1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ratelimit.h" 71 #include "opt_ipsec.h" 72 #include "opt_sctp.h" 73 #include "opt_route.h" 74 #include "opt_rss.h" 75 76 #include <sys/param.h> 77 #include <sys/kernel.h> 78 #include <sys/malloc.h> 79 #include <sys/mbuf.h> 80 #include <sys/errno.h> 81 #include <sys/priv.h> 82 #include <sys/proc.h> 83 #include <sys/protosw.h> 84 #include <sys/socket.h> 85 #include <sys/socketvar.h> 86 #include <sys/syslog.h> 87 #include <sys/ucred.h> 88 89 #include <machine/in_cksum.h> 90 91 #include <net/if.h> 92 #include <net/if_var.h> 93 #include <net/if_llatbl.h> 94 #include <net/netisr.h> 95 #include <net/route.h> 96 #include <net/pfil.h> 97 #include <net/rss_config.h> 98 #include <net/vnet.h> 99 100 #include <netinet/in.h> 101 #include <netinet/in_var.h> 102 #include <netinet/ip_var.h> 103 #include <netinet6/in6_fib.h> 104 #include <netinet6/in6_var.h> 105 #include <netinet/ip6.h> 106 #include <netinet/icmp6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet/in_pcb.h> 109 #include <netinet/tcp_var.h> 110 #include <netinet6/nd6.h> 111 #include <netinet6/in6_rss.h> 112 113 #include <netipsec/ipsec_support.h> 114 #ifdef SCTP 115 #include <netinet/sctp.h> 116 #include <netinet/sctp_crc32.h> 117 #endif 118 119 #include <netinet6/ip6protosw.h> 120 #include <netinet6/scope6_var.h> 121 122 extern int in6_mcast_loop; 123 124 struct ip6_exthdrs { 125 struct mbuf *ip6e_ip6; 126 struct mbuf *ip6e_hbh; 127 struct mbuf *ip6e_dest1; 128 struct mbuf *ip6e_rthdr; 129 struct mbuf *ip6e_dest2; 130 }; 131 132 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 133 134 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 135 struct ucred *, int); 136 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 137 struct socket *, struct sockopt *); 138 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 139 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 140 struct ucred *, int, int, int); 141 142 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 143 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 144 struct ip6_frag **); 145 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 146 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 147 static int ip6_getpmtu(struct route_in6 *, int, 148 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 149 u_int); 150 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 151 u_long *, int *, u_int); 152 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 153 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 154 155 156 /* 157 * Make an extension header from option data. hp is the source, and 158 * mp is the destination. 159 */ 160 #define MAKE_EXTHDR(hp, mp) \ 161 do { \ 162 if (hp) { \ 163 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 164 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 165 ((eh)->ip6e_len + 1) << 3); \ 166 if (error) \ 167 goto freehdrs; \ 168 } \ 169 } while (/*CONSTCOND*/ 0) 170 171 /* 172 * Form a chain of extension headers. 173 * m is the extension header mbuf 174 * mp is the previous mbuf in the chain 175 * p is the next header 176 * i is the type of option. 177 */ 178 #define MAKE_CHAIN(m, mp, p, i)\ 179 do {\ 180 if (m) {\ 181 if (!hdrsplit) \ 182 panic("assumption failed: hdr not split"); \ 183 *mtod((m), u_char *) = *(p);\ 184 *(p) = (i);\ 185 p = mtod((m), u_char *);\ 186 (m)->m_next = (mp)->m_next;\ 187 (mp)->m_next = (m);\ 188 (mp) = (m);\ 189 }\ 190 } while (/*CONSTCOND*/ 0) 191 192 void 193 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 194 { 195 u_short csum; 196 197 csum = in_cksum_skip(m, offset + plen, offset); 198 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 199 csum = 0xffff; 200 offset += m->m_pkthdr.csum_data; /* checksum offset */ 201 202 if (offset + sizeof(csum) > m->m_len) 203 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 204 else 205 *(u_short *)mtodo(m, offset) = csum; 206 } 207 208 int 209 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 210 int fraglen , uint32_t id) 211 { 212 struct mbuf *m, **mnext, *m_frgpart; 213 struct ip6_hdr *ip6, *mhip6; 214 struct ip6_frag *ip6f; 215 int off; 216 int error; 217 int tlen = m0->m_pkthdr.len; 218 219 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 220 221 m = m0; 222 ip6 = mtod(m, struct ip6_hdr *); 223 mnext = &m->m_nextpkt; 224 225 for (off = hlen; off < tlen; off += fraglen) { 226 m = m_gethdr(M_NOWAIT, MT_DATA); 227 if (!m) { 228 IP6STAT_INC(ip6s_odropped); 229 return (ENOBUFS); 230 } 231 m->m_flags = m0->m_flags & M_COPYFLAGS; 232 *mnext = m; 233 mnext = &m->m_nextpkt; 234 m->m_data += max_linkhdr; 235 mhip6 = mtod(m, struct ip6_hdr *); 236 *mhip6 = *ip6; 237 m->m_len = sizeof(*mhip6); 238 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 239 if (error) { 240 IP6STAT_INC(ip6s_odropped); 241 return (error); 242 } 243 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 244 if (off + fraglen >= tlen) 245 fraglen = tlen - off; 246 else 247 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 248 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 249 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 250 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 251 IP6STAT_INC(ip6s_odropped); 252 return (ENOBUFS); 253 } 254 m_cat(m, m_frgpart); 255 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 256 m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; 257 m->m_pkthdr.rcvif = NULL; 258 ip6f->ip6f_reserved = 0; 259 ip6f->ip6f_ident = id; 260 ip6f->ip6f_nxt = nextproto; 261 IP6STAT_INC(ip6s_ofragments); 262 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 263 } 264 265 return (0); 266 } 267 268 /* 269 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 270 * header (with pri, len, nxt, hlim, src, dst). 271 * This function may modify ver and hlim only. 272 * The mbuf chain containing the packet will be freed. 273 * The mbuf opt, if present, will not be freed. 274 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 275 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 276 * then result of route lookup is stored in ro->ro_rt. 277 * 278 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 279 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 280 * which is rt_mtu. 281 * 282 * ifpp - XXX: just for statistics 283 */ 284 /* 285 * XXX TODO: no flowid is assigned for outbound flows? 286 */ 287 int 288 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 289 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 290 struct ifnet **ifpp, struct inpcb *inp) 291 { 292 struct ip6_hdr *ip6; 293 struct ifnet *ifp, *origifp; 294 struct mbuf *m = m0; 295 struct mbuf *mprev = NULL; 296 int hlen, tlen, len; 297 struct route_in6 ip6route; 298 struct rtentry *rt = NULL; 299 struct sockaddr_in6 *dst, src_sa, dst_sa; 300 struct in6_addr odst; 301 int error = 0; 302 struct in6_ifaddr *ia = NULL; 303 u_long mtu; 304 int alwaysfrag, dontfrag; 305 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 306 struct ip6_exthdrs exthdrs; 307 struct in6_addr src0, dst0; 308 u_int32_t zone; 309 struct route_in6 *ro_pmtu = NULL; 310 int hdrsplit = 0; 311 int sw_csum, tso; 312 int needfiblookup; 313 uint32_t fibnum; 314 struct m_tag *fwd_tag = NULL; 315 uint32_t id; 316 317 if (inp != NULL) { 318 INP_LOCK_ASSERT(inp); 319 M_SETFIB(m, inp->inp_inc.inc_fibnum); 320 if ((flags & IP_NODEFAULTFLOWID) == 0) { 321 /* unconditionally set flowid */ 322 m->m_pkthdr.flowid = inp->inp_flowid; 323 M_HASHTYPE_SET(m, inp->inp_flowtype); 324 } 325 } 326 327 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 328 /* 329 * IPSec checking which handles several cases. 330 * FAST IPSEC: We re-injected the packet. 331 * XXX: need scope argument. 332 */ 333 if (IPSEC_ENABLED(ipv6)) { 334 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 335 if (error == EINPROGRESS) 336 error = 0; 337 goto done; 338 } 339 } 340 #endif /* IPSEC */ 341 342 bzero(&exthdrs, sizeof(exthdrs)); 343 if (opt) { 344 /* Hop-by-Hop options header */ 345 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 346 /* Destination options header(1st part) */ 347 if (opt->ip6po_rthdr) { 348 /* 349 * Destination options header(1st part) 350 * This only makes sense with a routing header. 351 * See Section 9.2 of RFC 3542. 352 * Disabling this part just for MIP6 convenience is 353 * a bad idea. We need to think carefully about a 354 * way to make the advanced API coexist with MIP6 355 * options, which might automatically be inserted in 356 * the kernel. 357 */ 358 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 359 } 360 /* Routing header */ 361 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 362 /* Destination options header(2nd part) */ 363 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 364 } 365 366 /* 367 * Calculate the total length of the extension header chain. 368 * Keep the length of the unfragmentable part for fragmentation. 369 */ 370 optlen = 0; 371 if (exthdrs.ip6e_hbh) 372 optlen += exthdrs.ip6e_hbh->m_len; 373 if (exthdrs.ip6e_dest1) 374 optlen += exthdrs.ip6e_dest1->m_len; 375 if (exthdrs.ip6e_rthdr) 376 optlen += exthdrs.ip6e_rthdr->m_len; 377 unfragpartlen = optlen + sizeof(struct ip6_hdr); 378 379 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 380 if (exthdrs.ip6e_dest2) 381 optlen += exthdrs.ip6e_dest2->m_len; 382 383 /* 384 * If there is at least one extension header, 385 * separate IP6 header from the payload. 386 */ 387 if (optlen && !hdrsplit) { 388 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 389 m = NULL; 390 goto freehdrs; 391 } 392 m = exthdrs.ip6e_ip6; 393 hdrsplit++; 394 } 395 396 ip6 = mtod(m, struct ip6_hdr *); 397 398 /* adjust mbuf packet header length */ 399 m->m_pkthdr.len += optlen; 400 plen = m->m_pkthdr.len - sizeof(*ip6); 401 402 /* If this is a jumbo payload, insert a jumbo payload option. */ 403 if (plen > IPV6_MAXPACKET) { 404 if (!hdrsplit) { 405 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 406 m = NULL; 407 goto freehdrs; 408 } 409 m = exthdrs.ip6e_ip6; 410 hdrsplit++; 411 } 412 /* adjust pointer */ 413 ip6 = mtod(m, struct ip6_hdr *); 414 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 415 goto freehdrs; 416 ip6->ip6_plen = 0; 417 } else 418 ip6->ip6_plen = htons(plen); 419 420 /* 421 * Concatenate headers and fill in next header fields. 422 * Here we have, on "m" 423 * IPv6 payload 424 * and we insert headers accordingly. Finally, we should be getting: 425 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 426 * 427 * during the header composing process, "m" points to IPv6 header. 428 * "mprev" points to an extension header prior to esp. 429 */ 430 u_char *nexthdrp = &ip6->ip6_nxt; 431 mprev = m; 432 433 /* 434 * we treat dest2 specially. this makes IPsec processing 435 * much easier. the goal here is to make mprev point the 436 * mbuf prior to dest2. 437 * 438 * result: IPv6 dest2 payload 439 * m and mprev will point to IPv6 header. 440 */ 441 if (exthdrs.ip6e_dest2) { 442 if (!hdrsplit) 443 panic("assumption failed: hdr not split"); 444 exthdrs.ip6e_dest2->m_next = m->m_next; 445 m->m_next = exthdrs.ip6e_dest2; 446 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 447 ip6->ip6_nxt = IPPROTO_DSTOPTS; 448 } 449 450 /* 451 * result: IPv6 hbh dest1 rthdr dest2 payload 452 * m will point to IPv6 header. mprev will point to the 453 * extension header prior to dest2 (rthdr in the above case). 454 */ 455 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 456 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 457 IPPROTO_DSTOPTS); 458 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 459 IPPROTO_ROUTING); 460 461 /* 462 * If there is a routing header, discard the packet. 463 */ 464 if (exthdrs.ip6e_rthdr) { 465 error = EINVAL; 466 goto bad; 467 } 468 469 /* Source address validation */ 470 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 471 (flags & IPV6_UNSPECSRC) == 0) { 472 error = EOPNOTSUPP; 473 IP6STAT_INC(ip6s_badscope); 474 goto bad; 475 } 476 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 477 error = EOPNOTSUPP; 478 IP6STAT_INC(ip6s_badscope); 479 goto bad; 480 } 481 482 IP6STAT_INC(ip6s_localout); 483 484 /* 485 * Route packet. 486 */ 487 if (ro == NULL) { 488 ro = &ip6route; 489 bzero((caddr_t)ro, sizeof(*ro)); 490 } 491 ro_pmtu = ro; 492 if (opt && opt->ip6po_rthdr) 493 ro = &opt->ip6po_route; 494 dst = (struct sockaddr_in6 *)&ro->ro_dst; 495 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 496 again: 497 /* 498 * if specified, try to fill in the traffic class field. 499 * do not override if a non-zero value is already set. 500 * we check the diffserv field and the ecn field separately. 501 */ 502 if (opt && opt->ip6po_tclass >= 0) { 503 int mask = 0; 504 505 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 506 mask |= 0xfc; 507 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 508 mask |= 0x03; 509 if (mask != 0) 510 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 511 } 512 513 /* fill in or override the hop limit field, if necessary. */ 514 if (opt && opt->ip6po_hlim != -1) 515 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 516 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 517 if (im6o != NULL) 518 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 519 else 520 ip6->ip6_hlim = V_ip6_defmcasthlim; 521 } 522 /* 523 * Validate route against routing table additions; 524 * a better/more specific route might have been added. 525 * Make sure address family is set in route. 526 */ 527 if (inp) { 528 ro->ro_dst.sin6_family = AF_INET6; 529 RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, fibnum); 530 } 531 if (ro->ro_rt && fwd_tag == NULL && (ro->ro_rt->rt_flags & RTF_UP) && 532 ro->ro_dst.sin6_family == AF_INET6 && 533 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 534 rt = ro->ro_rt; 535 ifp = ro->ro_rt->rt_ifp; 536 } else { 537 if (ro->ro_lle) 538 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 539 ro->ro_lle = NULL; 540 if (fwd_tag == NULL) { 541 bzero(&dst_sa, sizeof(dst_sa)); 542 dst_sa.sin6_family = AF_INET6; 543 dst_sa.sin6_len = sizeof(dst_sa); 544 dst_sa.sin6_addr = ip6->ip6_dst; 545 } 546 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 547 &rt, fibnum); 548 if (error != 0) { 549 if (ifp != NULL) 550 in6_ifstat_inc(ifp, ifs6_out_discard); 551 goto bad; 552 } 553 } 554 if (rt == NULL) { 555 /* 556 * If in6_selectroute() does not return a route entry, 557 * dst may not have been updated. 558 */ 559 *dst = dst_sa; /* XXX */ 560 } 561 562 /* 563 * then rt (for unicast) and ifp must be non-NULL valid values. 564 */ 565 if ((flags & IPV6_FORWARDING) == 0) { 566 /* XXX: the FORWARDING flag can be set for mrouting. */ 567 in6_ifstat_inc(ifp, ifs6_out_request); 568 } 569 if (rt != NULL) { 570 ia = (struct in6_ifaddr *)(rt->rt_ifa); 571 counter_u64_add(rt->rt_pksent, 1); 572 } 573 574 /* Setup data structures for scope ID checks. */ 575 src0 = ip6->ip6_src; 576 bzero(&src_sa, sizeof(src_sa)); 577 src_sa.sin6_family = AF_INET6; 578 src_sa.sin6_len = sizeof(src_sa); 579 src_sa.sin6_addr = ip6->ip6_src; 580 581 dst0 = ip6->ip6_dst; 582 /* re-initialize to be sure */ 583 bzero(&dst_sa, sizeof(dst_sa)); 584 dst_sa.sin6_family = AF_INET6; 585 dst_sa.sin6_len = sizeof(dst_sa); 586 dst_sa.sin6_addr = ip6->ip6_dst; 587 588 /* Check for valid scope ID. */ 589 if (in6_setscope(&src0, ifp, &zone) == 0 && 590 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && 591 in6_setscope(&dst0, ifp, &zone) == 0 && 592 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { 593 /* 594 * The outgoing interface is in the zone of the source 595 * and destination addresses. 596 * 597 * Because the loopback interface cannot receive 598 * packets with a different scope ID than its own, 599 * there is a trick is to pretend the outgoing packet 600 * was received by the real network interface, by 601 * setting "origifp" different from "ifp". This is 602 * only allowed when "ifp" is a loopback network 603 * interface. Refer to code in nd6_output_ifp() for 604 * more details. 605 */ 606 origifp = ifp; 607 608 /* 609 * We should use ia_ifp to support the case of sending 610 * packets to an address of our own. 611 */ 612 if (ia != NULL && ia->ia_ifp) 613 ifp = ia->ia_ifp; 614 615 } else if ((ifp->if_flags & IFF_LOOPBACK) == 0 || 616 sa6_recoverscope(&src_sa) != 0 || 617 sa6_recoverscope(&dst_sa) != 0 || 618 dst_sa.sin6_scope_id == 0 || 619 (src_sa.sin6_scope_id != 0 && 620 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || 621 (origifp = ifnet_byindex(dst_sa.sin6_scope_id)) == NULL) { 622 /* 623 * If the destination network interface is not a 624 * loopback interface, or the destination network 625 * address has no scope ID, or the source address has 626 * a scope ID set which is different from the 627 * destination address one, or there is no network 628 * interface representing this scope ID, the address 629 * pair is considered invalid. 630 */ 631 IP6STAT_INC(ip6s_badscope); 632 in6_ifstat_inc(ifp, ifs6_out_discard); 633 if (error == 0) 634 error = EHOSTUNREACH; /* XXX */ 635 goto bad; 636 } 637 638 /* All scope ID checks are successful. */ 639 640 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 641 if (opt && opt->ip6po_nextroute.ro_rt) { 642 /* 643 * The nexthop is explicitly specified by the 644 * application. We assume the next hop is an IPv6 645 * address. 646 */ 647 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 648 } 649 else if ((rt->rt_flags & RTF_GATEWAY)) 650 dst = (struct sockaddr_in6 *)rt->rt_gateway; 651 } 652 653 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 654 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 655 } else { 656 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 657 in6_ifstat_inc(ifp, ifs6_out_mcast); 658 /* 659 * Confirm that the outgoing interface supports multicast. 660 */ 661 if (!(ifp->if_flags & IFF_MULTICAST)) { 662 IP6STAT_INC(ip6s_noroute); 663 in6_ifstat_inc(ifp, ifs6_out_discard); 664 error = ENETUNREACH; 665 goto bad; 666 } 667 if ((im6o == NULL && in6_mcast_loop) || 668 (im6o && im6o->im6o_multicast_loop)) { 669 /* 670 * Loop back multicast datagram if not expressly 671 * forbidden to do so, even if we have not joined 672 * the address; protocols will filter it later, 673 * thus deferring a hash lookup and lock acquisition 674 * at the expense of an m_copym(). 675 */ 676 ip6_mloopback(ifp, m); 677 } else { 678 /* 679 * If we are acting as a multicast router, perform 680 * multicast forwarding as if the packet had just 681 * arrived on the interface to which we are about 682 * to send. The multicast forwarding function 683 * recursively calls this function, using the 684 * IPV6_FORWARDING flag to prevent infinite recursion. 685 * 686 * Multicasts that are looped back by ip6_mloopback(), 687 * above, will be forwarded by the ip6_input() routine, 688 * if necessary. 689 */ 690 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 691 /* 692 * XXX: ip6_mforward expects that rcvif is NULL 693 * when it is called from the originating path. 694 * However, it may not always be the case. 695 */ 696 m->m_pkthdr.rcvif = NULL; 697 if (ip6_mforward(ip6, ifp, m) != 0) { 698 m_freem(m); 699 goto done; 700 } 701 } 702 } 703 /* 704 * Multicasts with a hoplimit of zero may be looped back, 705 * above, but must not be transmitted on a network. 706 * Also, multicasts addressed to the loopback interface 707 * are not sent -- the above call to ip6_mloopback() will 708 * loop back a copy if this host actually belongs to the 709 * destination group on the loopback interface. 710 */ 711 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 712 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 713 m_freem(m); 714 goto done; 715 } 716 } 717 718 /* 719 * Fill the outgoing inteface to tell the upper layer 720 * to increment per-interface statistics. 721 */ 722 if (ifpp) 723 *ifpp = ifp; 724 725 /* Determine path MTU. */ 726 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 727 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 728 goto bad; 729 730 /* 731 * The caller of this function may specify to use the minimum MTU 732 * in some cases. 733 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 734 * setting. The logic is a bit complicated; by default, unicast 735 * packets will follow path MTU while multicast packets will be sent at 736 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 737 * including unicast ones will be sent at the minimum MTU. Multicast 738 * packets will always be sent at the minimum MTU unless 739 * IP6PO_MINMTU_DISABLE is explicitly specified. 740 * See RFC 3542 for more details. 741 */ 742 if (mtu > IPV6_MMTU) { 743 if ((flags & IPV6_MINMTU)) 744 mtu = IPV6_MMTU; 745 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 746 mtu = IPV6_MMTU; 747 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 748 (opt == NULL || 749 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 750 mtu = IPV6_MMTU; 751 } 752 } 753 754 /* 755 * clear embedded scope identifiers if necessary. 756 * in6_clearscope will touch the addresses only when necessary. 757 */ 758 in6_clearscope(&ip6->ip6_src); 759 in6_clearscope(&ip6->ip6_dst); 760 761 /* 762 * If the outgoing packet contains a hop-by-hop options header, 763 * it must be examined and processed even by the source node. 764 * (RFC 2460, section 4.) 765 */ 766 if (exthdrs.ip6e_hbh) { 767 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 768 u_int32_t dummy; /* XXX unused */ 769 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 770 771 #ifdef DIAGNOSTIC 772 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 773 panic("ip6e_hbh is not contiguous"); 774 #endif 775 /* 776 * XXX: if we have to send an ICMPv6 error to the sender, 777 * we need the M_LOOP flag since icmp6_error() expects 778 * the IPv6 and the hop-by-hop options header are 779 * contiguous unless the flag is set. 780 */ 781 m->m_flags |= M_LOOP; 782 m->m_pkthdr.rcvif = ifp; 783 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 784 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 785 &dummy, &plen) < 0) { 786 /* m was already freed at this point */ 787 error = EINVAL;/* better error? */ 788 goto done; 789 } 790 m->m_flags &= ~M_LOOP; /* XXX */ 791 m->m_pkthdr.rcvif = NULL; 792 } 793 794 /* Jump over all PFIL processing if hooks are not active. */ 795 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head)) 796 goto passout; 797 798 odst = ip6->ip6_dst; 799 /* Run through list of hooks for output packets. */ 800 switch (pfil_run_hooks(V_inet6_pfil_head, &m, ifp, PFIL_OUT, inp)) { 801 case PFIL_PASS: 802 ip6 = mtod(m, struct ip6_hdr *); 803 break; 804 case PFIL_DROPPED: 805 error = EPERM; 806 /* FALLTHROUGH */ 807 case PFIL_CONSUMED: 808 goto done; 809 } 810 811 needfiblookup = 0; 812 /* See if destination IP address was changed by packet filter. */ 813 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 814 m->m_flags |= M_SKIP_FIREWALL; 815 /* If destination is now ourself drop to ip6_input(). */ 816 if (in6_localip(&ip6->ip6_dst)) { 817 m->m_flags |= M_FASTFWD_OURS; 818 if (m->m_pkthdr.rcvif == NULL) 819 m->m_pkthdr.rcvif = V_loif; 820 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 821 m->m_pkthdr.csum_flags |= 822 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 823 m->m_pkthdr.csum_data = 0xffff; 824 } 825 #ifdef SCTP 826 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 827 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 828 #endif 829 error = netisr_queue(NETISR_IPV6, m); 830 goto done; 831 } else { 832 RO_INVALIDATE_CACHE(ro); 833 needfiblookup = 1; /* Redo the routing table lookup. */ 834 } 835 } 836 /* See if fib was changed by packet filter. */ 837 if (fibnum != M_GETFIB(m)) { 838 m->m_flags |= M_SKIP_FIREWALL; 839 fibnum = M_GETFIB(m); 840 RO_INVALIDATE_CACHE(ro); 841 needfiblookup = 1; 842 } 843 if (needfiblookup) 844 goto again; 845 846 /* See if local, if yes, send it to netisr. */ 847 if (m->m_flags & M_FASTFWD_OURS) { 848 if (m->m_pkthdr.rcvif == NULL) 849 m->m_pkthdr.rcvif = V_loif; 850 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 851 m->m_pkthdr.csum_flags |= 852 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 853 m->m_pkthdr.csum_data = 0xffff; 854 } 855 #ifdef SCTP 856 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 857 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 858 #endif 859 error = netisr_queue(NETISR_IPV6, m); 860 goto done; 861 } 862 /* Or forward to some other address? */ 863 if ((m->m_flags & M_IP6_NEXTHOP) && 864 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 865 dst = (struct sockaddr_in6 *)&ro->ro_dst; 866 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 867 m->m_flags |= M_SKIP_FIREWALL; 868 m->m_flags &= ~M_IP6_NEXTHOP; 869 m_tag_delete(m, fwd_tag); 870 goto again; 871 } 872 873 passout: 874 /* 875 * Send the packet to the outgoing interface. 876 * If necessary, do IPv6 fragmentation before sending. 877 * 878 * the logic here is rather complex: 879 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 880 * 1-a: send as is if tlen <= path mtu 881 * 1-b: fragment if tlen > path mtu 882 * 883 * 2: if user asks us not to fragment (dontfrag == 1) 884 * 2-a: send as is if tlen <= interface mtu 885 * 2-b: error if tlen > interface mtu 886 * 887 * 3: if we always need to attach fragment header (alwaysfrag == 1) 888 * always fragment 889 * 890 * 4: if dontfrag == 1 && alwaysfrag == 1 891 * error, as we cannot handle this conflicting request 892 */ 893 sw_csum = m->m_pkthdr.csum_flags; 894 if (!hdrsplit) { 895 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 896 sw_csum &= ~ifp->if_hwassist; 897 } else 898 tso = 0; 899 /* 900 * If we added extension headers, we will not do TSO and calculate the 901 * checksums ourselves for now. 902 * XXX-BZ Need a framework to know when the NIC can handle it, even 903 * with ext. hdrs. 904 */ 905 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 906 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 907 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 908 } 909 #ifdef SCTP 910 if (sw_csum & CSUM_SCTP_IPV6) { 911 sw_csum &= ~CSUM_SCTP_IPV6; 912 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 913 } 914 #endif 915 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 916 tlen = m->m_pkthdr.len; 917 918 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 919 dontfrag = 1; 920 else 921 dontfrag = 0; 922 if (dontfrag && alwaysfrag) { /* case 4 */ 923 /* conflicting request - can't transmit */ 924 error = EMSGSIZE; 925 goto bad; 926 } 927 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 928 /* 929 * Even if the DONTFRAG option is specified, we cannot send the 930 * packet when the data length is larger than the MTU of the 931 * outgoing interface. 932 * Notify the error by sending IPV6_PATHMTU ancillary data if 933 * application wanted to know the MTU value. Also return an 934 * error code (this is not described in the API spec). 935 */ 936 if (inp != NULL) 937 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 938 error = EMSGSIZE; 939 goto bad; 940 } 941 942 /* 943 * transmit packet without fragmentation 944 */ 945 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 946 struct in6_ifaddr *ia6; 947 948 ip6 = mtod(m, struct ip6_hdr *); 949 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 950 if (ia6) { 951 /* Record statistics for this interface address. */ 952 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 953 counter_u64_add(ia6->ia_ifa.ifa_obytes, 954 m->m_pkthdr.len); 955 ifa_free(&ia6->ia_ifa); 956 } 957 #ifdef RATELIMIT 958 if (inp != NULL) { 959 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 960 in_pcboutput_txrtlmt(inp, ifp, m); 961 /* stamp send tag on mbuf */ 962 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 963 } else { 964 m->m_pkthdr.snd_tag = NULL; 965 } 966 #endif 967 error = nd6_output_ifp(ifp, origifp, m, dst, 968 (struct route *)ro); 969 #ifdef RATELIMIT 970 /* check for route change */ 971 if (error == EAGAIN) 972 in_pcboutput_eagain(inp); 973 #endif 974 goto done; 975 } 976 977 /* 978 * try to fragment the packet. case 1-b and 3 979 */ 980 if (mtu < IPV6_MMTU) { 981 /* path MTU cannot be less than IPV6_MMTU */ 982 error = EMSGSIZE; 983 in6_ifstat_inc(ifp, ifs6_out_fragfail); 984 goto bad; 985 } else if (ip6->ip6_plen == 0) { 986 /* jumbo payload cannot be fragmented */ 987 error = EMSGSIZE; 988 in6_ifstat_inc(ifp, ifs6_out_fragfail); 989 goto bad; 990 } else { 991 u_char nextproto; 992 993 /* 994 * Too large for the destination or interface; 995 * fragment if possible. 996 * Must be able to put at least 8 bytes per fragment. 997 */ 998 hlen = unfragpartlen; 999 if (mtu > IPV6_MAXPACKET) 1000 mtu = IPV6_MAXPACKET; 1001 1002 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 1003 if (len < 8) { 1004 error = EMSGSIZE; 1005 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1006 goto bad; 1007 } 1008 1009 /* 1010 * If the interface will not calculate checksums on 1011 * fragmented packets, then do it here. 1012 * XXX-BZ handle the hw offloading case. Need flags. 1013 */ 1014 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1015 in6_delayed_cksum(m, plen, hlen); 1016 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 1017 } 1018 #ifdef SCTP 1019 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 1020 sctp_delayed_cksum(m, hlen); 1021 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 1022 } 1023 #endif 1024 /* 1025 * Change the next header field of the last header in the 1026 * unfragmentable part. 1027 */ 1028 if (exthdrs.ip6e_rthdr) { 1029 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1030 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1031 } else if (exthdrs.ip6e_dest1) { 1032 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1033 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1034 } else if (exthdrs.ip6e_hbh) { 1035 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1036 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1037 } else { 1038 nextproto = ip6->ip6_nxt; 1039 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1040 } 1041 1042 /* 1043 * Loop through length of segment after first fragment, 1044 * make new header and copy data of each part and link onto 1045 * chain. 1046 */ 1047 m0 = m; 1048 id = htonl(ip6_randomid()); 1049 if ((error = ip6_fragment(ifp, m, hlen, nextproto, len, id))) 1050 goto sendorfree; 1051 1052 in6_ifstat_inc(ifp, ifs6_out_fragok); 1053 } 1054 1055 /* 1056 * Remove leading garbages. 1057 */ 1058 sendorfree: 1059 m = m0->m_nextpkt; 1060 m0->m_nextpkt = 0; 1061 m_freem(m0); 1062 for (; m; m = m0) { 1063 m0 = m->m_nextpkt; 1064 m->m_nextpkt = 0; 1065 if (error == 0) { 1066 /* Record statistics for this interface address. */ 1067 if (ia) { 1068 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1069 counter_u64_add(ia->ia_ifa.ifa_obytes, 1070 m->m_pkthdr.len); 1071 } 1072 #ifdef RATELIMIT 1073 if (inp != NULL) { 1074 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 1075 in_pcboutput_txrtlmt(inp, ifp, m); 1076 /* stamp send tag on mbuf */ 1077 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 1078 } else { 1079 m->m_pkthdr.snd_tag = NULL; 1080 } 1081 #endif 1082 error = nd6_output_ifp(ifp, origifp, m, dst, 1083 (struct route *)ro); 1084 #ifdef RATELIMIT 1085 /* check for route change */ 1086 if (error == EAGAIN) 1087 in_pcboutput_eagain(inp); 1088 #endif 1089 } else 1090 m_freem(m); 1091 } 1092 1093 if (error == 0) 1094 IP6STAT_INC(ip6s_fragmented); 1095 1096 done: 1097 if (ro == &ip6route) 1098 RO_RTFREE(ro); 1099 return (error); 1100 1101 freehdrs: 1102 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1103 m_freem(exthdrs.ip6e_dest1); 1104 m_freem(exthdrs.ip6e_rthdr); 1105 m_freem(exthdrs.ip6e_dest2); 1106 /* FALLTHROUGH */ 1107 bad: 1108 if (m) 1109 m_freem(m); 1110 goto done; 1111 } 1112 1113 static int 1114 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1115 { 1116 struct mbuf *m; 1117 1118 if (hlen > MCLBYTES) 1119 return (ENOBUFS); /* XXX */ 1120 1121 if (hlen > MLEN) 1122 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1123 else 1124 m = m_get(M_NOWAIT, MT_DATA); 1125 if (m == NULL) 1126 return (ENOBUFS); 1127 m->m_len = hlen; 1128 if (hdr) 1129 bcopy(hdr, mtod(m, caddr_t), hlen); 1130 1131 *mp = m; 1132 return (0); 1133 } 1134 1135 /* 1136 * Insert jumbo payload option. 1137 */ 1138 static int 1139 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1140 { 1141 struct mbuf *mopt; 1142 u_char *optbuf; 1143 u_int32_t v; 1144 1145 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1146 1147 /* 1148 * If there is no hop-by-hop options header, allocate new one. 1149 * If there is one but it doesn't have enough space to store the 1150 * jumbo payload option, allocate a cluster to store the whole options. 1151 * Otherwise, use it to store the options. 1152 */ 1153 if (exthdrs->ip6e_hbh == NULL) { 1154 mopt = m_get(M_NOWAIT, MT_DATA); 1155 if (mopt == NULL) 1156 return (ENOBUFS); 1157 mopt->m_len = JUMBOOPTLEN; 1158 optbuf = mtod(mopt, u_char *); 1159 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1160 exthdrs->ip6e_hbh = mopt; 1161 } else { 1162 struct ip6_hbh *hbh; 1163 1164 mopt = exthdrs->ip6e_hbh; 1165 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1166 /* 1167 * XXX assumption: 1168 * - exthdrs->ip6e_hbh is not referenced from places 1169 * other than exthdrs. 1170 * - exthdrs->ip6e_hbh is not an mbuf chain. 1171 */ 1172 int oldoptlen = mopt->m_len; 1173 struct mbuf *n; 1174 1175 /* 1176 * XXX: give up if the whole (new) hbh header does 1177 * not fit even in an mbuf cluster. 1178 */ 1179 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1180 return (ENOBUFS); 1181 1182 /* 1183 * As a consequence, we must always prepare a cluster 1184 * at this point. 1185 */ 1186 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1187 if (n == NULL) 1188 return (ENOBUFS); 1189 n->m_len = oldoptlen + JUMBOOPTLEN; 1190 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1191 oldoptlen); 1192 optbuf = mtod(n, caddr_t) + oldoptlen; 1193 m_freem(mopt); 1194 mopt = exthdrs->ip6e_hbh = n; 1195 } else { 1196 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1197 mopt->m_len += JUMBOOPTLEN; 1198 } 1199 optbuf[0] = IP6OPT_PADN; 1200 optbuf[1] = 1; 1201 1202 /* 1203 * Adjust the header length according to the pad and 1204 * the jumbo payload option. 1205 */ 1206 hbh = mtod(mopt, struct ip6_hbh *); 1207 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1208 } 1209 1210 /* fill in the option. */ 1211 optbuf[2] = IP6OPT_JUMBO; 1212 optbuf[3] = 4; 1213 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1214 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1215 1216 /* finally, adjust the packet header length */ 1217 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1218 1219 return (0); 1220 #undef JUMBOOPTLEN 1221 } 1222 1223 /* 1224 * Insert fragment header and copy unfragmentable header portions. 1225 */ 1226 static int 1227 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1228 struct ip6_frag **frghdrp) 1229 { 1230 struct mbuf *n, *mlast; 1231 1232 if (hlen > sizeof(struct ip6_hdr)) { 1233 n = m_copym(m0, sizeof(struct ip6_hdr), 1234 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1235 if (n == NULL) 1236 return (ENOBUFS); 1237 m->m_next = n; 1238 } else 1239 n = m; 1240 1241 /* Search for the last mbuf of unfragmentable part. */ 1242 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1243 ; 1244 1245 if (M_WRITABLE(mlast) && 1246 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1247 /* use the trailing space of the last mbuf for the fragment hdr */ 1248 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1249 mlast->m_len); 1250 mlast->m_len += sizeof(struct ip6_frag); 1251 m->m_pkthdr.len += sizeof(struct ip6_frag); 1252 } else { 1253 /* allocate a new mbuf for the fragment header */ 1254 struct mbuf *mfrg; 1255 1256 mfrg = m_get(M_NOWAIT, MT_DATA); 1257 if (mfrg == NULL) 1258 return (ENOBUFS); 1259 mfrg->m_len = sizeof(struct ip6_frag); 1260 *frghdrp = mtod(mfrg, struct ip6_frag *); 1261 mlast->m_next = mfrg; 1262 } 1263 1264 return (0); 1265 } 1266 1267 /* 1268 * Calculates IPv6 path mtu for destination @dst. 1269 * Resulting MTU is stored in @mtup. 1270 * 1271 * Returns 0 on success. 1272 */ 1273 static int 1274 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1275 { 1276 struct nhop6_extended nh6; 1277 struct in6_addr kdst; 1278 uint32_t scopeid; 1279 struct ifnet *ifp; 1280 u_long mtu; 1281 int error; 1282 1283 in6_splitscope(dst, &kdst, &scopeid); 1284 if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0) 1285 return (EHOSTUNREACH); 1286 1287 ifp = nh6.nh_ifp; 1288 mtu = nh6.nh_mtu; 1289 1290 error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL, 0); 1291 fib6_free_nh_ext(fibnum, &nh6); 1292 1293 return (error); 1294 } 1295 1296 /* 1297 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1298 * and cached data in @ro_pmtu. 1299 * MTU from (successful) route lookup is saved (along with dst) 1300 * inside @ro_pmtu to avoid subsequent route lookups after packet 1301 * filter processing. 1302 * 1303 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1304 * Returns 0 on success. 1305 */ 1306 static int 1307 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1308 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1309 int *alwaysfragp, u_int fibnum, u_int proto) 1310 { 1311 struct nhop6_basic nh6; 1312 struct in6_addr kdst; 1313 uint32_t scopeid; 1314 struct sockaddr_in6 *sa6_dst; 1315 u_long mtu; 1316 1317 mtu = 0; 1318 if (do_lookup) { 1319 1320 /* 1321 * Here ro_pmtu has final destination address, while 1322 * ro might represent immediate destination. 1323 * Use ro_pmtu destination since mtu might differ. 1324 */ 1325 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1326 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1327 ro_pmtu->ro_mtu = 0; 1328 1329 if (ro_pmtu->ro_mtu == 0) { 1330 bzero(sa6_dst, sizeof(*sa6_dst)); 1331 sa6_dst->sin6_family = AF_INET6; 1332 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1333 sa6_dst->sin6_addr = *dst; 1334 1335 in6_splitscope(dst, &kdst, &scopeid); 1336 if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0, 1337 &nh6) == 0) 1338 ro_pmtu->ro_mtu = nh6.nh_mtu; 1339 } 1340 1341 mtu = ro_pmtu->ro_mtu; 1342 } 1343 1344 if (ro_pmtu->ro_rt) 1345 mtu = ro_pmtu->ro_rt->rt_mtu; 1346 1347 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1348 } 1349 1350 /* 1351 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1352 * hostcache data for @dst. 1353 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1354 * 1355 * Returns 0 on success. 1356 */ 1357 static int 1358 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1359 u_long *mtup, int *alwaysfragp, u_int proto) 1360 { 1361 u_long mtu = 0; 1362 int alwaysfrag = 0; 1363 int error = 0; 1364 1365 if (rt_mtu > 0) { 1366 u_int32_t ifmtu; 1367 struct in_conninfo inc; 1368 1369 bzero(&inc, sizeof(inc)); 1370 inc.inc_flags |= INC_ISIPV6; 1371 inc.inc6_faddr = *dst; 1372 1373 ifmtu = IN6_LINKMTU(ifp); 1374 1375 /* TCP is known to react to pmtu changes so skip hc */ 1376 if (proto != IPPROTO_TCP) 1377 mtu = tcp_hc_getmtu(&inc); 1378 1379 if (mtu) 1380 mtu = min(mtu, rt_mtu); 1381 else 1382 mtu = rt_mtu; 1383 if (mtu == 0) 1384 mtu = ifmtu; 1385 else if (mtu < IPV6_MMTU) { 1386 /* 1387 * RFC2460 section 5, last paragraph: 1388 * if we record ICMPv6 too big message with 1389 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1390 * or smaller, with framgent header attached. 1391 * (fragment header is needed regardless from the 1392 * packet size, for translators to identify packets) 1393 */ 1394 alwaysfrag = 1; 1395 mtu = IPV6_MMTU; 1396 } 1397 } else if (ifp) { 1398 mtu = IN6_LINKMTU(ifp); 1399 } else 1400 error = EHOSTUNREACH; /* XXX */ 1401 1402 *mtup = mtu; 1403 if (alwaysfragp) 1404 *alwaysfragp = alwaysfrag; 1405 return (error); 1406 } 1407 1408 /* 1409 * IP6 socket option processing. 1410 */ 1411 int 1412 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1413 { 1414 int optdatalen, uproto; 1415 void *optdata; 1416 struct inpcb *in6p = sotoinpcb(so); 1417 int error, optval; 1418 int level, op, optname; 1419 int optlen; 1420 struct thread *td; 1421 #ifdef RSS 1422 uint32_t rss_bucket; 1423 int retval; 1424 #endif 1425 1426 /* 1427 * Don't use more than a quarter of mbuf clusters. N.B.: 1428 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1429 * on LP64 architectures, so cast to u_long to avoid undefined 1430 * behavior. ILP32 architectures cannot have nmbclusters 1431 * large enough to overflow for other reasons. 1432 */ 1433 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1434 1435 level = sopt->sopt_level; 1436 op = sopt->sopt_dir; 1437 optname = sopt->sopt_name; 1438 optlen = sopt->sopt_valsize; 1439 td = sopt->sopt_td; 1440 error = 0; 1441 optval = 0; 1442 uproto = (int)so->so_proto->pr_protocol; 1443 1444 if (level != IPPROTO_IPV6) { 1445 error = EINVAL; 1446 1447 if (sopt->sopt_level == SOL_SOCKET && 1448 sopt->sopt_dir == SOPT_SET) { 1449 switch (sopt->sopt_name) { 1450 case SO_REUSEADDR: 1451 INP_WLOCK(in6p); 1452 if ((so->so_options & SO_REUSEADDR) != 0) 1453 in6p->inp_flags2 |= INP_REUSEADDR; 1454 else 1455 in6p->inp_flags2 &= ~INP_REUSEADDR; 1456 INP_WUNLOCK(in6p); 1457 error = 0; 1458 break; 1459 case SO_REUSEPORT: 1460 INP_WLOCK(in6p); 1461 if ((so->so_options & SO_REUSEPORT) != 0) 1462 in6p->inp_flags2 |= INP_REUSEPORT; 1463 else 1464 in6p->inp_flags2 &= ~INP_REUSEPORT; 1465 INP_WUNLOCK(in6p); 1466 error = 0; 1467 break; 1468 case SO_REUSEPORT_LB: 1469 INP_WLOCK(in6p); 1470 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1471 in6p->inp_flags2 |= INP_REUSEPORT_LB; 1472 else 1473 in6p->inp_flags2 &= ~INP_REUSEPORT_LB; 1474 INP_WUNLOCK(in6p); 1475 error = 0; 1476 break; 1477 case SO_SETFIB: 1478 INP_WLOCK(in6p); 1479 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1480 INP_WUNLOCK(in6p); 1481 error = 0; 1482 break; 1483 case SO_MAX_PACING_RATE: 1484 #ifdef RATELIMIT 1485 INP_WLOCK(in6p); 1486 in6p->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1487 INP_WUNLOCK(in6p); 1488 error = 0; 1489 #else 1490 error = EOPNOTSUPP; 1491 #endif 1492 break; 1493 default: 1494 break; 1495 } 1496 } 1497 } else { /* level == IPPROTO_IPV6 */ 1498 switch (op) { 1499 1500 case SOPT_SET: 1501 switch (optname) { 1502 case IPV6_2292PKTOPTIONS: 1503 #ifdef IPV6_PKTOPTIONS 1504 case IPV6_PKTOPTIONS: 1505 #endif 1506 { 1507 struct mbuf *m; 1508 1509 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1510 printf("ip6_ctloutput: mbuf limit hit\n"); 1511 error = ENOBUFS; 1512 break; 1513 } 1514 1515 error = soopt_getm(sopt, &m); /* XXX */ 1516 if (error != 0) 1517 break; 1518 error = soopt_mcopyin(sopt, m); /* XXX */ 1519 if (error != 0) 1520 break; 1521 error = ip6_pcbopts(&in6p->in6p_outputopts, 1522 m, so, sopt); 1523 m_freem(m); /* XXX */ 1524 break; 1525 } 1526 1527 /* 1528 * Use of some Hop-by-Hop options or some 1529 * Destination options, might require special 1530 * privilege. That is, normal applications 1531 * (without special privilege) might be forbidden 1532 * from setting certain options in outgoing packets, 1533 * and might never see certain options in received 1534 * packets. [RFC 2292 Section 6] 1535 * KAME specific note: 1536 * KAME prevents non-privileged users from sending or 1537 * receiving ANY hbh/dst options in order to avoid 1538 * overhead of parsing options in the kernel. 1539 */ 1540 case IPV6_RECVHOPOPTS: 1541 case IPV6_RECVDSTOPTS: 1542 case IPV6_RECVRTHDRDSTOPTS: 1543 if (td != NULL) { 1544 error = priv_check(td, 1545 PRIV_NETINET_SETHDROPTS); 1546 if (error) 1547 break; 1548 } 1549 /* FALLTHROUGH */ 1550 case IPV6_UNICAST_HOPS: 1551 case IPV6_HOPLIMIT: 1552 1553 case IPV6_RECVPKTINFO: 1554 case IPV6_RECVHOPLIMIT: 1555 case IPV6_RECVRTHDR: 1556 case IPV6_RECVPATHMTU: 1557 case IPV6_RECVTCLASS: 1558 case IPV6_RECVFLOWID: 1559 #ifdef RSS 1560 case IPV6_RECVRSSBUCKETID: 1561 #endif 1562 case IPV6_V6ONLY: 1563 case IPV6_AUTOFLOWLABEL: 1564 case IPV6_ORIGDSTADDR: 1565 case IPV6_BINDANY: 1566 case IPV6_BINDMULTI: 1567 #ifdef RSS 1568 case IPV6_RSS_LISTEN_BUCKET: 1569 #endif 1570 if (optname == IPV6_BINDANY && td != NULL) { 1571 error = priv_check(td, 1572 PRIV_NETINET_BINDANY); 1573 if (error) 1574 break; 1575 } 1576 1577 if (optlen != sizeof(int)) { 1578 error = EINVAL; 1579 break; 1580 } 1581 error = sooptcopyin(sopt, &optval, 1582 sizeof optval, sizeof optval); 1583 if (error) 1584 break; 1585 switch (optname) { 1586 1587 case IPV6_UNICAST_HOPS: 1588 if (optval < -1 || optval >= 256) 1589 error = EINVAL; 1590 else { 1591 /* -1 = kernel default */ 1592 in6p->in6p_hops = optval; 1593 if ((in6p->inp_vflag & 1594 INP_IPV4) != 0) 1595 in6p->inp_ip_ttl = optval; 1596 } 1597 break; 1598 #define OPTSET(bit) \ 1599 do { \ 1600 INP_WLOCK(in6p); \ 1601 if (optval) \ 1602 in6p->inp_flags |= (bit); \ 1603 else \ 1604 in6p->inp_flags &= ~(bit); \ 1605 INP_WUNLOCK(in6p); \ 1606 } while (/*CONSTCOND*/ 0) 1607 #define OPTSET2292(bit) \ 1608 do { \ 1609 INP_WLOCK(in6p); \ 1610 in6p->inp_flags |= IN6P_RFC2292; \ 1611 if (optval) \ 1612 in6p->inp_flags |= (bit); \ 1613 else \ 1614 in6p->inp_flags &= ~(bit); \ 1615 INP_WUNLOCK(in6p); \ 1616 } while (/*CONSTCOND*/ 0) 1617 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1618 1619 #define OPTSET2_N(bit, val) do { \ 1620 if (val) \ 1621 in6p->inp_flags2 |= bit; \ 1622 else \ 1623 in6p->inp_flags2 &= ~bit; \ 1624 } while (0) 1625 #define OPTSET2(bit, val) do { \ 1626 INP_WLOCK(in6p); \ 1627 OPTSET2_N(bit, val); \ 1628 INP_WUNLOCK(in6p); \ 1629 } while (0) 1630 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) 1631 #define OPTSET2292_EXCLUSIVE(bit) \ 1632 do { \ 1633 INP_WLOCK(in6p); \ 1634 if (OPTBIT(IN6P_RFC2292)) { \ 1635 error = EINVAL; \ 1636 } else { \ 1637 if (optval) \ 1638 in6p->inp_flags |= (bit); \ 1639 else \ 1640 in6p->inp_flags &= ~(bit); \ 1641 } \ 1642 INP_WUNLOCK(in6p); \ 1643 } while (/*CONSTCOND*/ 0) 1644 1645 case IPV6_RECVPKTINFO: 1646 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1647 break; 1648 1649 case IPV6_HOPLIMIT: 1650 { 1651 struct ip6_pktopts **optp; 1652 1653 /* cannot mix with RFC2292 */ 1654 if (OPTBIT(IN6P_RFC2292)) { 1655 error = EINVAL; 1656 break; 1657 } 1658 INP_WLOCK(in6p); 1659 if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1660 INP_WUNLOCK(in6p); 1661 return (ECONNRESET); 1662 } 1663 optp = &in6p->in6p_outputopts; 1664 error = ip6_pcbopt(IPV6_HOPLIMIT, 1665 (u_char *)&optval, sizeof(optval), 1666 optp, (td != NULL) ? td->td_ucred : 1667 NULL, uproto); 1668 INP_WUNLOCK(in6p); 1669 break; 1670 } 1671 1672 case IPV6_RECVHOPLIMIT: 1673 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1674 break; 1675 1676 case IPV6_RECVHOPOPTS: 1677 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1678 break; 1679 1680 case IPV6_RECVDSTOPTS: 1681 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1682 break; 1683 1684 case IPV6_RECVRTHDRDSTOPTS: 1685 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1686 break; 1687 1688 case IPV6_RECVRTHDR: 1689 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1690 break; 1691 1692 case IPV6_RECVPATHMTU: 1693 /* 1694 * We ignore this option for TCP 1695 * sockets. 1696 * (RFC3542 leaves this case 1697 * unspecified.) 1698 */ 1699 if (uproto != IPPROTO_TCP) 1700 OPTSET(IN6P_MTU); 1701 break; 1702 1703 case IPV6_RECVFLOWID: 1704 OPTSET2(INP_RECVFLOWID, optval); 1705 break; 1706 1707 #ifdef RSS 1708 case IPV6_RECVRSSBUCKETID: 1709 OPTSET2(INP_RECVRSSBUCKETID, optval); 1710 break; 1711 #endif 1712 1713 case IPV6_V6ONLY: 1714 /* 1715 * make setsockopt(IPV6_V6ONLY) 1716 * available only prior to bind(2). 1717 * see ipng mailing list, Jun 22 2001. 1718 */ 1719 if (in6p->inp_lport || 1720 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1721 error = EINVAL; 1722 break; 1723 } 1724 OPTSET(IN6P_IPV6_V6ONLY); 1725 if (optval) 1726 in6p->inp_vflag &= ~INP_IPV4; 1727 else 1728 in6p->inp_vflag |= INP_IPV4; 1729 break; 1730 case IPV6_RECVTCLASS: 1731 /* cannot mix with RFC2292 XXX */ 1732 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1733 break; 1734 case IPV6_AUTOFLOWLABEL: 1735 OPTSET(IN6P_AUTOFLOWLABEL); 1736 break; 1737 1738 case IPV6_ORIGDSTADDR: 1739 OPTSET2(INP_ORIGDSTADDR, optval); 1740 break; 1741 case IPV6_BINDANY: 1742 OPTSET(INP_BINDANY); 1743 break; 1744 1745 case IPV6_BINDMULTI: 1746 OPTSET2(INP_BINDMULTI, optval); 1747 break; 1748 #ifdef RSS 1749 case IPV6_RSS_LISTEN_BUCKET: 1750 if ((optval >= 0) && 1751 (optval < rss_getnumbuckets())) { 1752 INP_WLOCK(in6p); 1753 in6p->inp_rss_listen_bucket = optval; 1754 OPTSET2_N(INP_RSS_BUCKET_SET, 1); 1755 INP_WUNLOCK(in6p); 1756 } else { 1757 error = EINVAL; 1758 } 1759 break; 1760 #endif 1761 } 1762 break; 1763 1764 case IPV6_TCLASS: 1765 case IPV6_DONTFRAG: 1766 case IPV6_USE_MIN_MTU: 1767 case IPV6_PREFER_TEMPADDR: 1768 if (optlen != sizeof(optval)) { 1769 error = EINVAL; 1770 break; 1771 } 1772 error = sooptcopyin(sopt, &optval, 1773 sizeof optval, sizeof optval); 1774 if (error) 1775 break; 1776 { 1777 struct ip6_pktopts **optp; 1778 INP_WLOCK(in6p); 1779 if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1780 INP_WUNLOCK(in6p); 1781 return (ECONNRESET); 1782 } 1783 optp = &in6p->in6p_outputopts; 1784 error = ip6_pcbopt(optname, 1785 (u_char *)&optval, sizeof(optval), 1786 optp, (td != NULL) ? td->td_ucred : 1787 NULL, uproto); 1788 INP_WUNLOCK(in6p); 1789 break; 1790 } 1791 1792 case IPV6_2292PKTINFO: 1793 case IPV6_2292HOPLIMIT: 1794 case IPV6_2292HOPOPTS: 1795 case IPV6_2292DSTOPTS: 1796 case IPV6_2292RTHDR: 1797 /* RFC 2292 */ 1798 if (optlen != sizeof(int)) { 1799 error = EINVAL; 1800 break; 1801 } 1802 error = sooptcopyin(sopt, &optval, 1803 sizeof optval, sizeof optval); 1804 if (error) 1805 break; 1806 switch (optname) { 1807 case IPV6_2292PKTINFO: 1808 OPTSET2292(IN6P_PKTINFO); 1809 break; 1810 case IPV6_2292HOPLIMIT: 1811 OPTSET2292(IN6P_HOPLIMIT); 1812 break; 1813 case IPV6_2292HOPOPTS: 1814 /* 1815 * Check super-user privilege. 1816 * See comments for IPV6_RECVHOPOPTS. 1817 */ 1818 if (td != NULL) { 1819 error = priv_check(td, 1820 PRIV_NETINET_SETHDROPTS); 1821 if (error) 1822 return (error); 1823 } 1824 OPTSET2292(IN6P_HOPOPTS); 1825 break; 1826 case IPV6_2292DSTOPTS: 1827 if (td != NULL) { 1828 error = priv_check(td, 1829 PRIV_NETINET_SETHDROPTS); 1830 if (error) 1831 return (error); 1832 } 1833 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1834 break; 1835 case IPV6_2292RTHDR: 1836 OPTSET2292(IN6P_RTHDR); 1837 break; 1838 } 1839 break; 1840 case IPV6_PKTINFO: 1841 case IPV6_HOPOPTS: 1842 case IPV6_RTHDR: 1843 case IPV6_DSTOPTS: 1844 case IPV6_RTHDRDSTOPTS: 1845 case IPV6_NEXTHOP: 1846 { 1847 /* new advanced API (RFC3542) */ 1848 u_char *optbuf; 1849 u_char optbuf_storage[MCLBYTES]; 1850 int optlen; 1851 struct ip6_pktopts **optp; 1852 1853 /* cannot mix with RFC2292 */ 1854 if (OPTBIT(IN6P_RFC2292)) { 1855 error = EINVAL; 1856 break; 1857 } 1858 1859 /* 1860 * We only ensure valsize is not too large 1861 * here. Further validation will be done 1862 * later. 1863 */ 1864 error = sooptcopyin(sopt, optbuf_storage, 1865 sizeof(optbuf_storage), 0); 1866 if (error) 1867 break; 1868 optlen = sopt->sopt_valsize; 1869 optbuf = optbuf_storage; 1870 INP_WLOCK(in6p); 1871 if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1872 INP_WUNLOCK(in6p); 1873 return (ECONNRESET); 1874 } 1875 optp = &in6p->in6p_outputopts; 1876 error = ip6_pcbopt(optname, optbuf, optlen, 1877 optp, (td != NULL) ? td->td_ucred : NULL, 1878 uproto); 1879 INP_WUNLOCK(in6p); 1880 break; 1881 } 1882 #undef OPTSET 1883 1884 case IPV6_MULTICAST_IF: 1885 case IPV6_MULTICAST_HOPS: 1886 case IPV6_MULTICAST_LOOP: 1887 case IPV6_JOIN_GROUP: 1888 case IPV6_LEAVE_GROUP: 1889 case IPV6_MSFILTER: 1890 case MCAST_BLOCK_SOURCE: 1891 case MCAST_UNBLOCK_SOURCE: 1892 case MCAST_JOIN_GROUP: 1893 case MCAST_LEAVE_GROUP: 1894 case MCAST_JOIN_SOURCE_GROUP: 1895 case MCAST_LEAVE_SOURCE_GROUP: 1896 error = ip6_setmoptions(in6p, sopt); 1897 break; 1898 1899 case IPV6_PORTRANGE: 1900 error = sooptcopyin(sopt, &optval, 1901 sizeof optval, sizeof optval); 1902 if (error) 1903 break; 1904 1905 INP_WLOCK(in6p); 1906 switch (optval) { 1907 case IPV6_PORTRANGE_DEFAULT: 1908 in6p->inp_flags &= ~(INP_LOWPORT); 1909 in6p->inp_flags &= ~(INP_HIGHPORT); 1910 break; 1911 1912 case IPV6_PORTRANGE_HIGH: 1913 in6p->inp_flags &= ~(INP_LOWPORT); 1914 in6p->inp_flags |= INP_HIGHPORT; 1915 break; 1916 1917 case IPV6_PORTRANGE_LOW: 1918 in6p->inp_flags &= ~(INP_HIGHPORT); 1919 in6p->inp_flags |= INP_LOWPORT; 1920 break; 1921 1922 default: 1923 error = EINVAL; 1924 break; 1925 } 1926 INP_WUNLOCK(in6p); 1927 break; 1928 1929 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1930 case IPV6_IPSEC_POLICY: 1931 if (IPSEC_ENABLED(ipv6)) { 1932 error = IPSEC_PCBCTL(ipv6, in6p, sopt); 1933 break; 1934 } 1935 /* FALLTHROUGH */ 1936 #endif /* IPSEC */ 1937 1938 default: 1939 error = ENOPROTOOPT; 1940 break; 1941 } 1942 break; 1943 1944 case SOPT_GET: 1945 switch (optname) { 1946 1947 case IPV6_2292PKTOPTIONS: 1948 #ifdef IPV6_PKTOPTIONS 1949 case IPV6_PKTOPTIONS: 1950 #endif 1951 /* 1952 * RFC3542 (effectively) deprecated the 1953 * semantics of the 2292-style pktoptions. 1954 * Since it was not reliable in nature (i.e., 1955 * applications had to expect the lack of some 1956 * information after all), it would make sense 1957 * to simplify this part by always returning 1958 * empty data. 1959 */ 1960 sopt->sopt_valsize = 0; 1961 break; 1962 1963 case IPV6_RECVHOPOPTS: 1964 case IPV6_RECVDSTOPTS: 1965 case IPV6_RECVRTHDRDSTOPTS: 1966 case IPV6_UNICAST_HOPS: 1967 case IPV6_RECVPKTINFO: 1968 case IPV6_RECVHOPLIMIT: 1969 case IPV6_RECVRTHDR: 1970 case IPV6_RECVPATHMTU: 1971 1972 case IPV6_V6ONLY: 1973 case IPV6_PORTRANGE: 1974 case IPV6_RECVTCLASS: 1975 case IPV6_AUTOFLOWLABEL: 1976 case IPV6_BINDANY: 1977 case IPV6_FLOWID: 1978 case IPV6_FLOWTYPE: 1979 case IPV6_RECVFLOWID: 1980 #ifdef RSS 1981 case IPV6_RSSBUCKETID: 1982 case IPV6_RECVRSSBUCKETID: 1983 #endif 1984 case IPV6_BINDMULTI: 1985 switch (optname) { 1986 1987 case IPV6_RECVHOPOPTS: 1988 optval = OPTBIT(IN6P_HOPOPTS); 1989 break; 1990 1991 case IPV6_RECVDSTOPTS: 1992 optval = OPTBIT(IN6P_DSTOPTS); 1993 break; 1994 1995 case IPV6_RECVRTHDRDSTOPTS: 1996 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1997 break; 1998 1999 case IPV6_UNICAST_HOPS: 2000 optval = in6p->in6p_hops; 2001 break; 2002 2003 case IPV6_RECVPKTINFO: 2004 optval = OPTBIT(IN6P_PKTINFO); 2005 break; 2006 2007 case IPV6_RECVHOPLIMIT: 2008 optval = OPTBIT(IN6P_HOPLIMIT); 2009 break; 2010 2011 case IPV6_RECVRTHDR: 2012 optval = OPTBIT(IN6P_RTHDR); 2013 break; 2014 2015 case IPV6_RECVPATHMTU: 2016 optval = OPTBIT(IN6P_MTU); 2017 break; 2018 2019 case IPV6_V6ONLY: 2020 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2021 break; 2022 2023 case IPV6_PORTRANGE: 2024 { 2025 int flags; 2026 flags = in6p->inp_flags; 2027 if (flags & INP_HIGHPORT) 2028 optval = IPV6_PORTRANGE_HIGH; 2029 else if (flags & INP_LOWPORT) 2030 optval = IPV6_PORTRANGE_LOW; 2031 else 2032 optval = 0; 2033 break; 2034 } 2035 case IPV6_RECVTCLASS: 2036 optval = OPTBIT(IN6P_TCLASS); 2037 break; 2038 2039 case IPV6_AUTOFLOWLABEL: 2040 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2041 break; 2042 2043 case IPV6_ORIGDSTADDR: 2044 optval = OPTBIT2(INP_ORIGDSTADDR); 2045 break; 2046 2047 case IPV6_BINDANY: 2048 optval = OPTBIT(INP_BINDANY); 2049 break; 2050 2051 case IPV6_FLOWID: 2052 optval = in6p->inp_flowid; 2053 break; 2054 2055 case IPV6_FLOWTYPE: 2056 optval = in6p->inp_flowtype; 2057 break; 2058 2059 case IPV6_RECVFLOWID: 2060 optval = OPTBIT2(INP_RECVFLOWID); 2061 break; 2062 #ifdef RSS 2063 case IPV6_RSSBUCKETID: 2064 retval = 2065 rss_hash2bucket(in6p->inp_flowid, 2066 in6p->inp_flowtype, 2067 &rss_bucket); 2068 if (retval == 0) 2069 optval = rss_bucket; 2070 else 2071 error = EINVAL; 2072 break; 2073 2074 case IPV6_RECVRSSBUCKETID: 2075 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2076 break; 2077 #endif 2078 2079 case IPV6_BINDMULTI: 2080 optval = OPTBIT2(INP_BINDMULTI); 2081 break; 2082 2083 } 2084 if (error) 2085 break; 2086 error = sooptcopyout(sopt, &optval, 2087 sizeof optval); 2088 break; 2089 2090 case IPV6_PATHMTU: 2091 { 2092 u_long pmtu = 0; 2093 struct ip6_mtuinfo mtuinfo; 2094 struct in6_addr addr; 2095 2096 if (!(so->so_state & SS_ISCONNECTED)) 2097 return (ENOTCONN); 2098 /* 2099 * XXX: we dot not consider the case of source 2100 * routing, or optional information to specify 2101 * the outgoing interface. 2102 * Copy faddr out of in6p to avoid holding lock 2103 * on inp during route lookup. 2104 */ 2105 INP_RLOCK(in6p); 2106 bcopy(&in6p->in6p_faddr, &addr, sizeof(addr)); 2107 INP_RUNLOCK(in6p); 2108 error = ip6_getpmtu_ctl(so->so_fibnum, 2109 &addr, &pmtu); 2110 if (error) 2111 break; 2112 if (pmtu > IPV6_MAXPACKET) 2113 pmtu = IPV6_MAXPACKET; 2114 2115 bzero(&mtuinfo, sizeof(mtuinfo)); 2116 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2117 optdata = (void *)&mtuinfo; 2118 optdatalen = sizeof(mtuinfo); 2119 error = sooptcopyout(sopt, optdata, 2120 optdatalen); 2121 break; 2122 } 2123 2124 case IPV6_2292PKTINFO: 2125 case IPV6_2292HOPLIMIT: 2126 case IPV6_2292HOPOPTS: 2127 case IPV6_2292RTHDR: 2128 case IPV6_2292DSTOPTS: 2129 switch (optname) { 2130 case IPV6_2292PKTINFO: 2131 optval = OPTBIT(IN6P_PKTINFO); 2132 break; 2133 case IPV6_2292HOPLIMIT: 2134 optval = OPTBIT(IN6P_HOPLIMIT); 2135 break; 2136 case IPV6_2292HOPOPTS: 2137 optval = OPTBIT(IN6P_HOPOPTS); 2138 break; 2139 case IPV6_2292RTHDR: 2140 optval = OPTBIT(IN6P_RTHDR); 2141 break; 2142 case IPV6_2292DSTOPTS: 2143 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2144 break; 2145 } 2146 error = sooptcopyout(sopt, &optval, 2147 sizeof optval); 2148 break; 2149 case IPV6_PKTINFO: 2150 case IPV6_HOPOPTS: 2151 case IPV6_RTHDR: 2152 case IPV6_DSTOPTS: 2153 case IPV6_RTHDRDSTOPTS: 2154 case IPV6_NEXTHOP: 2155 case IPV6_TCLASS: 2156 case IPV6_DONTFRAG: 2157 case IPV6_USE_MIN_MTU: 2158 case IPV6_PREFER_TEMPADDR: 2159 error = ip6_getpcbopt(in6p, optname, sopt); 2160 break; 2161 2162 case IPV6_MULTICAST_IF: 2163 case IPV6_MULTICAST_HOPS: 2164 case IPV6_MULTICAST_LOOP: 2165 case IPV6_MSFILTER: 2166 error = ip6_getmoptions(in6p, sopt); 2167 break; 2168 2169 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2170 case IPV6_IPSEC_POLICY: 2171 if (IPSEC_ENABLED(ipv6)) { 2172 error = IPSEC_PCBCTL(ipv6, in6p, sopt); 2173 break; 2174 } 2175 /* FALLTHROUGH */ 2176 #endif /* IPSEC */ 2177 default: 2178 error = ENOPROTOOPT; 2179 break; 2180 } 2181 break; 2182 } 2183 } 2184 return (error); 2185 } 2186 2187 int 2188 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2189 { 2190 int error = 0, optval, optlen; 2191 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2192 struct inpcb *in6p = sotoinpcb(so); 2193 int level, op, optname; 2194 2195 level = sopt->sopt_level; 2196 op = sopt->sopt_dir; 2197 optname = sopt->sopt_name; 2198 optlen = sopt->sopt_valsize; 2199 2200 if (level != IPPROTO_IPV6) { 2201 return (EINVAL); 2202 } 2203 2204 switch (optname) { 2205 case IPV6_CHECKSUM: 2206 /* 2207 * For ICMPv6 sockets, no modification allowed for checksum 2208 * offset, permit "no change" values to help existing apps. 2209 * 2210 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2211 * for an ICMPv6 socket will fail." 2212 * The current behavior does not meet RFC3542. 2213 */ 2214 switch (op) { 2215 case SOPT_SET: 2216 if (optlen != sizeof(int)) { 2217 error = EINVAL; 2218 break; 2219 } 2220 error = sooptcopyin(sopt, &optval, sizeof(optval), 2221 sizeof(optval)); 2222 if (error) 2223 break; 2224 if (optval < -1 || (optval % 2) != 0) { 2225 /* 2226 * The API assumes non-negative even offset 2227 * values or -1 as a special value. 2228 */ 2229 error = EINVAL; 2230 } else if (so->so_proto->pr_protocol == 2231 IPPROTO_ICMPV6) { 2232 if (optval != icmp6off) 2233 error = EINVAL; 2234 } else 2235 in6p->in6p_cksum = optval; 2236 break; 2237 2238 case SOPT_GET: 2239 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2240 optval = icmp6off; 2241 else 2242 optval = in6p->in6p_cksum; 2243 2244 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2245 break; 2246 2247 default: 2248 error = EINVAL; 2249 break; 2250 } 2251 break; 2252 2253 default: 2254 error = ENOPROTOOPT; 2255 break; 2256 } 2257 2258 return (error); 2259 } 2260 2261 /* 2262 * Set up IP6 options in pcb for insertion in output packets or 2263 * specifying behavior of outgoing packets. 2264 */ 2265 static int 2266 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2267 struct socket *so, struct sockopt *sopt) 2268 { 2269 struct ip6_pktopts *opt = *pktopt; 2270 int error = 0; 2271 struct thread *td = sopt->sopt_td; 2272 2273 /* turn off any old options. */ 2274 if (opt) { 2275 #ifdef DIAGNOSTIC 2276 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2277 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2278 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2279 printf("ip6_pcbopts: all specified options are cleared.\n"); 2280 #endif 2281 ip6_clearpktopts(opt, -1); 2282 } else 2283 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2284 *pktopt = NULL; 2285 2286 if (!m || m->m_len == 0) { 2287 /* 2288 * Only turning off any previous options, regardless of 2289 * whether the opt is just created or given. 2290 */ 2291 free(opt, M_IP6OPT); 2292 return (0); 2293 } 2294 2295 /* set options specified by user. */ 2296 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2297 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2298 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2299 free(opt, M_IP6OPT); 2300 return (error); 2301 } 2302 *pktopt = opt; 2303 return (0); 2304 } 2305 2306 /* 2307 * initialize ip6_pktopts. beware that there are non-zero default values in 2308 * the struct. 2309 */ 2310 void 2311 ip6_initpktopts(struct ip6_pktopts *opt) 2312 { 2313 2314 bzero(opt, sizeof(*opt)); 2315 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2316 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2317 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2318 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2319 } 2320 2321 static int 2322 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2323 struct ucred *cred, int uproto) 2324 { 2325 struct ip6_pktopts *opt; 2326 2327 if (*pktopt == NULL) { 2328 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2329 M_NOWAIT); 2330 if (*pktopt == NULL) 2331 return (ENOBUFS); 2332 ip6_initpktopts(*pktopt); 2333 } 2334 opt = *pktopt; 2335 2336 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2337 } 2338 2339 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2340 if (pktopt && pktopt->field) { \ 2341 INP_RUNLOCK(in6p); \ 2342 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2343 malloc_optdata = true; \ 2344 INP_RLOCK(in6p); \ 2345 if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ 2346 INP_RUNLOCK(in6p); \ 2347 free(optdata, M_TEMP); \ 2348 return (ECONNRESET); \ 2349 } \ 2350 pktopt = in6p->in6p_outputopts; \ 2351 if (pktopt && pktopt->field) { \ 2352 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2353 bcopy(&pktopt->field, optdata, optdatalen); \ 2354 } else { \ 2355 free(optdata, M_TEMP); \ 2356 optdata = NULL; \ 2357 malloc_optdata = false; \ 2358 } \ 2359 } \ 2360 } while(0) 2361 2362 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2363 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2364 2365 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2366 pktopt->field->sa_len) 2367 2368 static int 2369 ip6_getpcbopt(struct inpcb *in6p, int optname, struct sockopt *sopt) 2370 { 2371 void *optdata = NULL; 2372 bool malloc_optdata = false; 2373 int optdatalen = 0; 2374 int error = 0; 2375 struct in6_pktinfo null_pktinfo; 2376 int deftclass = 0, on; 2377 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2378 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2379 struct ip6_pktopts *pktopt; 2380 2381 INP_RLOCK(in6p); 2382 pktopt = in6p->in6p_outputopts; 2383 2384 switch (optname) { 2385 case IPV6_PKTINFO: 2386 optdata = (void *)&null_pktinfo; 2387 if (pktopt && pktopt->ip6po_pktinfo) { 2388 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2389 sizeof(null_pktinfo)); 2390 in6_clearscope(&null_pktinfo.ipi6_addr); 2391 } else { 2392 /* XXX: we don't have to do this every time... */ 2393 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2394 } 2395 optdatalen = sizeof(struct in6_pktinfo); 2396 break; 2397 case IPV6_TCLASS: 2398 if (pktopt && pktopt->ip6po_tclass >= 0) 2399 deftclass = pktopt->ip6po_tclass; 2400 optdata = (void *)&deftclass; 2401 optdatalen = sizeof(int); 2402 break; 2403 case IPV6_HOPOPTS: 2404 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2405 break; 2406 case IPV6_RTHDR: 2407 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2408 break; 2409 case IPV6_RTHDRDSTOPTS: 2410 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2411 break; 2412 case IPV6_DSTOPTS: 2413 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2414 break; 2415 case IPV6_NEXTHOP: 2416 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2417 break; 2418 case IPV6_USE_MIN_MTU: 2419 if (pktopt) 2420 defminmtu = pktopt->ip6po_minmtu; 2421 optdata = (void *)&defminmtu; 2422 optdatalen = sizeof(int); 2423 break; 2424 case IPV6_DONTFRAG: 2425 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2426 on = 1; 2427 else 2428 on = 0; 2429 optdata = (void *)&on; 2430 optdatalen = sizeof(on); 2431 break; 2432 case IPV6_PREFER_TEMPADDR: 2433 if (pktopt) 2434 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2435 optdata = (void *)&defpreftemp; 2436 optdatalen = sizeof(int); 2437 break; 2438 default: /* should not happen */ 2439 #ifdef DIAGNOSTIC 2440 panic("ip6_getpcbopt: unexpected option\n"); 2441 #endif 2442 INP_RUNLOCK(in6p); 2443 return (ENOPROTOOPT); 2444 } 2445 INP_RUNLOCK(in6p); 2446 2447 error = sooptcopyout(sopt, optdata, optdatalen); 2448 if (malloc_optdata) 2449 free(optdata, M_TEMP); 2450 2451 return (error); 2452 } 2453 2454 void 2455 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2456 { 2457 if (pktopt == NULL) 2458 return; 2459 2460 if (optname == -1 || optname == IPV6_PKTINFO) { 2461 if (pktopt->ip6po_pktinfo) 2462 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2463 pktopt->ip6po_pktinfo = NULL; 2464 } 2465 if (optname == -1 || optname == IPV6_HOPLIMIT) 2466 pktopt->ip6po_hlim = -1; 2467 if (optname == -1 || optname == IPV6_TCLASS) 2468 pktopt->ip6po_tclass = -1; 2469 if (optname == -1 || optname == IPV6_NEXTHOP) { 2470 if (pktopt->ip6po_nextroute.ro_rt) { 2471 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2472 pktopt->ip6po_nextroute.ro_rt = NULL; 2473 } 2474 if (pktopt->ip6po_nexthop) 2475 free(pktopt->ip6po_nexthop, M_IP6OPT); 2476 pktopt->ip6po_nexthop = NULL; 2477 } 2478 if (optname == -1 || optname == IPV6_HOPOPTS) { 2479 if (pktopt->ip6po_hbh) 2480 free(pktopt->ip6po_hbh, M_IP6OPT); 2481 pktopt->ip6po_hbh = NULL; 2482 } 2483 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2484 if (pktopt->ip6po_dest1) 2485 free(pktopt->ip6po_dest1, M_IP6OPT); 2486 pktopt->ip6po_dest1 = NULL; 2487 } 2488 if (optname == -1 || optname == IPV6_RTHDR) { 2489 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2490 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2491 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2492 if (pktopt->ip6po_route.ro_rt) { 2493 RTFREE(pktopt->ip6po_route.ro_rt); 2494 pktopt->ip6po_route.ro_rt = NULL; 2495 } 2496 } 2497 if (optname == -1 || optname == IPV6_DSTOPTS) { 2498 if (pktopt->ip6po_dest2) 2499 free(pktopt->ip6po_dest2, M_IP6OPT); 2500 pktopt->ip6po_dest2 = NULL; 2501 } 2502 } 2503 2504 #define PKTOPT_EXTHDRCPY(type) \ 2505 do {\ 2506 if (src->type) {\ 2507 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2508 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2509 if (dst->type == NULL)\ 2510 goto bad;\ 2511 bcopy(src->type, dst->type, hlen);\ 2512 }\ 2513 } while (/*CONSTCOND*/ 0) 2514 2515 static int 2516 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2517 { 2518 if (dst == NULL || src == NULL) { 2519 printf("ip6_clearpktopts: invalid argument\n"); 2520 return (EINVAL); 2521 } 2522 2523 dst->ip6po_hlim = src->ip6po_hlim; 2524 dst->ip6po_tclass = src->ip6po_tclass; 2525 dst->ip6po_flags = src->ip6po_flags; 2526 dst->ip6po_minmtu = src->ip6po_minmtu; 2527 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2528 if (src->ip6po_pktinfo) { 2529 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2530 M_IP6OPT, canwait); 2531 if (dst->ip6po_pktinfo == NULL) 2532 goto bad; 2533 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2534 } 2535 if (src->ip6po_nexthop) { 2536 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2537 M_IP6OPT, canwait); 2538 if (dst->ip6po_nexthop == NULL) 2539 goto bad; 2540 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2541 src->ip6po_nexthop->sa_len); 2542 } 2543 PKTOPT_EXTHDRCPY(ip6po_hbh); 2544 PKTOPT_EXTHDRCPY(ip6po_dest1); 2545 PKTOPT_EXTHDRCPY(ip6po_dest2); 2546 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2547 return (0); 2548 2549 bad: 2550 ip6_clearpktopts(dst, -1); 2551 return (ENOBUFS); 2552 } 2553 #undef PKTOPT_EXTHDRCPY 2554 2555 struct ip6_pktopts * 2556 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2557 { 2558 int error; 2559 struct ip6_pktopts *dst; 2560 2561 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2562 if (dst == NULL) 2563 return (NULL); 2564 ip6_initpktopts(dst); 2565 2566 if ((error = copypktopts(dst, src, canwait)) != 0) { 2567 free(dst, M_IP6OPT); 2568 return (NULL); 2569 } 2570 2571 return (dst); 2572 } 2573 2574 void 2575 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2576 { 2577 if (pktopt == NULL) 2578 return; 2579 2580 ip6_clearpktopts(pktopt, -1); 2581 2582 free(pktopt, M_IP6OPT); 2583 } 2584 2585 /* 2586 * Set IPv6 outgoing packet options based on advanced API. 2587 */ 2588 int 2589 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2590 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2591 { 2592 struct cmsghdr *cm = NULL; 2593 2594 if (control == NULL || opt == NULL) 2595 return (EINVAL); 2596 2597 ip6_initpktopts(opt); 2598 if (stickyopt) { 2599 int error; 2600 2601 /* 2602 * If stickyopt is provided, make a local copy of the options 2603 * for this particular packet, then override them by ancillary 2604 * objects. 2605 * XXX: copypktopts() does not copy the cached route to a next 2606 * hop (if any). This is not very good in terms of efficiency, 2607 * but we can allow this since this option should be rarely 2608 * used. 2609 */ 2610 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2611 return (error); 2612 } 2613 2614 /* 2615 * XXX: Currently, we assume all the optional information is stored 2616 * in a single mbuf. 2617 */ 2618 if (control->m_next) 2619 return (EINVAL); 2620 2621 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2622 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2623 int error; 2624 2625 if (control->m_len < CMSG_LEN(0)) 2626 return (EINVAL); 2627 2628 cm = mtod(control, struct cmsghdr *); 2629 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2630 return (EINVAL); 2631 if (cm->cmsg_level != IPPROTO_IPV6) 2632 continue; 2633 2634 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2635 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2636 if (error) 2637 return (error); 2638 } 2639 2640 return (0); 2641 } 2642 2643 /* 2644 * Set a particular packet option, as a sticky option or an ancillary data 2645 * item. "len" can be 0 only when it's a sticky option. 2646 * We have 4 cases of combination of "sticky" and "cmsg": 2647 * "sticky=0, cmsg=0": impossible 2648 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2649 * "sticky=1, cmsg=0": RFC3542 socket option 2650 * "sticky=1, cmsg=1": RFC2292 socket option 2651 */ 2652 static int 2653 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2654 struct ucred *cred, int sticky, int cmsg, int uproto) 2655 { 2656 int minmtupolicy, preftemp; 2657 int error; 2658 2659 if (!sticky && !cmsg) { 2660 #ifdef DIAGNOSTIC 2661 printf("ip6_setpktopt: impossible case\n"); 2662 #endif 2663 return (EINVAL); 2664 } 2665 2666 /* 2667 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2668 * not be specified in the context of RFC3542. Conversely, 2669 * RFC3542 types should not be specified in the context of RFC2292. 2670 */ 2671 if (!cmsg) { 2672 switch (optname) { 2673 case IPV6_2292PKTINFO: 2674 case IPV6_2292HOPLIMIT: 2675 case IPV6_2292NEXTHOP: 2676 case IPV6_2292HOPOPTS: 2677 case IPV6_2292DSTOPTS: 2678 case IPV6_2292RTHDR: 2679 case IPV6_2292PKTOPTIONS: 2680 return (ENOPROTOOPT); 2681 } 2682 } 2683 if (sticky && cmsg) { 2684 switch (optname) { 2685 case IPV6_PKTINFO: 2686 case IPV6_HOPLIMIT: 2687 case IPV6_NEXTHOP: 2688 case IPV6_HOPOPTS: 2689 case IPV6_DSTOPTS: 2690 case IPV6_RTHDRDSTOPTS: 2691 case IPV6_RTHDR: 2692 case IPV6_USE_MIN_MTU: 2693 case IPV6_DONTFRAG: 2694 case IPV6_TCLASS: 2695 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2696 return (ENOPROTOOPT); 2697 } 2698 } 2699 2700 switch (optname) { 2701 case IPV6_2292PKTINFO: 2702 case IPV6_PKTINFO: 2703 { 2704 struct ifnet *ifp = NULL; 2705 struct in6_pktinfo *pktinfo; 2706 2707 if (len != sizeof(struct in6_pktinfo)) 2708 return (EINVAL); 2709 2710 pktinfo = (struct in6_pktinfo *)buf; 2711 2712 /* 2713 * An application can clear any sticky IPV6_PKTINFO option by 2714 * doing a "regular" setsockopt with ipi6_addr being 2715 * in6addr_any and ipi6_ifindex being zero. 2716 * [RFC 3542, Section 6] 2717 */ 2718 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2719 pktinfo->ipi6_ifindex == 0 && 2720 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2721 ip6_clearpktopts(opt, optname); 2722 break; 2723 } 2724 2725 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2726 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2727 return (EINVAL); 2728 } 2729 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2730 return (EINVAL); 2731 /* validate the interface index if specified. */ 2732 if (pktinfo->ipi6_ifindex > V_if_index) 2733 return (ENXIO); 2734 if (pktinfo->ipi6_ifindex) { 2735 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2736 if (ifp == NULL) 2737 return (ENXIO); 2738 } 2739 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2740 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2741 return (ENETDOWN); 2742 2743 if (ifp != NULL && 2744 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2745 struct in6_ifaddr *ia; 2746 2747 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2748 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2749 if (ia == NULL) 2750 return (EADDRNOTAVAIL); 2751 ifa_free(&ia->ia_ifa); 2752 } 2753 /* 2754 * We store the address anyway, and let in6_selectsrc() 2755 * validate the specified address. This is because ipi6_addr 2756 * may not have enough information about its scope zone, and 2757 * we may need additional information (such as outgoing 2758 * interface or the scope zone of a destination address) to 2759 * disambiguate the scope. 2760 * XXX: the delay of the validation may confuse the 2761 * application when it is used as a sticky option. 2762 */ 2763 if (opt->ip6po_pktinfo == NULL) { 2764 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2765 M_IP6OPT, M_NOWAIT); 2766 if (opt->ip6po_pktinfo == NULL) 2767 return (ENOBUFS); 2768 } 2769 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2770 break; 2771 } 2772 2773 case IPV6_2292HOPLIMIT: 2774 case IPV6_HOPLIMIT: 2775 { 2776 int *hlimp; 2777 2778 /* 2779 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2780 * to simplify the ordering among hoplimit options. 2781 */ 2782 if (optname == IPV6_HOPLIMIT && sticky) 2783 return (ENOPROTOOPT); 2784 2785 if (len != sizeof(int)) 2786 return (EINVAL); 2787 hlimp = (int *)buf; 2788 if (*hlimp < -1 || *hlimp > 255) 2789 return (EINVAL); 2790 2791 opt->ip6po_hlim = *hlimp; 2792 break; 2793 } 2794 2795 case IPV6_TCLASS: 2796 { 2797 int tclass; 2798 2799 if (len != sizeof(int)) 2800 return (EINVAL); 2801 tclass = *(int *)buf; 2802 if (tclass < -1 || tclass > 255) 2803 return (EINVAL); 2804 2805 opt->ip6po_tclass = tclass; 2806 break; 2807 } 2808 2809 case IPV6_2292NEXTHOP: 2810 case IPV6_NEXTHOP: 2811 if (cred != NULL) { 2812 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 2813 if (error) 2814 return (error); 2815 } 2816 2817 if (len == 0) { /* just remove the option */ 2818 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2819 break; 2820 } 2821 2822 /* check if cmsg_len is large enough for sa_len */ 2823 if (len < sizeof(struct sockaddr) || len < *buf) 2824 return (EINVAL); 2825 2826 switch (((struct sockaddr *)buf)->sa_family) { 2827 case AF_INET6: 2828 { 2829 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2830 int error; 2831 2832 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2833 return (EINVAL); 2834 2835 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2836 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2837 return (EINVAL); 2838 } 2839 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2840 != 0) { 2841 return (error); 2842 } 2843 break; 2844 } 2845 case AF_LINK: /* should eventually be supported */ 2846 default: 2847 return (EAFNOSUPPORT); 2848 } 2849 2850 /* turn off the previous option, then set the new option. */ 2851 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2852 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2853 if (opt->ip6po_nexthop == NULL) 2854 return (ENOBUFS); 2855 bcopy(buf, opt->ip6po_nexthop, *buf); 2856 break; 2857 2858 case IPV6_2292HOPOPTS: 2859 case IPV6_HOPOPTS: 2860 { 2861 struct ip6_hbh *hbh; 2862 int hbhlen; 2863 2864 /* 2865 * XXX: We don't allow a non-privileged user to set ANY HbH 2866 * options, since per-option restriction has too much 2867 * overhead. 2868 */ 2869 if (cred != NULL) { 2870 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 2871 if (error) 2872 return (error); 2873 } 2874 2875 if (len == 0) { 2876 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2877 break; /* just remove the option */ 2878 } 2879 2880 /* message length validation */ 2881 if (len < sizeof(struct ip6_hbh)) 2882 return (EINVAL); 2883 hbh = (struct ip6_hbh *)buf; 2884 hbhlen = (hbh->ip6h_len + 1) << 3; 2885 if (len != hbhlen) 2886 return (EINVAL); 2887 2888 /* turn off the previous option, then set the new option. */ 2889 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2890 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2891 if (opt->ip6po_hbh == NULL) 2892 return (ENOBUFS); 2893 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2894 2895 break; 2896 } 2897 2898 case IPV6_2292DSTOPTS: 2899 case IPV6_DSTOPTS: 2900 case IPV6_RTHDRDSTOPTS: 2901 { 2902 struct ip6_dest *dest, **newdest = NULL; 2903 int destlen; 2904 2905 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2906 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 2907 if (error) 2908 return (error); 2909 } 2910 2911 if (len == 0) { 2912 ip6_clearpktopts(opt, optname); 2913 break; /* just remove the option */ 2914 } 2915 2916 /* message length validation */ 2917 if (len < sizeof(struct ip6_dest)) 2918 return (EINVAL); 2919 dest = (struct ip6_dest *)buf; 2920 destlen = (dest->ip6d_len + 1) << 3; 2921 if (len != destlen) 2922 return (EINVAL); 2923 2924 /* 2925 * Determine the position that the destination options header 2926 * should be inserted; before or after the routing header. 2927 */ 2928 switch (optname) { 2929 case IPV6_2292DSTOPTS: 2930 /* 2931 * The old advacned API is ambiguous on this point. 2932 * Our approach is to determine the position based 2933 * according to the existence of a routing header. 2934 * Note, however, that this depends on the order of the 2935 * extension headers in the ancillary data; the 1st 2936 * part of the destination options header must appear 2937 * before the routing header in the ancillary data, 2938 * too. 2939 * RFC3542 solved the ambiguity by introducing 2940 * separate ancillary data or option types. 2941 */ 2942 if (opt->ip6po_rthdr == NULL) 2943 newdest = &opt->ip6po_dest1; 2944 else 2945 newdest = &opt->ip6po_dest2; 2946 break; 2947 case IPV6_RTHDRDSTOPTS: 2948 newdest = &opt->ip6po_dest1; 2949 break; 2950 case IPV6_DSTOPTS: 2951 newdest = &opt->ip6po_dest2; 2952 break; 2953 } 2954 2955 /* turn off the previous option, then set the new option. */ 2956 ip6_clearpktopts(opt, optname); 2957 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2958 if (*newdest == NULL) 2959 return (ENOBUFS); 2960 bcopy(dest, *newdest, destlen); 2961 2962 break; 2963 } 2964 2965 case IPV6_2292RTHDR: 2966 case IPV6_RTHDR: 2967 { 2968 struct ip6_rthdr *rth; 2969 int rthlen; 2970 2971 if (len == 0) { 2972 ip6_clearpktopts(opt, IPV6_RTHDR); 2973 break; /* just remove the option */ 2974 } 2975 2976 /* message length validation */ 2977 if (len < sizeof(struct ip6_rthdr)) 2978 return (EINVAL); 2979 rth = (struct ip6_rthdr *)buf; 2980 rthlen = (rth->ip6r_len + 1) << 3; 2981 if (len != rthlen) 2982 return (EINVAL); 2983 2984 switch (rth->ip6r_type) { 2985 case IPV6_RTHDR_TYPE_0: 2986 if (rth->ip6r_len == 0) /* must contain one addr */ 2987 return (EINVAL); 2988 if (rth->ip6r_len % 2) /* length must be even */ 2989 return (EINVAL); 2990 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2991 return (EINVAL); 2992 break; 2993 default: 2994 return (EINVAL); /* not supported */ 2995 } 2996 2997 /* turn off the previous option */ 2998 ip6_clearpktopts(opt, IPV6_RTHDR); 2999 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3000 if (opt->ip6po_rthdr == NULL) 3001 return (ENOBUFS); 3002 bcopy(rth, opt->ip6po_rthdr, rthlen); 3003 3004 break; 3005 } 3006 3007 case IPV6_USE_MIN_MTU: 3008 if (len != sizeof(int)) 3009 return (EINVAL); 3010 minmtupolicy = *(int *)buf; 3011 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3012 minmtupolicy != IP6PO_MINMTU_DISABLE && 3013 minmtupolicy != IP6PO_MINMTU_ALL) { 3014 return (EINVAL); 3015 } 3016 opt->ip6po_minmtu = minmtupolicy; 3017 break; 3018 3019 case IPV6_DONTFRAG: 3020 if (len != sizeof(int)) 3021 return (EINVAL); 3022 3023 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3024 /* 3025 * we ignore this option for TCP sockets. 3026 * (RFC3542 leaves this case unspecified.) 3027 */ 3028 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3029 } else 3030 opt->ip6po_flags |= IP6PO_DONTFRAG; 3031 break; 3032 3033 case IPV6_PREFER_TEMPADDR: 3034 if (len != sizeof(int)) 3035 return (EINVAL); 3036 preftemp = *(int *)buf; 3037 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3038 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3039 preftemp != IP6PO_TEMPADDR_PREFER) { 3040 return (EINVAL); 3041 } 3042 opt->ip6po_prefer_tempaddr = preftemp; 3043 break; 3044 3045 default: 3046 return (ENOPROTOOPT); 3047 } /* end of switch */ 3048 3049 return (0); 3050 } 3051 3052 /* 3053 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3054 * packet to the input queue of a specified interface. Note that this 3055 * calls the output routine of the loopback "driver", but with an interface 3056 * pointer that might NOT be &loif -- easier than replicating that code here. 3057 */ 3058 void 3059 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3060 { 3061 struct mbuf *copym; 3062 struct ip6_hdr *ip6; 3063 3064 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3065 if (copym == NULL) 3066 return; 3067 3068 /* 3069 * Make sure to deep-copy IPv6 header portion in case the data 3070 * is in an mbuf cluster, so that we can safely override the IPv6 3071 * header portion later. 3072 */ 3073 if (!M_WRITABLE(copym) || 3074 copym->m_len < sizeof(struct ip6_hdr)) { 3075 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3076 if (copym == NULL) 3077 return; 3078 } 3079 ip6 = mtod(copym, struct ip6_hdr *); 3080 /* 3081 * clear embedded scope identifiers if necessary. 3082 * in6_clearscope will touch the addresses only when necessary. 3083 */ 3084 in6_clearscope(&ip6->ip6_src); 3085 in6_clearscope(&ip6->ip6_dst); 3086 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3087 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3088 CSUM_PSEUDO_HDR; 3089 copym->m_pkthdr.csum_data = 0xffff; 3090 } 3091 if_simloop(ifp, copym, AF_INET6, 0); 3092 } 3093 3094 /* 3095 * Chop IPv6 header off from the payload. 3096 */ 3097 static int 3098 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3099 { 3100 struct mbuf *mh; 3101 struct ip6_hdr *ip6; 3102 3103 ip6 = mtod(m, struct ip6_hdr *); 3104 if (m->m_len > sizeof(*ip6)) { 3105 mh = m_gethdr(M_NOWAIT, MT_DATA); 3106 if (mh == NULL) { 3107 m_freem(m); 3108 return ENOBUFS; 3109 } 3110 m_move_pkthdr(mh, m); 3111 M_ALIGN(mh, sizeof(*ip6)); 3112 m->m_len -= sizeof(*ip6); 3113 m->m_data += sizeof(*ip6); 3114 mh->m_next = m; 3115 m = mh; 3116 m->m_len = sizeof(*ip6); 3117 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3118 } 3119 exthdrs->ip6e_ip6 = m; 3120 return 0; 3121 } 3122 3123 /* 3124 * Compute IPv6 extension header length. 3125 */ 3126 int 3127 ip6_optlen(struct inpcb *in6p) 3128 { 3129 int len; 3130 3131 if (!in6p->in6p_outputopts) 3132 return 0; 3133 3134 len = 0; 3135 #define elen(x) \ 3136 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3137 3138 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3139 if (in6p->in6p_outputopts->ip6po_rthdr) 3140 /* dest1 is valid with rthdr only */ 3141 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3142 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3143 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3144 return len; 3145 #undef elen 3146 } 3147