1 /* 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 /* 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. All advertising materials mentioning features or use of this software 45 * must display the following acknowledgement: 46 * This product includes software developed by the University of 47 * California, Berkeley and its contributors. 48 * 4. Neither the name of the University nor the names of its contributors 49 * may be used to endorse or promote products derived from this software 50 * without specific prior written permission. 51 * 52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 62 * SUCH DAMAGE. 63 * 64 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 65 */ 66 67 #include "opt_ipsec.h" 68 #include "opt_ip6fw.h" 69 70 #include <sys/param.h> 71 #include <sys/malloc.h> 72 #include <sys/mbuf.h> 73 #include <sys/errno.h> 74 #include <sys/protosw.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/systm.h> 78 #include <sys/kernel.h> 79 #include <sys/proc.h> 80 81 #include <net/if.h> 82 #include <net/route.h> 83 84 #include <netinet/in.h> 85 #include <netinet/in_var.h> 86 #include <netinet6/ip6.h> 87 #include <netinet6/icmp6.h> 88 #include <netinet/in_pcb.h> 89 #include <netinet6/ip6_var.h> 90 #include <netinet6/nd6.h> 91 92 #ifdef IPSEC 93 #include <netinet6/ipsec.h> 94 #include <netinet6/ipsec6.h> 95 #include <netkey/key.h> 96 #ifdef IPSEC_DEBUG 97 #include <netkey/key_debug.h> 98 #else 99 #define KEYDEBUG(lev,arg) 100 #endif 101 #endif /* IPSEC */ 102 103 #include "loop.h" 104 105 #include <net/net_osdep.h> 106 107 #ifdef IPV6FIREWALL 108 #include <netinet6/ip6_fw.h> 109 #endif 110 111 static MALLOC_DEFINE(M_IPMOPTS, "ip6_moptions", "internet multicast options"); 112 113 struct ip6_exthdrs { 114 struct mbuf *ip6e_ip6; 115 struct mbuf *ip6e_hbh; 116 struct mbuf *ip6e_dest1; 117 struct mbuf *ip6e_rthdr; 118 struct mbuf *ip6e_dest2; 119 }; 120 121 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 122 struct socket *, struct sockopt *sopt)); 123 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *)); 124 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **)); 125 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int)); 126 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 127 struct ip6_frag **)); 128 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t)); 129 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *)); 130 131 /* 132 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 133 * header (with pri, len, nxt, hlim, src, dst). 134 * This function may modify ver and hlim only. 135 * The mbuf chain containing the packet will be freed. 136 * The mbuf opt, if present, will not be freed. 137 */ 138 int 139 ip6_output(m0, opt, ro, flags, im6o, ifpp) 140 struct mbuf *m0; 141 struct ip6_pktopts *opt; 142 struct route_in6 *ro; 143 int flags; 144 struct ip6_moptions *im6o; 145 struct ifnet **ifpp; /* XXX: just for statistics */ 146 { 147 struct ip6_hdr *ip6, *mhip6; 148 struct ifnet *ifp; 149 struct mbuf *m = m0; 150 int hlen, tlen, len, off; 151 struct route_in6 ip6route; 152 struct sockaddr_in6 *dst; 153 int error = 0; 154 struct in6_ifaddr *ia; 155 u_long mtu; 156 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 157 struct ip6_exthdrs exthdrs; 158 struct in6_addr finaldst; 159 struct route_in6 *ro_pmtu = NULL; 160 int hdrsplit = 0; 161 int needipsec = 0; 162 #ifdef IPSEC 163 int needipsectun = 0; 164 struct socket *so; 165 struct secpolicy *sp = NULL; 166 167 /* for AH processing. stupid to have "socket" variable in IP layer... */ 168 if ((flags & IPV6_SOCKINMRCVIF) != 0) { 169 so = (struct socket *)m->m_pkthdr.rcvif; 170 m->m_pkthdr.rcvif = NULL; 171 } else 172 so = NULL; 173 ip6 = mtod(m, struct ip6_hdr *); 174 #endif /* IPSEC */ 175 176 #define MAKE_EXTHDR(hp,mp) \ 177 { \ 178 if (hp) { \ 179 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 180 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 181 ((eh)->ip6e_len + 1) << 3); \ 182 if (error) \ 183 goto freehdrs; \ 184 } \ 185 } 186 187 bzero(&exthdrs, sizeof(exthdrs)); 188 if (opt) { 189 /* Hop-by-Hop options header */ 190 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 191 /* Destination options header(1st part) */ 192 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 193 /* Routing header */ 194 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 195 /* Destination options header(2nd part) */ 196 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 197 } 198 199 #ifdef IPSEC 200 /* get a security policy for this packet */ 201 if (so == NULL) 202 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 203 else 204 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 205 206 if (sp == NULL) { 207 ipsec6stat.out_inval++; 208 goto bad; 209 } 210 211 error = 0; 212 213 /* check policy */ 214 switch (sp->policy) { 215 case IPSEC_POLICY_DISCARD: 216 /* 217 * This packet is just discarded. 218 */ 219 ipsec6stat.out_polvio++; 220 goto bad; 221 222 case IPSEC_POLICY_BYPASS: 223 case IPSEC_POLICY_NONE: 224 /* no need to do IPsec. */ 225 needipsec = 0; 226 break; 227 228 case IPSEC_POLICY_IPSEC: 229 if (sp->req == NULL) { 230 /* XXX should be panic ? */ 231 printf("ip6_output: No IPsec request specified.\n"); 232 error = EINVAL; 233 goto bad; 234 } 235 needipsec = 1; 236 break; 237 238 case IPSEC_POLICY_ENTRUST: 239 default: 240 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 241 } 242 #endif /* IPSEC */ 243 244 /* 245 * Calculate the total length of the extension header chain. 246 * Keep the length of the unfragmentable part for fragmentation. 247 */ 248 optlen = 0; 249 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 250 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 251 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 252 unfragpartlen = optlen + sizeof(struct ip6_hdr); 253 /* NOTE: we don't add AH/ESP length here. do that later. */ 254 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 255 256 /* 257 * If we need IPsec, or there is at least one extension header, 258 * separate IP6 header from the payload. 259 */ 260 if ((needipsec || optlen) && !hdrsplit) { 261 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 262 m = NULL; 263 goto freehdrs; 264 } 265 m = exthdrs.ip6e_ip6; 266 hdrsplit++; 267 } 268 269 /* adjust pointer */ 270 ip6 = mtod(m, struct ip6_hdr *); 271 272 /* adjust mbuf packet header length */ 273 m->m_pkthdr.len += optlen; 274 plen = m->m_pkthdr.len - sizeof(*ip6); 275 276 /* If this is a jumbo payload, insert a jumbo payload option. */ 277 if (plen > IPV6_MAXPACKET) { 278 if (!hdrsplit) { 279 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 280 m = NULL; 281 goto freehdrs; 282 } 283 m = exthdrs.ip6e_ip6; 284 hdrsplit++; 285 } 286 /* adjust pointer */ 287 ip6 = mtod(m, struct ip6_hdr *); 288 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 289 goto freehdrs; 290 ip6->ip6_plen = 0; 291 } else 292 ip6->ip6_plen = htons(plen); 293 294 /* 295 * Concatenate headers and fill in next header fields. 296 * Here we have, on "m" 297 * IPv6 payload 298 * and we insert headers accordingly. Finally, we should be getting: 299 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 300 * 301 * during the header composing process, "m" points to IPv6 header. 302 * "mprev" points to an extension header prior to esp. 303 */ 304 { 305 u_char *nexthdrp = &ip6->ip6_nxt; 306 struct mbuf *mprev = m; 307 308 /* 309 * we treat dest2 specially. this makes IPsec processing 310 * much easier. 311 * 312 * result: IPv6 dest2 payload 313 * m and mprev will point to IPv6 header. 314 */ 315 if (exthdrs.ip6e_dest2) { 316 if (!hdrsplit) 317 panic("assumption failed: hdr not split"); 318 exthdrs.ip6e_dest2->m_next = m->m_next; 319 m->m_next = exthdrs.ip6e_dest2; 320 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 321 ip6->ip6_nxt = IPPROTO_DSTOPTS; 322 } 323 324 #define MAKE_CHAIN(m,mp,p,i)\ 325 {\ 326 if (m) {\ 327 if (!hdrsplit) \ 328 panic("assumption failed: hdr not split"); \ 329 *mtod((m), u_char *) = *(p);\ 330 *(p) = (i);\ 331 p = mtod((m), u_char *);\ 332 (m)->m_next = (mp)->m_next;\ 333 (mp)->m_next = (m);\ 334 (mp) = (m);\ 335 }\ 336 } 337 /* 338 * result: IPv6 hbh dest1 rthdr dest2 payload 339 * m will point to IPv6 header. mprev will point to the 340 * extension header prior to dest2 (rthdr in the above case). 341 */ 342 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, 343 nexthdrp, IPPROTO_HOPOPTS); 344 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, 345 nexthdrp, IPPROTO_DSTOPTS); 346 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, 347 nexthdrp, IPPROTO_ROUTING); 348 349 #ifdef IPSEC 350 if (!needipsec) 351 goto skip_ipsec2; 352 353 /* 354 * pointers after IPsec headers are not valid any more. 355 * other pointers need a great care too. 356 * (IPsec routines should not mangle mbufs prior to AH/ESP) 357 */ 358 exthdrs.ip6e_dest2 = NULL; 359 360 { 361 struct ip6_rthdr *rh = NULL; 362 int segleft_org = 0; 363 struct ipsec_output_state state; 364 365 if (exthdrs.ip6e_rthdr) { 366 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 367 segleft_org = rh->ip6r_segleft; 368 rh->ip6r_segleft = 0; 369 } 370 371 bzero(&state, sizeof(state)); 372 state.m = m; 373 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 374 &needipsectun); 375 m = state.m; 376 if (error) { 377 /* mbuf is already reclaimed in ipsec6_output_trans. */ 378 m = NULL; 379 switch (error) { 380 case EHOSTUNREACH: 381 case ENETUNREACH: 382 case EMSGSIZE: 383 case ENOBUFS: 384 case ENOMEM: 385 break; 386 default: 387 printf("ip6_output (ipsec): error code %d\n", error); 388 /*fall through*/ 389 case ENOENT: 390 /* don't show these error codes to the user */ 391 error = 0; 392 break; 393 } 394 goto bad; 395 } 396 if (exthdrs.ip6e_rthdr) { 397 /* ah6_output doesn't modify mbuf chain */ 398 rh->ip6r_segleft = segleft_org; 399 } 400 } 401 skip_ipsec2:; 402 #endif 403 } 404 405 /* 406 * If there is a routing header, replace destination address field 407 * with the first hop of the routing header. 408 */ 409 if (exthdrs.ip6e_rthdr) { 410 struct ip6_rthdr *rh = 411 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 412 struct ip6_rthdr *)); 413 struct ip6_rthdr0 *rh0; 414 415 finaldst = ip6->ip6_dst; 416 switch(rh->ip6r_type) { 417 case IPV6_RTHDR_TYPE_0: 418 rh0 = (struct ip6_rthdr0 *)rh; 419 ip6->ip6_dst = rh0->ip6r0_addr[0]; 420 bcopy((caddr_t)&rh0->ip6r0_addr[1], 421 (caddr_t)&rh0->ip6r0_addr[0], 422 sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1) 423 ); 424 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst; 425 break; 426 default: /* is it possible? */ 427 error = EINVAL; 428 goto bad; 429 } 430 } 431 432 /* Source address validation */ 433 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 434 (flags & IPV6_DADOUTPUT) == 0) { 435 error = EOPNOTSUPP; 436 ip6stat.ip6s_badscope++; 437 goto bad; 438 } 439 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 440 error = EOPNOTSUPP; 441 ip6stat.ip6s_badscope++; 442 goto bad; 443 } 444 445 ip6stat.ip6s_localout++; 446 447 /* 448 * Route packet. 449 */ 450 if (ro == 0) { 451 ro = &ip6route; 452 bzero((caddr_t)ro, sizeof(*ro)); 453 } 454 ro_pmtu = ro; 455 if (opt && opt->ip6po_rthdr) 456 ro = &opt->ip6po_route; 457 dst = (struct sockaddr_in6 *)&ro->ro_dst; 458 /* 459 * If there is a cached route, 460 * check that it is to the same destination 461 * and is still up. If not, free it and try again. 462 */ 463 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 464 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 465 RTFREE(ro->ro_rt); 466 ro->ro_rt = (struct rtentry *)0; 467 } 468 if (ro->ro_rt == 0) { 469 bzero(dst, sizeof(*dst)); 470 dst->sin6_family = AF_INET6; 471 dst->sin6_len = sizeof(struct sockaddr_in6); 472 dst->sin6_addr = ip6->ip6_dst; 473 } 474 #ifdef IPSEC 475 if (needipsec && needipsectun) { 476 struct ipsec_output_state state; 477 478 /* 479 * All the extension headers will become inaccessible 480 * (since they can be encrypted). 481 * Don't panic, we need no more updates to extension headers 482 * on inner IPv6 packet (since they are now encapsulated). 483 * 484 * IPv6 [ESP|AH] IPv6 [extension headers] payload 485 */ 486 bzero(&exthdrs, sizeof(exthdrs)); 487 exthdrs.ip6e_ip6 = m; 488 489 bzero(&state, sizeof(state)); 490 state.m = m; 491 state.ro = (struct route *)ro; 492 state.dst = (struct sockaddr *)dst; 493 494 error = ipsec6_output_tunnel(&state, sp, flags); 495 496 m = state.m; 497 ro = (struct route_in6 *)state.ro; 498 dst = (struct sockaddr_in6 *)state.dst; 499 if (error) { 500 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 501 m0 = m = NULL; 502 m = NULL; 503 switch (error) { 504 case EHOSTUNREACH: 505 case ENETUNREACH: 506 case EMSGSIZE: 507 case ENOBUFS: 508 case ENOMEM: 509 break; 510 default: 511 printf("ip6_output (ipsec): error code %d\n", error); 512 /*fall through*/ 513 case ENOENT: 514 /* don't show these error codes to the user */ 515 error = 0; 516 break; 517 } 518 goto bad; 519 } 520 521 exthdrs.ip6e_ip6 = m; 522 } 523 #endif /*IPESC*/ 524 525 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 526 /* Unicast */ 527 528 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 529 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 530 /* xxx 531 * interface selection comes here 532 * if an interface is specified from an upper layer, 533 * ifp must point it. 534 */ 535 if (ro->ro_rt == 0) 536 rtalloc((struct route *)ro); 537 if (ro->ro_rt == 0) { 538 ip6stat.ip6s_noroute++; 539 error = EHOSTUNREACH; 540 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 541 goto bad; 542 } 543 ia = ifatoia6(ro->ro_rt->rt_ifa); 544 ifp = ro->ro_rt->rt_ifp; 545 ro->ro_rt->rt_use++; 546 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 547 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 548 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 549 550 in6_ifstat_inc(ifp, ifs6_out_request); 551 552 /* 553 * Check if there is the outgoing interface conflicts with 554 * the interface specified by ifi6_ifindex(if specified). 555 * Note that loopback interface is always okay. 556 * (this happens when we are sending packet toward my 557 * interface) 558 */ 559 if (opt && opt->ip6po_pktinfo 560 && opt->ip6po_pktinfo->ipi6_ifindex) { 561 if (!(ifp->if_flags & IFF_LOOPBACK) 562 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 563 ip6stat.ip6s_noroute++; 564 in6_ifstat_inc(ifp, ifs6_out_discard); 565 error = EHOSTUNREACH; 566 goto bad; 567 } 568 } 569 570 if (opt && opt->ip6po_hlim != -1) 571 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 572 } else { 573 /* Multicast */ 574 struct in6_multi *in6m; 575 576 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 577 578 /* 579 * See if the caller provided any multicast options 580 */ 581 ifp = NULL; 582 if (im6o != NULL) { 583 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 584 if (im6o->im6o_multicast_ifp != NULL) 585 ifp = im6o->im6o_multicast_ifp; 586 } else 587 ip6->ip6_hlim = ip6_defmcasthlim; 588 589 /* 590 * See if the caller provided the outgoing interface 591 * as an ancillary data. 592 * Boundary check for ifindex is assumed to be already done. 593 */ 594 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 595 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex]; 596 597 /* 598 * If the destination is a node-local scope multicast, 599 * the packet should be loop-backed only. 600 */ 601 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) { 602 /* 603 * If the outgoing interface is already specified, 604 * it should be a loopback interface. 605 */ 606 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) { 607 ip6stat.ip6s_badscope++; 608 error = ENETUNREACH; /* XXX: better error? */ 609 /* XXX correct ifp? */ 610 in6_ifstat_inc(ifp, ifs6_out_discard); 611 goto bad; 612 } else { 613 ifp = &loif[0]; 614 } 615 } 616 617 if (opt && opt->ip6po_hlim != -1) 618 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 619 620 /* 621 * If caller did not provide an interface lookup a 622 * default in the routing table. This is either a 623 * default for the speicfied group (i.e. a host 624 * route), or a multicast default (a route for the 625 * ``net'' ff00::/8). 626 */ 627 if (ifp == NULL) { 628 if (ro->ro_rt == 0) { 629 ro->ro_rt = rtalloc1((struct sockaddr *) 630 &ro->ro_dst, 0, 0UL); 631 } 632 if (ro->ro_rt == 0) { 633 ip6stat.ip6s_noroute++; 634 error = EHOSTUNREACH; 635 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 636 goto bad; 637 } 638 ia = ifatoia6(ro->ro_rt->rt_ifa); 639 ifp = ro->ro_rt->rt_ifp; 640 ro->ro_rt->rt_use++; 641 } 642 643 if ((flags & IPV6_FORWARDING) == 0) 644 in6_ifstat_inc(ifp, ifs6_out_request); 645 in6_ifstat_inc(ifp, ifs6_out_mcast); 646 647 /* 648 * Confirm that the outgoing interface supports multicast. 649 */ 650 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 651 ip6stat.ip6s_noroute++; 652 in6_ifstat_inc(ifp, ifs6_out_discard); 653 error = ENETUNREACH; 654 goto bad; 655 } 656 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 657 if (in6m != NULL && 658 (im6o == NULL || im6o->im6o_multicast_loop)) { 659 /* 660 * If we belong to the destination multicast group 661 * on the outgoing interface, and the caller did not 662 * forbid loopback, loop back a copy. 663 */ 664 ip6_mloopback(ifp, m, dst); 665 } else { 666 /* 667 * If we are acting as a multicast router, perform 668 * multicast forwarding as if the packet had just 669 * arrived on the interface to which we are about 670 * to send. The multicast forwarding function 671 * recursively calls this function, using the 672 * IPV6_FORWARDING flag to prevent infinite recursion. 673 * 674 * Multicasts that are looped back by ip6_mloopback(), 675 * above, will be forwarded by the ip6_input() routine, 676 * if necessary. 677 */ 678 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 679 if (ip6_mforward(ip6, ifp, m) != NULL) { 680 m_freem(m); 681 goto done; 682 } 683 } 684 } 685 /* 686 * Multicasts with a hoplimit of zero may be looped back, 687 * above, but must not be transmitted on a network. 688 * Also, multicasts addressed to the loopback interface 689 * are not sent -- the above call to ip6_mloopback() will 690 * loop back a copy if this host actually belongs to the 691 * destination group on the loopback interface. 692 */ 693 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) { 694 m_freem(m); 695 goto done; 696 } 697 } 698 699 /* 700 * Fill the outgoing inteface to tell the upper layer 701 * to increment per-interface statistics. 702 */ 703 if (ifpp) 704 *ifpp = ifp; 705 706 /* 707 * Determine path MTU. 708 */ 709 if (ro_pmtu != ro) { 710 /* The first hop and the final destination may differ. */ 711 struct sockaddr_in6 *sin6_fin = 712 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 713 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 714 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr, 715 &finaldst))) { 716 RTFREE(ro_pmtu->ro_rt); 717 ro_pmtu->ro_rt = (struct rtentry *)0; 718 } 719 if (ro_pmtu->ro_rt == 0) { 720 bzero(sin6_fin, sizeof(*sin6_fin)); 721 sin6_fin->sin6_family = AF_INET6; 722 sin6_fin->sin6_len = sizeof(struct sockaddr_in6); 723 sin6_fin->sin6_addr = finaldst; 724 725 rtalloc((struct route *)ro_pmtu); 726 } 727 } 728 if (ro_pmtu->ro_rt != NULL) { 729 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu; 730 731 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 732 if (mtu > ifmtu) { 733 /* 734 * The MTU on the route is larger than the MTU on 735 * the interface! This shouldn't happen, unless the 736 * MTU of the interface has been changed after the 737 * interface was brought up. Change the MTU in the 738 * route to match the interface MTU (as long as the 739 * field isn't locked). 740 */ 741 mtu = ifmtu; 742 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0) 743 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */ 744 } 745 } else { 746 mtu = nd_ifinfo[ifp->if_index].linkmtu; 747 } 748 749 /* 750 * Fake link-local scope-class addresses 751 */ 752 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 753 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 754 ip6->ip6_src.s6_addr16[1] = 0; 755 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 756 ip6->ip6_dst.s6_addr16[1] = 0; 757 } 758 759 #ifdef IPV6FIREWALL 760 /* 761 * Check with the firewall... 762 */ 763 if (ip6_fw_chk_ptr) { 764 u_short port = 0; 765 /* If ipfw says divert, we have to just drop packet */ 766 if ((*ip6_fw_chk_ptr)(&ip6, ifp, &port, &m)) { 767 m_freem(m); 768 goto done; 769 } 770 if (!m) { 771 error = EACCES; 772 goto done; 773 } 774 } 775 #endif 776 777 /* 778 * If the outgoing packet contains a hop-by-hop options header, 779 * it must be examined and processed even by the source node. 780 * (RFC 2460, section 4.) 781 */ 782 if (exthdrs.ip6e_hbh) { 783 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, 784 struct ip6_hbh *); 785 u_int32_t dummy1; /* XXX unused */ 786 u_int32_t dummy2; /* XXX unused */ 787 788 /* 789 * XXX: if we have to send an ICMPv6 error to the sender, 790 * we need the M_LOOP flag since icmp6_error() expects 791 * the IPv6 and the hop-by-hop options header are 792 * continuous unless the flag is set. 793 */ 794 m->m_flags |= M_LOOP; 795 m->m_pkthdr.rcvif = ifp; 796 if (ip6_process_hopopts(m, 797 (u_int8_t *)(hbh + 1), 798 ((hbh->ip6h_len + 1) << 3) - 799 sizeof(struct ip6_hbh), 800 &dummy1, &dummy2) < 0) { 801 /* m was already freed at this point */ 802 error = EINVAL;/* better error? */ 803 goto done; 804 } 805 m->m_flags &= ~M_LOOP; /* XXX */ 806 m->m_pkthdr.rcvif = NULL; 807 } 808 809 /* 810 * Send the packet to the outgoing interface. 811 * If necessary, do IPv6 fragmentation before sending. 812 */ 813 tlen = m->m_pkthdr.len; 814 if (tlen <= mtu 815 #ifdef notyet 816 /* 817 * On any link that cannot convey a 1280-octet packet in one piece, 818 * link-specific fragmentation and reassembly must be provided at 819 * a layer below IPv6. [RFC 2460, sec.5] 820 * Thus if the interface has ability of link-level fragmentation, 821 * we can just send the packet even if the packet size is 822 * larger than the link's MTU. 823 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet... 824 */ 825 826 || ifp->if_flags & IFF_FRAGMENTABLE 827 #endif 828 ) 829 { 830 #if defined(__NetBSD__) && defined(IFA_STATS) 831 if (IFA_STATS) { 832 struct in6_ifaddr *ia6; 833 ip6 = mtod(m, struct ip6_hdr *); 834 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 835 if (ia6) { 836 ia->ia_ifa.ifa_data.ifad_outbytes += 837 m->m_pkthdr.len; 838 } 839 } 840 #endif 841 error = nd6_output(ifp, m, dst, ro->ro_rt); 842 goto done; 843 } else if (mtu < IPV6_MMTU) { 844 /* 845 * note that path MTU is never less than IPV6_MMTU 846 * (see icmp6_input). 847 */ 848 error = EMSGSIZE; 849 in6_ifstat_inc(ifp, ifs6_out_fragfail); 850 goto bad; 851 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ 852 error = EMSGSIZE; 853 in6_ifstat_inc(ifp, ifs6_out_fragfail); 854 goto bad; 855 } else { 856 struct mbuf **mnext, *m_frgpart; 857 struct ip6_frag *ip6f; 858 u_int32_t id = htonl(ip6_id++); 859 u_char nextproto; 860 861 /* 862 * Too large for the destination or interface; 863 * fragment if possible. 864 * Must be able to put at least 8 bytes per fragment. 865 */ 866 hlen = unfragpartlen; 867 if (mtu > IPV6_MAXPACKET) 868 mtu = IPV6_MAXPACKET; 869 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 870 if (len < 8) { 871 error = EMSGSIZE; 872 in6_ifstat_inc(ifp, ifs6_out_fragfail); 873 goto bad; 874 } 875 876 mnext = &m->m_nextpkt; 877 878 /* 879 * Change the next header field of the last header in the 880 * unfragmentable part. 881 */ 882 if (exthdrs.ip6e_rthdr) { 883 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 884 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 885 } else if (exthdrs.ip6e_dest1) { 886 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 887 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 888 } else if (exthdrs.ip6e_hbh) { 889 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 890 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 891 } else { 892 nextproto = ip6->ip6_nxt; 893 ip6->ip6_nxt = IPPROTO_FRAGMENT; 894 } 895 896 /* 897 * Loop through length of segment after first fragment, 898 * make new header and copy data of each part and link onto chain. 899 */ 900 m0 = m; 901 for (off = hlen; off < tlen; off += len) { 902 MGETHDR(m, M_DONTWAIT, MT_HEADER); 903 if (!m) { 904 error = ENOBUFS; 905 ip6stat.ip6s_odropped++; 906 goto sendorfree; 907 } 908 m->m_flags = m0->m_flags & M_COPYFLAGS; 909 *mnext = m; 910 mnext = &m->m_nextpkt; 911 m->m_data += max_linkhdr; 912 mhip6 = mtod(m, struct ip6_hdr *); 913 *mhip6 = *ip6; 914 m->m_len = sizeof(*mhip6); 915 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 916 if (error) { 917 ip6stat.ip6s_odropped++; 918 goto sendorfree; 919 } 920 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 921 if (off + len >= tlen) 922 len = tlen - off; 923 else 924 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 925 mhip6->ip6_plen = htons((u_short)(len + hlen + 926 sizeof(*ip6f) - 927 sizeof(struct ip6_hdr))); 928 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 929 error = ENOBUFS; 930 ip6stat.ip6s_odropped++; 931 goto sendorfree; 932 } 933 m_cat(m, m_frgpart); 934 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 935 m->m_pkthdr.rcvif = (struct ifnet *)0; 936 ip6f->ip6f_reserved = 0; 937 ip6f->ip6f_ident = id; 938 ip6f->ip6f_nxt = nextproto; 939 ip6stat.ip6s_ofragments++; 940 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 941 } 942 943 in6_ifstat_inc(ifp, ifs6_out_fragok); 944 } 945 946 /* 947 * Remove leading garbages. 948 */ 949 sendorfree: 950 m = m0->m_nextpkt; 951 m0->m_nextpkt = 0; 952 m_freem(m0); 953 for (m0 = m; m; m = m0) { 954 m0 = m->m_nextpkt; 955 m->m_nextpkt = 0; 956 if (error == 0) { 957 #if defined(__NetBSD__) && defined(IFA_STATS) 958 if (IFA_STATS) { 959 struct in6_ifaddr *ia6; 960 ip6 = mtod(m, struct ip6_hdr *); 961 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 962 if (ia6) { 963 ia->ia_ifa.ifa_data.ifad_outbytes += 964 m->m_pkthdr.len; 965 } 966 } 967 #endif 968 error = nd6_output(ifp, m, dst, ro->ro_rt); 969 } else 970 m_freem(m); 971 } 972 973 if (error == 0) 974 ip6stat.ip6s_fragmented++; 975 976 done: 977 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 978 RTFREE(ro->ro_rt); 979 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 980 RTFREE(ro_pmtu->ro_rt); 981 } 982 983 #ifdef IPSEC 984 if (sp != NULL) 985 key_freesp(sp); 986 #endif /* IPSEC */ 987 988 return(error); 989 990 freehdrs: 991 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 992 m_freem(exthdrs.ip6e_dest1); 993 m_freem(exthdrs.ip6e_rthdr); 994 m_freem(exthdrs.ip6e_dest2); 995 /* fall through */ 996 bad: 997 m_freem(m); 998 goto done; 999 } 1000 1001 static int 1002 ip6_copyexthdr(mp, hdr, hlen) 1003 struct mbuf **mp; 1004 caddr_t hdr; 1005 int hlen; 1006 { 1007 struct mbuf *m; 1008 1009 if (hlen > MCLBYTES) 1010 return(ENOBUFS); /* XXX */ 1011 1012 MGET(m, M_DONTWAIT, MT_DATA); 1013 if (!m) 1014 return(ENOBUFS); 1015 1016 if (hlen > MLEN) { 1017 MCLGET(m, M_DONTWAIT); 1018 if ((m->m_flags & M_EXT) == 0) { 1019 m_free(m); 1020 return(ENOBUFS); 1021 } 1022 } 1023 m->m_len = hlen; 1024 if (hdr) 1025 bcopy(hdr, mtod(m, caddr_t), hlen); 1026 1027 *mp = m; 1028 return(0); 1029 } 1030 1031 /* 1032 * Insert jumbo payload option. 1033 */ 1034 static int 1035 ip6_insert_jumboopt(exthdrs, plen) 1036 struct ip6_exthdrs *exthdrs; 1037 u_int32_t plen; 1038 { 1039 struct mbuf *mopt; 1040 u_char *optbuf; 1041 1042 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1043 1044 /* 1045 * If there is no hop-by-hop options header, allocate new one. 1046 * If there is one but it doesn't have enough space to store the 1047 * jumbo payload option, allocate a cluster to store the whole options. 1048 * Otherwise, use it to store the options. 1049 */ 1050 if (exthdrs->ip6e_hbh == 0) { 1051 MGET(mopt, M_DONTWAIT, MT_DATA); 1052 if (mopt == 0) 1053 return(ENOBUFS); 1054 mopt->m_len = JUMBOOPTLEN; 1055 optbuf = mtod(mopt, u_char *); 1056 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1057 exthdrs->ip6e_hbh = mopt; 1058 } else { 1059 struct ip6_hbh *hbh; 1060 1061 mopt = exthdrs->ip6e_hbh; 1062 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1063 caddr_t oldoptp = mtod(mopt, caddr_t); 1064 int oldoptlen = mopt->m_len; 1065 1066 if (mopt->m_flags & M_EXT) 1067 return(ENOBUFS); /* XXX */ 1068 MCLGET(mopt, M_DONTWAIT); 1069 if ((mopt->m_flags & M_EXT) == 0) 1070 return(ENOBUFS); 1071 1072 bcopy(oldoptp, mtod(mopt, caddr_t), oldoptlen); 1073 optbuf = mtod(mopt, caddr_t) + oldoptlen; 1074 mopt->m_len = oldoptlen + JUMBOOPTLEN; 1075 } else { 1076 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1077 mopt->m_len += JUMBOOPTLEN; 1078 } 1079 optbuf[0] = IP6OPT_PADN; 1080 optbuf[1] = 1; 1081 1082 /* 1083 * Adjust the header length according to the pad and 1084 * the jumbo payload option. 1085 */ 1086 hbh = mtod(mopt, struct ip6_hbh *); 1087 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1088 } 1089 1090 /* fill in the option. */ 1091 optbuf[2] = IP6OPT_JUMBO; 1092 optbuf[3] = 4; 1093 *(u_int32_t *)&optbuf[4] = htonl(plen + JUMBOOPTLEN); 1094 1095 /* finally, adjust the packet header length */ 1096 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1097 1098 return(0); 1099 #undef JUMBOOPTLEN 1100 } 1101 1102 /* 1103 * Insert fragment header and copy unfragmentable header portions. 1104 */ 1105 static int 1106 ip6_insertfraghdr(m0, m, hlen, frghdrp) 1107 struct mbuf *m0, *m; 1108 int hlen; 1109 struct ip6_frag **frghdrp; 1110 { 1111 struct mbuf *n, *mlast; 1112 1113 if (hlen > sizeof(struct ip6_hdr)) { 1114 n = m_copym(m0, sizeof(struct ip6_hdr), 1115 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1116 if (n == 0) 1117 return(ENOBUFS); 1118 m->m_next = n; 1119 } else 1120 n = m; 1121 1122 /* Search for the last mbuf of unfragmentable part. */ 1123 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1124 ; 1125 1126 if ((mlast->m_flags & M_EXT) == 0 && 1127 M_TRAILINGSPACE(mlast) < sizeof(struct ip6_frag)) { 1128 /* use the trailing space of the last mbuf for the fragment hdr */ 1129 *frghdrp = 1130 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); 1131 mlast->m_len += sizeof(struct ip6_frag); 1132 m->m_pkthdr.len += sizeof(struct ip6_frag); 1133 } else { 1134 /* allocate a new mbuf for the fragment header */ 1135 struct mbuf *mfrg; 1136 1137 MGET(mfrg, M_DONTWAIT, MT_DATA); 1138 if (mfrg == 0) 1139 return(ENOBUFS); 1140 mfrg->m_len = sizeof(struct ip6_frag); 1141 *frghdrp = mtod(mfrg, struct ip6_frag *); 1142 mlast->m_next = mfrg; 1143 } 1144 1145 return(0); 1146 } 1147 1148 /* 1149 * IP6 socket option processing. 1150 */ 1151 int 1152 ip6_ctloutput(so, sopt) 1153 struct socket *so; 1154 struct sockopt *sopt; 1155 { 1156 int privileged; 1157 register struct inpcb *in6p = sotoinpcb(so); 1158 int error, optval; 1159 int level, op, optname; 1160 int optlen; 1161 struct proc *p; 1162 1163 if (sopt) { 1164 level = sopt->sopt_level; 1165 op = sopt->sopt_dir; 1166 optname = sopt->sopt_name; 1167 optlen = sopt->sopt_valsize; 1168 p = sopt->sopt_p; 1169 } else { 1170 panic("ip6_ctloutput: arg soopt is NULL"); 1171 } 1172 error = optval = 0; 1173 1174 privileged = (p == 0 || suser(p)) ? 0 : 1; 1175 1176 if (level == IPPROTO_IPV6) { 1177 switch (op) { 1178 case SOPT_SET: 1179 switch (optname) { 1180 case IPV6_PKTOPTIONS: 1181 { 1182 struct mbuf *m; 1183 1184 error = soopt_getm(sopt, &m); /* XXX */ 1185 if (error != 0) 1186 break; 1187 error = soopt_mcopyin(sopt, m); /* XXX */ 1188 if (error != 0) 1189 break; 1190 return (ip6_pcbopts(&in6p->in6p_outputopts, 1191 m, so, sopt)); 1192 } 1193 case IPV6_HOPOPTS: 1194 case IPV6_DSTOPTS: 1195 if (!privileged) { 1196 error = EPERM; 1197 break; 1198 } 1199 /* fall through */ 1200 case IPV6_UNICAST_HOPS: 1201 case IPV6_RECVOPTS: 1202 case IPV6_RECVRETOPTS: 1203 case IPV6_RECVDSTADDR: 1204 case IPV6_PKTINFO: 1205 case IPV6_HOPLIMIT: 1206 case IPV6_RTHDR: 1207 case IPV6_CHECKSUM: 1208 case IPV6_FAITH: 1209 case IPV6_BINDV6ONLY: 1210 if (optlen != sizeof(int)) 1211 error = EINVAL; 1212 else { 1213 error = sooptcopyin(sopt, &optval, 1214 sizeof optval, sizeof optval); 1215 if (error) 1216 break; 1217 switch (optname) { 1218 1219 case IPV6_UNICAST_HOPS: 1220 if (optval < -1 || optval >= 256) 1221 error = EINVAL; 1222 else { 1223 /* -1 = kernel default */ 1224 in6p->in6p_hops = optval; 1225 if ((in6p->in6p_vflag & 1226 INP_IPV4) != 0) 1227 in6p->inp_ip_ttl = optval; 1228 } 1229 break; 1230 #define OPTSET(bit) \ 1231 if (optval) \ 1232 in6p->in6p_flags |= bit; \ 1233 else \ 1234 in6p->in6p_flags &= ~bit; 1235 1236 case IPV6_RECVOPTS: 1237 OPTSET(IN6P_RECVOPTS); 1238 break; 1239 1240 case IPV6_RECVRETOPTS: 1241 OPTSET(IN6P_RECVRETOPTS); 1242 break; 1243 1244 case IPV6_RECVDSTADDR: 1245 OPTSET(IN6P_RECVDSTADDR); 1246 break; 1247 1248 case IPV6_PKTINFO: 1249 OPTSET(IN6P_PKTINFO); 1250 break; 1251 1252 case IPV6_HOPLIMIT: 1253 OPTSET(IN6P_HOPLIMIT); 1254 break; 1255 1256 case IPV6_HOPOPTS: 1257 OPTSET(IN6P_HOPOPTS); 1258 break; 1259 1260 case IPV6_DSTOPTS: 1261 OPTSET(IN6P_DSTOPTS); 1262 break; 1263 1264 case IPV6_RTHDR: 1265 OPTSET(IN6P_RTHDR); 1266 break; 1267 1268 case IPV6_CHECKSUM: 1269 in6p->in6p_cksum = optval; 1270 break; 1271 1272 case IPV6_FAITH: 1273 OPTSET(IN6P_FAITH); 1274 break; 1275 1276 case IPV6_BINDV6ONLY: 1277 OPTSET(IN6P_BINDV6ONLY); 1278 break; 1279 } 1280 } 1281 break; 1282 #undef OPTSET 1283 1284 case IPV6_MULTICAST_IF: 1285 case IPV6_MULTICAST_HOPS: 1286 case IPV6_MULTICAST_LOOP: 1287 case IPV6_JOIN_GROUP: 1288 case IPV6_LEAVE_GROUP: 1289 { 1290 struct mbuf *m; 1291 if (sopt->sopt_valsize > MLEN) { 1292 error = EMSGSIZE; 1293 break; 1294 } 1295 /* XXX */ 1296 MGET(m, sopt->sopt_p ? M_WAIT : M_DONTWAIT, MT_HEADER); 1297 if (m == 0) { 1298 error = ENOBUFS; 1299 break; 1300 } 1301 m->m_len = sopt->sopt_valsize; 1302 error = sooptcopyin(sopt, mtod(m, char *), 1303 m->m_len, m->m_len); 1304 error = ip6_setmoptions(sopt->sopt_name, 1305 &in6p->in6p_moptions, 1306 m); 1307 (void)m_free(m); 1308 } 1309 break; 1310 1311 case IPV6_PORTRANGE: 1312 error = sooptcopyin(sopt, &optval, sizeof optval, 1313 sizeof optval); 1314 if (error) 1315 break; 1316 1317 switch (optval) { 1318 case IPV6_PORTRANGE_DEFAULT: 1319 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1320 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1321 break; 1322 1323 case IPV6_PORTRANGE_HIGH: 1324 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1325 in6p->in6p_flags |= IN6P_HIGHPORT; 1326 break; 1327 1328 case IPV6_PORTRANGE_LOW: 1329 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1330 in6p->in6p_flags |= IN6P_LOWPORT; 1331 break; 1332 1333 default: 1334 error = EINVAL; 1335 break; 1336 } 1337 break; 1338 1339 #ifdef IPSEC 1340 case IPV6_IPSEC_POLICY: 1341 { 1342 caddr_t req = NULL; 1343 struct mbuf *m; 1344 1345 if ((error = soopt_getm(sopt, &m)) 1346 != 0) /* XXX */ 1347 break; 1348 if ((error = soopt_mcopyin(sopt, m)) 1349 != 0) /* XXX */ 1350 break; 1351 if (m != 0) 1352 req = mtod(m, caddr_t); 1353 error = ipsec6_set_policy(in6p, optname, req, 1354 privileged); 1355 m_freem(m); 1356 } 1357 break; 1358 #endif /* IPSEC */ 1359 1360 #ifdef IPV6FIREWALL 1361 case IPV6_FW_ADD: 1362 case IPV6_FW_DEL: 1363 case IPV6_FW_FLUSH: 1364 case IPV6_FW_ZERO: 1365 { 1366 struct mbuf *m; 1367 struct mbuf **mp = &m; 1368 1369 if (ip6_fw_ctl_ptr == NULL) 1370 return EINVAL; 1371 if ((error = soopt_getm(sopt, &m)) 1372 != 0) /* XXX */ 1373 break; 1374 if ((error = soopt_mcopyin(sopt, m)) 1375 != 0) /* XXX */ 1376 break; 1377 error = (*ip6_fw_ctl_ptr)(optname, mp); 1378 m = *mp; 1379 } 1380 break; 1381 #endif 1382 1383 default: 1384 error = ENOPROTOOPT; 1385 break; 1386 } 1387 break; 1388 1389 case SOPT_GET: 1390 switch (optname) { 1391 1392 case IPV6_OPTIONS: 1393 case IPV6_RETOPTS: 1394 error = ENOPROTOOPT; 1395 break; 1396 1397 case IPV6_PKTOPTIONS: 1398 if (in6p->in6p_options) { 1399 error = soopt_mcopyout(sopt, 1400 in6p->in6p_options); 1401 } else 1402 sopt->sopt_valsize = 0; 1403 break; 1404 1405 case IPV6_HOPOPTS: 1406 case IPV6_DSTOPTS: 1407 if (!privileged) { 1408 error = EPERM; 1409 break; 1410 } 1411 /* fall through */ 1412 case IPV6_UNICAST_HOPS: 1413 case IPV6_RECVOPTS: 1414 case IPV6_RECVRETOPTS: 1415 case IPV6_RECVDSTADDR: 1416 case IPV6_PKTINFO: 1417 case IPV6_HOPLIMIT: 1418 case IPV6_RTHDR: 1419 case IPV6_CHECKSUM: 1420 case IPV6_FAITH: 1421 case IPV6_BINDV6ONLY: 1422 case IPV6_PORTRANGE: 1423 switch (optname) { 1424 1425 case IPV6_UNICAST_HOPS: 1426 optval = in6p->in6p_hops; 1427 break; 1428 1429 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0) 1430 1431 case IPV6_RECVOPTS: 1432 optval = OPTBIT(IN6P_RECVOPTS); 1433 break; 1434 1435 case IPV6_RECVRETOPTS: 1436 optval = OPTBIT(IN6P_RECVRETOPTS); 1437 break; 1438 1439 case IPV6_RECVDSTADDR: 1440 optval = OPTBIT(IN6P_RECVDSTADDR); 1441 break; 1442 1443 case IPV6_PKTINFO: 1444 optval = OPTBIT(IN6P_PKTINFO); 1445 break; 1446 1447 case IPV6_HOPLIMIT: 1448 optval = OPTBIT(IN6P_HOPLIMIT); 1449 break; 1450 1451 case IPV6_HOPOPTS: 1452 optval = OPTBIT(IN6P_HOPOPTS); 1453 break; 1454 1455 case IPV6_DSTOPTS: 1456 optval = OPTBIT(IN6P_DSTOPTS); 1457 break; 1458 1459 case IPV6_RTHDR: 1460 optval = OPTBIT(IN6P_RTHDR); 1461 break; 1462 1463 case IPV6_CHECKSUM: 1464 optval = in6p->in6p_cksum; 1465 break; 1466 1467 case IPV6_FAITH: 1468 optval = OPTBIT(IN6P_FAITH); 1469 break; 1470 1471 case IPV6_BINDV6ONLY: 1472 optval = OPTBIT(IN6P_BINDV6ONLY); 1473 break; 1474 1475 case IPV6_PORTRANGE: 1476 { 1477 int flags; 1478 1479 flags = in6p->in6p_flags; 1480 if (flags & IN6P_HIGHPORT) 1481 optval = IPV6_PORTRANGE_HIGH; 1482 else if (flags & IN6P_LOWPORT) 1483 optval = IPV6_PORTRANGE_LOW; 1484 else 1485 optval = 0; 1486 break; 1487 } 1488 } 1489 error = sooptcopyout(sopt, &optval, 1490 sizeof optval); 1491 break; 1492 1493 case IPV6_MULTICAST_IF: 1494 case IPV6_MULTICAST_HOPS: 1495 case IPV6_MULTICAST_LOOP: 1496 case IPV6_JOIN_GROUP: 1497 case IPV6_LEAVE_GROUP: 1498 { 1499 struct mbuf *m; 1500 error = ip6_getmoptions(sopt->sopt_name, 1501 in6p->in6p_moptions, &m); 1502 if (error == 0) 1503 error = sooptcopyout(sopt, 1504 mtod(m, char *), m->m_len); 1505 m_freem(m); 1506 } 1507 break; 1508 1509 #ifdef IPSEC 1510 case IPV6_IPSEC_POLICY: 1511 { 1512 1513 struct mbuf *m = NULL; 1514 caddr_t req = NULL; 1515 1516 if (m != 0) 1517 req = mtod(m, caddr_t); 1518 error = ipsec6_get_policy(in6p, req, &m); 1519 if (error == 0) 1520 error = soopt_mcopyout(sopt, m); /*XXX*/ 1521 if (error == 0) 1522 m_freem(m); 1523 break; 1524 } 1525 #endif /* IPSEC */ 1526 1527 #ifdef IPV6FIREWALL 1528 case IPV6_FW_GET: 1529 { 1530 struct mbuf *m; 1531 struct mbuf **mp = &m; 1532 1533 if (ip6_fw_ctl_ptr == NULL) 1534 { 1535 return EINVAL; 1536 } 1537 error = (*ip6_fw_ctl_ptr)(optname, mp); 1538 if (error == 0) 1539 error = soopt_mcopyout(sopt, m); /* XXX */ 1540 if (m) 1541 m_freem(m); 1542 } 1543 break; 1544 #endif 1545 1546 default: 1547 error = ENOPROTOOPT; 1548 break; 1549 } 1550 break; 1551 } 1552 } else { 1553 error = EINVAL; 1554 } 1555 return(error); 1556 } 1557 1558 /* 1559 * Set up IP6 options in pcb for insertion in output packets. 1560 * Store in mbuf with pointer in pcbopt, adding pseudo-option 1561 * with destination address if source routed. 1562 */ 1563 static int 1564 ip6_pcbopts(pktopt, m, so, sopt) 1565 struct ip6_pktopts **pktopt; 1566 register struct mbuf *m; 1567 struct socket *so; 1568 struct sockopt *sopt; 1569 { 1570 register struct ip6_pktopts *opt = *pktopt; 1571 int error = 0; 1572 struct proc *p = sopt->sopt_p; 1573 int priv = 0; 1574 1575 /* turn off any old options. */ 1576 if (opt) { 1577 if (opt->ip6po_m) 1578 (void)m_free(opt->ip6po_m); 1579 } else 1580 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 1581 *pktopt = 0; 1582 1583 if (!m || m->m_len == 0) { 1584 /* 1585 * Only turning off any previous options. 1586 */ 1587 if (opt) 1588 free(opt, M_IP6OPT); 1589 if (m) 1590 (void)m_free(m); 1591 return(0); 1592 } 1593 1594 /* set options specified by user. */ 1595 if (p && !suser(p)) 1596 priv = 1; 1597 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) { 1598 (void)m_free(m); 1599 return(error); 1600 } 1601 *pktopt = opt; 1602 return(0); 1603 } 1604 1605 /* 1606 * Set the IP6 multicast options in response to user setsockopt(). 1607 */ 1608 static int 1609 ip6_setmoptions(optname, im6op, m) 1610 int optname; 1611 struct ip6_moptions **im6op; 1612 struct mbuf *m; 1613 { 1614 int error = 0; 1615 u_int loop, ifindex; 1616 struct ipv6_mreq *mreq; 1617 struct ifnet *ifp; 1618 struct ip6_moptions *im6o = *im6op; 1619 struct route_in6 ro; 1620 struct sockaddr_in6 *dst; 1621 struct in6_multi_mship *imm; 1622 struct proc *p = curproc; /* XXX */ 1623 1624 if (im6o == NULL) { 1625 /* 1626 * No multicast option buffer attached to the pcb; 1627 * allocate one and initialize to default values. 1628 */ 1629 im6o = (struct ip6_moptions *) 1630 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1631 1632 if (im6o == NULL) 1633 return(ENOBUFS); 1634 *im6op = im6o; 1635 im6o->im6o_multicast_ifp = NULL; 1636 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1637 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1638 LIST_INIT(&im6o->im6o_memberships); 1639 } 1640 1641 switch (optname) { 1642 1643 case IPV6_MULTICAST_IF: 1644 /* 1645 * Select the interface for outgoing multicast packets. 1646 */ 1647 if (m == NULL || m->m_len != sizeof(u_int)) { 1648 error = EINVAL; 1649 break; 1650 } 1651 ifindex = *(mtod(m, u_int *)); 1652 if (ifindex < 0 || if_index < ifindex) { 1653 error = ENXIO; /* XXX EINVAL? */ 1654 break; 1655 } 1656 ifp = ifindex2ifnet[ifindex]; 1657 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1658 error = EADDRNOTAVAIL; 1659 break; 1660 } 1661 im6o->im6o_multicast_ifp = ifp; 1662 break; 1663 1664 case IPV6_MULTICAST_HOPS: 1665 { 1666 /* 1667 * Set the IP6 hoplimit for outgoing multicast packets. 1668 */ 1669 int optval; 1670 if (m == NULL || m->m_len != sizeof(int)) { 1671 error = EINVAL; 1672 break; 1673 } 1674 optval = *(mtod(m, u_int *)); 1675 if (optval < -1 || optval >= 256) 1676 error = EINVAL; 1677 else if (optval == -1) 1678 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1679 else 1680 im6o->im6o_multicast_hlim = optval; 1681 break; 1682 } 1683 1684 case IPV6_MULTICAST_LOOP: 1685 /* 1686 * Set the loopback flag for outgoing multicast packets. 1687 * Must be zero or one. 1688 */ 1689 if (m == NULL || m->m_len != sizeof(u_int) || 1690 (loop = *(mtod(m, u_int *))) > 1) { 1691 error = EINVAL; 1692 break; 1693 } 1694 im6o->im6o_multicast_loop = loop; 1695 break; 1696 1697 case IPV6_JOIN_GROUP: 1698 /* 1699 * Add a multicast group membership. 1700 * Group must be a valid IP6 multicast address. 1701 */ 1702 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1703 error = EINVAL; 1704 break; 1705 } 1706 mreq = mtod(m, struct ipv6_mreq *); 1707 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1708 /* 1709 * We use the unspecified address to specify to accept 1710 * all multicast addresses. Only super user is allowed 1711 * to do this. 1712 */ 1713 if (suser(p)) { 1714 error = EACCES; 1715 break; 1716 } 1717 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1718 error = EINVAL; 1719 break; 1720 } 1721 1722 /* 1723 * If the interface is specified, validate it. 1724 */ 1725 if (mreq->ipv6mr_interface < 0 1726 || if_index < mreq->ipv6mr_interface) { 1727 error = ENXIO; /* XXX EINVAL? */ 1728 break; 1729 } 1730 /* 1731 * If no interface was explicitly specified, choose an 1732 * appropriate one according to the given multicast address. 1733 */ 1734 if (mreq->ipv6mr_interface == 0) { 1735 /* 1736 * If the multicast address is in node-local scope, 1737 * the interface should be a loopback interface. 1738 * Otherwise, look up the routing table for the 1739 * address, and choose the outgoing interface. 1740 * XXX: is it a good approach? 1741 */ 1742 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) { 1743 ifp = &loif[0]; 1744 } else { 1745 ro.ro_rt = NULL; 1746 dst = (struct sockaddr_in6 *)&ro.ro_dst; 1747 bzero(dst, sizeof(*dst)); 1748 dst->sin6_len = sizeof(struct sockaddr_in6); 1749 dst->sin6_family = AF_INET6; 1750 dst->sin6_addr = mreq->ipv6mr_multiaddr; 1751 rtalloc((struct route *)&ro); 1752 if (ro.ro_rt == NULL) { 1753 error = EADDRNOTAVAIL; 1754 break; 1755 } 1756 ifp = ro.ro_rt->rt_ifp; 1757 rtfree(ro.ro_rt); 1758 } 1759 } else 1760 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1761 1762 /* 1763 * See if we found an interface, and confirm that it 1764 * supports multicast 1765 */ 1766 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1767 error = EADDRNOTAVAIL; 1768 break; 1769 } 1770 /* 1771 * Put interface index into the multicast address, 1772 * if the address has link-local scope. 1773 */ 1774 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1775 mreq->ipv6mr_multiaddr.s6_addr16[1] 1776 = htons(mreq->ipv6mr_interface); 1777 } 1778 /* 1779 * See if the membership already exists. 1780 */ 1781 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) 1782 if (imm->i6mm_maddr->in6m_ifp == ifp && 1783 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1784 &mreq->ipv6mr_multiaddr)) 1785 break; 1786 if (imm != NULL) { 1787 error = EADDRINUSE; 1788 break; 1789 } 1790 /* 1791 * Everything looks good; add a new record to the multicast 1792 * address list for the given interface. 1793 */ 1794 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK); 1795 if (imm == NULL) { 1796 error = ENOBUFS; 1797 break; 1798 } 1799 if ((imm->i6mm_maddr = 1800 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) { 1801 free(imm, M_IPMADDR); 1802 break; 1803 } 1804 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 1805 break; 1806 1807 case IPV6_LEAVE_GROUP: 1808 /* 1809 * Drop a multicast group membership. 1810 * Group must be a valid IP6 multicast address. 1811 */ 1812 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1813 error = EINVAL; 1814 break; 1815 } 1816 mreq = mtod(m, struct ipv6_mreq *); 1817 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1818 if (suser(p)) { 1819 error = EACCES; 1820 break; 1821 } 1822 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1823 error = EINVAL; 1824 break; 1825 } 1826 /* 1827 * If an interface address was specified, get a pointer 1828 * to its ifnet structure. 1829 */ 1830 if (mreq->ipv6mr_interface < 0 1831 || if_index < mreq->ipv6mr_interface) { 1832 error = ENXIO; /* XXX EINVAL? */ 1833 break; 1834 } 1835 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1836 /* 1837 * Put interface index into the multicast address, 1838 * if the address has link-local scope. 1839 */ 1840 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1841 mreq->ipv6mr_multiaddr.s6_addr16[1] 1842 = htons(mreq->ipv6mr_interface); 1843 } 1844 /* 1845 * Find the membership in the membership list. 1846 */ 1847 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) { 1848 if ((ifp == NULL || 1849 imm->i6mm_maddr->in6m_ifp == ifp) && 1850 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1851 &mreq->ipv6mr_multiaddr)) 1852 break; 1853 } 1854 if (imm == NULL) { 1855 /* Unable to resolve interface */ 1856 error = EADDRNOTAVAIL; 1857 break; 1858 } 1859 /* 1860 * Give up the multicast address record to which the 1861 * membership points. 1862 */ 1863 LIST_REMOVE(imm, i6mm_chain); 1864 in6_delmulti(imm->i6mm_maddr); 1865 free(imm, M_IPMADDR); 1866 break; 1867 1868 default: 1869 error = EOPNOTSUPP; 1870 break; 1871 } 1872 1873 /* 1874 * If all options have default values, no need to keep the mbuf. 1875 */ 1876 if (im6o->im6o_multicast_ifp == NULL && 1877 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 1878 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 1879 LIST_EMPTY(&im6o->im6o_memberships)) { 1880 free(*im6op, M_IPMOPTS); 1881 *im6op = NULL; 1882 } 1883 1884 return(error); 1885 } 1886 1887 /* 1888 * Return the IP6 multicast options in response to user getsockopt(). 1889 */ 1890 static int 1891 ip6_getmoptions(optname, im6o, mp) 1892 int optname; 1893 register struct ip6_moptions *im6o; 1894 register struct mbuf **mp; 1895 { 1896 u_int *hlim, *loop, *ifindex; 1897 1898 *mp = m_get(M_WAIT, MT_HEADER); /*XXX*/ 1899 1900 switch (optname) { 1901 1902 case IPV6_MULTICAST_IF: 1903 ifindex = mtod(*mp, u_int *); 1904 (*mp)->m_len = sizeof(u_int); 1905 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 1906 *ifindex = 0; 1907 else 1908 *ifindex = im6o->im6o_multicast_ifp->if_index; 1909 return(0); 1910 1911 case IPV6_MULTICAST_HOPS: 1912 hlim = mtod(*mp, u_int *); 1913 (*mp)->m_len = sizeof(u_int); 1914 if (im6o == NULL) 1915 *hlim = ip6_defmcasthlim; 1916 else 1917 *hlim = im6o->im6o_multicast_hlim; 1918 return(0); 1919 1920 case IPV6_MULTICAST_LOOP: 1921 loop = mtod(*mp, u_int *); 1922 (*mp)->m_len = sizeof(u_int); 1923 if (im6o == NULL) 1924 *loop = ip6_defmcasthlim; 1925 else 1926 *loop = im6o->im6o_multicast_loop; 1927 return(0); 1928 1929 default: 1930 return(EOPNOTSUPP); 1931 } 1932 } 1933 1934 /* 1935 * Discard the IP6 multicast options. 1936 */ 1937 void 1938 ip6_freemoptions(im6o) 1939 register struct ip6_moptions *im6o; 1940 { 1941 struct in6_multi_mship *imm; 1942 1943 if (im6o == NULL) 1944 return; 1945 1946 while ((imm = LIST_FIRST(&im6o->im6o_memberships)) != NULL) { 1947 LIST_REMOVE(imm, i6mm_chain); 1948 if (imm->i6mm_maddr) 1949 in6_delmulti(imm->i6mm_maddr); 1950 free(imm, M_IPMADDR); 1951 } 1952 free(im6o, M_IPMOPTS); 1953 } 1954 1955 /* 1956 * Set IPv6 outgoing packet options based on advanced API. 1957 */ 1958 int 1959 ip6_setpktoptions(control, opt, priv) 1960 struct mbuf *control; 1961 struct ip6_pktopts *opt; 1962 int priv; 1963 { 1964 register struct cmsghdr *cm = 0; 1965 1966 if (control == 0 || opt == 0) 1967 return(EINVAL); 1968 1969 bzero(opt, sizeof(*opt)); 1970 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */ 1971 1972 /* 1973 * XXX: Currently, we assume all the optional information is stored 1974 * in a single mbuf. 1975 */ 1976 if (control->m_next) 1977 return(EINVAL); 1978 1979 opt->ip6po_m = control; 1980 1981 for (; control->m_len; control->m_data += ALIGN(cm->cmsg_len), 1982 control->m_len -= ALIGN(cm->cmsg_len)) { 1983 cm = mtod(control, struct cmsghdr *); 1984 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 1985 return(EINVAL); 1986 if (cm->cmsg_level != IPPROTO_IPV6) 1987 continue; 1988 1989 switch(cm->cmsg_type) { 1990 case IPV6_PKTINFO: 1991 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo))) 1992 return(EINVAL); 1993 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 1994 if (opt->ip6po_pktinfo->ipi6_ifindex && 1995 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr)) 1996 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] = 1997 htons(opt->ip6po_pktinfo->ipi6_ifindex); 1998 1999 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index 2000 || opt->ip6po_pktinfo->ipi6_ifindex < 0) { 2001 return(ENXIO); 2002 } 2003 2004 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) { 2005 struct ifaddr *ia; 2006 struct sockaddr_in6 sin6; 2007 2008 bzero(&sin6, sizeof(sin6)); 2009 sin6.sin6_len = sizeof(sin6); 2010 sin6.sin6_family = AF_INET6; 2011 sin6.sin6_addr = 2012 opt->ip6po_pktinfo->ipi6_addr; 2013 ia = ifa_ifwithaddr(sin6tosa(&sin6)); 2014 if (ia == NULL || 2015 (opt->ip6po_pktinfo->ipi6_ifindex && 2016 (ia->ifa_ifp->if_index != 2017 opt->ip6po_pktinfo->ipi6_ifindex))) { 2018 return(EADDRNOTAVAIL); 2019 } 2020 /* 2021 * Check if the requested source address is 2022 * indeed a unicast address assigned to the 2023 * node. 2024 */ 2025 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr)) 2026 return(EADDRNOTAVAIL); 2027 } 2028 break; 2029 2030 case IPV6_HOPLIMIT: 2031 if (cm->cmsg_len != CMSG_LEN(sizeof(int))) 2032 return(EINVAL); 2033 2034 opt->ip6po_hlim = *(int *)CMSG_DATA(cm); 2035 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255) 2036 return(EINVAL); 2037 break; 2038 2039 case IPV6_NEXTHOP: 2040 if (!priv) 2041 return(EPERM); 2042 if (cm->cmsg_len < sizeof(u_char) || 2043 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm))) 2044 return(EINVAL); 2045 2046 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm); 2047 2048 break; 2049 2050 case IPV6_HOPOPTS: 2051 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh))) 2052 return(EINVAL); 2053 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm); 2054 if (cm->cmsg_len != 2055 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3)) 2056 return(EINVAL); 2057 break; 2058 2059 case IPV6_DSTOPTS: 2060 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest))) 2061 return(EINVAL); 2062 2063 /* 2064 * If there is no routing header yet, the destination 2065 * options header should be put on the 1st part. 2066 * Otherwise, the header should be on the 2nd part. 2067 * (See RFC 2460, section 4.1) 2068 */ 2069 if (opt->ip6po_rthdr == NULL) { 2070 opt->ip6po_dest1 = 2071 (struct ip6_dest *)CMSG_DATA(cm); 2072 if (cm->cmsg_len != 2073 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1) 2074 << 3)) 2075 return(EINVAL); 2076 } else { 2077 opt->ip6po_dest2 = 2078 (struct ip6_dest *)CMSG_DATA(cm); 2079 if (cm->cmsg_len != 2080 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) 2081 << 3)) 2082 return(EINVAL); 2083 } 2084 break; 2085 2086 case IPV6_RTHDR: 2087 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr))) 2088 return(EINVAL); 2089 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm); 2090 if (cm->cmsg_len != 2091 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3)) 2092 return(EINVAL); 2093 switch(opt->ip6po_rthdr->ip6r_type) { 2094 case IPV6_RTHDR_TYPE_0: 2095 if (opt->ip6po_rthdr->ip6r_segleft == 0) 2096 return(EINVAL); 2097 break; 2098 default: 2099 return(EINVAL); 2100 } 2101 break; 2102 2103 default: 2104 return(ENOPROTOOPT); 2105 } 2106 } 2107 2108 return(0); 2109 } 2110 2111 /* 2112 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2113 * packet to the input queue of a specified interface. Note that this 2114 * calls the output routine of the loopback "driver", but with an interface 2115 * pointer that might NOT be &loif -- easier than replicating that code here. 2116 */ 2117 void 2118 ip6_mloopback(ifp, m, dst) 2119 struct ifnet *ifp; 2120 register struct mbuf *m; 2121 register struct sockaddr_in6 *dst; 2122 { 2123 struct mbuf *copym; 2124 2125 copym = m_copy(m, 0, M_COPYALL); 2126 if (copym != NULL) { 2127 (void)if_simloop(ifp, copym, (struct sockaddr *)dst, 0); 2128 } 2129 } 2130 2131 /* 2132 * Chop IPv6 header off from the payload. 2133 */ 2134 static int 2135 ip6_splithdr(m, exthdrs) 2136 struct mbuf *m; 2137 struct ip6_exthdrs *exthdrs; 2138 { 2139 struct mbuf *mh; 2140 struct ip6_hdr *ip6; 2141 2142 ip6 = mtod(m, struct ip6_hdr *); 2143 if (m->m_len > sizeof(*ip6)) { 2144 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 2145 if (mh == 0) { 2146 m_freem(m); 2147 return ENOBUFS; 2148 } 2149 M_COPY_PKTHDR(mh, m); 2150 MH_ALIGN(mh, sizeof(*ip6)); 2151 m->m_flags &= ~M_PKTHDR; 2152 m->m_len -= sizeof(*ip6); 2153 m->m_data += sizeof(*ip6); 2154 mh->m_next = m; 2155 m = mh; 2156 m->m_len = sizeof(*ip6); 2157 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2158 } 2159 exthdrs->ip6e_ip6 = m; 2160 return 0; 2161 } 2162 2163 /* 2164 * Compute IPv6 extension header length. 2165 */ 2166 int 2167 ip6_optlen(in6p) 2168 struct in6pcb *in6p; 2169 { 2170 int len; 2171 2172 if (!in6p->in6p_outputopts) 2173 return 0; 2174 2175 len = 0; 2176 #define elen(x) \ 2177 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2178 2179 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2180 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2181 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2182 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2183 return len; 2184 #undef elen 2185 } 2186 2187