xref: /freebsd/sys/netinet6/ip6_output.c (revision 3ef51c5fb9163f2aafb1c14729e06a8bf0c4d113)
1 /*-
2  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the project nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $
30  */
31 
32 /*-
33  * Copyright (c) 1982, 1986, 1988, 1990, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 4. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
61  */
62 
63 #include <sys/cdefs.h>
64 __FBSDID("$FreeBSD$");
65 
66 #include "opt_inet.h"
67 #include "opt_inet6.h"
68 #include "opt_ipfw.h"
69 #include "opt_ipsec.h"
70 #include "opt_sctp.h"
71 #include "opt_route.h"
72 
73 #include <sys/param.h>
74 #include <sys/kernel.h>
75 #include <sys/malloc.h>
76 #include <sys/mbuf.h>
77 #include <sys/errno.h>
78 #include <sys/priv.h>
79 #include <sys/proc.h>
80 #include <sys/protosw.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/syslog.h>
84 #include <sys/ucred.h>
85 
86 #include <net/if.h>
87 #include <net/netisr.h>
88 #include <net/route.h>
89 #include <net/pfil.h>
90 #include <net/vnet.h>
91 
92 #include <netinet/in.h>
93 #include <netinet/in_var.h>
94 #include <netinet/ip_var.h>
95 #include <netinet6/in6_var.h>
96 #include <netinet/ip6.h>
97 #include <netinet/icmp6.h>
98 #include <netinet6/ip6_var.h>
99 #include <netinet/in_pcb.h>
100 #include <netinet/tcp_var.h>
101 #include <netinet6/nd6.h>
102 
103 #ifdef IPSEC
104 #include <netipsec/ipsec.h>
105 #include <netipsec/ipsec6.h>
106 #include <netipsec/key.h>
107 #include <netinet6/ip6_ipsec.h>
108 #endif /* IPSEC */
109 #ifdef SCTP
110 #include <netinet/sctp.h>
111 #include <netinet/sctp_crc32.h>
112 #endif
113 
114 #include <netinet6/ip6protosw.h>
115 #include <netinet6/scope6_var.h>
116 
117 #ifdef FLOWTABLE
118 #include <net/flowtable.h>
119 #endif
120 
121 extern int in6_mcast_loop;
122 
123 struct ip6_exthdrs {
124 	struct mbuf *ip6e_ip6;
125 	struct mbuf *ip6e_hbh;
126 	struct mbuf *ip6e_dest1;
127 	struct mbuf *ip6e_rthdr;
128 	struct mbuf *ip6e_dest2;
129 };
130 
131 static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **,
132 			   struct ucred *, int));
133 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
134 	struct socket *, struct sockopt *));
135 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
136 static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *,
137 	struct ucred *, int, int, int));
138 
139 static int ip6_copyexthdr(struct mbuf **, caddr_t, int);
140 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
141 	struct ip6_frag **));
142 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
143 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
144 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
145 	struct ifnet *, struct in6_addr *, u_long *, int *, u_int));
146 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
147 
148 
149 /*
150  * Make an extension header from option data.  hp is the source, and
151  * mp is the destination.
152  */
153 #define MAKE_EXTHDR(hp, mp)						\
154     do {								\
155 	if (hp) {							\
156 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
157 		error = ip6_copyexthdr((mp), (caddr_t)(hp),		\
158 		    ((eh)->ip6e_len + 1) << 3);				\
159 		if (error)						\
160 			goto freehdrs;					\
161 	}								\
162     } while (/*CONSTCOND*/ 0)
163 
164 /*
165  * Form a chain of extension headers.
166  * m is the extension header mbuf
167  * mp is the previous mbuf in the chain
168  * p is the next header
169  * i is the type of option.
170  */
171 #define MAKE_CHAIN(m, mp, p, i)\
172     do {\
173 	if (m) {\
174 		if (!hdrsplit) \
175 			panic("assumption failed: hdr not split"); \
176 		*mtod((m), u_char *) = *(p);\
177 		*(p) = (i);\
178 		p = mtod((m), u_char *);\
179 		(m)->m_next = (mp)->m_next;\
180 		(mp)->m_next = (m);\
181 		(mp) = (m);\
182 	}\
183     } while (/*CONSTCOND*/ 0)
184 
185 /*
186  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
187  * header (with pri, len, nxt, hlim, src, dst).
188  * This function may modify ver and hlim only.
189  * The mbuf chain containing the packet will be freed.
190  * The mbuf opt, if present, will not be freed.
191  *
192  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
193  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
194  * which is rt_rmx.rmx_mtu.
195  *
196  * ifpp - XXX: just for statistics
197  */
198 int
199 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt,
200     struct route_in6 *ro, int flags, struct ip6_moptions *im6o,
201     struct ifnet **ifpp, struct inpcb *inp)
202 {
203 	struct ip6_hdr *ip6, *mhip6;
204 	struct ifnet *ifp, *origifp;
205 	struct mbuf *m = m0;
206 	struct mbuf *mprev = NULL;
207 	int hlen, tlen, len, off;
208 	struct route_in6 ip6route;
209 	struct rtentry *rt = NULL;
210 	struct sockaddr_in6 *dst, src_sa, dst_sa;
211 	struct in6_addr odst;
212 	int error = 0;
213 	struct in6_ifaddr *ia = NULL;
214 	u_long mtu;
215 	int alwaysfrag, dontfrag;
216 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
217 	struct ip6_exthdrs exthdrs;
218 	struct in6_addr finaldst, src0, dst0;
219 	u_int32_t zone;
220 	struct route_in6 *ro_pmtu = NULL;
221 	int flevalid = 0;
222 	int hdrsplit = 0;
223 	int needipsec = 0;
224 #ifdef SCTP
225 	int sw_csum;
226 #endif
227 #ifdef IPSEC
228 	struct ipsec_output_state state;
229 	struct ip6_rthdr *rh = NULL;
230 	int needipsectun = 0;
231 	int segleft_org = 0;
232 	struct secpolicy *sp = NULL;
233 #endif /* IPSEC */
234 #ifdef IPFIREWALL_FORWARD
235 	struct m_tag *fwd_tag;
236 #endif
237 
238 	ip6 = mtod(m, struct ip6_hdr *);
239 	if (ip6 == NULL) {
240 		printf ("ip6 is NULL");
241 		goto bad;
242 	}
243 
244 	if (inp != NULL)
245 		M_SETFIB(m, inp->inp_inc.inc_fibnum);
246 
247 	finaldst = ip6->ip6_dst;
248 	bzero(&exthdrs, sizeof(exthdrs));
249 	if (opt) {
250 		/* Hop-by-Hop options header */
251 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
252 		/* Destination options header(1st part) */
253 		if (opt->ip6po_rthdr) {
254 			/*
255 			 * Destination options header(1st part)
256 			 * This only makes sense with a routing header.
257 			 * See Section 9.2 of RFC 3542.
258 			 * Disabling this part just for MIP6 convenience is
259 			 * a bad idea.  We need to think carefully about a
260 			 * way to make the advanced API coexist with MIP6
261 			 * options, which might automatically be inserted in
262 			 * the kernel.
263 			 */
264 			MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
265 		}
266 		/* Routing header */
267 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
268 		/* Destination options header(2nd part) */
269 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
270 	}
271 
272 	/*
273 	 * IPSec checking which handles several cases.
274 	 * FAST IPSEC: We re-injected the packet.
275 	 */
276 #ifdef IPSEC
277 	switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp))
278 	{
279 	case 1:                 /* Bad packet */
280 		goto freehdrs;
281 	case -1:                /* Do IPSec */
282 		needipsec = 1;
283 	case 0:                 /* No IPSec */
284 	default:
285 		break;
286 	}
287 #endif /* IPSEC */
288 
289 	/*
290 	 * Calculate the total length of the extension header chain.
291 	 * Keep the length of the unfragmentable part for fragmentation.
292 	 */
293 	optlen = 0;
294 	if (exthdrs.ip6e_hbh)
295 		optlen += exthdrs.ip6e_hbh->m_len;
296 	if (exthdrs.ip6e_dest1)
297 		optlen += exthdrs.ip6e_dest1->m_len;
298 	if (exthdrs.ip6e_rthdr)
299 		optlen += exthdrs.ip6e_rthdr->m_len;
300 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
301 
302 	/* NOTE: we don't add AH/ESP length here. do that later. */
303 	if (exthdrs.ip6e_dest2)
304 		optlen += exthdrs.ip6e_dest2->m_len;
305 
306 	/*
307 	 * If we need IPsec, or there is at least one extension header,
308 	 * separate IP6 header from the payload.
309 	 */
310 	if ((needipsec || optlen) && !hdrsplit) {
311 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
312 			m = NULL;
313 			goto freehdrs;
314 		}
315 		m = exthdrs.ip6e_ip6;
316 		hdrsplit++;
317 	}
318 
319 	/* adjust pointer */
320 	ip6 = mtod(m, struct ip6_hdr *);
321 
322 	/* adjust mbuf packet header length */
323 	m->m_pkthdr.len += optlen;
324 	plen = m->m_pkthdr.len - sizeof(*ip6);
325 
326 	/* If this is a jumbo payload, insert a jumbo payload option. */
327 	if (plen > IPV6_MAXPACKET) {
328 		if (!hdrsplit) {
329 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
330 				m = NULL;
331 				goto freehdrs;
332 			}
333 			m = exthdrs.ip6e_ip6;
334 			hdrsplit++;
335 		}
336 		/* adjust pointer */
337 		ip6 = mtod(m, struct ip6_hdr *);
338 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
339 			goto freehdrs;
340 		ip6->ip6_plen = 0;
341 	} else
342 		ip6->ip6_plen = htons(plen);
343 
344 	/*
345 	 * Concatenate headers and fill in next header fields.
346 	 * Here we have, on "m"
347 	 *	IPv6 payload
348 	 * and we insert headers accordingly.  Finally, we should be getting:
349 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
350 	 *
351 	 * during the header composing process, "m" points to IPv6 header.
352 	 * "mprev" points to an extension header prior to esp.
353 	 */
354 	u_char *nexthdrp = &ip6->ip6_nxt;
355 	mprev = m;
356 
357 	/*
358 	 * we treat dest2 specially.  this makes IPsec processing
359 	 * much easier.  the goal here is to make mprev point the
360 	 * mbuf prior to dest2.
361 	 *
362 	 * result: IPv6 dest2 payload
363 	 * m and mprev will point to IPv6 header.
364 	 */
365 	if (exthdrs.ip6e_dest2) {
366 		if (!hdrsplit)
367 			panic("assumption failed: hdr not split");
368 		exthdrs.ip6e_dest2->m_next = m->m_next;
369 		m->m_next = exthdrs.ip6e_dest2;
370 		*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
371 		ip6->ip6_nxt = IPPROTO_DSTOPTS;
372 	}
373 
374 	/*
375 	 * result: IPv6 hbh dest1 rthdr dest2 payload
376 	 * m will point to IPv6 header.  mprev will point to the
377 	 * extension header prior to dest2 (rthdr in the above case).
378 	 */
379 	MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
380 	MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
381 		   IPPROTO_DSTOPTS);
382 	MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
383 		   IPPROTO_ROUTING);
384 
385 #ifdef IPSEC
386 	if (!needipsec)
387 		goto skip_ipsec2;
388 
389 	/*
390 	 * pointers after IPsec headers are not valid any more.
391 	 * other pointers need a great care too.
392 	 * (IPsec routines should not mangle mbufs prior to AH/ESP)
393 	 */
394 	exthdrs.ip6e_dest2 = NULL;
395 
396 	if (exthdrs.ip6e_rthdr) {
397 		rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
398 		segleft_org = rh->ip6r_segleft;
399 		rh->ip6r_segleft = 0;
400 	}
401 
402 	bzero(&state, sizeof(state));
403 	state.m = m;
404 	error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
405 				    &needipsectun);
406 	m = state.m;
407 	if (error == EJUSTRETURN) {
408 		/*
409 		 * We had a SP with a level of 'use' and no SA. We
410 		 * will just continue to process the packet without
411 		 * IPsec processing.
412 		 */
413 		;
414 	} else if (error) {
415 		/* mbuf is already reclaimed in ipsec6_output_trans. */
416 		m = NULL;
417 		switch (error) {
418 		case EHOSTUNREACH:
419 		case ENETUNREACH:
420 		case EMSGSIZE:
421 		case ENOBUFS:
422 		case ENOMEM:
423 			break;
424 		default:
425 			printf("[%s:%d] (ipsec): error code %d\n",
426 			    __func__, __LINE__, error);
427 			/* FALLTHROUGH */
428 		case ENOENT:
429 			/* don't show these error codes to the user */
430 			error = 0;
431 			break;
432 		}
433 		goto bad;
434 	} else if (!needipsectun) {
435 		/*
436 		 * In the FAST IPSec case we have already
437 		 * re-injected the packet and it has been freed
438 		 * by the ipsec_done() function.  So, just clean
439 		 * up after ourselves.
440 		 */
441 		m = NULL;
442 		goto done;
443 	}
444 	if (exthdrs.ip6e_rthdr) {
445 		/* ah6_output doesn't modify mbuf chain */
446 		rh->ip6r_segleft = segleft_org;
447 	}
448 skip_ipsec2:;
449 #endif /* IPSEC */
450 
451 	/*
452 	 * If there is a routing header, discard the packet.
453 	 */
454 	if (exthdrs.ip6e_rthdr) {
455 		 error = EINVAL;
456 		 goto bad;
457 	}
458 
459 	/* Source address validation */
460 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
461 	    (flags & IPV6_UNSPECSRC) == 0) {
462 		error = EOPNOTSUPP;
463 		V_ip6stat.ip6s_badscope++;
464 		goto bad;
465 	}
466 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
467 		error = EOPNOTSUPP;
468 		V_ip6stat.ip6s_badscope++;
469 		goto bad;
470 	}
471 
472 	V_ip6stat.ip6s_localout++;
473 
474 	/*
475 	 * Route packet.
476 	 */
477 	if (ro == 0) {
478 		ro = &ip6route;
479 		bzero((caddr_t)ro, sizeof(*ro));
480 	}
481 	ro_pmtu = ro;
482 	if (opt && opt->ip6po_rthdr)
483 		ro = &opt->ip6po_route;
484 	dst = (struct sockaddr_in6 *)&ro->ro_dst;
485 #ifdef FLOWTABLE
486 	if (ro == &ip6route) {
487 		struct flentry *fle;
488 
489 		/*
490 		 * The flow table returns route entries valid for up to 30
491 		 * seconds; we rely on the remainder of ip_output() taking no
492 		 * longer than that long for the stability of ro_rt.  The
493 		 * flow ID assignment must have happened before this point.
494 		 */
495 		if ((fle = flowtable_lookup_mbuf(V_ip6_ft, m, AF_INET6)) != NULL) {
496 			flow_to_route_in6(fle, ro);
497 			if (ro->ro_rt != NULL && ro->ro_lle != NULL)
498 				flevalid = 1;
499 		}
500 	}
501 #endif
502 again:
503 	/*
504 	 * if specified, try to fill in the traffic class field.
505 	 * do not override if a non-zero value is already set.
506 	 * we check the diffserv field and the ecn field separately.
507 	 */
508 	if (opt && opt->ip6po_tclass >= 0) {
509 		int mask = 0;
510 
511 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
512 			mask |= 0xfc;
513 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
514 			mask |= 0x03;
515 		if (mask != 0)
516 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
517 	}
518 
519 	/* fill in or override the hop limit field, if necessary. */
520 	if (opt && opt->ip6po_hlim != -1)
521 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
522 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
523 		if (im6o != NULL)
524 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
525 		else
526 			ip6->ip6_hlim = V_ip6_defmcasthlim;
527 	}
528 
529 #ifdef IPSEC
530 	/*
531 	 * We may re-inject packets into the stack here.
532 	 */
533 	if (needipsec && needipsectun) {
534 		struct ipsec_output_state state;
535 
536 		/*
537 		 * All the extension headers will become inaccessible
538 		 * (since they can be encrypted).
539 		 * Don't panic, we need no more updates to extension headers
540 		 * on inner IPv6 packet (since they are now encapsulated).
541 		 *
542 		 * IPv6 [ESP|AH] IPv6 [extension headers] payload
543 		 */
544 		bzero(&exthdrs, sizeof(exthdrs));
545 		exthdrs.ip6e_ip6 = m;
546 
547 		bzero(&state, sizeof(state));
548 		state.m = m;
549 		state.ro = (struct route *)ro;
550 		state.dst = (struct sockaddr *)dst;
551 
552 		error = ipsec6_output_tunnel(&state, sp, flags);
553 
554 		m = state.m;
555 		ro = (struct route_in6 *)state.ro;
556 		dst = (struct sockaddr_in6 *)state.dst;
557 		if (error == EJUSTRETURN) {
558 			/*
559 			 * We had a SP with a level of 'use' and no SA. We
560 			 * will just continue to process the packet without
561 			 * IPsec processing.
562 			 */
563 			;
564 		} else if (error) {
565 			/* mbuf is already reclaimed in ipsec6_output_tunnel. */
566 			m0 = m = NULL;
567 			m = NULL;
568 			switch (error) {
569 			case EHOSTUNREACH:
570 			case ENETUNREACH:
571 			case EMSGSIZE:
572 			case ENOBUFS:
573 			case ENOMEM:
574 				break;
575 			default:
576 				printf("[%s:%d] (ipsec): error code %d\n",
577 				    __func__, __LINE__, error);
578 				/* FALLTHROUGH */
579 			case ENOENT:
580 				/* don't show these error codes to the user */
581 				error = 0;
582 				break;
583 			}
584 			goto bad;
585 		} else {
586 			/*
587 			 * In the FAST IPSec case we have already
588 			 * re-injected the packet and it has been freed
589 			 * by the ipsec_done() function.  So, just clean
590 			 * up after ourselves.
591 			 */
592 			m = NULL;
593 			goto done;
594 		}
595 
596 		exthdrs.ip6e_ip6 = m;
597 	}
598 #endif /* IPSEC */
599 
600 	/* adjust pointer */
601 	ip6 = mtod(m, struct ip6_hdr *);
602 
603 	bzero(&dst_sa, sizeof(dst_sa));
604 	dst_sa.sin6_family = AF_INET6;
605 	dst_sa.sin6_len = sizeof(dst_sa);
606 	dst_sa.sin6_addr = ip6->ip6_dst;
607 	if (flevalid) {
608 		rt = ro->ro_rt;
609 		ifp = ro->ro_rt->rt_ifp;
610 	} else if ((error = in6_selectroute_fib(&dst_sa, opt, im6o, ro,
611 	    &ifp, &rt, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m))) != 0) {
612 		switch (error) {
613 		case EHOSTUNREACH:
614 			V_ip6stat.ip6s_noroute++;
615 			break;
616 		case EADDRNOTAVAIL:
617 		default:
618 			break; /* XXX statistics? */
619 		}
620 		if (ifp != NULL)
621 			in6_ifstat_inc(ifp, ifs6_out_discard);
622 		goto bad;
623 	}
624 	if (rt == NULL) {
625 		/*
626 		 * If in6_selectroute() does not return a route entry,
627 		 * dst may not have been updated.
628 		 */
629 		*dst = dst_sa;	/* XXX */
630 	}
631 
632 	/*
633 	 * then rt (for unicast) and ifp must be non-NULL valid values.
634 	 */
635 	if ((flags & IPV6_FORWARDING) == 0) {
636 		/* XXX: the FORWARDING flag can be set for mrouting. */
637 		in6_ifstat_inc(ifp, ifs6_out_request);
638 	}
639 	if (rt != NULL) {
640 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
641 		rt->rt_use++;
642 	}
643 
644 
645 	/*
646 	 * The outgoing interface must be in the zone of source and
647 	 * destination addresses.
648 	 */
649 	origifp = ifp;
650 
651 	src0 = ip6->ip6_src;
652 	if (in6_setscope(&src0, origifp, &zone))
653 		goto badscope;
654 	bzero(&src_sa, sizeof(src_sa));
655 	src_sa.sin6_family = AF_INET6;
656 	src_sa.sin6_len = sizeof(src_sa);
657 	src_sa.sin6_addr = ip6->ip6_src;
658 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
659 		goto badscope;
660 
661 	dst0 = ip6->ip6_dst;
662 	if (in6_setscope(&dst0, origifp, &zone))
663 		goto badscope;
664 	/* re-initialize to be sure */
665 	bzero(&dst_sa, sizeof(dst_sa));
666 	dst_sa.sin6_family = AF_INET6;
667 	dst_sa.sin6_len = sizeof(dst_sa);
668 	dst_sa.sin6_addr = ip6->ip6_dst;
669 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) {
670 		goto badscope;
671 	}
672 
673 	/* We should use ia_ifp to support the case of
674 	 * sending packets to an address of our own.
675 	 */
676 	if (ia != NULL && ia->ia_ifp)
677 		ifp = ia->ia_ifp;
678 
679 	/* scope check is done. */
680 	goto routefound;
681 
682   badscope:
683 	V_ip6stat.ip6s_badscope++;
684 	in6_ifstat_inc(origifp, ifs6_out_discard);
685 	if (error == 0)
686 		error = EHOSTUNREACH; /* XXX */
687 	goto bad;
688 
689   routefound:
690 	if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
691 		if (opt && opt->ip6po_nextroute.ro_rt) {
692 			/*
693 			 * The nexthop is explicitly specified by the
694 			 * application.  We assume the next hop is an IPv6
695 			 * address.
696 			 */
697 			dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
698 		}
699 		else if ((rt->rt_flags & RTF_GATEWAY))
700 			dst = (struct sockaddr_in6 *)rt->rt_gateway;
701 	}
702 
703 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
704 		m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
705 	} else {
706 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
707 		in6_ifstat_inc(ifp, ifs6_out_mcast);
708 		/*
709 		 * Confirm that the outgoing interface supports multicast.
710 		 */
711 		if (!(ifp->if_flags & IFF_MULTICAST)) {
712 			V_ip6stat.ip6s_noroute++;
713 			in6_ifstat_inc(ifp, ifs6_out_discard);
714 			error = ENETUNREACH;
715 			goto bad;
716 		}
717 		if ((im6o == NULL && in6_mcast_loop) ||
718 		    (im6o && im6o->im6o_multicast_loop)) {
719 			/*
720 			 * Loop back multicast datagram if not expressly
721 			 * forbidden to do so, even if we have not joined
722 			 * the address; protocols will filter it later,
723 			 * thus deferring a hash lookup and lock acquisition
724 			 * at the expense of an m_copym().
725 			 */
726 			ip6_mloopback(ifp, m, dst);
727 		} else {
728 			/*
729 			 * If we are acting as a multicast router, perform
730 			 * multicast forwarding as if the packet had just
731 			 * arrived on the interface to which we are about
732 			 * to send.  The multicast forwarding function
733 			 * recursively calls this function, using the
734 			 * IPV6_FORWARDING flag to prevent infinite recursion.
735 			 *
736 			 * Multicasts that are looped back by ip6_mloopback(),
737 			 * above, will be forwarded by the ip6_input() routine,
738 			 * if necessary.
739 			 */
740 			if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
741 				/*
742 				 * XXX: ip6_mforward expects that rcvif is NULL
743 				 * when it is called from the originating path.
744 				 * However, it is not always the case, since
745 				 * some versions of MGETHDR() does not
746 				 * initialize the field.
747 				 */
748 				m->m_pkthdr.rcvif = NULL;
749 				if (ip6_mforward(ip6, ifp, m) != 0) {
750 					m_freem(m);
751 					goto done;
752 				}
753 			}
754 		}
755 		/*
756 		 * Multicasts with a hoplimit of zero may be looped back,
757 		 * above, but must not be transmitted on a network.
758 		 * Also, multicasts addressed to the loopback interface
759 		 * are not sent -- the above call to ip6_mloopback() will
760 		 * loop back a copy if this host actually belongs to the
761 		 * destination group on the loopback interface.
762 		 */
763 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
764 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
765 			m_freem(m);
766 			goto done;
767 		}
768 	}
769 
770 	/*
771 	 * Fill the outgoing inteface to tell the upper layer
772 	 * to increment per-interface statistics.
773 	 */
774 	if (ifpp)
775 		*ifpp = ifp;
776 
777 	/* Determine path MTU. */
778 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
779 	    &alwaysfrag, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m))) != 0)
780 		goto bad;
781 
782 	/*
783 	 * The caller of this function may specify to use the minimum MTU
784 	 * in some cases.
785 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
786 	 * setting.  The logic is a bit complicated; by default, unicast
787 	 * packets will follow path MTU while multicast packets will be sent at
788 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
789 	 * including unicast ones will be sent at the minimum MTU.  Multicast
790 	 * packets will always be sent at the minimum MTU unless
791 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
792 	 * See RFC 3542 for more details.
793 	 */
794 	if (mtu > IPV6_MMTU) {
795 		if ((flags & IPV6_MINMTU))
796 			mtu = IPV6_MMTU;
797 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
798 			mtu = IPV6_MMTU;
799 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
800 			 (opt == NULL ||
801 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
802 			mtu = IPV6_MMTU;
803 		}
804 	}
805 
806 	/*
807 	 * clear embedded scope identifiers if necessary.
808 	 * in6_clearscope will touch the addresses only when necessary.
809 	 */
810 	in6_clearscope(&ip6->ip6_src);
811 	in6_clearscope(&ip6->ip6_dst);
812 
813 	/*
814 	 * If the outgoing packet contains a hop-by-hop options header,
815 	 * it must be examined and processed even by the source node.
816 	 * (RFC 2460, section 4.)
817 	 */
818 	if (exthdrs.ip6e_hbh) {
819 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
820 		u_int32_t dummy; /* XXX unused */
821 		u_int32_t plen = 0; /* XXX: ip6_process will check the value */
822 
823 #ifdef DIAGNOSTIC
824 		if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
825 			panic("ip6e_hbh is not contiguous");
826 #endif
827 		/*
828 		 *  XXX: if we have to send an ICMPv6 error to the sender,
829 		 *       we need the M_LOOP flag since icmp6_error() expects
830 		 *       the IPv6 and the hop-by-hop options header are
831 		 *       contiguous unless the flag is set.
832 		 */
833 		m->m_flags |= M_LOOP;
834 		m->m_pkthdr.rcvif = ifp;
835 		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
836 		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
837 		    &dummy, &plen) < 0) {
838 			/* m was already freed at this point */
839 			error = EINVAL;/* better error? */
840 			goto done;
841 		}
842 		m->m_flags &= ~M_LOOP; /* XXX */
843 		m->m_pkthdr.rcvif = NULL;
844 	}
845 
846 	/* Jump over all PFIL processing if hooks are not active. */
847 	if (!PFIL_HOOKED(&V_inet6_pfil_hook))
848 		goto passout;
849 
850 	odst = ip6->ip6_dst;
851 	/* Run through list of hooks for output packets. */
852 	error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp);
853 	if (error != 0 || m == NULL)
854 		goto done;
855 	ip6 = mtod(m, struct ip6_hdr *);
856 
857 	/* See if destination IP address was changed by packet filter. */
858 	if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) {
859 		m->m_flags |= M_SKIP_FIREWALL;
860 		/* If destination is now ourself drop to ip6_input(). */
861 		if (in6_localip(&ip6->ip6_dst)) {
862 			m->m_flags |= M_FASTFWD_OURS;
863 			if (m->m_pkthdr.rcvif == NULL)
864 				m->m_pkthdr.rcvif = V_loif;
865 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
866 				m->m_pkthdr.csum_flags |=
867 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
868 				m->m_pkthdr.csum_data = 0xffff;
869 			}
870 			m->m_pkthdr.csum_flags |=
871 			    CSUM_IP_CHECKED | CSUM_IP_VALID;
872 #ifdef SCTP
873 			if (m->m_pkthdr.csum_flags & CSUM_SCTP)
874 				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
875 #endif
876 			error = netisr_queue(NETISR_IPV6, m);
877 			goto done;
878 		} else
879 			goto again;	/* Redo the routing table lookup. */
880 	}
881 
882 #ifdef IPFIREWALL_FORWARD
883 	/* See if local, if yes, send it to netisr. */
884 	if (m->m_flags & M_FASTFWD_OURS) {
885 		if (m->m_pkthdr.rcvif == NULL)
886 			m->m_pkthdr.rcvif = V_loif;
887 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
888 			m->m_pkthdr.csum_flags |=
889 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
890 			m->m_pkthdr.csum_data = 0xffff;
891 		}
892 #ifdef SCTP
893 		if (m->m_pkthdr.csum_flags & CSUM_SCTP)
894 		m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
895 #endif
896 		error = netisr_queue(NETISR_IPV6, m);
897 		goto done;
898 	}
899 	/* Or forward to some other address? */
900 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
901 	if (fwd_tag) {
902 		dst = (struct sockaddr_in6 *)&ro->ro_dst;
903 		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in6));
904 		m->m_flags |= M_SKIP_FIREWALL;
905 		m_tag_delete(m, fwd_tag);
906 		goto again;
907 	}
908 #endif /* IPFIREWALL_FORWARD */
909 
910 passout:
911 	/*
912 	 * Send the packet to the outgoing interface.
913 	 * If necessary, do IPv6 fragmentation before sending.
914 	 *
915 	 * the logic here is rather complex:
916 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
917 	 * 1-a:	send as is if tlen <= path mtu
918 	 * 1-b:	fragment if tlen > path mtu
919 	 *
920 	 * 2: if user asks us not to fragment (dontfrag == 1)
921 	 * 2-a:	send as is if tlen <= interface mtu
922 	 * 2-b:	error if tlen > interface mtu
923 	 *
924 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
925 	 *	always fragment
926 	 *
927 	 * 4: if dontfrag == 1 && alwaysfrag == 1
928 	 *	error, as we cannot handle this conflicting request
929 	 */
930 #ifdef SCTP
931 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
932 	if (sw_csum & CSUM_SCTP) {
933 		sctp_delayed_cksum(m, sizeof(struct ip6_hdr));
934 		sw_csum &= ~CSUM_SCTP;
935 	}
936 #endif
937 	tlen = m->m_pkthdr.len;
938 
939 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
940 		dontfrag = 1;
941 	else
942 		dontfrag = 0;
943 	if (dontfrag && alwaysfrag) {	/* case 4 */
944 		/* conflicting request - can't transmit */
945 		error = EMSGSIZE;
946 		goto bad;
947 	}
948 	if (dontfrag && tlen > IN6_LINKMTU(ifp)) {	/* case 2-b */
949 		/*
950 		 * Even if the DONTFRAG option is specified, we cannot send the
951 		 * packet when the data length is larger than the MTU of the
952 		 * outgoing interface.
953 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
954 		 * well as returning an error code (the latter is not described
955 		 * in the API spec.)
956 		 */
957 		u_int32_t mtu32;
958 		struct ip6ctlparam ip6cp;
959 
960 		mtu32 = (u_int32_t)mtu;
961 		bzero(&ip6cp, sizeof(ip6cp));
962 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
963 		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
964 		    (void *)&ip6cp);
965 
966 		error = EMSGSIZE;
967 		goto bad;
968 	}
969 
970 	/*
971 	 * transmit packet without fragmentation
972 	 */
973 	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
974 		struct in6_ifaddr *ia6;
975 
976 		ip6 = mtod(m, struct ip6_hdr *);
977 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
978 		if (ia6) {
979 			/* Record statistics for this interface address. */
980 			ia6->ia_ifa.if_opackets++;
981 			ia6->ia_ifa.if_obytes += m->m_pkthdr.len;
982 			ifa_free(&ia6->ia_ifa);
983 		}
984 		error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
985 		goto done;
986 	}
987 
988 	/*
989 	 * try to fragment the packet.  case 1-b and 3
990 	 */
991 	if (mtu < IPV6_MMTU) {
992 		/* path MTU cannot be less than IPV6_MMTU */
993 		error = EMSGSIZE;
994 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
995 		goto bad;
996 	} else if (ip6->ip6_plen == 0) {
997 		/* jumbo payload cannot be fragmented */
998 		error = EMSGSIZE;
999 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
1000 		goto bad;
1001 	} else {
1002 		struct mbuf **mnext, *m_frgpart;
1003 		struct ip6_frag *ip6f;
1004 		u_int32_t id = htonl(ip6_randomid());
1005 		u_char nextproto;
1006 
1007 		int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len;
1008 
1009 		/*
1010 		 * Too large for the destination or interface;
1011 		 * fragment if possible.
1012 		 * Must be able to put at least 8 bytes per fragment.
1013 		 */
1014 		hlen = unfragpartlen;
1015 		if (mtu > IPV6_MAXPACKET)
1016 			mtu = IPV6_MAXPACKET;
1017 
1018 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
1019 		if (len < 8) {
1020 			error = EMSGSIZE;
1021 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
1022 			goto bad;
1023 		}
1024 
1025 		/*
1026 		 * Verify that we have any chance at all of being able to queue
1027 		 *      the packet or packet fragments
1028 		 */
1029 		if (qslots <= 0 || ((u_int)qslots * (mtu - hlen)
1030 		    < tlen  /* - hlen */)) {
1031 			error = ENOBUFS;
1032 			V_ip6stat.ip6s_odropped++;
1033 			goto bad;
1034 		}
1035 
1036 		mnext = &m->m_nextpkt;
1037 
1038 		/*
1039 		 * Change the next header field of the last header in the
1040 		 * unfragmentable part.
1041 		 */
1042 		if (exthdrs.ip6e_rthdr) {
1043 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
1044 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
1045 		} else if (exthdrs.ip6e_dest1) {
1046 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
1047 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
1048 		} else if (exthdrs.ip6e_hbh) {
1049 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
1050 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
1051 		} else {
1052 			nextproto = ip6->ip6_nxt;
1053 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
1054 		}
1055 
1056 		/*
1057 		 * Loop through length of segment after first fragment,
1058 		 * make new header and copy data of each part and link onto
1059 		 * chain.
1060 		 */
1061 		m0 = m;
1062 		for (off = hlen; off < tlen; off += len) {
1063 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
1064 			if (!m) {
1065 				error = ENOBUFS;
1066 				V_ip6stat.ip6s_odropped++;
1067 				goto sendorfree;
1068 			}
1069 			m->m_pkthdr.rcvif = NULL;
1070 			m->m_flags = m0->m_flags & M_COPYFLAGS;	/* incl. FIB */
1071 			*mnext = m;
1072 			mnext = &m->m_nextpkt;
1073 			m->m_data += max_linkhdr;
1074 			mhip6 = mtod(m, struct ip6_hdr *);
1075 			*mhip6 = *ip6;
1076 			m->m_len = sizeof(*mhip6);
1077 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1078 			if (error) {
1079 				V_ip6stat.ip6s_odropped++;
1080 				goto sendorfree;
1081 			}
1082 			ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
1083 			if (off + len >= tlen)
1084 				len = tlen - off;
1085 			else
1086 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1087 			mhip6->ip6_plen = htons((u_short)(len + hlen +
1088 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1089 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1090 				error = ENOBUFS;
1091 				V_ip6stat.ip6s_odropped++;
1092 				goto sendorfree;
1093 			}
1094 			m_cat(m, m_frgpart);
1095 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1096 			m->m_pkthdr.rcvif = NULL;
1097 			ip6f->ip6f_reserved = 0;
1098 			ip6f->ip6f_ident = id;
1099 			ip6f->ip6f_nxt = nextproto;
1100 			V_ip6stat.ip6s_ofragments++;
1101 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1102 		}
1103 
1104 		in6_ifstat_inc(ifp, ifs6_out_fragok);
1105 	}
1106 
1107 	/*
1108 	 * Remove leading garbages.
1109 	 */
1110 sendorfree:
1111 	m = m0->m_nextpkt;
1112 	m0->m_nextpkt = 0;
1113 	m_freem(m0);
1114 	for (m0 = m; m; m = m0) {
1115 		m0 = m->m_nextpkt;
1116 		m->m_nextpkt = 0;
1117 		if (error == 0) {
1118 			/* Record statistics for this interface address. */
1119 			if (ia) {
1120 				ia->ia_ifa.if_opackets++;
1121 				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1122 			}
1123 			error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1124 		} else
1125 			m_freem(m);
1126 	}
1127 
1128 	if (error == 0)
1129 		V_ip6stat.ip6s_fragmented++;
1130 
1131 done:
1132 	if (ro == &ip6route && ro->ro_rt && flevalid == 0) {
1133                 /* brace necessary for RTFREE */
1134 		RTFREE(ro->ro_rt);
1135 	} else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt &&
1136 	    ((flevalid == 0) || (ro_pmtu != ro))) {
1137 		RTFREE(ro_pmtu->ro_rt);
1138 	}
1139 #ifdef IPSEC
1140 	if (sp != NULL)
1141 		KEY_FREESP(&sp);
1142 #endif
1143 
1144 	return (error);
1145 
1146 freehdrs:
1147 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
1148 	m_freem(exthdrs.ip6e_dest1);
1149 	m_freem(exthdrs.ip6e_rthdr);
1150 	m_freem(exthdrs.ip6e_dest2);
1151 	/* FALLTHROUGH */
1152 bad:
1153 	if (m)
1154 		m_freem(m);
1155 	goto done;
1156 }
1157 
1158 static int
1159 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
1160 {
1161 	struct mbuf *m;
1162 
1163 	if (hlen > MCLBYTES)
1164 		return (ENOBUFS); /* XXX */
1165 
1166 	MGET(m, M_DONTWAIT, MT_DATA);
1167 	if (!m)
1168 		return (ENOBUFS);
1169 
1170 	if (hlen > MLEN) {
1171 		MCLGET(m, M_DONTWAIT);
1172 		if ((m->m_flags & M_EXT) == 0) {
1173 			m_free(m);
1174 			return (ENOBUFS);
1175 		}
1176 	}
1177 	m->m_len = hlen;
1178 	if (hdr)
1179 		bcopy(hdr, mtod(m, caddr_t), hlen);
1180 
1181 	*mp = m;
1182 	return (0);
1183 }
1184 
1185 /*
1186  * Insert jumbo payload option.
1187  */
1188 static int
1189 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1190 {
1191 	struct mbuf *mopt;
1192 	u_char *optbuf;
1193 	u_int32_t v;
1194 
1195 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
1196 
1197 	/*
1198 	 * If there is no hop-by-hop options header, allocate new one.
1199 	 * If there is one but it doesn't have enough space to store the
1200 	 * jumbo payload option, allocate a cluster to store the whole options.
1201 	 * Otherwise, use it to store the options.
1202 	 */
1203 	if (exthdrs->ip6e_hbh == 0) {
1204 		MGET(mopt, M_DONTWAIT, MT_DATA);
1205 		if (mopt == 0)
1206 			return (ENOBUFS);
1207 		mopt->m_len = JUMBOOPTLEN;
1208 		optbuf = mtod(mopt, u_char *);
1209 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
1210 		exthdrs->ip6e_hbh = mopt;
1211 	} else {
1212 		struct ip6_hbh *hbh;
1213 
1214 		mopt = exthdrs->ip6e_hbh;
1215 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1216 			/*
1217 			 * XXX assumption:
1218 			 * - exthdrs->ip6e_hbh is not referenced from places
1219 			 *   other than exthdrs.
1220 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
1221 			 */
1222 			int oldoptlen = mopt->m_len;
1223 			struct mbuf *n;
1224 
1225 			/*
1226 			 * XXX: give up if the whole (new) hbh header does
1227 			 * not fit even in an mbuf cluster.
1228 			 */
1229 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1230 				return (ENOBUFS);
1231 
1232 			/*
1233 			 * As a consequence, we must always prepare a cluster
1234 			 * at this point.
1235 			 */
1236 			MGET(n, M_DONTWAIT, MT_DATA);
1237 			if (n) {
1238 				MCLGET(n, M_DONTWAIT);
1239 				if ((n->m_flags & M_EXT) == 0) {
1240 					m_freem(n);
1241 					n = NULL;
1242 				}
1243 			}
1244 			if (!n)
1245 				return (ENOBUFS);
1246 			n->m_len = oldoptlen + JUMBOOPTLEN;
1247 			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1248 			    oldoptlen);
1249 			optbuf = mtod(n, caddr_t) + oldoptlen;
1250 			m_freem(mopt);
1251 			mopt = exthdrs->ip6e_hbh = n;
1252 		} else {
1253 			optbuf = mtod(mopt, u_char *) + mopt->m_len;
1254 			mopt->m_len += JUMBOOPTLEN;
1255 		}
1256 		optbuf[0] = IP6OPT_PADN;
1257 		optbuf[1] = 1;
1258 
1259 		/*
1260 		 * Adjust the header length according to the pad and
1261 		 * the jumbo payload option.
1262 		 */
1263 		hbh = mtod(mopt, struct ip6_hbh *);
1264 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1265 	}
1266 
1267 	/* fill in the option. */
1268 	optbuf[2] = IP6OPT_JUMBO;
1269 	optbuf[3] = 4;
1270 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1271 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1272 
1273 	/* finally, adjust the packet header length */
1274 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1275 
1276 	return (0);
1277 #undef JUMBOOPTLEN
1278 }
1279 
1280 /*
1281  * Insert fragment header and copy unfragmentable header portions.
1282  */
1283 static int
1284 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1285     struct ip6_frag **frghdrp)
1286 {
1287 	struct mbuf *n, *mlast;
1288 
1289 	if (hlen > sizeof(struct ip6_hdr)) {
1290 		n = m_copym(m0, sizeof(struct ip6_hdr),
1291 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1292 		if (n == 0)
1293 			return (ENOBUFS);
1294 		m->m_next = n;
1295 	} else
1296 		n = m;
1297 
1298 	/* Search for the last mbuf of unfragmentable part. */
1299 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1300 		;
1301 
1302 	if ((mlast->m_flags & M_EXT) == 0 &&
1303 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1304 		/* use the trailing space of the last mbuf for the fragment hdr */
1305 		*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1306 		    mlast->m_len);
1307 		mlast->m_len += sizeof(struct ip6_frag);
1308 		m->m_pkthdr.len += sizeof(struct ip6_frag);
1309 	} else {
1310 		/* allocate a new mbuf for the fragment header */
1311 		struct mbuf *mfrg;
1312 
1313 		MGET(mfrg, M_DONTWAIT, MT_DATA);
1314 		if (mfrg == 0)
1315 			return (ENOBUFS);
1316 		mfrg->m_len = sizeof(struct ip6_frag);
1317 		*frghdrp = mtod(mfrg, struct ip6_frag *);
1318 		mlast->m_next = mfrg;
1319 	}
1320 
1321 	return (0);
1322 }
1323 
1324 static int
1325 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro,
1326     struct ifnet *ifp, struct in6_addr *dst, u_long *mtup,
1327     int *alwaysfragp, u_int fibnum)
1328 {
1329 	u_int32_t mtu = 0;
1330 	int alwaysfrag = 0;
1331 	int error = 0;
1332 
1333 	if (ro_pmtu != ro) {
1334 		/* The first hop and the final destination may differ. */
1335 		struct sockaddr_in6 *sa6_dst =
1336 		    (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1337 		if (ro_pmtu->ro_rt &&
1338 		    ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1339 		     !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1340 			RTFREE(ro_pmtu->ro_rt);
1341 			ro_pmtu->ro_rt = (struct rtentry *)NULL;
1342 		}
1343 		if (ro_pmtu->ro_rt == NULL) {
1344 			bzero(sa6_dst, sizeof(*sa6_dst));
1345 			sa6_dst->sin6_family = AF_INET6;
1346 			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1347 			sa6_dst->sin6_addr = *dst;
1348 
1349 			in6_rtalloc(ro_pmtu, fibnum);
1350 		}
1351 	}
1352 	if (ro_pmtu->ro_rt) {
1353 		u_int32_t ifmtu;
1354 		struct in_conninfo inc;
1355 
1356 		bzero(&inc, sizeof(inc));
1357 		inc.inc_flags |= INC_ISIPV6;
1358 		inc.inc6_faddr = *dst;
1359 
1360 		if (ifp == NULL)
1361 			ifp = ro_pmtu->ro_rt->rt_ifp;
1362 		ifmtu = IN6_LINKMTU(ifp);
1363 		mtu = tcp_hc_getmtu(&inc);
1364 		if (mtu)
1365 			mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu);
1366 		else
1367 			mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1368 		if (mtu == 0)
1369 			mtu = ifmtu;
1370 		else if (mtu < IPV6_MMTU) {
1371 			/*
1372 			 * RFC2460 section 5, last paragraph:
1373 			 * if we record ICMPv6 too big message with
1374 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1375 			 * or smaller, with framgent header attached.
1376 			 * (fragment header is needed regardless from the
1377 			 * packet size, for translators to identify packets)
1378 			 */
1379 			alwaysfrag = 1;
1380 			mtu = IPV6_MMTU;
1381 		} else if (mtu > ifmtu) {
1382 			/*
1383 			 * The MTU on the route is larger than the MTU on
1384 			 * the interface!  This shouldn't happen, unless the
1385 			 * MTU of the interface has been changed after the
1386 			 * interface was brought up.  Change the MTU in the
1387 			 * route to match the interface MTU (as long as the
1388 			 * field isn't locked).
1389 			 */
1390 			mtu = ifmtu;
1391 			ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1392 		}
1393 	} else if (ifp) {
1394 		mtu = IN6_LINKMTU(ifp);
1395 	} else
1396 		error = EHOSTUNREACH; /* XXX */
1397 
1398 	*mtup = mtu;
1399 	if (alwaysfragp)
1400 		*alwaysfragp = alwaysfrag;
1401 	return (error);
1402 }
1403 
1404 /*
1405  * IP6 socket option processing.
1406  */
1407 int
1408 ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1409 {
1410 	int optdatalen, uproto;
1411 	void *optdata;
1412 	struct inpcb *in6p = sotoinpcb(so);
1413 	int error, optval;
1414 	int level, op, optname;
1415 	int optlen;
1416 	struct thread *td;
1417 
1418 	level = sopt->sopt_level;
1419 	op = sopt->sopt_dir;
1420 	optname = sopt->sopt_name;
1421 	optlen = sopt->sopt_valsize;
1422 	td = sopt->sopt_td;
1423 	error = 0;
1424 	optval = 0;
1425 	uproto = (int)so->so_proto->pr_protocol;
1426 
1427 	if (level != IPPROTO_IPV6) {
1428 		error = EINVAL;
1429 
1430 		if (sopt->sopt_level == SOL_SOCKET &&
1431 		    sopt->sopt_dir == SOPT_SET) {
1432 			switch (sopt->sopt_name) {
1433 			case SO_REUSEADDR:
1434 				INP_WLOCK(in6p);
1435 				if (IN_MULTICAST(ntohl(in6p->inp_laddr.s_addr))) {
1436 					if ((so->so_options &
1437 					    (SO_REUSEADDR | SO_REUSEPORT)) != 0)
1438 						in6p->inp_flags2 |= INP_REUSEPORT;
1439 					else
1440 						in6p->inp_flags2 &= ~INP_REUSEPORT;
1441 				}
1442 				INP_WUNLOCK(in6p);
1443 				error = 0;
1444 				break;
1445 			case SO_REUSEPORT:
1446 				INP_WLOCK(in6p);
1447 				if ((so->so_options & SO_REUSEPORT) != 0)
1448 					in6p->inp_flags2 |= INP_REUSEPORT;
1449 				else
1450 					in6p->inp_flags2 &= ~INP_REUSEPORT;
1451 				INP_WUNLOCK(in6p);
1452 				error = 0;
1453 				break;
1454 			case SO_SETFIB:
1455 				INP_WLOCK(in6p);
1456 				in6p->inp_inc.inc_fibnum = so->so_fibnum;
1457 				INP_WUNLOCK(in6p);
1458 				error = 0;
1459 				break;
1460 			default:
1461 				break;
1462 			}
1463 		}
1464 	} else {		/* level == IPPROTO_IPV6 */
1465 		switch (op) {
1466 
1467 		case SOPT_SET:
1468 			switch (optname) {
1469 			case IPV6_2292PKTOPTIONS:
1470 #ifdef IPV6_PKTOPTIONS
1471 			case IPV6_PKTOPTIONS:
1472 #endif
1473 			{
1474 				struct mbuf *m;
1475 
1476 				error = soopt_getm(sopt, &m); /* XXX */
1477 				if (error != 0)
1478 					break;
1479 				error = soopt_mcopyin(sopt, m); /* XXX */
1480 				if (error != 0)
1481 					break;
1482 				error = ip6_pcbopts(&in6p->in6p_outputopts,
1483 						    m, so, sopt);
1484 				m_freem(m); /* XXX */
1485 				break;
1486 			}
1487 
1488 			/*
1489 			 * Use of some Hop-by-Hop options or some
1490 			 * Destination options, might require special
1491 			 * privilege.  That is, normal applications
1492 			 * (without special privilege) might be forbidden
1493 			 * from setting certain options in outgoing packets,
1494 			 * and might never see certain options in received
1495 			 * packets. [RFC 2292 Section 6]
1496 			 * KAME specific note:
1497 			 *  KAME prevents non-privileged users from sending or
1498 			 *  receiving ANY hbh/dst options in order to avoid
1499 			 *  overhead of parsing options in the kernel.
1500 			 */
1501 			case IPV6_RECVHOPOPTS:
1502 			case IPV6_RECVDSTOPTS:
1503 			case IPV6_RECVRTHDRDSTOPTS:
1504 				if (td != NULL) {
1505 					error = priv_check(td,
1506 					    PRIV_NETINET_SETHDROPTS);
1507 					if (error)
1508 						break;
1509 				}
1510 				/* FALLTHROUGH */
1511 			case IPV6_UNICAST_HOPS:
1512 			case IPV6_HOPLIMIT:
1513 			case IPV6_FAITH:
1514 
1515 			case IPV6_RECVPKTINFO:
1516 			case IPV6_RECVHOPLIMIT:
1517 			case IPV6_RECVRTHDR:
1518 			case IPV6_RECVPATHMTU:
1519 			case IPV6_RECVTCLASS:
1520 			case IPV6_V6ONLY:
1521 			case IPV6_AUTOFLOWLABEL:
1522 			case IPV6_BINDANY:
1523 				if (optname == IPV6_BINDANY && td != NULL) {
1524 					error = priv_check(td,
1525 					    PRIV_NETINET_BINDANY);
1526 					if (error)
1527 						break;
1528 				}
1529 
1530 				if (optlen != sizeof(int)) {
1531 					error = EINVAL;
1532 					break;
1533 				}
1534 				error = sooptcopyin(sopt, &optval,
1535 					sizeof optval, sizeof optval);
1536 				if (error)
1537 					break;
1538 				switch (optname) {
1539 
1540 				case IPV6_UNICAST_HOPS:
1541 					if (optval < -1 || optval >= 256)
1542 						error = EINVAL;
1543 					else {
1544 						/* -1 = kernel default */
1545 						in6p->in6p_hops = optval;
1546 						if ((in6p->inp_vflag &
1547 						     INP_IPV4) != 0)
1548 							in6p->inp_ip_ttl = optval;
1549 					}
1550 					break;
1551 #define OPTSET(bit) \
1552 do { \
1553 	if (optval) \
1554 		in6p->inp_flags |= (bit); \
1555 	else \
1556 		in6p->inp_flags &= ~(bit); \
1557 } while (/*CONSTCOND*/ 0)
1558 #define OPTSET2292(bit) \
1559 do { \
1560 	in6p->inp_flags |= IN6P_RFC2292; \
1561 	if (optval) \
1562 		in6p->inp_flags |= (bit); \
1563 	else \
1564 		in6p->inp_flags &= ~(bit); \
1565 } while (/*CONSTCOND*/ 0)
1566 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0)
1567 
1568 				case IPV6_RECVPKTINFO:
1569 					/* cannot mix with RFC2292 */
1570 					if (OPTBIT(IN6P_RFC2292)) {
1571 						error = EINVAL;
1572 						break;
1573 					}
1574 					OPTSET(IN6P_PKTINFO);
1575 					break;
1576 
1577 				case IPV6_HOPLIMIT:
1578 				{
1579 					struct ip6_pktopts **optp;
1580 
1581 					/* cannot mix with RFC2292 */
1582 					if (OPTBIT(IN6P_RFC2292)) {
1583 						error = EINVAL;
1584 						break;
1585 					}
1586 					optp = &in6p->in6p_outputopts;
1587 					error = ip6_pcbopt(IPV6_HOPLIMIT,
1588 					    (u_char *)&optval, sizeof(optval),
1589 					    optp, (td != NULL) ? td->td_ucred :
1590 					    NULL, uproto);
1591 					break;
1592 				}
1593 
1594 				case IPV6_RECVHOPLIMIT:
1595 					/* cannot mix with RFC2292 */
1596 					if (OPTBIT(IN6P_RFC2292)) {
1597 						error = EINVAL;
1598 						break;
1599 					}
1600 					OPTSET(IN6P_HOPLIMIT);
1601 					break;
1602 
1603 				case IPV6_RECVHOPOPTS:
1604 					/* cannot mix with RFC2292 */
1605 					if (OPTBIT(IN6P_RFC2292)) {
1606 						error = EINVAL;
1607 						break;
1608 					}
1609 					OPTSET(IN6P_HOPOPTS);
1610 					break;
1611 
1612 				case IPV6_RECVDSTOPTS:
1613 					/* cannot mix with RFC2292 */
1614 					if (OPTBIT(IN6P_RFC2292)) {
1615 						error = EINVAL;
1616 						break;
1617 					}
1618 					OPTSET(IN6P_DSTOPTS);
1619 					break;
1620 
1621 				case IPV6_RECVRTHDRDSTOPTS:
1622 					/* cannot mix with RFC2292 */
1623 					if (OPTBIT(IN6P_RFC2292)) {
1624 						error = EINVAL;
1625 						break;
1626 					}
1627 					OPTSET(IN6P_RTHDRDSTOPTS);
1628 					break;
1629 
1630 				case IPV6_RECVRTHDR:
1631 					/* cannot mix with RFC2292 */
1632 					if (OPTBIT(IN6P_RFC2292)) {
1633 						error = EINVAL;
1634 						break;
1635 					}
1636 					OPTSET(IN6P_RTHDR);
1637 					break;
1638 
1639 				case IPV6_FAITH:
1640 					OPTSET(INP_FAITH);
1641 					break;
1642 
1643 				case IPV6_RECVPATHMTU:
1644 					/*
1645 					 * We ignore this option for TCP
1646 					 * sockets.
1647 					 * (RFC3542 leaves this case
1648 					 * unspecified.)
1649 					 */
1650 					if (uproto != IPPROTO_TCP)
1651 						OPTSET(IN6P_MTU);
1652 					break;
1653 
1654 				case IPV6_V6ONLY:
1655 					/*
1656 					 * make setsockopt(IPV6_V6ONLY)
1657 					 * available only prior to bind(2).
1658 					 * see ipng mailing list, Jun 22 2001.
1659 					 */
1660 					if (in6p->inp_lport ||
1661 					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1662 						error = EINVAL;
1663 						break;
1664 					}
1665 					OPTSET(IN6P_IPV6_V6ONLY);
1666 					if (optval)
1667 						in6p->inp_vflag &= ~INP_IPV4;
1668 					else
1669 						in6p->inp_vflag |= INP_IPV4;
1670 					break;
1671 				case IPV6_RECVTCLASS:
1672 					/* cannot mix with RFC2292 XXX */
1673 					if (OPTBIT(IN6P_RFC2292)) {
1674 						error = EINVAL;
1675 						break;
1676 					}
1677 					OPTSET(IN6P_TCLASS);
1678 					break;
1679 				case IPV6_AUTOFLOWLABEL:
1680 					OPTSET(IN6P_AUTOFLOWLABEL);
1681 					break;
1682 
1683 				case IPV6_BINDANY:
1684 					OPTSET(INP_BINDANY);
1685 					break;
1686 				}
1687 				break;
1688 
1689 			case IPV6_TCLASS:
1690 			case IPV6_DONTFRAG:
1691 			case IPV6_USE_MIN_MTU:
1692 			case IPV6_PREFER_TEMPADDR:
1693 				if (optlen != sizeof(optval)) {
1694 					error = EINVAL;
1695 					break;
1696 				}
1697 				error = sooptcopyin(sopt, &optval,
1698 					sizeof optval, sizeof optval);
1699 				if (error)
1700 					break;
1701 				{
1702 					struct ip6_pktopts **optp;
1703 					optp = &in6p->in6p_outputopts;
1704 					error = ip6_pcbopt(optname,
1705 					    (u_char *)&optval, sizeof(optval),
1706 					    optp, (td != NULL) ? td->td_ucred :
1707 					    NULL, uproto);
1708 					break;
1709 				}
1710 
1711 			case IPV6_2292PKTINFO:
1712 			case IPV6_2292HOPLIMIT:
1713 			case IPV6_2292HOPOPTS:
1714 			case IPV6_2292DSTOPTS:
1715 			case IPV6_2292RTHDR:
1716 				/* RFC 2292 */
1717 				if (optlen != sizeof(int)) {
1718 					error = EINVAL;
1719 					break;
1720 				}
1721 				error = sooptcopyin(sopt, &optval,
1722 					sizeof optval, sizeof optval);
1723 				if (error)
1724 					break;
1725 				switch (optname) {
1726 				case IPV6_2292PKTINFO:
1727 					OPTSET2292(IN6P_PKTINFO);
1728 					break;
1729 				case IPV6_2292HOPLIMIT:
1730 					OPTSET2292(IN6P_HOPLIMIT);
1731 					break;
1732 				case IPV6_2292HOPOPTS:
1733 					/*
1734 					 * Check super-user privilege.
1735 					 * See comments for IPV6_RECVHOPOPTS.
1736 					 */
1737 					if (td != NULL) {
1738 						error = priv_check(td,
1739 						    PRIV_NETINET_SETHDROPTS);
1740 						if (error)
1741 							return (error);
1742 					}
1743 					OPTSET2292(IN6P_HOPOPTS);
1744 					break;
1745 				case IPV6_2292DSTOPTS:
1746 					if (td != NULL) {
1747 						error = priv_check(td,
1748 						    PRIV_NETINET_SETHDROPTS);
1749 						if (error)
1750 							return (error);
1751 					}
1752 					OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1753 					break;
1754 				case IPV6_2292RTHDR:
1755 					OPTSET2292(IN6P_RTHDR);
1756 					break;
1757 				}
1758 				break;
1759 			case IPV6_PKTINFO:
1760 			case IPV6_HOPOPTS:
1761 			case IPV6_RTHDR:
1762 			case IPV6_DSTOPTS:
1763 			case IPV6_RTHDRDSTOPTS:
1764 			case IPV6_NEXTHOP:
1765 			{
1766 				/* new advanced API (RFC3542) */
1767 				u_char *optbuf;
1768 				u_char optbuf_storage[MCLBYTES];
1769 				int optlen;
1770 				struct ip6_pktopts **optp;
1771 
1772 				/* cannot mix with RFC2292 */
1773 				if (OPTBIT(IN6P_RFC2292)) {
1774 					error = EINVAL;
1775 					break;
1776 				}
1777 
1778 				/*
1779 				 * We only ensure valsize is not too large
1780 				 * here.  Further validation will be done
1781 				 * later.
1782 				 */
1783 				error = sooptcopyin(sopt, optbuf_storage,
1784 				    sizeof(optbuf_storage), 0);
1785 				if (error)
1786 					break;
1787 				optlen = sopt->sopt_valsize;
1788 				optbuf = optbuf_storage;
1789 				optp = &in6p->in6p_outputopts;
1790 				error = ip6_pcbopt(optname, optbuf, optlen,
1791 				    optp, (td != NULL) ? td->td_ucred : NULL,
1792 				    uproto);
1793 				break;
1794 			}
1795 #undef OPTSET
1796 
1797 			case IPV6_MULTICAST_IF:
1798 			case IPV6_MULTICAST_HOPS:
1799 			case IPV6_MULTICAST_LOOP:
1800 			case IPV6_JOIN_GROUP:
1801 			case IPV6_LEAVE_GROUP:
1802 			case IPV6_MSFILTER:
1803 			case MCAST_BLOCK_SOURCE:
1804 			case MCAST_UNBLOCK_SOURCE:
1805 			case MCAST_JOIN_GROUP:
1806 			case MCAST_LEAVE_GROUP:
1807 			case MCAST_JOIN_SOURCE_GROUP:
1808 			case MCAST_LEAVE_SOURCE_GROUP:
1809 				error = ip6_setmoptions(in6p, sopt);
1810 				break;
1811 
1812 			case IPV6_PORTRANGE:
1813 				error = sooptcopyin(sopt, &optval,
1814 				    sizeof optval, sizeof optval);
1815 				if (error)
1816 					break;
1817 
1818 				switch (optval) {
1819 				case IPV6_PORTRANGE_DEFAULT:
1820 					in6p->inp_flags &= ~(INP_LOWPORT);
1821 					in6p->inp_flags &= ~(INP_HIGHPORT);
1822 					break;
1823 
1824 				case IPV6_PORTRANGE_HIGH:
1825 					in6p->inp_flags &= ~(INP_LOWPORT);
1826 					in6p->inp_flags |= INP_HIGHPORT;
1827 					break;
1828 
1829 				case IPV6_PORTRANGE_LOW:
1830 					in6p->inp_flags &= ~(INP_HIGHPORT);
1831 					in6p->inp_flags |= INP_LOWPORT;
1832 					break;
1833 
1834 				default:
1835 					error = EINVAL;
1836 					break;
1837 				}
1838 				break;
1839 
1840 #ifdef IPSEC
1841 			case IPV6_IPSEC_POLICY:
1842 			{
1843 				caddr_t req;
1844 				struct mbuf *m;
1845 
1846 				if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1847 					break;
1848 				if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1849 					break;
1850 				req = mtod(m, caddr_t);
1851 				error = ipsec_set_policy(in6p, optname, req,
1852 				    m->m_len, (sopt->sopt_td != NULL) ?
1853 				    sopt->sopt_td->td_ucred : NULL);
1854 				m_freem(m);
1855 				break;
1856 			}
1857 #endif /* IPSEC */
1858 
1859 			default:
1860 				error = ENOPROTOOPT;
1861 				break;
1862 			}
1863 			break;
1864 
1865 		case SOPT_GET:
1866 			switch (optname) {
1867 
1868 			case IPV6_2292PKTOPTIONS:
1869 #ifdef IPV6_PKTOPTIONS
1870 			case IPV6_PKTOPTIONS:
1871 #endif
1872 				/*
1873 				 * RFC3542 (effectively) deprecated the
1874 				 * semantics of the 2292-style pktoptions.
1875 				 * Since it was not reliable in nature (i.e.,
1876 				 * applications had to expect the lack of some
1877 				 * information after all), it would make sense
1878 				 * to simplify this part by always returning
1879 				 * empty data.
1880 				 */
1881 				sopt->sopt_valsize = 0;
1882 				break;
1883 
1884 			case IPV6_RECVHOPOPTS:
1885 			case IPV6_RECVDSTOPTS:
1886 			case IPV6_RECVRTHDRDSTOPTS:
1887 			case IPV6_UNICAST_HOPS:
1888 			case IPV6_RECVPKTINFO:
1889 			case IPV6_RECVHOPLIMIT:
1890 			case IPV6_RECVRTHDR:
1891 			case IPV6_RECVPATHMTU:
1892 
1893 			case IPV6_FAITH:
1894 			case IPV6_V6ONLY:
1895 			case IPV6_PORTRANGE:
1896 			case IPV6_RECVTCLASS:
1897 			case IPV6_AUTOFLOWLABEL:
1898 			case IPV6_BINDANY:
1899 				switch (optname) {
1900 
1901 				case IPV6_RECVHOPOPTS:
1902 					optval = OPTBIT(IN6P_HOPOPTS);
1903 					break;
1904 
1905 				case IPV6_RECVDSTOPTS:
1906 					optval = OPTBIT(IN6P_DSTOPTS);
1907 					break;
1908 
1909 				case IPV6_RECVRTHDRDSTOPTS:
1910 					optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1911 					break;
1912 
1913 				case IPV6_UNICAST_HOPS:
1914 					optval = in6p->in6p_hops;
1915 					break;
1916 
1917 				case IPV6_RECVPKTINFO:
1918 					optval = OPTBIT(IN6P_PKTINFO);
1919 					break;
1920 
1921 				case IPV6_RECVHOPLIMIT:
1922 					optval = OPTBIT(IN6P_HOPLIMIT);
1923 					break;
1924 
1925 				case IPV6_RECVRTHDR:
1926 					optval = OPTBIT(IN6P_RTHDR);
1927 					break;
1928 
1929 				case IPV6_RECVPATHMTU:
1930 					optval = OPTBIT(IN6P_MTU);
1931 					break;
1932 
1933 				case IPV6_FAITH:
1934 					optval = OPTBIT(INP_FAITH);
1935 					break;
1936 
1937 				case IPV6_V6ONLY:
1938 					optval = OPTBIT(IN6P_IPV6_V6ONLY);
1939 					break;
1940 
1941 				case IPV6_PORTRANGE:
1942 				    {
1943 					int flags;
1944 					flags = in6p->inp_flags;
1945 					if (flags & INP_HIGHPORT)
1946 						optval = IPV6_PORTRANGE_HIGH;
1947 					else if (flags & INP_LOWPORT)
1948 						optval = IPV6_PORTRANGE_LOW;
1949 					else
1950 						optval = 0;
1951 					break;
1952 				    }
1953 				case IPV6_RECVTCLASS:
1954 					optval = OPTBIT(IN6P_TCLASS);
1955 					break;
1956 
1957 				case IPV6_AUTOFLOWLABEL:
1958 					optval = OPTBIT(IN6P_AUTOFLOWLABEL);
1959 					break;
1960 
1961 				case IPV6_BINDANY:
1962 					optval = OPTBIT(INP_BINDANY);
1963 					break;
1964 				}
1965 				if (error)
1966 					break;
1967 				error = sooptcopyout(sopt, &optval,
1968 					sizeof optval);
1969 				break;
1970 
1971 			case IPV6_PATHMTU:
1972 			{
1973 				u_long pmtu = 0;
1974 				struct ip6_mtuinfo mtuinfo;
1975 				struct route_in6 sro;
1976 
1977 				bzero(&sro, sizeof(sro));
1978 
1979 				if (!(so->so_state & SS_ISCONNECTED))
1980 					return (ENOTCONN);
1981 				/*
1982 				 * XXX: we dot not consider the case of source
1983 				 * routing, or optional information to specify
1984 				 * the outgoing interface.
1985 				 */
1986 				error = ip6_getpmtu(&sro, NULL, NULL,
1987 				    &in6p->in6p_faddr, &pmtu, NULL,
1988 				    so->so_fibnum);
1989 				if (sro.ro_rt)
1990 					RTFREE(sro.ro_rt);
1991 				if (error)
1992 					break;
1993 				if (pmtu > IPV6_MAXPACKET)
1994 					pmtu = IPV6_MAXPACKET;
1995 
1996 				bzero(&mtuinfo, sizeof(mtuinfo));
1997 				mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1998 				optdata = (void *)&mtuinfo;
1999 				optdatalen = sizeof(mtuinfo);
2000 				error = sooptcopyout(sopt, optdata,
2001 				    optdatalen);
2002 				break;
2003 			}
2004 
2005 			case IPV6_2292PKTINFO:
2006 			case IPV6_2292HOPLIMIT:
2007 			case IPV6_2292HOPOPTS:
2008 			case IPV6_2292RTHDR:
2009 			case IPV6_2292DSTOPTS:
2010 				switch (optname) {
2011 				case IPV6_2292PKTINFO:
2012 					optval = OPTBIT(IN6P_PKTINFO);
2013 					break;
2014 				case IPV6_2292HOPLIMIT:
2015 					optval = OPTBIT(IN6P_HOPLIMIT);
2016 					break;
2017 				case IPV6_2292HOPOPTS:
2018 					optval = OPTBIT(IN6P_HOPOPTS);
2019 					break;
2020 				case IPV6_2292RTHDR:
2021 					optval = OPTBIT(IN6P_RTHDR);
2022 					break;
2023 				case IPV6_2292DSTOPTS:
2024 					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
2025 					break;
2026 				}
2027 				error = sooptcopyout(sopt, &optval,
2028 				    sizeof optval);
2029 				break;
2030 			case IPV6_PKTINFO:
2031 			case IPV6_HOPOPTS:
2032 			case IPV6_RTHDR:
2033 			case IPV6_DSTOPTS:
2034 			case IPV6_RTHDRDSTOPTS:
2035 			case IPV6_NEXTHOP:
2036 			case IPV6_TCLASS:
2037 			case IPV6_DONTFRAG:
2038 			case IPV6_USE_MIN_MTU:
2039 			case IPV6_PREFER_TEMPADDR:
2040 				error = ip6_getpcbopt(in6p->in6p_outputopts,
2041 				    optname, sopt);
2042 				break;
2043 
2044 			case IPV6_MULTICAST_IF:
2045 			case IPV6_MULTICAST_HOPS:
2046 			case IPV6_MULTICAST_LOOP:
2047 			case IPV6_MSFILTER:
2048 				error = ip6_getmoptions(in6p, sopt);
2049 				break;
2050 
2051 #ifdef IPSEC
2052 			case IPV6_IPSEC_POLICY:
2053 			  {
2054 				caddr_t req = NULL;
2055 				size_t len = 0;
2056 				struct mbuf *m = NULL;
2057 				struct mbuf **mp = &m;
2058 				size_t ovalsize = sopt->sopt_valsize;
2059 				caddr_t oval = (caddr_t)sopt->sopt_val;
2060 
2061 				error = soopt_getm(sopt, &m); /* XXX */
2062 				if (error != 0)
2063 					break;
2064 				error = soopt_mcopyin(sopt, m); /* XXX */
2065 				if (error != 0)
2066 					break;
2067 				sopt->sopt_valsize = ovalsize;
2068 				sopt->sopt_val = oval;
2069 				if (m) {
2070 					req = mtod(m, caddr_t);
2071 					len = m->m_len;
2072 				}
2073 				error = ipsec_get_policy(in6p, req, len, mp);
2074 				if (error == 0)
2075 					error = soopt_mcopyout(sopt, m); /* XXX */
2076 				if (error == 0 && m)
2077 					m_freem(m);
2078 				break;
2079 			  }
2080 #endif /* IPSEC */
2081 
2082 			default:
2083 				error = ENOPROTOOPT;
2084 				break;
2085 			}
2086 			break;
2087 		}
2088 	}
2089 	return (error);
2090 }
2091 
2092 int
2093 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
2094 {
2095 	int error = 0, optval, optlen;
2096 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2097 	struct inpcb *in6p = sotoinpcb(so);
2098 	int level, op, optname;
2099 
2100 	level = sopt->sopt_level;
2101 	op = sopt->sopt_dir;
2102 	optname = sopt->sopt_name;
2103 	optlen = sopt->sopt_valsize;
2104 
2105 	if (level != IPPROTO_IPV6) {
2106 		return (EINVAL);
2107 	}
2108 
2109 	switch (optname) {
2110 	case IPV6_CHECKSUM:
2111 		/*
2112 		 * For ICMPv6 sockets, no modification allowed for checksum
2113 		 * offset, permit "no change" values to help existing apps.
2114 		 *
2115 		 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
2116 		 * for an ICMPv6 socket will fail."
2117 		 * The current behavior does not meet RFC3542.
2118 		 */
2119 		switch (op) {
2120 		case SOPT_SET:
2121 			if (optlen != sizeof(int)) {
2122 				error = EINVAL;
2123 				break;
2124 			}
2125 			error = sooptcopyin(sopt, &optval, sizeof(optval),
2126 					    sizeof(optval));
2127 			if (error)
2128 				break;
2129 			if ((optval % 2) != 0) {
2130 				/* the API assumes even offset values */
2131 				error = EINVAL;
2132 			} else if (so->so_proto->pr_protocol ==
2133 			    IPPROTO_ICMPV6) {
2134 				if (optval != icmp6off)
2135 					error = EINVAL;
2136 			} else
2137 				in6p->in6p_cksum = optval;
2138 			break;
2139 
2140 		case SOPT_GET:
2141 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2142 				optval = icmp6off;
2143 			else
2144 				optval = in6p->in6p_cksum;
2145 
2146 			error = sooptcopyout(sopt, &optval, sizeof(optval));
2147 			break;
2148 
2149 		default:
2150 			error = EINVAL;
2151 			break;
2152 		}
2153 		break;
2154 
2155 	default:
2156 		error = ENOPROTOOPT;
2157 		break;
2158 	}
2159 
2160 	return (error);
2161 }
2162 
2163 /*
2164  * Set up IP6 options in pcb for insertion in output packets or
2165  * specifying behavior of outgoing packets.
2166  */
2167 static int
2168 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
2169     struct socket *so, struct sockopt *sopt)
2170 {
2171 	struct ip6_pktopts *opt = *pktopt;
2172 	int error = 0;
2173 	struct thread *td = sopt->sopt_td;
2174 
2175 	/* turn off any old options. */
2176 	if (opt) {
2177 #ifdef DIAGNOSTIC
2178 		if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2179 		    opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2180 		    opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2181 			printf("ip6_pcbopts: all specified options are cleared.\n");
2182 #endif
2183 		ip6_clearpktopts(opt, -1);
2184 	} else
2185 		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2186 	*pktopt = NULL;
2187 
2188 	if (!m || m->m_len == 0) {
2189 		/*
2190 		 * Only turning off any previous options, regardless of
2191 		 * whether the opt is just created or given.
2192 		 */
2193 		free(opt, M_IP6OPT);
2194 		return (0);
2195 	}
2196 
2197 	/*  set options specified by user. */
2198 	if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ?
2199 	    td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) {
2200 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2201 		free(opt, M_IP6OPT);
2202 		return (error);
2203 	}
2204 	*pktopt = opt;
2205 	return (0);
2206 }
2207 
2208 /*
2209  * initialize ip6_pktopts.  beware that there are non-zero default values in
2210  * the struct.
2211  */
2212 void
2213 ip6_initpktopts(struct ip6_pktopts *opt)
2214 {
2215 
2216 	bzero(opt, sizeof(*opt));
2217 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
2218 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
2219 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2220 	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2221 }
2222 
2223 static int
2224 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2225     struct ucred *cred, int uproto)
2226 {
2227 	struct ip6_pktopts *opt;
2228 
2229 	if (*pktopt == NULL) {
2230 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2231 		    M_WAITOK);
2232 		ip6_initpktopts(*pktopt);
2233 	}
2234 	opt = *pktopt;
2235 
2236 	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2237 }
2238 
2239 static int
2240 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2241 {
2242 	void *optdata = NULL;
2243 	int optdatalen = 0;
2244 	struct ip6_ext *ip6e;
2245 	int error = 0;
2246 	struct in6_pktinfo null_pktinfo;
2247 	int deftclass = 0, on;
2248 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
2249 	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2250 
2251 	switch (optname) {
2252 	case IPV6_PKTINFO:
2253 		if (pktopt && pktopt->ip6po_pktinfo)
2254 			optdata = (void *)pktopt->ip6po_pktinfo;
2255 		else {
2256 			/* XXX: we don't have to do this every time... */
2257 			bzero(&null_pktinfo, sizeof(null_pktinfo));
2258 			optdata = (void *)&null_pktinfo;
2259 		}
2260 		optdatalen = sizeof(struct in6_pktinfo);
2261 		break;
2262 	case IPV6_TCLASS:
2263 		if (pktopt && pktopt->ip6po_tclass >= 0)
2264 			optdata = (void *)&pktopt->ip6po_tclass;
2265 		else
2266 			optdata = (void *)&deftclass;
2267 		optdatalen = sizeof(int);
2268 		break;
2269 	case IPV6_HOPOPTS:
2270 		if (pktopt && pktopt->ip6po_hbh) {
2271 			optdata = (void *)pktopt->ip6po_hbh;
2272 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2273 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2274 		}
2275 		break;
2276 	case IPV6_RTHDR:
2277 		if (pktopt && pktopt->ip6po_rthdr) {
2278 			optdata = (void *)pktopt->ip6po_rthdr;
2279 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2280 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2281 		}
2282 		break;
2283 	case IPV6_RTHDRDSTOPTS:
2284 		if (pktopt && pktopt->ip6po_dest1) {
2285 			optdata = (void *)pktopt->ip6po_dest1;
2286 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2287 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2288 		}
2289 		break;
2290 	case IPV6_DSTOPTS:
2291 		if (pktopt && pktopt->ip6po_dest2) {
2292 			optdata = (void *)pktopt->ip6po_dest2;
2293 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2294 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2295 		}
2296 		break;
2297 	case IPV6_NEXTHOP:
2298 		if (pktopt && pktopt->ip6po_nexthop) {
2299 			optdata = (void *)pktopt->ip6po_nexthop;
2300 			optdatalen = pktopt->ip6po_nexthop->sa_len;
2301 		}
2302 		break;
2303 	case IPV6_USE_MIN_MTU:
2304 		if (pktopt)
2305 			optdata = (void *)&pktopt->ip6po_minmtu;
2306 		else
2307 			optdata = (void *)&defminmtu;
2308 		optdatalen = sizeof(int);
2309 		break;
2310 	case IPV6_DONTFRAG:
2311 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2312 			on = 1;
2313 		else
2314 			on = 0;
2315 		optdata = (void *)&on;
2316 		optdatalen = sizeof(on);
2317 		break;
2318 	case IPV6_PREFER_TEMPADDR:
2319 		if (pktopt)
2320 			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2321 		else
2322 			optdata = (void *)&defpreftemp;
2323 		optdatalen = sizeof(int);
2324 		break;
2325 	default:		/* should not happen */
2326 #ifdef DIAGNOSTIC
2327 		panic("ip6_getpcbopt: unexpected option\n");
2328 #endif
2329 		return (ENOPROTOOPT);
2330 	}
2331 
2332 	error = sooptcopyout(sopt, optdata, optdatalen);
2333 
2334 	return (error);
2335 }
2336 
2337 void
2338 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2339 {
2340 	if (pktopt == NULL)
2341 		return;
2342 
2343 	if (optname == -1 || optname == IPV6_PKTINFO) {
2344 		if (pktopt->ip6po_pktinfo)
2345 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
2346 		pktopt->ip6po_pktinfo = NULL;
2347 	}
2348 	if (optname == -1 || optname == IPV6_HOPLIMIT)
2349 		pktopt->ip6po_hlim = -1;
2350 	if (optname == -1 || optname == IPV6_TCLASS)
2351 		pktopt->ip6po_tclass = -1;
2352 	if (optname == -1 || optname == IPV6_NEXTHOP) {
2353 		if (pktopt->ip6po_nextroute.ro_rt) {
2354 			RTFREE(pktopt->ip6po_nextroute.ro_rt);
2355 			pktopt->ip6po_nextroute.ro_rt = NULL;
2356 		}
2357 		if (pktopt->ip6po_nexthop)
2358 			free(pktopt->ip6po_nexthop, M_IP6OPT);
2359 		pktopt->ip6po_nexthop = NULL;
2360 	}
2361 	if (optname == -1 || optname == IPV6_HOPOPTS) {
2362 		if (pktopt->ip6po_hbh)
2363 			free(pktopt->ip6po_hbh, M_IP6OPT);
2364 		pktopt->ip6po_hbh = NULL;
2365 	}
2366 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2367 		if (pktopt->ip6po_dest1)
2368 			free(pktopt->ip6po_dest1, M_IP6OPT);
2369 		pktopt->ip6po_dest1 = NULL;
2370 	}
2371 	if (optname == -1 || optname == IPV6_RTHDR) {
2372 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2373 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2374 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2375 		if (pktopt->ip6po_route.ro_rt) {
2376 			RTFREE(pktopt->ip6po_route.ro_rt);
2377 			pktopt->ip6po_route.ro_rt = NULL;
2378 		}
2379 	}
2380 	if (optname == -1 || optname == IPV6_DSTOPTS) {
2381 		if (pktopt->ip6po_dest2)
2382 			free(pktopt->ip6po_dest2, M_IP6OPT);
2383 		pktopt->ip6po_dest2 = NULL;
2384 	}
2385 }
2386 
2387 #define PKTOPT_EXTHDRCPY(type) \
2388 do {\
2389 	if (src->type) {\
2390 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2391 		dst->type = malloc(hlen, M_IP6OPT, canwait);\
2392 		if (dst->type == NULL && canwait == M_NOWAIT)\
2393 			goto bad;\
2394 		bcopy(src->type, dst->type, hlen);\
2395 	}\
2396 } while (/*CONSTCOND*/ 0)
2397 
2398 static int
2399 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2400 {
2401 	if (dst == NULL || src == NULL)  {
2402 		printf("ip6_clearpktopts: invalid argument\n");
2403 		return (EINVAL);
2404 	}
2405 
2406 	dst->ip6po_hlim = src->ip6po_hlim;
2407 	dst->ip6po_tclass = src->ip6po_tclass;
2408 	dst->ip6po_flags = src->ip6po_flags;
2409 	dst->ip6po_minmtu = src->ip6po_minmtu;
2410 	dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2411 	if (src->ip6po_pktinfo) {
2412 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2413 		    M_IP6OPT, canwait);
2414 		if (dst->ip6po_pktinfo == NULL)
2415 			goto bad;
2416 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2417 	}
2418 	if (src->ip6po_nexthop) {
2419 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2420 		    M_IP6OPT, canwait);
2421 		if (dst->ip6po_nexthop == NULL)
2422 			goto bad;
2423 		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2424 		    src->ip6po_nexthop->sa_len);
2425 	}
2426 	PKTOPT_EXTHDRCPY(ip6po_hbh);
2427 	PKTOPT_EXTHDRCPY(ip6po_dest1);
2428 	PKTOPT_EXTHDRCPY(ip6po_dest2);
2429 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2430 	return (0);
2431 
2432   bad:
2433 	ip6_clearpktopts(dst, -1);
2434 	return (ENOBUFS);
2435 }
2436 #undef PKTOPT_EXTHDRCPY
2437 
2438 struct ip6_pktopts *
2439 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2440 {
2441 	int error;
2442 	struct ip6_pktopts *dst;
2443 
2444 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2445 	if (dst == NULL)
2446 		return (NULL);
2447 	ip6_initpktopts(dst);
2448 
2449 	if ((error = copypktopts(dst, src, canwait)) != 0) {
2450 		free(dst, M_IP6OPT);
2451 		return (NULL);
2452 	}
2453 
2454 	return (dst);
2455 }
2456 
2457 void
2458 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2459 {
2460 	if (pktopt == NULL)
2461 		return;
2462 
2463 	ip6_clearpktopts(pktopt, -1);
2464 
2465 	free(pktopt, M_IP6OPT);
2466 }
2467 
2468 /*
2469  * Set IPv6 outgoing packet options based on advanced API.
2470  */
2471 int
2472 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2473     struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto)
2474 {
2475 	struct cmsghdr *cm = 0;
2476 
2477 	if (control == NULL || opt == NULL)
2478 		return (EINVAL);
2479 
2480 	ip6_initpktopts(opt);
2481 	if (stickyopt) {
2482 		int error;
2483 
2484 		/*
2485 		 * If stickyopt is provided, make a local copy of the options
2486 		 * for this particular packet, then override them by ancillary
2487 		 * objects.
2488 		 * XXX: copypktopts() does not copy the cached route to a next
2489 		 * hop (if any).  This is not very good in terms of efficiency,
2490 		 * but we can allow this since this option should be rarely
2491 		 * used.
2492 		 */
2493 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2494 			return (error);
2495 	}
2496 
2497 	/*
2498 	 * XXX: Currently, we assume all the optional information is stored
2499 	 * in a single mbuf.
2500 	 */
2501 	if (control->m_next)
2502 		return (EINVAL);
2503 
2504 	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2505 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2506 		int error;
2507 
2508 		if (control->m_len < CMSG_LEN(0))
2509 			return (EINVAL);
2510 
2511 		cm = mtod(control, struct cmsghdr *);
2512 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2513 			return (EINVAL);
2514 		if (cm->cmsg_level != IPPROTO_IPV6)
2515 			continue;
2516 
2517 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2518 		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2519 		if (error)
2520 			return (error);
2521 	}
2522 
2523 	return (0);
2524 }
2525 
2526 /*
2527  * Set a particular packet option, as a sticky option or an ancillary data
2528  * item.  "len" can be 0 only when it's a sticky option.
2529  * We have 4 cases of combination of "sticky" and "cmsg":
2530  * "sticky=0, cmsg=0": impossible
2531  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2532  * "sticky=1, cmsg=0": RFC3542 socket option
2533  * "sticky=1, cmsg=1": RFC2292 socket option
2534  */
2535 static int
2536 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2537     struct ucred *cred, int sticky, int cmsg, int uproto)
2538 {
2539 	int minmtupolicy, preftemp;
2540 	int error;
2541 
2542 	if (!sticky && !cmsg) {
2543 #ifdef DIAGNOSTIC
2544 		printf("ip6_setpktopt: impossible case\n");
2545 #endif
2546 		return (EINVAL);
2547 	}
2548 
2549 	/*
2550 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2551 	 * not be specified in the context of RFC3542.  Conversely,
2552 	 * RFC3542 types should not be specified in the context of RFC2292.
2553 	 */
2554 	if (!cmsg) {
2555 		switch (optname) {
2556 		case IPV6_2292PKTINFO:
2557 		case IPV6_2292HOPLIMIT:
2558 		case IPV6_2292NEXTHOP:
2559 		case IPV6_2292HOPOPTS:
2560 		case IPV6_2292DSTOPTS:
2561 		case IPV6_2292RTHDR:
2562 		case IPV6_2292PKTOPTIONS:
2563 			return (ENOPROTOOPT);
2564 		}
2565 	}
2566 	if (sticky && cmsg) {
2567 		switch (optname) {
2568 		case IPV6_PKTINFO:
2569 		case IPV6_HOPLIMIT:
2570 		case IPV6_NEXTHOP:
2571 		case IPV6_HOPOPTS:
2572 		case IPV6_DSTOPTS:
2573 		case IPV6_RTHDRDSTOPTS:
2574 		case IPV6_RTHDR:
2575 		case IPV6_USE_MIN_MTU:
2576 		case IPV6_DONTFRAG:
2577 		case IPV6_TCLASS:
2578 		case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2579 			return (ENOPROTOOPT);
2580 		}
2581 	}
2582 
2583 	switch (optname) {
2584 	case IPV6_2292PKTINFO:
2585 	case IPV6_PKTINFO:
2586 	{
2587 		struct ifnet *ifp = NULL;
2588 		struct in6_pktinfo *pktinfo;
2589 
2590 		if (len != sizeof(struct in6_pktinfo))
2591 			return (EINVAL);
2592 
2593 		pktinfo = (struct in6_pktinfo *)buf;
2594 
2595 		/*
2596 		 * An application can clear any sticky IPV6_PKTINFO option by
2597 		 * doing a "regular" setsockopt with ipi6_addr being
2598 		 * in6addr_any and ipi6_ifindex being zero.
2599 		 * [RFC 3542, Section 6]
2600 		 */
2601 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2602 		    pktinfo->ipi6_ifindex == 0 &&
2603 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2604 			ip6_clearpktopts(opt, optname);
2605 			break;
2606 		}
2607 
2608 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2609 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2610 			return (EINVAL);
2611 		}
2612 
2613 		/* validate the interface index if specified. */
2614 		if (pktinfo->ipi6_ifindex > V_if_index ||
2615 		    pktinfo->ipi6_ifindex < 0) {
2616 			 return (ENXIO);
2617 		}
2618 		if (pktinfo->ipi6_ifindex) {
2619 			ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
2620 			if (ifp == NULL)
2621 				return (ENXIO);
2622 		}
2623 
2624 		/*
2625 		 * We store the address anyway, and let in6_selectsrc()
2626 		 * validate the specified address.  This is because ipi6_addr
2627 		 * may not have enough information about its scope zone, and
2628 		 * we may need additional information (such as outgoing
2629 		 * interface or the scope zone of a destination address) to
2630 		 * disambiguate the scope.
2631 		 * XXX: the delay of the validation may confuse the
2632 		 * application when it is used as a sticky option.
2633 		 */
2634 		if (opt->ip6po_pktinfo == NULL) {
2635 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2636 			    M_IP6OPT, M_NOWAIT);
2637 			if (opt->ip6po_pktinfo == NULL)
2638 				return (ENOBUFS);
2639 		}
2640 		bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2641 		break;
2642 	}
2643 
2644 	case IPV6_2292HOPLIMIT:
2645 	case IPV6_HOPLIMIT:
2646 	{
2647 		int *hlimp;
2648 
2649 		/*
2650 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2651 		 * to simplify the ordering among hoplimit options.
2652 		 */
2653 		if (optname == IPV6_HOPLIMIT && sticky)
2654 			return (ENOPROTOOPT);
2655 
2656 		if (len != sizeof(int))
2657 			return (EINVAL);
2658 		hlimp = (int *)buf;
2659 		if (*hlimp < -1 || *hlimp > 255)
2660 			return (EINVAL);
2661 
2662 		opt->ip6po_hlim = *hlimp;
2663 		break;
2664 	}
2665 
2666 	case IPV6_TCLASS:
2667 	{
2668 		int tclass;
2669 
2670 		if (len != sizeof(int))
2671 			return (EINVAL);
2672 		tclass = *(int *)buf;
2673 		if (tclass < -1 || tclass > 255)
2674 			return (EINVAL);
2675 
2676 		opt->ip6po_tclass = tclass;
2677 		break;
2678 	}
2679 
2680 	case IPV6_2292NEXTHOP:
2681 	case IPV6_NEXTHOP:
2682 		if (cred != NULL) {
2683 			error = priv_check_cred(cred,
2684 			    PRIV_NETINET_SETHDROPTS, 0);
2685 			if (error)
2686 				return (error);
2687 		}
2688 
2689 		if (len == 0) {	/* just remove the option */
2690 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
2691 			break;
2692 		}
2693 
2694 		/* check if cmsg_len is large enough for sa_len */
2695 		if (len < sizeof(struct sockaddr) || len < *buf)
2696 			return (EINVAL);
2697 
2698 		switch (((struct sockaddr *)buf)->sa_family) {
2699 		case AF_INET6:
2700 		{
2701 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2702 			int error;
2703 
2704 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2705 				return (EINVAL);
2706 
2707 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2708 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2709 				return (EINVAL);
2710 			}
2711 			if ((error = sa6_embedscope(sa6, V_ip6_use_defzone))
2712 			    != 0) {
2713 				return (error);
2714 			}
2715 			break;
2716 		}
2717 		case AF_LINK:	/* should eventually be supported */
2718 		default:
2719 			return (EAFNOSUPPORT);
2720 		}
2721 
2722 		/* turn off the previous option, then set the new option. */
2723 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
2724 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
2725 		if (opt->ip6po_nexthop == NULL)
2726 			return (ENOBUFS);
2727 		bcopy(buf, opt->ip6po_nexthop, *buf);
2728 		break;
2729 
2730 	case IPV6_2292HOPOPTS:
2731 	case IPV6_HOPOPTS:
2732 	{
2733 		struct ip6_hbh *hbh;
2734 		int hbhlen;
2735 
2736 		/*
2737 		 * XXX: We don't allow a non-privileged user to set ANY HbH
2738 		 * options, since per-option restriction has too much
2739 		 * overhead.
2740 		 */
2741 		if (cred != NULL) {
2742 			error = priv_check_cred(cred,
2743 			    PRIV_NETINET_SETHDROPTS, 0);
2744 			if (error)
2745 				return (error);
2746 		}
2747 
2748 		if (len == 0) {
2749 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
2750 			break;	/* just remove the option */
2751 		}
2752 
2753 		/* message length validation */
2754 		if (len < sizeof(struct ip6_hbh))
2755 			return (EINVAL);
2756 		hbh = (struct ip6_hbh *)buf;
2757 		hbhlen = (hbh->ip6h_len + 1) << 3;
2758 		if (len != hbhlen)
2759 			return (EINVAL);
2760 
2761 		/* turn off the previous option, then set the new option. */
2762 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
2763 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
2764 		if (opt->ip6po_hbh == NULL)
2765 			return (ENOBUFS);
2766 		bcopy(hbh, opt->ip6po_hbh, hbhlen);
2767 
2768 		break;
2769 	}
2770 
2771 	case IPV6_2292DSTOPTS:
2772 	case IPV6_DSTOPTS:
2773 	case IPV6_RTHDRDSTOPTS:
2774 	{
2775 		struct ip6_dest *dest, **newdest = NULL;
2776 		int destlen;
2777 
2778 		if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */
2779 			error = priv_check_cred(cred,
2780 			    PRIV_NETINET_SETHDROPTS, 0);
2781 			if (error)
2782 				return (error);
2783 		}
2784 
2785 		if (len == 0) {
2786 			ip6_clearpktopts(opt, optname);
2787 			break;	/* just remove the option */
2788 		}
2789 
2790 		/* message length validation */
2791 		if (len < sizeof(struct ip6_dest))
2792 			return (EINVAL);
2793 		dest = (struct ip6_dest *)buf;
2794 		destlen = (dest->ip6d_len + 1) << 3;
2795 		if (len != destlen)
2796 			return (EINVAL);
2797 
2798 		/*
2799 		 * Determine the position that the destination options header
2800 		 * should be inserted; before or after the routing header.
2801 		 */
2802 		switch (optname) {
2803 		case IPV6_2292DSTOPTS:
2804 			/*
2805 			 * The old advacned API is ambiguous on this point.
2806 			 * Our approach is to determine the position based
2807 			 * according to the existence of a routing header.
2808 			 * Note, however, that this depends on the order of the
2809 			 * extension headers in the ancillary data; the 1st
2810 			 * part of the destination options header must appear
2811 			 * before the routing header in the ancillary data,
2812 			 * too.
2813 			 * RFC3542 solved the ambiguity by introducing
2814 			 * separate ancillary data or option types.
2815 			 */
2816 			if (opt->ip6po_rthdr == NULL)
2817 				newdest = &opt->ip6po_dest1;
2818 			else
2819 				newdest = &opt->ip6po_dest2;
2820 			break;
2821 		case IPV6_RTHDRDSTOPTS:
2822 			newdest = &opt->ip6po_dest1;
2823 			break;
2824 		case IPV6_DSTOPTS:
2825 			newdest = &opt->ip6po_dest2;
2826 			break;
2827 		}
2828 
2829 		/* turn off the previous option, then set the new option. */
2830 		ip6_clearpktopts(opt, optname);
2831 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
2832 		if (*newdest == NULL)
2833 			return (ENOBUFS);
2834 		bcopy(dest, *newdest, destlen);
2835 
2836 		break;
2837 	}
2838 
2839 	case IPV6_2292RTHDR:
2840 	case IPV6_RTHDR:
2841 	{
2842 		struct ip6_rthdr *rth;
2843 		int rthlen;
2844 
2845 		if (len == 0) {
2846 			ip6_clearpktopts(opt, IPV6_RTHDR);
2847 			break;	/* just remove the option */
2848 		}
2849 
2850 		/* message length validation */
2851 		if (len < sizeof(struct ip6_rthdr))
2852 			return (EINVAL);
2853 		rth = (struct ip6_rthdr *)buf;
2854 		rthlen = (rth->ip6r_len + 1) << 3;
2855 		if (len != rthlen)
2856 			return (EINVAL);
2857 
2858 		switch (rth->ip6r_type) {
2859 		case IPV6_RTHDR_TYPE_0:
2860 			if (rth->ip6r_len == 0)	/* must contain one addr */
2861 				return (EINVAL);
2862 			if (rth->ip6r_len % 2) /* length must be even */
2863 				return (EINVAL);
2864 			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
2865 				return (EINVAL);
2866 			break;
2867 		default:
2868 			return (EINVAL);	/* not supported */
2869 		}
2870 
2871 		/* turn off the previous option */
2872 		ip6_clearpktopts(opt, IPV6_RTHDR);
2873 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
2874 		if (opt->ip6po_rthdr == NULL)
2875 			return (ENOBUFS);
2876 		bcopy(rth, opt->ip6po_rthdr, rthlen);
2877 
2878 		break;
2879 	}
2880 
2881 	case IPV6_USE_MIN_MTU:
2882 		if (len != sizeof(int))
2883 			return (EINVAL);
2884 		minmtupolicy = *(int *)buf;
2885 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
2886 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
2887 		    minmtupolicy != IP6PO_MINMTU_ALL) {
2888 			return (EINVAL);
2889 		}
2890 		opt->ip6po_minmtu = minmtupolicy;
2891 		break;
2892 
2893 	case IPV6_DONTFRAG:
2894 		if (len != sizeof(int))
2895 			return (EINVAL);
2896 
2897 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
2898 			/*
2899 			 * we ignore this option for TCP sockets.
2900 			 * (RFC3542 leaves this case unspecified.)
2901 			 */
2902 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
2903 		} else
2904 			opt->ip6po_flags |= IP6PO_DONTFRAG;
2905 		break;
2906 
2907 	case IPV6_PREFER_TEMPADDR:
2908 		if (len != sizeof(int))
2909 			return (EINVAL);
2910 		preftemp = *(int *)buf;
2911 		if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
2912 		    preftemp != IP6PO_TEMPADDR_NOTPREFER &&
2913 		    preftemp != IP6PO_TEMPADDR_PREFER) {
2914 			return (EINVAL);
2915 		}
2916 		opt->ip6po_prefer_tempaddr = preftemp;
2917 		break;
2918 
2919 	default:
2920 		return (ENOPROTOOPT);
2921 	} /* end of switch */
2922 
2923 	return (0);
2924 }
2925 
2926 /*
2927  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2928  * packet to the input queue of a specified interface.  Note that this
2929  * calls the output routine of the loopback "driver", but with an interface
2930  * pointer that might NOT be &loif -- easier than replicating that code here.
2931  */
2932 void
2933 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
2934 {
2935 	struct mbuf *copym;
2936 	struct ip6_hdr *ip6;
2937 
2938 	copym = m_copy(m, 0, M_COPYALL);
2939 	if (copym == NULL)
2940 		return;
2941 
2942 	/*
2943 	 * Make sure to deep-copy IPv6 header portion in case the data
2944 	 * is in an mbuf cluster, so that we can safely override the IPv6
2945 	 * header portion later.
2946 	 */
2947 	if ((copym->m_flags & M_EXT) != 0 ||
2948 	    copym->m_len < sizeof(struct ip6_hdr)) {
2949 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
2950 		if (copym == NULL)
2951 			return;
2952 	}
2953 
2954 #ifdef DIAGNOSTIC
2955 	if (copym->m_len < sizeof(*ip6)) {
2956 		m_freem(copym);
2957 		return;
2958 	}
2959 #endif
2960 
2961 	ip6 = mtod(copym, struct ip6_hdr *);
2962 	/*
2963 	 * clear embedded scope identifiers if necessary.
2964 	 * in6_clearscope will touch the addresses only when necessary.
2965 	 */
2966 	in6_clearscope(&ip6->ip6_src);
2967 	in6_clearscope(&ip6->ip6_dst);
2968 
2969 	(void)if_simloop(ifp, copym, dst->sin6_family, 0);
2970 }
2971 
2972 /*
2973  * Chop IPv6 header off from the payload.
2974  */
2975 static int
2976 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
2977 {
2978 	struct mbuf *mh;
2979 	struct ip6_hdr *ip6;
2980 
2981 	ip6 = mtod(m, struct ip6_hdr *);
2982 	if (m->m_len > sizeof(*ip6)) {
2983 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2984 		if (mh == 0) {
2985 			m_freem(m);
2986 			return ENOBUFS;
2987 		}
2988 		M_MOVE_PKTHDR(mh, m);
2989 		MH_ALIGN(mh, sizeof(*ip6));
2990 		m->m_len -= sizeof(*ip6);
2991 		m->m_data += sizeof(*ip6);
2992 		mh->m_next = m;
2993 		m = mh;
2994 		m->m_len = sizeof(*ip6);
2995 		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2996 	}
2997 	exthdrs->ip6e_ip6 = m;
2998 	return 0;
2999 }
3000 
3001 /*
3002  * Compute IPv6 extension header length.
3003  */
3004 int
3005 ip6_optlen(struct inpcb *in6p)
3006 {
3007 	int len;
3008 
3009 	if (!in6p->in6p_outputopts)
3010 		return 0;
3011 
3012 	len = 0;
3013 #define elen(x) \
3014     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3015 
3016 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
3017 	if (in6p->in6p_outputopts->ip6po_rthdr)
3018 		/* dest1 is valid with rthdr only */
3019 		len += elen(in6p->in6p_outputopts->ip6po_dest1);
3020 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3021 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
3022 	return len;
3023 #undef elen
3024 }
3025