1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ipfw.h" 69 #include "opt_ipsec.h" 70 #include "opt_sctp.h" 71 #include "opt_route.h" 72 #include "opt_rss.h" 73 74 #include <sys/param.h> 75 #include <sys/kernel.h> 76 #include <sys/malloc.h> 77 #include <sys/mbuf.h> 78 #include <sys/errno.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/protosw.h> 82 #include <sys/socket.h> 83 #include <sys/socketvar.h> 84 #include <sys/syslog.h> 85 #include <sys/ucred.h> 86 87 #include <machine/in_cksum.h> 88 89 #include <net/if.h> 90 #include <net/if_var.h> 91 #include <net/netisr.h> 92 #include <net/route.h> 93 #include <net/pfil.h> 94 #include <net/vnet.h> 95 96 #include <netinet/in.h> 97 #include <netinet/in_var.h> 98 #include <netinet/ip_var.h> 99 #include <netinet6/in6_var.h> 100 #include <netinet/ip6.h> 101 #include <netinet/icmp6.h> 102 #include <netinet6/ip6_var.h> 103 #include <netinet/in_pcb.h> 104 #include <netinet/tcp_var.h> 105 #include <netinet6/nd6.h> 106 #include <netinet/in_rss.h> 107 108 #ifdef IPSEC 109 #include <netipsec/ipsec.h> 110 #include <netipsec/ipsec6.h> 111 #include <netipsec/key.h> 112 #include <netinet6/ip6_ipsec.h> 113 #endif /* IPSEC */ 114 #ifdef SCTP 115 #include <netinet/sctp.h> 116 #include <netinet/sctp_crc32.h> 117 #endif 118 119 #include <netinet6/ip6protosw.h> 120 #include <netinet6/scope6_var.h> 121 122 #ifdef FLOWTABLE 123 #include <net/flowtable.h> 124 #endif 125 126 extern int in6_mcast_loop; 127 128 struct ip6_exthdrs { 129 struct mbuf *ip6e_ip6; 130 struct mbuf *ip6e_hbh; 131 struct mbuf *ip6e_dest1; 132 struct mbuf *ip6e_rthdr; 133 struct mbuf *ip6e_dest2; 134 }; 135 136 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 137 struct ucred *, int); 138 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 139 struct socket *, struct sockopt *); 140 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 141 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 142 struct ucred *, int, int, int); 143 144 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 145 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 146 struct ip6_frag **); 147 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 148 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 149 static int ip6_getpmtu(struct route_in6 *, struct route_in6 *, 150 struct ifnet *, struct in6_addr *, u_long *, int *, u_int); 151 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 152 153 154 /* 155 * Make an extension header from option data. hp is the source, and 156 * mp is the destination. 157 */ 158 #define MAKE_EXTHDR(hp, mp) \ 159 do { \ 160 if (hp) { \ 161 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 162 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 163 ((eh)->ip6e_len + 1) << 3); \ 164 if (error) \ 165 goto freehdrs; \ 166 } \ 167 } while (/*CONSTCOND*/ 0) 168 169 /* 170 * Form a chain of extension headers. 171 * m is the extension header mbuf 172 * mp is the previous mbuf in the chain 173 * p is the next header 174 * i is the type of option. 175 */ 176 #define MAKE_CHAIN(m, mp, p, i)\ 177 do {\ 178 if (m) {\ 179 if (!hdrsplit) \ 180 panic("assumption failed: hdr not split"); \ 181 *mtod((m), u_char *) = *(p);\ 182 *(p) = (i);\ 183 p = mtod((m), u_char *);\ 184 (m)->m_next = (mp)->m_next;\ 185 (mp)->m_next = (m);\ 186 (mp) = (m);\ 187 }\ 188 } while (/*CONSTCOND*/ 0) 189 190 void 191 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 192 { 193 u_short csum; 194 195 csum = in_cksum_skip(m, offset + plen, offset); 196 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 197 csum = 0xffff; 198 offset += m->m_pkthdr.csum_data; /* checksum offset */ 199 200 if (offset + sizeof(u_short) > m->m_len) { 201 printf("%s: delayed m_pullup, m->len: %d plen %u off %u " 202 "csum_flags=%b\n", __func__, m->m_len, plen, offset, 203 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 204 /* 205 * XXX this should not happen, but if it does, the correct 206 * behavior may be to insert the checksum in the appropriate 207 * next mbuf in the chain. 208 */ 209 return; 210 } 211 *(u_short *)(m->m_data + offset) = csum; 212 } 213 214 /* 215 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 216 * header (with pri, len, nxt, hlim, src, dst). 217 * This function may modify ver and hlim only. 218 * The mbuf chain containing the packet will be freed. 219 * The mbuf opt, if present, will not be freed. 220 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 221 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 222 * then result of route lookup is stored in ro->ro_rt. 223 * 224 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 225 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 226 * which is rt_mtu. 227 * 228 * ifpp - XXX: just for statistics 229 */ 230 /* 231 * XXX TODO: no flowid is assigned for outbound flows? 232 */ 233 int 234 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 235 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 236 struct ifnet **ifpp, struct inpcb *inp) 237 { 238 struct ip6_hdr *ip6, *mhip6; 239 struct ifnet *ifp, *origifp; 240 struct mbuf *m = m0; 241 struct mbuf *mprev = NULL; 242 int hlen, tlen, len, off; 243 struct route_in6 ip6route; 244 struct rtentry *rt = NULL; 245 struct sockaddr_in6 *dst, src_sa, dst_sa; 246 struct in6_addr odst; 247 int error = 0; 248 struct in6_ifaddr *ia = NULL; 249 u_long mtu; 250 int alwaysfrag, dontfrag; 251 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 252 struct ip6_exthdrs exthdrs; 253 struct in6_addr finaldst, src0, dst0; 254 u_int32_t zone; 255 struct route_in6 *ro_pmtu = NULL; 256 int hdrsplit = 0; 257 int sw_csum, tso; 258 int needfiblookup; 259 uint32_t fibnum; 260 struct m_tag *fwd_tag = NULL; 261 262 ip6 = mtod(m, struct ip6_hdr *); 263 if (ip6 == NULL) { 264 printf ("ip6 is NULL"); 265 goto bad; 266 } 267 268 if (inp != NULL) { 269 M_SETFIB(m, inp->inp_inc.inc_fibnum); 270 if (((flags & IP_NODEFAULTFLOWID) == 0) && 271 (inp->inp_flags & (INP_HW_FLOWID|INP_SW_FLOWID))) { 272 m->m_pkthdr.flowid = inp->inp_flowid; 273 m->m_flags |= M_FLOWID; 274 } 275 } 276 277 finaldst = ip6->ip6_dst; 278 bzero(&exthdrs, sizeof(exthdrs)); 279 if (opt) { 280 /* Hop-by-Hop options header */ 281 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 282 /* Destination options header(1st part) */ 283 if (opt->ip6po_rthdr) { 284 /* 285 * Destination options header(1st part) 286 * This only makes sense with a routing header. 287 * See Section 9.2 of RFC 3542. 288 * Disabling this part just for MIP6 convenience is 289 * a bad idea. We need to think carefully about a 290 * way to make the advanced API coexist with MIP6 291 * options, which might automatically be inserted in 292 * the kernel. 293 */ 294 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 295 } 296 /* Routing header */ 297 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 298 /* Destination options header(2nd part) */ 299 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 300 } 301 302 #ifdef IPSEC 303 /* 304 * IPSec checking which handles several cases. 305 * FAST IPSEC: We re-injected the packet. 306 */ 307 switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp)) 308 { 309 case 1: /* Bad packet */ 310 goto freehdrs; 311 case -1: /* IPSec done */ 312 goto done; 313 case 0: /* No IPSec */ 314 default: 315 break; 316 } 317 #endif /* IPSEC */ 318 319 /* 320 * Calculate the total length of the extension header chain. 321 * Keep the length of the unfragmentable part for fragmentation. 322 */ 323 optlen = 0; 324 if (exthdrs.ip6e_hbh) 325 optlen += exthdrs.ip6e_hbh->m_len; 326 if (exthdrs.ip6e_dest1) 327 optlen += exthdrs.ip6e_dest1->m_len; 328 if (exthdrs.ip6e_rthdr) 329 optlen += exthdrs.ip6e_rthdr->m_len; 330 unfragpartlen = optlen + sizeof(struct ip6_hdr); 331 332 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 333 if (exthdrs.ip6e_dest2) 334 optlen += exthdrs.ip6e_dest2->m_len; 335 336 /* 337 * If there is at least one extension header, 338 * separate IP6 header from the payload. 339 */ 340 if (optlen && !hdrsplit) { 341 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 342 m = NULL; 343 goto freehdrs; 344 } 345 m = exthdrs.ip6e_ip6; 346 hdrsplit++; 347 } 348 349 /* adjust pointer */ 350 ip6 = mtod(m, struct ip6_hdr *); 351 352 /* adjust mbuf packet header length */ 353 m->m_pkthdr.len += optlen; 354 plen = m->m_pkthdr.len - sizeof(*ip6); 355 356 /* If this is a jumbo payload, insert a jumbo payload option. */ 357 if (plen > IPV6_MAXPACKET) { 358 if (!hdrsplit) { 359 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 360 m = NULL; 361 goto freehdrs; 362 } 363 m = exthdrs.ip6e_ip6; 364 hdrsplit++; 365 } 366 /* adjust pointer */ 367 ip6 = mtod(m, struct ip6_hdr *); 368 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 369 goto freehdrs; 370 ip6->ip6_plen = 0; 371 } else 372 ip6->ip6_plen = htons(plen); 373 374 /* 375 * Concatenate headers and fill in next header fields. 376 * Here we have, on "m" 377 * IPv6 payload 378 * and we insert headers accordingly. Finally, we should be getting: 379 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 380 * 381 * during the header composing process, "m" points to IPv6 header. 382 * "mprev" points to an extension header prior to esp. 383 */ 384 u_char *nexthdrp = &ip6->ip6_nxt; 385 mprev = m; 386 387 /* 388 * we treat dest2 specially. this makes IPsec processing 389 * much easier. the goal here is to make mprev point the 390 * mbuf prior to dest2. 391 * 392 * result: IPv6 dest2 payload 393 * m and mprev will point to IPv6 header. 394 */ 395 if (exthdrs.ip6e_dest2) { 396 if (!hdrsplit) 397 panic("assumption failed: hdr not split"); 398 exthdrs.ip6e_dest2->m_next = m->m_next; 399 m->m_next = exthdrs.ip6e_dest2; 400 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 401 ip6->ip6_nxt = IPPROTO_DSTOPTS; 402 } 403 404 /* 405 * result: IPv6 hbh dest1 rthdr dest2 payload 406 * m will point to IPv6 header. mprev will point to the 407 * extension header prior to dest2 (rthdr in the above case). 408 */ 409 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 410 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 411 IPPROTO_DSTOPTS); 412 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 413 IPPROTO_ROUTING); 414 415 /* 416 * If there is a routing header, discard the packet. 417 */ 418 if (exthdrs.ip6e_rthdr) { 419 error = EINVAL; 420 goto bad; 421 } 422 423 /* Source address validation */ 424 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 425 (flags & IPV6_UNSPECSRC) == 0) { 426 error = EOPNOTSUPP; 427 IP6STAT_INC(ip6s_badscope); 428 goto bad; 429 } 430 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 431 error = EOPNOTSUPP; 432 IP6STAT_INC(ip6s_badscope); 433 goto bad; 434 } 435 436 IP6STAT_INC(ip6s_localout); 437 438 /* 439 * Route packet. 440 */ 441 if (ro == 0) { 442 ro = &ip6route; 443 bzero((caddr_t)ro, sizeof(*ro)); 444 } 445 ro_pmtu = ro; 446 if (opt && opt->ip6po_rthdr) 447 ro = &opt->ip6po_route; 448 dst = (struct sockaddr_in6 *)&ro->ro_dst; 449 #ifdef FLOWTABLE 450 if (ro->ro_rt == NULL) 451 (void )flowtable_lookup(AF_INET6, m, (struct route *)ro); 452 #endif 453 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 454 again: 455 /* 456 * if specified, try to fill in the traffic class field. 457 * do not override if a non-zero value is already set. 458 * we check the diffserv field and the ecn field separately. 459 */ 460 if (opt && opt->ip6po_tclass >= 0) { 461 int mask = 0; 462 463 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 464 mask |= 0xfc; 465 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 466 mask |= 0x03; 467 if (mask != 0) 468 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 469 } 470 471 /* fill in or override the hop limit field, if necessary. */ 472 if (opt && opt->ip6po_hlim != -1) 473 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 474 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 475 if (im6o != NULL) 476 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 477 else 478 ip6->ip6_hlim = V_ip6_defmcasthlim; 479 } 480 481 /* adjust pointer */ 482 ip6 = mtod(m, struct ip6_hdr *); 483 484 if (ro->ro_rt && fwd_tag == NULL) { 485 rt = ro->ro_rt; 486 ifp = ro->ro_rt->rt_ifp; 487 } else { 488 if (fwd_tag == NULL) { 489 bzero(&dst_sa, sizeof(dst_sa)); 490 dst_sa.sin6_family = AF_INET6; 491 dst_sa.sin6_len = sizeof(dst_sa); 492 dst_sa.sin6_addr = ip6->ip6_dst; 493 } 494 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 495 &rt, fibnum); 496 if (error != 0) { 497 if (ifp != NULL) 498 in6_ifstat_inc(ifp, ifs6_out_discard); 499 goto bad; 500 } 501 } 502 if (rt == NULL) { 503 /* 504 * If in6_selectroute() does not return a route entry, 505 * dst may not have been updated. 506 */ 507 *dst = dst_sa; /* XXX */ 508 } 509 510 /* 511 * then rt (for unicast) and ifp must be non-NULL valid values. 512 */ 513 if ((flags & IPV6_FORWARDING) == 0) { 514 /* XXX: the FORWARDING flag can be set for mrouting. */ 515 in6_ifstat_inc(ifp, ifs6_out_request); 516 } 517 if (rt != NULL) { 518 ia = (struct in6_ifaddr *)(rt->rt_ifa); 519 counter_u64_add(rt->rt_pksent, 1); 520 } 521 522 523 /* 524 * The outgoing interface must be in the zone of source and 525 * destination addresses. 526 */ 527 origifp = ifp; 528 529 src0 = ip6->ip6_src; 530 if (in6_setscope(&src0, origifp, &zone)) 531 goto badscope; 532 bzero(&src_sa, sizeof(src_sa)); 533 src_sa.sin6_family = AF_INET6; 534 src_sa.sin6_len = sizeof(src_sa); 535 src_sa.sin6_addr = ip6->ip6_src; 536 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 537 goto badscope; 538 539 dst0 = ip6->ip6_dst; 540 if (in6_setscope(&dst0, origifp, &zone)) 541 goto badscope; 542 /* re-initialize to be sure */ 543 bzero(&dst_sa, sizeof(dst_sa)); 544 dst_sa.sin6_family = AF_INET6; 545 dst_sa.sin6_len = sizeof(dst_sa); 546 dst_sa.sin6_addr = ip6->ip6_dst; 547 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 548 goto badscope; 549 } 550 551 /* We should use ia_ifp to support the case of 552 * sending packets to an address of our own. 553 */ 554 if (ia != NULL && ia->ia_ifp) 555 ifp = ia->ia_ifp; 556 557 /* scope check is done. */ 558 goto routefound; 559 560 badscope: 561 IP6STAT_INC(ip6s_badscope); 562 in6_ifstat_inc(origifp, ifs6_out_discard); 563 if (error == 0) 564 error = EHOSTUNREACH; /* XXX */ 565 goto bad; 566 567 routefound: 568 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 569 if (opt && opt->ip6po_nextroute.ro_rt) { 570 /* 571 * The nexthop is explicitly specified by the 572 * application. We assume the next hop is an IPv6 573 * address. 574 */ 575 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 576 } 577 else if ((rt->rt_flags & RTF_GATEWAY)) 578 dst = (struct sockaddr_in6 *)rt->rt_gateway; 579 } 580 581 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 582 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 583 } else { 584 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 585 in6_ifstat_inc(ifp, ifs6_out_mcast); 586 /* 587 * Confirm that the outgoing interface supports multicast. 588 */ 589 if (!(ifp->if_flags & IFF_MULTICAST)) { 590 IP6STAT_INC(ip6s_noroute); 591 in6_ifstat_inc(ifp, ifs6_out_discard); 592 error = ENETUNREACH; 593 goto bad; 594 } 595 if ((im6o == NULL && in6_mcast_loop) || 596 (im6o && im6o->im6o_multicast_loop)) { 597 /* 598 * Loop back multicast datagram if not expressly 599 * forbidden to do so, even if we have not joined 600 * the address; protocols will filter it later, 601 * thus deferring a hash lookup and lock acquisition 602 * at the expense of an m_copym(). 603 */ 604 ip6_mloopback(ifp, m, dst); 605 } else { 606 /* 607 * If we are acting as a multicast router, perform 608 * multicast forwarding as if the packet had just 609 * arrived on the interface to which we are about 610 * to send. The multicast forwarding function 611 * recursively calls this function, using the 612 * IPV6_FORWARDING flag to prevent infinite recursion. 613 * 614 * Multicasts that are looped back by ip6_mloopback(), 615 * above, will be forwarded by the ip6_input() routine, 616 * if necessary. 617 */ 618 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 619 /* 620 * XXX: ip6_mforward expects that rcvif is NULL 621 * when it is called from the originating path. 622 * However, it may not always be the case. 623 */ 624 m->m_pkthdr.rcvif = NULL; 625 if (ip6_mforward(ip6, ifp, m) != 0) { 626 m_freem(m); 627 goto done; 628 } 629 } 630 } 631 /* 632 * Multicasts with a hoplimit of zero may be looped back, 633 * above, but must not be transmitted on a network. 634 * Also, multicasts addressed to the loopback interface 635 * are not sent -- the above call to ip6_mloopback() will 636 * loop back a copy if this host actually belongs to the 637 * destination group on the loopback interface. 638 */ 639 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 640 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 641 m_freem(m); 642 goto done; 643 } 644 } 645 646 /* 647 * Fill the outgoing inteface to tell the upper layer 648 * to increment per-interface statistics. 649 */ 650 if (ifpp) 651 *ifpp = ifp; 652 653 /* Determine path MTU. */ 654 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 655 &alwaysfrag, fibnum)) != 0) 656 goto bad; 657 658 /* 659 * The caller of this function may specify to use the minimum MTU 660 * in some cases. 661 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 662 * setting. The logic is a bit complicated; by default, unicast 663 * packets will follow path MTU while multicast packets will be sent at 664 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 665 * including unicast ones will be sent at the minimum MTU. Multicast 666 * packets will always be sent at the minimum MTU unless 667 * IP6PO_MINMTU_DISABLE is explicitly specified. 668 * See RFC 3542 for more details. 669 */ 670 if (mtu > IPV6_MMTU) { 671 if ((flags & IPV6_MINMTU)) 672 mtu = IPV6_MMTU; 673 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 674 mtu = IPV6_MMTU; 675 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 676 (opt == NULL || 677 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 678 mtu = IPV6_MMTU; 679 } 680 } 681 682 /* 683 * clear embedded scope identifiers if necessary. 684 * in6_clearscope will touch the addresses only when necessary. 685 */ 686 in6_clearscope(&ip6->ip6_src); 687 in6_clearscope(&ip6->ip6_dst); 688 689 /* 690 * If the outgoing packet contains a hop-by-hop options header, 691 * it must be examined and processed even by the source node. 692 * (RFC 2460, section 4.) 693 */ 694 if (exthdrs.ip6e_hbh) { 695 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 696 u_int32_t dummy; /* XXX unused */ 697 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 698 699 #ifdef DIAGNOSTIC 700 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 701 panic("ip6e_hbh is not contiguous"); 702 #endif 703 /* 704 * XXX: if we have to send an ICMPv6 error to the sender, 705 * we need the M_LOOP flag since icmp6_error() expects 706 * the IPv6 and the hop-by-hop options header are 707 * contiguous unless the flag is set. 708 */ 709 m->m_flags |= M_LOOP; 710 m->m_pkthdr.rcvif = ifp; 711 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 712 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 713 &dummy, &plen) < 0) { 714 /* m was already freed at this point */ 715 error = EINVAL;/* better error? */ 716 goto done; 717 } 718 m->m_flags &= ~M_LOOP; /* XXX */ 719 m->m_pkthdr.rcvif = NULL; 720 } 721 722 /* Jump over all PFIL processing if hooks are not active. */ 723 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 724 goto passout; 725 726 odst = ip6->ip6_dst; 727 /* Run through list of hooks for output packets. */ 728 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 729 if (error != 0 || m == NULL) 730 goto done; 731 ip6 = mtod(m, struct ip6_hdr *); 732 733 needfiblookup = 0; 734 /* See if destination IP address was changed by packet filter. */ 735 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 736 m->m_flags |= M_SKIP_FIREWALL; 737 /* If destination is now ourself drop to ip6_input(). */ 738 if (in6_localip(&ip6->ip6_dst)) { 739 m->m_flags |= M_FASTFWD_OURS; 740 if (m->m_pkthdr.rcvif == NULL) 741 m->m_pkthdr.rcvif = V_loif; 742 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 743 m->m_pkthdr.csum_flags |= 744 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 745 m->m_pkthdr.csum_data = 0xffff; 746 } 747 #ifdef SCTP 748 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 749 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 750 #endif 751 error = netisr_queue(NETISR_IPV6, m); 752 goto done; 753 } else 754 needfiblookup = 1; /* Redo the routing table lookup. */ 755 } 756 /* See if fib was changed by packet filter. */ 757 if (fibnum != M_GETFIB(m)) { 758 m->m_flags |= M_SKIP_FIREWALL; 759 fibnum = M_GETFIB(m); 760 RO_RTFREE(ro); 761 needfiblookup = 1; 762 } 763 if (needfiblookup) 764 goto again; 765 766 /* See if local, if yes, send it to netisr. */ 767 if (m->m_flags & M_FASTFWD_OURS) { 768 if (m->m_pkthdr.rcvif == NULL) 769 m->m_pkthdr.rcvif = V_loif; 770 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 771 m->m_pkthdr.csum_flags |= 772 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 773 m->m_pkthdr.csum_data = 0xffff; 774 } 775 #ifdef SCTP 776 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 777 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 778 #endif 779 error = netisr_queue(NETISR_IPV6, m); 780 goto done; 781 } 782 /* Or forward to some other address? */ 783 if ((m->m_flags & M_IP6_NEXTHOP) && 784 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 785 dst = (struct sockaddr_in6 *)&ro->ro_dst; 786 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 787 m->m_flags |= M_SKIP_FIREWALL; 788 m->m_flags &= ~M_IP6_NEXTHOP; 789 m_tag_delete(m, fwd_tag); 790 goto again; 791 } 792 793 passout: 794 /* 795 * Send the packet to the outgoing interface. 796 * If necessary, do IPv6 fragmentation before sending. 797 * 798 * the logic here is rather complex: 799 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 800 * 1-a: send as is if tlen <= path mtu 801 * 1-b: fragment if tlen > path mtu 802 * 803 * 2: if user asks us not to fragment (dontfrag == 1) 804 * 2-a: send as is if tlen <= interface mtu 805 * 2-b: error if tlen > interface mtu 806 * 807 * 3: if we always need to attach fragment header (alwaysfrag == 1) 808 * always fragment 809 * 810 * 4: if dontfrag == 1 && alwaysfrag == 1 811 * error, as we cannot handle this conflicting request 812 */ 813 sw_csum = m->m_pkthdr.csum_flags; 814 if (!hdrsplit) { 815 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 816 sw_csum &= ~ifp->if_hwassist; 817 } else 818 tso = 0; 819 /* 820 * If we added extension headers, we will not do TSO and calculate the 821 * checksums ourselves for now. 822 * XXX-BZ Need a framework to know when the NIC can handle it, even 823 * with ext. hdrs. 824 */ 825 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 826 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 827 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 828 } 829 #ifdef SCTP 830 if (sw_csum & CSUM_SCTP_IPV6) { 831 sw_csum &= ~CSUM_SCTP_IPV6; 832 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 833 } 834 #endif 835 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 836 tlen = m->m_pkthdr.len; 837 838 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 839 dontfrag = 1; 840 else 841 dontfrag = 0; 842 if (dontfrag && alwaysfrag) { /* case 4 */ 843 /* conflicting request - can't transmit */ 844 error = EMSGSIZE; 845 goto bad; 846 } 847 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 848 /* 849 * Even if the DONTFRAG option is specified, we cannot send the 850 * packet when the data length is larger than the MTU of the 851 * outgoing interface. 852 * Notify the error by sending IPV6_PATHMTU ancillary data as 853 * well as returning an error code (the latter is not described 854 * in the API spec.) 855 */ 856 u_int32_t mtu32; 857 struct ip6ctlparam ip6cp; 858 859 mtu32 = (u_int32_t)mtu; 860 bzero(&ip6cp, sizeof(ip6cp)); 861 ip6cp.ip6c_cmdarg = (void *)&mtu32; 862 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 863 (void *)&ip6cp); 864 865 error = EMSGSIZE; 866 goto bad; 867 } 868 869 /* 870 * transmit packet without fragmentation 871 */ 872 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 873 struct in6_ifaddr *ia6; 874 875 ip6 = mtod(m, struct ip6_hdr *); 876 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 877 if (ia6) { 878 /* Record statistics for this interface address. */ 879 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 880 counter_u64_add(ia6->ia_ifa.ifa_obytes, 881 m->m_pkthdr.len); 882 ifa_free(&ia6->ia_ifa); 883 } 884 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 885 goto done; 886 } 887 888 /* 889 * try to fragment the packet. case 1-b and 3 890 */ 891 if (mtu < IPV6_MMTU) { 892 /* path MTU cannot be less than IPV6_MMTU */ 893 error = EMSGSIZE; 894 in6_ifstat_inc(ifp, ifs6_out_fragfail); 895 goto bad; 896 } else if (ip6->ip6_plen == 0) { 897 /* jumbo payload cannot be fragmented */ 898 error = EMSGSIZE; 899 in6_ifstat_inc(ifp, ifs6_out_fragfail); 900 goto bad; 901 } else { 902 struct mbuf **mnext, *m_frgpart; 903 struct ip6_frag *ip6f; 904 u_int32_t id = htonl(ip6_randomid()); 905 u_char nextproto; 906 907 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len; 908 909 /* 910 * Too large for the destination or interface; 911 * fragment if possible. 912 * Must be able to put at least 8 bytes per fragment. 913 */ 914 hlen = unfragpartlen; 915 if (mtu > IPV6_MAXPACKET) 916 mtu = IPV6_MAXPACKET; 917 918 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 919 if (len < 8) { 920 error = EMSGSIZE; 921 in6_ifstat_inc(ifp, ifs6_out_fragfail); 922 goto bad; 923 } 924 925 /* 926 * Verify that we have any chance at all of being able to queue 927 * the packet or packet fragments 928 */ 929 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen) 930 < tlen /* - hlen */)) { 931 error = ENOBUFS; 932 IP6STAT_INC(ip6s_odropped); 933 goto bad; 934 } 935 936 937 /* 938 * If the interface will not calculate checksums on 939 * fragmented packets, then do it here. 940 * XXX-BZ handle the hw offloading case. Need flags. 941 */ 942 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 943 in6_delayed_cksum(m, plen, hlen); 944 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 945 } 946 #ifdef SCTP 947 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 948 sctp_delayed_cksum(m, hlen); 949 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 950 } 951 #endif 952 mnext = &m->m_nextpkt; 953 954 /* 955 * Change the next header field of the last header in the 956 * unfragmentable part. 957 */ 958 if (exthdrs.ip6e_rthdr) { 959 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 960 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 961 } else if (exthdrs.ip6e_dest1) { 962 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 963 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 964 } else if (exthdrs.ip6e_hbh) { 965 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 966 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 967 } else { 968 nextproto = ip6->ip6_nxt; 969 ip6->ip6_nxt = IPPROTO_FRAGMENT; 970 } 971 972 /* 973 * Loop through length of segment after first fragment, 974 * make new header and copy data of each part and link onto 975 * chain. 976 */ 977 m0 = m; 978 for (off = hlen; off < tlen; off += len) { 979 m = m_gethdr(M_NOWAIT, MT_DATA); 980 if (!m) { 981 error = ENOBUFS; 982 IP6STAT_INC(ip6s_odropped); 983 goto sendorfree; 984 } 985 m->m_flags = m0->m_flags & M_COPYFLAGS; 986 *mnext = m; 987 mnext = &m->m_nextpkt; 988 m->m_data += max_linkhdr; 989 mhip6 = mtod(m, struct ip6_hdr *); 990 *mhip6 = *ip6; 991 m->m_len = sizeof(*mhip6); 992 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 993 if (error) { 994 IP6STAT_INC(ip6s_odropped); 995 goto sendorfree; 996 } 997 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 998 if (off + len >= tlen) 999 len = tlen - off; 1000 else 1001 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1002 mhip6->ip6_plen = htons((u_short)(len + hlen + 1003 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1004 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1005 error = ENOBUFS; 1006 IP6STAT_INC(ip6s_odropped); 1007 goto sendorfree; 1008 } 1009 m_cat(m, m_frgpart); 1010 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1011 m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; 1012 m->m_pkthdr.rcvif = NULL; 1013 ip6f->ip6f_reserved = 0; 1014 ip6f->ip6f_ident = id; 1015 ip6f->ip6f_nxt = nextproto; 1016 IP6STAT_INC(ip6s_ofragments); 1017 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1018 } 1019 1020 in6_ifstat_inc(ifp, ifs6_out_fragok); 1021 } 1022 1023 /* 1024 * Remove leading garbages. 1025 */ 1026 sendorfree: 1027 m = m0->m_nextpkt; 1028 m0->m_nextpkt = 0; 1029 m_freem(m0); 1030 for (m0 = m; m; m = m0) { 1031 m0 = m->m_nextpkt; 1032 m->m_nextpkt = 0; 1033 if (error == 0) { 1034 /* Record statistics for this interface address. */ 1035 if (ia) { 1036 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1037 counter_u64_add(ia->ia_ifa.ifa_obytes, 1038 m->m_pkthdr.len); 1039 } 1040 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1041 } else 1042 m_freem(m); 1043 } 1044 1045 if (error == 0) 1046 IP6STAT_INC(ip6s_fragmented); 1047 1048 done: 1049 if (ro == &ip6route) 1050 RO_RTFREE(ro); 1051 if (ro_pmtu == &ip6route) 1052 RO_RTFREE(ro_pmtu); 1053 return (error); 1054 1055 freehdrs: 1056 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1057 m_freem(exthdrs.ip6e_dest1); 1058 m_freem(exthdrs.ip6e_rthdr); 1059 m_freem(exthdrs.ip6e_dest2); 1060 /* FALLTHROUGH */ 1061 bad: 1062 if (m) 1063 m_freem(m); 1064 goto done; 1065 } 1066 1067 static int 1068 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1069 { 1070 struct mbuf *m; 1071 1072 if (hlen > MCLBYTES) 1073 return (ENOBUFS); /* XXX */ 1074 1075 if (hlen > MLEN) 1076 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1077 else 1078 m = m_get(M_NOWAIT, MT_DATA); 1079 if (m == NULL) 1080 return (ENOBUFS); 1081 m->m_len = hlen; 1082 if (hdr) 1083 bcopy(hdr, mtod(m, caddr_t), hlen); 1084 1085 *mp = m; 1086 return (0); 1087 } 1088 1089 /* 1090 * Insert jumbo payload option. 1091 */ 1092 static int 1093 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1094 { 1095 struct mbuf *mopt; 1096 u_char *optbuf; 1097 u_int32_t v; 1098 1099 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1100 1101 /* 1102 * If there is no hop-by-hop options header, allocate new one. 1103 * If there is one but it doesn't have enough space to store the 1104 * jumbo payload option, allocate a cluster to store the whole options. 1105 * Otherwise, use it to store the options. 1106 */ 1107 if (exthdrs->ip6e_hbh == 0) { 1108 mopt = m_get(M_NOWAIT, MT_DATA); 1109 if (mopt == NULL) 1110 return (ENOBUFS); 1111 mopt->m_len = JUMBOOPTLEN; 1112 optbuf = mtod(mopt, u_char *); 1113 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1114 exthdrs->ip6e_hbh = mopt; 1115 } else { 1116 struct ip6_hbh *hbh; 1117 1118 mopt = exthdrs->ip6e_hbh; 1119 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1120 /* 1121 * XXX assumption: 1122 * - exthdrs->ip6e_hbh is not referenced from places 1123 * other than exthdrs. 1124 * - exthdrs->ip6e_hbh is not an mbuf chain. 1125 */ 1126 int oldoptlen = mopt->m_len; 1127 struct mbuf *n; 1128 1129 /* 1130 * XXX: give up if the whole (new) hbh header does 1131 * not fit even in an mbuf cluster. 1132 */ 1133 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1134 return (ENOBUFS); 1135 1136 /* 1137 * As a consequence, we must always prepare a cluster 1138 * at this point. 1139 */ 1140 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1141 if (n == NULL) 1142 return (ENOBUFS); 1143 n->m_len = oldoptlen + JUMBOOPTLEN; 1144 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1145 oldoptlen); 1146 optbuf = mtod(n, caddr_t) + oldoptlen; 1147 m_freem(mopt); 1148 mopt = exthdrs->ip6e_hbh = n; 1149 } else { 1150 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1151 mopt->m_len += JUMBOOPTLEN; 1152 } 1153 optbuf[0] = IP6OPT_PADN; 1154 optbuf[1] = 1; 1155 1156 /* 1157 * Adjust the header length according to the pad and 1158 * the jumbo payload option. 1159 */ 1160 hbh = mtod(mopt, struct ip6_hbh *); 1161 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1162 } 1163 1164 /* fill in the option. */ 1165 optbuf[2] = IP6OPT_JUMBO; 1166 optbuf[3] = 4; 1167 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1168 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1169 1170 /* finally, adjust the packet header length */ 1171 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1172 1173 return (0); 1174 #undef JUMBOOPTLEN 1175 } 1176 1177 /* 1178 * Insert fragment header and copy unfragmentable header portions. 1179 */ 1180 static int 1181 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1182 struct ip6_frag **frghdrp) 1183 { 1184 struct mbuf *n, *mlast; 1185 1186 if (hlen > sizeof(struct ip6_hdr)) { 1187 n = m_copym(m0, sizeof(struct ip6_hdr), 1188 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1189 if (n == 0) 1190 return (ENOBUFS); 1191 m->m_next = n; 1192 } else 1193 n = m; 1194 1195 /* Search for the last mbuf of unfragmentable part. */ 1196 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1197 ; 1198 1199 if (M_WRITABLE(mlast) && 1200 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1201 /* use the trailing space of the last mbuf for the fragment hdr */ 1202 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1203 mlast->m_len); 1204 mlast->m_len += sizeof(struct ip6_frag); 1205 m->m_pkthdr.len += sizeof(struct ip6_frag); 1206 } else { 1207 /* allocate a new mbuf for the fragment header */ 1208 struct mbuf *mfrg; 1209 1210 mfrg = m_get(M_NOWAIT, MT_DATA); 1211 if (mfrg == NULL) 1212 return (ENOBUFS); 1213 mfrg->m_len = sizeof(struct ip6_frag); 1214 *frghdrp = mtod(mfrg, struct ip6_frag *); 1215 mlast->m_next = mfrg; 1216 } 1217 1218 return (0); 1219 } 1220 1221 static int 1222 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, 1223 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, 1224 int *alwaysfragp, u_int fibnum) 1225 { 1226 u_int32_t mtu = 0; 1227 int alwaysfrag = 0; 1228 int error = 0; 1229 1230 if (ro_pmtu != ro) { 1231 /* The first hop and the final destination may differ. */ 1232 struct sockaddr_in6 *sa6_dst = 1233 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1234 if (ro_pmtu->ro_rt && 1235 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1236 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1237 RTFREE(ro_pmtu->ro_rt); 1238 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1239 } 1240 if (ro_pmtu->ro_rt == NULL) { 1241 bzero(sa6_dst, sizeof(*sa6_dst)); 1242 sa6_dst->sin6_family = AF_INET6; 1243 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1244 sa6_dst->sin6_addr = *dst; 1245 1246 in6_rtalloc(ro_pmtu, fibnum); 1247 } 1248 } 1249 if (ro_pmtu->ro_rt) { 1250 u_int32_t ifmtu; 1251 struct in_conninfo inc; 1252 1253 bzero(&inc, sizeof(inc)); 1254 inc.inc_flags |= INC_ISIPV6; 1255 inc.inc6_faddr = *dst; 1256 1257 if (ifp == NULL) 1258 ifp = ro_pmtu->ro_rt->rt_ifp; 1259 ifmtu = IN6_LINKMTU(ifp); 1260 mtu = tcp_hc_getmtu(&inc); 1261 if (mtu) 1262 mtu = min(mtu, ro_pmtu->ro_rt->rt_mtu); 1263 else 1264 mtu = ro_pmtu->ro_rt->rt_mtu; 1265 if (mtu == 0) 1266 mtu = ifmtu; 1267 else if (mtu < IPV6_MMTU) { 1268 /* 1269 * RFC2460 section 5, last paragraph: 1270 * if we record ICMPv6 too big message with 1271 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1272 * or smaller, with framgent header attached. 1273 * (fragment header is needed regardless from the 1274 * packet size, for translators to identify packets) 1275 */ 1276 alwaysfrag = 1; 1277 mtu = IPV6_MMTU; 1278 } else if (mtu > ifmtu) { 1279 /* 1280 * The MTU on the route is larger than the MTU on 1281 * the interface! This shouldn't happen, unless the 1282 * MTU of the interface has been changed after the 1283 * interface was brought up. Change the MTU in the 1284 * route to match the interface MTU (as long as the 1285 * field isn't locked). 1286 */ 1287 mtu = ifmtu; 1288 ro_pmtu->ro_rt->rt_mtu = mtu; 1289 } 1290 } else if (ifp) { 1291 mtu = IN6_LINKMTU(ifp); 1292 } else 1293 error = EHOSTUNREACH; /* XXX */ 1294 1295 *mtup = mtu; 1296 if (alwaysfragp) 1297 *alwaysfragp = alwaysfrag; 1298 return (error); 1299 } 1300 1301 /* 1302 * IP6 socket option processing. 1303 */ 1304 int 1305 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1306 { 1307 int optdatalen, uproto; 1308 void *optdata; 1309 struct inpcb *in6p = sotoinpcb(so); 1310 int error, optval; 1311 int level, op, optname; 1312 int optlen; 1313 struct thread *td; 1314 #ifdef RSS 1315 uint32_t rss_bucket; 1316 int retval; 1317 #endif 1318 1319 level = sopt->sopt_level; 1320 op = sopt->sopt_dir; 1321 optname = sopt->sopt_name; 1322 optlen = sopt->sopt_valsize; 1323 td = sopt->sopt_td; 1324 error = 0; 1325 optval = 0; 1326 uproto = (int)so->so_proto->pr_protocol; 1327 1328 if (level != IPPROTO_IPV6) { 1329 error = EINVAL; 1330 1331 if (sopt->sopt_level == SOL_SOCKET && 1332 sopt->sopt_dir == SOPT_SET) { 1333 switch (sopt->sopt_name) { 1334 case SO_REUSEADDR: 1335 INP_WLOCK(in6p); 1336 if ((so->so_options & SO_REUSEADDR) != 0) 1337 in6p->inp_flags2 |= INP_REUSEADDR; 1338 else 1339 in6p->inp_flags2 &= ~INP_REUSEADDR; 1340 INP_WUNLOCK(in6p); 1341 error = 0; 1342 break; 1343 case SO_REUSEPORT: 1344 INP_WLOCK(in6p); 1345 if ((so->so_options & SO_REUSEPORT) != 0) 1346 in6p->inp_flags2 |= INP_REUSEPORT; 1347 else 1348 in6p->inp_flags2 &= ~INP_REUSEPORT; 1349 INP_WUNLOCK(in6p); 1350 error = 0; 1351 break; 1352 case SO_SETFIB: 1353 INP_WLOCK(in6p); 1354 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1355 INP_WUNLOCK(in6p); 1356 error = 0; 1357 break; 1358 default: 1359 break; 1360 } 1361 } 1362 } else { /* level == IPPROTO_IPV6 */ 1363 switch (op) { 1364 1365 case SOPT_SET: 1366 switch (optname) { 1367 case IPV6_2292PKTOPTIONS: 1368 #ifdef IPV6_PKTOPTIONS 1369 case IPV6_PKTOPTIONS: 1370 #endif 1371 { 1372 struct mbuf *m; 1373 1374 error = soopt_getm(sopt, &m); /* XXX */ 1375 if (error != 0) 1376 break; 1377 error = soopt_mcopyin(sopt, m); /* XXX */ 1378 if (error != 0) 1379 break; 1380 error = ip6_pcbopts(&in6p->in6p_outputopts, 1381 m, so, sopt); 1382 m_freem(m); /* XXX */ 1383 break; 1384 } 1385 1386 /* 1387 * Use of some Hop-by-Hop options or some 1388 * Destination options, might require special 1389 * privilege. That is, normal applications 1390 * (without special privilege) might be forbidden 1391 * from setting certain options in outgoing packets, 1392 * and might never see certain options in received 1393 * packets. [RFC 2292 Section 6] 1394 * KAME specific note: 1395 * KAME prevents non-privileged users from sending or 1396 * receiving ANY hbh/dst options in order to avoid 1397 * overhead of parsing options in the kernel. 1398 */ 1399 case IPV6_RECVHOPOPTS: 1400 case IPV6_RECVDSTOPTS: 1401 case IPV6_RECVRTHDRDSTOPTS: 1402 if (td != NULL) { 1403 error = priv_check(td, 1404 PRIV_NETINET_SETHDROPTS); 1405 if (error) 1406 break; 1407 } 1408 /* FALLTHROUGH */ 1409 case IPV6_UNICAST_HOPS: 1410 case IPV6_HOPLIMIT: 1411 case IPV6_FAITH: 1412 1413 case IPV6_RECVPKTINFO: 1414 case IPV6_RECVHOPLIMIT: 1415 case IPV6_RECVRTHDR: 1416 case IPV6_RECVPATHMTU: 1417 case IPV6_RECVTCLASS: 1418 case IPV6_V6ONLY: 1419 case IPV6_AUTOFLOWLABEL: 1420 case IPV6_BINDANY: 1421 case IPV6_BINDMULTI: 1422 #ifdef RSS 1423 case IPV6_RSS_LISTEN_BUCKET: 1424 #endif 1425 if (optname == IPV6_BINDANY && td != NULL) { 1426 error = priv_check(td, 1427 PRIV_NETINET_BINDANY); 1428 if (error) 1429 break; 1430 } 1431 1432 if (optlen != sizeof(int)) { 1433 error = EINVAL; 1434 break; 1435 } 1436 error = sooptcopyin(sopt, &optval, 1437 sizeof optval, sizeof optval); 1438 if (error) 1439 break; 1440 switch (optname) { 1441 1442 case IPV6_UNICAST_HOPS: 1443 if (optval < -1 || optval >= 256) 1444 error = EINVAL; 1445 else { 1446 /* -1 = kernel default */ 1447 in6p->in6p_hops = optval; 1448 if ((in6p->inp_vflag & 1449 INP_IPV4) != 0) 1450 in6p->inp_ip_ttl = optval; 1451 } 1452 break; 1453 #define OPTSET(bit) \ 1454 do { \ 1455 INP_WLOCK(in6p); \ 1456 if (optval) \ 1457 in6p->inp_flags |= (bit); \ 1458 else \ 1459 in6p->inp_flags &= ~(bit); \ 1460 INP_WUNLOCK(in6p); \ 1461 } while (/*CONSTCOND*/ 0) 1462 #define OPTSET2292(bit) \ 1463 do { \ 1464 INP_WLOCK(in6p); \ 1465 in6p->inp_flags |= IN6P_RFC2292; \ 1466 if (optval) \ 1467 in6p->inp_flags |= (bit); \ 1468 else \ 1469 in6p->inp_flags &= ~(bit); \ 1470 INP_WUNLOCK(in6p); \ 1471 } while (/*CONSTCOND*/ 0) 1472 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1473 1474 #define OPTSET2(bit, val) do { \ 1475 INP_WLOCK(in6p); \ 1476 if (val) \ 1477 in6p->inp_flags2 |= bit; \ 1478 else \ 1479 in6p->inp_flags2 &= ~bit; \ 1480 INP_WUNLOCK(in6p); \ 1481 } while (0) 1482 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) 1483 1484 case IPV6_RECVPKTINFO: 1485 /* cannot mix with RFC2292 */ 1486 if (OPTBIT(IN6P_RFC2292)) { 1487 error = EINVAL; 1488 break; 1489 } 1490 OPTSET(IN6P_PKTINFO); 1491 break; 1492 1493 case IPV6_HOPLIMIT: 1494 { 1495 struct ip6_pktopts **optp; 1496 1497 /* cannot mix with RFC2292 */ 1498 if (OPTBIT(IN6P_RFC2292)) { 1499 error = EINVAL; 1500 break; 1501 } 1502 optp = &in6p->in6p_outputopts; 1503 error = ip6_pcbopt(IPV6_HOPLIMIT, 1504 (u_char *)&optval, sizeof(optval), 1505 optp, (td != NULL) ? td->td_ucred : 1506 NULL, uproto); 1507 break; 1508 } 1509 1510 case IPV6_RECVHOPLIMIT: 1511 /* cannot mix with RFC2292 */ 1512 if (OPTBIT(IN6P_RFC2292)) { 1513 error = EINVAL; 1514 break; 1515 } 1516 OPTSET(IN6P_HOPLIMIT); 1517 break; 1518 1519 case IPV6_RECVHOPOPTS: 1520 /* cannot mix with RFC2292 */ 1521 if (OPTBIT(IN6P_RFC2292)) { 1522 error = EINVAL; 1523 break; 1524 } 1525 OPTSET(IN6P_HOPOPTS); 1526 break; 1527 1528 case IPV6_RECVDSTOPTS: 1529 /* cannot mix with RFC2292 */ 1530 if (OPTBIT(IN6P_RFC2292)) { 1531 error = EINVAL; 1532 break; 1533 } 1534 OPTSET(IN6P_DSTOPTS); 1535 break; 1536 1537 case IPV6_RECVRTHDRDSTOPTS: 1538 /* cannot mix with RFC2292 */ 1539 if (OPTBIT(IN6P_RFC2292)) { 1540 error = EINVAL; 1541 break; 1542 } 1543 OPTSET(IN6P_RTHDRDSTOPTS); 1544 break; 1545 1546 case IPV6_RECVRTHDR: 1547 /* cannot mix with RFC2292 */ 1548 if (OPTBIT(IN6P_RFC2292)) { 1549 error = EINVAL; 1550 break; 1551 } 1552 OPTSET(IN6P_RTHDR); 1553 break; 1554 1555 case IPV6_FAITH: 1556 OPTSET(INP_FAITH); 1557 break; 1558 1559 case IPV6_RECVPATHMTU: 1560 /* 1561 * We ignore this option for TCP 1562 * sockets. 1563 * (RFC3542 leaves this case 1564 * unspecified.) 1565 */ 1566 if (uproto != IPPROTO_TCP) 1567 OPTSET(IN6P_MTU); 1568 break; 1569 1570 case IPV6_V6ONLY: 1571 /* 1572 * make setsockopt(IPV6_V6ONLY) 1573 * available only prior to bind(2). 1574 * see ipng mailing list, Jun 22 2001. 1575 */ 1576 if (in6p->inp_lport || 1577 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1578 error = EINVAL; 1579 break; 1580 } 1581 OPTSET(IN6P_IPV6_V6ONLY); 1582 if (optval) 1583 in6p->inp_vflag &= ~INP_IPV4; 1584 else 1585 in6p->inp_vflag |= INP_IPV4; 1586 break; 1587 case IPV6_RECVTCLASS: 1588 /* cannot mix with RFC2292 XXX */ 1589 if (OPTBIT(IN6P_RFC2292)) { 1590 error = EINVAL; 1591 break; 1592 } 1593 OPTSET(IN6P_TCLASS); 1594 break; 1595 case IPV6_AUTOFLOWLABEL: 1596 OPTSET(IN6P_AUTOFLOWLABEL); 1597 break; 1598 1599 case IPV6_BINDANY: 1600 OPTSET(INP_BINDANY); 1601 break; 1602 1603 case IPV6_BINDMULTI: 1604 OPTSET2(INP_BINDMULTI, optval); 1605 break; 1606 #ifdef RSS 1607 case IPV6_RSS_LISTEN_BUCKET: 1608 if ((optval >= 0) && 1609 (optval < rss_getnumbuckets())) { 1610 in6p->inp_rss_listen_bucket = optval; 1611 OPTSET2(INP_RSS_BUCKET_SET, 1); 1612 } else { 1613 error = EINVAL; 1614 } 1615 break; 1616 #endif 1617 } 1618 break; 1619 1620 case IPV6_TCLASS: 1621 case IPV6_DONTFRAG: 1622 case IPV6_USE_MIN_MTU: 1623 case IPV6_PREFER_TEMPADDR: 1624 if (optlen != sizeof(optval)) { 1625 error = EINVAL; 1626 break; 1627 } 1628 error = sooptcopyin(sopt, &optval, 1629 sizeof optval, sizeof optval); 1630 if (error) 1631 break; 1632 { 1633 struct ip6_pktopts **optp; 1634 optp = &in6p->in6p_outputopts; 1635 error = ip6_pcbopt(optname, 1636 (u_char *)&optval, sizeof(optval), 1637 optp, (td != NULL) ? td->td_ucred : 1638 NULL, uproto); 1639 break; 1640 } 1641 1642 case IPV6_2292PKTINFO: 1643 case IPV6_2292HOPLIMIT: 1644 case IPV6_2292HOPOPTS: 1645 case IPV6_2292DSTOPTS: 1646 case IPV6_2292RTHDR: 1647 /* RFC 2292 */ 1648 if (optlen != sizeof(int)) { 1649 error = EINVAL; 1650 break; 1651 } 1652 error = sooptcopyin(sopt, &optval, 1653 sizeof optval, sizeof optval); 1654 if (error) 1655 break; 1656 switch (optname) { 1657 case IPV6_2292PKTINFO: 1658 OPTSET2292(IN6P_PKTINFO); 1659 break; 1660 case IPV6_2292HOPLIMIT: 1661 OPTSET2292(IN6P_HOPLIMIT); 1662 break; 1663 case IPV6_2292HOPOPTS: 1664 /* 1665 * Check super-user privilege. 1666 * See comments for IPV6_RECVHOPOPTS. 1667 */ 1668 if (td != NULL) { 1669 error = priv_check(td, 1670 PRIV_NETINET_SETHDROPTS); 1671 if (error) 1672 return (error); 1673 } 1674 OPTSET2292(IN6P_HOPOPTS); 1675 break; 1676 case IPV6_2292DSTOPTS: 1677 if (td != NULL) { 1678 error = priv_check(td, 1679 PRIV_NETINET_SETHDROPTS); 1680 if (error) 1681 return (error); 1682 } 1683 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1684 break; 1685 case IPV6_2292RTHDR: 1686 OPTSET2292(IN6P_RTHDR); 1687 break; 1688 } 1689 break; 1690 case IPV6_PKTINFO: 1691 case IPV6_HOPOPTS: 1692 case IPV6_RTHDR: 1693 case IPV6_DSTOPTS: 1694 case IPV6_RTHDRDSTOPTS: 1695 case IPV6_NEXTHOP: 1696 { 1697 /* new advanced API (RFC3542) */ 1698 u_char *optbuf; 1699 u_char optbuf_storage[MCLBYTES]; 1700 int optlen; 1701 struct ip6_pktopts **optp; 1702 1703 /* cannot mix with RFC2292 */ 1704 if (OPTBIT(IN6P_RFC2292)) { 1705 error = EINVAL; 1706 break; 1707 } 1708 1709 /* 1710 * We only ensure valsize is not too large 1711 * here. Further validation will be done 1712 * later. 1713 */ 1714 error = sooptcopyin(sopt, optbuf_storage, 1715 sizeof(optbuf_storage), 0); 1716 if (error) 1717 break; 1718 optlen = sopt->sopt_valsize; 1719 optbuf = optbuf_storage; 1720 optp = &in6p->in6p_outputopts; 1721 error = ip6_pcbopt(optname, optbuf, optlen, 1722 optp, (td != NULL) ? td->td_ucred : NULL, 1723 uproto); 1724 break; 1725 } 1726 #undef OPTSET 1727 1728 case IPV6_MULTICAST_IF: 1729 case IPV6_MULTICAST_HOPS: 1730 case IPV6_MULTICAST_LOOP: 1731 case IPV6_JOIN_GROUP: 1732 case IPV6_LEAVE_GROUP: 1733 case IPV6_MSFILTER: 1734 case MCAST_BLOCK_SOURCE: 1735 case MCAST_UNBLOCK_SOURCE: 1736 case MCAST_JOIN_GROUP: 1737 case MCAST_LEAVE_GROUP: 1738 case MCAST_JOIN_SOURCE_GROUP: 1739 case MCAST_LEAVE_SOURCE_GROUP: 1740 error = ip6_setmoptions(in6p, sopt); 1741 break; 1742 1743 case IPV6_PORTRANGE: 1744 error = sooptcopyin(sopt, &optval, 1745 sizeof optval, sizeof optval); 1746 if (error) 1747 break; 1748 1749 INP_WLOCK(in6p); 1750 switch (optval) { 1751 case IPV6_PORTRANGE_DEFAULT: 1752 in6p->inp_flags &= ~(INP_LOWPORT); 1753 in6p->inp_flags &= ~(INP_HIGHPORT); 1754 break; 1755 1756 case IPV6_PORTRANGE_HIGH: 1757 in6p->inp_flags &= ~(INP_LOWPORT); 1758 in6p->inp_flags |= INP_HIGHPORT; 1759 break; 1760 1761 case IPV6_PORTRANGE_LOW: 1762 in6p->inp_flags &= ~(INP_HIGHPORT); 1763 in6p->inp_flags |= INP_LOWPORT; 1764 break; 1765 1766 default: 1767 error = EINVAL; 1768 break; 1769 } 1770 INP_WUNLOCK(in6p); 1771 break; 1772 1773 #ifdef IPSEC 1774 case IPV6_IPSEC_POLICY: 1775 { 1776 caddr_t req; 1777 struct mbuf *m; 1778 1779 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1780 break; 1781 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1782 break; 1783 req = mtod(m, caddr_t); 1784 error = ipsec_set_policy(in6p, optname, req, 1785 m->m_len, (sopt->sopt_td != NULL) ? 1786 sopt->sopt_td->td_ucred : NULL); 1787 m_freem(m); 1788 break; 1789 } 1790 #endif /* IPSEC */ 1791 1792 default: 1793 error = ENOPROTOOPT; 1794 break; 1795 } 1796 break; 1797 1798 case SOPT_GET: 1799 switch (optname) { 1800 1801 case IPV6_2292PKTOPTIONS: 1802 #ifdef IPV6_PKTOPTIONS 1803 case IPV6_PKTOPTIONS: 1804 #endif 1805 /* 1806 * RFC3542 (effectively) deprecated the 1807 * semantics of the 2292-style pktoptions. 1808 * Since it was not reliable in nature (i.e., 1809 * applications had to expect the lack of some 1810 * information after all), it would make sense 1811 * to simplify this part by always returning 1812 * empty data. 1813 */ 1814 sopt->sopt_valsize = 0; 1815 break; 1816 1817 case IPV6_RECVHOPOPTS: 1818 case IPV6_RECVDSTOPTS: 1819 case IPV6_RECVRTHDRDSTOPTS: 1820 case IPV6_UNICAST_HOPS: 1821 case IPV6_RECVPKTINFO: 1822 case IPV6_RECVHOPLIMIT: 1823 case IPV6_RECVRTHDR: 1824 case IPV6_RECVPATHMTU: 1825 1826 case IPV6_FAITH: 1827 case IPV6_V6ONLY: 1828 case IPV6_PORTRANGE: 1829 case IPV6_RECVTCLASS: 1830 case IPV6_AUTOFLOWLABEL: 1831 case IPV6_BINDANY: 1832 case IPV6_FLOWID: 1833 case IPV6_FLOWTYPE: 1834 #ifdef RSS 1835 case IPV6_RSSBUCKETID: 1836 #endif 1837 switch (optname) { 1838 1839 case IPV6_RECVHOPOPTS: 1840 optval = OPTBIT(IN6P_HOPOPTS); 1841 break; 1842 1843 case IPV6_RECVDSTOPTS: 1844 optval = OPTBIT(IN6P_DSTOPTS); 1845 break; 1846 1847 case IPV6_RECVRTHDRDSTOPTS: 1848 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1849 break; 1850 1851 case IPV6_UNICAST_HOPS: 1852 optval = in6p->in6p_hops; 1853 break; 1854 1855 case IPV6_RECVPKTINFO: 1856 optval = OPTBIT(IN6P_PKTINFO); 1857 break; 1858 1859 case IPV6_RECVHOPLIMIT: 1860 optval = OPTBIT(IN6P_HOPLIMIT); 1861 break; 1862 1863 case IPV6_RECVRTHDR: 1864 optval = OPTBIT(IN6P_RTHDR); 1865 break; 1866 1867 case IPV6_RECVPATHMTU: 1868 optval = OPTBIT(IN6P_MTU); 1869 break; 1870 1871 case IPV6_FAITH: 1872 optval = OPTBIT(INP_FAITH); 1873 break; 1874 1875 case IPV6_V6ONLY: 1876 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1877 break; 1878 1879 case IPV6_PORTRANGE: 1880 { 1881 int flags; 1882 flags = in6p->inp_flags; 1883 if (flags & INP_HIGHPORT) 1884 optval = IPV6_PORTRANGE_HIGH; 1885 else if (flags & INP_LOWPORT) 1886 optval = IPV6_PORTRANGE_LOW; 1887 else 1888 optval = 0; 1889 break; 1890 } 1891 case IPV6_RECVTCLASS: 1892 optval = OPTBIT(IN6P_TCLASS); 1893 break; 1894 1895 case IPV6_AUTOFLOWLABEL: 1896 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1897 break; 1898 1899 case IPV6_BINDANY: 1900 optval = OPTBIT(INP_BINDANY); 1901 break; 1902 1903 case IPV6_FLOWID: 1904 optval = in6p->inp_flowid; 1905 break; 1906 1907 case IPV6_FLOWTYPE: 1908 optval = in6p->inp_flowtype; 1909 break; 1910 #ifdef RSS 1911 case IPV6_RSSBUCKETID: 1912 retval = 1913 rss_hash2bucket(in6p->inp_flowid, 1914 in6p->inp_flowtype, 1915 &rss_bucket); 1916 if (retval == 0) 1917 optval = rss_bucket; 1918 else 1919 error = EINVAL; 1920 break; 1921 #endif 1922 1923 case IPV6_BINDMULTI: 1924 optval = OPTBIT2(INP_BINDMULTI); 1925 break; 1926 1927 } 1928 if (error) 1929 break; 1930 error = sooptcopyout(sopt, &optval, 1931 sizeof optval); 1932 break; 1933 1934 case IPV6_PATHMTU: 1935 { 1936 u_long pmtu = 0; 1937 struct ip6_mtuinfo mtuinfo; 1938 struct route_in6 sro; 1939 1940 bzero(&sro, sizeof(sro)); 1941 1942 if (!(so->so_state & SS_ISCONNECTED)) 1943 return (ENOTCONN); 1944 /* 1945 * XXX: we dot not consider the case of source 1946 * routing, or optional information to specify 1947 * the outgoing interface. 1948 */ 1949 error = ip6_getpmtu(&sro, NULL, NULL, 1950 &in6p->in6p_faddr, &pmtu, NULL, 1951 so->so_fibnum); 1952 if (sro.ro_rt) 1953 RTFREE(sro.ro_rt); 1954 if (error) 1955 break; 1956 if (pmtu > IPV6_MAXPACKET) 1957 pmtu = IPV6_MAXPACKET; 1958 1959 bzero(&mtuinfo, sizeof(mtuinfo)); 1960 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1961 optdata = (void *)&mtuinfo; 1962 optdatalen = sizeof(mtuinfo); 1963 error = sooptcopyout(sopt, optdata, 1964 optdatalen); 1965 break; 1966 } 1967 1968 case IPV6_2292PKTINFO: 1969 case IPV6_2292HOPLIMIT: 1970 case IPV6_2292HOPOPTS: 1971 case IPV6_2292RTHDR: 1972 case IPV6_2292DSTOPTS: 1973 switch (optname) { 1974 case IPV6_2292PKTINFO: 1975 optval = OPTBIT(IN6P_PKTINFO); 1976 break; 1977 case IPV6_2292HOPLIMIT: 1978 optval = OPTBIT(IN6P_HOPLIMIT); 1979 break; 1980 case IPV6_2292HOPOPTS: 1981 optval = OPTBIT(IN6P_HOPOPTS); 1982 break; 1983 case IPV6_2292RTHDR: 1984 optval = OPTBIT(IN6P_RTHDR); 1985 break; 1986 case IPV6_2292DSTOPTS: 1987 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1988 break; 1989 } 1990 error = sooptcopyout(sopt, &optval, 1991 sizeof optval); 1992 break; 1993 case IPV6_PKTINFO: 1994 case IPV6_HOPOPTS: 1995 case IPV6_RTHDR: 1996 case IPV6_DSTOPTS: 1997 case IPV6_RTHDRDSTOPTS: 1998 case IPV6_NEXTHOP: 1999 case IPV6_TCLASS: 2000 case IPV6_DONTFRAG: 2001 case IPV6_USE_MIN_MTU: 2002 case IPV6_PREFER_TEMPADDR: 2003 error = ip6_getpcbopt(in6p->in6p_outputopts, 2004 optname, sopt); 2005 break; 2006 2007 case IPV6_MULTICAST_IF: 2008 case IPV6_MULTICAST_HOPS: 2009 case IPV6_MULTICAST_LOOP: 2010 case IPV6_MSFILTER: 2011 error = ip6_getmoptions(in6p, sopt); 2012 break; 2013 2014 #ifdef IPSEC 2015 case IPV6_IPSEC_POLICY: 2016 { 2017 caddr_t req = NULL; 2018 size_t len = 0; 2019 struct mbuf *m = NULL; 2020 struct mbuf **mp = &m; 2021 size_t ovalsize = sopt->sopt_valsize; 2022 caddr_t oval = (caddr_t)sopt->sopt_val; 2023 2024 error = soopt_getm(sopt, &m); /* XXX */ 2025 if (error != 0) 2026 break; 2027 error = soopt_mcopyin(sopt, m); /* XXX */ 2028 if (error != 0) 2029 break; 2030 sopt->sopt_valsize = ovalsize; 2031 sopt->sopt_val = oval; 2032 if (m) { 2033 req = mtod(m, caddr_t); 2034 len = m->m_len; 2035 } 2036 error = ipsec_get_policy(in6p, req, len, mp); 2037 if (error == 0) 2038 error = soopt_mcopyout(sopt, m); /* XXX */ 2039 if (error == 0 && m) 2040 m_freem(m); 2041 break; 2042 } 2043 #endif /* IPSEC */ 2044 2045 default: 2046 error = ENOPROTOOPT; 2047 break; 2048 } 2049 break; 2050 } 2051 } 2052 return (error); 2053 } 2054 2055 int 2056 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2057 { 2058 int error = 0, optval, optlen; 2059 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2060 struct inpcb *in6p = sotoinpcb(so); 2061 int level, op, optname; 2062 2063 level = sopt->sopt_level; 2064 op = sopt->sopt_dir; 2065 optname = sopt->sopt_name; 2066 optlen = sopt->sopt_valsize; 2067 2068 if (level != IPPROTO_IPV6) { 2069 return (EINVAL); 2070 } 2071 2072 switch (optname) { 2073 case IPV6_CHECKSUM: 2074 /* 2075 * For ICMPv6 sockets, no modification allowed for checksum 2076 * offset, permit "no change" values to help existing apps. 2077 * 2078 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2079 * for an ICMPv6 socket will fail." 2080 * The current behavior does not meet RFC3542. 2081 */ 2082 switch (op) { 2083 case SOPT_SET: 2084 if (optlen != sizeof(int)) { 2085 error = EINVAL; 2086 break; 2087 } 2088 error = sooptcopyin(sopt, &optval, sizeof(optval), 2089 sizeof(optval)); 2090 if (error) 2091 break; 2092 if ((optval % 2) != 0) { 2093 /* the API assumes even offset values */ 2094 error = EINVAL; 2095 } else if (so->so_proto->pr_protocol == 2096 IPPROTO_ICMPV6) { 2097 if (optval != icmp6off) 2098 error = EINVAL; 2099 } else 2100 in6p->in6p_cksum = optval; 2101 break; 2102 2103 case SOPT_GET: 2104 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2105 optval = icmp6off; 2106 else 2107 optval = in6p->in6p_cksum; 2108 2109 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2110 break; 2111 2112 default: 2113 error = EINVAL; 2114 break; 2115 } 2116 break; 2117 2118 default: 2119 error = ENOPROTOOPT; 2120 break; 2121 } 2122 2123 return (error); 2124 } 2125 2126 /* 2127 * Set up IP6 options in pcb for insertion in output packets or 2128 * specifying behavior of outgoing packets. 2129 */ 2130 static int 2131 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2132 struct socket *so, struct sockopt *sopt) 2133 { 2134 struct ip6_pktopts *opt = *pktopt; 2135 int error = 0; 2136 struct thread *td = sopt->sopt_td; 2137 2138 /* turn off any old options. */ 2139 if (opt) { 2140 #ifdef DIAGNOSTIC 2141 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2142 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2143 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2144 printf("ip6_pcbopts: all specified options are cleared.\n"); 2145 #endif 2146 ip6_clearpktopts(opt, -1); 2147 } else 2148 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2149 *pktopt = NULL; 2150 2151 if (!m || m->m_len == 0) { 2152 /* 2153 * Only turning off any previous options, regardless of 2154 * whether the opt is just created or given. 2155 */ 2156 free(opt, M_IP6OPT); 2157 return (0); 2158 } 2159 2160 /* set options specified by user. */ 2161 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2162 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2163 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2164 free(opt, M_IP6OPT); 2165 return (error); 2166 } 2167 *pktopt = opt; 2168 return (0); 2169 } 2170 2171 /* 2172 * initialize ip6_pktopts. beware that there are non-zero default values in 2173 * the struct. 2174 */ 2175 void 2176 ip6_initpktopts(struct ip6_pktopts *opt) 2177 { 2178 2179 bzero(opt, sizeof(*opt)); 2180 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2181 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2182 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2183 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2184 } 2185 2186 static int 2187 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2188 struct ucred *cred, int uproto) 2189 { 2190 struct ip6_pktopts *opt; 2191 2192 if (*pktopt == NULL) { 2193 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2194 M_WAITOK); 2195 ip6_initpktopts(*pktopt); 2196 } 2197 opt = *pktopt; 2198 2199 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2200 } 2201 2202 static int 2203 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2204 { 2205 void *optdata = NULL; 2206 int optdatalen = 0; 2207 struct ip6_ext *ip6e; 2208 int error = 0; 2209 struct in6_pktinfo null_pktinfo; 2210 int deftclass = 0, on; 2211 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2212 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2213 2214 switch (optname) { 2215 case IPV6_PKTINFO: 2216 if (pktopt && pktopt->ip6po_pktinfo) 2217 optdata = (void *)pktopt->ip6po_pktinfo; 2218 else { 2219 /* XXX: we don't have to do this every time... */ 2220 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2221 optdata = (void *)&null_pktinfo; 2222 } 2223 optdatalen = sizeof(struct in6_pktinfo); 2224 break; 2225 case IPV6_TCLASS: 2226 if (pktopt && pktopt->ip6po_tclass >= 0) 2227 optdata = (void *)&pktopt->ip6po_tclass; 2228 else 2229 optdata = (void *)&deftclass; 2230 optdatalen = sizeof(int); 2231 break; 2232 case IPV6_HOPOPTS: 2233 if (pktopt && pktopt->ip6po_hbh) { 2234 optdata = (void *)pktopt->ip6po_hbh; 2235 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2236 optdatalen = (ip6e->ip6e_len + 1) << 3; 2237 } 2238 break; 2239 case IPV6_RTHDR: 2240 if (pktopt && pktopt->ip6po_rthdr) { 2241 optdata = (void *)pktopt->ip6po_rthdr; 2242 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2243 optdatalen = (ip6e->ip6e_len + 1) << 3; 2244 } 2245 break; 2246 case IPV6_RTHDRDSTOPTS: 2247 if (pktopt && pktopt->ip6po_dest1) { 2248 optdata = (void *)pktopt->ip6po_dest1; 2249 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2250 optdatalen = (ip6e->ip6e_len + 1) << 3; 2251 } 2252 break; 2253 case IPV6_DSTOPTS: 2254 if (pktopt && pktopt->ip6po_dest2) { 2255 optdata = (void *)pktopt->ip6po_dest2; 2256 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2257 optdatalen = (ip6e->ip6e_len + 1) << 3; 2258 } 2259 break; 2260 case IPV6_NEXTHOP: 2261 if (pktopt && pktopt->ip6po_nexthop) { 2262 optdata = (void *)pktopt->ip6po_nexthop; 2263 optdatalen = pktopt->ip6po_nexthop->sa_len; 2264 } 2265 break; 2266 case IPV6_USE_MIN_MTU: 2267 if (pktopt) 2268 optdata = (void *)&pktopt->ip6po_minmtu; 2269 else 2270 optdata = (void *)&defminmtu; 2271 optdatalen = sizeof(int); 2272 break; 2273 case IPV6_DONTFRAG: 2274 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2275 on = 1; 2276 else 2277 on = 0; 2278 optdata = (void *)&on; 2279 optdatalen = sizeof(on); 2280 break; 2281 case IPV6_PREFER_TEMPADDR: 2282 if (pktopt) 2283 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2284 else 2285 optdata = (void *)&defpreftemp; 2286 optdatalen = sizeof(int); 2287 break; 2288 default: /* should not happen */ 2289 #ifdef DIAGNOSTIC 2290 panic("ip6_getpcbopt: unexpected option\n"); 2291 #endif 2292 return (ENOPROTOOPT); 2293 } 2294 2295 error = sooptcopyout(sopt, optdata, optdatalen); 2296 2297 return (error); 2298 } 2299 2300 void 2301 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2302 { 2303 if (pktopt == NULL) 2304 return; 2305 2306 if (optname == -1 || optname == IPV6_PKTINFO) { 2307 if (pktopt->ip6po_pktinfo) 2308 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2309 pktopt->ip6po_pktinfo = NULL; 2310 } 2311 if (optname == -1 || optname == IPV6_HOPLIMIT) 2312 pktopt->ip6po_hlim = -1; 2313 if (optname == -1 || optname == IPV6_TCLASS) 2314 pktopt->ip6po_tclass = -1; 2315 if (optname == -1 || optname == IPV6_NEXTHOP) { 2316 if (pktopt->ip6po_nextroute.ro_rt) { 2317 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2318 pktopt->ip6po_nextroute.ro_rt = NULL; 2319 } 2320 if (pktopt->ip6po_nexthop) 2321 free(pktopt->ip6po_nexthop, M_IP6OPT); 2322 pktopt->ip6po_nexthop = NULL; 2323 } 2324 if (optname == -1 || optname == IPV6_HOPOPTS) { 2325 if (pktopt->ip6po_hbh) 2326 free(pktopt->ip6po_hbh, M_IP6OPT); 2327 pktopt->ip6po_hbh = NULL; 2328 } 2329 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2330 if (pktopt->ip6po_dest1) 2331 free(pktopt->ip6po_dest1, M_IP6OPT); 2332 pktopt->ip6po_dest1 = NULL; 2333 } 2334 if (optname == -1 || optname == IPV6_RTHDR) { 2335 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2336 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2337 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2338 if (pktopt->ip6po_route.ro_rt) { 2339 RTFREE(pktopt->ip6po_route.ro_rt); 2340 pktopt->ip6po_route.ro_rt = NULL; 2341 } 2342 } 2343 if (optname == -1 || optname == IPV6_DSTOPTS) { 2344 if (pktopt->ip6po_dest2) 2345 free(pktopt->ip6po_dest2, M_IP6OPT); 2346 pktopt->ip6po_dest2 = NULL; 2347 } 2348 } 2349 2350 #define PKTOPT_EXTHDRCPY(type) \ 2351 do {\ 2352 if (src->type) {\ 2353 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2354 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2355 if (dst->type == NULL && canwait == M_NOWAIT)\ 2356 goto bad;\ 2357 bcopy(src->type, dst->type, hlen);\ 2358 }\ 2359 } while (/*CONSTCOND*/ 0) 2360 2361 static int 2362 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2363 { 2364 if (dst == NULL || src == NULL) { 2365 printf("ip6_clearpktopts: invalid argument\n"); 2366 return (EINVAL); 2367 } 2368 2369 dst->ip6po_hlim = src->ip6po_hlim; 2370 dst->ip6po_tclass = src->ip6po_tclass; 2371 dst->ip6po_flags = src->ip6po_flags; 2372 dst->ip6po_minmtu = src->ip6po_minmtu; 2373 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2374 if (src->ip6po_pktinfo) { 2375 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2376 M_IP6OPT, canwait); 2377 if (dst->ip6po_pktinfo == NULL) 2378 goto bad; 2379 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2380 } 2381 if (src->ip6po_nexthop) { 2382 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2383 M_IP6OPT, canwait); 2384 if (dst->ip6po_nexthop == NULL) 2385 goto bad; 2386 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2387 src->ip6po_nexthop->sa_len); 2388 } 2389 PKTOPT_EXTHDRCPY(ip6po_hbh); 2390 PKTOPT_EXTHDRCPY(ip6po_dest1); 2391 PKTOPT_EXTHDRCPY(ip6po_dest2); 2392 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2393 return (0); 2394 2395 bad: 2396 ip6_clearpktopts(dst, -1); 2397 return (ENOBUFS); 2398 } 2399 #undef PKTOPT_EXTHDRCPY 2400 2401 struct ip6_pktopts * 2402 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2403 { 2404 int error; 2405 struct ip6_pktopts *dst; 2406 2407 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2408 if (dst == NULL) 2409 return (NULL); 2410 ip6_initpktopts(dst); 2411 2412 if ((error = copypktopts(dst, src, canwait)) != 0) { 2413 free(dst, M_IP6OPT); 2414 return (NULL); 2415 } 2416 2417 return (dst); 2418 } 2419 2420 void 2421 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2422 { 2423 if (pktopt == NULL) 2424 return; 2425 2426 ip6_clearpktopts(pktopt, -1); 2427 2428 free(pktopt, M_IP6OPT); 2429 } 2430 2431 /* 2432 * Set IPv6 outgoing packet options based on advanced API. 2433 */ 2434 int 2435 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2436 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2437 { 2438 struct cmsghdr *cm = 0; 2439 2440 if (control == NULL || opt == NULL) 2441 return (EINVAL); 2442 2443 ip6_initpktopts(opt); 2444 if (stickyopt) { 2445 int error; 2446 2447 /* 2448 * If stickyopt is provided, make a local copy of the options 2449 * for this particular packet, then override them by ancillary 2450 * objects. 2451 * XXX: copypktopts() does not copy the cached route to a next 2452 * hop (if any). This is not very good in terms of efficiency, 2453 * but we can allow this since this option should be rarely 2454 * used. 2455 */ 2456 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2457 return (error); 2458 } 2459 2460 /* 2461 * XXX: Currently, we assume all the optional information is stored 2462 * in a single mbuf. 2463 */ 2464 if (control->m_next) 2465 return (EINVAL); 2466 2467 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2468 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2469 int error; 2470 2471 if (control->m_len < CMSG_LEN(0)) 2472 return (EINVAL); 2473 2474 cm = mtod(control, struct cmsghdr *); 2475 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2476 return (EINVAL); 2477 if (cm->cmsg_level != IPPROTO_IPV6) 2478 continue; 2479 2480 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2481 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2482 if (error) 2483 return (error); 2484 } 2485 2486 return (0); 2487 } 2488 2489 /* 2490 * Set a particular packet option, as a sticky option or an ancillary data 2491 * item. "len" can be 0 only when it's a sticky option. 2492 * We have 4 cases of combination of "sticky" and "cmsg": 2493 * "sticky=0, cmsg=0": impossible 2494 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2495 * "sticky=1, cmsg=0": RFC3542 socket option 2496 * "sticky=1, cmsg=1": RFC2292 socket option 2497 */ 2498 static int 2499 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2500 struct ucred *cred, int sticky, int cmsg, int uproto) 2501 { 2502 int minmtupolicy, preftemp; 2503 int error; 2504 2505 if (!sticky && !cmsg) { 2506 #ifdef DIAGNOSTIC 2507 printf("ip6_setpktopt: impossible case\n"); 2508 #endif 2509 return (EINVAL); 2510 } 2511 2512 /* 2513 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2514 * not be specified in the context of RFC3542. Conversely, 2515 * RFC3542 types should not be specified in the context of RFC2292. 2516 */ 2517 if (!cmsg) { 2518 switch (optname) { 2519 case IPV6_2292PKTINFO: 2520 case IPV6_2292HOPLIMIT: 2521 case IPV6_2292NEXTHOP: 2522 case IPV6_2292HOPOPTS: 2523 case IPV6_2292DSTOPTS: 2524 case IPV6_2292RTHDR: 2525 case IPV6_2292PKTOPTIONS: 2526 return (ENOPROTOOPT); 2527 } 2528 } 2529 if (sticky && cmsg) { 2530 switch (optname) { 2531 case IPV6_PKTINFO: 2532 case IPV6_HOPLIMIT: 2533 case IPV6_NEXTHOP: 2534 case IPV6_HOPOPTS: 2535 case IPV6_DSTOPTS: 2536 case IPV6_RTHDRDSTOPTS: 2537 case IPV6_RTHDR: 2538 case IPV6_USE_MIN_MTU: 2539 case IPV6_DONTFRAG: 2540 case IPV6_TCLASS: 2541 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2542 return (ENOPROTOOPT); 2543 } 2544 } 2545 2546 switch (optname) { 2547 case IPV6_2292PKTINFO: 2548 case IPV6_PKTINFO: 2549 { 2550 struct ifnet *ifp = NULL; 2551 struct in6_pktinfo *pktinfo; 2552 2553 if (len != sizeof(struct in6_pktinfo)) 2554 return (EINVAL); 2555 2556 pktinfo = (struct in6_pktinfo *)buf; 2557 2558 /* 2559 * An application can clear any sticky IPV6_PKTINFO option by 2560 * doing a "regular" setsockopt with ipi6_addr being 2561 * in6addr_any and ipi6_ifindex being zero. 2562 * [RFC 3542, Section 6] 2563 */ 2564 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2565 pktinfo->ipi6_ifindex == 0 && 2566 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2567 ip6_clearpktopts(opt, optname); 2568 break; 2569 } 2570 2571 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2572 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2573 return (EINVAL); 2574 } 2575 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2576 return (EINVAL); 2577 /* validate the interface index if specified. */ 2578 if (pktinfo->ipi6_ifindex > V_if_index) 2579 return (ENXIO); 2580 if (pktinfo->ipi6_ifindex) { 2581 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2582 if (ifp == NULL) 2583 return (ENXIO); 2584 } 2585 if (ifp != NULL && ( 2586 ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) 2587 return (ENETDOWN); 2588 2589 if (ifp != NULL && 2590 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2591 struct in6_ifaddr *ia; 2592 2593 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2594 if (ia == NULL) 2595 return (EADDRNOTAVAIL); 2596 ifa_free(&ia->ia_ifa); 2597 } 2598 /* 2599 * We store the address anyway, and let in6_selectsrc() 2600 * validate the specified address. This is because ipi6_addr 2601 * may not have enough information about its scope zone, and 2602 * we may need additional information (such as outgoing 2603 * interface or the scope zone of a destination address) to 2604 * disambiguate the scope. 2605 * XXX: the delay of the validation may confuse the 2606 * application when it is used as a sticky option. 2607 */ 2608 if (opt->ip6po_pktinfo == NULL) { 2609 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2610 M_IP6OPT, M_NOWAIT); 2611 if (opt->ip6po_pktinfo == NULL) 2612 return (ENOBUFS); 2613 } 2614 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2615 break; 2616 } 2617 2618 case IPV6_2292HOPLIMIT: 2619 case IPV6_HOPLIMIT: 2620 { 2621 int *hlimp; 2622 2623 /* 2624 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2625 * to simplify the ordering among hoplimit options. 2626 */ 2627 if (optname == IPV6_HOPLIMIT && sticky) 2628 return (ENOPROTOOPT); 2629 2630 if (len != sizeof(int)) 2631 return (EINVAL); 2632 hlimp = (int *)buf; 2633 if (*hlimp < -1 || *hlimp > 255) 2634 return (EINVAL); 2635 2636 opt->ip6po_hlim = *hlimp; 2637 break; 2638 } 2639 2640 case IPV6_TCLASS: 2641 { 2642 int tclass; 2643 2644 if (len != sizeof(int)) 2645 return (EINVAL); 2646 tclass = *(int *)buf; 2647 if (tclass < -1 || tclass > 255) 2648 return (EINVAL); 2649 2650 opt->ip6po_tclass = tclass; 2651 break; 2652 } 2653 2654 case IPV6_2292NEXTHOP: 2655 case IPV6_NEXTHOP: 2656 if (cred != NULL) { 2657 error = priv_check_cred(cred, 2658 PRIV_NETINET_SETHDROPTS, 0); 2659 if (error) 2660 return (error); 2661 } 2662 2663 if (len == 0) { /* just remove the option */ 2664 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2665 break; 2666 } 2667 2668 /* check if cmsg_len is large enough for sa_len */ 2669 if (len < sizeof(struct sockaddr) || len < *buf) 2670 return (EINVAL); 2671 2672 switch (((struct sockaddr *)buf)->sa_family) { 2673 case AF_INET6: 2674 { 2675 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2676 int error; 2677 2678 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2679 return (EINVAL); 2680 2681 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2682 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2683 return (EINVAL); 2684 } 2685 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2686 != 0) { 2687 return (error); 2688 } 2689 break; 2690 } 2691 case AF_LINK: /* should eventually be supported */ 2692 default: 2693 return (EAFNOSUPPORT); 2694 } 2695 2696 /* turn off the previous option, then set the new option. */ 2697 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2698 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2699 if (opt->ip6po_nexthop == NULL) 2700 return (ENOBUFS); 2701 bcopy(buf, opt->ip6po_nexthop, *buf); 2702 break; 2703 2704 case IPV6_2292HOPOPTS: 2705 case IPV6_HOPOPTS: 2706 { 2707 struct ip6_hbh *hbh; 2708 int hbhlen; 2709 2710 /* 2711 * XXX: We don't allow a non-privileged user to set ANY HbH 2712 * options, since per-option restriction has too much 2713 * overhead. 2714 */ 2715 if (cred != NULL) { 2716 error = priv_check_cred(cred, 2717 PRIV_NETINET_SETHDROPTS, 0); 2718 if (error) 2719 return (error); 2720 } 2721 2722 if (len == 0) { 2723 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2724 break; /* just remove the option */ 2725 } 2726 2727 /* message length validation */ 2728 if (len < sizeof(struct ip6_hbh)) 2729 return (EINVAL); 2730 hbh = (struct ip6_hbh *)buf; 2731 hbhlen = (hbh->ip6h_len + 1) << 3; 2732 if (len != hbhlen) 2733 return (EINVAL); 2734 2735 /* turn off the previous option, then set the new option. */ 2736 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2737 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2738 if (opt->ip6po_hbh == NULL) 2739 return (ENOBUFS); 2740 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2741 2742 break; 2743 } 2744 2745 case IPV6_2292DSTOPTS: 2746 case IPV6_DSTOPTS: 2747 case IPV6_RTHDRDSTOPTS: 2748 { 2749 struct ip6_dest *dest, **newdest = NULL; 2750 int destlen; 2751 2752 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2753 error = priv_check_cred(cred, 2754 PRIV_NETINET_SETHDROPTS, 0); 2755 if (error) 2756 return (error); 2757 } 2758 2759 if (len == 0) { 2760 ip6_clearpktopts(opt, optname); 2761 break; /* just remove the option */ 2762 } 2763 2764 /* message length validation */ 2765 if (len < sizeof(struct ip6_dest)) 2766 return (EINVAL); 2767 dest = (struct ip6_dest *)buf; 2768 destlen = (dest->ip6d_len + 1) << 3; 2769 if (len != destlen) 2770 return (EINVAL); 2771 2772 /* 2773 * Determine the position that the destination options header 2774 * should be inserted; before or after the routing header. 2775 */ 2776 switch (optname) { 2777 case IPV6_2292DSTOPTS: 2778 /* 2779 * The old advacned API is ambiguous on this point. 2780 * Our approach is to determine the position based 2781 * according to the existence of a routing header. 2782 * Note, however, that this depends on the order of the 2783 * extension headers in the ancillary data; the 1st 2784 * part of the destination options header must appear 2785 * before the routing header in the ancillary data, 2786 * too. 2787 * RFC3542 solved the ambiguity by introducing 2788 * separate ancillary data or option types. 2789 */ 2790 if (opt->ip6po_rthdr == NULL) 2791 newdest = &opt->ip6po_dest1; 2792 else 2793 newdest = &opt->ip6po_dest2; 2794 break; 2795 case IPV6_RTHDRDSTOPTS: 2796 newdest = &opt->ip6po_dest1; 2797 break; 2798 case IPV6_DSTOPTS: 2799 newdest = &opt->ip6po_dest2; 2800 break; 2801 } 2802 2803 /* turn off the previous option, then set the new option. */ 2804 ip6_clearpktopts(opt, optname); 2805 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2806 if (*newdest == NULL) 2807 return (ENOBUFS); 2808 bcopy(dest, *newdest, destlen); 2809 2810 break; 2811 } 2812 2813 case IPV6_2292RTHDR: 2814 case IPV6_RTHDR: 2815 { 2816 struct ip6_rthdr *rth; 2817 int rthlen; 2818 2819 if (len == 0) { 2820 ip6_clearpktopts(opt, IPV6_RTHDR); 2821 break; /* just remove the option */ 2822 } 2823 2824 /* message length validation */ 2825 if (len < sizeof(struct ip6_rthdr)) 2826 return (EINVAL); 2827 rth = (struct ip6_rthdr *)buf; 2828 rthlen = (rth->ip6r_len + 1) << 3; 2829 if (len != rthlen) 2830 return (EINVAL); 2831 2832 switch (rth->ip6r_type) { 2833 case IPV6_RTHDR_TYPE_0: 2834 if (rth->ip6r_len == 0) /* must contain one addr */ 2835 return (EINVAL); 2836 if (rth->ip6r_len % 2) /* length must be even */ 2837 return (EINVAL); 2838 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2839 return (EINVAL); 2840 break; 2841 default: 2842 return (EINVAL); /* not supported */ 2843 } 2844 2845 /* turn off the previous option */ 2846 ip6_clearpktopts(opt, IPV6_RTHDR); 2847 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2848 if (opt->ip6po_rthdr == NULL) 2849 return (ENOBUFS); 2850 bcopy(rth, opt->ip6po_rthdr, rthlen); 2851 2852 break; 2853 } 2854 2855 case IPV6_USE_MIN_MTU: 2856 if (len != sizeof(int)) 2857 return (EINVAL); 2858 minmtupolicy = *(int *)buf; 2859 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2860 minmtupolicy != IP6PO_MINMTU_DISABLE && 2861 minmtupolicy != IP6PO_MINMTU_ALL) { 2862 return (EINVAL); 2863 } 2864 opt->ip6po_minmtu = minmtupolicy; 2865 break; 2866 2867 case IPV6_DONTFRAG: 2868 if (len != sizeof(int)) 2869 return (EINVAL); 2870 2871 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2872 /* 2873 * we ignore this option for TCP sockets. 2874 * (RFC3542 leaves this case unspecified.) 2875 */ 2876 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2877 } else 2878 opt->ip6po_flags |= IP6PO_DONTFRAG; 2879 break; 2880 2881 case IPV6_PREFER_TEMPADDR: 2882 if (len != sizeof(int)) 2883 return (EINVAL); 2884 preftemp = *(int *)buf; 2885 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 2886 preftemp != IP6PO_TEMPADDR_NOTPREFER && 2887 preftemp != IP6PO_TEMPADDR_PREFER) { 2888 return (EINVAL); 2889 } 2890 opt->ip6po_prefer_tempaddr = preftemp; 2891 break; 2892 2893 default: 2894 return (ENOPROTOOPT); 2895 } /* end of switch */ 2896 2897 return (0); 2898 } 2899 2900 /* 2901 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2902 * packet to the input queue of a specified interface. Note that this 2903 * calls the output routine of the loopback "driver", but with an interface 2904 * pointer that might NOT be &loif -- easier than replicating that code here. 2905 */ 2906 void 2907 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 2908 { 2909 struct mbuf *copym; 2910 struct ip6_hdr *ip6; 2911 2912 copym = m_copy(m, 0, M_COPYALL); 2913 if (copym == NULL) 2914 return; 2915 2916 /* 2917 * Make sure to deep-copy IPv6 header portion in case the data 2918 * is in an mbuf cluster, so that we can safely override the IPv6 2919 * header portion later. 2920 */ 2921 if (!M_WRITABLE(copym) || 2922 copym->m_len < sizeof(struct ip6_hdr)) { 2923 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2924 if (copym == NULL) 2925 return; 2926 } 2927 2928 #ifdef DIAGNOSTIC 2929 if (copym->m_len < sizeof(*ip6)) { 2930 m_freem(copym); 2931 return; 2932 } 2933 #endif 2934 2935 ip6 = mtod(copym, struct ip6_hdr *); 2936 /* 2937 * clear embedded scope identifiers if necessary. 2938 * in6_clearscope will touch the addresses only when necessary. 2939 */ 2940 in6_clearscope(&ip6->ip6_src); 2941 in6_clearscope(&ip6->ip6_dst); 2942 2943 (void)if_simloop(ifp, copym, dst->sin6_family, 0); 2944 } 2945 2946 /* 2947 * Chop IPv6 header off from the payload. 2948 */ 2949 static int 2950 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 2951 { 2952 struct mbuf *mh; 2953 struct ip6_hdr *ip6; 2954 2955 ip6 = mtod(m, struct ip6_hdr *); 2956 if (m->m_len > sizeof(*ip6)) { 2957 mh = m_gethdr(M_NOWAIT, MT_DATA); 2958 if (mh == NULL) { 2959 m_freem(m); 2960 return ENOBUFS; 2961 } 2962 m_move_pkthdr(mh, m); 2963 MH_ALIGN(mh, sizeof(*ip6)); 2964 m->m_len -= sizeof(*ip6); 2965 m->m_data += sizeof(*ip6); 2966 mh->m_next = m; 2967 m = mh; 2968 m->m_len = sizeof(*ip6); 2969 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2970 } 2971 exthdrs->ip6e_ip6 = m; 2972 return 0; 2973 } 2974 2975 /* 2976 * Compute IPv6 extension header length. 2977 */ 2978 int 2979 ip6_optlen(struct inpcb *in6p) 2980 { 2981 int len; 2982 2983 if (!in6p->in6p_outputopts) 2984 return 0; 2985 2986 len = 0; 2987 #define elen(x) \ 2988 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2989 2990 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2991 if (in6p->in6p_outputopts->ip6po_rthdr) 2992 /* dest1 is valid with rthdr only */ 2993 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2994 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2995 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2996 return len; 2997 #undef elen 2998 } 2999