1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ratelimit.h" 71 #include "opt_ipsec.h" 72 #include "opt_sctp.h" 73 #include "opt_route.h" 74 #include "opt_rss.h" 75 76 #include <sys/param.h> 77 #include <sys/kernel.h> 78 #include <sys/malloc.h> 79 #include <sys/mbuf.h> 80 #include <sys/errno.h> 81 #include <sys/priv.h> 82 #include <sys/proc.h> 83 #include <sys/protosw.h> 84 #include <sys/socket.h> 85 #include <sys/socketvar.h> 86 #include <sys/syslog.h> 87 #include <sys/ucred.h> 88 89 #include <machine/in_cksum.h> 90 91 #include <net/if.h> 92 #include <net/if_var.h> 93 #include <net/if_llatbl.h> 94 #include <net/netisr.h> 95 #include <net/route.h> 96 #include <net/pfil.h> 97 #include <net/rss_config.h> 98 #include <net/vnet.h> 99 100 #include <netinet/in.h> 101 #include <netinet/in_var.h> 102 #include <netinet/ip_var.h> 103 #include <netinet6/in6_fib.h> 104 #include <netinet6/in6_var.h> 105 #include <netinet/ip6.h> 106 #include <netinet/icmp6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet/in_pcb.h> 109 #include <netinet/tcp_var.h> 110 #include <netinet6/nd6.h> 111 #include <netinet6/in6_rss.h> 112 113 #include <netipsec/ipsec_support.h> 114 #ifdef SCTP 115 #include <netinet/sctp.h> 116 #include <netinet/sctp_crc32.h> 117 #endif 118 119 #include <netinet6/ip6protosw.h> 120 #include <netinet6/scope6_var.h> 121 122 extern int in6_mcast_loop; 123 124 struct ip6_exthdrs { 125 struct mbuf *ip6e_ip6; 126 struct mbuf *ip6e_hbh; 127 struct mbuf *ip6e_dest1; 128 struct mbuf *ip6e_rthdr; 129 struct mbuf *ip6e_dest2; 130 }; 131 132 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 133 134 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 135 struct ucred *, int); 136 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 137 struct socket *, struct sockopt *); 138 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 139 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 140 struct ucred *, int, int, int); 141 142 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 143 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 144 struct ip6_frag **); 145 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 146 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 147 static int ip6_getpmtu(struct route_in6 *, int, 148 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 149 u_int); 150 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 151 u_long *, int *, u_int); 152 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 153 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 154 155 156 /* 157 * Make an extension header from option data. hp is the source, and 158 * mp is the destination. 159 */ 160 #define MAKE_EXTHDR(hp, mp) \ 161 do { \ 162 if (hp) { \ 163 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 164 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 165 ((eh)->ip6e_len + 1) << 3); \ 166 if (error) \ 167 goto freehdrs; \ 168 } \ 169 } while (/*CONSTCOND*/ 0) 170 171 /* 172 * Form a chain of extension headers. 173 * m is the extension header mbuf 174 * mp is the previous mbuf in the chain 175 * p is the next header 176 * i is the type of option. 177 */ 178 #define MAKE_CHAIN(m, mp, p, i)\ 179 do {\ 180 if (m) {\ 181 if (!hdrsplit) \ 182 panic("assumption failed: hdr not split"); \ 183 *mtod((m), u_char *) = *(p);\ 184 *(p) = (i);\ 185 p = mtod((m), u_char *);\ 186 (m)->m_next = (mp)->m_next;\ 187 (mp)->m_next = (m);\ 188 (mp) = (m);\ 189 }\ 190 } while (/*CONSTCOND*/ 0) 191 192 void 193 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 194 { 195 u_short csum; 196 197 csum = in_cksum_skip(m, offset + plen, offset); 198 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 199 csum = 0xffff; 200 offset += m->m_pkthdr.csum_data; /* checksum offset */ 201 202 if (offset + sizeof(csum) > m->m_len) 203 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 204 else 205 *(u_short *)mtodo(m, offset) = csum; 206 } 207 208 int 209 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 210 int fraglen , uint32_t id) 211 { 212 struct mbuf *m, **mnext, *m_frgpart; 213 struct ip6_hdr *ip6, *mhip6; 214 struct ip6_frag *ip6f; 215 int off; 216 int error; 217 int tlen = m0->m_pkthdr.len; 218 219 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 220 221 m = m0; 222 ip6 = mtod(m, struct ip6_hdr *); 223 mnext = &m->m_nextpkt; 224 225 for (off = hlen; off < tlen; off += fraglen) { 226 m = m_gethdr(M_NOWAIT, MT_DATA); 227 if (!m) { 228 IP6STAT_INC(ip6s_odropped); 229 return (ENOBUFS); 230 } 231 m->m_flags = m0->m_flags & M_COPYFLAGS; 232 *mnext = m; 233 mnext = &m->m_nextpkt; 234 m->m_data += max_linkhdr; 235 mhip6 = mtod(m, struct ip6_hdr *); 236 *mhip6 = *ip6; 237 m->m_len = sizeof(*mhip6); 238 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 239 if (error) { 240 IP6STAT_INC(ip6s_odropped); 241 return (error); 242 } 243 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 244 if (off + fraglen >= tlen) 245 fraglen = tlen - off; 246 else 247 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 248 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 249 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 250 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 251 IP6STAT_INC(ip6s_odropped); 252 return (ENOBUFS); 253 } 254 m_cat(m, m_frgpart); 255 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 256 m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; 257 m->m_pkthdr.rcvif = NULL; 258 ip6f->ip6f_reserved = 0; 259 ip6f->ip6f_ident = id; 260 ip6f->ip6f_nxt = nextproto; 261 IP6STAT_INC(ip6s_ofragments); 262 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 263 } 264 265 return (0); 266 } 267 268 /* 269 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 270 * header (with pri, len, nxt, hlim, src, dst). 271 * This function may modify ver and hlim only. 272 * The mbuf chain containing the packet will be freed. 273 * The mbuf opt, if present, will not be freed. 274 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 275 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 276 * then result of route lookup is stored in ro->ro_rt. 277 * 278 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 279 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 280 * which is rt_mtu. 281 * 282 * ifpp - XXX: just for statistics 283 */ 284 /* 285 * XXX TODO: no flowid is assigned for outbound flows? 286 */ 287 int 288 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 289 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 290 struct ifnet **ifpp, struct inpcb *inp) 291 { 292 struct ip6_hdr *ip6; 293 struct ifnet *ifp, *origifp; 294 struct mbuf *m = m0; 295 struct mbuf *mprev = NULL; 296 int hlen, tlen, len; 297 struct route_in6 ip6route; 298 struct rtentry *rt = NULL; 299 struct sockaddr_in6 *dst, src_sa, dst_sa; 300 struct in6_addr odst; 301 int error = 0; 302 struct in6_ifaddr *ia = NULL; 303 u_long mtu; 304 int alwaysfrag, dontfrag; 305 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 306 struct ip6_exthdrs exthdrs; 307 struct in6_addr src0, dst0; 308 u_int32_t zone; 309 struct route_in6 *ro_pmtu = NULL; 310 int hdrsplit = 0; 311 int sw_csum, tso; 312 int needfiblookup; 313 uint32_t fibnum; 314 struct m_tag *fwd_tag = NULL; 315 uint32_t id; 316 317 if (inp != NULL) { 318 INP_LOCK_ASSERT(inp); 319 M_SETFIB(m, inp->inp_inc.inc_fibnum); 320 if ((flags & IP_NODEFAULTFLOWID) == 0) { 321 /* unconditionally set flowid */ 322 m->m_pkthdr.flowid = inp->inp_flowid; 323 M_HASHTYPE_SET(m, inp->inp_flowtype); 324 } 325 } 326 327 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 328 /* 329 * IPSec checking which handles several cases. 330 * FAST IPSEC: We re-injected the packet. 331 * XXX: need scope argument. 332 */ 333 if (IPSEC_ENABLED(ipv6)) { 334 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 335 if (error == EINPROGRESS) 336 error = 0; 337 goto done; 338 } 339 } 340 #endif /* IPSEC */ 341 342 bzero(&exthdrs, sizeof(exthdrs)); 343 if (opt) { 344 /* Hop-by-Hop options header */ 345 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 346 /* Destination options header(1st part) */ 347 if (opt->ip6po_rthdr) { 348 /* 349 * Destination options header(1st part) 350 * This only makes sense with a routing header. 351 * See Section 9.2 of RFC 3542. 352 * Disabling this part just for MIP6 convenience is 353 * a bad idea. We need to think carefully about a 354 * way to make the advanced API coexist with MIP6 355 * options, which might automatically be inserted in 356 * the kernel. 357 */ 358 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 359 } 360 /* Routing header */ 361 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 362 /* Destination options header(2nd part) */ 363 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 364 } 365 366 /* 367 * Calculate the total length of the extension header chain. 368 * Keep the length of the unfragmentable part for fragmentation. 369 */ 370 optlen = 0; 371 if (exthdrs.ip6e_hbh) 372 optlen += exthdrs.ip6e_hbh->m_len; 373 if (exthdrs.ip6e_dest1) 374 optlen += exthdrs.ip6e_dest1->m_len; 375 if (exthdrs.ip6e_rthdr) 376 optlen += exthdrs.ip6e_rthdr->m_len; 377 unfragpartlen = optlen + sizeof(struct ip6_hdr); 378 379 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 380 if (exthdrs.ip6e_dest2) 381 optlen += exthdrs.ip6e_dest2->m_len; 382 383 /* 384 * If there is at least one extension header, 385 * separate IP6 header from the payload. 386 */ 387 if (optlen && !hdrsplit) { 388 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 389 m = NULL; 390 goto freehdrs; 391 } 392 m = exthdrs.ip6e_ip6; 393 hdrsplit++; 394 } 395 396 ip6 = mtod(m, struct ip6_hdr *); 397 398 /* adjust mbuf packet header length */ 399 m->m_pkthdr.len += optlen; 400 plen = m->m_pkthdr.len - sizeof(*ip6); 401 402 /* If this is a jumbo payload, insert a jumbo payload option. */ 403 if (plen > IPV6_MAXPACKET) { 404 if (!hdrsplit) { 405 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 406 m = NULL; 407 goto freehdrs; 408 } 409 m = exthdrs.ip6e_ip6; 410 hdrsplit++; 411 } 412 /* adjust pointer */ 413 ip6 = mtod(m, struct ip6_hdr *); 414 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 415 goto freehdrs; 416 ip6->ip6_plen = 0; 417 } else 418 ip6->ip6_plen = htons(plen); 419 420 /* 421 * Concatenate headers and fill in next header fields. 422 * Here we have, on "m" 423 * IPv6 payload 424 * and we insert headers accordingly. Finally, we should be getting: 425 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 426 * 427 * during the header composing process, "m" points to IPv6 header. 428 * "mprev" points to an extension header prior to esp. 429 */ 430 u_char *nexthdrp = &ip6->ip6_nxt; 431 mprev = m; 432 433 /* 434 * we treat dest2 specially. this makes IPsec processing 435 * much easier. the goal here is to make mprev point the 436 * mbuf prior to dest2. 437 * 438 * result: IPv6 dest2 payload 439 * m and mprev will point to IPv6 header. 440 */ 441 if (exthdrs.ip6e_dest2) { 442 if (!hdrsplit) 443 panic("assumption failed: hdr not split"); 444 exthdrs.ip6e_dest2->m_next = m->m_next; 445 m->m_next = exthdrs.ip6e_dest2; 446 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 447 ip6->ip6_nxt = IPPROTO_DSTOPTS; 448 } 449 450 /* 451 * result: IPv6 hbh dest1 rthdr dest2 payload 452 * m will point to IPv6 header. mprev will point to the 453 * extension header prior to dest2 (rthdr in the above case). 454 */ 455 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 456 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 457 IPPROTO_DSTOPTS); 458 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 459 IPPROTO_ROUTING); 460 461 /* 462 * If there is a routing header, discard the packet. 463 */ 464 if (exthdrs.ip6e_rthdr) { 465 error = EINVAL; 466 goto bad; 467 } 468 469 /* Source address validation */ 470 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 471 (flags & IPV6_UNSPECSRC) == 0) { 472 error = EOPNOTSUPP; 473 IP6STAT_INC(ip6s_badscope); 474 goto bad; 475 } 476 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 477 error = EOPNOTSUPP; 478 IP6STAT_INC(ip6s_badscope); 479 goto bad; 480 } 481 482 IP6STAT_INC(ip6s_localout); 483 484 /* 485 * Route packet. 486 */ 487 if (ro == NULL) { 488 ro = &ip6route; 489 bzero((caddr_t)ro, sizeof(*ro)); 490 } 491 ro_pmtu = ro; 492 if (opt && opt->ip6po_rthdr) 493 ro = &opt->ip6po_route; 494 dst = (struct sockaddr_in6 *)&ro->ro_dst; 495 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 496 again: 497 /* 498 * if specified, try to fill in the traffic class field. 499 * do not override if a non-zero value is already set. 500 * we check the diffserv field and the ecn field separately. 501 */ 502 if (opt && opt->ip6po_tclass >= 0) { 503 int mask = 0; 504 505 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 506 mask |= 0xfc; 507 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 508 mask |= 0x03; 509 if (mask != 0) 510 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 511 } 512 513 /* fill in or override the hop limit field, if necessary. */ 514 if (opt && opt->ip6po_hlim != -1) 515 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 516 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 517 if (im6o != NULL) 518 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 519 else 520 ip6->ip6_hlim = V_ip6_defmcasthlim; 521 } 522 /* 523 * Validate route against routing table additions; 524 * a better/more specific route might have been added. 525 * Make sure address family is set in route. 526 */ 527 if (inp) { 528 ro->ro_dst.sin6_family = AF_INET6; 529 RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, fibnum); 530 } 531 if (ro->ro_rt && fwd_tag == NULL && (ro->ro_rt->rt_flags & RTF_UP) && 532 ro->ro_dst.sin6_family == AF_INET6 && 533 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 534 rt = ro->ro_rt; 535 ifp = ro->ro_rt->rt_ifp; 536 } else { 537 if (ro->ro_lle) 538 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 539 ro->ro_lle = NULL; 540 if (fwd_tag == NULL) { 541 bzero(&dst_sa, sizeof(dst_sa)); 542 dst_sa.sin6_family = AF_INET6; 543 dst_sa.sin6_len = sizeof(dst_sa); 544 dst_sa.sin6_addr = ip6->ip6_dst; 545 } 546 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 547 &rt, fibnum); 548 if (error != 0) { 549 if (ifp != NULL) 550 in6_ifstat_inc(ifp, ifs6_out_discard); 551 goto bad; 552 } 553 } 554 if (rt == NULL) { 555 /* 556 * If in6_selectroute() does not return a route entry, 557 * dst may not have been updated. 558 */ 559 *dst = dst_sa; /* XXX */ 560 } 561 562 /* 563 * then rt (for unicast) and ifp must be non-NULL valid values. 564 */ 565 if ((flags & IPV6_FORWARDING) == 0) { 566 /* XXX: the FORWARDING flag can be set for mrouting. */ 567 in6_ifstat_inc(ifp, ifs6_out_request); 568 } 569 if (rt != NULL) { 570 ia = (struct in6_ifaddr *)(rt->rt_ifa); 571 counter_u64_add(rt->rt_pksent, 1); 572 } 573 574 575 /* 576 * The outgoing interface must be in the zone of source and 577 * destination addresses. 578 */ 579 origifp = ifp; 580 581 src0 = ip6->ip6_src; 582 if (in6_setscope(&src0, origifp, &zone)) 583 goto badscope; 584 bzero(&src_sa, sizeof(src_sa)); 585 src_sa.sin6_family = AF_INET6; 586 src_sa.sin6_len = sizeof(src_sa); 587 src_sa.sin6_addr = ip6->ip6_src; 588 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 589 goto badscope; 590 591 dst0 = ip6->ip6_dst; 592 if (in6_setscope(&dst0, origifp, &zone)) 593 goto badscope; 594 /* re-initialize to be sure */ 595 bzero(&dst_sa, sizeof(dst_sa)); 596 dst_sa.sin6_family = AF_INET6; 597 dst_sa.sin6_len = sizeof(dst_sa); 598 dst_sa.sin6_addr = ip6->ip6_dst; 599 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 600 goto badscope; 601 } 602 603 /* We should use ia_ifp to support the case of 604 * sending packets to an address of our own. 605 */ 606 if (ia != NULL && ia->ia_ifp) 607 ifp = ia->ia_ifp; 608 609 /* scope check is done. */ 610 goto routefound; 611 612 badscope: 613 IP6STAT_INC(ip6s_badscope); 614 in6_ifstat_inc(origifp, ifs6_out_discard); 615 if (error == 0) 616 error = EHOSTUNREACH; /* XXX */ 617 goto bad; 618 619 routefound: 620 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 621 if (opt && opt->ip6po_nextroute.ro_rt) { 622 /* 623 * The nexthop is explicitly specified by the 624 * application. We assume the next hop is an IPv6 625 * address. 626 */ 627 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 628 } 629 else if ((rt->rt_flags & RTF_GATEWAY)) 630 dst = (struct sockaddr_in6 *)rt->rt_gateway; 631 } 632 633 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 634 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 635 } else { 636 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 637 in6_ifstat_inc(ifp, ifs6_out_mcast); 638 /* 639 * Confirm that the outgoing interface supports multicast. 640 */ 641 if (!(ifp->if_flags & IFF_MULTICAST)) { 642 IP6STAT_INC(ip6s_noroute); 643 in6_ifstat_inc(ifp, ifs6_out_discard); 644 error = ENETUNREACH; 645 goto bad; 646 } 647 if ((im6o == NULL && in6_mcast_loop) || 648 (im6o && im6o->im6o_multicast_loop)) { 649 /* 650 * Loop back multicast datagram if not expressly 651 * forbidden to do so, even if we have not joined 652 * the address; protocols will filter it later, 653 * thus deferring a hash lookup and lock acquisition 654 * at the expense of an m_copym(). 655 */ 656 ip6_mloopback(ifp, m); 657 } else { 658 /* 659 * If we are acting as a multicast router, perform 660 * multicast forwarding as if the packet had just 661 * arrived on the interface to which we are about 662 * to send. The multicast forwarding function 663 * recursively calls this function, using the 664 * IPV6_FORWARDING flag to prevent infinite recursion. 665 * 666 * Multicasts that are looped back by ip6_mloopback(), 667 * above, will be forwarded by the ip6_input() routine, 668 * if necessary. 669 */ 670 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 671 /* 672 * XXX: ip6_mforward expects that rcvif is NULL 673 * when it is called from the originating path. 674 * However, it may not always be the case. 675 */ 676 m->m_pkthdr.rcvif = NULL; 677 if (ip6_mforward(ip6, ifp, m) != 0) { 678 m_freem(m); 679 goto done; 680 } 681 } 682 } 683 /* 684 * Multicasts with a hoplimit of zero may be looped back, 685 * above, but must not be transmitted on a network. 686 * Also, multicasts addressed to the loopback interface 687 * are not sent -- the above call to ip6_mloopback() will 688 * loop back a copy if this host actually belongs to the 689 * destination group on the loopback interface. 690 */ 691 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 692 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 693 m_freem(m); 694 goto done; 695 } 696 } 697 698 /* 699 * Fill the outgoing inteface to tell the upper layer 700 * to increment per-interface statistics. 701 */ 702 if (ifpp) 703 *ifpp = ifp; 704 705 /* Determine path MTU. */ 706 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 707 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 708 goto bad; 709 710 /* 711 * The caller of this function may specify to use the minimum MTU 712 * in some cases. 713 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 714 * setting. The logic is a bit complicated; by default, unicast 715 * packets will follow path MTU while multicast packets will be sent at 716 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 717 * including unicast ones will be sent at the minimum MTU. Multicast 718 * packets will always be sent at the minimum MTU unless 719 * IP6PO_MINMTU_DISABLE is explicitly specified. 720 * See RFC 3542 for more details. 721 */ 722 if (mtu > IPV6_MMTU) { 723 if ((flags & IPV6_MINMTU)) 724 mtu = IPV6_MMTU; 725 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 726 mtu = IPV6_MMTU; 727 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 728 (opt == NULL || 729 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 730 mtu = IPV6_MMTU; 731 } 732 } 733 734 /* 735 * clear embedded scope identifiers if necessary. 736 * in6_clearscope will touch the addresses only when necessary. 737 */ 738 in6_clearscope(&ip6->ip6_src); 739 in6_clearscope(&ip6->ip6_dst); 740 741 /* 742 * If the outgoing packet contains a hop-by-hop options header, 743 * it must be examined and processed even by the source node. 744 * (RFC 2460, section 4.) 745 */ 746 if (exthdrs.ip6e_hbh) { 747 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 748 u_int32_t dummy; /* XXX unused */ 749 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 750 751 #ifdef DIAGNOSTIC 752 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 753 panic("ip6e_hbh is not contiguous"); 754 #endif 755 /* 756 * XXX: if we have to send an ICMPv6 error to the sender, 757 * we need the M_LOOP flag since icmp6_error() expects 758 * the IPv6 and the hop-by-hop options header are 759 * contiguous unless the flag is set. 760 */ 761 m->m_flags |= M_LOOP; 762 m->m_pkthdr.rcvif = ifp; 763 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 764 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 765 &dummy, &plen) < 0) { 766 /* m was already freed at this point */ 767 error = EINVAL;/* better error? */ 768 goto done; 769 } 770 m->m_flags &= ~M_LOOP; /* XXX */ 771 m->m_pkthdr.rcvif = NULL; 772 } 773 774 /* Jump over all PFIL processing if hooks are not active. */ 775 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 776 goto passout; 777 778 odst = ip6->ip6_dst; 779 /* Run through list of hooks for output packets. */ 780 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, 0, inp); 781 if (error != 0 || m == NULL) 782 goto done; 783 /* adjust pointer */ 784 ip6 = mtod(m, struct ip6_hdr *); 785 786 needfiblookup = 0; 787 /* See if destination IP address was changed by packet filter. */ 788 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 789 m->m_flags |= M_SKIP_FIREWALL; 790 /* If destination is now ourself drop to ip6_input(). */ 791 if (in6_localip(&ip6->ip6_dst)) { 792 m->m_flags |= M_FASTFWD_OURS; 793 if (m->m_pkthdr.rcvif == NULL) 794 m->m_pkthdr.rcvif = V_loif; 795 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 796 m->m_pkthdr.csum_flags |= 797 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 798 m->m_pkthdr.csum_data = 0xffff; 799 } 800 #ifdef SCTP 801 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 802 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 803 #endif 804 error = netisr_queue(NETISR_IPV6, m); 805 goto done; 806 } else { 807 RO_RTFREE(ro); 808 needfiblookup = 1; /* Redo the routing table lookup. */ 809 if (ro->ro_lle) 810 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 811 ro->ro_lle = NULL; 812 } 813 } 814 /* See if fib was changed by packet filter. */ 815 if (fibnum != M_GETFIB(m)) { 816 m->m_flags |= M_SKIP_FIREWALL; 817 fibnum = M_GETFIB(m); 818 RO_RTFREE(ro); 819 needfiblookup = 1; 820 if (ro->ro_lle) 821 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 822 ro->ro_lle = NULL; 823 } 824 if (needfiblookup) 825 goto again; 826 827 /* See if local, if yes, send it to netisr. */ 828 if (m->m_flags & M_FASTFWD_OURS) { 829 if (m->m_pkthdr.rcvif == NULL) 830 m->m_pkthdr.rcvif = V_loif; 831 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 832 m->m_pkthdr.csum_flags |= 833 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 834 m->m_pkthdr.csum_data = 0xffff; 835 } 836 #ifdef SCTP 837 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 838 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 839 #endif 840 error = netisr_queue(NETISR_IPV6, m); 841 goto done; 842 } 843 /* Or forward to some other address? */ 844 if ((m->m_flags & M_IP6_NEXTHOP) && 845 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 846 dst = (struct sockaddr_in6 *)&ro->ro_dst; 847 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 848 m->m_flags |= M_SKIP_FIREWALL; 849 m->m_flags &= ~M_IP6_NEXTHOP; 850 m_tag_delete(m, fwd_tag); 851 goto again; 852 } 853 854 passout: 855 /* 856 * Send the packet to the outgoing interface. 857 * If necessary, do IPv6 fragmentation before sending. 858 * 859 * the logic here is rather complex: 860 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 861 * 1-a: send as is if tlen <= path mtu 862 * 1-b: fragment if tlen > path mtu 863 * 864 * 2: if user asks us not to fragment (dontfrag == 1) 865 * 2-a: send as is if tlen <= interface mtu 866 * 2-b: error if tlen > interface mtu 867 * 868 * 3: if we always need to attach fragment header (alwaysfrag == 1) 869 * always fragment 870 * 871 * 4: if dontfrag == 1 && alwaysfrag == 1 872 * error, as we cannot handle this conflicting request 873 */ 874 sw_csum = m->m_pkthdr.csum_flags; 875 if (!hdrsplit) { 876 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 877 sw_csum &= ~ifp->if_hwassist; 878 } else 879 tso = 0; 880 /* 881 * If we added extension headers, we will not do TSO and calculate the 882 * checksums ourselves for now. 883 * XXX-BZ Need a framework to know when the NIC can handle it, even 884 * with ext. hdrs. 885 */ 886 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 887 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 888 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 889 } 890 #ifdef SCTP 891 if (sw_csum & CSUM_SCTP_IPV6) { 892 sw_csum &= ~CSUM_SCTP_IPV6; 893 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 894 } 895 #endif 896 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 897 tlen = m->m_pkthdr.len; 898 899 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 900 dontfrag = 1; 901 else 902 dontfrag = 0; 903 if (dontfrag && alwaysfrag) { /* case 4 */ 904 /* conflicting request - can't transmit */ 905 error = EMSGSIZE; 906 goto bad; 907 } 908 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 909 /* 910 * Even if the DONTFRAG option is specified, we cannot send the 911 * packet when the data length is larger than the MTU of the 912 * outgoing interface. 913 * Notify the error by sending IPV6_PATHMTU ancillary data if 914 * application wanted to know the MTU value. Also return an 915 * error code (this is not described in the API spec). 916 */ 917 if (inp != NULL) 918 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 919 error = EMSGSIZE; 920 goto bad; 921 } 922 923 /* 924 * transmit packet without fragmentation 925 */ 926 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 927 struct in6_ifaddr *ia6; 928 929 ip6 = mtod(m, struct ip6_hdr *); 930 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 931 if (ia6) { 932 /* Record statistics for this interface address. */ 933 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 934 counter_u64_add(ia6->ia_ifa.ifa_obytes, 935 m->m_pkthdr.len); 936 ifa_free(&ia6->ia_ifa); 937 } 938 #ifdef RATELIMIT 939 if (inp != NULL) { 940 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 941 in_pcboutput_txrtlmt(inp, ifp, m); 942 /* stamp send tag on mbuf */ 943 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 944 } else { 945 m->m_pkthdr.snd_tag = NULL; 946 } 947 #endif 948 error = nd6_output_ifp(ifp, origifp, m, dst, 949 (struct route *)ro); 950 #ifdef RATELIMIT 951 /* check for route change */ 952 if (error == EAGAIN) 953 in_pcboutput_eagain(inp); 954 #endif 955 goto done; 956 } 957 958 /* 959 * try to fragment the packet. case 1-b and 3 960 */ 961 if (mtu < IPV6_MMTU) { 962 /* path MTU cannot be less than IPV6_MMTU */ 963 error = EMSGSIZE; 964 in6_ifstat_inc(ifp, ifs6_out_fragfail); 965 goto bad; 966 } else if (ip6->ip6_plen == 0) { 967 /* jumbo payload cannot be fragmented */ 968 error = EMSGSIZE; 969 in6_ifstat_inc(ifp, ifs6_out_fragfail); 970 goto bad; 971 } else { 972 u_char nextproto; 973 974 /* 975 * Too large for the destination or interface; 976 * fragment if possible. 977 * Must be able to put at least 8 bytes per fragment. 978 */ 979 hlen = unfragpartlen; 980 if (mtu > IPV6_MAXPACKET) 981 mtu = IPV6_MAXPACKET; 982 983 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 984 if (len < 8) { 985 error = EMSGSIZE; 986 in6_ifstat_inc(ifp, ifs6_out_fragfail); 987 goto bad; 988 } 989 990 /* 991 * If the interface will not calculate checksums on 992 * fragmented packets, then do it here. 993 * XXX-BZ handle the hw offloading case. Need flags. 994 */ 995 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 996 in6_delayed_cksum(m, plen, hlen); 997 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 998 } 999 #ifdef SCTP 1000 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 1001 sctp_delayed_cksum(m, hlen); 1002 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 1003 } 1004 #endif 1005 /* 1006 * Change the next header field of the last header in the 1007 * unfragmentable part. 1008 */ 1009 if (exthdrs.ip6e_rthdr) { 1010 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1011 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1012 } else if (exthdrs.ip6e_dest1) { 1013 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1014 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1015 } else if (exthdrs.ip6e_hbh) { 1016 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1017 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1018 } else { 1019 nextproto = ip6->ip6_nxt; 1020 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1021 } 1022 1023 /* 1024 * Loop through length of segment after first fragment, 1025 * make new header and copy data of each part and link onto 1026 * chain. 1027 */ 1028 m0 = m; 1029 id = htonl(ip6_randomid()); 1030 if ((error = ip6_fragment(ifp, m, hlen, nextproto, len, id))) 1031 goto sendorfree; 1032 1033 in6_ifstat_inc(ifp, ifs6_out_fragok); 1034 } 1035 1036 /* 1037 * Remove leading garbages. 1038 */ 1039 sendorfree: 1040 m = m0->m_nextpkt; 1041 m0->m_nextpkt = 0; 1042 m_freem(m0); 1043 for (; m; m = m0) { 1044 m0 = m->m_nextpkt; 1045 m->m_nextpkt = 0; 1046 if (error == 0) { 1047 /* Record statistics for this interface address. */ 1048 if (ia) { 1049 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1050 counter_u64_add(ia->ia_ifa.ifa_obytes, 1051 m->m_pkthdr.len); 1052 } 1053 #ifdef RATELIMIT 1054 if (inp != NULL) { 1055 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 1056 in_pcboutput_txrtlmt(inp, ifp, m); 1057 /* stamp send tag on mbuf */ 1058 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 1059 } else { 1060 m->m_pkthdr.snd_tag = NULL; 1061 } 1062 #endif 1063 error = nd6_output_ifp(ifp, origifp, m, dst, 1064 (struct route *)ro); 1065 #ifdef RATELIMIT 1066 /* check for route change */ 1067 if (error == EAGAIN) 1068 in_pcboutput_eagain(inp); 1069 #endif 1070 } else 1071 m_freem(m); 1072 } 1073 1074 if (error == 0) 1075 IP6STAT_INC(ip6s_fragmented); 1076 1077 done: 1078 if (ro == &ip6route) 1079 RO_RTFREE(ro); 1080 return (error); 1081 1082 freehdrs: 1083 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1084 m_freem(exthdrs.ip6e_dest1); 1085 m_freem(exthdrs.ip6e_rthdr); 1086 m_freem(exthdrs.ip6e_dest2); 1087 /* FALLTHROUGH */ 1088 bad: 1089 if (m) 1090 m_freem(m); 1091 goto done; 1092 } 1093 1094 static int 1095 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1096 { 1097 struct mbuf *m; 1098 1099 if (hlen > MCLBYTES) 1100 return (ENOBUFS); /* XXX */ 1101 1102 if (hlen > MLEN) 1103 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1104 else 1105 m = m_get(M_NOWAIT, MT_DATA); 1106 if (m == NULL) 1107 return (ENOBUFS); 1108 m->m_len = hlen; 1109 if (hdr) 1110 bcopy(hdr, mtod(m, caddr_t), hlen); 1111 1112 *mp = m; 1113 return (0); 1114 } 1115 1116 /* 1117 * Insert jumbo payload option. 1118 */ 1119 static int 1120 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1121 { 1122 struct mbuf *mopt; 1123 u_char *optbuf; 1124 u_int32_t v; 1125 1126 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1127 1128 /* 1129 * If there is no hop-by-hop options header, allocate new one. 1130 * If there is one but it doesn't have enough space to store the 1131 * jumbo payload option, allocate a cluster to store the whole options. 1132 * Otherwise, use it to store the options. 1133 */ 1134 if (exthdrs->ip6e_hbh == NULL) { 1135 mopt = m_get(M_NOWAIT, MT_DATA); 1136 if (mopt == NULL) 1137 return (ENOBUFS); 1138 mopt->m_len = JUMBOOPTLEN; 1139 optbuf = mtod(mopt, u_char *); 1140 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1141 exthdrs->ip6e_hbh = mopt; 1142 } else { 1143 struct ip6_hbh *hbh; 1144 1145 mopt = exthdrs->ip6e_hbh; 1146 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1147 /* 1148 * XXX assumption: 1149 * - exthdrs->ip6e_hbh is not referenced from places 1150 * other than exthdrs. 1151 * - exthdrs->ip6e_hbh is not an mbuf chain. 1152 */ 1153 int oldoptlen = mopt->m_len; 1154 struct mbuf *n; 1155 1156 /* 1157 * XXX: give up if the whole (new) hbh header does 1158 * not fit even in an mbuf cluster. 1159 */ 1160 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1161 return (ENOBUFS); 1162 1163 /* 1164 * As a consequence, we must always prepare a cluster 1165 * at this point. 1166 */ 1167 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1168 if (n == NULL) 1169 return (ENOBUFS); 1170 n->m_len = oldoptlen + JUMBOOPTLEN; 1171 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1172 oldoptlen); 1173 optbuf = mtod(n, caddr_t) + oldoptlen; 1174 m_freem(mopt); 1175 mopt = exthdrs->ip6e_hbh = n; 1176 } else { 1177 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1178 mopt->m_len += JUMBOOPTLEN; 1179 } 1180 optbuf[0] = IP6OPT_PADN; 1181 optbuf[1] = 1; 1182 1183 /* 1184 * Adjust the header length according to the pad and 1185 * the jumbo payload option. 1186 */ 1187 hbh = mtod(mopt, struct ip6_hbh *); 1188 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1189 } 1190 1191 /* fill in the option. */ 1192 optbuf[2] = IP6OPT_JUMBO; 1193 optbuf[3] = 4; 1194 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1195 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1196 1197 /* finally, adjust the packet header length */ 1198 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1199 1200 return (0); 1201 #undef JUMBOOPTLEN 1202 } 1203 1204 /* 1205 * Insert fragment header and copy unfragmentable header portions. 1206 */ 1207 static int 1208 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1209 struct ip6_frag **frghdrp) 1210 { 1211 struct mbuf *n, *mlast; 1212 1213 if (hlen > sizeof(struct ip6_hdr)) { 1214 n = m_copym(m0, sizeof(struct ip6_hdr), 1215 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1216 if (n == NULL) 1217 return (ENOBUFS); 1218 m->m_next = n; 1219 } else 1220 n = m; 1221 1222 /* Search for the last mbuf of unfragmentable part. */ 1223 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1224 ; 1225 1226 if (M_WRITABLE(mlast) && 1227 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1228 /* use the trailing space of the last mbuf for the fragment hdr */ 1229 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1230 mlast->m_len); 1231 mlast->m_len += sizeof(struct ip6_frag); 1232 m->m_pkthdr.len += sizeof(struct ip6_frag); 1233 } else { 1234 /* allocate a new mbuf for the fragment header */ 1235 struct mbuf *mfrg; 1236 1237 mfrg = m_get(M_NOWAIT, MT_DATA); 1238 if (mfrg == NULL) 1239 return (ENOBUFS); 1240 mfrg->m_len = sizeof(struct ip6_frag); 1241 *frghdrp = mtod(mfrg, struct ip6_frag *); 1242 mlast->m_next = mfrg; 1243 } 1244 1245 return (0); 1246 } 1247 1248 /* 1249 * Calculates IPv6 path mtu for destination @dst. 1250 * Resulting MTU is stored in @mtup. 1251 * 1252 * Returns 0 on success. 1253 */ 1254 static int 1255 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1256 { 1257 struct nhop6_extended nh6; 1258 struct in6_addr kdst; 1259 uint32_t scopeid; 1260 struct ifnet *ifp; 1261 u_long mtu; 1262 int error; 1263 1264 in6_splitscope(dst, &kdst, &scopeid); 1265 if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0) 1266 return (EHOSTUNREACH); 1267 1268 ifp = nh6.nh_ifp; 1269 mtu = nh6.nh_mtu; 1270 1271 error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL, 0); 1272 fib6_free_nh_ext(fibnum, &nh6); 1273 1274 return (error); 1275 } 1276 1277 /* 1278 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1279 * and cached data in @ro_pmtu. 1280 * MTU from (successful) route lookup is saved (along with dst) 1281 * inside @ro_pmtu to avoid subsequent route lookups after packet 1282 * filter processing. 1283 * 1284 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1285 * Returns 0 on success. 1286 */ 1287 static int 1288 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1289 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1290 int *alwaysfragp, u_int fibnum, u_int proto) 1291 { 1292 struct nhop6_basic nh6; 1293 struct in6_addr kdst; 1294 uint32_t scopeid; 1295 struct sockaddr_in6 *sa6_dst; 1296 u_long mtu; 1297 1298 mtu = 0; 1299 if (do_lookup) { 1300 1301 /* 1302 * Here ro_pmtu has final destination address, while 1303 * ro might represent immediate destination. 1304 * Use ro_pmtu destination since mtu might differ. 1305 */ 1306 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1307 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1308 ro_pmtu->ro_mtu = 0; 1309 1310 if (ro_pmtu->ro_mtu == 0) { 1311 bzero(sa6_dst, sizeof(*sa6_dst)); 1312 sa6_dst->sin6_family = AF_INET6; 1313 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1314 sa6_dst->sin6_addr = *dst; 1315 1316 in6_splitscope(dst, &kdst, &scopeid); 1317 if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0, 1318 &nh6) == 0) 1319 ro_pmtu->ro_mtu = nh6.nh_mtu; 1320 } 1321 1322 mtu = ro_pmtu->ro_mtu; 1323 } 1324 1325 if (ro_pmtu->ro_rt) 1326 mtu = ro_pmtu->ro_rt->rt_mtu; 1327 1328 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1329 } 1330 1331 /* 1332 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1333 * hostcache data for @dst. 1334 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1335 * 1336 * Returns 0 on success. 1337 */ 1338 static int 1339 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1340 u_long *mtup, int *alwaysfragp, u_int proto) 1341 { 1342 u_long mtu = 0; 1343 int alwaysfrag = 0; 1344 int error = 0; 1345 1346 if (rt_mtu > 0) { 1347 u_int32_t ifmtu; 1348 struct in_conninfo inc; 1349 1350 bzero(&inc, sizeof(inc)); 1351 inc.inc_flags |= INC_ISIPV6; 1352 inc.inc6_faddr = *dst; 1353 1354 ifmtu = IN6_LINKMTU(ifp); 1355 1356 /* TCP is known to react to pmtu changes so skip hc */ 1357 if (proto != IPPROTO_TCP) 1358 mtu = tcp_hc_getmtu(&inc); 1359 1360 if (mtu) 1361 mtu = min(mtu, rt_mtu); 1362 else 1363 mtu = rt_mtu; 1364 if (mtu == 0) 1365 mtu = ifmtu; 1366 else if (mtu < IPV6_MMTU) { 1367 /* 1368 * RFC2460 section 5, last paragraph: 1369 * if we record ICMPv6 too big message with 1370 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1371 * or smaller, with framgent header attached. 1372 * (fragment header is needed regardless from the 1373 * packet size, for translators to identify packets) 1374 */ 1375 alwaysfrag = 1; 1376 mtu = IPV6_MMTU; 1377 } 1378 } else if (ifp) { 1379 mtu = IN6_LINKMTU(ifp); 1380 } else 1381 error = EHOSTUNREACH; /* XXX */ 1382 1383 *mtup = mtu; 1384 if (alwaysfragp) 1385 *alwaysfragp = alwaysfrag; 1386 return (error); 1387 } 1388 1389 /* 1390 * IP6 socket option processing. 1391 */ 1392 int 1393 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1394 { 1395 int optdatalen, uproto; 1396 void *optdata; 1397 struct inpcb *in6p = sotoinpcb(so); 1398 int error, optval; 1399 int level, op, optname; 1400 int optlen; 1401 struct thread *td; 1402 #ifdef RSS 1403 uint32_t rss_bucket; 1404 int retval; 1405 #endif 1406 1407 /* 1408 * Don't use more than a quarter of mbuf clusters. N.B.: 1409 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1410 * on LP64 architectures, so cast to u_long to avoid undefined 1411 * behavior. ILP32 architectures cannot have nmbclusters 1412 * large enough to overflow for other reasons. 1413 */ 1414 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1415 1416 level = sopt->sopt_level; 1417 op = sopt->sopt_dir; 1418 optname = sopt->sopt_name; 1419 optlen = sopt->sopt_valsize; 1420 td = sopt->sopt_td; 1421 error = 0; 1422 optval = 0; 1423 uproto = (int)so->so_proto->pr_protocol; 1424 1425 if (level != IPPROTO_IPV6) { 1426 error = EINVAL; 1427 1428 if (sopt->sopt_level == SOL_SOCKET && 1429 sopt->sopt_dir == SOPT_SET) { 1430 switch (sopt->sopt_name) { 1431 case SO_REUSEADDR: 1432 INP_WLOCK(in6p); 1433 if ((so->so_options & SO_REUSEADDR) != 0) 1434 in6p->inp_flags2 |= INP_REUSEADDR; 1435 else 1436 in6p->inp_flags2 &= ~INP_REUSEADDR; 1437 INP_WUNLOCK(in6p); 1438 error = 0; 1439 break; 1440 case SO_REUSEPORT: 1441 INP_WLOCK(in6p); 1442 if ((so->so_options & SO_REUSEPORT) != 0) 1443 in6p->inp_flags2 |= INP_REUSEPORT; 1444 else 1445 in6p->inp_flags2 &= ~INP_REUSEPORT; 1446 INP_WUNLOCK(in6p); 1447 error = 0; 1448 break; 1449 case SO_REUSEPORT_LB: 1450 INP_WLOCK(in6p); 1451 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1452 in6p->inp_flags2 |= INP_REUSEPORT_LB; 1453 else 1454 in6p->inp_flags2 &= ~INP_REUSEPORT_LB; 1455 INP_WUNLOCK(in6p); 1456 error = 0; 1457 break; 1458 case SO_SETFIB: 1459 INP_WLOCK(in6p); 1460 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1461 INP_WUNLOCK(in6p); 1462 error = 0; 1463 break; 1464 case SO_MAX_PACING_RATE: 1465 #ifdef RATELIMIT 1466 INP_WLOCK(in6p); 1467 in6p->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1468 INP_WUNLOCK(in6p); 1469 error = 0; 1470 #else 1471 error = EOPNOTSUPP; 1472 #endif 1473 break; 1474 default: 1475 break; 1476 } 1477 } 1478 } else { /* level == IPPROTO_IPV6 */ 1479 switch (op) { 1480 1481 case SOPT_SET: 1482 switch (optname) { 1483 case IPV6_2292PKTOPTIONS: 1484 #ifdef IPV6_PKTOPTIONS 1485 case IPV6_PKTOPTIONS: 1486 #endif 1487 { 1488 struct mbuf *m; 1489 1490 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1491 printf("ip6_ctloutput: mbuf limit hit\n"); 1492 error = ENOBUFS; 1493 break; 1494 } 1495 1496 error = soopt_getm(sopt, &m); /* XXX */ 1497 if (error != 0) 1498 break; 1499 error = soopt_mcopyin(sopt, m); /* XXX */ 1500 if (error != 0) 1501 break; 1502 error = ip6_pcbopts(&in6p->in6p_outputopts, 1503 m, so, sopt); 1504 m_freem(m); /* XXX */ 1505 break; 1506 } 1507 1508 /* 1509 * Use of some Hop-by-Hop options or some 1510 * Destination options, might require special 1511 * privilege. That is, normal applications 1512 * (without special privilege) might be forbidden 1513 * from setting certain options in outgoing packets, 1514 * and might never see certain options in received 1515 * packets. [RFC 2292 Section 6] 1516 * KAME specific note: 1517 * KAME prevents non-privileged users from sending or 1518 * receiving ANY hbh/dst options in order to avoid 1519 * overhead of parsing options in the kernel. 1520 */ 1521 case IPV6_RECVHOPOPTS: 1522 case IPV6_RECVDSTOPTS: 1523 case IPV6_RECVRTHDRDSTOPTS: 1524 if (td != NULL) { 1525 error = priv_check(td, 1526 PRIV_NETINET_SETHDROPTS); 1527 if (error) 1528 break; 1529 } 1530 /* FALLTHROUGH */ 1531 case IPV6_UNICAST_HOPS: 1532 case IPV6_HOPLIMIT: 1533 1534 case IPV6_RECVPKTINFO: 1535 case IPV6_RECVHOPLIMIT: 1536 case IPV6_RECVRTHDR: 1537 case IPV6_RECVPATHMTU: 1538 case IPV6_RECVTCLASS: 1539 case IPV6_RECVFLOWID: 1540 #ifdef RSS 1541 case IPV6_RECVRSSBUCKETID: 1542 #endif 1543 case IPV6_V6ONLY: 1544 case IPV6_AUTOFLOWLABEL: 1545 case IPV6_ORIGDSTADDR: 1546 case IPV6_BINDANY: 1547 case IPV6_BINDMULTI: 1548 #ifdef RSS 1549 case IPV6_RSS_LISTEN_BUCKET: 1550 #endif 1551 if (optname == IPV6_BINDANY && td != NULL) { 1552 error = priv_check(td, 1553 PRIV_NETINET_BINDANY); 1554 if (error) 1555 break; 1556 } 1557 1558 if (optlen != sizeof(int)) { 1559 error = EINVAL; 1560 break; 1561 } 1562 error = sooptcopyin(sopt, &optval, 1563 sizeof optval, sizeof optval); 1564 if (error) 1565 break; 1566 switch (optname) { 1567 1568 case IPV6_UNICAST_HOPS: 1569 if (optval < -1 || optval >= 256) 1570 error = EINVAL; 1571 else { 1572 /* -1 = kernel default */ 1573 in6p->in6p_hops = optval; 1574 if ((in6p->inp_vflag & 1575 INP_IPV4) != 0) 1576 in6p->inp_ip_ttl = optval; 1577 } 1578 break; 1579 #define OPTSET(bit) \ 1580 do { \ 1581 INP_WLOCK(in6p); \ 1582 if (optval) \ 1583 in6p->inp_flags |= (bit); \ 1584 else \ 1585 in6p->inp_flags &= ~(bit); \ 1586 INP_WUNLOCK(in6p); \ 1587 } while (/*CONSTCOND*/ 0) 1588 #define OPTSET2292(bit) \ 1589 do { \ 1590 INP_WLOCK(in6p); \ 1591 in6p->inp_flags |= IN6P_RFC2292; \ 1592 if (optval) \ 1593 in6p->inp_flags |= (bit); \ 1594 else \ 1595 in6p->inp_flags &= ~(bit); \ 1596 INP_WUNLOCK(in6p); \ 1597 } while (/*CONSTCOND*/ 0) 1598 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1599 1600 #define OPTSET2_N(bit, val) do { \ 1601 if (val) \ 1602 in6p->inp_flags2 |= bit; \ 1603 else \ 1604 in6p->inp_flags2 &= ~bit; \ 1605 } while (0) 1606 #define OPTSET2(bit, val) do { \ 1607 INP_WLOCK(in6p); \ 1608 OPTSET2_N(bit, val); \ 1609 INP_WUNLOCK(in6p); \ 1610 } while (0) 1611 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) 1612 #define OPTSET2292_EXCLUSIVE(bit) \ 1613 do { \ 1614 INP_WLOCK(in6p); \ 1615 if (OPTBIT(IN6P_RFC2292)) { \ 1616 error = EINVAL; \ 1617 } else { \ 1618 if (optval) \ 1619 in6p->inp_flags |= (bit); \ 1620 else \ 1621 in6p->inp_flags &= ~(bit); \ 1622 } \ 1623 INP_WUNLOCK(in6p); \ 1624 } while (/*CONSTCOND*/ 0) 1625 1626 case IPV6_RECVPKTINFO: 1627 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1628 break; 1629 1630 case IPV6_HOPLIMIT: 1631 { 1632 struct ip6_pktopts **optp; 1633 1634 /* cannot mix with RFC2292 */ 1635 if (OPTBIT(IN6P_RFC2292)) { 1636 error = EINVAL; 1637 break; 1638 } 1639 INP_WLOCK(in6p); 1640 if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1641 INP_WUNLOCK(in6p); 1642 return (ECONNRESET); 1643 } 1644 optp = &in6p->in6p_outputopts; 1645 error = ip6_pcbopt(IPV6_HOPLIMIT, 1646 (u_char *)&optval, sizeof(optval), 1647 optp, (td != NULL) ? td->td_ucred : 1648 NULL, uproto); 1649 INP_WUNLOCK(in6p); 1650 break; 1651 } 1652 1653 case IPV6_RECVHOPLIMIT: 1654 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1655 break; 1656 1657 case IPV6_RECVHOPOPTS: 1658 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1659 break; 1660 1661 case IPV6_RECVDSTOPTS: 1662 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1663 break; 1664 1665 case IPV6_RECVRTHDRDSTOPTS: 1666 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1667 break; 1668 1669 case IPV6_RECVRTHDR: 1670 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1671 break; 1672 1673 case IPV6_RECVPATHMTU: 1674 /* 1675 * We ignore this option for TCP 1676 * sockets. 1677 * (RFC3542 leaves this case 1678 * unspecified.) 1679 */ 1680 if (uproto != IPPROTO_TCP) 1681 OPTSET(IN6P_MTU); 1682 break; 1683 1684 case IPV6_RECVFLOWID: 1685 OPTSET2(INP_RECVFLOWID, optval); 1686 break; 1687 1688 #ifdef RSS 1689 case IPV6_RECVRSSBUCKETID: 1690 OPTSET2(INP_RECVRSSBUCKETID, optval); 1691 break; 1692 #endif 1693 1694 case IPV6_V6ONLY: 1695 /* 1696 * make setsockopt(IPV6_V6ONLY) 1697 * available only prior to bind(2). 1698 * see ipng mailing list, Jun 22 2001. 1699 */ 1700 if (in6p->inp_lport || 1701 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1702 error = EINVAL; 1703 break; 1704 } 1705 OPTSET(IN6P_IPV6_V6ONLY); 1706 if (optval) 1707 in6p->inp_vflag &= ~INP_IPV4; 1708 else 1709 in6p->inp_vflag |= INP_IPV4; 1710 break; 1711 case IPV6_RECVTCLASS: 1712 /* cannot mix with RFC2292 XXX */ 1713 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1714 break; 1715 case IPV6_AUTOFLOWLABEL: 1716 OPTSET(IN6P_AUTOFLOWLABEL); 1717 break; 1718 1719 case IPV6_ORIGDSTADDR: 1720 OPTSET2(INP_ORIGDSTADDR, optval); 1721 break; 1722 case IPV6_BINDANY: 1723 OPTSET(INP_BINDANY); 1724 break; 1725 1726 case IPV6_BINDMULTI: 1727 OPTSET2(INP_BINDMULTI, optval); 1728 break; 1729 #ifdef RSS 1730 case IPV6_RSS_LISTEN_BUCKET: 1731 if ((optval >= 0) && 1732 (optval < rss_getnumbuckets())) { 1733 INP_WLOCK(in6p); 1734 in6p->inp_rss_listen_bucket = optval; 1735 OPTSET2_N(INP_RSS_BUCKET_SET, 1); 1736 INP_WUNLOCK(in6p); 1737 } else { 1738 error = EINVAL; 1739 } 1740 break; 1741 #endif 1742 } 1743 break; 1744 1745 case IPV6_TCLASS: 1746 case IPV6_DONTFRAG: 1747 case IPV6_USE_MIN_MTU: 1748 case IPV6_PREFER_TEMPADDR: 1749 if (optlen != sizeof(optval)) { 1750 error = EINVAL; 1751 break; 1752 } 1753 error = sooptcopyin(sopt, &optval, 1754 sizeof optval, sizeof optval); 1755 if (error) 1756 break; 1757 { 1758 struct ip6_pktopts **optp; 1759 INP_WLOCK(in6p); 1760 if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1761 INP_WUNLOCK(in6p); 1762 return (ECONNRESET); 1763 } 1764 optp = &in6p->in6p_outputopts; 1765 error = ip6_pcbopt(optname, 1766 (u_char *)&optval, sizeof(optval), 1767 optp, (td != NULL) ? td->td_ucred : 1768 NULL, uproto); 1769 INP_WUNLOCK(in6p); 1770 break; 1771 } 1772 1773 case IPV6_2292PKTINFO: 1774 case IPV6_2292HOPLIMIT: 1775 case IPV6_2292HOPOPTS: 1776 case IPV6_2292DSTOPTS: 1777 case IPV6_2292RTHDR: 1778 /* RFC 2292 */ 1779 if (optlen != sizeof(int)) { 1780 error = EINVAL; 1781 break; 1782 } 1783 error = sooptcopyin(sopt, &optval, 1784 sizeof optval, sizeof optval); 1785 if (error) 1786 break; 1787 switch (optname) { 1788 case IPV6_2292PKTINFO: 1789 OPTSET2292(IN6P_PKTINFO); 1790 break; 1791 case IPV6_2292HOPLIMIT: 1792 OPTSET2292(IN6P_HOPLIMIT); 1793 break; 1794 case IPV6_2292HOPOPTS: 1795 /* 1796 * Check super-user privilege. 1797 * See comments for IPV6_RECVHOPOPTS. 1798 */ 1799 if (td != NULL) { 1800 error = priv_check(td, 1801 PRIV_NETINET_SETHDROPTS); 1802 if (error) 1803 return (error); 1804 } 1805 OPTSET2292(IN6P_HOPOPTS); 1806 break; 1807 case IPV6_2292DSTOPTS: 1808 if (td != NULL) { 1809 error = priv_check(td, 1810 PRIV_NETINET_SETHDROPTS); 1811 if (error) 1812 return (error); 1813 } 1814 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1815 break; 1816 case IPV6_2292RTHDR: 1817 OPTSET2292(IN6P_RTHDR); 1818 break; 1819 } 1820 break; 1821 case IPV6_PKTINFO: 1822 case IPV6_HOPOPTS: 1823 case IPV6_RTHDR: 1824 case IPV6_DSTOPTS: 1825 case IPV6_RTHDRDSTOPTS: 1826 case IPV6_NEXTHOP: 1827 { 1828 /* new advanced API (RFC3542) */ 1829 u_char *optbuf; 1830 u_char optbuf_storage[MCLBYTES]; 1831 int optlen; 1832 struct ip6_pktopts **optp; 1833 1834 /* cannot mix with RFC2292 */ 1835 if (OPTBIT(IN6P_RFC2292)) { 1836 error = EINVAL; 1837 break; 1838 } 1839 1840 /* 1841 * We only ensure valsize is not too large 1842 * here. Further validation will be done 1843 * later. 1844 */ 1845 error = sooptcopyin(sopt, optbuf_storage, 1846 sizeof(optbuf_storage), 0); 1847 if (error) 1848 break; 1849 optlen = sopt->sopt_valsize; 1850 optbuf = optbuf_storage; 1851 INP_WLOCK(in6p); 1852 if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1853 INP_WUNLOCK(in6p); 1854 return (ECONNRESET); 1855 } 1856 optp = &in6p->in6p_outputopts; 1857 error = ip6_pcbopt(optname, optbuf, optlen, 1858 optp, (td != NULL) ? td->td_ucred : NULL, 1859 uproto); 1860 INP_WUNLOCK(in6p); 1861 break; 1862 } 1863 #undef OPTSET 1864 1865 case IPV6_MULTICAST_IF: 1866 case IPV6_MULTICAST_HOPS: 1867 case IPV6_MULTICAST_LOOP: 1868 case IPV6_JOIN_GROUP: 1869 case IPV6_LEAVE_GROUP: 1870 case IPV6_MSFILTER: 1871 case MCAST_BLOCK_SOURCE: 1872 case MCAST_UNBLOCK_SOURCE: 1873 case MCAST_JOIN_GROUP: 1874 case MCAST_LEAVE_GROUP: 1875 case MCAST_JOIN_SOURCE_GROUP: 1876 case MCAST_LEAVE_SOURCE_GROUP: 1877 error = ip6_setmoptions(in6p, sopt); 1878 break; 1879 1880 case IPV6_PORTRANGE: 1881 error = sooptcopyin(sopt, &optval, 1882 sizeof optval, sizeof optval); 1883 if (error) 1884 break; 1885 1886 INP_WLOCK(in6p); 1887 switch (optval) { 1888 case IPV6_PORTRANGE_DEFAULT: 1889 in6p->inp_flags &= ~(INP_LOWPORT); 1890 in6p->inp_flags &= ~(INP_HIGHPORT); 1891 break; 1892 1893 case IPV6_PORTRANGE_HIGH: 1894 in6p->inp_flags &= ~(INP_LOWPORT); 1895 in6p->inp_flags |= INP_HIGHPORT; 1896 break; 1897 1898 case IPV6_PORTRANGE_LOW: 1899 in6p->inp_flags &= ~(INP_HIGHPORT); 1900 in6p->inp_flags |= INP_LOWPORT; 1901 break; 1902 1903 default: 1904 error = EINVAL; 1905 break; 1906 } 1907 INP_WUNLOCK(in6p); 1908 break; 1909 1910 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1911 case IPV6_IPSEC_POLICY: 1912 if (IPSEC_ENABLED(ipv6)) { 1913 error = IPSEC_PCBCTL(ipv6, in6p, sopt); 1914 break; 1915 } 1916 /* FALLTHROUGH */ 1917 #endif /* IPSEC */ 1918 1919 default: 1920 error = ENOPROTOOPT; 1921 break; 1922 } 1923 break; 1924 1925 case SOPT_GET: 1926 switch (optname) { 1927 1928 case IPV6_2292PKTOPTIONS: 1929 #ifdef IPV6_PKTOPTIONS 1930 case IPV6_PKTOPTIONS: 1931 #endif 1932 /* 1933 * RFC3542 (effectively) deprecated the 1934 * semantics of the 2292-style pktoptions. 1935 * Since it was not reliable in nature (i.e., 1936 * applications had to expect the lack of some 1937 * information after all), it would make sense 1938 * to simplify this part by always returning 1939 * empty data. 1940 */ 1941 sopt->sopt_valsize = 0; 1942 break; 1943 1944 case IPV6_RECVHOPOPTS: 1945 case IPV6_RECVDSTOPTS: 1946 case IPV6_RECVRTHDRDSTOPTS: 1947 case IPV6_UNICAST_HOPS: 1948 case IPV6_RECVPKTINFO: 1949 case IPV6_RECVHOPLIMIT: 1950 case IPV6_RECVRTHDR: 1951 case IPV6_RECVPATHMTU: 1952 1953 case IPV6_V6ONLY: 1954 case IPV6_PORTRANGE: 1955 case IPV6_RECVTCLASS: 1956 case IPV6_AUTOFLOWLABEL: 1957 case IPV6_BINDANY: 1958 case IPV6_FLOWID: 1959 case IPV6_FLOWTYPE: 1960 case IPV6_RECVFLOWID: 1961 #ifdef RSS 1962 case IPV6_RSSBUCKETID: 1963 case IPV6_RECVRSSBUCKETID: 1964 #endif 1965 case IPV6_BINDMULTI: 1966 switch (optname) { 1967 1968 case IPV6_RECVHOPOPTS: 1969 optval = OPTBIT(IN6P_HOPOPTS); 1970 break; 1971 1972 case IPV6_RECVDSTOPTS: 1973 optval = OPTBIT(IN6P_DSTOPTS); 1974 break; 1975 1976 case IPV6_RECVRTHDRDSTOPTS: 1977 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1978 break; 1979 1980 case IPV6_UNICAST_HOPS: 1981 optval = in6p->in6p_hops; 1982 break; 1983 1984 case IPV6_RECVPKTINFO: 1985 optval = OPTBIT(IN6P_PKTINFO); 1986 break; 1987 1988 case IPV6_RECVHOPLIMIT: 1989 optval = OPTBIT(IN6P_HOPLIMIT); 1990 break; 1991 1992 case IPV6_RECVRTHDR: 1993 optval = OPTBIT(IN6P_RTHDR); 1994 break; 1995 1996 case IPV6_RECVPATHMTU: 1997 optval = OPTBIT(IN6P_MTU); 1998 break; 1999 2000 case IPV6_V6ONLY: 2001 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2002 break; 2003 2004 case IPV6_PORTRANGE: 2005 { 2006 int flags; 2007 flags = in6p->inp_flags; 2008 if (flags & INP_HIGHPORT) 2009 optval = IPV6_PORTRANGE_HIGH; 2010 else if (flags & INP_LOWPORT) 2011 optval = IPV6_PORTRANGE_LOW; 2012 else 2013 optval = 0; 2014 break; 2015 } 2016 case IPV6_RECVTCLASS: 2017 optval = OPTBIT(IN6P_TCLASS); 2018 break; 2019 2020 case IPV6_AUTOFLOWLABEL: 2021 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2022 break; 2023 2024 case IPV6_ORIGDSTADDR: 2025 optval = OPTBIT2(INP_ORIGDSTADDR); 2026 break; 2027 2028 case IPV6_BINDANY: 2029 optval = OPTBIT(INP_BINDANY); 2030 break; 2031 2032 case IPV6_FLOWID: 2033 optval = in6p->inp_flowid; 2034 break; 2035 2036 case IPV6_FLOWTYPE: 2037 optval = in6p->inp_flowtype; 2038 break; 2039 2040 case IPV6_RECVFLOWID: 2041 optval = OPTBIT2(INP_RECVFLOWID); 2042 break; 2043 #ifdef RSS 2044 case IPV6_RSSBUCKETID: 2045 retval = 2046 rss_hash2bucket(in6p->inp_flowid, 2047 in6p->inp_flowtype, 2048 &rss_bucket); 2049 if (retval == 0) 2050 optval = rss_bucket; 2051 else 2052 error = EINVAL; 2053 break; 2054 2055 case IPV6_RECVRSSBUCKETID: 2056 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2057 break; 2058 #endif 2059 2060 case IPV6_BINDMULTI: 2061 optval = OPTBIT2(INP_BINDMULTI); 2062 break; 2063 2064 } 2065 if (error) 2066 break; 2067 error = sooptcopyout(sopt, &optval, 2068 sizeof optval); 2069 break; 2070 2071 case IPV6_PATHMTU: 2072 { 2073 u_long pmtu = 0; 2074 struct ip6_mtuinfo mtuinfo; 2075 struct in6_addr addr; 2076 2077 if (!(so->so_state & SS_ISCONNECTED)) 2078 return (ENOTCONN); 2079 /* 2080 * XXX: we dot not consider the case of source 2081 * routing, or optional information to specify 2082 * the outgoing interface. 2083 * Copy faddr out of in6p to avoid holding lock 2084 * on inp during route lookup. 2085 */ 2086 INP_RLOCK(in6p); 2087 bcopy(&in6p->in6p_faddr, &addr, sizeof(addr)); 2088 INP_RUNLOCK(in6p); 2089 error = ip6_getpmtu_ctl(so->so_fibnum, 2090 &addr, &pmtu); 2091 if (error) 2092 break; 2093 if (pmtu > IPV6_MAXPACKET) 2094 pmtu = IPV6_MAXPACKET; 2095 2096 bzero(&mtuinfo, sizeof(mtuinfo)); 2097 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2098 optdata = (void *)&mtuinfo; 2099 optdatalen = sizeof(mtuinfo); 2100 error = sooptcopyout(sopt, optdata, 2101 optdatalen); 2102 break; 2103 } 2104 2105 case IPV6_2292PKTINFO: 2106 case IPV6_2292HOPLIMIT: 2107 case IPV6_2292HOPOPTS: 2108 case IPV6_2292RTHDR: 2109 case IPV6_2292DSTOPTS: 2110 switch (optname) { 2111 case IPV6_2292PKTINFO: 2112 optval = OPTBIT(IN6P_PKTINFO); 2113 break; 2114 case IPV6_2292HOPLIMIT: 2115 optval = OPTBIT(IN6P_HOPLIMIT); 2116 break; 2117 case IPV6_2292HOPOPTS: 2118 optval = OPTBIT(IN6P_HOPOPTS); 2119 break; 2120 case IPV6_2292RTHDR: 2121 optval = OPTBIT(IN6P_RTHDR); 2122 break; 2123 case IPV6_2292DSTOPTS: 2124 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2125 break; 2126 } 2127 error = sooptcopyout(sopt, &optval, 2128 sizeof optval); 2129 break; 2130 case IPV6_PKTINFO: 2131 case IPV6_HOPOPTS: 2132 case IPV6_RTHDR: 2133 case IPV6_DSTOPTS: 2134 case IPV6_RTHDRDSTOPTS: 2135 case IPV6_NEXTHOP: 2136 case IPV6_TCLASS: 2137 case IPV6_DONTFRAG: 2138 case IPV6_USE_MIN_MTU: 2139 case IPV6_PREFER_TEMPADDR: 2140 error = ip6_getpcbopt(in6p, optname, sopt); 2141 break; 2142 2143 case IPV6_MULTICAST_IF: 2144 case IPV6_MULTICAST_HOPS: 2145 case IPV6_MULTICAST_LOOP: 2146 case IPV6_MSFILTER: 2147 error = ip6_getmoptions(in6p, sopt); 2148 break; 2149 2150 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2151 case IPV6_IPSEC_POLICY: 2152 if (IPSEC_ENABLED(ipv6)) { 2153 error = IPSEC_PCBCTL(ipv6, in6p, sopt); 2154 break; 2155 } 2156 /* FALLTHROUGH */ 2157 #endif /* IPSEC */ 2158 default: 2159 error = ENOPROTOOPT; 2160 break; 2161 } 2162 break; 2163 } 2164 } 2165 return (error); 2166 } 2167 2168 int 2169 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2170 { 2171 int error = 0, optval, optlen; 2172 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2173 struct inpcb *in6p = sotoinpcb(so); 2174 int level, op, optname; 2175 2176 level = sopt->sopt_level; 2177 op = sopt->sopt_dir; 2178 optname = sopt->sopt_name; 2179 optlen = sopt->sopt_valsize; 2180 2181 if (level != IPPROTO_IPV6) { 2182 return (EINVAL); 2183 } 2184 2185 switch (optname) { 2186 case IPV6_CHECKSUM: 2187 /* 2188 * For ICMPv6 sockets, no modification allowed for checksum 2189 * offset, permit "no change" values to help existing apps. 2190 * 2191 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2192 * for an ICMPv6 socket will fail." 2193 * The current behavior does not meet RFC3542. 2194 */ 2195 switch (op) { 2196 case SOPT_SET: 2197 if (optlen != sizeof(int)) { 2198 error = EINVAL; 2199 break; 2200 } 2201 error = sooptcopyin(sopt, &optval, sizeof(optval), 2202 sizeof(optval)); 2203 if (error) 2204 break; 2205 if ((optval % 2) != 0) { 2206 /* the API assumes even offset values */ 2207 error = EINVAL; 2208 } else if (so->so_proto->pr_protocol == 2209 IPPROTO_ICMPV6) { 2210 if (optval != icmp6off) 2211 error = EINVAL; 2212 } else 2213 in6p->in6p_cksum = optval; 2214 break; 2215 2216 case SOPT_GET: 2217 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2218 optval = icmp6off; 2219 else 2220 optval = in6p->in6p_cksum; 2221 2222 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2223 break; 2224 2225 default: 2226 error = EINVAL; 2227 break; 2228 } 2229 break; 2230 2231 default: 2232 error = ENOPROTOOPT; 2233 break; 2234 } 2235 2236 return (error); 2237 } 2238 2239 /* 2240 * Set up IP6 options in pcb for insertion in output packets or 2241 * specifying behavior of outgoing packets. 2242 */ 2243 static int 2244 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2245 struct socket *so, struct sockopt *sopt) 2246 { 2247 struct ip6_pktopts *opt = *pktopt; 2248 int error = 0; 2249 struct thread *td = sopt->sopt_td; 2250 2251 /* turn off any old options. */ 2252 if (opt) { 2253 #ifdef DIAGNOSTIC 2254 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2255 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2256 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2257 printf("ip6_pcbopts: all specified options are cleared.\n"); 2258 #endif 2259 ip6_clearpktopts(opt, -1); 2260 } else 2261 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2262 *pktopt = NULL; 2263 2264 if (!m || m->m_len == 0) { 2265 /* 2266 * Only turning off any previous options, regardless of 2267 * whether the opt is just created or given. 2268 */ 2269 free(opt, M_IP6OPT); 2270 return (0); 2271 } 2272 2273 /* set options specified by user. */ 2274 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2275 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2276 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2277 free(opt, M_IP6OPT); 2278 return (error); 2279 } 2280 *pktopt = opt; 2281 return (0); 2282 } 2283 2284 /* 2285 * initialize ip6_pktopts. beware that there are non-zero default values in 2286 * the struct. 2287 */ 2288 void 2289 ip6_initpktopts(struct ip6_pktopts *opt) 2290 { 2291 2292 bzero(opt, sizeof(*opt)); 2293 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2294 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2295 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2296 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2297 } 2298 2299 static int 2300 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2301 struct ucred *cred, int uproto) 2302 { 2303 struct ip6_pktopts *opt; 2304 2305 if (*pktopt == NULL) { 2306 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2307 M_NOWAIT); 2308 if (*pktopt == NULL) 2309 return (ENOBUFS); 2310 ip6_initpktopts(*pktopt); 2311 } 2312 opt = *pktopt; 2313 2314 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2315 } 2316 2317 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2318 if (pktopt && pktopt->field) { \ 2319 INP_RUNLOCK(in6p); \ 2320 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2321 malloc_optdata = true; \ 2322 INP_RLOCK(in6p); \ 2323 if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ 2324 INP_RUNLOCK(in6p); \ 2325 free(optdata, M_TEMP); \ 2326 return (ECONNRESET); \ 2327 } \ 2328 pktopt = in6p->in6p_outputopts; \ 2329 if (pktopt && pktopt->field) { \ 2330 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2331 bcopy(&pktopt->field, optdata, optdatalen); \ 2332 } else { \ 2333 free(optdata, M_TEMP); \ 2334 optdata = NULL; \ 2335 malloc_optdata = false; \ 2336 } \ 2337 } \ 2338 } while(0) 2339 2340 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2341 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2342 2343 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2344 pktopt->field->sa_len) 2345 2346 static int 2347 ip6_getpcbopt(struct inpcb *in6p, int optname, struct sockopt *sopt) 2348 { 2349 void *optdata = NULL; 2350 bool malloc_optdata = false; 2351 int optdatalen = 0; 2352 int error = 0; 2353 struct in6_pktinfo null_pktinfo; 2354 int deftclass = 0, on; 2355 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2356 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2357 struct ip6_pktopts *pktopt; 2358 2359 INP_RLOCK(in6p); 2360 pktopt = in6p->in6p_outputopts; 2361 2362 switch (optname) { 2363 case IPV6_PKTINFO: 2364 optdata = (void *)&null_pktinfo; 2365 if (pktopt && pktopt->ip6po_pktinfo) { 2366 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2367 sizeof(null_pktinfo)); 2368 in6_clearscope(&null_pktinfo.ipi6_addr); 2369 } else { 2370 /* XXX: we don't have to do this every time... */ 2371 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2372 } 2373 optdatalen = sizeof(struct in6_pktinfo); 2374 break; 2375 case IPV6_TCLASS: 2376 if (pktopt && pktopt->ip6po_tclass >= 0) 2377 deftclass = pktopt->ip6po_tclass; 2378 optdata = (void *)&deftclass; 2379 optdatalen = sizeof(int); 2380 break; 2381 case IPV6_HOPOPTS: 2382 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2383 break; 2384 case IPV6_RTHDR: 2385 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2386 break; 2387 case IPV6_RTHDRDSTOPTS: 2388 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2389 break; 2390 case IPV6_DSTOPTS: 2391 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2392 break; 2393 case IPV6_NEXTHOP: 2394 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2395 break; 2396 case IPV6_USE_MIN_MTU: 2397 if (pktopt) 2398 defminmtu = pktopt->ip6po_minmtu; 2399 optdata = (void *)&defminmtu; 2400 optdatalen = sizeof(int); 2401 break; 2402 case IPV6_DONTFRAG: 2403 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2404 on = 1; 2405 else 2406 on = 0; 2407 optdata = (void *)&on; 2408 optdatalen = sizeof(on); 2409 break; 2410 case IPV6_PREFER_TEMPADDR: 2411 if (pktopt) 2412 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2413 optdata = (void *)&defpreftemp; 2414 optdatalen = sizeof(int); 2415 break; 2416 default: /* should not happen */ 2417 #ifdef DIAGNOSTIC 2418 panic("ip6_getpcbopt: unexpected option\n"); 2419 #endif 2420 INP_RUNLOCK(in6p); 2421 return (ENOPROTOOPT); 2422 } 2423 INP_RUNLOCK(in6p); 2424 2425 error = sooptcopyout(sopt, optdata, optdatalen); 2426 if (malloc_optdata) 2427 free(optdata, M_TEMP); 2428 2429 return (error); 2430 } 2431 2432 void 2433 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2434 { 2435 if (pktopt == NULL) 2436 return; 2437 2438 if (optname == -1 || optname == IPV6_PKTINFO) { 2439 if (pktopt->ip6po_pktinfo) 2440 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2441 pktopt->ip6po_pktinfo = NULL; 2442 } 2443 if (optname == -1 || optname == IPV6_HOPLIMIT) 2444 pktopt->ip6po_hlim = -1; 2445 if (optname == -1 || optname == IPV6_TCLASS) 2446 pktopt->ip6po_tclass = -1; 2447 if (optname == -1 || optname == IPV6_NEXTHOP) { 2448 if (pktopt->ip6po_nextroute.ro_rt) { 2449 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2450 pktopt->ip6po_nextroute.ro_rt = NULL; 2451 } 2452 if (pktopt->ip6po_nexthop) 2453 free(pktopt->ip6po_nexthop, M_IP6OPT); 2454 pktopt->ip6po_nexthop = NULL; 2455 } 2456 if (optname == -1 || optname == IPV6_HOPOPTS) { 2457 if (pktopt->ip6po_hbh) 2458 free(pktopt->ip6po_hbh, M_IP6OPT); 2459 pktopt->ip6po_hbh = NULL; 2460 } 2461 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2462 if (pktopt->ip6po_dest1) 2463 free(pktopt->ip6po_dest1, M_IP6OPT); 2464 pktopt->ip6po_dest1 = NULL; 2465 } 2466 if (optname == -1 || optname == IPV6_RTHDR) { 2467 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2468 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2469 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2470 if (pktopt->ip6po_route.ro_rt) { 2471 RTFREE(pktopt->ip6po_route.ro_rt); 2472 pktopt->ip6po_route.ro_rt = NULL; 2473 } 2474 } 2475 if (optname == -1 || optname == IPV6_DSTOPTS) { 2476 if (pktopt->ip6po_dest2) 2477 free(pktopt->ip6po_dest2, M_IP6OPT); 2478 pktopt->ip6po_dest2 = NULL; 2479 } 2480 } 2481 2482 #define PKTOPT_EXTHDRCPY(type) \ 2483 do {\ 2484 if (src->type) {\ 2485 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2486 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2487 if (dst->type == NULL)\ 2488 goto bad;\ 2489 bcopy(src->type, dst->type, hlen);\ 2490 }\ 2491 } while (/*CONSTCOND*/ 0) 2492 2493 static int 2494 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2495 { 2496 if (dst == NULL || src == NULL) { 2497 printf("ip6_clearpktopts: invalid argument\n"); 2498 return (EINVAL); 2499 } 2500 2501 dst->ip6po_hlim = src->ip6po_hlim; 2502 dst->ip6po_tclass = src->ip6po_tclass; 2503 dst->ip6po_flags = src->ip6po_flags; 2504 dst->ip6po_minmtu = src->ip6po_minmtu; 2505 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2506 if (src->ip6po_pktinfo) { 2507 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2508 M_IP6OPT, canwait); 2509 if (dst->ip6po_pktinfo == NULL) 2510 goto bad; 2511 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2512 } 2513 if (src->ip6po_nexthop) { 2514 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2515 M_IP6OPT, canwait); 2516 if (dst->ip6po_nexthop == NULL) 2517 goto bad; 2518 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2519 src->ip6po_nexthop->sa_len); 2520 } 2521 PKTOPT_EXTHDRCPY(ip6po_hbh); 2522 PKTOPT_EXTHDRCPY(ip6po_dest1); 2523 PKTOPT_EXTHDRCPY(ip6po_dest2); 2524 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2525 return (0); 2526 2527 bad: 2528 ip6_clearpktopts(dst, -1); 2529 return (ENOBUFS); 2530 } 2531 #undef PKTOPT_EXTHDRCPY 2532 2533 struct ip6_pktopts * 2534 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2535 { 2536 int error; 2537 struct ip6_pktopts *dst; 2538 2539 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2540 if (dst == NULL) 2541 return (NULL); 2542 ip6_initpktopts(dst); 2543 2544 if ((error = copypktopts(dst, src, canwait)) != 0) { 2545 free(dst, M_IP6OPT); 2546 return (NULL); 2547 } 2548 2549 return (dst); 2550 } 2551 2552 void 2553 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2554 { 2555 if (pktopt == NULL) 2556 return; 2557 2558 ip6_clearpktopts(pktopt, -1); 2559 2560 free(pktopt, M_IP6OPT); 2561 } 2562 2563 /* 2564 * Set IPv6 outgoing packet options based on advanced API. 2565 */ 2566 int 2567 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2568 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2569 { 2570 struct cmsghdr *cm = NULL; 2571 2572 if (control == NULL || opt == NULL) 2573 return (EINVAL); 2574 2575 ip6_initpktopts(opt); 2576 if (stickyopt) { 2577 int error; 2578 2579 /* 2580 * If stickyopt is provided, make a local copy of the options 2581 * for this particular packet, then override them by ancillary 2582 * objects. 2583 * XXX: copypktopts() does not copy the cached route to a next 2584 * hop (if any). This is not very good in terms of efficiency, 2585 * but we can allow this since this option should be rarely 2586 * used. 2587 */ 2588 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2589 return (error); 2590 } 2591 2592 /* 2593 * XXX: Currently, we assume all the optional information is stored 2594 * in a single mbuf. 2595 */ 2596 if (control->m_next) 2597 return (EINVAL); 2598 2599 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2600 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2601 int error; 2602 2603 if (control->m_len < CMSG_LEN(0)) 2604 return (EINVAL); 2605 2606 cm = mtod(control, struct cmsghdr *); 2607 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2608 return (EINVAL); 2609 if (cm->cmsg_level != IPPROTO_IPV6) 2610 continue; 2611 2612 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2613 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2614 if (error) 2615 return (error); 2616 } 2617 2618 return (0); 2619 } 2620 2621 /* 2622 * Set a particular packet option, as a sticky option or an ancillary data 2623 * item. "len" can be 0 only when it's a sticky option. 2624 * We have 4 cases of combination of "sticky" and "cmsg": 2625 * "sticky=0, cmsg=0": impossible 2626 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2627 * "sticky=1, cmsg=0": RFC3542 socket option 2628 * "sticky=1, cmsg=1": RFC2292 socket option 2629 */ 2630 static int 2631 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2632 struct ucred *cred, int sticky, int cmsg, int uproto) 2633 { 2634 int minmtupolicy, preftemp; 2635 int error; 2636 2637 if (!sticky && !cmsg) { 2638 #ifdef DIAGNOSTIC 2639 printf("ip6_setpktopt: impossible case\n"); 2640 #endif 2641 return (EINVAL); 2642 } 2643 2644 /* 2645 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2646 * not be specified in the context of RFC3542. Conversely, 2647 * RFC3542 types should not be specified in the context of RFC2292. 2648 */ 2649 if (!cmsg) { 2650 switch (optname) { 2651 case IPV6_2292PKTINFO: 2652 case IPV6_2292HOPLIMIT: 2653 case IPV6_2292NEXTHOP: 2654 case IPV6_2292HOPOPTS: 2655 case IPV6_2292DSTOPTS: 2656 case IPV6_2292RTHDR: 2657 case IPV6_2292PKTOPTIONS: 2658 return (ENOPROTOOPT); 2659 } 2660 } 2661 if (sticky && cmsg) { 2662 switch (optname) { 2663 case IPV6_PKTINFO: 2664 case IPV6_HOPLIMIT: 2665 case IPV6_NEXTHOP: 2666 case IPV6_HOPOPTS: 2667 case IPV6_DSTOPTS: 2668 case IPV6_RTHDRDSTOPTS: 2669 case IPV6_RTHDR: 2670 case IPV6_USE_MIN_MTU: 2671 case IPV6_DONTFRAG: 2672 case IPV6_TCLASS: 2673 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2674 return (ENOPROTOOPT); 2675 } 2676 } 2677 2678 switch (optname) { 2679 case IPV6_2292PKTINFO: 2680 case IPV6_PKTINFO: 2681 { 2682 struct ifnet *ifp = NULL; 2683 struct in6_pktinfo *pktinfo; 2684 2685 if (len != sizeof(struct in6_pktinfo)) 2686 return (EINVAL); 2687 2688 pktinfo = (struct in6_pktinfo *)buf; 2689 2690 /* 2691 * An application can clear any sticky IPV6_PKTINFO option by 2692 * doing a "regular" setsockopt with ipi6_addr being 2693 * in6addr_any and ipi6_ifindex being zero. 2694 * [RFC 3542, Section 6] 2695 */ 2696 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2697 pktinfo->ipi6_ifindex == 0 && 2698 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2699 ip6_clearpktopts(opt, optname); 2700 break; 2701 } 2702 2703 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2704 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2705 return (EINVAL); 2706 } 2707 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2708 return (EINVAL); 2709 /* validate the interface index if specified. */ 2710 if (pktinfo->ipi6_ifindex > V_if_index) 2711 return (ENXIO); 2712 if (pktinfo->ipi6_ifindex) { 2713 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2714 if (ifp == NULL) 2715 return (ENXIO); 2716 } 2717 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2718 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2719 return (ENETDOWN); 2720 2721 if (ifp != NULL && 2722 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2723 struct in6_ifaddr *ia; 2724 2725 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2726 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2727 if (ia == NULL) 2728 return (EADDRNOTAVAIL); 2729 ifa_free(&ia->ia_ifa); 2730 } 2731 /* 2732 * We store the address anyway, and let in6_selectsrc() 2733 * validate the specified address. This is because ipi6_addr 2734 * may not have enough information about its scope zone, and 2735 * we may need additional information (such as outgoing 2736 * interface or the scope zone of a destination address) to 2737 * disambiguate the scope. 2738 * XXX: the delay of the validation may confuse the 2739 * application when it is used as a sticky option. 2740 */ 2741 if (opt->ip6po_pktinfo == NULL) { 2742 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2743 M_IP6OPT, M_NOWAIT); 2744 if (opt->ip6po_pktinfo == NULL) 2745 return (ENOBUFS); 2746 } 2747 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2748 break; 2749 } 2750 2751 case IPV6_2292HOPLIMIT: 2752 case IPV6_HOPLIMIT: 2753 { 2754 int *hlimp; 2755 2756 /* 2757 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2758 * to simplify the ordering among hoplimit options. 2759 */ 2760 if (optname == IPV6_HOPLIMIT && sticky) 2761 return (ENOPROTOOPT); 2762 2763 if (len != sizeof(int)) 2764 return (EINVAL); 2765 hlimp = (int *)buf; 2766 if (*hlimp < -1 || *hlimp > 255) 2767 return (EINVAL); 2768 2769 opt->ip6po_hlim = *hlimp; 2770 break; 2771 } 2772 2773 case IPV6_TCLASS: 2774 { 2775 int tclass; 2776 2777 if (len != sizeof(int)) 2778 return (EINVAL); 2779 tclass = *(int *)buf; 2780 if (tclass < -1 || tclass > 255) 2781 return (EINVAL); 2782 2783 opt->ip6po_tclass = tclass; 2784 break; 2785 } 2786 2787 case IPV6_2292NEXTHOP: 2788 case IPV6_NEXTHOP: 2789 if (cred != NULL) { 2790 error = priv_check_cred(cred, 2791 PRIV_NETINET_SETHDROPTS, 0); 2792 if (error) 2793 return (error); 2794 } 2795 2796 if (len == 0) { /* just remove the option */ 2797 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2798 break; 2799 } 2800 2801 /* check if cmsg_len is large enough for sa_len */ 2802 if (len < sizeof(struct sockaddr) || len < *buf) 2803 return (EINVAL); 2804 2805 switch (((struct sockaddr *)buf)->sa_family) { 2806 case AF_INET6: 2807 { 2808 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2809 int error; 2810 2811 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2812 return (EINVAL); 2813 2814 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2815 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2816 return (EINVAL); 2817 } 2818 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2819 != 0) { 2820 return (error); 2821 } 2822 break; 2823 } 2824 case AF_LINK: /* should eventually be supported */ 2825 default: 2826 return (EAFNOSUPPORT); 2827 } 2828 2829 /* turn off the previous option, then set the new option. */ 2830 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2831 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2832 if (opt->ip6po_nexthop == NULL) 2833 return (ENOBUFS); 2834 bcopy(buf, opt->ip6po_nexthop, *buf); 2835 break; 2836 2837 case IPV6_2292HOPOPTS: 2838 case IPV6_HOPOPTS: 2839 { 2840 struct ip6_hbh *hbh; 2841 int hbhlen; 2842 2843 /* 2844 * XXX: We don't allow a non-privileged user to set ANY HbH 2845 * options, since per-option restriction has too much 2846 * overhead. 2847 */ 2848 if (cred != NULL) { 2849 error = priv_check_cred(cred, 2850 PRIV_NETINET_SETHDROPTS, 0); 2851 if (error) 2852 return (error); 2853 } 2854 2855 if (len == 0) { 2856 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2857 break; /* just remove the option */ 2858 } 2859 2860 /* message length validation */ 2861 if (len < sizeof(struct ip6_hbh)) 2862 return (EINVAL); 2863 hbh = (struct ip6_hbh *)buf; 2864 hbhlen = (hbh->ip6h_len + 1) << 3; 2865 if (len != hbhlen) 2866 return (EINVAL); 2867 2868 /* turn off the previous option, then set the new option. */ 2869 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2870 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2871 if (opt->ip6po_hbh == NULL) 2872 return (ENOBUFS); 2873 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2874 2875 break; 2876 } 2877 2878 case IPV6_2292DSTOPTS: 2879 case IPV6_DSTOPTS: 2880 case IPV6_RTHDRDSTOPTS: 2881 { 2882 struct ip6_dest *dest, **newdest = NULL; 2883 int destlen; 2884 2885 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2886 error = priv_check_cred(cred, 2887 PRIV_NETINET_SETHDROPTS, 0); 2888 if (error) 2889 return (error); 2890 } 2891 2892 if (len == 0) { 2893 ip6_clearpktopts(opt, optname); 2894 break; /* just remove the option */ 2895 } 2896 2897 /* message length validation */ 2898 if (len < sizeof(struct ip6_dest)) 2899 return (EINVAL); 2900 dest = (struct ip6_dest *)buf; 2901 destlen = (dest->ip6d_len + 1) << 3; 2902 if (len != destlen) 2903 return (EINVAL); 2904 2905 /* 2906 * Determine the position that the destination options header 2907 * should be inserted; before or after the routing header. 2908 */ 2909 switch (optname) { 2910 case IPV6_2292DSTOPTS: 2911 /* 2912 * The old advacned API is ambiguous on this point. 2913 * Our approach is to determine the position based 2914 * according to the existence of a routing header. 2915 * Note, however, that this depends on the order of the 2916 * extension headers in the ancillary data; the 1st 2917 * part of the destination options header must appear 2918 * before the routing header in the ancillary data, 2919 * too. 2920 * RFC3542 solved the ambiguity by introducing 2921 * separate ancillary data or option types. 2922 */ 2923 if (opt->ip6po_rthdr == NULL) 2924 newdest = &opt->ip6po_dest1; 2925 else 2926 newdest = &opt->ip6po_dest2; 2927 break; 2928 case IPV6_RTHDRDSTOPTS: 2929 newdest = &opt->ip6po_dest1; 2930 break; 2931 case IPV6_DSTOPTS: 2932 newdest = &opt->ip6po_dest2; 2933 break; 2934 } 2935 2936 /* turn off the previous option, then set the new option. */ 2937 ip6_clearpktopts(opt, optname); 2938 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2939 if (*newdest == NULL) 2940 return (ENOBUFS); 2941 bcopy(dest, *newdest, destlen); 2942 2943 break; 2944 } 2945 2946 case IPV6_2292RTHDR: 2947 case IPV6_RTHDR: 2948 { 2949 struct ip6_rthdr *rth; 2950 int rthlen; 2951 2952 if (len == 0) { 2953 ip6_clearpktopts(opt, IPV6_RTHDR); 2954 break; /* just remove the option */ 2955 } 2956 2957 /* message length validation */ 2958 if (len < sizeof(struct ip6_rthdr)) 2959 return (EINVAL); 2960 rth = (struct ip6_rthdr *)buf; 2961 rthlen = (rth->ip6r_len + 1) << 3; 2962 if (len != rthlen) 2963 return (EINVAL); 2964 2965 switch (rth->ip6r_type) { 2966 case IPV6_RTHDR_TYPE_0: 2967 if (rth->ip6r_len == 0) /* must contain one addr */ 2968 return (EINVAL); 2969 if (rth->ip6r_len % 2) /* length must be even */ 2970 return (EINVAL); 2971 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2972 return (EINVAL); 2973 break; 2974 default: 2975 return (EINVAL); /* not supported */ 2976 } 2977 2978 /* turn off the previous option */ 2979 ip6_clearpktopts(opt, IPV6_RTHDR); 2980 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2981 if (opt->ip6po_rthdr == NULL) 2982 return (ENOBUFS); 2983 bcopy(rth, opt->ip6po_rthdr, rthlen); 2984 2985 break; 2986 } 2987 2988 case IPV6_USE_MIN_MTU: 2989 if (len != sizeof(int)) 2990 return (EINVAL); 2991 minmtupolicy = *(int *)buf; 2992 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2993 minmtupolicy != IP6PO_MINMTU_DISABLE && 2994 minmtupolicy != IP6PO_MINMTU_ALL) { 2995 return (EINVAL); 2996 } 2997 opt->ip6po_minmtu = minmtupolicy; 2998 break; 2999 3000 case IPV6_DONTFRAG: 3001 if (len != sizeof(int)) 3002 return (EINVAL); 3003 3004 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3005 /* 3006 * we ignore this option for TCP sockets. 3007 * (RFC3542 leaves this case unspecified.) 3008 */ 3009 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3010 } else 3011 opt->ip6po_flags |= IP6PO_DONTFRAG; 3012 break; 3013 3014 case IPV6_PREFER_TEMPADDR: 3015 if (len != sizeof(int)) 3016 return (EINVAL); 3017 preftemp = *(int *)buf; 3018 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3019 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3020 preftemp != IP6PO_TEMPADDR_PREFER) { 3021 return (EINVAL); 3022 } 3023 opt->ip6po_prefer_tempaddr = preftemp; 3024 break; 3025 3026 default: 3027 return (ENOPROTOOPT); 3028 } /* end of switch */ 3029 3030 return (0); 3031 } 3032 3033 /* 3034 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3035 * packet to the input queue of a specified interface. Note that this 3036 * calls the output routine of the loopback "driver", but with an interface 3037 * pointer that might NOT be &loif -- easier than replicating that code here. 3038 */ 3039 void 3040 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3041 { 3042 struct mbuf *copym; 3043 struct ip6_hdr *ip6; 3044 3045 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3046 if (copym == NULL) 3047 return; 3048 3049 /* 3050 * Make sure to deep-copy IPv6 header portion in case the data 3051 * is in an mbuf cluster, so that we can safely override the IPv6 3052 * header portion later. 3053 */ 3054 if (!M_WRITABLE(copym) || 3055 copym->m_len < sizeof(struct ip6_hdr)) { 3056 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3057 if (copym == NULL) 3058 return; 3059 } 3060 ip6 = mtod(copym, struct ip6_hdr *); 3061 /* 3062 * clear embedded scope identifiers if necessary. 3063 * in6_clearscope will touch the addresses only when necessary. 3064 */ 3065 in6_clearscope(&ip6->ip6_src); 3066 in6_clearscope(&ip6->ip6_dst); 3067 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3068 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3069 CSUM_PSEUDO_HDR; 3070 copym->m_pkthdr.csum_data = 0xffff; 3071 } 3072 if_simloop(ifp, copym, AF_INET6, 0); 3073 } 3074 3075 /* 3076 * Chop IPv6 header off from the payload. 3077 */ 3078 static int 3079 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3080 { 3081 struct mbuf *mh; 3082 struct ip6_hdr *ip6; 3083 3084 ip6 = mtod(m, struct ip6_hdr *); 3085 if (m->m_len > sizeof(*ip6)) { 3086 mh = m_gethdr(M_NOWAIT, MT_DATA); 3087 if (mh == NULL) { 3088 m_freem(m); 3089 return ENOBUFS; 3090 } 3091 m_move_pkthdr(mh, m); 3092 M_ALIGN(mh, sizeof(*ip6)); 3093 m->m_len -= sizeof(*ip6); 3094 m->m_data += sizeof(*ip6); 3095 mh->m_next = m; 3096 m = mh; 3097 m->m_len = sizeof(*ip6); 3098 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3099 } 3100 exthdrs->ip6e_ip6 = m; 3101 return 0; 3102 } 3103 3104 /* 3105 * Compute IPv6 extension header length. 3106 */ 3107 int 3108 ip6_optlen(struct inpcb *in6p) 3109 { 3110 int len; 3111 3112 if (!in6p->in6p_outputopts) 3113 return 0; 3114 3115 len = 0; 3116 #define elen(x) \ 3117 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3118 3119 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3120 if (in6p->in6p_outputopts->ip6po_rthdr) 3121 /* dest1 is valid with rthdr only */ 3122 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3123 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3124 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3125 return len; 3126 #undef elen 3127 } 3128