1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ratelimit.h" 71 #include "opt_ipsec.h" 72 #include "opt_sctp.h" 73 #include "opt_route.h" 74 #include "opt_rss.h" 75 76 #include <sys/param.h> 77 #include <sys/kernel.h> 78 #include <sys/malloc.h> 79 #include <sys/mbuf.h> 80 #include <sys/errno.h> 81 #include <sys/priv.h> 82 #include <sys/proc.h> 83 #include <sys/protosw.h> 84 #include <sys/socket.h> 85 #include <sys/socketvar.h> 86 #include <sys/syslog.h> 87 #include <sys/ucred.h> 88 89 #include <machine/in_cksum.h> 90 91 #include <net/if.h> 92 #include <net/if_var.h> 93 #include <net/if_llatbl.h> 94 #include <net/netisr.h> 95 #include <net/route.h> 96 #include <net/pfil.h> 97 #include <net/rss_config.h> 98 #include <net/vnet.h> 99 100 #include <netinet/in.h> 101 #include <netinet/in_var.h> 102 #include <netinet/ip_var.h> 103 #include <netinet6/in6_fib.h> 104 #include <netinet6/in6_var.h> 105 #include <netinet/ip6.h> 106 #include <netinet/icmp6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet/in_pcb.h> 109 #include <netinet/tcp_var.h> 110 #include <netinet6/nd6.h> 111 #include <netinet6/in6_rss.h> 112 113 #include <netipsec/ipsec_support.h> 114 #ifdef SCTP 115 #include <netinet/sctp.h> 116 #include <netinet/sctp_crc32.h> 117 #endif 118 119 #include <netinet6/ip6protosw.h> 120 #include <netinet6/scope6_var.h> 121 122 extern int in6_mcast_loop; 123 124 struct ip6_exthdrs { 125 struct mbuf *ip6e_ip6; 126 struct mbuf *ip6e_hbh; 127 struct mbuf *ip6e_dest1; 128 struct mbuf *ip6e_rthdr; 129 struct mbuf *ip6e_dest2; 130 }; 131 132 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 133 134 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 135 struct ucred *, int); 136 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 137 struct socket *, struct sockopt *); 138 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 139 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 140 struct ucred *, int, int, int); 141 142 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 143 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 144 struct ip6_frag **); 145 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 146 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 147 static int ip6_getpmtu(struct route_in6 *, int, 148 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 149 u_int); 150 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 151 u_long *, int *, u_int); 152 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 153 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 154 155 156 /* 157 * Make an extension header from option data. hp is the source, and 158 * mp is the destination. 159 */ 160 #define MAKE_EXTHDR(hp, mp) \ 161 do { \ 162 if (hp) { \ 163 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 164 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 165 ((eh)->ip6e_len + 1) << 3); \ 166 if (error) \ 167 goto freehdrs; \ 168 } \ 169 } while (/*CONSTCOND*/ 0) 170 171 /* 172 * Form a chain of extension headers. 173 * m is the extension header mbuf 174 * mp is the previous mbuf in the chain 175 * p is the next header 176 * i is the type of option. 177 */ 178 #define MAKE_CHAIN(m, mp, p, i)\ 179 do {\ 180 if (m) {\ 181 if (!hdrsplit) \ 182 panic("assumption failed: hdr not split"); \ 183 *mtod((m), u_char *) = *(p);\ 184 *(p) = (i);\ 185 p = mtod((m), u_char *);\ 186 (m)->m_next = (mp)->m_next;\ 187 (mp)->m_next = (m);\ 188 (mp) = (m);\ 189 }\ 190 } while (/*CONSTCOND*/ 0) 191 192 void 193 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 194 { 195 u_short csum; 196 197 csum = in_cksum_skip(m, offset + plen, offset); 198 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 199 csum = 0xffff; 200 offset += m->m_pkthdr.csum_data; /* checksum offset */ 201 202 if (offset + sizeof(csum) > m->m_len) 203 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 204 else 205 *(u_short *)mtodo(m, offset) = csum; 206 } 207 208 int 209 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 210 int fraglen , uint32_t id) 211 { 212 struct mbuf *m, **mnext, *m_frgpart; 213 struct ip6_hdr *ip6, *mhip6; 214 struct ip6_frag *ip6f; 215 int off; 216 int error; 217 int tlen = m0->m_pkthdr.len; 218 219 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 220 221 m = m0; 222 ip6 = mtod(m, struct ip6_hdr *); 223 mnext = &m->m_nextpkt; 224 225 for (off = hlen; off < tlen; off += fraglen) { 226 m = m_gethdr(M_NOWAIT, MT_DATA); 227 if (!m) { 228 IP6STAT_INC(ip6s_odropped); 229 return (ENOBUFS); 230 } 231 m->m_flags = m0->m_flags & M_COPYFLAGS; 232 *mnext = m; 233 mnext = &m->m_nextpkt; 234 m->m_data += max_linkhdr; 235 mhip6 = mtod(m, struct ip6_hdr *); 236 *mhip6 = *ip6; 237 m->m_len = sizeof(*mhip6); 238 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 239 if (error) { 240 IP6STAT_INC(ip6s_odropped); 241 return (error); 242 } 243 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 244 if (off + fraglen >= tlen) 245 fraglen = tlen - off; 246 else 247 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 248 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 249 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 250 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 251 IP6STAT_INC(ip6s_odropped); 252 return (ENOBUFS); 253 } 254 m_cat(m, m_frgpart); 255 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 256 m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; 257 m->m_pkthdr.rcvif = NULL; 258 ip6f->ip6f_reserved = 0; 259 ip6f->ip6f_ident = id; 260 ip6f->ip6f_nxt = nextproto; 261 IP6STAT_INC(ip6s_ofragments); 262 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 263 } 264 265 return (0); 266 } 267 268 /* 269 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 270 * header (with pri, len, nxt, hlim, src, dst). 271 * This function may modify ver and hlim only. 272 * The mbuf chain containing the packet will be freed. 273 * The mbuf opt, if present, will not be freed. 274 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 275 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 276 * then result of route lookup is stored in ro->ro_rt. 277 * 278 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 279 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 280 * which is rt_mtu. 281 * 282 * ifpp - XXX: just for statistics 283 */ 284 /* 285 * XXX TODO: no flowid is assigned for outbound flows? 286 */ 287 int 288 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 289 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 290 struct ifnet **ifpp, struct inpcb *inp) 291 { 292 struct ip6_hdr *ip6; 293 struct ifnet *ifp, *origifp; 294 struct mbuf *m = m0; 295 struct mbuf *mprev = NULL; 296 int hlen, tlen, len; 297 struct route_in6 ip6route; 298 struct rtentry *rt = NULL; 299 struct sockaddr_in6 *dst, src_sa, dst_sa; 300 struct in6_addr odst; 301 int error = 0; 302 struct in6_ifaddr *ia = NULL; 303 u_long mtu; 304 int alwaysfrag, dontfrag; 305 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 306 struct ip6_exthdrs exthdrs; 307 struct in6_addr src0, dst0; 308 u_int32_t zone; 309 struct route_in6 *ro_pmtu = NULL; 310 int hdrsplit = 0; 311 int sw_csum, tso; 312 int needfiblookup; 313 uint32_t fibnum; 314 struct m_tag *fwd_tag = NULL; 315 uint32_t id; 316 317 if (inp != NULL) { 318 INP_LOCK_ASSERT(inp); 319 M_SETFIB(m, inp->inp_inc.inc_fibnum); 320 if ((flags & IP_NODEFAULTFLOWID) == 0) { 321 /* unconditionally set flowid */ 322 m->m_pkthdr.flowid = inp->inp_flowid; 323 M_HASHTYPE_SET(m, inp->inp_flowtype); 324 } 325 } 326 327 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 328 /* 329 * IPSec checking which handles several cases. 330 * FAST IPSEC: We re-injected the packet. 331 * XXX: need scope argument. 332 */ 333 if (IPSEC_ENABLED(ipv6)) { 334 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 335 if (error == EINPROGRESS) 336 error = 0; 337 goto done; 338 } 339 } 340 #endif /* IPSEC */ 341 342 bzero(&exthdrs, sizeof(exthdrs)); 343 if (opt) { 344 /* Hop-by-Hop options header */ 345 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 346 /* Destination options header(1st part) */ 347 if (opt->ip6po_rthdr) { 348 /* 349 * Destination options header(1st part) 350 * This only makes sense with a routing header. 351 * See Section 9.2 of RFC 3542. 352 * Disabling this part just for MIP6 convenience is 353 * a bad idea. We need to think carefully about a 354 * way to make the advanced API coexist with MIP6 355 * options, which might automatically be inserted in 356 * the kernel. 357 */ 358 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 359 } 360 /* Routing header */ 361 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 362 /* Destination options header(2nd part) */ 363 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 364 } 365 366 /* 367 * Calculate the total length of the extension header chain. 368 * Keep the length of the unfragmentable part for fragmentation. 369 */ 370 optlen = 0; 371 if (exthdrs.ip6e_hbh) 372 optlen += exthdrs.ip6e_hbh->m_len; 373 if (exthdrs.ip6e_dest1) 374 optlen += exthdrs.ip6e_dest1->m_len; 375 if (exthdrs.ip6e_rthdr) 376 optlen += exthdrs.ip6e_rthdr->m_len; 377 unfragpartlen = optlen + sizeof(struct ip6_hdr); 378 379 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 380 if (exthdrs.ip6e_dest2) 381 optlen += exthdrs.ip6e_dest2->m_len; 382 383 /* 384 * If there is at least one extension header, 385 * separate IP6 header from the payload. 386 */ 387 if (optlen && !hdrsplit) { 388 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 389 m = NULL; 390 goto freehdrs; 391 } 392 m = exthdrs.ip6e_ip6; 393 hdrsplit++; 394 } 395 396 ip6 = mtod(m, struct ip6_hdr *); 397 398 /* adjust mbuf packet header length */ 399 m->m_pkthdr.len += optlen; 400 plen = m->m_pkthdr.len - sizeof(*ip6); 401 402 /* If this is a jumbo payload, insert a jumbo payload option. */ 403 if (plen > IPV6_MAXPACKET) { 404 if (!hdrsplit) { 405 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 406 m = NULL; 407 goto freehdrs; 408 } 409 m = exthdrs.ip6e_ip6; 410 hdrsplit++; 411 } 412 /* adjust pointer */ 413 ip6 = mtod(m, struct ip6_hdr *); 414 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 415 goto freehdrs; 416 ip6->ip6_plen = 0; 417 } else 418 ip6->ip6_plen = htons(plen); 419 420 /* 421 * Concatenate headers and fill in next header fields. 422 * Here we have, on "m" 423 * IPv6 payload 424 * and we insert headers accordingly. Finally, we should be getting: 425 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 426 * 427 * during the header composing process, "m" points to IPv6 header. 428 * "mprev" points to an extension header prior to esp. 429 */ 430 u_char *nexthdrp = &ip6->ip6_nxt; 431 mprev = m; 432 433 /* 434 * we treat dest2 specially. this makes IPsec processing 435 * much easier. the goal here is to make mprev point the 436 * mbuf prior to dest2. 437 * 438 * result: IPv6 dest2 payload 439 * m and mprev will point to IPv6 header. 440 */ 441 if (exthdrs.ip6e_dest2) { 442 if (!hdrsplit) 443 panic("assumption failed: hdr not split"); 444 exthdrs.ip6e_dest2->m_next = m->m_next; 445 m->m_next = exthdrs.ip6e_dest2; 446 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 447 ip6->ip6_nxt = IPPROTO_DSTOPTS; 448 } 449 450 /* 451 * result: IPv6 hbh dest1 rthdr dest2 payload 452 * m will point to IPv6 header. mprev will point to the 453 * extension header prior to dest2 (rthdr in the above case). 454 */ 455 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 456 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 457 IPPROTO_DSTOPTS); 458 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 459 IPPROTO_ROUTING); 460 461 /* 462 * If there is a routing header, discard the packet. 463 */ 464 if (exthdrs.ip6e_rthdr) { 465 error = EINVAL; 466 goto bad; 467 } 468 469 /* Source address validation */ 470 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 471 (flags & IPV6_UNSPECSRC) == 0) { 472 error = EOPNOTSUPP; 473 IP6STAT_INC(ip6s_badscope); 474 goto bad; 475 } 476 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 477 error = EOPNOTSUPP; 478 IP6STAT_INC(ip6s_badscope); 479 goto bad; 480 } 481 482 IP6STAT_INC(ip6s_localout); 483 484 /* 485 * Route packet. 486 */ 487 if (ro == NULL) { 488 ro = &ip6route; 489 bzero((caddr_t)ro, sizeof(*ro)); 490 } 491 ro_pmtu = ro; 492 if (opt && opt->ip6po_rthdr) 493 ro = &opt->ip6po_route; 494 dst = (struct sockaddr_in6 *)&ro->ro_dst; 495 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 496 again: 497 /* 498 * if specified, try to fill in the traffic class field. 499 * do not override if a non-zero value is already set. 500 * we check the diffserv field and the ecn field separately. 501 */ 502 if (opt && opt->ip6po_tclass >= 0) { 503 int mask = 0; 504 505 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 506 mask |= 0xfc; 507 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 508 mask |= 0x03; 509 if (mask != 0) 510 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 511 } 512 513 /* fill in or override the hop limit field, if necessary. */ 514 if (opt && opt->ip6po_hlim != -1) 515 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 516 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 517 if (im6o != NULL) 518 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 519 else 520 ip6->ip6_hlim = V_ip6_defmcasthlim; 521 } 522 /* 523 * Validate route against routing table additions; 524 * a better/more specific route might have been added. 525 * Make sure address family is set in route. 526 */ 527 if (inp) { 528 ro->ro_dst.sin6_family = AF_INET6; 529 RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, fibnum); 530 } 531 if (ro->ro_rt && fwd_tag == NULL && (ro->ro_rt->rt_flags & RTF_UP) && 532 ro->ro_dst.sin6_family == AF_INET6 && 533 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 534 rt = ro->ro_rt; 535 ifp = ro->ro_rt->rt_ifp; 536 } else { 537 if (ro->ro_lle) 538 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 539 ro->ro_lle = NULL; 540 if (fwd_tag == NULL) { 541 bzero(&dst_sa, sizeof(dst_sa)); 542 dst_sa.sin6_family = AF_INET6; 543 dst_sa.sin6_len = sizeof(dst_sa); 544 dst_sa.sin6_addr = ip6->ip6_dst; 545 } 546 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 547 &rt, fibnum); 548 if (error != 0) { 549 if (ifp != NULL) 550 in6_ifstat_inc(ifp, ifs6_out_discard); 551 goto bad; 552 } 553 } 554 if (rt == NULL) { 555 /* 556 * If in6_selectroute() does not return a route entry, 557 * dst may not have been updated. 558 */ 559 *dst = dst_sa; /* XXX */ 560 } 561 562 /* 563 * then rt (for unicast) and ifp must be non-NULL valid values. 564 */ 565 if ((flags & IPV6_FORWARDING) == 0) { 566 /* XXX: the FORWARDING flag can be set for mrouting. */ 567 in6_ifstat_inc(ifp, ifs6_out_request); 568 } 569 if (rt != NULL) { 570 ia = (struct in6_ifaddr *)(rt->rt_ifa); 571 counter_u64_add(rt->rt_pksent, 1); 572 } 573 574 /* Setup data structures for scope ID checks. */ 575 src0 = ip6->ip6_src; 576 bzero(&src_sa, sizeof(src_sa)); 577 src_sa.sin6_family = AF_INET6; 578 src_sa.sin6_len = sizeof(src_sa); 579 src_sa.sin6_addr = ip6->ip6_src; 580 581 dst0 = ip6->ip6_dst; 582 /* re-initialize to be sure */ 583 bzero(&dst_sa, sizeof(dst_sa)); 584 dst_sa.sin6_family = AF_INET6; 585 dst_sa.sin6_len = sizeof(dst_sa); 586 dst_sa.sin6_addr = ip6->ip6_dst; 587 588 /* Check for valid scope ID. */ 589 if (in6_setscope(&src0, ifp, &zone) == 0 && 590 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && 591 in6_setscope(&dst0, ifp, &zone) == 0 && 592 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { 593 /* 594 * The outgoing interface is in the zone of the source 595 * and destination addresses. 596 * 597 * Because the loopback interface cannot receive 598 * packets with a different scope ID than its own, 599 * there is a trick is to pretend the outgoing packet 600 * was received by the real network interface, by 601 * setting "origifp" different from "ifp". This is 602 * only allowed when "ifp" is a loopback network 603 * interface. Refer to code in nd6_output_ifp() for 604 * more details. 605 */ 606 origifp = ifp; 607 608 /* 609 * We should use ia_ifp to support the case of sending 610 * packets to an address of our own. 611 */ 612 if (ia != NULL && ia->ia_ifp) 613 ifp = ia->ia_ifp; 614 615 } else if ((ifp->if_flags & IFF_LOOPBACK) == 0 || 616 sa6_recoverscope(&src_sa) != 0 || 617 sa6_recoverscope(&dst_sa) != 0 || 618 dst_sa.sin6_scope_id == 0 || 619 (src_sa.sin6_scope_id != 0 && 620 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || 621 (origifp = ifnet_byindex(dst_sa.sin6_scope_id)) == NULL) { 622 /* 623 * If the destination network interface is not a 624 * loopback interface, or the destination network 625 * address has no scope ID, or the source address has 626 * a scope ID set which is different from the 627 * destination address one, or there is no network 628 * interface representing this scope ID, the address 629 * pair is considered invalid. 630 */ 631 IP6STAT_INC(ip6s_badscope); 632 in6_ifstat_inc(ifp, ifs6_out_discard); 633 if (error == 0) 634 error = EHOSTUNREACH; /* XXX */ 635 goto bad; 636 } 637 638 /* All scope ID checks are successful. */ 639 640 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 641 if (opt && opt->ip6po_nextroute.ro_rt) { 642 /* 643 * The nexthop is explicitly specified by the 644 * application. We assume the next hop is an IPv6 645 * address. 646 */ 647 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 648 } 649 else if ((rt->rt_flags & RTF_GATEWAY)) 650 dst = (struct sockaddr_in6 *)rt->rt_gateway; 651 } 652 653 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 654 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 655 } else { 656 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 657 in6_ifstat_inc(ifp, ifs6_out_mcast); 658 /* 659 * Confirm that the outgoing interface supports multicast. 660 */ 661 if (!(ifp->if_flags & IFF_MULTICAST)) { 662 IP6STAT_INC(ip6s_noroute); 663 in6_ifstat_inc(ifp, ifs6_out_discard); 664 error = ENETUNREACH; 665 goto bad; 666 } 667 if ((im6o == NULL && in6_mcast_loop) || 668 (im6o && im6o->im6o_multicast_loop)) { 669 /* 670 * Loop back multicast datagram if not expressly 671 * forbidden to do so, even if we have not joined 672 * the address; protocols will filter it later, 673 * thus deferring a hash lookup and lock acquisition 674 * at the expense of an m_copym(). 675 */ 676 ip6_mloopback(ifp, m); 677 } else { 678 /* 679 * If we are acting as a multicast router, perform 680 * multicast forwarding as if the packet had just 681 * arrived on the interface to which we are about 682 * to send. The multicast forwarding function 683 * recursively calls this function, using the 684 * IPV6_FORWARDING flag to prevent infinite recursion. 685 * 686 * Multicasts that are looped back by ip6_mloopback(), 687 * above, will be forwarded by the ip6_input() routine, 688 * if necessary. 689 */ 690 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 691 /* 692 * XXX: ip6_mforward expects that rcvif is NULL 693 * when it is called from the originating path. 694 * However, it may not always be the case. 695 */ 696 m->m_pkthdr.rcvif = NULL; 697 if (ip6_mforward(ip6, ifp, m) != 0) { 698 m_freem(m); 699 goto done; 700 } 701 } 702 } 703 /* 704 * Multicasts with a hoplimit of zero may be looped back, 705 * above, but must not be transmitted on a network. 706 * Also, multicasts addressed to the loopback interface 707 * are not sent -- the above call to ip6_mloopback() will 708 * loop back a copy if this host actually belongs to the 709 * destination group on the loopback interface. 710 */ 711 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 712 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 713 m_freem(m); 714 goto done; 715 } 716 } 717 718 /* 719 * Fill the outgoing inteface to tell the upper layer 720 * to increment per-interface statistics. 721 */ 722 if (ifpp) 723 *ifpp = ifp; 724 725 /* Determine path MTU. */ 726 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 727 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 728 goto bad; 729 730 /* 731 * The caller of this function may specify to use the minimum MTU 732 * in some cases. 733 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 734 * setting. The logic is a bit complicated; by default, unicast 735 * packets will follow path MTU while multicast packets will be sent at 736 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 737 * including unicast ones will be sent at the minimum MTU. Multicast 738 * packets will always be sent at the minimum MTU unless 739 * IP6PO_MINMTU_DISABLE is explicitly specified. 740 * See RFC 3542 for more details. 741 */ 742 if (mtu > IPV6_MMTU) { 743 if ((flags & IPV6_MINMTU)) 744 mtu = IPV6_MMTU; 745 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 746 mtu = IPV6_MMTU; 747 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 748 (opt == NULL || 749 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 750 mtu = IPV6_MMTU; 751 } 752 } 753 754 /* 755 * clear embedded scope identifiers if necessary. 756 * in6_clearscope will touch the addresses only when necessary. 757 */ 758 in6_clearscope(&ip6->ip6_src); 759 in6_clearscope(&ip6->ip6_dst); 760 761 /* 762 * If the outgoing packet contains a hop-by-hop options header, 763 * it must be examined and processed even by the source node. 764 * (RFC 2460, section 4.) 765 */ 766 if (exthdrs.ip6e_hbh) { 767 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 768 u_int32_t dummy; /* XXX unused */ 769 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 770 771 #ifdef DIAGNOSTIC 772 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 773 panic("ip6e_hbh is not contiguous"); 774 #endif 775 /* 776 * XXX: if we have to send an ICMPv6 error to the sender, 777 * we need the M_LOOP flag since icmp6_error() expects 778 * the IPv6 and the hop-by-hop options header are 779 * contiguous unless the flag is set. 780 */ 781 m->m_flags |= M_LOOP; 782 m->m_pkthdr.rcvif = ifp; 783 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 784 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 785 &dummy, &plen) < 0) { 786 /* m was already freed at this point */ 787 error = EINVAL;/* better error? */ 788 goto done; 789 } 790 m->m_flags &= ~M_LOOP; /* XXX */ 791 m->m_pkthdr.rcvif = NULL; 792 } 793 794 /* Jump over all PFIL processing if hooks are not active. */ 795 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 796 goto passout; 797 798 odst = ip6->ip6_dst; 799 /* Run through list of hooks for output packets. */ 800 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, 0, inp); 801 if (error != 0 || m == NULL) 802 goto done; 803 /* adjust pointer */ 804 ip6 = mtod(m, struct ip6_hdr *); 805 806 needfiblookup = 0; 807 /* See if destination IP address was changed by packet filter. */ 808 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 809 m->m_flags |= M_SKIP_FIREWALL; 810 /* If destination is now ourself drop to ip6_input(). */ 811 if (in6_localip(&ip6->ip6_dst)) { 812 m->m_flags |= M_FASTFWD_OURS; 813 if (m->m_pkthdr.rcvif == NULL) 814 m->m_pkthdr.rcvif = V_loif; 815 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 816 m->m_pkthdr.csum_flags |= 817 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 818 m->m_pkthdr.csum_data = 0xffff; 819 } 820 #ifdef SCTP 821 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 822 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 823 #endif 824 error = netisr_queue(NETISR_IPV6, m); 825 goto done; 826 } else { 827 RO_INVALIDATE_CACHE(ro); 828 needfiblookup = 1; /* Redo the routing table lookup. */ 829 } 830 } 831 /* See if fib was changed by packet filter. */ 832 if (fibnum != M_GETFIB(m)) { 833 m->m_flags |= M_SKIP_FIREWALL; 834 fibnum = M_GETFIB(m); 835 RO_INVALIDATE_CACHE(ro); 836 needfiblookup = 1; 837 } 838 if (needfiblookup) 839 goto again; 840 841 /* See if local, if yes, send it to netisr. */ 842 if (m->m_flags & M_FASTFWD_OURS) { 843 if (m->m_pkthdr.rcvif == NULL) 844 m->m_pkthdr.rcvif = V_loif; 845 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 846 m->m_pkthdr.csum_flags |= 847 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 848 m->m_pkthdr.csum_data = 0xffff; 849 } 850 #ifdef SCTP 851 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 852 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 853 #endif 854 error = netisr_queue(NETISR_IPV6, m); 855 goto done; 856 } 857 /* Or forward to some other address? */ 858 if ((m->m_flags & M_IP6_NEXTHOP) && 859 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 860 dst = (struct sockaddr_in6 *)&ro->ro_dst; 861 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 862 m->m_flags |= M_SKIP_FIREWALL; 863 m->m_flags &= ~M_IP6_NEXTHOP; 864 m_tag_delete(m, fwd_tag); 865 goto again; 866 } 867 868 passout: 869 /* 870 * Send the packet to the outgoing interface. 871 * If necessary, do IPv6 fragmentation before sending. 872 * 873 * the logic here is rather complex: 874 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 875 * 1-a: send as is if tlen <= path mtu 876 * 1-b: fragment if tlen > path mtu 877 * 878 * 2: if user asks us not to fragment (dontfrag == 1) 879 * 2-a: send as is if tlen <= interface mtu 880 * 2-b: error if tlen > interface mtu 881 * 882 * 3: if we always need to attach fragment header (alwaysfrag == 1) 883 * always fragment 884 * 885 * 4: if dontfrag == 1 && alwaysfrag == 1 886 * error, as we cannot handle this conflicting request 887 */ 888 sw_csum = m->m_pkthdr.csum_flags; 889 if (!hdrsplit) { 890 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 891 sw_csum &= ~ifp->if_hwassist; 892 } else 893 tso = 0; 894 /* 895 * If we added extension headers, we will not do TSO and calculate the 896 * checksums ourselves for now. 897 * XXX-BZ Need a framework to know when the NIC can handle it, even 898 * with ext. hdrs. 899 */ 900 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 901 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 902 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 903 } 904 #ifdef SCTP 905 if (sw_csum & CSUM_SCTP_IPV6) { 906 sw_csum &= ~CSUM_SCTP_IPV6; 907 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 908 } 909 #endif 910 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 911 tlen = m->m_pkthdr.len; 912 913 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 914 dontfrag = 1; 915 else 916 dontfrag = 0; 917 if (dontfrag && alwaysfrag) { /* case 4 */ 918 /* conflicting request - can't transmit */ 919 error = EMSGSIZE; 920 goto bad; 921 } 922 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 923 /* 924 * Even if the DONTFRAG option is specified, we cannot send the 925 * packet when the data length is larger than the MTU of the 926 * outgoing interface. 927 * Notify the error by sending IPV6_PATHMTU ancillary data if 928 * application wanted to know the MTU value. Also return an 929 * error code (this is not described in the API spec). 930 */ 931 if (inp != NULL) 932 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 933 error = EMSGSIZE; 934 goto bad; 935 } 936 937 /* 938 * transmit packet without fragmentation 939 */ 940 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 941 struct in6_ifaddr *ia6; 942 943 ip6 = mtod(m, struct ip6_hdr *); 944 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 945 if (ia6) { 946 /* Record statistics for this interface address. */ 947 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 948 counter_u64_add(ia6->ia_ifa.ifa_obytes, 949 m->m_pkthdr.len); 950 ifa_free(&ia6->ia_ifa); 951 } 952 #ifdef RATELIMIT 953 if (inp != NULL) { 954 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 955 in_pcboutput_txrtlmt(inp, ifp, m); 956 /* stamp send tag on mbuf */ 957 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 958 } else { 959 m->m_pkthdr.snd_tag = NULL; 960 } 961 #endif 962 error = nd6_output_ifp(ifp, origifp, m, dst, 963 (struct route *)ro); 964 #ifdef RATELIMIT 965 /* check for route change */ 966 if (error == EAGAIN) 967 in_pcboutput_eagain(inp); 968 #endif 969 goto done; 970 } 971 972 /* 973 * try to fragment the packet. case 1-b and 3 974 */ 975 if (mtu < IPV6_MMTU) { 976 /* path MTU cannot be less than IPV6_MMTU */ 977 error = EMSGSIZE; 978 in6_ifstat_inc(ifp, ifs6_out_fragfail); 979 goto bad; 980 } else if (ip6->ip6_plen == 0) { 981 /* jumbo payload cannot be fragmented */ 982 error = EMSGSIZE; 983 in6_ifstat_inc(ifp, ifs6_out_fragfail); 984 goto bad; 985 } else { 986 u_char nextproto; 987 988 /* 989 * Too large for the destination or interface; 990 * fragment if possible. 991 * Must be able to put at least 8 bytes per fragment. 992 */ 993 hlen = unfragpartlen; 994 if (mtu > IPV6_MAXPACKET) 995 mtu = IPV6_MAXPACKET; 996 997 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 998 if (len < 8) { 999 error = EMSGSIZE; 1000 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1001 goto bad; 1002 } 1003 1004 /* 1005 * If the interface will not calculate checksums on 1006 * fragmented packets, then do it here. 1007 * XXX-BZ handle the hw offloading case. Need flags. 1008 */ 1009 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1010 in6_delayed_cksum(m, plen, hlen); 1011 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 1012 } 1013 #ifdef SCTP 1014 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 1015 sctp_delayed_cksum(m, hlen); 1016 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 1017 } 1018 #endif 1019 /* 1020 * Change the next header field of the last header in the 1021 * unfragmentable part. 1022 */ 1023 if (exthdrs.ip6e_rthdr) { 1024 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1025 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1026 } else if (exthdrs.ip6e_dest1) { 1027 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1028 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1029 } else if (exthdrs.ip6e_hbh) { 1030 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1031 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1032 } else { 1033 nextproto = ip6->ip6_nxt; 1034 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1035 } 1036 1037 /* 1038 * Loop through length of segment after first fragment, 1039 * make new header and copy data of each part and link onto 1040 * chain. 1041 */ 1042 m0 = m; 1043 id = htonl(ip6_randomid()); 1044 if ((error = ip6_fragment(ifp, m, hlen, nextproto, len, id))) 1045 goto sendorfree; 1046 1047 in6_ifstat_inc(ifp, ifs6_out_fragok); 1048 } 1049 1050 /* 1051 * Remove leading garbages. 1052 */ 1053 sendorfree: 1054 m = m0->m_nextpkt; 1055 m0->m_nextpkt = 0; 1056 m_freem(m0); 1057 for (; m; m = m0) { 1058 m0 = m->m_nextpkt; 1059 m->m_nextpkt = 0; 1060 if (error == 0) { 1061 /* Record statistics for this interface address. */ 1062 if (ia) { 1063 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1064 counter_u64_add(ia->ia_ifa.ifa_obytes, 1065 m->m_pkthdr.len); 1066 } 1067 #ifdef RATELIMIT 1068 if (inp != NULL) { 1069 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 1070 in_pcboutput_txrtlmt(inp, ifp, m); 1071 /* stamp send tag on mbuf */ 1072 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 1073 } else { 1074 m->m_pkthdr.snd_tag = NULL; 1075 } 1076 #endif 1077 error = nd6_output_ifp(ifp, origifp, m, dst, 1078 (struct route *)ro); 1079 #ifdef RATELIMIT 1080 /* check for route change */ 1081 if (error == EAGAIN) 1082 in_pcboutput_eagain(inp); 1083 #endif 1084 } else 1085 m_freem(m); 1086 } 1087 1088 if (error == 0) 1089 IP6STAT_INC(ip6s_fragmented); 1090 1091 done: 1092 if (ro == &ip6route) 1093 RO_RTFREE(ro); 1094 return (error); 1095 1096 freehdrs: 1097 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1098 m_freem(exthdrs.ip6e_dest1); 1099 m_freem(exthdrs.ip6e_rthdr); 1100 m_freem(exthdrs.ip6e_dest2); 1101 /* FALLTHROUGH */ 1102 bad: 1103 if (m) 1104 m_freem(m); 1105 goto done; 1106 } 1107 1108 static int 1109 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1110 { 1111 struct mbuf *m; 1112 1113 if (hlen > MCLBYTES) 1114 return (ENOBUFS); /* XXX */ 1115 1116 if (hlen > MLEN) 1117 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1118 else 1119 m = m_get(M_NOWAIT, MT_DATA); 1120 if (m == NULL) 1121 return (ENOBUFS); 1122 m->m_len = hlen; 1123 if (hdr) 1124 bcopy(hdr, mtod(m, caddr_t), hlen); 1125 1126 *mp = m; 1127 return (0); 1128 } 1129 1130 /* 1131 * Insert jumbo payload option. 1132 */ 1133 static int 1134 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1135 { 1136 struct mbuf *mopt; 1137 u_char *optbuf; 1138 u_int32_t v; 1139 1140 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1141 1142 /* 1143 * If there is no hop-by-hop options header, allocate new one. 1144 * If there is one but it doesn't have enough space to store the 1145 * jumbo payload option, allocate a cluster to store the whole options. 1146 * Otherwise, use it to store the options. 1147 */ 1148 if (exthdrs->ip6e_hbh == NULL) { 1149 mopt = m_get(M_NOWAIT, MT_DATA); 1150 if (mopt == NULL) 1151 return (ENOBUFS); 1152 mopt->m_len = JUMBOOPTLEN; 1153 optbuf = mtod(mopt, u_char *); 1154 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1155 exthdrs->ip6e_hbh = mopt; 1156 } else { 1157 struct ip6_hbh *hbh; 1158 1159 mopt = exthdrs->ip6e_hbh; 1160 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1161 /* 1162 * XXX assumption: 1163 * - exthdrs->ip6e_hbh is not referenced from places 1164 * other than exthdrs. 1165 * - exthdrs->ip6e_hbh is not an mbuf chain. 1166 */ 1167 int oldoptlen = mopt->m_len; 1168 struct mbuf *n; 1169 1170 /* 1171 * XXX: give up if the whole (new) hbh header does 1172 * not fit even in an mbuf cluster. 1173 */ 1174 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1175 return (ENOBUFS); 1176 1177 /* 1178 * As a consequence, we must always prepare a cluster 1179 * at this point. 1180 */ 1181 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1182 if (n == NULL) 1183 return (ENOBUFS); 1184 n->m_len = oldoptlen + JUMBOOPTLEN; 1185 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1186 oldoptlen); 1187 optbuf = mtod(n, caddr_t) + oldoptlen; 1188 m_freem(mopt); 1189 mopt = exthdrs->ip6e_hbh = n; 1190 } else { 1191 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1192 mopt->m_len += JUMBOOPTLEN; 1193 } 1194 optbuf[0] = IP6OPT_PADN; 1195 optbuf[1] = 1; 1196 1197 /* 1198 * Adjust the header length according to the pad and 1199 * the jumbo payload option. 1200 */ 1201 hbh = mtod(mopt, struct ip6_hbh *); 1202 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1203 } 1204 1205 /* fill in the option. */ 1206 optbuf[2] = IP6OPT_JUMBO; 1207 optbuf[3] = 4; 1208 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1209 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1210 1211 /* finally, adjust the packet header length */ 1212 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1213 1214 return (0); 1215 #undef JUMBOOPTLEN 1216 } 1217 1218 /* 1219 * Insert fragment header and copy unfragmentable header portions. 1220 */ 1221 static int 1222 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1223 struct ip6_frag **frghdrp) 1224 { 1225 struct mbuf *n, *mlast; 1226 1227 if (hlen > sizeof(struct ip6_hdr)) { 1228 n = m_copym(m0, sizeof(struct ip6_hdr), 1229 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1230 if (n == NULL) 1231 return (ENOBUFS); 1232 m->m_next = n; 1233 } else 1234 n = m; 1235 1236 /* Search for the last mbuf of unfragmentable part. */ 1237 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1238 ; 1239 1240 if (M_WRITABLE(mlast) && 1241 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1242 /* use the trailing space of the last mbuf for the fragment hdr */ 1243 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1244 mlast->m_len); 1245 mlast->m_len += sizeof(struct ip6_frag); 1246 m->m_pkthdr.len += sizeof(struct ip6_frag); 1247 } else { 1248 /* allocate a new mbuf for the fragment header */ 1249 struct mbuf *mfrg; 1250 1251 mfrg = m_get(M_NOWAIT, MT_DATA); 1252 if (mfrg == NULL) 1253 return (ENOBUFS); 1254 mfrg->m_len = sizeof(struct ip6_frag); 1255 *frghdrp = mtod(mfrg, struct ip6_frag *); 1256 mlast->m_next = mfrg; 1257 } 1258 1259 return (0); 1260 } 1261 1262 /* 1263 * Calculates IPv6 path mtu for destination @dst. 1264 * Resulting MTU is stored in @mtup. 1265 * 1266 * Returns 0 on success. 1267 */ 1268 static int 1269 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1270 { 1271 struct nhop6_extended nh6; 1272 struct in6_addr kdst; 1273 uint32_t scopeid; 1274 struct ifnet *ifp; 1275 u_long mtu; 1276 int error; 1277 1278 in6_splitscope(dst, &kdst, &scopeid); 1279 if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0) 1280 return (EHOSTUNREACH); 1281 1282 ifp = nh6.nh_ifp; 1283 mtu = nh6.nh_mtu; 1284 1285 error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL, 0); 1286 fib6_free_nh_ext(fibnum, &nh6); 1287 1288 return (error); 1289 } 1290 1291 /* 1292 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1293 * and cached data in @ro_pmtu. 1294 * MTU from (successful) route lookup is saved (along with dst) 1295 * inside @ro_pmtu to avoid subsequent route lookups after packet 1296 * filter processing. 1297 * 1298 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1299 * Returns 0 on success. 1300 */ 1301 static int 1302 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1303 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1304 int *alwaysfragp, u_int fibnum, u_int proto) 1305 { 1306 struct nhop6_basic nh6; 1307 struct in6_addr kdst; 1308 uint32_t scopeid; 1309 struct sockaddr_in6 *sa6_dst; 1310 u_long mtu; 1311 1312 mtu = 0; 1313 if (do_lookup) { 1314 1315 /* 1316 * Here ro_pmtu has final destination address, while 1317 * ro might represent immediate destination. 1318 * Use ro_pmtu destination since mtu might differ. 1319 */ 1320 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1321 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1322 ro_pmtu->ro_mtu = 0; 1323 1324 if (ro_pmtu->ro_mtu == 0) { 1325 bzero(sa6_dst, sizeof(*sa6_dst)); 1326 sa6_dst->sin6_family = AF_INET6; 1327 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1328 sa6_dst->sin6_addr = *dst; 1329 1330 in6_splitscope(dst, &kdst, &scopeid); 1331 if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0, 1332 &nh6) == 0) 1333 ro_pmtu->ro_mtu = nh6.nh_mtu; 1334 } 1335 1336 mtu = ro_pmtu->ro_mtu; 1337 } 1338 1339 if (ro_pmtu->ro_rt) 1340 mtu = ro_pmtu->ro_rt->rt_mtu; 1341 1342 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1343 } 1344 1345 /* 1346 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1347 * hostcache data for @dst. 1348 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1349 * 1350 * Returns 0 on success. 1351 */ 1352 static int 1353 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1354 u_long *mtup, int *alwaysfragp, u_int proto) 1355 { 1356 u_long mtu = 0; 1357 int alwaysfrag = 0; 1358 int error = 0; 1359 1360 if (rt_mtu > 0) { 1361 u_int32_t ifmtu; 1362 struct in_conninfo inc; 1363 1364 bzero(&inc, sizeof(inc)); 1365 inc.inc_flags |= INC_ISIPV6; 1366 inc.inc6_faddr = *dst; 1367 1368 ifmtu = IN6_LINKMTU(ifp); 1369 1370 /* TCP is known to react to pmtu changes so skip hc */ 1371 if (proto != IPPROTO_TCP) 1372 mtu = tcp_hc_getmtu(&inc); 1373 1374 if (mtu) 1375 mtu = min(mtu, rt_mtu); 1376 else 1377 mtu = rt_mtu; 1378 if (mtu == 0) 1379 mtu = ifmtu; 1380 else if (mtu < IPV6_MMTU) { 1381 /* 1382 * RFC2460 section 5, last paragraph: 1383 * if we record ICMPv6 too big message with 1384 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1385 * or smaller, with framgent header attached. 1386 * (fragment header is needed regardless from the 1387 * packet size, for translators to identify packets) 1388 */ 1389 alwaysfrag = 1; 1390 mtu = IPV6_MMTU; 1391 } 1392 } else if (ifp) { 1393 mtu = IN6_LINKMTU(ifp); 1394 } else 1395 error = EHOSTUNREACH; /* XXX */ 1396 1397 *mtup = mtu; 1398 if (alwaysfragp) 1399 *alwaysfragp = alwaysfrag; 1400 return (error); 1401 } 1402 1403 /* 1404 * IP6 socket option processing. 1405 */ 1406 int 1407 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1408 { 1409 int optdatalen, uproto; 1410 void *optdata; 1411 struct inpcb *in6p = sotoinpcb(so); 1412 int error, optval; 1413 int level, op, optname; 1414 int optlen; 1415 struct thread *td; 1416 #ifdef RSS 1417 uint32_t rss_bucket; 1418 int retval; 1419 #endif 1420 1421 /* 1422 * Don't use more than a quarter of mbuf clusters. N.B.: 1423 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1424 * on LP64 architectures, so cast to u_long to avoid undefined 1425 * behavior. ILP32 architectures cannot have nmbclusters 1426 * large enough to overflow for other reasons. 1427 */ 1428 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1429 1430 level = sopt->sopt_level; 1431 op = sopt->sopt_dir; 1432 optname = sopt->sopt_name; 1433 optlen = sopt->sopt_valsize; 1434 td = sopt->sopt_td; 1435 error = 0; 1436 optval = 0; 1437 uproto = (int)so->so_proto->pr_protocol; 1438 1439 if (level != IPPROTO_IPV6) { 1440 error = EINVAL; 1441 1442 if (sopt->sopt_level == SOL_SOCKET && 1443 sopt->sopt_dir == SOPT_SET) { 1444 switch (sopt->sopt_name) { 1445 case SO_REUSEADDR: 1446 INP_WLOCK(in6p); 1447 if ((so->so_options & SO_REUSEADDR) != 0) 1448 in6p->inp_flags2 |= INP_REUSEADDR; 1449 else 1450 in6p->inp_flags2 &= ~INP_REUSEADDR; 1451 INP_WUNLOCK(in6p); 1452 error = 0; 1453 break; 1454 case SO_REUSEPORT: 1455 INP_WLOCK(in6p); 1456 if ((so->so_options & SO_REUSEPORT) != 0) 1457 in6p->inp_flags2 |= INP_REUSEPORT; 1458 else 1459 in6p->inp_flags2 &= ~INP_REUSEPORT; 1460 INP_WUNLOCK(in6p); 1461 error = 0; 1462 break; 1463 case SO_REUSEPORT_LB: 1464 INP_WLOCK(in6p); 1465 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1466 in6p->inp_flags2 |= INP_REUSEPORT_LB; 1467 else 1468 in6p->inp_flags2 &= ~INP_REUSEPORT_LB; 1469 INP_WUNLOCK(in6p); 1470 error = 0; 1471 break; 1472 case SO_SETFIB: 1473 INP_WLOCK(in6p); 1474 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1475 INP_WUNLOCK(in6p); 1476 error = 0; 1477 break; 1478 case SO_MAX_PACING_RATE: 1479 #ifdef RATELIMIT 1480 INP_WLOCK(in6p); 1481 in6p->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1482 INP_WUNLOCK(in6p); 1483 error = 0; 1484 #else 1485 error = EOPNOTSUPP; 1486 #endif 1487 break; 1488 default: 1489 break; 1490 } 1491 } 1492 } else { /* level == IPPROTO_IPV6 */ 1493 switch (op) { 1494 1495 case SOPT_SET: 1496 switch (optname) { 1497 case IPV6_2292PKTOPTIONS: 1498 #ifdef IPV6_PKTOPTIONS 1499 case IPV6_PKTOPTIONS: 1500 #endif 1501 { 1502 struct mbuf *m; 1503 1504 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1505 printf("ip6_ctloutput: mbuf limit hit\n"); 1506 error = ENOBUFS; 1507 break; 1508 } 1509 1510 error = soopt_getm(sopt, &m); /* XXX */ 1511 if (error != 0) 1512 break; 1513 error = soopt_mcopyin(sopt, m); /* XXX */ 1514 if (error != 0) 1515 break; 1516 error = ip6_pcbopts(&in6p->in6p_outputopts, 1517 m, so, sopt); 1518 m_freem(m); /* XXX */ 1519 break; 1520 } 1521 1522 /* 1523 * Use of some Hop-by-Hop options or some 1524 * Destination options, might require special 1525 * privilege. That is, normal applications 1526 * (without special privilege) might be forbidden 1527 * from setting certain options in outgoing packets, 1528 * and might never see certain options in received 1529 * packets. [RFC 2292 Section 6] 1530 * KAME specific note: 1531 * KAME prevents non-privileged users from sending or 1532 * receiving ANY hbh/dst options in order to avoid 1533 * overhead of parsing options in the kernel. 1534 */ 1535 case IPV6_RECVHOPOPTS: 1536 case IPV6_RECVDSTOPTS: 1537 case IPV6_RECVRTHDRDSTOPTS: 1538 if (td != NULL) { 1539 error = priv_check(td, 1540 PRIV_NETINET_SETHDROPTS); 1541 if (error) 1542 break; 1543 } 1544 /* FALLTHROUGH */ 1545 case IPV6_UNICAST_HOPS: 1546 case IPV6_HOPLIMIT: 1547 1548 case IPV6_RECVPKTINFO: 1549 case IPV6_RECVHOPLIMIT: 1550 case IPV6_RECVRTHDR: 1551 case IPV6_RECVPATHMTU: 1552 case IPV6_RECVTCLASS: 1553 case IPV6_RECVFLOWID: 1554 #ifdef RSS 1555 case IPV6_RECVRSSBUCKETID: 1556 #endif 1557 case IPV6_V6ONLY: 1558 case IPV6_AUTOFLOWLABEL: 1559 case IPV6_ORIGDSTADDR: 1560 case IPV6_BINDANY: 1561 case IPV6_BINDMULTI: 1562 #ifdef RSS 1563 case IPV6_RSS_LISTEN_BUCKET: 1564 #endif 1565 if (optname == IPV6_BINDANY && td != NULL) { 1566 error = priv_check(td, 1567 PRIV_NETINET_BINDANY); 1568 if (error) 1569 break; 1570 } 1571 1572 if (optlen != sizeof(int)) { 1573 error = EINVAL; 1574 break; 1575 } 1576 error = sooptcopyin(sopt, &optval, 1577 sizeof optval, sizeof optval); 1578 if (error) 1579 break; 1580 switch (optname) { 1581 1582 case IPV6_UNICAST_HOPS: 1583 if (optval < -1 || optval >= 256) 1584 error = EINVAL; 1585 else { 1586 /* -1 = kernel default */ 1587 in6p->in6p_hops = optval; 1588 if ((in6p->inp_vflag & 1589 INP_IPV4) != 0) 1590 in6p->inp_ip_ttl = optval; 1591 } 1592 break; 1593 #define OPTSET(bit) \ 1594 do { \ 1595 INP_WLOCK(in6p); \ 1596 if (optval) \ 1597 in6p->inp_flags |= (bit); \ 1598 else \ 1599 in6p->inp_flags &= ~(bit); \ 1600 INP_WUNLOCK(in6p); \ 1601 } while (/*CONSTCOND*/ 0) 1602 #define OPTSET2292(bit) \ 1603 do { \ 1604 INP_WLOCK(in6p); \ 1605 in6p->inp_flags |= IN6P_RFC2292; \ 1606 if (optval) \ 1607 in6p->inp_flags |= (bit); \ 1608 else \ 1609 in6p->inp_flags &= ~(bit); \ 1610 INP_WUNLOCK(in6p); \ 1611 } while (/*CONSTCOND*/ 0) 1612 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1613 1614 #define OPTSET2_N(bit, val) do { \ 1615 if (val) \ 1616 in6p->inp_flags2 |= bit; \ 1617 else \ 1618 in6p->inp_flags2 &= ~bit; \ 1619 } while (0) 1620 #define OPTSET2(bit, val) do { \ 1621 INP_WLOCK(in6p); \ 1622 OPTSET2_N(bit, val); \ 1623 INP_WUNLOCK(in6p); \ 1624 } while (0) 1625 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) 1626 #define OPTSET2292_EXCLUSIVE(bit) \ 1627 do { \ 1628 INP_WLOCK(in6p); \ 1629 if (OPTBIT(IN6P_RFC2292)) { \ 1630 error = EINVAL; \ 1631 } else { \ 1632 if (optval) \ 1633 in6p->inp_flags |= (bit); \ 1634 else \ 1635 in6p->inp_flags &= ~(bit); \ 1636 } \ 1637 INP_WUNLOCK(in6p); \ 1638 } while (/*CONSTCOND*/ 0) 1639 1640 case IPV6_RECVPKTINFO: 1641 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1642 break; 1643 1644 case IPV6_HOPLIMIT: 1645 { 1646 struct ip6_pktopts **optp; 1647 1648 /* cannot mix with RFC2292 */ 1649 if (OPTBIT(IN6P_RFC2292)) { 1650 error = EINVAL; 1651 break; 1652 } 1653 INP_WLOCK(in6p); 1654 if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1655 INP_WUNLOCK(in6p); 1656 return (ECONNRESET); 1657 } 1658 optp = &in6p->in6p_outputopts; 1659 error = ip6_pcbopt(IPV6_HOPLIMIT, 1660 (u_char *)&optval, sizeof(optval), 1661 optp, (td != NULL) ? td->td_ucred : 1662 NULL, uproto); 1663 INP_WUNLOCK(in6p); 1664 break; 1665 } 1666 1667 case IPV6_RECVHOPLIMIT: 1668 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1669 break; 1670 1671 case IPV6_RECVHOPOPTS: 1672 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1673 break; 1674 1675 case IPV6_RECVDSTOPTS: 1676 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1677 break; 1678 1679 case IPV6_RECVRTHDRDSTOPTS: 1680 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1681 break; 1682 1683 case IPV6_RECVRTHDR: 1684 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1685 break; 1686 1687 case IPV6_RECVPATHMTU: 1688 /* 1689 * We ignore this option for TCP 1690 * sockets. 1691 * (RFC3542 leaves this case 1692 * unspecified.) 1693 */ 1694 if (uproto != IPPROTO_TCP) 1695 OPTSET(IN6P_MTU); 1696 break; 1697 1698 case IPV6_RECVFLOWID: 1699 OPTSET2(INP_RECVFLOWID, optval); 1700 break; 1701 1702 #ifdef RSS 1703 case IPV6_RECVRSSBUCKETID: 1704 OPTSET2(INP_RECVRSSBUCKETID, optval); 1705 break; 1706 #endif 1707 1708 case IPV6_V6ONLY: 1709 /* 1710 * make setsockopt(IPV6_V6ONLY) 1711 * available only prior to bind(2). 1712 * see ipng mailing list, Jun 22 2001. 1713 */ 1714 if (in6p->inp_lport || 1715 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1716 error = EINVAL; 1717 break; 1718 } 1719 OPTSET(IN6P_IPV6_V6ONLY); 1720 if (optval) 1721 in6p->inp_vflag &= ~INP_IPV4; 1722 else 1723 in6p->inp_vflag |= INP_IPV4; 1724 break; 1725 case IPV6_RECVTCLASS: 1726 /* cannot mix with RFC2292 XXX */ 1727 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1728 break; 1729 case IPV6_AUTOFLOWLABEL: 1730 OPTSET(IN6P_AUTOFLOWLABEL); 1731 break; 1732 1733 case IPV6_ORIGDSTADDR: 1734 OPTSET2(INP_ORIGDSTADDR, optval); 1735 break; 1736 case IPV6_BINDANY: 1737 OPTSET(INP_BINDANY); 1738 break; 1739 1740 case IPV6_BINDMULTI: 1741 OPTSET2(INP_BINDMULTI, optval); 1742 break; 1743 #ifdef RSS 1744 case IPV6_RSS_LISTEN_BUCKET: 1745 if ((optval >= 0) && 1746 (optval < rss_getnumbuckets())) { 1747 INP_WLOCK(in6p); 1748 in6p->inp_rss_listen_bucket = optval; 1749 OPTSET2_N(INP_RSS_BUCKET_SET, 1); 1750 INP_WUNLOCK(in6p); 1751 } else { 1752 error = EINVAL; 1753 } 1754 break; 1755 #endif 1756 } 1757 break; 1758 1759 case IPV6_TCLASS: 1760 case IPV6_DONTFRAG: 1761 case IPV6_USE_MIN_MTU: 1762 case IPV6_PREFER_TEMPADDR: 1763 if (optlen != sizeof(optval)) { 1764 error = EINVAL; 1765 break; 1766 } 1767 error = sooptcopyin(sopt, &optval, 1768 sizeof optval, sizeof optval); 1769 if (error) 1770 break; 1771 { 1772 struct ip6_pktopts **optp; 1773 INP_WLOCK(in6p); 1774 if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1775 INP_WUNLOCK(in6p); 1776 return (ECONNRESET); 1777 } 1778 optp = &in6p->in6p_outputopts; 1779 error = ip6_pcbopt(optname, 1780 (u_char *)&optval, sizeof(optval), 1781 optp, (td != NULL) ? td->td_ucred : 1782 NULL, uproto); 1783 INP_WUNLOCK(in6p); 1784 break; 1785 } 1786 1787 case IPV6_2292PKTINFO: 1788 case IPV6_2292HOPLIMIT: 1789 case IPV6_2292HOPOPTS: 1790 case IPV6_2292DSTOPTS: 1791 case IPV6_2292RTHDR: 1792 /* RFC 2292 */ 1793 if (optlen != sizeof(int)) { 1794 error = EINVAL; 1795 break; 1796 } 1797 error = sooptcopyin(sopt, &optval, 1798 sizeof optval, sizeof optval); 1799 if (error) 1800 break; 1801 switch (optname) { 1802 case IPV6_2292PKTINFO: 1803 OPTSET2292(IN6P_PKTINFO); 1804 break; 1805 case IPV6_2292HOPLIMIT: 1806 OPTSET2292(IN6P_HOPLIMIT); 1807 break; 1808 case IPV6_2292HOPOPTS: 1809 /* 1810 * Check super-user privilege. 1811 * See comments for IPV6_RECVHOPOPTS. 1812 */ 1813 if (td != NULL) { 1814 error = priv_check(td, 1815 PRIV_NETINET_SETHDROPTS); 1816 if (error) 1817 return (error); 1818 } 1819 OPTSET2292(IN6P_HOPOPTS); 1820 break; 1821 case IPV6_2292DSTOPTS: 1822 if (td != NULL) { 1823 error = priv_check(td, 1824 PRIV_NETINET_SETHDROPTS); 1825 if (error) 1826 return (error); 1827 } 1828 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1829 break; 1830 case IPV6_2292RTHDR: 1831 OPTSET2292(IN6P_RTHDR); 1832 break; 1833 } 1834 break; 1835 case IPV6_PKTINFO: 1836 case IPV6_HOPOPTS: 1837 case IPV6_RTHDR: 1838 case IPV6_DSTOPTS: 1839 case IPV6_RTHDRDSTOPTS: 1840 case IPV6_NEXTHOP: 1841 { 1842 /* new advanced API (RFC3542) */ 1843 u_char *optbuf; 1844 u_char optbuf_storage[MCLBYTES]; 1845 int optlen; 1846 struct ip6_pktopts **optp; 1847 1848 /* cannot mix with RFC2292 */ 1849 if (OPTBIT(IN6P_RFC2292)) { 1850 error = EINVAL; 1851 break; 1852 } 1853 1854 /* 1855 * We only ensure valsize is not too large 1856 * here. Further validation will be done 1857 * later. 1858 */ 1859 error = sooptcopyin(sopt, optbuf_storage, 1860 sizeof(optbuf_storage), 0); 1861 if (error) 1862 break; 1863 optlen = sopt->sopt_valsize; 1864 optbuf = optbuf_storage; 1865 INP_WLOCK(in6p); 1866 if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1867 INP_WUNLOCK(in6p); 1868 return (ECONNRESET); 1869 } 1870 optp = &in6p->in6p_outputopts; 1871 error = ip6_pcbopt(optname, optbuf, optlen, 1872 optp, (td != NULL) ? td->td_ucred : NULL, 1873 uproto); 1874 INP_WUNLOCK(in6p); 1875 break; 1876 } 1877 #undef OPTSET 1878 1879 case IPV6_MULTICAST_IF: 1880 case IPV6_MULTICAST_HOPS: 1881 case IPV6_MULTICAST_LOOP: 1882 case IPV6_JOIN_GROUP: 1883 case IPV6_LEAVE_GROUP: 1884 case IPV6_MSFILTER: 1885 case MCAST_BLOCK_SOURCE: 1886 case MCAST_UNBLOCK_SOURCE: 1887 case MCAST_JOIN_GROUP: 1888 case MCAST_LEAVE_GROUP: 1889 case MCAST_JOIN_SOURCE_GROUP: 1890 case MCAST_LEAVE_SOURCE_GROUP: 1891 error = ip6_setmoptions(in6p, sopt); 1892 break; 1893 1894 case IPV6_PORTRANGE: 1895 error = sooptcopyin(sopt, &optval, 1896 sizeof optval, sizeof optval); 1897 if (error) 1898 break; 1899 1900 INP_WLOCK(in6p); 1901 switch (optval) { 1902 case IPV6_PORTRANGE_DEFAULT: 1903 in6p->inp_flags &= ~(INP_LOWPORT); 1904 in6p->inp_flags &= ~(INP_HIGHPORT); 1905 break; 1906 1907 case IPV6_PORTRANGE_HIGH: 1908 in6p->inp_flags &= ~(INP_LOWPORT); 1909 in6p->inp_flags |= INP_HIGHPORT; 1910 break; 1911 1912 case IPV6_PORTRANGE_LOW: 1913 in6p->inp_flags &= ~(INP_HIGHPORT); 1914 in6p->inp_flags |= INP_LOWPORT; 1915 break; 1916 1917 default: 1918 error = EINVAL; 1919 break; 1920 } 1921 INP_WUNLOCK(in6p); 1922 break; 1923 1924 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1925 case IPV6_IPSEC_POLICY: 1926 if (IPSEC_ENABLED(ipv6)) { 1927 error = IPSEC_PCBCTL(ipv6, in6p, sopt); 1928 break; 1929 } 1930 /* FALLTHROUGH */ 1931 #endif /* IPSEC */ 1932 1933 default: 1934 error = ENOPROTOOPT; 1935 break; 1936 } 1937 break; 1938 1939 case SOPT_GET: 1940 switch (optname) { 1941 1942 case IPV6_2292PKTOPTIONS: 1943 #ifdef IPV6_PKTOPTIONS 1944 case IPV6_PKTOPTIONS: 1945 #endif 1946 /* 1947 * RFC3542 (effectively) deprecated the 1948 * semantics of the 2292-style pktoptions. 1949 * Since it was not reliable in nature (i.e., 1950 * applications had to expect the lack of some 1951 * information after all), it would make sense 1952 * to simplify this part by always returning 1953 * empty data. 1954 */ 1955 sopt->sopt_valsize = 0; 1956 break; 1957 1958 case IPV6_RECVHOPOPTS: 1959 case IPV6_RECVDSTOPTS: 1960 case IPV6_RECVRTHDRDSTOPTS: 1961 case IPV6_UNICAST_HOPS: 1962 case IPV6_RECVPKTINFO: 1963 case IPV6_RECVHOPLIMIT: 1964 case IPV6_RECVRTHDR: 1965 case IPV6_RECVPATHMTU: 1966 1967 case IPV6_V6ONLY: 1968 case IPV6_PORTRANGE: 1969 case IPV6_RECVTCLASS: 1970 case IPV6_AUTOFLOWLABEL: 1971 case IPV6_BINDANY: 1972 case IPV6_FLOWID: 1973 case IPV6_FLOWTYPE: 1974 case IPV6_RECVFLOWID: 1975 #ifdef RSS 1976 case IPV6_RSSBUCKETID: 1977 case IPV6_RECVRSSBUCKETID: 1978 #endif 1979 case IPV6_BINDMULTI: 1980 switch (optname) { 1981 1982 case IPV6_RECVHOPOPTS: 1983 optval = OPTBIT(IN6P_HOPOPTS); 1984 break; 1985 1986 case IPV6_RECVDSTOPTS: 1987 optval = OPTBIT(IN6P_DSTOPTS); 1988 break; 1989 1990 case IPV6_RECVRTHDRDSTOPTS: 1991 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1992 break; 1993 1994 case IPV6_UNICAST_HOPS: 1995 optval = in6p->in6p_hops; 1996 break; 1997 1998 case IPV6_RECVPKTINFO: 1999 optval = OPTBIT(IN6P_PKTINFO); 2000 break; 2001 2002 case IPV6_RECVHOPLIMIT: 2003 optval = OPTBIT(IN6P_HOPLIMIT); 2004 break; 2005 2006 case IPV6_RECVRTHDR: 2007 optval = OPTBIT(IN6P_RTHDR); 2008 break; 2009 2010 case IPV6_RECVPATHMTU: 2011 optval = OPTBIT(IN6P_MTU); 2012 break; 2013 2014 case IPV6_V6ONLY: 2015 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2016 break; 2017 2018 case IPV6_PORTRANGE: 2019 { 2020 int flags; 2021 flags = in6p->inp_flags; 2022 if (flags & INP_HIGHPORT) 2023 optval = IPV6_PORTRANGE_HIGH; 2024 else if (flags & INP_LOWPORT) 2025 optval = IPV6_PORTRANGE_LOW; 2026 else 2027 optval = 0; 2028 break; 2029 } 2030 case IPV6_RECVTCLASS: 2031 optval = OPTBIT(IN6P_TCLASS); 2032 break; 2033 2034 case IPV6_AUTOFLOWLABEL: 2035 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2036 break; 2037 2038 case IPV6_ORIGDSTADDR: 2039 optval = OPTBIT2(INP_ORIGDSTADDR); 2040 break; 2041 2042 case IPV6_BINDANY: 2043 optval = OPTBIT(INP_BINDANY); 2044 break; 2045 2046 case IPV6_FLOWID: 2047 optval = in6p->inp_flowid; 2048 break; 2049 2050 case IPV6_FLOWTYPE: 2051 optval = in6p->inp_flowtype; 2052 break; 2053 2054 case IPV6_RECVFLOWID: 2055 optval = OPTBIT2(INP_RECVFLOWID); 2056 break; 2057 #ifdef RSS 2058 case IPV6_RSSBUCKETID: 2059 retval = 2060 rss_hash2bucket(in6p->inp_flowid, 2061 in6p->inp_flowtype, 2062 &rss_bucket); 2063 if (retval == 0) 2064 optval = rss_bucket; 2065 else 2066 error = EINVAL; 2067 break; 2068 2069 case IPV6_RECVRSSBUCKETID: 2070 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2071 break; 2072 #endif 2073 2074 case IPV6_BINDMULTI: 2075 optval = OPTBIT2(INP_BINDMULTI); 2076 break; 2077 2078 } 2079 if (error) 2080 break; 2081 error = sooptcopyout(sopt, &optval, 2082 sizeof optval); 2083 break; 2084 2085 case IPV6_PATHMTU: 2086 { 2087 u_long pmtu = 0; 2088 struct ip6_mtuinfo mtuinfo; 2089 struct in6_addr addr; 2090 2091 if (!(so->so_state & SS_ISCONNECTED)) 2092 return (ENOTCONN); 2093 /* 2094 * XXX: we dot not consider the case of source 2095 * routing, or optional information to specify 2096 * the outgoing interface. 2097 * Copy faddr out of in6p to avoid holding lock 2098 * on inp during route lookup. 2099 */ 2100 INP_RLOCK(in6p); 2101 bcopy(&in6p->in6p_faddr, &addr, sizeof(addr)); 2102 INP_RUNLOCK(in6p); 2103 error = ip6_getpmtu_ctl(so->so_fibnum, 2104 &addr, &pmtu); 2105 if (error) 2106 break; 2107 if (pmtu > IPV6_MAXPACKET) 2108 pmtu = IPV6_MAXPACKET; 2109 2110 bzero(&mtuinfo, sizeof(mtuinfo)); 2111 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2112 optdata = (void *)&mtuinfo; 2113 optdatalen = sizeof(mtuinfo); 2114 error = sooptcopyout(sopt, optdata, 2115 optdatalen); 2116 break; 2117 } 2118 2119 case IPV6_2292PKTINFO: 2120 case IPV6_2292HOPLIMIT: 2121 case IPV6_2292HOPOPTS: 2122 case IPV6_2292RTHDR: 2123 case IPV6_2292DSTOPTS: 2124 switch (optname) { 2125 case IPV6_2292PKTINFO: 2126 optval = OPTBIT(IN6P_PKTINFO); 2127 break; 2128 case IPV6_2292HOPLIMIT: 2129 optval = OPTBIT(IN6P_HOPLIMIT); 2130 break; 2131 case IPV6_2292HOPOPTS: 2132 optval = OPTBIT(IN6P_HOPOPTS); 2133 break; 2134 case IPV6_2292RTHDR: 2135 optval = OPTBIT(IN6P_RTHDR); 2136 break; 2137 case IPV6_2292DSTOPTS: 2138 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2139 break; 2140 } 2141 error = sooptcopyout(sopt, &optval, 2142 sizeof optval); 2143 break; 2144 case IPV6_PKTINFO: 2145 case IPV6_HOPOPTS: 2146 case IPV6_RTHDR: 2147 case IPV6_DSTOPTS: 2148 case IPV6_RTHDRDSTOPTS: 2149 case IPV6_NEXTHOP: 2150 case IPV6_TCLASS: 2151 case IPV6_DONTFRAG: 2152 case IPV6_USE_MIN_MTU: 2153 case IPV6_PREFER_TEMPADDR: 2154 error = ip6_getpcbopt(in6p, optname, sopt); 2155 break; 2156 2157 case IPV6_MULTICAST_IF: 2158 case IPV6_MULTICAST_HOPS: 2159 case IPV6_MULTICAST_LOOP: 2160 case IPV6_MSFILTER: 2161 error = ip6_getmoptions(in6p, sopt); 2162 break; 2163 2164 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2165 case IPV6_IPSEC_POLICY: 2166 if (IPSEC_ENABLED(ipv6)) { 2167 error = IPSEC_PCBCTL(ipv6, in6p, sopt); 2168 break; 2169 } 2170 /* FALLTHROUGH */ 2171 #endif /* IPSEC */ 2172 default: 2173 error = ENOPROTOOPT; 2174 break; 2175 } 2176 break; 2177 } 2178 } 2179 return (error); 2180 } 2181 2182 int 2183 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2184 { 2185 int error = 0, optval, optlen; 2186 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2187 struct inpcb *in6p = sotoinpcb(so); 2188 int level, op, optname; 2189 2190 level = sopt->sopt_level; 2191 op = sopt->sopt_dir; 2192 optname = sopt->sopt_name; 2193 optlen = sopt->sopt_valsize; 2194 2195 if (level != IPPROTO_IPV6) { 2196 return (EINVAL); 2197 } 2198 2199 switch (optname) { 2200 case IPV6_CHECKSUM: 2201 /* 2202 * For ICMPv6 sockets, no modification allowed for checksum 2203 * offset, permit "no change" values to help existing apps. 2204 * 2205 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2206 * for an ICMPv6 socket will fail." 2207 * The current behavior does not meet RFC3542. 2208 */ 2209 switch (op) { 2210 case SOPT_SET: 2211 if (optlen != sizeof(int)) { 2212 error = EINVAL; 2213 break; 2214 } 2215 error = sooptcopyin(sopt, &optval, sizeof(optval), 2216 sizeof(optval)); 2217 if (error) 2218 break; 2219 if ((optval % 2) != 0) { 2220 /* the API assumes even offset values */ 2221 error = EINVAL; 2222 } else if (so->so_proto->pr_protocol == 2223 IPPROTO_ICMPV6) { 2224 if (optval != icmp6off) 2225 error = EINVAL; 2226 } else 2227 in6p->in6p_cksum = optval; 2228 break; 2229 2230 case SOPT_GET: 2231 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2232 optval = icmp6off; 2233 else 2234 optval = in6p->in6p_cksum; 2235 2236 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2237 break; 2238 2239 default: 2240 error = EINVAL; 2241 break; 2242 } 2243 break; 2244 2245 default: 2246 error = ENOPROTOOPT; 2247 break; 2248 } 2249 2250 return (error); 2251 } 2252 2253 /* 2254 * Set up IP6 options in pcb for insertion in output packets or 2255 * specifying behavior of outgoing packets. 2256 */ 2257 static int 2258 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2259 struct socket *so, struct sockopt *sopt) 2260 { 2261 struct ip6_pktopts *opt = *pktopt; 2262 int error = 0; 2263 struct thread *td = sopt->sopt_td; 2264 2265 /* turn off any old options. */ 2266 if (opt) { 2267 #ifdef DIAGNOSTIC 2268 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2269 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2270 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2271 printf("ip6_pcbopts: all specified options are cleared.\n"); 2272 #endif 2273 ip6_clearpktopts(opt, -1); 2274 } else 2275 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2276 *pktopt = NULL; 2277 2278 if (!m || m->m_len == 0) { 2279 /* 2280 * Only turning off any previous options, regardless of 2281 * whether the opt is just created or given. 2282 */ 2283 free(opt, M_IP6OPT); 2284 return (0); 2285 } 2286 2287 /* set options specified by user. */ 2288 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2289 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2290 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2291 free(opt, M_IP6OPT); 2292 return (error); 2293 } 2294 *pktopt = opt; 2295 return (0); 2296 } 2297 2298 /* 2299 * initialize ip6_pktopts. beware that there are non-zero default values in 2300 * the struct. 2301 */ 2302 void 2303 ip6_initpktopts(struct ip6_pktopts *opt) 2304 { 2305 2306 bzero(opt, sizeof(*opt)); 2307 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2308 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2309 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2310 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2311 } 2312 2313 static int 2314 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2315 struct ucred *cred, int uproto) 2316 { 2317 struct ip6_pktopts *opt; 2318 2319 if (*pktopt == NULL) { 2320 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2321 M_NOWAIT); 2322 if (*pktopt == NULL) 2323 return (ENOBUFS); 2324 ip6_initpktopts(*pktopt); 2325 } 2326 opt = *pktopt; 2327 2328 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2329 } 2330 2331 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2332 if (pktopt && pktopt->field) { \ 2333 INP_RUNLOCK(in6p); \ 2334 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2335 malloc_optdata = true; \ 2336 INP_RLOCK(in6p); \ 2337 if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ 2338 INP_RUNLOCK(in6p); \ 2339 free(optdata, M_TEMP); \ 2340 return (ECONNRESET); \ 2341 } \ 2342 pktopt = in6p->in6p_outputopts; \ 2343 if (pktopt && pktopt->field) { \ 2344 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2345 bcopy(&pktopt->field, optdata, optdatalen); \ 2346 } else { \ 2347 free(optdata, M_TEMP); \ 2348 optdata = NULL; \ 2349 malloc_optdata = false; \ 2350 } \ 2351 } \ 2352 } while(0) 2353 2354 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2355 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2356 2357 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2358 pktopt->field->sa_len) 2359 2360 static int 2361 ip6_getpcbopt(struct inpcb *in6p, int optname, struct sockopt *sopt) 2362 { 2363 void *optdata = NULL; 2364 bool malloc_optdata = false; 2365 int optdatalen = 0; 2366 int error = 0; 2367 struct in6_pktinfo null_pktinfo; 2368 int deftclass = 0, on; 2369 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2370 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2371 struct ip6_pktopts *pktopt; 2372 2373 INP_RLOCK(in6p); 2374 pktopt = in6p->in6p_outputopts; 2375 2376 switch (optname) { 2377 case IPV6_PKTINFO: 2378 optdata = (void *)&null_pktinfo; 2379 if (pktopt && pktopt->ip6po_pktinfo) { 2380 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2381 sizeof(null_pktinfo)); 2382 in6_clearscope(&null_pktinfo.ipi6_addr); 2383 } else { 2384 /* XXX: we don't have to do this every time... */ 2385 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2386 } 2387 optdatalen = sizeof(struct in6_pktinfo); 2388 break; 2389 case IPV6_TCLASS: 2390 if (pktopt && pktopt->ip6po_tclass >= 0) 2391 deftclass = pktopt->ip6po_tclass; 2392 optdata = (void *)&deftclass; 2393 optdatalen = sizeof(int); 2394 break; 2395 case IPV6_HOPOPTS: 2396 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2397 break; 2398 case IPV6_RTHDR: 2399 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2400 break; 2401 case IPV6_RTHDRDSTOPTS: 2402 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2403 break; 2404 case IPV6_DSTOPTS: 2405 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2406 break; 2407 case IPV6_NEXTHOP: 2408 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2409 break; 2410 case IPV6_USE_MIN_MTU: 2411 if (pktopt) 2412 defminmtu = pktopt->ip6po_minmtu; 2413 optdata = (void *)&defminmtu; 2414 optdatalen = sizeof(int); 2415 break; 2416 case IPV6_DONTFRAG: 2417 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2418 on = 1; 2419 else 2420 on = 0; 2421 optdata = (void *)&on; 2422 optdatalen = sizeof(on); 2423 break; 2424 case IPV6_PREFER_TEMPADDR: 2425 if (pktopt) 2426 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2427 optdata = (void *)&defpreftemp; 2428 optdatalen = sizeof(int); 2429 break; 2430 default: /* should not happen */ 2431 #ifdef DIAGNOSTIC 2432 panic("ip6_getpcbopt: unexpected option\n"); 2433 #endif 2434 INP_RUNLOCK(in6p); 2435 return (ENOPROTOOPT); 2436 } 2437 INP_RUNLOCK(in6p); 2438 2439 error = sooptcopyout(sopt, optdata, optdatalen); 2440 if (malloc_optdata) 2441 free(optdata, M_TEMP); 2442 2443 return (error); 2444 } 2445 2446 void 2447 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2448 { 2449 if (pktopt == NULL) 2450 return; 2451 2452 if (optname == -1 || optname == IPV6_PKTINFO) { 2453 if (pktopt->ip6po_pktinfo) 2454 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2455 pktopt->ip6po_pktinfo = NULL; 2456 } 2457 if (optname == -1 || optname == IPV6_HOPLIMIT) 2458 pktopt->ip6po_hlim = -1; 2459 if (optname == -1 || optname == IPV6_TCLASS) 2460 pktopt->ip6po_tclass = -1; 2461 if (optname == -1 || optname == IPV6_NEXTHOP) { 2462 if (pktopt->ip6po_nextroute.ro_rt) { 2463 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2464 pktopt->ip6po_nextroute.ro_rt = NULL; 2465 } 2466 if (pktopt->ip6po_nexthop) 2467 free(pktopt->ip6po_nexthop, M_IP6OPT); 2468 pktopt->ip6po_nexthop = NULL; 2469 } 2470 if (optname == -1 || optname == IPV6_HOPOPTS) { 2471 if (pktopt->ip6po_hbh) 2472 free(pktopt->ip6po_hbh, M_IP6OPT); 2473 pktopt->ip6po_hbh = NULL; 2474 } 2475 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2476 if (pktopt->ip6po_dest1) 2477 free(pktopt->ip6po_dest1, M_IP6OPT); 2478 pktopt->ip6po_dest1 = NULL; 2479 } 2480 if (optname == -1 || optname == IPV6_RTHDR) { 2481 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2482 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2483 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2484 if (pktopt->ip6po_route.ro_rt) { 2485 RTFREE(pktopt->ip6po_route.ro_rt); 2486 pktopt->ip6po_route.ro_rt = NULL; 2487 } 2488 } 2489 if (optname == -1 || optname == IPV6_DSTOPTS) { 2490 if (pktopt->ip6po_dest2) 2491 free(pktopt->ip6po_dest2, M_IP6OPT); 2492 pktopt->ip6po_dest2 = NULL; 2493 } 2494 } 2495 2496 #define PKTOPT_EXTHDRCPY(type) \ 2497 do {\ 2498 if (src->type) {\ 2499 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2500 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2501 if (dst->type == NULL)\ 2502 goto bad;\ 2503 bcopy(src->type, dst->type, hlen);\ 2504 }\ 2505 } while (/*CONSTCOND*/ 0) 2506 2507 static int 2508 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2509 { 2510 if (dst == NULL || src == NULL) { 2511 printf("ip6_clearpktopts: invalid argument\n"); 2512 return (EINVAL); 2513 } 2514 2515 dst->ip6po_hlim = src->ip6po_hlim; 2516 dst->ip6po_tclass = src->ip6po_tclass; 2517 dst->ip6po_flags = src->ip6po_flags; 2518 dst->ip6po_minmtu = src->ip6po_minmtu; 2519 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2520 if (src->ip6po_pktinfo) { 2521 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2522 M_IP6OPT, canwait); 2523 if (dst->ip6po_pktinfo == NULL) 2524 goto bad; 2525 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2526 } 2527 if (src->ip6po_nexthop) { 2528 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2529 M_IP6OPT, canwait); 2530 if (dst->ip6po_nexthop == NULL) 2531 goto bad; 2532 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2533 src->ip6po_nexthop->sa_len); 2534 } 2535 PKTOPT_EXTHDRCPY(ip6po_hbh); 2536 PKTOPT_EXTHDRCPY(ip6po_dest1); 2537 PKTOPT_EXTHDRCPY(ip6po_dest2); 2538 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2539 return (0); 2540 2541 bad: 2542 ip6_clearpktopts(dst, -1); 2543 return (ENOBUFS); 2544 } 2545 #undef PKTOPT_EXTHDRCPY 2546 2547 struct ip6_pktopts * 2548 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2549 { 2550 int error; 2551 struct ip6_pktopts *dst; 2552 2553 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2554 if (dst == NULL) 2555 return (NULL); 2556 ip6_initpktopts(dst); 2557 2558 if ((error = copypktopts(dst, src, canwait)) != 0) { 2559 free(dst, M_IP6OPT); 2560 return (NULL); 2561 } 2562 2563 return (dst); 2564 } 2565 2566 void 2567 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2568 { 2569 if (pktopt == NULL) 2570 return; 2571 2572 ip6_clearpktopts(pktopt, -1); 2573 2574 free(pktopt, M_IP6OPT); 2575 } 2576 2577 /* 2578 * Set IPv6 outgoing packet options based on advanced API. 2579 */ 2580 int 2581 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2582 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2583 { 2584 struct cmsghdr *cm = NULL; 2585 2586 if (control == NULL || opt == NULL) 2587 return (EINVAL); 2588 2589 ip6_initpktopts(opt); 2590 if (stickyopt) { 2591 int error; 2592 2593 /* 2594 * If stickyopt is provided, make a local copy of the options 2595 * for this particular packet, then override them by ancillary 2596 * objects. 2597 * XXX: copypktopts() does not copy the cached route to a next 2598 * hop (if any). This is not very good in terms of efficiency, 2599 * but we can allow this since this option should be rarely 2600 * used. 2601 */ 2602 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2603 return (error); 2604 } 2605 2606 /* 2607 * XXX: Currently, we assume all the optional information is stored 2608 * in a single mbuf. 2609 */ 2610 if (control->m_next) 2611 return (EINVAL); 2612 2613 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2614 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2615 int error; 2616 2617 if (control->m_len < CMSG_LEN(0)) 2618 return (EINVAL); 2619 2620 cm = mtod(control, struct cmsghdr *); 2621 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2622 return (EINVAL); 2623 if (cm->cmsg_level != IPPROTO_IPV6) 2624 continue; 2625 2626 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2627 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2628 if (error) 2629 return (error); 2630 } 2631 2632 return (0); 2633 } 2634 2635 /* 2636 * Set a particular packet option, as a sticky option or an ancillary data 2637 * item. "len" can be 0 only when it's a sticky option. 2638 * We have 4 cases of combination of "sticky" and "cmsg": 2639 * "sticky=0, cmsg=0": impossible 2640 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2641 * "sticky=1, cmsg=0": RFC3542 socket option 2642 * "sticky=1, cmsg=1": RFC2292 socket option 2643 */ 2644 static int 2645 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2646 struct ucred *cred, int sticky, int cmsg, int uproto) 2647 { 2648 int minmtupolicy, preftemp; 2649 int error; 2650 2651 if (!sticky && !cmsg) { 2652 #ifdef DIAGNOSTIC 2653 printf("ip6_setpktopt: impossible case\n"); 2654 #endif 2655 return (EINVAL); 2656 } 2657 2658 /* 2659 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2660 * not be specified in the context of RFC3542. Conversely, 2661 * RFC3542 types should not be specified in the context of RFC2292. 2662 */ 2663 if (!cmsg) { 2664 switch (optname) { 2665 case IPV6_2292PKTINFO: 2666 case IPV6_2292HOPLIMIT: 2667 case IPV6_2292NEXTHOP: 2668 case IPV6_2292HOPOPTS: 2669 case IPV6_2292DSTOPTS: 2670 case IPV6_2292RTHDR: 2671 case IPV6_2292PKTOPTIONS: 2672 return (ENOPROTOOPT); 2673 } 2674 } 2675 if (sticky && cmsg) { 2676 switch (optname) { 2677 case IPV6_PKTINFO: 2678 case IPV6_HOPLIMIT: 2679 case IPV6_NEXTHOP: 2680 case IPV6_HOPOPTS: 2681 case IPV6_DSTOPTS: 2682 case IPV6_RTHDRDSTOPTS: 2683 case IPV6_RTHDR: 2684 case IPV6_USE_MIN_MTU: 2685 case IPV6_DONTFRAG: 2686 case IPV6_TCLASS: 2687 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2688 return (ENOPROTOOPT); 2689 } 2690 } 2691 2692 switch (optname) { 2693 case IPV6_2292PKTINFO: 2694 case IPV6_PKTINFO: 2695 { 2696 struct ifnet *ifp = NULL; 2697 struct in6_pktinfo *pktinfo; 2698 2699 if (len != sizeof(struct in6_pktinfo)) 2700 return (EINVAL); 2701 2702 pktinfo = (struct in6_pktinfo *)buf; 2703 2704 /* 2705 * An application can clear any sticky IPV6_PKTINFO option by 2706 * doing a "regular" setsockopt with ipi6_addr being 2707 * in6addr_any and ipi6_ifindex being zero. 2708 * [RFC 3542, Section 6] 2709 */ 2710 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2711 pktinfo->ipi6_ifindex == 0 && 2712 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2713 ip6_clearpktopts(opt, optname); 2714 break; 2715 } 2716 2717 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2718 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2719 return (EINVAL); 2720 } 2721 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2722 return (EINVAL); 2723 /* validate the interface index if specified. */ 2724 if (pktinfo->ipi6_ifindex > V_if_index) 2725 return (ENXIO); 2726 if (pktinfo->ipi6_ifindex) { 2727 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2728 if (ifp == NULL) 2729 return (ENXIO); 2730 } 2731 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2732 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2733 return (ENETDOWN); 2734 2735 if (ifp != NULL && 2736 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2737 struct in6_ifaddr *ia; 2738 2739 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2740 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2741 if (ia == NULL) 2742 return (EADDRNOTAVAIL); 2743 ifa_free(&ia->ia_ifa); 2744 } 2745 /* 2746 * We store the address anyway, and let in6_selectsrc() 2747 * validate the specified address. This is because ipi6_addr 2748 * may not have enough information about its scope zone, and 2749 * we may need additional information (such as outgoing 2750 * interface or the scope zone of a destination address) to 2751 * disambiguate the scope. 2752 * XXX: the delay of the validation may confuse the 2753 * application when it is used as a sticky option. 2754 */ 2755 if (opt->ip6po_pktinfo == NULL) { 2756 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2757 M_IP6OPT, M_NOWAIT); 2758 if (opt->ip6po_pktinfo == NULL) 2759 return (ENOBUFS); 2760 } 2761 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2762 break; 2763 } 2764 2765 case IPV6_2292HOPLIMIT: 2766 case IPV6_HOPLIMIT: 2767 { 2768 int *hlimp; 2769 2770 /* 2771 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2772 * to simplify the ordering among hoplimit options. 2773 */ 2774 if (optname == IPV6_HOPLIMIT && sticky) 2775 return (ENOPROTOOPT); 2776 2777 if (len != sizeof(int)) 2778 return (EINVAL); 2779 hlimp = (int *)buf; 2780 if (*hlimp < -1 || *hlimp > 255) 2781 return (EINVAL); 2782 2783 opt->ip6po_hlim = *hlimp; 2784 break; 2785 } 2786 2787 case IPV6_TCLASS: 2788 { 2789 int tclass; 2790 2791 if (len != sizeof(int)) 2792 return (EINVAL); 2793 tclass = *(int *)buf; 2794 if (tclass < -1 || tclass > 255) 2795 return (EINVAL); 2796 2797 opt->ip6po_tclass = tclass; 2798 break; 2799 } 2800 2801 case IPV6_2292NEXTHOP: 2802 case IPV6_NEXTHOP: 2803 if (cred != NULL) { 2804 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 2805 if (error) 2806 return (error); 2807 } 2808 2809 if (len == 0) { /* just remove the option */ 2810 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2811 break; 2812 } 2813 2814 /* check if cmsg_len is large enough for sa_len */ 2815 if (len < sizeof(struct sockaddr) || len < *buf) 2816 return (EINVAL); 2817 2818 switch (((struct sockaddr *)buf)->sa_family) { 2819 case AF_INET6: 2820 { 2821 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2822 int error; 2823 2824 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2825 return (EINVAL); 2826 2827 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2828 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2829 return (EINVAL); 2830 } 2831 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2832 != 0) { 2833 return (error); 2834 } 2835 break; 2836 } 2837 case AF_LINK: /* should eventually be supported */ 2838 default: 2839 return (EAFNOSUPPORT); 2840 } 2841 2842 /* turn off the previous option, then set the new option. */ 2843 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2844 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2845 if (opt->ip6po_nexthop == NULL) 2846 return (ENOBUFS); 2847 bcopy(buf, opt->ip6po_nexthop, *buf); 2848 break; 2849 2850 case IPV6_2292HOPOPTS: 2851 case IPV6_HOPOPTS: 2852 { 2853 struct ip6_hbh *hbh; 2854 int hbhlen; 2855 2856 /* 2857 * XXX: We don't allow a non-privileged user to set ANY HbH 2858 * options, since per-option restriction has too much 2859 * overhead. 2860 */ 2861 if (cred != NULL) { 2862 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 2863 if (error) 2864 return (error); 2865 } 2866 2867 if (len == 0) { 2868 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2869 break; /* just remove the option */ 2870 } 2871 2872 /* message length validation */ 2873 if (len < sizeof(struct ip6_hbh)) 2874 return (EINVAL); 2875 hbh = (struct ip6_hbh *)buf; 2876 hbhlen = (hbh->ip6h_len + 1) << 3; 2877 if (len != hbhlen) 2878 return (EINVAL); 2879 2880 /* turn off the previous option, then set the new option. */ 2881 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2882 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2883 if (opt->ip6po_hbh == NULL) 2884 return (ENOBUFS); 2885 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2886 2887 break; 2888 } 2889 2890 case IPV6_2292DSTOPTS: 2891 case IPV6_DSTOPTS: 2892 case IPV6_RTHDRDSTOPTS: 2893 { 2894 struct ip6_dest *dest, **newdest = NULL; 2895 int destlen; 2896 2897 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2898 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 2899 if (error) 2900 return (error); 2901 } 2902 2903 if (len == 0) { 2904 ip6_clearpktopts(opt, optname); 2905 break; /* just remove the option */ 2906 } 2907 2908 /* message length validation */ 2909 if (len < sizeof(struct ip6_dest)) 2910 return (EINVAL); 2911 dest = (struct ip6_dest *)buf; 2912 destlen = (dest->ip6d_len + 1) << 3; 2913 if (len != destlen) 2914 return (EINVAL); 2915 2916 /* 2917 * Determine the position that the destination options header 2918 * should be inserted; before or after the routing header. 2919 */ 2920 switch (optname) { 2921 case IPV6_2292DSTOPTS: 2922 /* 2923 * The old advacned API is ambiguous on this point. 2924 * Our approach is to determine the position based 2925 * according to the existence of a routing header. 2926 * Note, however, that this depends on the order of the 2927 * extension headers in the ancillary data; the 1st 2928 * part of the destination options header must appear 2929 * before the routing header in the ancillary data, 2930 * too. 2931 * RFC3542 solved the ambiguity by introducing 2932 * separate ancillary data or option types. 2933 */ 2934 if (opt->ip6po_rthdr == NULL) 2935 newdest = &opt->ip6po_dest1; 2936 else 2937 newdest = &opt->ip6po_dest2; 2938 break; 2939 case IPV6_RTHDRDSTOPTS: 2940 newdest = &opt->ip6po_dest1; 2941 break; 2942 case IPV6_DSTOPTS: 2943 newdest = &opt->ip6po_dest2; 2944 break; 2945 } 2946 2947 /* turn off the previous option, then set the new option. */ 2948 ip6_clearpktopts(opt, optname); 2949 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2950 if (*newdest == NULL) 2951 return (ENOBUFS); 2952 bcopy(dest, *newdest, destlen); 2953 2954 break; 2955 } 2956 2957 case IPV6_2292RTHDR: 2958 case IPV6_RTHDR: 2959 { 2960 struct ip6_rthdr *rth; 2961 int rthlen; 2962 2963 if (len == 0) { 2964 ip6_clearpktopts(opt, IPV6_RTHDR); 2965 break; /* just remove the option */ 2966 } 2967 2968 /* message length validation */ 2969 if (len < sizeof(struct ip6_rthdr)) 2970 return (EINVAL); 2971 rth = (struct ip6_rthdr *)buf; 2972 rthlen = (rth->ip6r_len + 1) << 3; 2973 if (len != rthlen) 2974 return (EINVAL); 2975 2976 switch (rth->ip6r_type) { 2977 case IPV6_RTHDR_TYPE_0: 2978 if (rth->ip6r_len == 0) /* must contain one addr */ 2979 return (EINVAL); 2980 if (rth->ip6r_len % 2) /* length must be even */ 2981 return (EINVAL); 2982 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2983 return (EINVAL); 2984 break; 2985 default: 2986 return (EINVAL); /* not supported */ 2987 } 2988 2989 /* turn off the previous option */ 2990 ip6_clearpktopts(opt, IPV6_RTHDR); 2991 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2992 if (opt->ip6po_rthdr == NULL) 2993 return (ENOBUFS); 2994 bcopy(rth, opt->ip6po_rthdr, rthlen); 2995 2996 break; 2997 } 2998 2999 case IPV6_USE_MIN_MTU: 3000 if (len != sizeof(int)) 3001 return (EINVAL); 3002 minmtupolicy = *(int *)buf; 3003 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3004 minmtupolicy != IP6PO_MINMTU_DISABLE && 3005 minmtupolicy != IP6PO_MINMTU_ALL) { 3006 return (EINVAL); 3007 } 3008 opt->ip6po_minmtu = minmtupolicy; 3009 break; 3010 3011 case IPV6_DONTFRAG: 3012 if (len != sizeof(int)) 3013 return (EINVAL); 3014 3015 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3016 /* 3017 * we ignore this option for TCP sockets. 3018 * (RFC3542 leaves this case unspecified.) 3019 */ 3020 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3021 } else 3022 opt->ip6po_flags |= IP6PO_DONTFRAG; 3023 break; 3024 3025 case IPV6_PREFER_TEMPADDR: 3026 if (len != sizeof(int)) 3027 return (EINVAL); 3028 preftemp = *(int *)buf; 3029 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3030 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3031 preftemp != IP6PO_TEMPADDR_PREFER) { 3032 return (EINVAL); 3033 } 3034 opt->ip6po_prefer_tempaddr = preftemp; 3035 break; 3036 3037 default: 3038 return (ENOPROTOOPT); 3039 } /* end of switch */ 3040 3041 return (0); 3042 } 3043 3044 /* 3045 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3046 * packet to the input queue of a specified interface. Note that this 3047 * calls the output routine of the loopback "driver", but with an interface 3048 * pointer that might NOT be &loif -- easier than replicating that code here. 3049 */ 3050 void 3051 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3052 { 3053 struct mbuf *copym; 3054 struct ip6_hdr *ip6; 3055 3056 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3057 if (copym == NULL) 3058 return; 3059 3060 /* 3061 * Make sure to deep-copy IPv6 header portion in case the data 3062 * is in an mbuf cluster, so that we can safely override the IPv6 3063 * header portion later. 3064 */ 3065 if (!M_WRITABLE(copym) || 3066 copym->m_len < sizeof(struct ip6_hdr)) { 3067 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3068 if (copym == NULL) 3069 return; 3070 } 3071 ip6 = mtod(copym, struct ip6_hdr *); 3072 /* 3073 * clear embedded scope identifiers if necessary. 3074 * in6_clearscope will touch the addresses only when necessary. 3075 */ 3076 in6_clearscope(&ip6->ip6_src); 3077 in6_clearscope(&ip6->ip6_dst); 3078 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3079 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3080 CSUM_PSEUDO_HDR; 3081 copym->m_pkthdr.csum_data = 0xffff; 3082 } 3083 if_simloop(ifp, copym, AF_INET6, 0); 3084 } 3085 3086 /* 3087 * Chop IPv6 header off from the payload. 3088 */ 3089 static int 3090 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3091 { 3092 struct mbuf *mh; 3093 struct ip6_hdr *ip6; 3094 3095 ip6 = mtod(m, struct ip6_hdr *); 3096 if (m->m_len > sizeof(*ip6)) { 3097 mh = m_gethdr(M_NOWAIT, MT_DATA); 3098 if (mh == NULL) { 3099 m_freem(m); 3100 return ENOBUFS; 3101 } 3102 m_move_pkthdr(mh, m); 3103 M_ALIGN(mh, sizeof(*ip6)); 3104 m->m_len -= sizeof(*ip6); 3105 m->m_data += sizeof(*ip6); 3106 mh->m_next = m; 3107 m = mh; 3108 m->m_len = sizeof(*ip6); 3109 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3110 } 3111 exthdrs->ip6e_ip6 = m; 3112 return 0; 3113 } 3114 3115 /* 3116 * Compute IPv6 extension header length. 3117 */ 3118 int 3119 ip6_optlen(struct inpcb *in6p) 3120 { 3121 int len; 3122 3123 if (!in6p->in6p_outputopts) 3124 return 0; 3125 3126 len = 0; 3127 #define elen(x) \ 3128 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3129 3130 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3131 if (in6p->in6p_outputopts->ip6po_rthdr) 3132 /* dest1 is valid with rthdr only */ 3133 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3134 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3135 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3136 return len; 3137 #undef elen 3138 } 3139