1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ratelimit.h" 69 #include "opt_ipsec.h" 70 #include "opt_sctp.h" 71 #include "opt_route.h" 72 #include "opt_rss.h" 73 74 #include <sys/param.h> 75 #include <sys/kernel.h> 76 #include <sys/malloc.h> 77 #include <sys/mbuf.h> 78 #include <sys/errno.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/protosw.h> 82 #include <sys/socket.h> 83 #include <sys/socketvar.h> 84 #include <sys/syslog.h> 85 #include <sys/ucred.h> 86 87 #include <machine/in_cksum.h> 88 89 #include <net/if.h> 90 #include <net/if_var.h> 91 #include <net/if_llatbl.h> 92 #include <net/netisr.h> 93 #include <net/route.h> 94 #include <net/pfil.h> 95 #include <net/rss_config.h> 96 #include <net/vnet.h> 97 98 #include <netinet/in.h> 99 #include <netinet/in_var.h> 100 #include <netinet/ip_var.h> 101 #include <netinet6/in6_fib.h> 102 #include <netinet6/in6_var.h> 103 #include <netinet/ip6.h> 104 #include <netinet/icmp6.h> 105 #include <netinet6/ip6_var.h> 106 #include <netinet/in_pcb.h> 107 #include <netinet/tcp_var.h> 108 #include <netinet6/nd6.h> 109 #include <netinet6/in6_rss.h> 110 111 #ifdef IPSEC 112 #include <netipsec/ipsec.h> 113 #include <netipsec/ipsec6.h> 114 #include <netipsec/key.h> 115 #include <netinet6/ip6_ipsec.h> 116 #endif /* IPSEC */ 117 #ifdef SCTP 118 #include <netinet/sctp.h> 119 #include <netinet/sctp_crc32.h> 120 #endif 121 122 #include <netinet6/ip6protosw.h> 123 #include <netinet6/scope6_var.h> 124 125 #ifdef FLOWTABLE 126 #include <net/flowtable.h> 127 #endif 128 129 extern int in6_mcast_loop; 130 131 struct ip6_exthdrs { 132 struct mbuf *ip6e_ip6; 133 struct mbuf *ip6e_hbh; 134 struct mbuf *ip6e_dest1; 135 struct mbuf *ip6e_rthdr; 136 struct mbuf *ip6e_dest2; 137 }; 138 139 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 140 141 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 142 struct ucred *, int); 143 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 144 struct socket *, struct sockopt *); 145 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 146 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 147 struct ucred *, int, int, int); 148 149 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 150 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 151 struct ip6_frag **); 152 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 153 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 154 static int ip6_getpmtu(struct route_in6 *, int, 155 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 156 u_int); 157 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 158 u_long *, int *, u_int); 159 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 160 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 161 162 163 /* 164 * Make an extension header from option data. hp is the source, and 165 * mp is the destination. 166 */ 167 #define MAKE_EXTHDR(hp, mp) \ 168 do { \ 169 if (hp) { \ 170 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 171 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 172 ((eh)->ip6e_len + 1) << 3); \ 173 if (error) \ 174 goto freehdrs; \ 175 } \ 176 } while (/*CONSTCOND*/ 0) 177 178 /* 179 * Form a chain of extension headers. 180 * m is the extension header mbuf 181 * mp is the previous mbuf in the chain 182 * p is the next header 183 * i is the type of option. 184 */ 185 #define MAKE_CHAIN(m, mp, p, i)\ 186 do {\ 187 if (m) {\ 188 if (!hdrsplit) \ 189 panic("assumption failed: hdr not split"); \ 190 *mtod((m), u_char *) = *(p);\ 191 *(p) = (i);\ 192 p = mtod((m), u_char *);\ 193 (m)->m_next = (mp)->m_next;\ 194 (mp)->m_next = (m);\ 195 (mp) = (m);\ 196 }\ 197 } while (/*CONSTCOND*/ 0) 198 199 void 200 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 201 { 202 u_short csum; 203 204 csum = in_cksum_skip(m, offset + plen, offset); 205 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 206 csum = 0xffff; 207 offset += m->m_pkthdr.csum_data; /* checksum offset */ 208 209 if (offset + sizeof(u_short) > m->m_len) { 210 printf("%s: delayed m_pullup, m->len: %d plen %u off %u " 211 "csum_flags=%b\n", __func__, m->m_len, plen, offset, 212 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 213 /* 214 * XXX this should not happen, but if it does, the correct 215 * behavior may be to insert the checksum in the appropriate 216 * next mbuf in the chain. 217 */ 218 return; 219 } 220 *(u_short *)(m->m_data + offset) = csum; 221 } 222 223 int 224 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 225 int mtu, uint32_t id) 226 { 227 struct mbuf *m, **mnext, *m_frgpart; 228 struct ip6_hdr *ip6, *mhip6; 229 struct ip6_frag *ip6f; 230 int off; 231 int error; 232 int tlen = m0->m_pkthdr.len; 233 234 m = m0; 235 ip6 = mtod(m, struct ip6_hdr *); 236 mnext = &m->m_nextpkt; 237 238 for (off = hlen; off < tlen; off += mtu) { 239 m = m_gethdr(M_NOWAIT, MT_DATA); 240 if (!m) { 241 IP6STAT_INC(ip6s_odropped); 242 return (ENOBUFS); 243 } 244 m->m_flags = m0->m_flags & M_COPYFLAGS; 245 *mnext = m; 246 mnext = &m->m_nextpkt; 247 m->m_data += max_linkhdr; 248 mhip6 = mtod(m, struct ip6_hdr *); 249 *mhip6 = *ip6; 250 m->m_len = sizeof(*mhip6); 251 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 252 if (error) { 253 IP6STAT_INC(ip6s_odropped); 254 return (error); 255 } 256 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 257 if (off + mtu >= tlen) 258 mtu = tlen - off; 259 else 260 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 261 mhip6->ip6_plen = htons((u_short)(mtu + hlen + 262 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 263 if ((m_frgpart = m_copym(m0, off, mtu, M_NOWAIT)) == NULL) { 264 IP6STAT_INC(ip6s_odropped); 265 return (ENOBUFS); 266 } 267 m_cat(m, m_frgpart); 268 m->m_pkthdr.len = mtu + hlen + sizeof(*ip6f); 269 m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; 270 m->m_pkthdr.rcvif = NULL; 271 ip6f->ip6f_reserved = 0; 272 ip6f->ip6f_ident = id; 273 ip6f->ip6f_nxt = nextproto; 274 IP6STAT_INC(ip6s_ofragments); 275 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 276 } 277 278 return (0); 279 } 280 281 /* 282 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 283 * header (with pri, len, nxt, hlim, src, dst). 284 * This function may modify ver and hlim only. 285 * The mbuf chain containing the packet will be freed. 286 * The mbuf opt, if present, will not be freed. 287 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 288 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 289 * then result of route lookup is stored in ro->ro_rt. 290 * 291 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 292 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 293 * which is rt_mtu. 294 * 295 * ifpp - XXX: just for statistics 296 */ 297 /* 298 * XXX TODO: no flowid is assigned for outbound flows? 299 */ 300 int 301 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 302 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 303 struct ifnet **ifpp, struct inpcb *inp) 304 { 305 struct ip6_hdr *ip6; 306 struct ifnet *ifp, *origifp; 307 struct mbuf *m = m0; 308 struct mbuf *mprev = NULL; 309 int hlen, tlen, len; 310 struct route_in6 ip6route; 311 struct rtentry *rt = NULL; 312 struct sockaddr_in6 *dst, src_sa, dst_sa; 313 struct in6_addr odst; 314 int error = 0; 315 struct in6_ifaddr *ia = NULL; 316 u_long mtu; 317 int alwaysfrag, dontfrag; 318 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 319 struct ip6_exthdrs exthdrs; 320 struct in6_addr src0, dst0; 321 u_int32_t zone; 322 struct route_in6 *ro_pmtu = NULL; 323 int hdrsplit = 0; 324 int sw_csum, tso; 325 int needfiblookup; 326 uint32_t fibnum; 327 struct m_tag *fwd_tag = NULL; 328 uint32_t id; 329 330 if (inp != NULL) { 331 M_SETFIB(m, inp->inp_inc.inc_fibnum); 332 if ((flags & IP_NODEFAULTFLOWID) == 0) { 333 /* unconditionally set flowid */ 334 m->m_pkthdr.flowid = inp->inp_flowid; 335 M_HASHTYPE_SET(m, inp->inp_flowtype); 336 } 337 } 338 339 bzero(&exthdrs, sizeof(exthdrs)); 340 if (opt) { 341 /* Hop-by-Hop options header */ 342 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 343 /* Destination options header(1st part) */ 344 if (opt->ip6po_rthdr) { 345 /* 346 * Destination options header(1st part) 347 * This only makes sense with a routing header. 348 * See Section 9.2 of RFC 3542. 349 * Disabling this part just for MIP6 convenience is 350 * a bad idea. We need to think carefully about a 351 * way to make the advanced API coexist with MIP6 352 * options, which might automatically be inserted in 353 * the kernel. 354 */ 355 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 356 } 357 /* Routing header */ 358 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 359 /* Destination options header(2nd part) */ 360 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 361 } 362 363 #ifdef IPSEC 364 /* 365 * IPSec checking which handles several cases. 366 * FAST IPSEC: We re-injected the packet. 367 * XXX: need scope argument. 368 */ 369 switch(ip6_ipsec_output(&m, inp, &error)) 370 { 371 case 1: /* Bad packet */ 372 goto freehdrs; 373 case -1: /* IPSec done */ 374 goto done; 375 case 0: /* No IPSec */ 376 default: 377 break; 378 } 379 #endif /* IPSEC */ 380 381 /* 382 * Calculate the total length of the extension header chain. 383 * Keep the length of the unfragmentable part for fragmentation. 384 */ 385 optlen = 0; 386 if (exthdrs.ip6e_hbh) 387 optlen += exthdrs.ip6e_hbh->m_len; 388 if (exthdrs.ip6e_dest1) 389 optlen += exthdrs.ip6e_dest1->m_len; 390 if (exthdrs.ip6e_rthdr) 391 optlen += exthdrs.ip6e_rthdr->m_len; 392 unfragpartlen = optlen + sizeof(struct ip6_hdr); 393 394 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 395 if (exthdrs.ip6e_dest2) 396 optlen += exthdrs.ip6e_dest2->m_len; 397 398 /* 399 * If there is at least one extension header, 400 * separate IP6 header from the payload. 401 */ 402 if (optlen && !hdrsplit) { 403 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 404 m = NULL; 405 goto freehdrs; 406 } 407 m = exthdrs.ip6e_ip6; 408 hdrsplit++; 409 } 410 411 ip6 = mtod(m, struct ip6_hdr *); 412 413 /* adjust mbuf packet header length */ 414 m->m_pkthdr.len += optlen; 415 plen = m->m_pkthdr.len - sizeof(*ip6); 416 417 /* If this is a jumbo payload, insert a jumbo payload option. */ 418 if (plen > IPV6_MAXPACKET) { 419 if (!hdrsplit) { 420 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 421 m = NULL; 422 goto freehdrs; 423 } 424 m = exthdrs.ip6e_ip6; 425 hdrsplit++; 426 } 427 /* adjust pointer */ 428 ip6 = mtod(m, struct ip6_hdr *); 429 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 430 goto freehdrs; 431 ip6->ip6_plen = 0; 432 } else 433 ip6->ip6_plen = htons(plen); 434 435 /* 436 * Concatenate headers and fill in next header fields. 437 * Here we have, on "m" 438 * IPv6 payload 439 * and we insert headers accordingly. Finally, we should be getting: 440 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 441 * 442 * during the header composing process, "m" points to IPv6 header. 443 * "mprev" points to an extension header prior to esp. 444 */ 445 u_char *nexthdrp = &ip6->ip6_nxt; 446 mprev = m; 447 448 /* 449 * we treat dest2 specially. this makes IPsec processing 450 * much easier. the goal here is to make mprev point the 451 * mbuf prior to dest2. 452 * 453 * result: IPv6 dest2 payload 454 * m and mprev will point to IPv6 header. 455 */ 456 if (exthdrs.ip6e_dest2) { 457 if (!hdrsplit) 458 panic("assumption failed: hdr not split"); 459 exthdrs.ip6e_dest2->m_next = m->m_next; 460 m->m_next = exthdrs.ip6e_dest2; 461 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 462 ip6->ip6_nxt = IPPROTO_DSTOPTS; 463 } 464 465 /* 466 * result: IPv6 hbh dest1 rthdr dest2 payload 467 * m will point to IPv6 header. mprev will point to the 468 * extension header prior to dest2 (rthdr in the above case). 469 */ 470 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 471 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 472 IPPROTO_DSTOPTS); 473 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 474 IPPROTO_ROUTING); 475 476 /* 477 * If there is a routing header, discard the packet. 478 */ 479 if (exthdrs.ip6e_rthdr) { 480 error = EINVAL; 481 goto bad; 482 } 483 484 /* Source address validation */ 485 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 486 (flags & IPV6_UNSPECSRC) == 0) { 487 error = EOPNOTSUPP; 488 IP6STAT_INC(ip6s_badscope); 489 goto bad; 490 } 491 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 492 error = EOPNOTSUPP; 493 IP6STAT_INC(ip6s_badscope); 494 goto bad; 495 } 496 497 IP6STAT_INC(ip6s_localout); 498 499 /* 500 * Route packet. 501 */ 502 if (ro == NULL) { 503 ro = &ip6route; 504 bzero((caddr_t)ro, sizeof(*ro)); 505 } else 506 ro->ro_flags |= RT_LLE_CACHE; 507 ro_pmtu = ro; 508 if (opt && opt->ip6po_rthdr) 509 ro = &opt->ip6po_route; 510 dst = (struct sockaddr_in6 *)&ro->ro_dst; 511 #ifdef FLOWTABLE 512 if (ro->ro_rt == NULL) 513 (void )flowtable_lookup(AF_INET6, m, (struct route *)ro); 514 #endif 515 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 516 again: 517 /* 518 * if specified, try to fill in the traffic class field. 519 * do not override if a non-zero value is already set. 520 * we check the diffserv field and the ecn field separately. 521 */ 522 if (opt && opt->ip6po_tclass >= 0) { 523 int mask = 0; 524 525 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 526 mask |= 0xfc; 527 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 528 mask |= 0x03; 529 if (mask != 0) 530 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 531 } 532 533 /* fill in or override the hop limit field, if necessary. */ 534 if (opt && opt->ip6po_hlim != -1) 535 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 536 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 537 if (im6o != NULL) 538 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 539 else 540 ip6->ip6_hlim = V_ip6_defmcasthlim; 541 } 542 /* 543 * Validate route against routing table additions; 544 * a better/more specific route might have been added. 545 * Make sure address family is set in route. 546 */ 547 if (inp) { 548 ro->ro_dst.sin6_family = AF_INET6; 549 RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, fibnum); 550 } 551 if (ro->ro_rt && fwd_tag == NULL && (ro->ro_rt->rt_flags & RTF_UP) && 552 ro->ro_dst.sin6_family == AF_INET6 && 553 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 554 rt = ro->ro_rt; 555 ifp = ro->ro_rt->rt_ifp; 556 } else { 557 if (ro->ro_lle) 558 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 559 ro->ro_lle = NULL; 560 if (fwd_tag == NULL) { 561 bzero(&dst_sa, sizeof(dst_sa)); 562 dst_sa.sin6_family = AF_INET6; 563 dst_sa.sin6_len = sizeof(dst_sa); 564 dst_sa.sin6_addr = ip6->ip6_dst; 565 } 566 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 567 &rt, fibnum); 568 if (error != 0) { 569 if (ifp != NULL) 570 in6_ifstat_inc(ifp, ifs6_out_discard); 571 goto bad; 572 } 573 } 574 if (rt == NULL) { 575 /* 576 * If in6_selectroute() does not return a route entry, 577 * dst may not have been updated. 578 */ 579 *dst = dst_sa; /* XXX */ 580 } 581 582 /* 583 * then rt (for unicast) and ifp must be non-NULL valid values. 584 */ 585 if ((flags & IPV6_FORWARDING) == 0) { 586 /* XXX: the FORWARDING flag can be set for mrouting. */ 587 in6_ifstat_inc(ifp, ifs6_out_request); 588 } 589 if (rt != NULL) { 590 ia = (struct in6_ifaddr *)(rt->rt_ifa); 591 counter_u64_add(rt->rt_pksent, 1); 592 } 593 594 595 /* 596 * The outgoing interface must be in the zone of source and 597 * destination addresses. 598 */ 599 origifp = ifp; 600 601 src0 = ip6->ip6_src; 602 if (in6_setscope(&src0, origifp, &zone)) 603 goto badscope; 604 bzero(&src_sa, sizeof(src_sa)); 605 src_sa.sin6_family = AF_INET6; 606 src_sa.sin6_len = sizeof(src_sa); 607 src_sa.sin6_addr = ip6->ip6_src; 608 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 609 goto badscope; 610 611 dst0 = ip6->ip6_dst; 612 if (in6_setscope(&dst0, origifp, &zone)) 613 goto badscope; 614 /* re-initialize to be sure */ 615 bzero(&dst_sa, sizeof(dst_sa)); 616 dst_sa.sin6_family = AF_INET6; 617 dst_sa.sin6_len = sizeof(dst_sa); 618 dst_sa.sin6_addr = ip6->ip6_dst; 619 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 620 goto badscope; 621 } 622 623 /* We should use ia_ifp to support the case of 624 * sending packets to an address of our own. 625 */ 626 if (ia != NULL && ia->ia_ifp) 627 ifp = ia->ia_ifp; 628 629 /* scope check is done. */ 630 goto routefound; 631 632 badscope: 633 IP6STAT_INC(ip6s_badscope); 634 in6_ifstat_inc(origifp, ifs6_out_discard); 635 if (error == 0) 636 error = EHOSTUNREACH; /* XXX */ 637 goto bad; 638 639 routefound: 640 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 641 if (opt && opt->ip6po_nextroute.ro_rt) { 642 /* 643 * The nexthop is explicitly specified by the 644 * application. We assume the next hop is an IPv6 645 * address. 646 */ 647 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 648 } 649 else if ((rt->rt_flags & RTF_GATEWAY)) 650 dst = (struct sockaddr_in6 *)rt->rt_gateway; 651 } 652 653 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 654 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 655 } else { 656 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 657 in6_ifstat_inc(ifp, ifs6_out_mcast); 658 /* 659 * Confirm that the outgoing interface supports multicast. 660 */ 661 if (!(ifp->if_flags & IFF_MULTICAST)) { 662 IP6STAT_INC(ip6s_noroute); 663 in6_ifstat_inc(ifp, ifs6_out_discard); 664 error = ENETUNREACH; 665 goto bad; 666 } 667 if ((im6o == NULL && in6_mcast_loop) || 668 (im6o && im6o->im6o_multicast_loop)) { 669 /* 670 * Loop back multicast datagram if not expressly 671 * forbidden to do so, even if we have not joined 672 * the address; protocols will filter it later, 673 * thus deferring a hash lookup and lock acquisition 674 * at the expense of an m_copym(). 675 */ 676 ip6_mloopback(ifp, m); 677 } else { 678 /* 679 * If we are acting as a multicast router, perform 680 * multicast forwarding as if the packet had just 681 * arrived on the interface to which we are about 682 * to send. The multicast forwarding function 683 * recursively calls this function, using the 684 * IPV6_FORWARDING flag to prevent infinite recursion. 685 * 686 * Multicasts that are looped back by ip6_mloopback(), 687 * above, will be forwarded by the ip6_input() routine, 688 * if necessary. 689 */ 690 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 691 /* 692 * XXX: ip6_mforward expects that rcvif is NULL 693 * when it is called from the originating path. 694 * However, it may not always be the case. 695 */ 696 m->m_pkthdr.rcvif = NULL; 697 if (ip6_mforward(ip6, ifp, m) != 0) { 698 m_freem(m); 699 goto done; 700 } 701 } 702 } 703 /* 704 * Multicasts with a hoplimit of zero may be looped back, 705 * above, but must not be transmitted on a network. 706 * Also, multicasts addressed to the loopback interface 707 * are not sent -- the above call to ip6_mloopback() will 708 * loop back a copy if this host actually belongs to the 709 * destination group on the loopback interface. 710 */ 711 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 712 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 713 m_freem(m); 714 goto done; 715 } 716 } 717 718 /* 719 * Fill the outgoing inteface to tell the upper layer 720 * to increment per-interface statistics. 721 */ 722 if (ifpp) 723 *ifpp = ifp; 724 725 /* Determine path MTU. */ 726 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 727 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 728 goto bad; 729 730 /* 731 * The caller of this function may specify to use the minimum MTU 732 * in some cases. 733 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 734 * setting. The logic is a bit complicated; by default, unicast 735 * packets will follow path MTU while multicast packets will be sent at 736 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 737 * including unicast ones will be sent at the minimum MTU. Multicast 738 * packets will always be sent at the minimum MTU unless 739 * IP6PO_MINMTU_DISABLE is explicitly specified. 740 * See RFC 3542 for more details. 741 */ 742 if (mtu > IPV6_MMTU) { 743 if ((flags & IPV6_MINMTU)) 744 mtu = IPV6_MMTU; 745 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 746 mtu = IPV6_MMTU; 747 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 748 (opt == NULL || 749 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 750 mtu = IPV6_MMTU; 751 } 752 } 753 754 /* 755 * clear embedded scope identifiers if necessary. 756 * in6_clearscope will touch the addresses only when necessary. 757 */ 758 in6_clearscope(&ip6->ip6_src); 759 in6_clearscope(&ip6->ip6_dst); 760 761 /* 762 * If the outgoing packet contains a hop-by-hop options header, 763 * it must be examined and processed even by the source node. 764 * (RFC 2460, section 4.) 765 */ 766 if (exthdrs.ip6e_hbh) { 767 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 768 u_int32_t dummy; /* XXX unused */ 769 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 770 771 #ifdef DIAGNOSTIC 772 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 773 panic("ip6e_hbh is not contiguous"); 774 #endif 775 /* 776 * XXX: if we have to send an ICMPv6 error to the sender, 777 * we need the M_LOOP flag since icmp6_error() expects 778 * the IPv6 and the hop-by-hop options header are 779 * contiguous unless the flag is set. 780 */ 781 m->m_flags |= M_LOOP; 782 m->m_pkthdr.rcvif = ifp; 783 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 784 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 785 &dummy, &plen) < 0) { 786 /* m was already freed at this point */ 787 error = EINVAL;/* better error? */ 788 goto done; 789 } 790 m->m_flags &= ~M_LOOP; /* XXX */ 791 m->m_pkthdr.rcvif = NULL; 792 } 793 794 /* Jump over all PFIL processing if hooks are not active. */ 795 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 796 goto passout; 797 798 odst = ip6->ip6_dst; 799 /* Run through list of hooks for output packets. */ 800 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 801 if (error != 0 || m == NULL) 802 goto done; 803 /* adjust pointer */ 804 ip6 = mtod(m, struct ip6_hdr *); 805 806 needfiblookup = 0; 807 /* See if destination IP address was changed by packet filter. */ 808 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 809 m->m_flags |= M_SKIP_FIREWALL; 810 /* If destination is now ourself drop to ip6_input(). */ 811 if (in6_localip(&ip6->ip6_dst)) { 812 m->m_flags |= M_FASTFWD_OURS; 813 if (m->m_pkthdr.rcvif == NULL) 814 m->m_pkthdr.rcvif = V_loif; 815 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 816 m->m_pkthdr.csum_flags |= 817 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 818 m->m_pkthdr.csum_data = 0xffff; 819 } 820 #ifdef SCTP 821 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 822 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 823 #endif 824 error = netisr_queue(NETISR_IPV6, m); 825 goto done; 826 } else { 827 RO_RTFREE(ro); 828 needfiblookup = 1; /* Redo the routing table lookup. */ 829 if (ro->ro_lle) 830 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 831 ro->ro_lle = NULL; 832 } 833 } 834 /* See if fib was changed by packet filter. */ 835 if (fibnum != M_GETFIB(m)) { 836 m->m_flags |= M_SKIP_FIREWALL; 837 fibnum = M_GETFIB(m); 838 RO_RTFREE(ro); 839 needfiblookup = 1; 840 if (ro->ro_lle) 841 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 842 ro->ro_lle = NULL; 843 } 844 if (needfiblookup) 845 goto again; 846 847 /* See if local, if yes, send it to netisr. */ 848 if (m->m_flags & M_FASTFWD_OURS) { 849 if (m->m_pkthdr.rcvif == NULL) 850 m->m_pkthdr.rcvif = V_loif; 851 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 852 m->m_pkthdr.csum_flags |= 853 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 854 m->m_pkthdr.csum_data = 0xffff; 855 } 856 #ifdef SCTP 857 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 858 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 859 #endif 860 error = netisr_queue(NETISR_IPV6, m); 861 goto done; 862 } 863 /* Or forward to some other address? */ 864 if ((m->m_flags & M_IP6_NEXTHOP) && 865 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 866 dst = (struct sockaddr_in6 *)&ro->ro_dst; 867 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 868 m->m_flags |= M_SKIP_FIREWALL; 869 m->m_flags &= ~M_IP6_NEXTHOP; 870 m_tag_delete(m, fwd_tag); 871 goto again; 872 } 873 874 passout: 875 /* 876 * Send the packet to the outgoing interface. 877 * If necessary, do IPv6 fragmentation before sending. 878 * 879 * the logic here is rather complex: 880 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 881 * 1-a: send as is if tlen <= path mtu 882 * 1-b: fragment if tlen > path mtu 883 * 884 * 2: if user asks us not to fragment (dontfrag == 1) 885 * 2-a: send as is if tlen <= interface mtu 886 * 2-b: error if tlen > interface mtu 887 * 888 * 3: if we always need to attach fragment header (alwaysfrag == 1) 889 * always fragment 890 * 891 * 4: if dontfrag == 1 && alwaysfrag == 1 892 * error, as we cannot handle this conflicting request 893 */ 894 sw_csum = m->m_pkthdr.csum_flags; 895 if (!hdrsplit) { 896 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 897 sw_csum &= ~ifp->if_hwassist; 898 } else 899 tso = 0; 900 /* 901 * If we added extension headers, we will not do TSO and calculate the 902 * checksums ourselves for now. 903 * XXX-BZ Need a framework to know when the NIC can handle it, even 904 * with ext. hdrs. 905 */ 906 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 907 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 908 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 909 } 910 #ifdef SCTP 911 if (sw_csum & CSUM_SCTP_IPV6) { 912 sw_csum &= ~CSUM_SCTP_IPV6; 913 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 914 } 915 #endif 916 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 917 tlen = m->m_pkthdr.len; 918 919 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 920 dontfrag = 1; 921 else 922 dontfrag = 0; 923 if (dontfrag && alwaysfrag) { /* case 4 */ 924 /* conflicting request - can't transmit */ 925 error = EMSGSIZE; 926 goto bad; 927 } 928 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 929 /* 930 * Even if the DONTFRAG option is specified, we cannot send the 931 * packet when the data length is larger than the MTU of the 932 * outgoing interface. 933 * Notify the error by sending IPV6_PATHMTU ancillary data if 934 * application wanted to know the MTU value. Also return an 935 * error code (this is not described in the API spec). 936 */ 937 if (inp != NULL) 938 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 939 error = EMSGSIZE; 940 goto bad; 941 } 942 943 /* 944 * transmit packet without fragmentation 945 */ 946 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 947 struct in6_ifaddr *ia6; 948 949 ip6 = mtod(m, struct ip6_hdr *); 950 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 951 if (ia6) { 952 /* Record statistics for this interface address. */ 953 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 954 counter_u64_add(ia6->ia_ifa.ifa_obytes, 955 m->m_pkthdr.len); 956 ifa_free(&ia6->ia_ifa); 957 } 958 #ifdef RATELIMIT 959 if (inp != NULL) { 960 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 961 in_pcboutput_txrtlmt(inp, ifp, m); 962 /* stamp send tag on mbuf */ 963 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 964 } else { 965 m->m_pkthdr.snd_tag = NULL; 966 } 967 #endif 968 error = nd6_output_ifp(ifp, origifp, m, dst, 969 (struct route *)ro); 970 #ifdef RATELIMIT 971 /* check for route change */ 972 if (error == EAGAIN) 973 in_pcboutput_eagain(inp); 974 #endif 975 goto done; 976 } 977 978 /* 979 * try to fragment the packet. case 1-b and 3 980 */ 981 if (mtu < IPV6_MMTU) { 982 /* path MTU cannot be less than IPV6_MMTU */ 983 error = EMSGSIZE; 984 in6_ifstat_inc(ifp, ifs6_out_fragfail); 985 goto bad; 986 } else if (ip6->ip6_plen == 0) { 987 /* jumbo payload cannot be fragmented */ 988 error = EMSGSIZE; 989 in6_ifstat_inc(ifp, ifs6_out_fragfail); 990 goto bad; 991 } else { 992 u_char nextproto; 993 994 /* 995 * Too large for the destination or interface; 996 * fragment if possible. 997 * Must be able to put at least 8 bytes per fragment. 998 */ 999 hlen = unfragpartlen; 1000 if (mtu > IPV6_MAXPACKET) 1001 mtu = IPV6_MAXPACKET; 1002 1003 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 1004 if (len < 8) { 1005 error = EMSGSIZE; 1006 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1007 goto bad; 1008 } 1009 1010 /* 1011 * If the interface will not calculate checksums on 1012 * fragmented packets, then do it here. 1013 * XXX-BZ handle the hw offloading case. Need flags. 1014 */ 1015 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1016 in6_delayed_cksum(m, plen, hlen); 1017 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 1018 } 1019 #ifdef SCTP 1020 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 1021 sctp_delayed_cksum(m, hlen); 1022 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 1023 } 1024 #endif 1025 /* 1026 * Change the next header field of the last header in the 1027 * unfragmentable part. 1028 */ 1029 if (exthdrs.ip6e_rthdr) { 1030 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1031 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1032 } else if (exthdrs.ip6e_dest1) { 1033 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1034 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1035 } else if (exthdrs.ip6e_hbh) { 1036 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1037 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1038 } else { 1039 nextproto = ip6->ip6_nxt; 1040 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1041 } 1042 1043 /* 1044 * Loop through length of segment after first fragment, 1045 * make new header and copy data of each part and link onto 1046 * chain. 1047 */ 1048 m0 = m; 1049 id = htonl(ip6_randomid()); 1050 if ((error = ip6_fragment(ifp, m, hlen, nextproto, len, id))) 1051 goto sendorfree; 1052 1053 in6_ifstat_inc(ifp, ifs6_out_fragok); 1054 } 1055 1056 /* 1057 * Remove leading garbages. 1058 */ 1059 sendorfree: 1060 m = m0->m_nextpkt; 1061 m0->m_nextpkt = 0; 1062 m_freem(m0); 1063 for (m0 = m; m; m = m0) { 1064 m0 = m->m_nextpkt; 1065 m->m_nextpkt = 0; 1066 if (error == 0) { 1067 /* Record statistics for this interface address. */ 1068 if (ia) { 1069 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1070 counter_u64_add(ia->ia_ifa.ifa_obytes, 1071 m->m_pkthdr.len); 1072 } 1073 #ifdef RATELIMIT 1074 if (inp != NULL) { 1075 if (inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) 1076 in_pcboutput_txrtlmt(inp, ifp, m); 1077 /* stamp send tag on mbuf */ 1078 m->m_pkthdr.snd_tag = inp->inp_snd_tag; 1079 } else { 1080 m->m_pkthdr.snd_tag = NULL; 1081 } 1082 #endif 1083 error = nd6_output_ifp(ifp, origifp, m, dst, 1084 (struct route *)ro); 1085 #ifdef RATELIMIT 1086 /* check for route change */ 1087 if (error == EAGAIN) 1088 in_pcboutput_eagain(inp); 1089 #endif 1090 } else 1091 m_freem(m); 1092 } 1093 1094 if (error == 0) 1095 IP6STAT_INC(ip6s_fragmented); 1096 1097 done: 1098 if (ro == &ip6route) 1099 RO_RTFREE(ro); 1100 return (error); 1101 1102 freehdrs: 1103 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1104 m_freem(exthdrs.ip6e_dest1); 1105 m_freem(exthdrs.ip6e_rthdr); 1106 m_freem(exthdrs.ip6e_dest2); 1107 /* FALLTHROUGH */ 1108 bad: 1109 if (m) 1110 m_freem(m); 1111 goto done; 1112 } 1113 1114 static int 1115 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1116 { 1117 struct mbuf *m; 1118 1119 if (hlen > MCLBYTES) 1120 return (ENOBUFS); /* XXX */ 1121 1122 if (hlen > MLEN) 1123 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1124 else 1125 m = m_get(M_NOWAIT, MT_DATA); 1126 if (m == NULL) 1127 return (ENOBUFS); 1128 m->m_len = hlen; 1129 if (hdr) 1130 bcopy(hdr, mtod(m, caddr_t), hlen); 1131 1132 *mp = m; 1133 return (0); 1134 } 1135 1136 /* 1137 * Insert jumbo payload option. 1138 */ 1139 static int 1140 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1141 { 1142 struct mbuf *mopt; 1143 u_char *optbuf; 1144 u_int32_t v; 1145 1146 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1147 1148 /* 1149 * If there is no hop-by-hop options header, allocate new one. 1150 * If there is one but it doesn't have enough space to store the 1151 * jumbo payload option, allocate a cluster to store the whole options. 1152 * Otherwise, use it to store the options. 1153 */ 1154 if (exthdrs->ip6e_hbh == NULL) { 1155 mopt = m_get(M_NOWAIT, MT_DATA); 1156 if (mopt == NULL) 1157 return (ENOBUFS); 1158 mopt->m_len = JUMBOOPTLEN; 1159 optbuf = mtod(mopt, u_char *); 1160 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1161 exthdrs->ip6e_hbh = mopt; 1162 } else { 1163 struct ip6_hbh *hbh; 1164 1165 mopt = exthdrs->ip6e_hbh; 1166 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1167 /* 1168 * XXX assumption: 1169 * - exthdrs->ip6e_hbh is not referenced from places 1170 * other than exthdrs. 1171 * - exthdrs->ip6e_hbh is not an mbuf chain. 1172 */ 1173 int oldoptlen = mopt->m_len; 1174 struct mbuf *n; 1175 1176 /* 1177 * XXX: give up if the whole (new) hbh header does 1178 * not fit even in an mbuf cluster. 1179 */ 1180 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1181 return (ENOBUFS); 1182 1183 /* 1184 * As a consequence, we must always prepare a cluster 1185 * at this point. 1186 */ 1187 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1188 if (n == NULL) 1189 return (ENOBUFS); 1190 n->m_len = oldoptlen + JUMBOOPTLEN; 1191 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1192 oldoptlen); 1193 optbuf = mtod(n, caddr_t) + oldoptlen; 1194 m_freem(mopt); 1195 mopt = exthdrs->ip6e_hbh = n; 1196 } else { 1197 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1198 mopt->m_len += JUMBOOPTLEN; 1199 } 1200 optbuf[0] = IP6OPT_PADN; 1201 optbuf[1] = 1; 1202 1203 /* 1204 * Adjust the header length according to the pad and 1205 * the jumbo payload option. 1206 */ 1207 hbh = mtod(mopt, struct ip6_hbh *); 1208 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1209 } 1210 1211 /* fill in the option. */ 1212 optbuf[2] = IP6OPT_JUMBO; 1213 optbuf[3] = 4; 1214 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1215 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1216 1217 /* finally, adjust the packet header length */ 1218 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1219 1220 return (0); 1221 #undef JUMBOOPTLEN 1222 } 1223 1224 /* 1225 * Insert fragment header and copy unfragmentable header portions. 1226 */ 1227 static int 1228 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1229 struct ip6_frag **frghdrp) 1230 { 1231 struct mbuf *n, *mlast; 1232 1233 if (hlen > sizeof(struct ip6_hdr)) { 1234 n = m_copym(m0, sizeof(struct ip6_hdr), 1235 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1236 if (n == NULL) 1237 return (ENOBUFS); 1238 m->m_next = n; 1239 } else 1240 n = m; 1241 1242 /* Search for the last mbuf of unfragmentable part. */ 1243 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1244 ; 1245 1246 if (M_WRITABLE(mlast) && 1247 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1248 /* use the trailing space of the last mbuf for the fragment hdr */ 1249 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1250 mlast->m_len); 1251 mlast->m_len += sizeof(struct ip6_frag); 1252 m->m_pkthdr.len += sizeof(struct ip6_frag); 1253 } else { 1254 /* allocate a new mbuf for the fragment header */ 1255 struct mbuf *mfrg; 1256 1257 mfrg = m_get(M_NOWAIT, MT_DATA); 1258 if (mfrg == NULL) 1259 return (ENOBUFS); 1260 mfrg->m_len = sizeof(struct ip6_frag); 1261 *frghdrp = mtod(mfrg, struct ip6_frag *); 1262 mlast->m_next = mfrg; 1263 } 1264 1265 return (0); 1266 } 1267 1268 /* 1269 * Calculates IPv6 path mtu for destination @dst. 1270 * Resulting MTU is stored in @mtup. 1271 * 1272 * Returns 0 on success. 1273 */ 1274 static int 1275 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1276 { 1277 struct nhop6_extended nh6; 1278 struct in6_addr kdst; 1279 uint32_t scopeid; 1280 struct ifnet *ifp; 1281 u_long mtu; 1282 int error; 1283 1284 in6_splitscope(dst, &kdst, &scopeid); 1285 if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0) 1286 return (EHOSTUNREACH); 1287 1288 ifp = nh6.nh_ifp; 1289 mtu = nh6.nh_mtu; 1290 1291 error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL, 0); 1292 fib6_free_nh_ext(fibnum, &nh6); 1293 1294 return (error); 1295 } 1296 1297 /* 1298 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1299 * and cached data in @ro_pmtu. 1300 * MTU from (successful) route lookup is saved (along with dst) 1301 * inside @ro_pmtu to avoid subsequent route lookups after packet 1302 * filter processing. 1303 * 1304 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1305 * Returns 0 on success. 1306 */ 1307 static int 1308 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1309 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1310 int *alwaysfragp, u_int fibnum, u_int proto) 1311 { 1312 struct nhop6_basic nh6; 1313 struct in6_addr kdst; 1314 uint32_t scopeid; 1315 struct sockaddr_in6 *sa6_dst; 1316 u_long mtu; 1317 1318 mtu = 0; 1319 if (do_lookup) { 1320 1321 /* 1322 * Here ro_pmtu has final destination address, while 1323 * ro might represent immediate destination. 1324 * Use ro_pmtu destination since mtu might differ. 1325 */ 1326 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1327 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1328 ro_pmtu->ro_mtu = 0; 1329 1330 if (ro_pmtu->ro_mtu == 0) { 1331 bzero(sa6_dst, sizeof(*sa6_dst)); 1332 sa6_dst->sin6_family = AF_INET6; 1333 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1334 sa6_dst->sin6_addr = *dst; 1335 1336 in6_splitscope(dst, &kdst, &scopeid); 1337 if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0, 1338 &nh6) == 0) 1339 ro_pmtu->ro_mtu = nh6.nh_mtu; 1340 } 1341 1342 mtu = ro_pmtu->ro_mtu; 1343 } 1344 1345 if (ro_pmtu->ro_rt) 1346 mtu = ro_pmtu->ro_rt->rt_mtu; 1347 1348 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1349 } 1350 1351 /* 1352 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1353 * hostcache data for @dst. 1354 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1355 * 1356 * Returns 0 on success. 1357 */ 1358 static int 1359 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1360 u_long *mtup, int *alwaysfragp, u_int proto) 1361 { 1362 u_long mtu = 0; 1363 int alwaysfrag = 0; 1364 int error = 0; 1365 1366 if (rt_mtu > 0) { 1367 u_int32_t ifmtu; 1368 struct in_conninfo inc; 1369 1370 bzero(&inc, sizeof(inc)); 1371 inc.inc_flags |= INC_ISIPV6; 1372 inc.inc6_faddr = *dst; 1373 1374 ifmtu = IN6_LINKMTU(ifp); 1375 1376 /* TCP is known to react to pmtu changes so skip hc */ 1377 if (proto != IPPROTO_TCP) 1378 mtu = tcp_hc_getmtu(&inc); 1379 1380 if (mtu) 1381 mtu = min(mtu, rt_mtu); 1382 else 1383 mtu = rt_mtu; 1384 if (mtu == 0) 1385 mtu = ifmtu; 1386 else if (mtu < IPV6_MMTU) { 1387 /* 1388 * RFC2460 section 5, last paragraph: 1389 * if we record ICMPv6 too big message with 1390 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1391 * or smaller, with framgent header attached. 1392 * (fragment header is needed regardless from the 1393 * packet size, for translators to identify packets) 1394 */ 1395 alwaysfrag = 1; 1396 mtu = IPV6_MMTU; 1397 } 1398 } else if (ifp) { 1399 mtu = IN6_LINKMTU(ifp); 1400 } else 1401 error = EHOSTUNREACH; /* XXX */ 1402 1403 *mtup = mtu; 1404 if (alwaysfragp) 1405 *alwaysfragp = alwaysfrag; 1406 return (error); 1407 } 1408 1409 /* 1410 * IP6 socket option processing. 1411 */ 1412 int 1413 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1414 { 1415 int optdatalen, uproto; 1416 void *optdata; 1417 struct inpcb *in6p = sotoinpcb(so); 1418 int error, optval; 1419 int level, op, optname; 1420 int optlen; 1421 struct thread *td; 1422 #ifdef RSS 1423 uint32_t rss_bucket; 1424 int retval; 1425 #endif 1426 1427 /* 1428 * Don't use more than a quarter of mbuf clusters. N.B.: 1429 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1430 * on LP64 architectures, so cast to u_long to avoid undefined 1431 * behavior. ILP32 architectures cannot have nmbclusters 1432 * large enough to overflow for other reasons. 1433 */ 1434 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1435 1436 level = sopt->sopt_level; 1437 op = sopt->sopt_dir; 1438 optname = sopt->sopt_name; 1439 optlen = sopt->sopt_valsize; 1440 td = sopt->sopt_td; 1441 error = 0; 1442 optval = 0; 1443 uproto = (int)so->so_proto->pr_protocol; 1444 1445 if (level != IPPROTO_IPV6) { 1446 error = EINVAL; 1447 1448 if (sopt->sopt_level == SOL_SOCKET && 1449 sopt->sopt_dir == SOPT_SET) { 1450 switch (sopt->sopt_name) { 1451 case SO_REUSEADDR: 1452 INP_WLOCK(in6p); 1453 if ((so->so_options & SO_REUSEADDR) != 0) 1454 in6p->inp_flags2 |= INP_REUSEADDR; 1455 else 1456 in6p->inp_flags2 &= ~INP_REUSEADDR; 1457 INP_WUNLOCK(in6p); 1458 error = 0; 1459 break; 1460 case SO_REUSEPORT: 1461 INP_WLOCK(in6p); 1462 if ((so->so_options & SO_REUSEPORT) != 0) 1463 in6p->inp_flags2 |= INP_REUSEPORT; 1464 else 1465 in6p->inp_flags2 &= ~INP_REUSEPORT; 1466 INP_WUNLOCK(in6p); 1467 error = 0; 1468 break; 1469 case SO_SETFIB: 1470 INP_WLOCK(in6p); 1471 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1472 INP_WUNLOCK(in6p); 1473 error = 0; 1474 break; 1475 case SO_MAX_PACING_RATE: 1476 #ifdef RATELIMIT 1477 INP_WLOCK(in6p); 1478 in6p->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1479 INP_WUNLOCK(in6p); 1480 error = 0; 1481 #else 1482 error = EOPNOTSUPP; 1483 #endif 1484 break; 1485 default: 1486 break; 1487 } 1488 } 1489 } else { /* level == IPPROTO_IPV6 */ 1490 switch (op) { 1491 1492 case SOPT_SET: 1493 switch (optname) { 1494 case IPV6_2292PKTOPTIONS: 1495 #ifdef IPV6_PKTOPTIONS 1496 case IPV6_PKTOPTIONS: 1497 #endif 1498 { 1499 struct mbuf *m; 1500 1501 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1502 printf("ip6_ctloutput: mbuf limit hit\n"); 1503 error = ENOBUFS; 1504 break; 1505 } 1506 1507 error = soopt_getm(sopt, &m); /* XXX */ 1508 if (error != 0) 1509 break; 1510 error = soopt_mcopyin(sopt, m); /* XXX */ 1511 if (error != 0) 1512 break; 1513 error = ip6_pcbopts(&in6p->in6p_outputopts, 1514 m, so, sopt); 1515 m_freem(m); /* XXX */ 1516 break; 1517 } 1518 1519 /* 1520 * Use of some Hop-by-Hop options or some 1521 * Destination options, might require special 1522 * privilege. That is, normal applications 1523 * (without special privilege) might be forbidden 1524 * from setting certain options in outgoing packets, 1525 * and might never see certain options in received 1526 * packets. [RFC 2292 Section 6] 1527 * KAME specific note: 1528 * KAME prevents non-privileged users from sending or 1529 * receiving ANY hbh/dst options in order to avoid 1530 * overhead of parsing options in the kernel. 1531 */ 1532 case IPV6_RECVHOPOPTS: 1533 case IPV6_RECVDSTOPTS: 1534 case IPV6_RECVRTHDRDSTOPTS: 1535 if (td != NULL) { 1536 error = priv_check(td, 1537 PRIV_NETINET_SETHDROPTS); 1538 if (error) 1539 break; 1540 } 1541 /* FALLTHROUGH */ 1542 case IPV6_UNICAST_HOPS: 1543 case IPV6_HOPLIMIT: 1544 1545 case IPV6_RECVPKTINFO: 1546 case IPV6_RECVHOPLIMIT: 1547 case IPV6_RECVRTHDR: 1548 case IPV6_RECVPATHMTU: 1549 case IPV6_RECVTCLASS: 1550 case IPV6_RECVFLOWID: 1551 #ifdef RSS 1552 case IPV6_RECVRSSBUCKETID: 1553 #endif 1554 case IPV6_V6ONLY: 1555 case IPV6_AUTOFLOWLABEL: 1556 case IPV6_BINDANY: 1557 case IPV6_BINDMULTI: 1558 #ifdef RSS 1559 case IPV6_RSS_LISTEN_BUCKET: 1560 #endif 1561 if (optname == IPV6_BINDANY && td != NULL) { 1562 error = priv_check(td, 1563 PRIV_NETINET_BINDANY); 1564 if (error) 1565 break; 1566 } 1567 1568 if (optlen != sizeof(int)) { 1569 error = EINVAL; 1570 break; 1571 } 1572 error = sooptcopyin(sopt, &optval, 1573 sizeof optval, sizeof optval); 1574 if (error) 1575 break; 1576 switch (optname) { 1577 1578 case IPV6_UNICAST_HOPS: 1579 if (optval < -1 || optval >= 256) 1580 error = EINVAL; 1581 else { 1582 /* -1 = kernel default */ 1583 in6p->in6p_hops = optval; 1584 if ((in6p->inp_vflag & 1585 INP_IPV4) != 0) 1586 in6p->inp_ip_ttl = optval; 1587 } 1588 break; 1589 #define OPTSET(bit) \ 1590 do { \ 1591 INP_WLOCK(in6p); \ 1592 if (optval) \ 1593 in6p->inp_flags |= (bit); \ 1594 else \ 1595 in6p->inp_flags &= ~(bit); \ 1596 INP_WUNLOCK(in6p); \ 1597 } while (/*CONSTCOND*/ 0) 1598 #define OPTSET2292(bit) \ 1599 do { \ 1600 INP_WLOCK(in6p); \ 1601 in6p->inp_flags |= IN6P_RFC2292; \ 1602 if (optval) \ 1603 in6p->inp_flags |= (bit); \ 1604 else \ 1605 in6p->inp_flags &= ~(bit); \ 1606 INP_WUNLOCK(in6p); \ 1607 } while (/*CONSTCOND*/ 0) 1608 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1609 1610 #define OPTSET2(bit, val) do { \ 1611 INP_WLOCK(in6p); \ 1612 if (val) \ 1613 in6p->inp_flags2 |= bit; \ 1614 else \ 1615 in6p->inp_flags2 &= ~bit; \ 1616 INP_WUNLOCK(in6p); \ 1617 } while (0) 1618 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) 1619 1620 case IPV6_RECVPKTINFO: 1621 /* cannot mix with RFC2292 */ 1622 if (OPTBIT(IN6P_RFC2292)) { 1623 error = EINVAL; 1624 break; 1625 } 1626 OPTSET(IN6P_PKTINFO); 1627 break; 1628 1629 case IPV6_HOPLIMIT: 1630 { 1631 struct ip6_pktopts **optp; 1632 1633 /* cannot mix with RFC2292 */ 1634 if (OPTBIT(IN6P_RFC2292)) { 1635 error = EINVAL; 1636 break; 1637 } 1638 optp = &in6p->in6p_outputopts; 1639 error = ip6_pcbopt(IPV6_HOPLIMIT, 1640 (u_char *)&optval, sizeof(optval), 1641 optp, (td != NULL) ? td->td_ucred : 1642 NULL, uproto); 1643 break; 1644 } 1645 1646 case IPV6_RECVHOPLIMIT: 1647 /* cannot mix with RFC2292 */ 1648 if (OPTBIT(IN6P_RFC2292)) { 1649 error = EINVAL; 1650 break; 1651 } 1652 OPTSET(IN6P_HOPLIMIT); 1653 break; 1654 1655 case IPV6_RECVHOPOPTS: 1656 /* cannot mix with RFC2292 */ 1657 if (OPTBIT(IN6P_RFC2292)) { 1658 error = EINVAL; 1659 break; 1660 } 1661 OPTSET(IN6P_HOPOPTS); 1662 break; 1663 1664 case IPV6_RECVDSTOPTS: 1665 /* cannot mix with RFC2292 */ 1666 if (OPTBIT(IN6P_RFC2292)) { 1667 error = EINVAL; 1668 break; 1669 } 1670 OPTSET(IN6P_DSTOPTS); 1671 break; 1672 1673 case IPV6_RECVRTHDRDSTOPTS: 1674 /* cannot mix with RFC2292 */ 1675 if (OPTBIT(IN6P_RFC2292)) { 1676 error = EINVAL; 1677 break; 1678 } 1679 OPTSET(IN6P_RTHDRDSTOPTS); 1680 break; 1681 1682 case IPV6_RECVRTHDR: 1683 /* cannot mix with RFC2292 */ 1684 if (OPTBIT(IN6P_RFC2292)) { 1685 error = EINVAL; 1686 break; 1687 } 1688 OPTSET(IN6P_RTHDR); 1689 break; 1690 1691 case IPV6_RECVPATHMTU: 1692 /* 1693 * We ignore this option for TCP 1694 * sockets. 1695 * (RFC3542 leaves this case 1696 * unspecified.) 1697 */ 1698 if (uproto != IPPROTO_TCP) 1699 OPTSET(IN6P_MTU); 1700 break; 1701 1702 case IPV6_RECVFLOWID: 1703 OPTSET2(INP_RECVFLOWID, optval); 1704 break; 1705 1706 #ifdef RSS 1707 case IPV6_RECVRSSBUCKETID: 1708 OPTSET2(INP_RECVRSSBUCKETID, optval); 1709 break; 1710 #endif 1711 1712 case IPV6_V6ONLY: 1713 /* 1714 * make setsockopt(IPV6_V6ONLY) 1715 * available only prior to bind(2). 1716 * see ipng mailing list, Jun 22 2001. 1717 */ 1718 if (in6p->inp_lport || 1719 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1720 error = EINVAL; 1721 break; 1722 } 1723 OPTSET(IN6P_IPV6_V6ONLY); 1724 if (optval) 1725 in6p->inp_vflag &= ~INP_IPV4; 1726 else 1727 in6p->inp_vflag |= INP_IPV4; 1728 break; 1729 case IPV6_RECVTCLASS: 1730 /* cannot mix with RFC2292 XXX */ 1731 if (OPTBIT(IN6P_RFC2292)) { 1732 error = EINVAL; 1733 break; 1734 } 1735 OPTSET(IN6P_TCLASS); 1736 break; 1737 case IPV6_AUTOFLOWLABEL: 1738 OPTSET(IN6P_AUTOFLOWLABEL); 1739 break; 1740 1741 case IPV6_BINDANY: 1742 OPTSET(INP_BINDANY); 1743 break; 1744 1745 case IPV6_BINDMULTI: 1746 OPTSET2(INP_BINDMULTI, optval); 1747 break; 1748 #ifdef RSS 1749 case IPV6_RSS_LISTEN_BUCKET: 1750 if ((optval >= 0) && 1751 (optval < rss_getnumbuckets())) { 1752 in6p->inp_rss_listen_bucket = optval; 1753 OPTSET2(INP_RSS_BUCKET_SET, 1); 1754 } else { 1755 error = EINVAL; 1756 } 1757 break; 1758 #endif 1759 } 1760 break; 1761 1762 case IPV6_TCLASS: 1763 case IPV6_DONTFRAG: 1764 case IPV6_USE_MIN_MTU: 1765 case IPV6_PREFER_TEMPADDR: 1766 if (optlen != sizeof(optval)) { 1767 error = EINVAL; 1768 break; 1769 } 1770 error = sooptcopyin(sopt, &optval, 1771 sizeof optval, sizeof optval); 1772 if (error) 1773 break; 1774 { 1775 struct ip6_pktopts **optp; 1776 optp = &in6p->in6p_outputopts; 1777 error = ip6_pcbopt(optname, 1778 (u_char *)&optval, sizeof(optval), 1779 optp, (td != NULL) ? td->td_ucred : 1780 NULL, uproto); 1781 break; 1782 } 1783 1784 case IPV6_2292PKTINFO: 1785 case IPV6_2292HOPLIMIT: 1786 case IPV6_2292HOPOPTS: 1787 case IPV6_2292DSTOPTS: 1788 case IPV6_2292RTHDR: 1789 /* RFC 2292 */ 1790 if (optlen != sizeof(int)) { 1791 error = EINVAL; 1792 break; 1793 } 1794 error = sooptcopyin(sopt, &optval, 1795 sizeof optval, sizeof optval); 1796 if (error) 1797 break; 1798 switch (optname) { 1799 case IPV6_2292PKTINFO: 1800 OPTSET2292(IN6P_PKTINFO); 1801 break; 1802 case IPV6_2292HOPLIMIT: 1803 OPTSET2292(IN6P_HOPLIMIT); 1804 break; 1805 case IPV6_2292HOPOPTS: 1806 /* 1807 * Check super-user privilege. 1808 * See comments for IPV6_RECVHOPOPTS. 1809 */ 1810 if (td != NULL) { 1811 error = priv_check(td, 1812 PRIV_NETINET_SETHDROPTS); 1813 if (error) 1814 return (error); 1815 } 1816 OPTSET2292(IN6P_HOPOPTS); 1817 break; 1818 case IPV6_2292DSTOPTS: 1819 if (td != NULL) { 1820 error = priv_check(td, 1821 PRIV_NETINET_SETHDROPTS); 1822 if (error) 1823 return (error); 1824 } 1825 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1826 break; 1827 case IPV6_2292RTHDR: 1828 OPTSET2292(IN6P_RTHDR); 1829 break; 1830 } 1831 break; 1832 case IPV6_PKTINFO: 1833 case IPV6_HOPOPTS: 1834 case IPV6_RTHDR: 1835 case IPV6_DSTOPTS: 1836 case IPV6_RTHDRDSTOPTS: 1837 case IPV6_NEXTHOP: 1838 { 1839 /* new advanced API (RFC3542) */ 1840 u_char *optbuf; 1841 u_char optbuf_storage[MCLBYTES]; 1842 int optlen; 1843 struct ip6_pktopts **optp; 1844 1845 /* cannot mix with RFC2292 */ 1846 if (OPTBIT(IN6P_RFC2292)) { 1847 error = EINVAL; 1848 break; 1849 } 1850 1851 /* 1852 * We only ensure valsize is not too large 1853 * here. Further validation will be done 1854 * later. 1855 */ 1856 error = sooptcopyin(sopt, optbuf_storage, 1857 sizeof(optbuf_storage), 0); 1858 if (error) 1859 break; 1860 optlen = sopt->sopt_valsize; 1861 optbuf = optbuf_storage; 1862 optp = &in6p->in6p_outputopts; 1863 error = ip6_pcbopt(optname, optbuf, optlen, 1864 optp, (td != NULL) ? td->td_ucred : NULL, 1865 uproto); 1866 break; 1867 } 1868 #undef OPTSET 1869 1870 case IPV6_MULTICAST_IF: 1871 case IPV6_MULTICAST_HOPS: 1872 case IPV6_MULTICAST_LOOP: 1873 case IPV6_JOIN_GROUP: 1874 case IPV6_LEAVE_GROUP: 1875 case IPV6_MSFILTER: 1876 case MCAST_BLOCK_SOURCE: 1877 case MCAST_UNBLOCK_SOURCE: 1878 case MCAST_JOIN_GROUP: 1879 case MCAST_LEAVE_GROUP: 1880 case MCAST_JOIN_SOURCE_GROUP: 1881 case MCAST_LEAVE_SOURCE_GROUP: 1882 error = ip6_setmoptions(in6p, sopt); 1883 break; 1884 1885 case IPV6_PORTRANGE: 1886 error = sooptcopyin(sopt, &optval, 1887 sizeof optval, sizeof optval); 1888 if (error) 1889 break; 1890 1891 INP_WLOCK(in6p); 1892 switch (optval) { 1893 case IPV6_PORTRANGE_DEFAULT: 1894 in6p->inp_flags &= ~(INP_LOWPORT); 1895 in6p->inp_flags &= ~(INP_HIGHPORT); 1896 break; 1897 1898 case IPV6_PORTRANGE_HIGH: 1899 in6p->inp_flags &= ~(INP_LOWPORT); 1900 in6p->inp_flags |= INP_HIGHPORT; 1901 break; 1902 1903 case IPV6_PORTRANGE_LOW: 1904 in6p->inp_flags &= ~(INP_HIGHPORT); 1905 in6p->inp_flags |= INP_LOWPORT; 1906 break; 1907 1908 default: 1909 error = EINVAL; 1910 break; 1911 } 1912 INP_WUNLOCK(in6p); 1913 break; 1914 1915 #ifdef IPSEC 1916 case IPV6_IPSEC_POLICY: 1917 { 1918 caddr_t req; 1919 struct mbuf *m; 1920 1921 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1922 break; 1923 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1924 break; 1925 req = mtod(m, caddr_t); 1926 error = ipsec_set_policy(in6p, optname, req, 1927 m->m_len, (sopt->sopt_td != NULL) ? 1928 sopt->sopt_td->td_ucred : NULL); 1929 m_freem(m); 1930 break; 1931 } 1932 #endif /* IPSEC */ 1933 1934 default: 1935 error = ENOPROTOOPT; 1936 break; 1937 } 1938 break; 1939 1940 case SOPT_GET: 1941 switch (optname) { 1942 1943 case IPV6_2292PKTOPTIONS: 1944 #ifdef IPV6_PKTOPTIONS 1945 case IPV6_PKTOPTIONS: 1946 #endif 1947 /* 1948 * RFC3542 (effectively) deprecated the 1949 * semantics of the 2292-style pktoptions. 1950 * Since it was not reliable in nature (i.e., 1951 * applications had to expect the lack of some 1952 * information after all), it would make sense 1953 * to simplify this part by always returning 1954 * empty data. 1955 */ 1956 sopt->sopt_valsize = 0; 1957 break; 1958 1959 case IPV6_RECVHOPOPTS: 1960 case IPV6_RECVDSTOPTS: 1961 case IPV6_RECVRTHDRDSTOPTS: 1962 case IPV6_UNICAST_HOPS: 1963 case IPV6_RECVPKTINFO: 1964 case IPV6_RECVHOPLIMIT: 1965 case IPV6_RECVRTHDR: 1966 case IPV6_RECVPATHMTU: 1967 1968 case IPV6_V6ONLY: 1969 case IPV6_PORTRANGE: 1970 case IPV6_RECVTCLASS: 1971 case IPV6_AUTOFLOWLABEL: 1972 case IPV6_BINDANY: 1973 case IPV6_FLOWID: 1974 case IPV6_FLOWTYPE: 1975 case IPV6_RECVFLOWID: 1976 #ifdef RSS 1977 case IPV6_RSSBUCKETID: 1978 case IPV6_RECVRSSBUCKETID: 1979 #endif 1980 case IPV6_BINDMULTI: 1981 switch (optname) { 1982 1983 case IPV6_RECVHOPOPTS: 1984 optval = OPTBIT(IN6P_HOPOPTS); 1985 break; 1986 1987 case IPV6_RECVDSTOPTS: 1988 optval = OPTBIT(IN6P_DSTOPTS); 1989 break; 1990 1991 case IPV6_RECVRTHDRDSTOPTS: 1992 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1993 break; 1994 1995 case IPV6_UNICAST_HOPS: 1996 optval = in6p->in6p_hops; 1997 break; 1998 1999 case IPV6_RECVPKTINFO: 2000 optval = OPTBIT(IN6P_PKTINFO); 2001 break; 2002 2003 case IPV6_RECVHOPLIMIT: 2004 optval = OPTBIT(IN6P_HOPLIMIT); 2005 break; 2006 2007 case IPV6_RECVRTHDR: 2008 optval = OPTBIT(IN6P_RTHDR); 2009 break; 2010 2011 case IPV6_RECVPATHMTU: 2012 optval = OPTBIT(IN6P_MTU); 2013 break; 2014 2015 case IPV6_V6ONLY: 2016 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2017 break; 2018 2019 case IPV6_PORTRANGE: 2020 { 2021 int flags; 2022 flags = in6p->inp_flags; 2023 if (flags & INP_HIGHPORT) 2024 optval = IPV6_PORTRANGE_HIGH; 2025 else if (flags & INP_LOWPORT) 2026 optval = IPV6_PORTRANGE_LOW; 2027 else 2028 optval = 0; 2029 break; 2030 } 2031 case IPV6_RECVTCLASS: 2032 optval = OPTBIT(IN6P_TCLASS); 2033 break; 2034 2035 case IPV6_AUTOFLOWLABEL: 2036 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2037 break; 2038 2039 case IPV6_BINDANY: 2040 optval = OPTBIT(INP_BINDANY); 2041 break; 2042 2043 case IPV6_FLOWID: 2044 optval = in6p->inp_flowid; 2045 break; 2046 2047 case IPV6_FLOWTYPE: 2048 optval = in6p->inp_flowtype; 2049 break; 2050 2051 case IPV6_RECVFLOWID: 2052 optval = OPTBIT2(INP_RECVFLOWID); 2053 break; 2054 #ifdef RSS 2055 case IPV6_RSSBUCKETID: 2056 retval = 2057 rss_hash2bucket(in6p->inp_flowid, 2058 in6p->inp_flowtype, 2059 &rss_bucket); 2060 if (retval == 0) 2061 optval = rss_bucket; 2062 else 2063 error = EINVAL; 2064 break; 2065 2066 case IPV6_RECVRSSBUCKETID: 2067 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2068 break; 2069 #endif 2070 2071 case IPV6_BINDMULTI: 2072 optval = OPTBIT2(INP_BINDMULTI); 2073 break; 2074 2075 } 2076 if (error) 2077 break; 2078 error = sooptcopyout(sopt, &optval, 2079 sizeof optval); 2080 break; 2081 2082 case IPV6_PATHMTU: 2083 { 2084 u_long pmtu = 0; 2085 struct ip6_mtuinfo mtuinfo; 2086 2087 if (!(so->so_state & SS_ISCONNECTED)) 2088 return (ENOTCONN); 2089 /* 2090 * XXX: we dot not consider the case of source 2091 * routing, or optional information to specify 2092 * the outgoing interface. 2093 */ 2094 error = ip6_getpmtu_ctl(so->so_fibnum, 2095 &in6p->in6p_faddr, &pmtu); 2096 if (error) 2097 break; 2098 if (pmtu > IPV6_MAXPACKET) 2099 pmtu = IPV6_MAXPACKET; 2100 2101 bzero(&mtuinfo, sizeof(mtuinfo)); 2102 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2103 optdata = (void *)&mtuinfo; 2104 optdatalen = sizeof(mtuinfo); 2105 error = sooptcopyout(sopt, optdata, 2106 optdatalen); 2107 break; 2108 } 2109 2110 case IPV6_2292PKTINFO: 2111 case IPV6_2292HOPLIMIT: 2112 case IPV6_2292HOPOPTS: 2113 case IPV6_2292RTHDR: 2114 case IPV6_2292DSTOPTS: 2115 switch (optname) { 2116 case IPV6_2292PKTINFO: 2117 optval = OPTBIT(IN6P_PKTINFO); 2118 break; 2119 case IPV6_2292HOPLIMIT: 2120 optval = OPTBIT(IN6P_HOPLIMIT); 2121 break; 2122 case IPV6_2292HOPOPTS: 2123 optval = OPTBIT(IN6P_HOPOPTS); 2124 break; 2125 case IPV6_2292RTHDR: 2126 optval = OPTBIT(IN6P_RTHDR); 2127 break; 2128 case IPV6_2292DSTOPTS: 2129 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2130 break; 2131 } 2132 error = sooptcopyout(sopt, &optval, 2133 sizeof optval); 2134 break; 2135 case IPV6_PKTINFO: 2136 case IPV6_HOPOPTS: 2137 case IPV6_RTHDR: 2138 case IPV6_DSTOPTS: 2139 case IPV6_RTHDRDSTOPTS: 2140 case IPV6_NEXTHOP: 2141 case IPV6_TCLASS: 2142 case IPV6_DONTFRAG: 2143 case IPV6_USE_MIN_MTU: 2144 case IPV6_PREFER_TEMPADDR: 2145 error = ip6_getpcbopt(in6p->in6p_outputopts, 2146 optname, sopt); 2147 break; 2148 2149 case IPV6_MULTICAST_IF: 2150 case IPV6_MULTICAST_HOPS: 2151 case IPV6_MULTICAST_LOOP: 2152 case IPV6_MSFILTER: 2153 error = ip6_getmoptions(in6p, sopt); 2154 break; 2155 2156 #ifdef IPSEC 2157 case IPV6_IPSEC_POLICY: 2158 { 2159 caddr_t req = NULL; 2160 size_t len = 0; 2161 struct mbuf *m = NULL; 2162 struct mbuf **mp = &m; 2163 size_t ovalsize = sopt->sopt_valsize; 2164 caddr_t oval = (caddr_t)sopt->sopt_val; 2165 2166 error = soopt_getm(sopt, &m); /* XXX */ 2167 if (error != 0) 2168 break; 2169 error = soopt_mcopyin(sopt, m); /* XXX */ 2170 if (error != 0) 2171 break; 2172 sopt->sopt_valsize = ovalsize; 2173 sopt->sopt_val = oval; 2174 if (m) { 2175 req = mtod(m, caddr_t); 2176 len = m->m_len; 2177 } 2178 error = ipsec_get_policy(in6p, req, len, mp); 2179 if (error == 0) 2180 error = soopt_mcopyout(sopt, m); /* XXX */ 2181 if (error == 0 && m) 2182 m_freem(m); 2183 break; 2184 } 2185 #endif /* IPSEC */ 2186 2187 default: 2188 error = ENOPROTOOPT; 2189 break; 2190 } 2191 break; 2192 } 2193 } 2194 return (error); 2195 } 2196 2197 int 2198 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2199 { 2200 int error = 0, optval, optlen; 2201 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2202 struct inpcb *in6p = sotoinpcb(so); 2203 int level, op, optname; 2204 2205 level = sopt->sopt_level; 2206 op = sopt->sopt_dir; 2207 optname = sopt->sopt_name; 2208 optlen = sopt->sopt_valsize; 2209 2210 if (level != IPPROTO_IPV6) { 2211 return (EINVAL); 2212 } 2213 2214 switch (optname) { 2215 case IPV6_CHECKSUM: 2216 /* 2217 * For ICMPv6 sockets, no modification allowed for checksum 2218 * offset, permit "no change" values to help existing apps. 2219 * 2220 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2221 * for an ICMPv6 socket will fail." 2222 * The current behavior does not meet RFC3542. 2223 */ 2224 switch (op) { 2225 case SOPT_SET: 2226 if (optlen != sizeof(int)) { 2227 error = EINVAL; 2228 break; 2229 } 2230 error = sooptcopyin(sopt, &optval, sizeof(optval), 2231 sizeof(optval)); 2232 if (error) 2233 break; 2234 if ((optval % 2) != 0) { 2235 /* the API assumes even offset values */ 2236 error = EINVAL; 2237 } else if (so->so_proto->pr_protocol == 2238 IPPROTO_ICMPV6) { 2239 if (optval != icmp6off) 2240 error = EINVAL; 2241 } else 2242 in6p->in6p_cksum = optval; 2243 break; 2244 2245 case SOPT_GET: 2246 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2247 optval = icmp6off; 2248 else 2249 optval = in6p->in6p_cksum; 2250 2251 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2252 break; 2253 2254 default: 2255 error = EINVAL; 2256 break; 2257 } 2258 break; 2259 2260 default: 2261 error = ENOPROTOOPT; 2262 break; 2263 } 2264 2265 return (error); 2266 } 2267 2268 /* 2269 * Set up IP6 options in pcb for insertion in output packets or 2270 * specifying behavior of outgoing packets. 2271 */ 2272 static int 2273 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2274 struct socket *so, struct sockopt *sopt) 2275 { 2276 struct ip6_pktopts *opt = *pktopt; 2277 int error = 0; 2278 struct thread *td = sopt->sopt_td; 2279 2280 /* turn off any old options. */ 2281 if (opt) { 2282 #ifdef DIAGNOSTIC 2283 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2284 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2285 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2286 printf("ip6_pcbopts: all specified options are cleared.\n"); 2287 #endif 2288 ip6_clearpktopts(opt, -1); 2289 } else 2290 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2291 *pktopt = NULL; 2292 2293 if (!m || m->m_len == 0) { 2294 /* 2295 * Only turning off any previous options, regardless of 2296 * whether the opt is just created or given. 2297 */ 2298 free(opt, M_IP6OPT); 2299 return (0); 2300 } 2301 2302 /* set options specified by user. */ 2303 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2304 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2305 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2306 free(opt, M_IP6OPT); 2307 return (error); 2308 } 2309 *pktopt = opt; 2310 return (0); 2311 } 2312 2313 /* 2314 * initialize ip6_pktopts. beware that there are non-zero default values in 2315 * the struct. 2316 */ 2317 void 2318 ip6_initpktopts(struct ip6_pktopts *opt) 2319 { 2320 2321 bzero(opt, sizeof(*opt)); 2322 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2323 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2324 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2325 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2326 } 2327 2328 static int 2329 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2330 struct ucred *cred, int uproto) 2331 { 2332 struct ip6_pktopts *opt; 2333 2334 if (*pktopt == NULL) { 2335 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2336 M_WAITOK); 2337 ip6_initpktopts(*pktopt); 2338 } 2339 opt = *pktopt; 2340 2341 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2342 } 2343 2344 static int 2345 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2346 { 2347 void *optdata = NULL; 2348 int optdatalen = 0; 2349 struct ip6_ext *ip6e; 2350 int error = 0; 2351 struct in6_pktinfo null_pktinfo; 2352 int deftclass = 0, on; 2353 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2354 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2355 2356 switch (optname) { 2357 case IPV6_PKTINFO: 2358 optdata = (void *)&null_pktinfo; 2359 if (pktopt && pktopt->ip6po_pktinfo) { 2360 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2361 sizeof(null_pktinfo)); 2362 in6_clearscope(&null_pktinfo.ipi6_addr); 2363 } else { 2364 /* XXX: we don't have to do this every time... */ 2365 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2366 } 2367 optdatalen = sizeof(struct in6_pktinfo); 2368 break; 2369 case IPV6_TCLASS: 2370 if (pktopt && pktopt->ip6po_tclass >= 0) 2371 optdata = (void *)&pktopt->ip6po_tclass; 2372 else 2373 optdata = (void *)&deftclass; 2374 optdatalen = sizeof(int); 2375 break; 2376 case IPV6_HOPOPTS: 2377 if (pktopt && pktopt->ip6po_hbh) { 2378 optdata = (void *)pktopt->ip6po_hbh; 2379 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2380 optdatalen = (ip6e->ip6e_len + 1) << 3; 2381 } 2382 break; 2383 case IPV6_RTHDR: 2384 if (pktopt && pktopt->ip6po_rthdr) { 2385 optdata = (void *)pktopt->ip6po_rthdr; 2386 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2387 optdatalen = (ip6e->ip6e_len + 1) << 3; 2388 } 2389 break; 2390 case IPV6_RTHDRDSTOPTS: 2391 if (pktopt && pktopt->ip6po_dest1) { 2392 optdata = (void *)pktopt->ip6po_dest1; 2393 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2394 optdatalen = (ip6e->ip6e_len + 1) << 3; 2395 } 2396 break; 2397 case IPV6_DSTOPTS: 2398 if (pktopt && pktopt->ip6po_dest2) { 2399 optdata = (void *)pktopt->ip6po_dest2; 2400 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2401 optdatalen = (ip6e->ip6e_len + 1) << 3; 2402 } 2403 break; 2404 case IPV6_NEXTHOP: 2405 if (pktopt && pktopt->ip6po_nexthop) { 2406 optdata = (void *)pktopt->ip6po_nexthop; 2407 optdatalen = pktopt->ip6po_nexthop->sa_len; 2408 } 2409 break; 2410 case IPV6_USE_MIN_MTU: 2411 if (pktopt) 2412 optdata = (void *)&pktopt->ip6po_minmtu; 2413 else 2414 optdata = (void *)&defminmtu; 2415 optdatalen = sizeof(int); 2416 break; 2417 case IPV6_DONTFRAG: 2418 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2419 on = 1; 2420 else 2421 on = 0; 2422 optdata = (void *)&on; 2423 optdatalen = sizeof(on); 2424 break; 2425 case IPV6_PREFER_TEMPADDR: 2426 if (pktopt) 2427 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2428 else 2429 optdata = (void *)&defpreftemp; 2430 optdatalen = sizeof(int); 2431 break; 2432 default: /* should not happen */ 2433 #ifdef DIAGNOSTIC 2434 panic("ip6_getpcbopt: unexpected option\n"); 2435 #endif 2436 return (ENOPROTOOPT); 2437 } 2438 2439 error = sooptcopyout(sopt, optdata, optdatalen); 2440 2441 return (error); 2442 } 2443 2444 void 2445 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2446 { 2447 if (pktopt == NULL) 2448 return; 2449 2450 if (optname == -1 || optname == IPV6_PKTINFO) { 2451 if (pktopt->ip6po_pktinfo) 2452 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2453 pktopt->ip6po_pktinfo = NULL; 2454 } 2455 if (optname == -1 || optname == IPV6_HOPLIMIT) 2456 pktopt->ip6po_hlim = -1; 2457 if (optname == -1 || optname == IPV6_TCLASS) 2458 pktopt->ip6po_tclass = -1; 2459 if (optname == -1 || optname == IPV6_NEXTHOP) { 2460 if (pktopt->ip6po_nextroute.ro_rt) { 2461 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2462 pktopt->ip6po_nextroute.ro_rt = NULL; 2463 } 2464 if (pktopt->ip6po_nexthop) 2465 free(pktopt->ip6po_nexthop, M_IP6OPT); 2466 pktopt->ip6po_nexthop = NULL; 2467 } 2468 if (optname == -1 || optname == IPV6_HOPOPTS) { 2469 if (pktopt->ip6po_hbh) 2470 free(pktopt->ip6po_hbh, M_IP6OPT); 2471 pktopt->ip6po_hbh = NULL; 2472 } 2473 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2474 if (pktopt->ip6po_dest1) 2475 free(pktopt->ip6po_dest1, M_IP6OPT); 2476 pktopt->ip6po_dest1 = NULL; 2477 } 2478 if (optname == -1 || optname == IPV6_RTHDR) { 2479 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2480 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2481 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2482 if (pktopt->ip6po_route.ro_rt) { 2483 RTFREE(pktopt->ip6po_route.ro_rt); 2484 pktopt->ip6po_route.ro_rt = NULL; 2485 } 2486 } 2487 if (optname == -1 || optname == IPV6_DSTOPTS) { 2488 if (pktopt->ip6po_dest2) 2489 free(pktopt->ip6po_dest2, M_IP6OPT); 2490 pktopt->ip6po_dest2 = NULL; 2491 } 2492 } 2493 2494 #define PKTOPT_EXTHDRCPY(type) \ 2495 do {\ 2496 if (src->type) {\ 2497 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2498 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2499 if (dst->type == NULL && canwait == M_NOWAIT)\ 2500 goto bad;\ 2501 bcopy(src->type, dst->type, hlen);\ 2502 }\ 2503 } while (/*CONSTCOND*/ 0) 2504 2505 static int 2506 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2507 { 2508 if (dst == NULL || src == NULL) { 2509 printf("ip6_clearpktopts: invalid argument\n"); 2510 return (EINVAL); 2511 } 2512 2513 dst->ip6po_hlim = src->ip6po_hlim; 2514 dst->ip6po_tclass = src->ip6po_tclass; 2515 dst->ip6po_flags = src->ip6po_flags; 2516 dst->ip6po_minmtu = src->ip6po_minmtu; 2517 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2518 if (src->ip6po_pktinfo) { 2519 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2520 M_IP6OPT, canwait); 2521 if (dst->ip6po_pktinfo == NULL) 2522 goto bad; 2523 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2524 } 2525 if (src->ip6po_nexthop) { 2526 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2527 M_IP6OPT, canwait); 2528 if (dst->ip6po_nexthop == NULL) 2529 goto bad; 2530 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2531 src->ip6po_nexthop->sa_len); 2532 } 2533 PKTOPT_EXTHDRCPY(ip6po_hbh); 2534 PKTOPT_EXTHDRCPY(ip6po_dest1); 2535 PKTOPT_EXTHDRCPY(ip6po_dest2); 2536 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2537 return (0); 2538 2539 bad: 2540 ip6_clearpktopts(dst, -1); 2541 return (ENOBUFS); 2542 } 2543 #undef PKTOPT_EXTHDRCPY 2544 2545 struct ip6_pktopts * 2546 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2547 { 2548 int error; 2549 struct ip6_pktopts *dst; 2550 2551 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2552 if (dst == NULL) 2553 return (NULL); 2554 ip6_initpktopts(dst); 2555 2556 if ((error = copypktopts(dst, src, canwait)) != 0) { 2557 free(dst, M_IP6OPT); 2558 return (NULL); 2559 } 2560 2561 return (dst); 2562 } 2563 2564 void 2565 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2566 { 2567 if (pktopt == NULL) 2568 return; 2569 2570 ip6_clearpktopts(pktopt, -1); 2571 2572 free(pktopt, M_IP6OPT); 2573 } 2574 2575 /* 2576 * Set IPv6 outgoing packet options based on advanced API. 2577 */ 2578 int 2579 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2580 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2581 { 2582 struct cmsghdr *cm = NULL; 2583 2584 if (control == NULL || opt == NULL) 2585 return (EINVAL); 2586 2587 ip6_initpktopts(opt); 2588 if (stickyopt) { 2589 int error; 2590 2591 /* 2592 * If stickyopt is provided, make a local copy of the options 2593 * for this particular packet, then override them by ancillary 2594 * objects. 2595 * XXX: copypktopts() does not copy the cached route to a next 2596 * hop (if any). This is not very good in terms of efficiency, 2597 * but we can allow this since this option should be rarely 2598 * used. 2599 */ 2600 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2601 return (error); 2602 } 2603 2604 /* 2605 * XXX: Currently, we assume all the optional information is stored 2606 * in a single mbuf. 2607 */ 2608 if (control->m_next) 2609 return (EINVAL); 2610 2611 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2612 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2613 int error; 2614 2615 if (control->m_len < CMSG_LEN(0)) 2616 return (EINVAL); 2617 2618 cm = mtod(control, struct cmsghdr *); 2619 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2620 return (EINVAL); 2621 if (cm->cmsg_level != IPPROTO_IPV6) 2622 continue; 2623 2624 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2625 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2626 if (error) 2627 return (error); 2628 } 2629 2630 return (0); 2631 } 2632 2633 /* 2634 * Set a particular packet option, as a sticky option or an ancillary data 2635 * item. "len" can be 0 only when it's a sticky option. 2636 * We have 4 cases of combination of "sticky" and "cmsg": 2637 * "sticky=0, cmsg=0": impossible 2638 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2639 * "sticky=1, cmsg=0": RFC3542 socket option 2640 * "sticky=1, cmsg=1": RFC2292 socket option 2641 */ 2642 static int 2643 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2644 struct ucred *cred, int sticky, int cmsg, int uproto) 2645 { 2646 int minmtupolicy, preftemp; 2647 int error; 2648 2649 if (!sticky && !cmsg) { 2650 #ifdef DIAGNOSTIC 2651 printf("ip6_setpktopt: impossible case\n"); 2652 #endif 2653 return (EINVAL); 2654 } 2655 2656 /* 2657 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2658 * not be specified in the context of RFC3542. Conversely, 2659 * RFC3542 types should not be specified in the context of RFC2292. 2660 */ 2661 if (!cmsg) { 2662 switch (optname) { 2663 case IPV6_2292PKTINFO: 2664 case IPV6_2292HOPLIMIT: 2665 case IPV6_2292NEXTHOP: 2666 case IPV6_2292HOPOPTS: 2667 case IPV6_2292DSTOPTS: 2668 case IPV6_2292RTHDR: 2669 case IPV6_2292PKTOPTIONS: 2670 return (ENOPROTOOPT); 2671 } 2672 } 2673 if (sticky && cmsg) { 2674 switch (optname) { 2675 case IPV6_PKTINFO: 2676 case IPV6_HOPLIMIT: 2677 case IPV6_NEXTHOP: 2678 case IPV6_HOPOPTS: 2679 case IPV6_DSTOPTS: 2680 case IPV6_RTHDRDSTOPTS: 2681 case IPV6_RTHDR: 2682 case IPV6_USE_MIN_MTU: 2683 case IPV6_DONTFRAG: 2684 case IPV6_TCLASS: 2685 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2686 return (ENOPROTOOPT); 2687 } 2688 } 2689 2690 switch (optname) { 2691 case IPV6_2292PKTINFO: 2692 case IPV6_PKTINFO: 2693 { 2694 struct ifnet *ifp = NULL; 2695 struct in6_pktinfo *pktinfo; 2696 2697 if (len != sizeof(struct in6_pktinfo)) 2698 return (EINVAL); 2699 2700 pktinfo = (struct in6_pktinfo *)buf; 2701 2702 /* 2703 * An application can clear any sticky IPV6_PKTINFO option by 2704 * doing a "regular" setsockopt with ipi6_addr being 2705 * in6addr_any and ipi6_ifindex being zero. 2706 * [RFC 3542, Section 6] 2707 */ 2708 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2709 pktinfo->ipi6_ifindex == 0 && 2710 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2711 ip6_clearpktopts(opt, optname); 2712 break; 2713 } 2714 2715 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2716 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2717 return (EINVAL); 2718 } 2719 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2720 return (EINVAL); 2721 /* validate the interface index if specified. */ 2722 if (pktinfo->ipi6_ifindex > V_if_index) 2723 return (ENXIO); 2724 if (pktinfo->ipi6_ifindex) { 2725 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2726 if (ifp == NULL) 2727 return (ENXIO); 2728 } 2729 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2730 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2731 return (ENETDOWN); 2732 2733 if (ifp != NULL && 2734 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2735 struct in6_ifaddr *ia; 2736 2737 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2738 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2739 if (ia == NULL) 2740 return (EADDRNOTAVAIL); 2741 ifa_free(&ia->ia_ifa); 2742 } 2743 /* 2744 * We store the address anyway, and let in6_selectsrc() 2745 * validate the specified address. This is because ipi6_addr 2746 * may not have enough information about its scope zone, and 2747 * we may need additional information (such as outgoing 2748 * interface or the scope zone of a destination address) to 2749 * disambiguate the scope. 2750 * XXX: the delay of the validation may confuse the 2751 * application when it is used as a sticky option. 2752 */ 2753 if (opt->ip6po_pktinfo == NULL) { 2754 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2755 M_IP6OPT, M_NOWAIT); 2756 if (opt->ip6po_pktinfo == NULL) 2757 return (ENOBUFS); 2758 } 2759 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2760 break; 2761 } 2762 2763 case IPV6_2292HOPLIMIT: 2764 case IPV6_HOPLIMIT: 2765 { 2766 int *hlimp; 2767 2768 /* 2769 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2770 * to simplify the ordering among hoplimit options. 2771 */ 2772 if (optname == IPV6_HOPLIMIT && sticky) 2773 return (ENOPROTOOPT); 2774 2775 if (len != sizeof(int)) 2776 return (EINVAL); 2777 hlimp = (int *)buf; 2778 if (*hlimp < -1 || *hlimp > 255) 2779 return (EINVAL); 2780 2781 opt->ip6po_hlim = *hlimp; 2782 break; 2783 } 2784 2785 case IPV6_TCLASS: 2786 { 2787 int tclass; 2788 2789 if (len != sizeof(int)) 2790 return (EINVAL); 2791 tclass = *(int *)buf; 2792 if (tclass < -1 || tclass > 255) 2793 return (EINVAL); 2794 2795 opt->ip6po_tclass = tclass; 2796 break; 2797 } 2798 2799 case IPV6_2292NEXTHOP: 2800 case IPV6_NEXTHOP: 2801 if (cred != NULL) { 2802 error = priv_check_cred(cred, 2803 PRIV_NETINET_SETHDROPTS, 0); 2804 if (error) 2805 return (error); 2806 } 2807 2808 if (len == 0) { /* just remove the option */ 2809 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2810 break; 2811 } 2812 2813 /* check if cmsg_len is large enough for sa_len */ 2814 if (len < sizeof(struct sockaddr) || len < *buf) 2815 return (EINVAL); 2816 2817 switch (((struct sockaddr *)buf)->sa_family) { 2818 case AF_INET6: 2819 { 2820 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2821 int error; 2822 2823 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2824 return (EINVAL); 2825 2826 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2827 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2828 return (EINVAL); 2829 } 2830 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2831 != 0) { 2832 return (error); 2833 } 2834 break; 2835 } 2836 case AF_LINK: /* should eventually be supported */ 2837 default: 2838 return (EAFNOSUPPORT); 2839 } 2840 2841 /* turn off the previous option, then set the new option. */ 2842 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2843 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2844 if (opt->ip6po_nexthop == NULL) 2845 return (ENOBUFS); 2846 bcopy(buf, opt->ip6po_nexthop, *buf); 2847 break; 2848 2849 case IPV6_2292HOPOPTS: 2850 case IPV6_HOPOPTS: 2851 { 2852 struct ip6_hbh *hbh; 2853 int hbhlen; 2854 2855 /* 2856 * XXX: We don't allow a non-privileged user to set ANY HbH 2857 * options, since per-option restriction has too much 2858 * overhead. 2859 */ 2860 if (cred != NULL) { 2861 error = priv_check_cred(cred, 2862 PRIV_NETINET_SETHDROPTS, 0); 2863 if (error) 2864 return (error); 2865 } 2866 2867 if (len == 0) { 2868 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2869 break; /* just remove the option */ 2870 } 2871 2872 /* message length validation */ 2873 if (len < sizeof(struct ip6_hbh)) 2874 return (EINVAL); 2875 hbh = (struct ip6_hbh *)buf; 2876 hbhlen = (hbh->ip6h_len + 1) << 3; 2877 if (len != hbhlen) 2878 return (EINVAL); 2879 2880 /* turn off the previous option, then set the new option. */ 2881 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2882 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2883 if (opt->ip6po_hbh == NULL) 2884 return (ENOBUFS); 2885 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2886 2887 break; 2888 } 2889 2890 case IPV6_2292DSTOPTS: 2891 case IPV6_DSTOPTS: 2892 case IPV6_RTHDRDSTOPTS: 2893 { 2894 struct ip6_dest *dest, **newdest = NULL; 2895 int destlen; 2896 2897 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2898 error = priv_check_cred(cred, 2899 PRIV_NETINET_SETHDROPTS, 0); 2900 if (error) 2901 return (error); 2902 } 2903 2904 if (len == 0) { 2905 ip6_clearpktopts(opt, optname); 2906 break; /* just remove the option */ 2907 } 2908 2909 /* message length validation */ 2910 if (len < sizeof(struct ip6_dest)) 2911 return (EINVAL); 2912 dest = (struct ip6_dest *)buf; 2913 destlen = (dest->ip6d_len + 1) << 3; 2914 if (len != destlen) 2915 return (EINVAL); 2916 2917 /* 2918 * Determine the position that the destination options header 2919 * should be inserted; before or after the routing header. 2920 */ 2921 switch (optname) { 2922 case IPV6_2292DSTOPTS: 2923 /* 2924 * The old advacned API is ambiguous on this point. 2925 * Our approach is to determine the position based 2926 * according to the existence of a routing header. 2927 * Note, however, that this depends on the order of the 2928 * extension headers in the ancillary data; the 1st 2929 * part of the destination options header must appear 2930 * before the routing header in the ancillary data, 2931 * too. 2932 * RFC3542 solved the ambiguity by introducing 2933 * separate ancillary data or option types. 2934 */ 2935 if (opt->ip6po_rthdr == NULL) 2936 newdest = &opt->ip6po_dest1; 2937 else 2938 newdest = &opt->ip6po_dest2; 2939 break; 2940 case IPV6_RTHDRDSTOPTS: 2941 newdest = &opt->ip6po_dest1; 2942 break; 2943 case IPV6_DSTOPTS: 2944 newdest = &opt->ip6po_dest2; 2945 break; 2946 } 2947 2948 /* turn off the previous option, then set the new option. */ 2949 ip6_clearpktopts(opt, optname); 2950 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2951 if (*newdest == NULL) 2952 return (ENOBUFS); 2953 bcopy(dest, *newdest, destlen); 2954 2955 break; 2956 } 2957 2958 case IPV6_2292RTHDR: 2959 case IPV6_RTHDR: 2960 { 2961 struct ip6_rthdr *rth; 2962 int rthlen; 2963 2964 if (len == 0) { 2965 ip6_clearpktopts(opt, IPV6_RTHDR); 2966 break; /* just remove the option */ 2967 } 2968 2969 /* message length validation */ 2970 if (len < sizeof(struct ip6_rthdr)) 2971 return (EINVAL); 2972 rth = (struct ip6_rthdr *)buf; 2973 rthlen = (rth->ip6r_len + 1) << 3; 2974 if (len != rthlen) 2975 return (EINVAL); 2976 2977 switch (rth->ip6r_type) { 2978 case IPV6_RTHDR_TYPE_0: 2979 if (rth->ip6r_len == 0) /* must contain one addr */ 2980 return (EINVAL); 2981 if (rth->ip6r_len % 2) /* length must be even */ 2982 return (EINVAL); 2983 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2984 return (EINVAL); 2985 break; 2986 default: 2987 return (EINVAL); /* not supported */ 2988 } 2989 2990 /* turn off the previous option */ 2991 ip6_clearpktopts(opt, IPV6_RTHDR); 2992 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2993 if (opt->ip6po_rthdr == NULL) 2994 return (ENOBUFS); 2995 bcopy(rth, opt->ip6po_rthdr, rthlen); 2996 2997 break; 2998 } 2999 3000 case IPV6_USE_MIN_MTU: 3001 if (len != sizeof(int)) 3002 return (EINVAL); 3003 minmtupolicy = *(int *)buf; 3004 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3005 minmtupolicy != IP6PO_MINMTU_DISABLE && 3006 minmtupolicy != IP6PO_MINMTU_ALL) { 3007 return (EINVAL); 3008 } 3009 opt->ip6po_minmtu = minmtupolicy; 3010 break; 3011 3012 case IPV6_DONTFRAG: 3013 if (len != sizeof(int)) 3014 return (EINVAL); 3015 3016 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3017 /* 3018 * we ignore this option for TCP sockets. 3019 * (RFC3542 leaves this case unspecified.) 3020 */ 3021 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3022 } else 3023 opt->ip6po_flags |= IP6PO_DONTFRAG; 3024 break; 3025 3026 case IPV6_PREFER_TEMPADDR: 3027 if (len != sizeof(int)) 3028 return (EINVAL); 3029 preftemp = *(int *)buf; 3030 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3031 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3032 preftemp != IP6PO_TEMPADDR_PREFER) { 3033 return (EINVAL); 3034 } 3035 opt->ip6po_prefer_tempaddr = preftemp; 3036 break; 3037 3038 default: 3039 return (ENOPROTOOPT); 3040 } /* end of switch */ 3041 3042 return (0); 3043 } 3044 3045 /* 3046 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3047 * packet to the input queue of a specified interface. Note that this 3048 * calls the output routine of the loopback "driver", but with an interface 3049 * pointer that might NOT be &loif -- easier than replicating that code here. 3050 */ 3051 void 3052 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3053 { 3054 struct mbuf *copym; 3055 struct ip6_hdr *ip6; 3056 3057 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3058 if (copym == NULL) 3059 return; 3060 3061 /* 3062 * Make sure to deep-copy IPv6 header portion in case the data 3063 * is in an mbuf cluster, so that we can safely override the IPv6 3064 * header portion later. 3065 */ 3066 if (!M_WRITABLE(copym) || 3067 copym->m_len < sizeof(struct ip6_hdr)) { 3068 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3069 if (copym == NULL) 3070 return; 3071 } 3072 ip6 = mtod(copym, struct ip6_hdr *); 3073 /* 3074 * clear embedded scope identifiers if necessary. 3075 * in6_clearscope will touch the addresses only when necessary. 3076 */ 3077 in6_clearscope(&ip6->ip6_src); 3078 in6_clearscope(&ip6->ip6_dst); 3079 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3080 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3081 CSUM_PSEUDO_HDR; 3082 copym->m_pkthdr.csum_data = 0xffff; 3083 } 3084 if_simloop(ifp, copym, AF_INET6, 0); 3085 } 3086 3087 /* 3088 * Chop IPv6 header off from the payload. 3089 */ 3090 static int 3091 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3092 { 3093 struct mbuf *mh; 3094 struct ip6_hdr *ip6; 3095 3096 ip6 = mtod(m, struct ip6_hdr *); 3097 if (m->m_len > sizeof(*ip6)) { 3098 mh = m_gethdr(M_NOWAIT, MT_DATA); 3099 if (mh == NULL) { 3100 m_freem(m); 3101 return ENOBUFS; 3102 } 3103 m_move_pkthdr(mh, m); 3104 M_ALIGN(mh, sizeof(*ip6)); 3105 m->m_len -= sizeof(*ip6); 3106 m->m_data += sizeof(*ip6); 3107 mh->m_next = m; 3108 m = mh; 3109 m->m_len = sizeof(*ip6); 3110 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3111 } 3112 exthdrs->ip6e_ip6 = m; 3113 return 0; 3114 } 3115 3116 /* 3117 * Compute IPv6 extension header length. 3118 */ 3119 int 3120 ip6_optlen(struct inpcb *in6p) 3121 { 3122 int len; 3123 3124 if (!in6p->in6p_outputopts) 3125 return 0; 3126 3127 len = 0; 3128 #define elen(x) \ 3129 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3130 3131 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3132 if (in6p->in6p_outputopts->ip6po_rthdr) 3133 /* dest1 is valid with rthdr only */ 3134 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3135 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3136 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3137 return len; 3138 #undef elen 3139 } 3140