: 1988 case IPV6_MULTICAST_LOOP: 1989 case IPV6_JOIN_GROUP: 1990 case IPV6_LEAVE_GROUP: 1991 { 1992 struct mbuf *m; 1993 error = ip6_getmoptions(sopt->sopt_name, 1994 in6p->in6p_moptions, &m); 1995 if (error == 0) 1996 error = sooptcopyout(sopt, 1997 mtod(m, char *), m->m_len); 1998 m_freem(m); 1999 } 2000 break; 2001 2002 #ifdef IPSEC 2003 case IPV6_IPSEC_POLICY: 2004 { 2005 caddr_t req = NULL; 2006 size_t len = 0; 2007 struct mbuf *m = NULL; 2008 struct mbuf **mp = &m; 2009 size_t ovalsize = sopt->sopt_valsize; 2010 caddr_t oval = (caddr_t)sopt->sopt_val; 2011 2012 error = soopt_getm(sopt, &m); /* XXX */ 2013 if (error != 0) 2014 break; 2015 error = soopt_mcopyin(sopt, m); /* XXX */ 2016 if (error != 0) 2017 break; 2018 sopt->sopt_valsize = ovalsize; 2019 sopt->sopt_val = oval; 2020 if (m) { 2021 req = mtod(m, caddr_t); 2022 len = m->m_len; 2023 } 2024 error = ipsec6_get_policy(in6p, req, len, mp); 2025 if (error == 0) 2026 error = soopt_mcopyout(sopt, m); /* XXX */ 2027 if (error == 0 && m) 2028 m_freem(m); 2029 break; 2030 } 2031 #endif /* IPSEC */ 2032 2033 default: 2034 error = ENOPROTOOPT; 2035 break; 2036 } 2037 break; 2038 } 2039 } else { /* level != IPPROTO_IPV6 */ 2040 error = EINVAL; 2041 } 2042 return (error); 2043 } 2044 2045 int 2046 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2047 { 2048 int error = 0, optval, optlen; 2049 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2050 struct in6pcb *in6p = sotoin6pcb(so); 2051 int level, op, optname; 2052 2053 level = sopt->sopt_level; 2054 op = sopt->sopt_dir; 2055 optname = sopt->sopt_name; 2056 optlen = sopt->sopt_valsize; 2057 2058 if (level != IPPROTO_IPV6) { 2059 return (EINVAL); 2060 } 2061 2062 switch (optname) { 2063 case IPV6_CHECKSUM: 2064 /* 2065 * For ICMPv6 sockets, no modification allowed for checksum 2066 * offset, permit "no change" values to help existing apps. 2067 * 2068 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2069 * for an ICMPv6 socket will fail." 2070 * The current behavior does not meet RFC3542. 2071 */ 2072 switch (op) { 2073 case SOPT_SET: 2074 if (optlen != sizeof(int)) { 2075 error = EINVAL; 2076 break; 2077 } 2078 error = sooptcopyin(sopt, &optval, sizeof(optval), 2079 sizeof(optval)); 2080 if (error) 2081 break; 2082 if ((optval % 2) != 0) { 2083 /* the API assumes even offset values */ 2084 error = EINVAL; 2085 } else if (so->so_proto->pr_protocol == 2086 IPPROTO_ICMPV6) { 2087 if (optval != icmp6off) 2088 error = EINVAL; 2089 } else 2090 in6p->in6p_cksum = optval; 2091 break; 2092 2093 case SOPT_GET: 2094 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2095 optval = icmp6off; 2096 else 2097 optval = in6p->in6p_cksum; 2098 2099 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2100 break; 2101 2102 default: 2103 error = EINVAL; 2104 break; 2105 } 2106 break; 2107 2108 default: 2109 error = ENOPROTOOPT; 2110 break; 2111 } 2112 2113 return (error); 2114 } 2115 2116 /* 2117 * Set up IP6 options in pcb for insertion in output packets or 2118 * specifying behavior of outgoing packets. 2119 */ 2120 static int 2121 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2122 struct socket *so, struct sockopt *sopt) 2123 { 2124 struct ip6_pktopts *opt = *pktopt; 2125 int error = 0; 2126 struct thread *td = sopt->sopt_td; 2127 2128 /* turn off any old options. */ 2129 if (opt) { 2130 #ifdef DIAGNOSTIC 2131 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2132 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2133 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2134 printf("ip6_pcbopts: all specified options are cleared.\n"); 2135 #endif 2136 ip6_clearpktopts(opt, -1); 2137 } else 2138 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2139 *pktopt = NULL; 2140 2141 if (!m || m->m_len == 0) { 2142 /* 2143 * Only turning off any previous options, regardless of 2144 * whether the opt is just created or given. 2145 */ 2146 free(opt, M_IP6OPT); 2147 return (0); 2148 } 2149 2150 /* set options specified by user. */ 2151 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2152 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2153 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2154 free(opt, M_IP6OPT); 2155 return (error); 2156 } 2157 *pktopt = opt; 2158 return (0); 2159 } 2160 2161 /* 2162 * initialize ip6_pktopts. beware that there are non-zero default values in 2163 * the struct. 2164 */ 2165 void 2166 ip6_initpktopts(struct ip6_pktopts *opt) 2167 { 2168 2169 bzero(opt, sizeof(*opt)); 2170 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2171 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2172 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2173 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2174 } 2175 2176 static int 2177 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2178 struct ucred *cred, int uproto) 2179 { 2180 struct ip6_pktopts *opt; 2181 2182 if (*pktopt == NULL) { 2183 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2184 M_WAITOK); 2185 ip6_initpktopts(*pktopt); 2186 } 2187 opt = *pktopt; 2188 2189 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2190 } 2191 2192 static int 2193 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2194 { 2195 void *optdata = NULL; 2196 int optdatalen = 0; 2197 struct ip6_ext *ip6e; 2198 int error = 0; 2199 struct in6_pktinfo null_pktinfo; 2200 int deftclass = 0, on; 2201 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2202 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2203 2204 switch (optname) { 2205 case IPV6_PKTINFO: 2206 if (pktopt && pktopt->ip6po_pktinfo) 2207 optdata = (void *)pktopt->ip6po_pktinfo; 2208 else { 2209 /* XXX: we don't have to do this every time... */ 2210 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2211 optdata = (void *)&null_pktinfo; 2212 } 2213 optdatalen = sizeof(struct in6_pktinfo); 2214 break; 2215 case IPV6_TCLASS: 2216 if (pktopt && pktopt->ip6po_tclass >= 0) 2217 optdata = (void *)&pktopt->ip6po_tclass; 2218 else 2219 optdata = (void *)&deftclass; 2220 optdatalen = sizeof(int); 2221 break; 2222 case IPV6_HOPOPTS: 2223 if (pktopt && pktopt->ip6po_hbh) { 2224 optdata = (void *)pktopt->ip6po_hbh; 2225 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2226 optdatalen = (ip6e->ip6e_len + 1) << 3; 2227 } 2228 break; 2229 case IPV6_RTHDR: 2230 if (pktopt && pktopt->ip6po_rthdr) { 2231 optdata = (void *)pktopt->ip6po_rthdr; 2232 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2233 optdatalen = (ip6e->ip6e_len + 1) << 3; 2234 } 2235 break; 2236 case IPV6_RTHDRDSTOPTS: 2237 if (pktopt && pktopt->ip6po_dest1) { 2238 optdata = (void *)pktopt->ip6po_dest1; 2239 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2240 optdatalen = (ip6e->ip6e_len + 1) << 3; 2241 } 2242 break; 2243 case IPV6_DSTOPTS: 2244 if (pktopt && pktopt->ip6po_dest2) { 2245 optdata = (void *)pktopt->ip6po_dest2; 2246 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2247 optdatalen = (ip6e->ip6e_len + 1) << 3; 2248 } 2249 break; 2250 case IPV6_NEXTHOP: 2251 if (pktopt && pktopt->ip6po_nexthop) { 2252 optdata = (void *)pktopt->ip6po_nexthop; 2253 optdatalen = pktopt->ip6po_nexthop->sa_len; 2254 } 2255 break; 2256 case IPV6_USE_MIN_MTU: 2257 if (pktopt) 2258 optdata = (void *)&pktopt->ip6po_minmtu; 2259 else 2260 optdata = (void *)&defminmtu; 2261 optdatalen = sizeof(int); 2262 break; 2263 case IPV6_DONTFRAG: 2264 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2265 on = 1; 2266 else 2267 on = 0; 2268 optdata = (void *)&on; 2269 optdatalen = sizeof(on); 2270 break; 2271 case IPV6_PREFER_TEMPADDR: 2272 if (pktopt) 2273 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2274 else 2275 optdata = (void *)&defpreftemp; 2276 optdatalen = sizeof(int); 2277 break; 2278 default: /* should not happen */ 2279 #ifdef DIAGNOSTIC 2280 panic("ip6_getpcbopt: unexpected option\n"); 2281 #endif 2282 return (ENOPROTOOPT); 2283 } 2284 2285 error = sooptcopyout(sopt, optdata, optdatalen); 2286 2287 return (error); 2288 } 2289 2290 void 2291 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2292 { 2293 if (pktopt == NULL) 2294 return; 2295 2296 if (optname == -1 || optname == IPV6_PKTINFO) { 2297 if (pktopt->ip6po_pktinfo) 2298 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2299 pktopt->ip6po_pktinfo = NULL; 2300 } 2301 if (optname == -1 || optname == IPV6_HOPLIMIT) 2302 pktopt->ip6po_hlim = -1; 2303 if (optname == -1 || optname == IPV6_TCLASS) 2304 pktopt->ip6po_tclass = -1; 2305 if (optname == -1 || optname == IPV6_NEXTHOP) { 2306 if (pktopt->ip6po_nextroute.ro_rt) { 2307 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2308 pktopt->ip6po_nextroute.ro_rt = NULL; 2309 } 2310 if (pktopt->ip6po_nexthop) 2311 free(pktopt->ip6po_nexthop, M_IP6OPT); 2312 pktopt->ip6po_nexthop = NULL; 2313 } 2314 if (optname == -1 || optname == IPV6_HOPOPTS) { 2315 if (pktopt->ip6po_hbh) 2316 free(pktopt->ip6po_hbh, M_IP6OPT); 2317 pktopt->ip6po_hbh = NULL; 2318 } 2319 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2320 if (pktopt->ip6po_dest1) 2321 free(pktopt->ip6po_dest1, M_IP6OPT); 2322 pktopt->ip6po_dest1 = NULL; 2323 } 2324 if (optname == -1 || optname == IPV6_RTHDR) { 2325 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2326 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2327 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2328 if (pktopt->ip6po_route.ro_rt) { 2329 RTFREE(pktopt->ip6po_route.ro_rt); 2330 pktopt->ip6po_route.ro_rt = NULL; 2331 } 2332 } 2333 if (optname == -1 || optname == IPV6_DSTOPTS) { 2334 if (pktopt->ip6po_dest2) 2335 free(pktopt->ip6po_dest2, M_IP6OPT); 2336 pktopt->ip6po_dest2 = NULL; 2337 } 2338 } 2339 2340 #define PKTOPT_EXTHDRCPY(type) \ 2341 do {\ 2342 if (src->type) {\ 2343 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2344 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2345 if (dst->type == NULL && canwait == M_NOWAIT)\ 2346 goto bad;\ 2347 bcopy(src->type, dst->type, hlen);\ 2348 }\ 2349 } while (/*CONSTCOND*/ 0) 2350 2351 static int 2352 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2353 { 2354 if (dst == NULL || src == NULL) { 2355 printf("ip6_clearpktopts: invalid argument\n"); 2356 return (EINVAL); 2357 } 2358 2359 dst->ip6po_hlim = src->ip6po_hlim; 2360 dst->ip6po_tclass = src->ip6po_tclass; 2361 dst->ip6po_flags = src->ip6po_flags; 2362 if (src->ip6po_pktinfo) { 2363 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2364 M_IP6OPT, canwait); 2365 if (dst->ip6po_pktinfo == NULL) 2366 goto bad; 2367 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2368 } 2369 if (src->ip6po_nexthop) { 2370 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2371 M_IP6OPT, canwait); 2372 if (dst->ip6po_nexthop == NULL) 2373 goto bad; 2374 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2375 src->ip6po_nexthop->sa_len); 2376 } 2377 PKTOPT_EXTHDRCPY(ip6po_hbh); 2378 PKTOPT_EXTHDRCPY(ip6po_dest1); 2379 PKTOPT_EXTHDRCPY(ip6po_dest2); 2380 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2381 return (0); 2382 2383 bad: 2384 ip6_clearpktopts(dst, -1); 2385 return (ENOBUFS); 2386 } 2387 #undef PKTOPT_EXTHDRCPY 2388 2389 struct ip6_pktopts * 2390 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2391 { 2392 int error; 2393 struct ip6_pktopts *dst; 2394 2395 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2396 if (dst == NULL) 2397 return (NULL); 2398 ip6_initpktopts(dst); 2399 2400 if ((error = copypktopts(dst, src, canwait)) != 0) { 2401 free(dst, M_IP6OPT); 2402 return (NULL); 2403 } 2404 2405 return (dst); 2406 } 2407 2408 void 2409 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2410 { 2411 if (pktopt == NULL) 2412 return; 2413 2414 ip6_clearpktopts(pktopt, -1); 2415 2416 free(pktopt, M_IP6OPT); 2417 } 2418 2419 /* 2420 * Set the IP6 multicast options in response to user setsockopt(). 2421 */ 2422 static int 2423 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m) 2424 { 2425 INIT_VNET_NET(curvnet); 2426 INIT_VNET_INET6(curvnet); 2427 int error = 0; 2428 u_int loop, ifindex; 2429 struct ipv6_mreq *mreq; 2430 struct ifnet *ifp; 2431 struct ip6_moptions *im6o = *im6op; 2432 struct route_in6 ro; 2433 struct in6_multi_mship *imm; 2434 2435 if (im6o == NULL) { 2436 /* 2437 * No multicast option buffer attached to the pcb; 2438 * allocate one and initialize to default values. 2439 */ 2440 im6o = (struct ip6_moptions *) 2441 malloc(sizeof(*im6o), M_IP6MOPTS, M_WAITOK); 2442 2443 if (im6o == NULL) 2444 return (ENOBUFS); 2445 *im6op = im6o; 2446 im6o->im6o_multicast_ifp = NULL; 2447 im6o->im6o_multicast_hlim = V_ip6_defmcasthlim; 2448 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2449 LIST_INIT(&im6o->im6o_memberships); 2450 } 2451 2452 switch (optname) { 2453 2454 case IPV6_MULTICAST_IF: 2455 /* 2456 * Select the interface for outgoing multicast packets. 2457 */ 2458 if (m == NULL || m->m_len != sizeof(u_int)) { 2459 error = EINVAL; 2460 break; 2461 } 2462 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 2463 if (ifindex < 0 || V_if_index < ifindex) { 2464 error = ENXIO; /* XXX EINVAL? */ 2465 break; 2466 } 2467 ifp = ifnet_byindex(ifindex); 2468 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2469 error = EADDRNOTAVAIL; 2470 break; 2471 } 2472 im6o->im6o_multicast_ifp = ifp; 2473 break; 2474 2475 case IPV6_MULTICAST_HOPS: 2476 { 2477 /* 2478 * Set the IP6 hoplimit for outgoing multicast packets. 2479 */ 2480 int optval; 2481 if (m == NULL || m->m_len != sizeof(int)) { 2482 error = EINVAL; 2483 break; 2484 } 2485 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 2486 if (optval < -1 || optval >= 256) 2487 error = EINVAL; 2488 else if (optval == -1) 2489 im6o->im6o_multicast_hlim = V_ip6_defmcasthlim; 2490 else 2491 im6o->im6o_multicast_hlim = optval; 2492 break; 2493 } 2494 2495 case IPV6_MULTICAST_LOOP: 2496 /* 2497 * Set the loopback flag for outgoing multicast packets. 2498 * Must be zero or one. 2499 */ 2500 if (m == NULL || m->m_len != sizeof(u_int)) { 2501 error = EINVAL; 2502 break; 2503 } 2504 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 2505 if (loop > 1) { 2506 error = EINVAL; 2507 break; 2508 } 2509 im6o->im6o_multicast_loop = loop; 2510 break; 2511 2512 case IPV6_JOIN_GROUP: 2513 /* 2514 * Add a multicast group membership. 2515 * Group must be a valid IP6 multicast address. 2516 */ 2517 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2518 error = EINVAL; 2519 break; 2520 } 2521 mreq = mtod(m, struct ipv6_mreq *); 2522 2523 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2524 /* 2525 * We use the unspecified address to specify to accept 2526 * all multicast addresses. Only super user is allowed 2527 * to do this. 2528 */ 2529 /* XXX-BZ might need a better PRIV_NETINET_x for this */ 2530 error = priv_check(curthread, PRIV_NETINET_MROUTE); 2531 if (error) 2532 break; 2533 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2534 error = EINVAL; 2535 break; 2536 } 2537 2538 /* 2539 * If no interface was explicitly specified, choose an 2540 * appropriate one according to the given multicast address. 2541 */ 2542 if (mreq->ipv6mr_interface == 0) { 2543 struct sockaddr_in6 *dst; 2544 2545 /* 2546 * Look up the routing table for the 2547 * address, and choose the outgoing interface. 2548 * XXX: is it a good approach? 2549 */ 2550 ro.ro_rt = NULL; 2551 dst = (struct sockaddr_in6 *)&ro.ro_dst; 2552 bzero(dst, sizeof(*dst)); 2553 dst->sin6_family = AF_INET6; 2554 dst->sin6_len = sizeof(*dst); 2555 dst->sin6_addr = mreq->ipv6mr_multiaddr; 2556 rtalloc((struct route *)&ro); 2557 if (ro.ro_rt == NULL) { 2558 error = EADDRNOTAVAIL; 2559 break; 2560 } 2561 ifp = ro.ro_rt->rt_ifp; 2562 RTFREE(ro.ro_rt); 2563 } else { 2564 /* 2565 * If the interface is specified, validate it. 2566 */ 2567 if (mreq->ipv6mr_interface < 0 || 2568 V_if_index < mreq->ipv6mr_interface) { 2569 error = ENXIO; /* XXX EINVAL? */ 2570 break; 2571 } 2572 ifp = ifnet_byindex(mreq->ipv6mr_interface); 2573 if (!ifp) { 2574 error = ENXIO; /* XXX EINVAL? */ 2575 break; 2576 } 2577 } 2578 2579 /* 2580 * See if we found an interface, and confirm that it 2581 * supports multicast 2582 */ 2583 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2584 error = EADDRNOTAVAIL; 2585 break; 2586 } 2587 2588 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) { 2589 error = EADDRNOTAVAIL; /* XXX: should not happen */ 2590 break; 2591 } 2592 2593 /* 2594 * See if the membership already exists. 2595 */ 2596 for (imm = im6o->im6o_memberships.lh_first; 2597 imm != NULL; imm = imm->i6mm_chain.le_next) 2598 if (imm->i6mm_maddr->in6m_ifp == ifp && 2599 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2600 &mreq->ipv6mr_multiaddr)) 2601 break; 2602 if (imm != NULL) { 2603 error = EADDRINUSE; 2604 break; 2605 } 2606 /* 2607 * Everything looks good; add a new record to the multicast 2608 * address list for the given interface. 2609 */ 2610 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error, 0); 2611 if (imm == NULL) 2612 break; 2613 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2614 break; 2615 2616 case IPV6_LEAVE_GROUP: 2617 /* 2618 * Drop a multicast group membership. 2619 * Group must be a valid IP6 multicast address. 2620 */ 2621 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2622 error = EINVAL; 2623 break; 2624 } 2625 mreq = mtod(m, struct ipv6_mreq *); 2626 2627 /* 2628 * If an interface address was specified, get a pointer 2629 * to its ifnet structure. 2630 */ 2631 if (mreq->ipv6mr_interface < 0 || 2632 V_if_index < mreq->ipv6mr_interface) { 2633 error = ENXIO; /* XXX EINVAL? */ 2634 break; 2635 } 2636 if (mreq->ipv6mr_interface == 0) 2637 ifp = NULL; 2638 else 2639 ifp = ifnet_byindex(mreq->ipv6mr_interface); 2640 2641 /* Fill in the scope zone ID */ 2642 if (ifp) { 2643 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) { 2644 /* XXX: should not happen */ 2645 error = EADDRNOTAVAIL; 2646 break; 2647 } 2648 } else if (mreq->ipv6mr_interface != 0) { 2649 /* 2650 * This case happens when the (positive) index is in 2651 * the valid range, but the corresponding interface has 2652 * been detached dynamically (XXX). 2653 */ 2654 error = EADDRNOTAVAIL; 2655 break; 2656 } else { /* ipv6mr_interface == 0 */ 2657 struct sockaddr_in6 sa6_mc; 2658 2659 /* 2660 * The API spec says as follows: 2661 * If the interface index is specified as 0, the 2662 * system may choose a multicast group membership to 2663 * drop by matching the multicast address only. 2664 * On the other hand, we cannot disambiguate the scope 2665 * zone unless an interface is provided. Thus, we 2666 * check if there's ambiguity with the default scope 2667 * zone as the last resort. 2668 */ 2669 bzero(&sa6_mc, sizeof(sa6_mc)); 2670 sa6_mc.sin6_family = AF_INET6; 2671 sa6_mc.sin6_len = sizeof(sa6_mc); 2672 sa6_mc.sin6_addr = mreq->ipv6mr_multiaddr; 2673 error = sa6_embedscope(&sa6_mc, V_ip6_use_defzone); 2674 if (error != 0) 2675 break; 2676 mreq->ipv6mr_multiaddr = sa6_mc.sin6_addr; 2677 } 2678 2679 /* 2680 * Find the membership in the membership list. 2681 */ 2682 for (imm = im6o->im6o_memberships.lh_first; 2683 imm != NULL; imm = imm->i6mm_chain.le_next) { 2684 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2685 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2686 &mreq->ipv6mr_multiaddr)) 2687 break; 2688 } 2689 if (imm == NULL) { 2690 /* Unable to resolve interface */ 2691 error = EADDRNOTAVAIL; 2692 break; 2693 } 2694 /* 2695 * Give up the multicast address record to which the 2696 * membership points. 2697 */ 2698 LIST_REMOVE(imm, i6mm_chain); 2699 in6_delmulti(imm->i6mm_maddr); 2700 free(imm, M_IP6MADDR); 2701 break; 2702 2703 default: 2704 error = EOPNOTSUPP; 2705 break; 2706 } 2707 2708 /* 2709 * If all options have default values, no need to keep the mbuf. 2710 */ 2711 if (im6o->im6o_multicast_ifp == NULL && 2712 im6o->im6o_multicast_hlim == V_ip6_defmcasthlim && 2713 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2714 im6o->im6o_memberships.lh_first == NULL) { 2715 free(*im6op, M_IP6MOPTS); 2716 *im6op = NULL; 2717 } 2718 2719 return (error); 2720 } 2721 2722 /* 2723 * Return the IP6 multicast options in response to user getsockopt(). 2724 */ 2725 static int 2726 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp) 2727 { 2728 INIT_VNET_INET6(curvnet); 2729 u_int *hlim, *loop, *ifindex; 2730 2731 *mp = m_get(M_WAIT, MT_HEADER); /* XXX */ 2732 2733 switch (optname) { 2734 2735 case IPV6_MULTICAST_IF: 2736 ifindex = mtod(*mp, u_int *); 2737 (*mp)->m_len = sizeof(u_int); 2738 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2739 *ifindex = 0; 2740 else 2741 *ifindex = im6o->im6o_multicast_ifp->if_index; 2742 return (0); 2743 2744 case IPV6_MULTICAST_HOPS: 2745 hlim = mtod(*mp, u_int *); 2746 (*mp)->m_len = sizeof(u_int); 2747 if (im6o == NULL) 2748 *hlim = V_ip6_defmcasthlim; 2749 else 2750 *hlim = im6o->im6o_multicast_hlim; 2751 return (0); 2752 2753 case IPV6_MULTICAST_LOOP: 2754 loop = mtod(*mp, u_int *); 2755 (*mp)->m_len = sizeof(u_int); 2756 if (im6o == NULL) 2757 *loop = V_ip6_defmcasthlim; 2758 else 2759 *loop = im6o->im6o_multicast_loop; 2760 return (0); 2761 2762 default: 2763 return (EOPNOTSUPP); 2764 } 2765 } 2766 2767 /* 2768 * Discard the IP6 multicast options. 2769 */ 2770 void 2771 ip6_freemoptions(struct ip6_moptions *im6o) 2772 { 2773 struct in6_multi_mship *imm; 2774 2775 if (im6o == NULL) 2776 return; 2777 2778 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2779 LIST_REMOVE(imm, i6mm_chain); 2780 if (imm->i6mm_maddr) 2781 in6_delmulti(imm->i6mm_maddr); 2782 free(imm, M_IP6MADDR); 2783 } 2784 free(im6o, M_IP6MOPTS); 2785 } 2786 2787 /* 2788 * Set IPv6 outgoing packet options based on advanced API. 2789 */ 2790 int 2791 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2792 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2793 { 2794 struct cmsghdr *cm = 0; 2795 2796 if (control == NULL || opt == NULL) 2797 return (EINVAL); 2798 2799 ip6_initpktopts(opt); 2800 if (stickyopt) { 2801 int error; 2802 2803 /* 2804 * If stickyopt is provided, make a local copy of the options 2805 * for this particular packet, then override them by ancillary 2806 * objects. 2807 * XXX: copypktopts() does not copy the cached route to a next 2808 * hop (if any). This is not very good in terms of efficiency, 2809 * but we can allow this since this option should be rarely 2810 * used. 2811 */ 2812 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2813 return (error); 2814 } 2815 2816 /* 2817 * XXX: Currently, we assume all the optional information is stored 2818 * in a single mbuf. 2819 */ 2820 if (control->m_next) 2821 return (EINVAL); 2822 2823 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2824 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2825 int error; 2826 2827 if (control->m_len < CMSG_LEN(0)) 2828 return (EINVAL); 2829 2830 cm = mtod(control, struct cmsghdr *); 2831 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2832 return (EINVAL); 2833 if (cm->cmsg_level != IPPROTO_IPV6) 2834 continue; 2835 2836 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2837 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2838 if (error) 2839 return (error); 2840 } 2841 2842 return (0); 2843 } 2844 2845 /* 2846 * Set a particular packet option, as a sticky option or an ancillary data 2847 * item. "len" can be 0 only when it's a sticky option. 2848 * We have 4 cases of combination of "sticky" and "cmsg": 2849 * "sticky=0, cmsg=0": impossible 2850 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2851 * "sticky=1, cmsg=0": RFC3542 socket option 2852 * "sticky=1, cmsg=1": RFC2292 socket option 2853 */ 2854 static int 2855 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2856 struct ucred *cred, int sticky, int cmsg, int uproto) 2857 { 2858 INIT_VNET_NET(curvnet); 2859 INIT_VNET_INET6(curvnet); 2860 int minmtupolicy, preftemp; 2861 int error; 2862 2863 if (!sticky && !cmsg) { 2864 #ifdef DIAGNOSTIC 2865 printf("ip6_setpktopt: impossible case\n"); 2866 #endif 2867 return (EINVAL); 2868 } 2869 2870 /* 2871 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2872 * not be specified in the context of RFC3542. Conversely, 2873 * RFC3542 types should not be specified in the context of RFC2292. 2874 */ 2875 if (!cmsg) { 2876 switch (optname) { 2877 case IPV6_2292PKTINFO: 2878 case IPV6_2292HOPLIMIT: 2879 case IPV6_2292NEXTHOP: 2880 case IPV6_2292HOPOPTS: 2881 case IPV6_2292DSTOPTS: 2882 case IPV6_2292RTHDR: 2883 case IPV6_2292PKTOPTIONS: 2884 return (ENOPROTOOPT); 2885 } 2886 } 2887 if (sticky && cmsg) { 2888 switch (optname) { 2889 case IPV6_PKTINFO: 2890 case IPV6_HOPLIMIT: 2891 case IPV6_NEXTHOP: 2892 case IPV6_HOPOPTS: 2893 case IPV6_DSTOPTS: 2894 case IPV6_RTHDRDSTOPTS: 2895 case IPV6_RTHDR: 2896 case IPV6_USE_MIN_MTU: 2897 case IPV6_DONTFRAG: 2898 case IPV6_TCLASS: 2899 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2900 return (ENOPROTOOPT); 2901 } 2902 } 2903 2904 switch (optname) { 2905 case IPV6_2292PKTINFO: 2906 case IPV6_PKTINFO: 2907 { 2908 struct ifnet *ifp = NULL; 2909 struct in6_pktinfo *pktinfo; 2910 2911 if (len != sizeof(struct in6_pktinfo)) 2912 return (EINVAL); 2913 2914 pktinfo = (struct in6_pktinfo *)buf; 2915 2916 /* 2917 * An application can clear any sticky IPV6_PKTINFO option by 2918 * doing a "regular" setsockopt with ipi6_addr being 2919 * in6addr_any and ipi6_ifindex being zero. 2920 * [RFC 3542, Section 6] 2921 */ 2922 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2923 pktinfo->ipi6_ifindex == 0 && 2924 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2925 ip6_clearpktopts(opt, optname); 2926 break; 2927 } 2928 2929 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2930 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2931 return (EINVAL); 2932 } 2933 2934 /* validate the interface index if specified. */ 2935 if (pktinfo->ipi6_ifindex > V_if_index || 2936 pktinfo->ipi6_ifindex < 0) { 2937 return (ENXIO); 2938 } 2939 if (pktinfo->ipi6_ifindex) { 2940 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2941 if (ifp == NULL) 2942 return (ENXIO); 2943 } 2944 2945 /* 2946 * We store the address anyway, and let in6_selectsrc() 2947 * validate the specified address. This is because ipi6_addr 2948 * may not have enough information about its scope zone, and 2949 * we may need additional information (such as outgoing 2950 * interface or the scope zone of a destination address) to 2951 * disambiguate the scope. 2952 * XXX: the delay of the validation may confuse the 2953 * application when it is used as a sticky option. 2954 */ 2955 if (opt->ip6po_pktinfo == NULL) { 2956 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2957 M_IP6OPT, M_NOWAIT); 2958 if (opt->ip6po_pktinfo == NULL) 2959 return (ENOBUFS); 2960 } 2961 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2962 break; 2963 } 2964 2965 case IPV6_2292HOPLIMIT: 2966 case IPV6_HOPLIMIT: 2967 { 2968 int *hlimp; 2969 2970 /* 2971 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2972 * to simplify the ordering among hoplimit options. 2973 */ 2974 if (optname == IPV6_HOPLIMIT && sticky) 2975 return (ENOPROTOOPT); 2976 2977 if (len != sizeof(int)) 2978 return (EINVAL); 2979 hlimp = (int *)buf; 2980 if (*hlimp < -1 || *hlimp > 255) 2981 return (EINVAL); 2982 2983 opt->ip6po_hlim = *hlimp; 2984 break; 2985 } 2986 2987 case IPV6_TCLASS: 2988 { 2989 int tclass; 2990 2991 if (len != sizeof(int)) 2992 return (EINVAL); 2993 tclass = *(int *)buf; 2994 if (tclass < -1 || tclass > 255) 2995 return (EINVAL); 2996 2997 opt->ip6po_tclass = tclass; 2998 break; 2999 } 3000 3001 case IPV6_2292NEXTHOP: 3002 case IPV6_NEXTHOP: 3003 if (cred != NULL) { 3004 error = priv_check_cred(cred, 3005 PRIV_NETINET_SETHDROPTS, 0); 3006 if (error) 3007 return (error); 3008 } 3009 3010 if (len == 0) { /* just remove the option */ 3011 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3012 break; 3013 } 3014 3015 /* check if cmsg_len is large enough for sa_len */ 3016 if (len < sizeof(struct sockaddr) || len < *buf) 3017 return (EINVAL); 3018 3019 switch (((struct sockaddr *)buf)->sa_family) { 3020 case AF_INET6: 3021 { 3022 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3023 int error; 3024 3025 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3026 return (EINVAL); 3027 3028 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3029 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3030 return (EINVAL); 3031 } 3032 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 3033 != 0) { 3034 return (error); 3035 } 3036 break; 3037 } 3038 case AF_LINK: /* should eventually be supported */ 3039 default: 3040 return (EAFNOSUPPORT); 3041 } 3042 3043 /* turn off the previous option, then set the new option. */ 3044 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3045 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3046 if (opt->ip6po_nexthop == NULL) 3047 return (ENOBUFS); 3048 bcopy(buf, opt->ip6po_nexthop, *buf); 3049 break; 3050 3051 case IPV6_2292HOPOPTS: 3052 case IPV6_HOPOPTS: 3053 { 3054 struct ip6_hbh *hbh; 3055 int hbhlen; 3056 3057 /* 3058 * XXX: We don't allow a non-privileged user to set ANY HbH 3059 * options, since per-option restriction has too much 3060 * overhead. 3061 */ 3062 if (cred != NULL) { 3063 error = priv_check_cred(cred, 3064 PRIV_NETINET_SETHDROPTS, 0); 3065 if (error) 3066 return (error); 3067 } 3068 3069 if (len == 0) { 3070 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3071 break; /* just remove the option */ 3072 } 3073 3074 /* message length validation */ 3075 if (len < sizeof(struct ip6_hbh)) 3076 return (EINVAL); 3077 hbh = (struct ip6_hbh *)buf; 3078 hbhlen = (hbh->ip6h_len + 1) << 3; 3079 if (len != hbhlen) 3080 return (EINVAL); 3081 3082 /* turn off the previous option, then set the new option. */ 3083 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3084 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3085 if (opt->ip6po_hbh == NULL) 3086 return (ENOBUFS); 3087 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3088 3089 break; 3090 } 3091 3092 case IPV6_2292DSTOPTS: 3093 case IPV6_DSTOPTS: 3094 case IPV6_RTHDRDSTOPTS: 3095 { 3096 struct ip6_dest *dest, **newdest = NULL; 3097 int destlen; 3098 3099 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 3100 error = priv_check_cred(cred, 3101 PRIV_NETINET_SETHDROPTS, 0); 3102 if (error) 3103 return (error); 3104 } 3105 3106 if (len == 0) { 3107 ip6_clearpktopts(opt, optname); 3108 break; /* just remove the option */ 3109 } 3110 3111 /* message length validation */ 3112 if (len < sizeof(struct ip6_dest)) 3113 return (EINVAL); 3114 dest = (struct ip6_dest *)buf; 3115 destlen = (dest->ip6d_len + 1) << 3; 3116 if (len != destlen) 3117 return (EINVAL); 3118 3119 /* 3120 * Determine the position that the destination options header 3121 * should be inserted; before or after the routing header. 3122 */ 3123 switch (optname) { 3124 case IPV6_2292DSTOPTS: 3125 /* 3126 * The old advacned API is ambiguous on this point. 3127 * Our approach is to determine the position based 3128 * according to the existence of a routing header. 3129 * Note, however, that this depends on the order of the 3130 * extension headers in the ancillary data; the 1st 3131 * part of the destination options header must appear 3132 * before the routing header in the ancillary data, 3133 * too. 3134 * RFC3542 solved the ambiguity by introducing 3135 * separate ancillary data or option types. 3136 */ 3137 if (opt->ip6po_rthdr == NULL) 3138 newdest = &opt->ip6po_dest1; 3139 else 3140 newdest = &opt->ip6po_dest2; 3141 break; 3142 case IPV6_RTHDRDSTOPTS: 3143 newdest = &opt->ip6po_dest1; 3144 break; 3145 case IPV6_DSTOPTS: 3146 newdest = &opt->ip6po_dest2; 3147 break; 3148 } 3149 3150 /* turn off the previous option, then set the new option. */ 3151 ip6_clearpktopts(opt, optname); 3152 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3153 if (*newdest == NULL) 3154 return (ENOBUFS); 3155 bcopy(dest, *newdest, destlen); 3156 3157 break; 3158 } 3159 3160 case IPV6_2292RTHDR: 3161 case IPV6_RTHDR: 3162 { 3163 struct ip6_rthdr *rth; 3164 int rthlen; 3165 3166 if (len == 0) { 3167 ip6_clearpktopts(opt, IPV6_RTHDR); 3168 break; /* just remove the option */ 3169 } 3170 3171 /* message length validation */ 3172 if (len < sizeof(struct ip6_rthdr)) 3173 return (EINVAL); 3174 rth = (struct ip6_rthdr *)buf; 3175 rthlen = (rth->ip6r_len + 1) << 3; 3176 if (len != rthlen) 3177 return (EINVAL); 3178 3179 switch (rth->ip6r_type) { 3180 case IPV6_RTHDR_TYPE_0: 3181 if (rth->ip6r_len == 0) /* must contain one addr */ 3182 return (EINVAL); 3183 if (rth->ip6r_len % 2) /* length must be even */ 3184 return (EINVAL); 3185 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3186 return (EINVAL); 3187 break; 3188 default: 3189 return (EINVAL); /* not supported */ 3190 } 3191 3192 /* turn off the previous option */ 3193 ip6_clearpktopts(opt, IPV6_RTHDR); 3194 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3195 if (opt->ip6po_rthdr == NULL) 3196 return (ENOBUFS); 3197 bcopy(rth, opt->ip6po_rthdr, rthlen); 3198 3199 break; 3200 } 3201 3202 case IPV6_USE_MIN_MTU: 3203 if (len != sizeof(int)) 3204 return (EINVAL); 3205 minmtupolicy = *(int *)buf; 3206 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3207 minmtupolicy != IP6PO_MINMTU_DISABLE && 3208 minmtupolicy != IP6PO_MINMTU_ALL) { 3209 return (EINVAL); 3210 } 3211 opt->ip6po_minmtu = minmtupolicy; 3212 break; 3213 3214 case IPV6_DONTFRAG: 3215 if (len != sizeof(int)) 3216 return (EINVAL); 3217 3218 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3219 /* 3220 * we ignore this option for TCP sockets. 3221 * (RFC3542 leaves this case unspecified.) 3222 */ 3223 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3224 } else 3225 opt->ip6po_flags |= IP6PO_DONTFRAG; 3226 break; 3227 3228 case IPV6_PREFER_TEMPADDR: 3229 if (len != sizeof(int)) 3230 return (EINVAL); 3231 preftemp = *(int *)buf; 3232 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3233 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3234 preftemp != IP6PO_TEMPADDR_PREFER) { 3235 return (EINVAL); 3236 } 3237 opt->ip6po_prefer_tempaddr = preftemp; 3238 break; 3239 3240 default: 3241 return (ENOPROTOOPT); 3242 } /* end of switch */ 3243 3244 return (0); 3245 } 3246 3247 /* 3248 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3249 * packet to the input queue of a specified interface. Note that this 3250 * calls the output routine of the loopback "driver", but with an interface 3251 * pointer that might NOT be &loif -- easier than replicating that code here. 3252 */ 3253 void 3254 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 3255 { 3256 struct mbuf *copym; 3257 struct ip6_hdr *ip6; 3258 3259 copym = m_copy(m, 0, M_COPYALL); 3260 if (copym == NULL) 3261 return; 3262 3263 /* 3264 * Make sure to deep-copy IPv6 header portion in case the data 3265 * is in an mbuf cluster, so that we can safely override the IPv6 3266 * header portion later. 3267 */ 3268 if ((copym->m_flags & M_EXT) != 0 || 3269 copym->m_len < sizeof(struct ip6_hdr)) { 3270 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3271 if (copym == NULL) 3272 return; 3273 } 3274 3275 #ifdef DIAGNOSTIC 3276 if (copym->m_len < sizeof(*ip6)) { 3277 m_freem(copym); 3278 return; 3279 } 3280 #endif 3281 3282 ip6 = mtod(copym, struct ip6_hdr *); 3283 /* 3284 * clear embedded scope identifiers if necessary. 3285 * in6_clearscope will touch the addresses only when necessary. 3286 */ 3287 in6_clearscope(&ip6->ip6_src); 3288 in6_clearscope(&ip6->ip6_dst); 3289 3290 (void)if_simloop(ifp, copym, dst->sin6_family, 0); 3291 } 3292 3293 /* 3294 * Chop IPv6 header off from the payload. 3295 */ 3296 static int 3297 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3298 { 3299 struct mbuf *mh; 3300 struct ip6_hdr *ip6; 3301 3302 ip6 = mtod(m, struct ip6_hdr *); 3303 if (m->m_len > sizeof(*ip6)) { 3304 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3305 if (mh == 0) { 3306 m_freem(m); 3307 return ENOBUFS; 3308 } 3309 M_MOVE_PKTHDR(mh, m); 3310 MH_ALIGN(mh, sizeof(*ip6)); 3311 m->m_len -= sizeof(*ip6); 3312 m->m_data += sizeof(*ip6); 3313 mh->m_next = m; 3314 m = mh; 3315 m->m_len = sizeof(*ip6); 3316 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3317 } 3318 exthdrs->ip6e_ip6 = m; 3319 return 0; 3320 } 3321 3322 /* 3323 * Compute IPv6 extension header length. 3324 */ 3325 int 3326 ip6_optlen(struct in6pcb *in6p) 3327 { 3328 int len; 3329 3330 if (!in6p->in6p_outputopts) 3331 return 0; 3332 3333 len = 0; 3334 #define elen(x) \ 3335 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3336 3337 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3338 if (in6p->in6p_outputopts->ip6po_rthdr) 3339 /* dest1 is valid with rthdr only */ 3340 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3341 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3342 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3343 return len; 3344 #undef elen 3345 } 3346