1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ipsec.h" 69 70 #include <sys/param.h> 71 #include <sys/malloc.h> 72 #include <sys/mbuf.h> 73 #include <sys/proc.h> 74 #include <sys/errno.h> 75 #include <sys/priv.h> 76 #include <sys/protosw.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/kernel.h> 80 81 #include <net/if.h> 82 #include <net/netisr.h> 83 #include <net/route.h> 84 #include <net/pfil.h> 85 86 #include <netinet/in.h> 87 #include <netinet/in_var.h> 88 #include <netinet6/in6_var.h> 89 #include <netinet/ip6.h> 90 #include <netinet/icmp6.h> 91 #include <netinet6/ip6_var.h> 92 #include <netinet/in_pcb.h> 93 #include <netinet/tcp_var.h> 94 #include <netinet6/nd6.h> 95 96 #ifdef IPSEC 97 #include <netipsec/ipsec.h> 98 #include <netipsec/ipsec6.h> 99 #include <netipsec/key.h> 100 #include <netinet6/ip6_ipsec.h> 101 #endif /* IPSEC */ 102 103 #include <netinet6/ip6protosw.h> 104 #include <netinet6/scope6_var.h> 105 106 static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "internet multicast options"); 107 108 struct ip6_exthdrs { 109 struct mbuf *ip6e_ip6; 110 struct mbuf *ip6e_hbh; 111 struct mbuf *ip6e_dest1; 112 struct mbuf *ip6e_rthdr; 113 struct mbuf *ip6e_dest2; 114 }; 115 116 static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **, 117 int, int)); 118 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 119 struct socket *, struct sockopt *)); 120 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 121 static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *, int, 122 int, int, int)); 123 124 static int ip6_setmoptions(int, struct ip6_moptions **, struct mbuf *); 125 static int ip6_getmoptions(int, struct ip6_moptions *, struct mbuf **); 126 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 127 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 128 struct ip6_frag **)); 129 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 130 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 131 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *, 132 struct ifnet *, struct in6_addr *, u_long *, int *)); 133 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 134 135 136 /* 137 * Make an extension header from option data. hp is the source, and 138 * mp is the destination. 139 */ 140 #define MAKE_EXTHDR(hp, mp) \ 141 do { \ 142 if (hp) { \ 143 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 144 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 145 ((eh)->ip6e_len + 1) << 3); \ 146 if (error) \ 147 goto freehdrs; \ 148 } \ 149 } while (/*CONSTCOND*/ 0) 150 151 /* 152 * Form a chain of extension headers. 153 * m is the extension header mbuf 154 * mp is the previous mbuf in the chain 155 * p is the next header 156 * i is the type of option. 157 */ 158 #define MAKE_CHAIN(m, mp, p, i)\ 159 do {\ 160 if (m) {\ 161 if (!hdrsplit) \ 162 panic("assumption failed: hdr not split"); \ 163 *mtod((m), u_char *) = *(p);\ 164 *(p) = (i);\ 165 p = mtod((m), u_char *);\ 166 (m)->m_next = (mp)->m_next;\ 167 (mp)->m_next = (m);\ 168 (mp) = (m);\ 169 }\ 170 } while (/*CONSTCOND*/ 0) 171 172 /* 173 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 174 * header (with pri, len, nxt, hlim, src, dst). 175 * This function may modify ver and hlim only. 176 * The mbuf chain containing the packet will be freed. 177 * The mbuf opt, if present, will not be freed. 178 * 179 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 180 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 181 * which is rt_rmx.rmx_mtu. 182 * 183 * ifpp - XXX: just for statistics 184 */ 185 int 186 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 187 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 188 struct ifnet **ifpp, struct inpcb *inp) 189 { 190 struct ip6_hdr *ip6, *mhip6; 191 struct ifnet *ifp, *origifp; 192 struct mbuf *m = m0; 193 struct mbuf *mprev = NULL; 194 int hlen, tlen, len, off; 195 struct route_in6 ip6route; 196 struct rtentry *rt = NULL; 197 struct sockaddr_in6 *dst, src_sa, dst_sa; 198 struct in6_addr odst; 199 int error = 0; 200 struct in6_ifaddr *ia = NULL; 201 u_long mtu; 202 int alwaysfrag, dontfrag; 203 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 204 struct ip6_exthdrs exthdrs; 205 struct in6_addr finaldst, src0, dst0; 206 u_int32_t zone; 207 struct route_in6 *ro_pmtu = NULL; 208 int hdrsplit = 0; 209 int needipsec = 0; 210 #ifdef IPSEC 211 struct ipsec_output_state state; 212 struct ip6_rthdr *rh = NULL; 213 int needipsectun = 0; 214 int segleft_org = 0; 215 struct secpolicy *sp = NULL; 216 #endif /* IPSEC */ 217 218 ip6 = mtod(m, struct ip6_hdr *); 219 if (ip6 == NULL) { 220 printf ("ip6 is NULL"); 221 goto bad; 222 } 223 224 finaldst = ip6->ip6_dst; 225 226 bzero(&exthdrs, sizeof(exthdrs)); 227 228 if (opt) { 229 /* Hop-by-Hop options header */ 230 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 231 /* Destination options header(1st part) */ 232 if (opt->ip6po_rthdr) { 233 /* 234 * Destination options header(1st part) 235 * This only makes sense with a routing header. 236 * See Section 9.2 of RFC 3542. 237 * Disabling this part just for MIP6 convenience is 238 * a bad idea. We need to think carefully about a 239 * way to make the advanced API coexist with MIP6 240 * options, which might automatically be inserted in 241 * the kernel. 242 */ 243 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 244 } 245 /* Routing header */ 246 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 247 /* Destination options header(2nd part) */ 248 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 249 } 250 251 /* 252 * IPSec checking which handles several cases. 253 * FAST IPSEC: We re-injected the packet. 254 */ 255 #ifdef IPSEC 256 switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp)) 257 { 258 case 1: /* Bad packet */ 259 goto freehdrs; 260 case -1: /* Do IPSec */ 261 needipsec = 1; 262 case 0: /* No IPSec */ 263 default: 264 break; 265 } 266 #endif /* IPSEC */ 267 268 /* 269 * Calculate the total length of the extension header chain. 270 * Keep the length of the unfragmentable part for fragmentation. 271 */ 272 optlen = 0; 273 if (exthdrs.ip6e_hbh) 274 optlen += exthdrs.ip6e_hbh->m_len; 275 if (exthdrs.ip6e_dest1) 276 optlen += exthdrs.ip6e_dest1->m_len; 277 if (exthdrs.ip6e_rthdr) 278 optlen += exthdrs.ip6e_rthdr->m_len; 279 unfragpartlen = optlen + sizeof(struct ip6_hdr); 280 281 /* NOTE: we don't add AH/ESP length here. do that later. */ 282 if (exthdrs.ip6e_dest2) 283 optlen += exthdrs.ip6e_dest2->m_len; 284 285 /* 286 * If we need IPsec, or there is at least one extension header, 287 * separate IP6 header from the payload. 288 */ 289 if ((needipsec || optlen) && !hdrsplit) { 290 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 291 m = NULL; 292 goto freehdrs; 293 } 294 m = exthdrs.ip6e_ip6; 295 hdrsplit++; 296 } 297 298 /* adjust pointer */ 299 ip6 = mtod(m, struct ip6_hdr *); 300 301 /* adjust mbuf packet header length */ 302 m->m_pkthdr.len += optlen; 303 plen = m->m_pkthdr.len - sizeof(*ip6); 304 305 /* If this is a jumbo payload, insert a jumbo payload option. */ 306 if (plen > IPV6_MAXPACKET) { 307 if (!hdrsplit) { 308 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 309 m = NULL; 310 goto freehdrs; 311 } 312 m = exthdrs.ip6e_ip6; 313 hdrsplit++; 314 } 315 /* adjust pointer */ 316 ip6 = mtod(m, struct ip6_hdr *); 317 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 318 goto freehdrs; 319 ip6->ip6_plen = 0; 320 } else 321 ip6->ip6_plen = htons(plen); 322 323 /* 324 * Concatenate headers and fill in next header fields. 325 * Here we have, on "m" 326 * IPv6 payload 327 * and we insert headers accordingly. Finally, we should be getting: 328 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 329 * 330 * during the header composing process, "m" points to IPv6 header. 331 * "mprev" points to an extension header prior to esp. 332 */ 333 u_char *nexthdrp = &ip6->ip6_nxt; 334 mprev = m; 335 336 /* 337 * we treat dest2 specially. this makes IPsec processing 338 * much easier. the goal here is to make mprev point the 339 * mbuf prior to dest2. 340 * 341 * result: IPv6 dest2 payload 342 * m and mprev will point to IPv6 header. 343 */ 344 if (exthdrs.ip6e_dest2) { 345 if (!hdrsplit) 346 panic("assumption failed: hdr not split"); 347 exthdrs.ip6e_dest2->m_next = m->m_next; 348 m->m_next = exthdrs.ip6e_dest2; 349 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 350 ip6->ip6_nxt = IPPROTO_DSTOPTS; 351 } 352 353 /* 354 * result: IPv6 hbh dest1 rthdr dest2 payload 355 * m will point to IPv6 header. mprev will point to the 356 * extension header prior to dest2 (rthdr in the above case). 357 */ 358 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 359 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 360 IPPROTO_DSTOPTS); 361 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 362 IPPROTO_ROUTING); 363 364 #ifdef IPSEC 365 if (!needipsec) 366 goto skip_ipsec2; 367 368 /* 369 * pointers after IPsec headers are not valid any more. 370 * other pointers need a great care too. 371 * (IPsec routines should not mangle mbufs prior to AH/ESP) 372 */ 373 exthdrs.ip6e_dest2 = NULL; 374 375 if (exthdrs.ip6e_rthdr) { 376 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 377 segleft_org = rh->ip6r_segleft; 378 rh->ip6r_segleft = 0; 379 } 380 381 bzero(&state, sizeof(state)); 382 state.m = m; 383 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 384 &needipsectun); 385 m = state.m; 386 if (error) { 387 /* mbuf is already reclaimed in ipsec6_output_trans. */ 388 m = NULL; 389 switch (error) { 390 case EHOSTUNREACH: 391 case ENETUNREACH: 392 case EMSGSIZE: 393 case ENOBUFS: 394 case ENOMEM: 395 break; 396 default: 397 printf("ip6_output (ipsec): error code %d\n", error); 398 /* FALLTHROUGH */ 399 case ENOENT: 400 /* don't show these error codes to the user */ 401 error = 0; 402 break; 403 } 404 goto bad; 405 } else if (!needipsectun) { 406 /* 407 * In the FAST IPSec case we have already 408 * re-injected the packet and it has been freed 409 * by the ipsec_done() function. So, just clean 410 * up after ourselves. 411 */ 412 m = NULL; 413 goto done; 414 } 415 if (exthdrs.ip6e_rthdr) { 416 /* ah6_output doesn't modify mbuf chain */ 417 rh->ip6r_segleft = segleft_org; 418 } 419 skip_ipsec2:; 420 #endif /* IPSEC */ 421 422 /* 423 * If there is a routing header, replace the destination address field 424 * with the first hop of the routing header. 425 */ 426 if (exthdrs.ip6e_rthdr) { 427 struct ip6_rthdr *rh = 428 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 429 struct ip6_rthdr *)); 430 struct ip6_rthdr0 *rh0; 431 struct in6_addr *addr; 432 struct sockaddr_in6 sa; 433 434 switch (rh->ip6r_type) { 435 case IPV6_RTHDR_TYPE_0: 436 rh0 = (struct ip6_rthdr0 *)rh; 437 addr = (struct in6_addr *)(rh0 + 1); 438 439 /* 440 * construct a sockaddr_in6 form of 441 * the first hop. 442 * 443 * XXX: we may not have enough 444 * information about its scope zone; 445 * there is no standard API to pass 446 * the information from the 447 * application. 448 */ 449 bzero(&sa, sizeof(sa)); 450 sa.sin6_family = AF_INET6; 451 sa.sin6_len = sizeof(sa); 452 sa.sin6_addr = addr[0]; 453 if ((error = sa6_embedscope(&sa, 454 ip6_use_defzone)) != 0) { 455 goto bad; 456 } 457 ip6->ip6_dst = sa.sin6_addr; 458 bcopy(&addr[1], &addr[0], sizeof(struct in6_addr) 459 * (rh0->ip6r0_segleft - 1)); 460 addr[rh0->ip6r0_segleft - 1] = finaldst; 461 /* XXX */ 462 in6_clearscope(addr + rh0->ip6r0_segleft - 1); 463 break; 464 default: /* is it possible? */ 465 error = EINVAL; 466 goto bad; 467 } 468 } 469 470 /* Source address validation */ 471 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 472 (flags & IPV6_UNSPECSRC) == 0) { 473 error = EOPNOTSUPP; 474 ip6stat.ip6s_badscope++; 475 goto bad; 476 } 477 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 478 error = EOPNOTSUPP; 479 ip6stat.ip6s_badscope++; 480 goto bad; 481 } 482 483 ip6stat.ip6s_localout++; 484 485 /* 486 * Route packet. 487 */ 488 if (ro == 0) { 489 ro = &ip6route; 490 bzero((caddr_t)ro, sizeof(*ro)); 491 } 492 ro_pmtu = ro; 493 if (opt && opt->ip6po_rthdr) 494 ro = &opt->ip6po_route; 495 dst = (struct sockaddr_in6 *)&ro->ro_dst; 496 497 again: 498 /* 499 * if specified, try to fill in the traffic class field. 500 * do not override if a non-zero value is already set. 501 * we check the diffserv field and the ecn field separately. 502 */ 503 if (opt && opt->ip6po_tclass >= 0) { 504 int mask = 0; 505 506 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 507 mask |= 0xfc; 508 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 509 mask |= 0x03; 510 if (mask != 0) 511 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 512 } 513 514 /* fill in or override the hop limit field, if necessary. */ 515 if (opt && opt->ip6po_hlim != -1) 516 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 517 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 518 if (im6o != NULL) 519 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 520 else 521 ip6->ip6_hlim = ip6_defmcasthlim; 522 } 523 524 #ifdef IPSEC 525 /* 526 * We may re-inject packets into the stack here. 527 */ 528 if (needipsec && needipsectun) { 529 struct ipsec_output_state state; 530 531 /* 532 * All the extension headers will become inaccessible 533 * (since they can be encrypted). 534 * Don't panic, we need no more updates to extension headers 535 * on inner IPv6 packet (since they are now encapsulated). 536 * 537 * IPv6 [ESP|AH] IPv6 [extension headers] payload 538 */ 539 bzero(&exthdrs, sizeof(exthdrs)); 540 exthdrs.ip6e_ip6 = m; 541 542 bzero(&state, sizeof(state)); 543 state.m = m; 544 state.ro = (struct route *)ro; 545 state.dst = (struct sockaddr *)dst; 546 547 error = ipsec6_output_tunnel(&state, sp, flags); 548 549 m = state.m; 550 ro = (struct route_in6 *)state.ro; 551 dst = (struct sockaddr_in6 *)state.dst; 552 if (error) { 553 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 554 m0 = m = NULL; 555 m = NULL; 556 switch (error) { 557 case EHOSTUNREACH: 558 case ENETUNREACH: 559 case EMSGSIZE: 560 case ENOBUFS: 561 case ENOMEM: 562 break; 563 default: 564 printf("ip6_output (ipsec): error code %d\n", error); 565 /* FALLTHROUGH */ 566 case ENOENT: 567 /* don't show these error codes to the user */ 568 error = 0; 569 break; 570 } 571 goto bad; 572 } else { 573 /* 574 * In the FAST IPSec case we have already 575 * re-injected the packet and it has been freed 576 * by the ipsec_done() function. So, just clean 577 * up after ourselves. 578 */ 579 m = NULL; 580 goto done; 581 } 582 583 exthdrs.ip6e_ip6 = m; 584 } 585 #endif /* IPSEC */ 586 587 /* adjust pointer */ 588 ip6 = mtod(m, struct ip6_hdr *); 589 590 bzero(&dst_sa, sizeof(dst_sa)); 591 dst_sa.sin6_family = AF_INET6; 592 dst_sa.sin6_len = sizeof(dst_sa); 593 dst_sa.sin6_addr = ip6->ip6_dst; 594 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, 595 &ifp, &rt, 0)) != 0) { 596 switch (error) { 597 case EHOSTUNREACH: 598 ip6stat.ip6s_noroute++; 599 break; 600 case EADDRNOTAVAIL: 601 default: 602 break; /* XXX statistics? */ 603 } 604 if (ifp != NULL) 605 in6_ifstat_inc(ifp, ifs6_out_discard); 606 goto bad; 607 } 608 if (rt == NULL) { 609 /* 610 * If in6_selectroute() does not return a route entry, 611 * dst may not have been updated. 612 */ 613 *dst = dst_sa; /* XXX */ 614 } 615 616 /* 617 * then rt (for unicast) and ifp must be non-NULL valid values. 618 */ 619 if ((flags & IPV6_FORWARDING) == 0) { 620 /* XXX: the FORWARDING flag can be set for mrouting. */ 621 in6_ifstat_inc(ifp, ifs6_out_request); 622 } 623 if (rt != NULL) { 624 ia = (struct in6_ifaddr *)(rt->rt_ifa); 625 rt->rt_use++; 626 } 627 628 /* 629 * The outgoing interface must be in the zone of source and 630 * destination addresses. We should use ia_ifp to support the 631 * case of sending packets to an address of our own. 632 */ 633 if (ia != NULL && ia->ia_ifp) 634 origifp = ia->ia_ifp; 635 else 636 origifp = ifp; 637 638 src0 = ip6->ip6_src; 639 if (in6_setscope(&src0, origifp, &zone)) 640 goto badscope; 641 bzero(&src_sa, sizeof(src_sa)); 642 src_sa.sin6_family = AF_INET6; 643 src_sa.sin6_len = sizeof(src_sa); 644 src_sa.sin6_addr = ip6->ip6_src; 645 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 646 goto badscope; 647 648 dst0 = ip6->ip6_dst; 649 if (in6_setscope(&dst0, origifp, &zone)) 650 goto badscope; 651 /* re-initialize to be sure */ 652 bzero(&dst_sa, sizeof(dst_sa)); 653 dst_sa.sin6_family = AF_INET6; 654 dst_sa.sin6_len = sizeof(dst_sa); 655 dst_sa.sin6_addr = ip6->ip6_dst; 656 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 657 goto badscope; 658 } 659 660 /* scope check is done. */ 661 goto routefound; 662 663 badscope: 664 ip6stat.ip6s_badscope++; 665 in6_ifstat_inc(origifp, ifs6_out_discard); 666 if (error == 0) 667 error = EHOSTUNREACH; /* XXX */ 668 goto bad; 669 670 routefound: 671 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 672 if (opt && opt->ip6po_nextroute.ro_rt) { 673 /* 674 * The nexthop is explicitly specified by the 675 * application. We assume the next hop is an IPv6 676 * address. 677 */ 678 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 679 } 680 else if ((rt->rt_flags & RTF_GATEWAY)) 681 dst = (struct sockaddr_in6 *)rt->rt_gateway; 682 } 683 684 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 685 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 686 } else { 687 struct in6_multi *in6m; 688 689 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 690 691 in6_ifstat_inc(ifp, ifs6_out_mcast); 692 693 /* 694 * Confirm that the outgoing interface supports multicast. 695 */ 696 if (!(ifp->if_flags & IFF_MULTICAST)) { 697 ip6stat.ip6s_noroute++; 698 in6_ifstat_inc(ifp, ifs6_out_discard); 699 error = ENETUNREACH; 700 goto bad; 701 } 702 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 703 if (in6m != NULL && 704 (im6o == NULL || im6o->im6o_multicast_loop)) { 705 /* 706 * If we belong to the destination multicast group 707 * on the outgoing interface, and the caller did not 708 * forbid loopback, loop back a copy. 709 */ 710 ip6_mloopback(ifp, m, dst); 711 } else { 712 /* 713 * If we are acting as a multicast router, perform 714 * multicast forwarding as if the packet had just 715 * arrived on the interface to which we are about 716 * to send. The multicast forwarding function 717 * recursively calls this function, using the 718 * IPV6_FORWARDING flag to prevent infinite recursion. 719 * 720 * Multicasts that are looped back by ip6_mloopback(), 721 * above, will be forwarded by the ip6_input() routine, 722 * if necessary. 723 */ 724 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 725 /* 726 * XXX: ip6_mforward expects that rcvif is NULL 727 * when it is called from the originating path. 728 * However, it is not always the case, since 729 * some versions of MGETHDR() does not 730 * initialize the field. 731 */ 732 m->m_pkthdr.rcvif = NULL; 733 if (ip6_mforward(ip6, ifp, m) != 0) { 734 m_freem(m); 735 goto done; 736 } 737 } 738 } 739 /* 740 * Multicasts with a hoplimit of zero may be looped back, 741 * above, but must not be transmitted on a network. 742 * Also, multicasts addressed to the loopback interface 743 * are not sent -- the above call to ip6_mloopback() will 744 * loop back a copy if this host actually belongs to the 745 * destination group on the loopback interface. 746 */ 747 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 748 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 749 m_freem(m); 750 goto done; 751 } 752 } 753 754 /* 755 * Fill the outgoing inteface to tell the upper layer 756 * to increment per-interface statistics. 757 */ 758 if (ifpp) 759 *ifpp = ifp; 760 761 /* Determine path MTU. */ 762 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 763 &alwaysfrag)) != 0) 764 goto bad; 765 766 /* 767 * The caller of this function may specify to use the minimum MTU 768 * in some cases. 769 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 770 * setting. The logic is a bit complicated; by default, unicast 771 * packets will follow path MTU while multicast packets will be sent at 772 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 773 * including unicast ones will be sent at the minimum MTU. Multicast 774 * packets will always be sent at the minimum MTU unless 775 * IP6PO_MINMTU_DISABLE is explicitly specified. 776 * See RFC 3542 for more details. 777 */ 778 if (mtu > IPV6_MMTU) { 779 if ((flags & IPV6_MINMTU)) 780 mtu = IPV6_MMTU; 781 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 782 mtu = IPV6_MMTU; 783 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 784 (opt == NULL || 785 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 786 mtu = IPV6_MMTU; 787 } 788 } 789 790 /* 791 * clear embedded scope identifiers if necessary. 792 * in6_clearscope will touch the addresses only when necessary. 793 */ 794 in6_clearscope(&ip6->ip6_src); 795 in6_clearscope(&ip6->ip6_dst); 796 797 /* 798 * If the outgoing packet contains a hop-by-hop options header, 799 * it must be examined and processed even by the source node. 800 * (RFC 2460, section 4.) 801 */ 802 if (exthdrs.ip6e_hbh) { 803 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 804 u_int32_t dummy; /* XXX unused */ 805 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 806 807 #ifdef DIAGNOSTIC 808 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 809 panic("ip6e_hbh is not continuous"); 810 #endif 811 /* 812 * XXX: if we have to send an ICMPv6 error to the sender, 813 * we need the M_LOOP flag since icmp6_error() expects 814 * the IPv6 and the hop-by-hop options header are 815 * continuous unless the flag is set. 816 */ 817 m->m_flags |= M_LOOP; 818 m->m_pkthdr.rcvif = ifp; 819 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 820 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 821 &dummy, &plen) < 0) { 822 /* m was already freed at this point */ 823 error = EINVAL;/* better error? */ 824 goto done; 825 } 826 m->m_flags &= ~M_LOOP; /* XXX */ 827 m->m_pkthdr.rcvif = NULL; 828 } 829 830 /* Jump over all PFIL processing if hooks are not active. */ 831 if (!PFIL_HOOKED(&inet6_pfil_hook)) 832 goto passout; 833 834 odst = ip6->ip6_dst; 835 /* Run through list of hooks for output packets. */ 836 error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 837 if (error != 0 || m == NULL) 838 goto done; 839 ip6 = mtod(m, struct ip6_hdr *); 840 841 /* See if destination IP address was changed by packet filter. */ 842 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 843 m->m_flags |= M_SKIP_FIREWALL; 844 /* If destination is now ourself drop to ip6_input(). */ 845 if (in6_localaddr(&ip6->ip6_dst)) { 846 if (m->m_pkthdr.rcvif == NULL) 847 m->m_pkthdr.rcvif = loif; 848 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 849 m->m_pkthdr.csum_flags |= 850 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 851 m->m_pkthdr.csum_data = 0xffff; 852 } 853 m->m_pkthdr.csum_flags |= 854 CSUM_IP_CHECKED | CSUM_IP_VALID; 855 error = netisr_queue(NETISR_IPV6, m); 856 goto done; 857 } else 858 goto again; /* Redo the routing table lookup. */ 859 } 860 861 /* XXX: IPFIREWALL_FORWARD */ 862 863 passout: 864 /* 865 * Send the packet to the outgoing interface. 866 * If necessary, do IPv6 fragmentation before sending. 867 * 868 * the logic here is rather complex: 869 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 870 * 1-a: send as is if tlen <= path mtu 871 * 1-b: fragment if tlen > path mtu 872 * 873 * 2: if user asks us not to fragment (dontfrag == 1) 874 * 2-a: send as is if tlen <= interface mtu 875 * 2-b: error if tlen > interface mtu 876 * 877 * 3: if we always need to attach fragment header (alwaysfrag == 1) 878 * always fragment 879 * 880 * 4: if dontfrag == 1 && alwaysfrag == 1 881 * error, as we cannot handle this conflicting request 882 */ 883 tlen = m->m_pkthdr.len; 884 885 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 886 dontfrag = 1; 887 else 888 dontfrag = 0; 889 if (dontfrag && alwaysfrag) { /* case 4 */ 890 /* conflicting request - can't transmit */ 891 error = EMSGSIZE; 892 goto bad; 893 } 894 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */ 895 /* 896 * Even if the DONTFRAG option is specified, we cannot send the 897 * packet when the data length is larger than the MTU of the 898 * outgoing interface. 899 * Notify the error by sending IPV6_PATHMTU ancillary data as 900 * well as returning an error code (the latter is not described 901 * in the API spec.) 902 */ 903 u_int32_t mtu32; 904 struct ip6ctlparam ip6cp; 905 906 mtu32 = (u_int32_t)mtu; 907 bzero(&ip6cp, sizeof(ip6cp)); 908 ip6cp.ip6c_cmdarg = (void *)&mtu32; 909 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 910 (void *)&ip6cp); 911 912 error = EMSGSIZE; 913 goto bad; 914 } 915 916 /* 917 * transmit packet without fragmentation 918 */ 919 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 920 struct in6_ifaddr *ia6; 921 922 ip6 = mtod(m, struct ip6_hdr *); 923 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 924 if (ia6) { 925 /* Record statistics for this interface address. */ 926 ia6->ia_ifa.if_opackets++; 927 ia6->ia_ifa.if_obytes += m->m_pkthdr.len; 928 } 929 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 930 goto done; 931 } 932 933 /* 934 * try to fragment the packet. case 1-b and 3 935 */ 936 if (mtu < IPV6_MMTU) { 937 /* path MTU cannot be less than IPV6_MMTU */ 938 error = EMSGSIZE; 939 in6_ifstat_inc(ifp, ifs6_out_fragfail); 940 goto bad; 941 } else if (ip6->ip6_plen == 0) { 942 /* jumbo payload cannot be fragmented */ 943 error = EMSGSIZE; 944 in6_ifstat_inc(ifp, ifs6_out_fragfail); 945 goto bad; 946 } else { 947 struct mbuf **mnext, *m_frgpart; 948 struct ip6_frag *ip6f; 949 u_int32_t id = htonl(ip6_randomid()); 950 u_char nextproto; 951 952 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len; 953 954 /* 955 * Too large for the destination or interface; 956 * fragment if possible. 957 * Must be able to put at least 8 bytes per fragment. 958 */ 959 hlen = unfragpartlen; 960 if (mtu > IPV6_MAXPACKET) 961 mtu = IPV6_MAXPACKET; 962 963 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 964 if (len < 8) { 965 error = EMSGSIZE; 966 in6_ifstat_inc(ifp, ifs6_out_fragfail); 967 goto bad; 968 } 969 970 /* 971 * Verify that we have any chance at all of being able to queue 972 * the packet or packet fragments 973 */ 974 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen) 975 < tlen /* - hlen */)) { 976 error = ENOBUFS; 977 ip6stat.ip6s_odropped++; 978 goto bad; 979 } 980 981 mnext = &m->m_nextpkt; 982 983 /* 984 * Change the next header field of the last header in the 985 * unfragmentable part. 986 */ 987 if (exthdrs.ip6e_rthdr) { 988 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 989 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 990 } else if (exthdrs.ip6e_dest1) { 991 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 992 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 993 } else if (exthdrs.ip6e_hbh) { 994 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 995 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 996 } else { 997 nextproto = ip6->ip6_nxt; 998 ip6->ip6_nxt = IPPROTO_FRAGMENT; 999 } 1000 1001 /* 1002 * Loop through length of segment after first fragment, 1003 * make new header and copy data of each part and link onto 1004 * chain. 1005 */ 1006 m0 = m; 1007 for (off = hlen; off < tlen; off += len) { 1008 MGETHDR(m, M_DONTWAIT, MT_HEADER); 1009 if (!m) { 1010 error = ENOBUFS; 1011 ip6stat.ip6s_odropped++; 1012 goto sendorfree; 1013 } 1014 m->m_pkthdr.rcvif = NULL; 1015 m->m_flags = m0->m_flags & M_COPYFLAGS; 1016 *mnext = m; 1017 mnext = &m->m_nextpkt; 1018 m->m_data += max_linkhdr; 1019 mhip6 = mtod(m, struct ip6_hdr *); 1020 *mhip6 = *ip6; 1021 m->m_len = sizeof(*mhip6); 1022 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1023 if (error) { 1024 ip6stat.ip6s_odropped++; 1025 goto sendorfree; 1026 } 1027 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 1028 if (off + len >= tlen) 1029 len = tlen - off; 1030 else 1031 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1032 mhip6->ip6_plen = htons((u_short)(len + hlen + 1033 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1034 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1035 error = ENOBUFS; 1036 ip6stat.ip6s_odropped++; 1037 goto sendorfree; 1038 } 1039 m_cat(m, m_frgpart); 1040 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1041 m->m_pkthdr.rcvif = NULL; 1042 ip6f->ip6f_reserved = 0; 1043 ip6f->ip6f_ident = id; 1044 ip6f->ip6f_nxt = nextproto; 1045 ip6stat.ip6s_ofragments++; 1046 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1047 } 1048 1049 in6_ifstat_inc(ifp, ifs6_out_fragok); 1050 } 1051 1052 /* 1053 * Remove leading garbages. 1054 */ 1055 sendorfree: 1056 m = m0->m_nextpkt; 1057 m0->m_nextpkt = 0; 1058 m_freem(m0); 1059 for (m0 = m; m; m = m0) { 1060 m0 = m->m_nextpkt; 1061 m->m_nextpkt = 0; 1062 if (error == 0) { 1063 /* Record statistics for this interface address. */ 1064 if (ia) { 1065 ia->ia_ifa.if_opackets++; 1066 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 1067 } 1068 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1069 } else 1070 m_freem(m); 1071 } 1072 1073 if (error == 0) 1074 ip6stat.ip6s_fragmented++; 1075 1076 done: 1077 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1078 RTFREE(ro->ro_rt); 1079 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1080 RTFREE(ro_pmtu->ro_rt); 1081 } 1082 1083 return (error); 1084 1085 freehdrs: 1086 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1087 m_freem(exthdrs.ip6e_dest1); 1088 m_freem(exthdrs.ip6e_rthdr); 1089 m_freem(exthdrs.ip6e_dest2); 1090 /* FALLTHROUGH */ 1091 bad: 1092 if (m) 1093 m_freem(m); 1094 goto done; 1095 } 1096 1097 static int 1098 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1099 { 1100 struct mbuf *m; 1101 1102 if (hlen > MCLBYTES) 1103 return (ENOBUFS); /* XXX */ 1104 1105 MGET(m, M_DONTWAIT, MT_DATA); 1106 if (!m) 1107 return (ENOBUFS); 1108 1109 if (hlen > MLEN) { 1110 MCLGET(m, M_DONTWAIT); 1111 if ((m->m_flags & M_EXT) == 0) { 1112 m_free(m); 1113 return (ENOBUFS); 1114 } 1115 } 1116 m->m_len = hlen; 1117 if (hdr) 1118 bcopy(hdr, mtod(m, caddr_t), hlen); 1119 1120 *mp = m; 1121 return (0); 1122 } 1123 1124 /* 1125 * Insert jumbo payload option. 1126 */ 1127 static int 1128 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1129 { 1130 struct mbuf *mopt; 1131 u_char *optbuf; 1132 u_int32_t v; 1133 1134 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1135 1136 /* 1137 * If there is no hop-by-hop options header, allocate new one. 1138 * If there is one but it doesn't have enough space to store the 1139 * jumbo payload option, allocate a cluster to store the whole options. 1140 * Otherwise, use it to store the options. 1141 */ 1142 if (exthdrs->ip6e_hbh == 0) { 1143 MGET(mopt, M_DONTWAIT, MT_DATA); 1144 if (mopt == 0) 1145 return (ENOBUFS); 1146 mopt->m_len = JUMBOOPTLEN; 1147 optbuf = mtod(mopt, u_char *); 1148 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1149 exthdrs->ip6e_hbh = mopt; 1150 } else { 1151 struct ip6_hbh *hbh; 1152 1153 mopt = exthdrs->ip6e_hbh; 1154 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1155 /* 1156 * XXX assumption: 1157 * - exthdrs->ip6e_hbh is not referenced from places 1158 * other than exthdrs. 1159 * - exthdrs->ip6e_hbh is not an mbuf chain. 1160 */ 1161 int oldoptlen = mopt->m_len; 1162 struct mbuf *n; 1163 1164 /* 1165 * XXX: give up if the whole (new) hbh header does 1166 * not fit even in an mbuf cluster. 1167 */ 1168 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1169 return (ENOBUFS); 1170 1171 /* 1172 * As a consequence, we must always prepare a cluster 1173 * at this point. 1174 */ 1175 MGET(n, M_DONTWAIT, MT_DATA); 1176 if (n) { 1177 MCLGET(n, M_DONTWAIT); 1178 if ((n->m_flags & M_EXT) == 0) { 1179 m_freem(n); 1180 n = NULL; 1181 } 1182 } 1183 if (!n) 1184 return (ENOBUFS); 1185 n->m_len = oldoptlen + JUMBOOPTLEN; 1186 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1187 oldoptlen); 1188 optbuf = mtod(n, caddr_t) + oldoptlen; 1189 m_freem(mopt); 1190 mopt = exthdrs->ip6e_hbh = n; 1191 } else { 1192 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1193 mopt->m_len += JUMBOOPTLEN; 1194 } 1195 optbuf[0] = IP6OPT_PADN; 1196 optbuf[1] = 1; 1197 1198 /* 1199 * Adjust the header length according to the pad and 1200 * the jumbo payload option. 1201 */ 1202 hbh = mtod(mopt, struct ip6_hbh *); 1203 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1204 } 1205 1206 /* fill in the option. */ 1207 optbuf[2] = IP6OPT_JUMBO; 1208 optbuf[3] = 4; 1209 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1210 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1211 1212 /* finally, adjust the packet header length */ 1213 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1214 1215 return (0); 1216 #undef JUMBOOPTLEN 1217 } 1218 1219 /* 1220 * Insert fragment header and copy unfragmentable header portions. 1221 */ 1222 static int 1223 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1224 struct ip6_frag **frghdrp) 1225 { 1226 struct mbuf *n, *mlast; 1227 1228 if (hlen > sizeof(struct ip6_hdr)) { 1229 n = m_copym(m0, sizeof(struct ip6_hdr), 1230 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1231 if (n == 0) 1232 return (ENOBUFS); 1233 m->m_next = n; 1234 } else 1235 n = m; 1236 1237 /* Search for the last mbuf of unfragmentable part. */ 1238 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1239 ; 1240 1241 if ((mlast->m_flags & M_EXT) == 0 && 1242 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1243 /* use the trailing space of the last mbuf for the fragment hdr */ 1244 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1245 mlast->m_len); 1246 mlast->m_len += sizeof(struct ip6_frag); 1247 m->m_pkthdr.len += sizeof(struct ip6_frag); 1248 } else { 1249 /* allocate a new mbuf for the fragment header */ 1250 struct mbuf *mfrg; 1251 1252 MGET(mfrg, M_DONTWAIT, MT_DATA); 1253 if (mfrg == 0) 1254 return (ENOBUFS); 1255 mfrg->m_len = sizeof(struct ip6_frag); 1256 *frghdrp = mtod(mfrg, struct ip6_frag *); 1257 mlast->m_next = mfrg; 1258 } 1259 1260 return (0); 1261 } 1262 1263 static int 1264 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, 1265 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, 1266 int *alwaysfragp) 1267 { 1268 u_int32_t mtu = 0; 1269 int alwaysfrag = 0; 1270 int error = 0; 1271 1272 if (ro_pmtu != ro) { 1273 /* The first hop and the final destination may differ. */ 1274 struct sockaddr_in6 *sa6_dst = 1275 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1276 if (ro_pmtu->ro_rt && 1277 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1278 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1279 RTFREE(ro_pmtu->ro_rt); 1280 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1281 } 1282 if (ro_pmtu->ro_rt == NULL) { 1283 bzero(sa6_dst, sizeof(*sa6_dst)); 1284 sa6_dst->sin6_family = AF_INET6; 1285 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1286 sa6_dst->sin6_addr = *dst; 1287 1288 rtalloc((struct route *)ro_pmtu); 1289 } 1290 } 1291 if (ro_pmtu->ro_rt) { 1292 u_int32_t ifmtu; 1293 struct in_conninfo inc; 1294 1295 bzero(&inc, sizeof(inc)); 1296 inc.inc_flags = 1; /* IPv6 */ 1297 inc.inc6_faddr = *dst; 1298 1299 if (ifp == NULL) 1300 ifp = ro_pmtu->ro_rt->rt_ifp; 1301 ifmtu = IN6_LINKMTU(ifp); 1302 mtu = tcp_hc_getmtu(&inc); 1303 if (mtu) 1304 mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu); 1305 else 1306 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 1307 if (mtu == 0) 1308 mtu = ifmtu; 1309 else if (mtu < IPV6_MMTU) { 1310 /* 1311 * RFC2460 section 5, last paragraph: 1312 * if we record ICMPv6 too big message with 1313 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1314 * or smaller, with framgent header attached. 1315 * (fragment header is needed regardless from the 1316 * packet size, for translators to identify packets) 1317 */ 1318 alwaysfrag = 1; 1319 mtu = IPV6_MMTU; 1320 } else if (mtu > ifmtu) { 1321 /* 1322 * The MTU on the route is larger than the MTU on 1323 * the interface! This shouldn't happen, unless the 1324 * MTU of the interface has been changed after the 1325 * interface was brought up. Change the MTU in the 1326 * route to match the interface MTU (as long as the 1327 * field isn't locked). 1328 */ 1329 mtu = ifmtu; 1330 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; 1331 } 1332 } else if (ifp) { 1333 mtu = IN6_LINKMTU(ifp); 1334 } else 1335 error = EHOSTUNREACH; /* XXX */ 1336 1337 *mtup = mtu; 1338 if (alwaysfragp) 1339 *alwaysfragp = alwaysfrag; 1340 return (error); 1341 } 1342 1343 /* 1344 * IP6 socket option processing. 1345 */ 1346 int 1347 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1348 { 1349 int privileged, optdatalen, uproto; 1350 void *optdata; 1351 struct inpcb *in6p = sotoinpcb(so); 1352 int error, optval; 1353 int level, op, optname; 1354 int optlen; 1355 struct thread *td; 1356 1357 if (sopt) { 1358 level = sopt->sopt_level; 1359 op = sopt->sopt_dir; 1360 optname = sopt->sopt_name; 1361 optlen = sopt->sopt_valsize; 1362 td = sopt->sopt_td; 1363 } else { 1364 panic("ip6_ctloutput: arg soopt is NULL"); 1365 } 1366 error = optval = 0; 1367 1368 privileged = (td == 0 || suser(td)) ? 0 : 1; 1369 uproto = (int)so->so_proto->pr_protocol; 1370 1371 if (level == IPPROTO_IPV6) { 1372 switch (op) { 1373 1374 case SOPT_SET: 1375 switch (optname) { 1376 case IPV6_2292PKTOPTIONS: 1377 #ifdef IPV6_PKTOPTIONS 1378 case IPV6_PKTOPTIONS: 1379 #endif 1380 { 1381 struct mbuf *m; 1382 1383 error = soopt_getm(sopt, &m); /* XXX */ 1384 if (error != 0) 1385 break; 1386 error = soopt_mcopyin(sopt, m); /* XXX */ 1387 if (error != 0) 1388 break; 1389 error = ip6_pcbopts(&in6p->in6p_outputopts, 1390 m, so, sopt); 1391 m_freem(m); /* XXX */ 1392 break; 1393 } 1394 1395 /* 1396 * Use of some Hop-by-Hop options or some 1397 * Destination options, might require special 1398 * privilege. That is, normal applications 1399 * (without special privilege) might be forbidden 1400 * from setting certain options in outgoing packets, 1401 * and might never see certain options in received 1402 * packets. [RFC 2292 Section 6] 1403 * KAME specific note: 1404 * KAME prevents non-privileged users from sending or 1405 * receiving ANY hbh/dst options in order to avoid 1406 * overhead of parsing options in the kernel. 1407 */ 1408 case IPV6_RECVHOPOPTS: 1409 case IPV6_RECVDSTOPTS: 1410 case IPV6_RECVRTHDRDSTOPTS: 1411 if (!privileged) { 1412 error = EPERM; 1413 break; 1414 } 1415 /* FALLTHROUGH */ 1416 case IPV6_UNICAST_HOPS: 1417 case IPV6_HOPLIMIT: 1418 case IPV6_FAITH: 1419 1420 case IPV6_RECVPKTINFO: 1421 case IPV6_RECVHOPLIMIT: 1422 case IPV6_RECVRTHDR: 1423 case IPV6_RECVPATHMTU: 1424 case IPV6_RECVTCLASS: 1425 case IPV6_V6ONLY: 1426 case IPV6_AUTOFLOWLABEL: 1427 if (optlen != sizeof(int)) { 1428 error = EINVAL; 1429 break; 1430 } 1431 error = sooptcopyin(sopt, &optval, 1432 sizeof optval, sizeof optval); 1433 if (error) 1434 break; 1435 switch (optname) { 1436 1437 case IPV6_UNICAST_HOPS: 1438 if (optval < -1 || optval >= 256) 1439 error = EINVAL; 1440 else { 1441 /* -1 = kernel default */ 1442 in6p->in6p_hops = optval; 1443 if ((in6p->in6p_vflag & 1444 INP_IPV4) != 0) 1445 in6p->inp_ip_ttl = optval; 1446 } 1447 break; 1448 #define OPTSET(bit) \ 1449 do { \ 1450 if (optval) \ 1451 in6p->in6p_flags |= (bit); \ 1452 else \ 1453 in6p->in6p_flags &= ~(bit); \ 1454 } while (/*CONSTCOND*/ 0) 1455 #define OPTSET2292(bit) \ 1456 do { \ 1457 in6p->in6p_flags |= IN6P_RFC2292; \ 1458 if (optval) \ 1459 in6p->in6p_flags |= (bit); \ 1460 else \ 1461 in6p->in6p_flags &= ~(bit); \ 1462 } while (/*CONSTCOND*/ 0) 1463 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1464 1465 case IPV6_RECVPKTINFO: 1466 /* cannot mix with RFC2292 */ 1467 if (OPTBIT(IN6P_RFC2292)) { 1468 error = EINVAL; 1469 break; 1470 } 1471 OPTSET(IN6P_PKTINFO); 1472 break; 1473 1474 case IPV6_HOPLIMIT: 1475 { 1476 struct ip6_pktopts **optp; 1477 1478 /* cannot mix with RFC2292 */ 1479 if (OPTBIT(IN6P_RFC2292)) { 1480 error = EINVAL; 1481 break; 1482 } 1483 optp = &in6p->in6p_outputopts; 1484 error = ip6_pcbopt(IPV6_HOPLIMIT, 1485 (u_char *)&optval, 1486 sizeof(optval), 1487 optp, 1488 privileged, uproto); 1489 break; 1490 } 1491 1492 case IPV6_RECVHOPLIMIT: 1493 /* cannot mix with RFC2292 */ 1494 if (OPTBIT(IN6P_RFC2292)) { 1495 error = EINVAL; 1496 break; 1497 } 1498 OPTSET(IN6P_HOPLIMIT); 1499 break; 1500 1501 case IPV6_RECVHOPOPTS: 1502 /* cannot mix with RFC2292 */ 1503 if (OPTBIT(IN6P_RFC2292)) { 1504 error = EINVAL; 1505 break; 1506 } 1507 OPTSET(IN6P_HOPOPTS); 1508 break; 1509 1510 case IPV6_RECVDSTOPTS: 1511 /* cannot mix with RFC2292 */ 1512 if (OPTBIT(IN6P_RFC2292)) { 1513 error = EINVAL; 1514 break; 1515 } 1516 OPTSET(IN6P_DSTOPTS); 1517 break; 1518 1519 case IPV6_RECVRTHDRDSTOPTS: 1520 /* cannot mix with RFC2292 */ 1521 if (OPTBIT(IN6P_RFC2292)) { 1522 error = EINVAL; 1523 break; 1524 } 1525 OPTSET(IN6P_RTHDRDSTOPTS); 1526 break; 1527 1528 case IPV6_RECVRTHDR: 1529 /* cannot mix with RFC2292 */ 1530 if (OPTBIT(IN6P_RFC2292)) { 1531 error = EINVAL; 1532 break; 1533 } 1534 OPTSET(IN6P_RTHDR); 1535 break; 1536 1537 case IPV6_FAITH: 1538 OPTSET(IN6P_FAITH); 1539 break; 1540 1541 case IPV6_RECVPATHMTU: 1542 /* 1543 * We ignore this option for TCP 1544 * sockets. 1545 * (RFC3542 leaves this case 1546 * unspecified.) 1547 */ 1548 if (uproto != IPPROTO_TCP) 1549 OPTSET(IN6P_MTU); 1550 break; 1551 1552 case IPV6_V6ONLY: 1553 /* 1554 * make setsockopt(IPV6_V6ONLY) 1555 * available only prior to bind(2). 1556 * see ipng mailing list, Jun 22 2001. 1557 */ 1558 if (in6p->in6p_lport || 1559 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1560 error = EINVAL; 1561 break; 1562 } 1563 OPTSET(IN6P_IPV6_V6ONLY); 1564 if (optval) 1565 in6p->in6p_vflag &= ~INP_IPV4; 1566 else 1567 in6p->in6p_vflag |= INP_IPV4; 1568 break; 1569 case IPV6_RECVTCLASS: 1570 /* cannot mix with RFC2292 XXX */ 1571 if (OPTBIT(IN6P_RFC2292)) { 1572 error = EINVAL; 1573 break; 1574 } 1575 OPTSET(IN6P_TCLASS); 1576 break; 1577 case IPV6_AUTOFLOWLABEL: 1578 OPTSET(IN6P_AUTOFLOWLABEL); 1579 break; 1580 1581 } 1582 break; 1583 1584 case IPV6_TCLASS: 1585 case IPV6_DONTFRAG: 1586 case IPV6_USE_MIN_MTU: 1587 case IPV6_PREFER_TEMPADDR: 1588 if (optlen != sizeof(optval)) { 1589 error = EINVAL; 1590 break; 1591 } 1592 error = sooptcopyin(sopt, &optval, 1593 sizeof optval, sizeof optval); 1594 if (error) 1595 break; 1596 { 1597 struct ip6_pktopts **optp; 1598 optp = &in6p->in6p_outputopts; 1599 error = ip6_pcbopt(optname, 1600 (u_char *)&optval, 1601 sizeof(optval), 1602 optp, 1603 privileged, uproto); 1604 break; 1605 } 1606 1607 case IPV6_2292PKTINFO: 1608 case IPV6_2292HOPLIMIT: 1609 case IPV6_2292HOPOPTS: 1610 case IPV6_2292DSTOPTS: 1611 case IPV6_2292RTHDR: 1612 /* RFC 2292 */ 1613 if (optlen != sizeof(int)) { 1614 error = EINVAL; 1615 break; 1616 } 1617 error = sooptcopyin(sopt, &optval, 1618 sizeof optval, sizeof optval); 1619 if (error) 1620 break; 1621 switch (optname) { 1622 case IPV6_2292PKTINFO: 1623 OPTSET2292(IN6P_PKTINFO); 1624 break; 1625 case IPV6_2292HOPLIMIT: 1626 OPTSET2292(IN6P_HOPLIMIT); 1627 break; 1628 case IPV6_2292HOPOPTS: 1629 /* 1630 * Check super-user privilege. 1631 * See comments for IPV6_RECVHOPOPTS. 1632 */ 1633 if (!privileged) 1634 return (EPERM); 1635 OPTSET2292(IN6P_HOPOPTS); 1636 break; 1637 case IPV6_2292DSTOPTS: 1638 if (!privileged) 1639 return (EPERM); 1640 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1641 break; 1642 case IPV6_2292RTHDR: 1643 OPTSET2292(IN6P_RTHDR); 1644 break; 1645 } 1646 break; 1647 case IPV6_PKTINFO: 1648 case IPV6_HOPOPTS: 1649 case IPV6_RTHDR: 1650 case IPV6_DSTOPTS: 1651 case IPV6_RTHDRDSTOPTS: 1652 case IPV6_NEXTHOP: 1653 { 1654 /* new advanced API (RFC3542) */ 1655 u_char *optbuf; 1656 u_char optbuf_storage[MCLBYTES]; 1657 int optlen; 1658 struct ip6_pktopts **optp; 1659 1660 /* cannot mix with RFC2292 */ 1661 if (OPTBIT(IN6P_RFC2292)) { 1662 error = EINVAL; 1663 break; 1664 } 1665 1666 /* 1667 * We only ensure valsize is not too large 1668 * here. Further validation will be done 1669 * later. 1670 */ 1671 error = sooptcopyin(sopt, optbuf_storage, 1672 sizeof(optbuf_storage), 0); 1673 if (error) 1674 break; 1675 optlen = sopt->sopt_valsize; 1676 optbuf = optbuf_storage; 1677 optp = &in6p->in6p_outputopts; 1678 error = ip6_pcbopt(optname, 1679 optbuf, optlen, 1680 optp, privileged, uproto); 1681 break; 1682 } 1683 #undef OPTSET 1684 1685 case IPV6_MULTICAST_IF: 1686 case IPV6_MULTICAST_HOPS: 1687 case IPV6_MULTICAST_LOOP: 1688 case IPV6_JOIN_GROUP: 1689 case IPV6_LEAVE_GROUP: 1690 { 1691 if (sopt->sopt_valsize > MLEN) { 1692 error = EMSGSIZE; 1693 break; 1694 } 1695 /* XXX */ 1696 } 1697 /* FALLTHROUGH */ 1698 { 1699 struct mbuf *m; 1700 1701 if (sopt->sopt_valsize > MCLBYTES) { 1702 error = EMSGSIZE; 1703 break; 1704 } 1705 /* XXX */ 1706 MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA); 1707 if (m == 0) { 1708 error = ENOBUFS; 1709 break; 1710 } 1711 if (sopt->sopt_valsize > MLEN) { 1712 MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT); 1713 if ((m->m_flags & M_EXT) == 0) { 1714 m_free(m); 1715 error = ENOBUFS; 1716 break; 1717 } 1718 } 1719 m->m_len = sopt->sopt_valsize; 1720 error = sooptcopyin(sopt, mtod(m, char *), 1721 m->m_len, m->m_len); 1722 if (error) { 1723 (void)m_free(m); 1724 break; 1725 } 1726 error = ip6_setmoptions(sopt->sopt_name, 1727 &in6p->in6p_moptions, 1728 m); 1729 (void)m_free(m); 1730 } 1731 break; 1732 1733 case IPV6_PORTRANGE: 1734 error = sooptcopyin(sopt, &optval, 1735 sizeof optval, sizeof optval); 1736 if (error) 1737 break; 1738 1739 switch (optval) { 1740 case IPV6_PORTRANGE_DEFAULT: 1741 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1742 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1743 break; 1744 1745 case IPV6_PORTRANGE_HIGH: 1746 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1747 in6p->in6p_flags |= IN6P_HIGHPORT; 1748 break; 1749 1750 case IPV6_PORTRANGE_LOW: 1751 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1752 in6p->in6p_flags |= IN6P_LOWPORT; 1753 break; 1754 1755 default: 1756 error = EINVAL; 1757 break; 1758 } 1759 break; 1760 1761 #ifdef IPSEC 1762 case IPV6_IPSEC_POLICY: 1763 { 1764 caddr_t req = NULL; 1765 size_t len = 0; 1766 struct mbuf *m; 1767 1768 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1769 break; 1770 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1771 break; 1772 if (m) { 1773 req = mtod(m, caddr_t); 1774 len = m->m_len; 1775 } 1776 error = ipsec6_set_policy(in6p, optname, req, 1777 len, privileged); 1778 m_freem(m); 1779 } 1780 break; 1781 #endif /* IPSEC */ 1782 1783 default: 1784 error = ENOPROTOOPT; 1785 break; 1786 } 1787 break; 1788 1789 case SOPT_GET: 1790 switch (optname) { 1791 1792 case IPV6_2292PKTOPTIONS: 1793 #ifdef IPV6_PKTOPTIONS 1794 case IPV6_PKTOPTIONS: 1795 #endif 1796 /* 1797 * RFC3542 (effectively) deprecated the 1798 * semantics of the 2292-style pktoptions. 1799 * Since it was not reliable in nature (i.e., 1800 * applications had to expect the lack of some 1801 * information after all), it would make sense 1802 * to simplify this part by always returning 1803 * empty data. 1804 */ 1805 sopt->sopt_valsize = 0; 1806 break; 1807 1808 case IPV6_RECVHOPOPTS: 1809 case IPV6_RECVDSTOPTS: 1810 case IPV6_RECVRTHDRDSTOPTS: 1811 case IPV6_UNICAST_HOPS: 1812 case IPV6_RECVPKTINFO: 1813 case IPV6_RECVHOPLIMIT: 1814 case IPV6_RECVRTHDR: 1815 case IPV6_RECVPATHMTU: 1816 1817 case IPV6_FAITH: 1818 case IPV6_V6ONLY: 1819 case IPV6_PORTRANGE: 1820 case IPV6_RECVTCLASS: 1821 case IPV6_AUTOFLOWLABEL: 1822 switch (optname) { 1823 1824 case IPV6_RECVHOPOPTS: 1825 optval = OPTBIT(IN6P_HOPOPTS); 1826 break; 1827 1828 case IPV6_RECVDSTOPTS: 1829 optval = OPTBIT(IN6P_DSTOPTS); 1830 break; 1831 1832 case IPV6_RECVRTHDRDSTOPTS: 1833 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1834 break; 1835 1836 case IPV6_UNICAST_HOPS: 1837 optval = in6p->in6p_hops; 1838 break; 1839 1840 case IPV6_RECVPKTINFO: 1841 optval = OPTBIT(IN6P_PKTINFO); 1842 break; 1843 1844 case IPV6_RECVHOPLIMIT: 1845 optval = OPTBIT(IN6P_HOPLIMIT); 1846 break; 1847 1848 case IPV6_RECVRTHDR: 1849 optval = OPTBIT(IN6P_RTHDR); 1850 break; 1851 1852 case IPV6_RECVPATHMTU: 1853 optval = OPTBIT(IN6P_MTU); 1854 break; 1855 1856 case IPV6_FAITH: 1857 optval = OPTBIT(IN6P_FAITH); 1858 break; 1859 1860 case IPV6_V6ONLY: 1861 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1862 break; 1863 1864 case IPV6_PORTRANGE: 1865 { 1866 int flags; 1867 flags = in6p->in6p_flags; 1868 if (flags & IN6P_HIGHPORT) 1869 optval = IPV6_PORTRANGE_HIGH; 1870 else if (flags & IN6P_LOWPORT) 1871 optval = IPV6_PORTRANGE_LOW; 1872 else 1873 optval = 0; 1874 break; 1875 } 1876 case IPV6_RECVTCLASS: 1877 optval = OPTBIT(IN6P_TCLASS); 1878 break; 1879 1880 case IPV6_AUTOFLOWLABEL: 1881 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1882 break; 1883 } 1884 if (error) 1885 break; 1886 error = sooptcopyout(sopt, &optval, 1887 sizeof optval); 1888 break; 1889 1890 case IPV6_PATHMTU: 1891 { 1892 u_long pmtu = 0; 1893 struct ip6_mtuinfo mtuinfo; 1894 struct route_in6 sro; 1895 1896 bzero(&sro, sizeof(sro)); 1897 1898 if (!(so->so_state & SS_ISCONNECTED)) 1899 return (ENOTCONN); 1900 /* 1901 * XXX: we dot not consider the case of source 1902 * routing, or optional information to specify 1903 * the outgoing interface. 1904 */ 1905 error = ip6_getpmtu(&sro, NULL, NULL, 1906 &in6p->in6p_faddr, &pmtu, NULL); 1907 if (sro.ro_rt) 1908 RTFREE(sro.ro_rt); 1909 if (error) 1910 break; 1911 if (pmtu > IPV6_MAXPACKET) 1912 pmtu = IPV6_MAXPACKET; 1913 1914 bzero(&mtuinfo, sizeof(mtuinfo)); 1915 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1916 optdata = (void *)&mtuinfo; 1917 optdatalen = sizeof(mtuinfo); 1918 error = sooptcopyout(sopt, optdata, 1919 optdatalen); 1920 break; 1921 } 1922 1923 case IPV6_2292PKTINFO: 1924 case IPV6_2292HOPLIMIT: 1925 case IPV6_2292HOPOPTS: 1926 case IPV6_2292RTHDR: 1927 case IPV6_2292DSTOPTS: 1928 switch (optname) { 1929 case IPV6_2292PKTINFO: 1930 optval = OPTBIT(IN6P_PKTINFO); 1931 break; 1932 case IPV6_2292HOPLIMIT: 1933 optval = OPTBIT(IN6P_HOPLIMIT); 1934 break; 1935 case IPV6_2292HOPOPTS: 1936 optval = OPTBIT(IN6P_HOPOPTS); 1937 break; 1938 case IPV6_2292RTHDR: 1939 optval = OPTBIT(IN6P_RTHDR); 1940 break; 1941 case IPV6_2292DSTOPTS: 1942 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1943 break; 1944 } 1945 error = sooptcopyout(sopt, &optval, 1946 sizeof optval); 1947 break; 1948 case IPV6_PKTINFO: 1949 case IPV6_HOPOPTS: 1950 case IPV6_RTHDR: 1951 case IPV6_DSTOPTS: 1952 case IPV6_RTHDRDSTOPTS: 1953 case IPV6_NEXTHOP: 1954 case IPV6_TCLASS: 1955 case IPV6_DONTFRAG: 1956 case IPV6_USE_MIN_MTU: 1957 case IPV6_PREFER_TEMPADDR: 1958 error = ip6_getpcbopt(in6p->in6p_outputopts, 1959 optname, sopt); 1960 break; 1961 1962 case IPV6_MULTICAST_IF: 1963 case IPV6_MULTICAST_HOPS: 1964 case IPV6_MULTICAST_LOOP: 1965 case IPV6_JOIN_GROUP: 1966 case IPV6_LEAVE_GROUP: 1967 { 1968 struct mbuf *m; 1969 error = ip6_getmoptions(sopt->sopt_name, 1970 in6p->in6p_moptions, &m); 1971 if (error == 0) 1972 error = sooptcopyout(sopt, 1973 mtod(m, char *), m->m_len); 1974 m_freem(m); 1975 } 1976 break; 1977 1978 #ifdef IPSEC 1979 case IPV6_IPSEC_POLICY: 1980 { 1981 caddr_t req = NULL; 1982 size_t len = 0; 1983 struct mbuf *m = NULL; 1984 struct mbuf **mp = &m; 1985 size_t ovalsize = sopt->sopt_valsize; 1986 caddr_t oval = (caddr_t)sopt->sopt_val; 1987 1988 error = soopt_getm(sopt, &m); /* XXX */ 1989 if (error != 0) 1990 break; 1991 error = soopt_mcopyin(sopt, m); /* XXX */ 1992 if (error != 0) 1993 break; 1994 sopt->sopt_valsize = ovalsize; 1995 sopt->sopt_val = oval; 1996 if (m) { 1997 req = mtod(m, caddr_t); 1998 len = m->m_len; 1999 } 2000 error = ipsec6_get_policy(in6p, req, len, mp); 2001 if (error == 0) 2002 error = soopt_mcopyout(sopt, m); /* XXX */ 2003 if (error == 0 && m) 2004 m_freem(m); 2005 break; 2006 } 2007 #endif /* IPSEC */ 2008 2009 default: 2010 error = ENOPROTOOPT; 2011 break; 2012 } 2013 break; 2014 } 2015 } else { /* level != IPPROTO_IPV6 */ 2016 error = EINVAL; 2017 } 2018 return (error); 2019 } 2020 2021 int 2022 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2023 { 2024 int error = 0, optval, optlen; 2025 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2026 struct in6pcb *in6p = sotoin6pcb(so); 2027 int level, op, optname; 2028 2029 if (sopt) { 2030 level = sopt->sopt_level; 2031 op = sopt->sopt_dir; 2032 optname = sopt->sopt_name; 2033 optlen = sopt->sopt_valsize; 2034 } else 2035 panic("ip6_raw_ctloutput: arg soopt is NULL"); 2036 2037 if (level != IPPROTO_IPV6) { 2038 return (EINVAL); 2039 } 2040 2041 switch (optname) { 2042 case IPV6_CHECKSUM: 2043 /* 2044 * For ICMPv6 sockets, no modification allowed for checksum 2045 * offset, permit "no change" values to help existing apps. 2046 * 2047 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2048 * for an ICMPv6 socket will fail." 2049 * The current behavior does not meet RFC3542. 2050 */ 2051 switch (op) { 2052 case SOPT_SET: 2053 if (optlen != sizeof(int)) { 2054 error = EINVAL; 2055 break; 2056 } 2057 error = sooptcopyin(sopt, &optval, sizeof(optval), 2058 sizeof(optval)); 2059 if (error) 2060 break; 2061 if ((optval % 2) != 0) { 2062 /* the API assumes even offset values */ 2063 error = EINVAL; 2064 } else if (so->so_proto->pr_protocol == 2065 IPPROTO_ICMPV6) { 2066 if (optval != icmp6off) 2067 error = EINVAL; 2068 } else 2069 in6p->in6p_cksum = optval; 2070 break; 2071 2072 case SOPT_GET: 2073 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2074 optval = icmp6off; 2075 else 2076 optval = in6p->in6p_cksum; 2077 2078 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2079 break; 2080 2081 default: 2082 error = EINVAL; 2083 break; 2084 } 2085 break; 2086 2087 default: 2088 error = ENOPROTOOPT; 2089 break; 2090 } 2091 2092 return (error); 2093 } 2094 2095 /* 2096 * Set up IP6 options in pcb for insertion in output packets or 2097 * specifying behavior of outgoing packets. 2098 */ 2099 static int 2100 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2101 struct socket *so, struct sockopt *sopt) 2102 { 2103 struct ip6_pktopts *opt = *pktopt; 2104 int error = 0; 2105 struct thread *td = sopt->sopt_td; 2106 int priv = 0; 2107 2108 /* turn off any old options. */ 2109 if (opt) { 2110 #ifdef DIAGNOSTIC 2111 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2112 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2113 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2114 printf("ip6_pcbopts: all specified options are cleared.\n"); 2115 #endif 2116 ip6_clearpktopts(opt, -1); 2117 } else 2118 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2119 *pktopt = NULL; 2120 2121 if (!m || m->m_len == 0) { 2122 /* 2123 * Only turning off any previous options, regardless of 2124 * whether the opt is just created or given. 2125 */ 2126 free(opt, M_IP6OPT); 2127 return (0); 2128 } 2129 2130 /* set options specified by user. */ 2131 if (td && !suser(td)) 2132 priv = 1; 2133 if ((error = ip6_setpktopts(m, opt, NULL, priv, 2134 so->so_proto->pr_protocol)) != 0) { 2135 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2136 free(opt, M_IP6OPT); 2137 return (error); 2138 } 2139 *pktopt = opt; 2140 return (0); 2141 } 2142 2143 /* 2144 * initialize ip6_pktopts. beware that there are non-zero default values in 2145 * the struct. 2146 */ 2147 void 2148 ip6_initpktopts(struct ip6_pktopts *opt) 2149 { 2150 2151 bzero(opt, sizeof(*opt)); 2152 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2153 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2154 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2155 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2156 } 2157 2158 static int 2159 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2160 int priv, int uproto) 2161 { 2162 struct ip6_pktopts *opt; 2163 2164 if (*pktopt == NULL) { 2165 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2166 M_WAITOK); 2167 ip6_initpktopts(*pktopt); 2168 } 2169 opt = *pktopt; 2170 2171 return (ip6_setpktopt(optname, buf, len, opt, priv, 1, 0, uproto)); 2172 } 2173 2174 static int 2175 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2176 { 2177 void *optdata = NULL; 2178 int optdatalen = 0; 2179 struct ip6_ext *ip6e; 2180 int error = 0; 2181 struct in6_pktinfo null_pktinfo; 2182 int deftclass = 0, on; 2183 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2184 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2185 2186 switch (optname) { 2187 case IPV6_PKTINFO: 2188 if (pktopt && pktopt->ip6po_pktinfo) 2189 optdata = (void *)pktopt->ip6po_pktinfo; 2190 else { 2191 /* XXX: we don't have to do this every time... */ 2192 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2193 optdata = (void *)&null_pktinfo; 2194 } 2195 optdatalen = sizeof(struct in6_pktinfo); 2196 break; 2197 case IPV6_TCLASS: 2198 if (pktopt && pktopt->ip6po_tclass >= 0) 2199 optdata = (void *)&pktopt->ip6po_tclass; 2200 else 2201 optdata = (void *)&deftclass; 2202 optdatalen = sizeof(int); 2203 break; 2204 case IPV6_HOPOPTS: 2205 if (pktopt && pktopt->ip6po_hbh) { 2206 optdata = (void *)pktopt->ip6po_hbh; 2207 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2208 optdatalen = (ip6e->ip6e_len + 1) << 3; 2209 } 2210 break; 2211 case IPV6_RTHDR: 2212 if (pktopt && pktopt->ip6po_rthdr) { 2213 optdata = (void *)pktopt->ip6po_rthdr; 2214 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2215 optdatalen = (ip6e->ip6e_len + 1) << 3; 2216 } 2217 break; 2218 case IPV6_RTHDRDSTOPTS: 2219 if (pktopt && pktopt->ip6po_dest1) { 2220 optdata = (void *)pktopt->ip6po_dest1; 2221 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2222 optdatalen = (ip6e->ip6e_len + 1) << 3; 2223 } 2224 break; 2225 case IPV6_DSTOPTS: 2226 if (pktopt && pktopt->ip6po_dest2) { 2227 optdata = (void *)pktopt->ip6po_dest2; 2228 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2229 optdatalen = (ip6e->ip6e_len + 1) << 3; 2230 } 2231 break; 2232 case IPV6_NEXTHOP: 2233 if (pktopt && pktopt->ip6po_nexthop) { 2234 optdata = (void *)pktopt->ip6po_nexthop; 2235 optdatalen = pktopt->ip6po_nexthop->sa_len; 2236 } 2237 break; 2238 case IPV6_USE_MIN_MTU: 2239 if (pktopt) 2240 optdata = (void *)&pktopt->ip6po_minmtu; 2241 else 2242 optdata = (void *)&defminmtu; 2243 optdatalen = sizeof(int); 2244 break; 2245 case IPV6_DONTFRAG: 2246 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2247 on = 1; 2248 else 2249 on = 0; 2250 optdata = (void *)&on; 2251 optdatalen = sizeof(on); 2252 break; 2253 case IPV6_PREFER_TEMPADDR: 2254 if (pktopt) 2255 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2256 else 2257 optdata = (void *)&defpreftemp; 2258 optdatalen = sizeof(int); 2259 break; 2260 default: /* should not happen */ 2261 #ifdef DIAGNOSTIC 2262 panic("ip6_getpcbopt: unexpected option\n"); 2263 #endif 2264 return (ENOPROTOOPT); 2265 } 2266 2267 error = sooptcopyout(sopt, optdata, optdatalen); 2268 2269 return (error); 2270 } 2271 2272 void 2273 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2274 { 2275 if (pktopt == NULL) 2276 return; 2277 2278 if (optname == -1 || optname == IPV6_PKTINFO) { 2279 if (pktopt->ip6po_pktinfo) 2280 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2281 pktopt->ip6po_pktinfo = NULL; 2282 } 2283 if (optname == -1 || optname == IPV6_HOPLIMIT) 2284 pktopt->ip6po_hlim = -1; 2285 if (optname == -1 || optname == IPV6_TCLASS) 2286 pktopt->ip6po_tclass = -1; 2287 if (optname == -1 || optname == IPV6_NEXTHOP) { 2288 if (pktopt->ip6po_nextroute.ro_rt) { 2289 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2290 pktopt->ip6po_nextroute.ro_rt = NULL; 2291 } 2292 if (pktopt->ip6po_nexthop) 2293 free(pktopt->ip6po_nexthop, M_IP6OPT); 2294 pktopt->ip6po_nexthop = NULL; 2295 } 2296 if (optname == -1 || optname == IPV6_HOPOPTS) { 2297 if (pktopt->ip6po_hbh) 2298 free(pktopt->ip6po_hbh, M_IP6OPT); 2299 pktopt->ip6po_hbh = NULL; 2300 } 2301 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2302 if (pktopt->ip6po_dest1) 2303 free(pktopt->ip6po_dest1, M_IP6OPT); 2304 pktopt->ip6po_dest1 = NULL; 2305 } 2306 if (optname == -1 || optname == IPV6_RTHDR) { 2307 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2308 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2309 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2310 if (pktopt->ip6po_route.ro_rt) { 2311 RTFREE(pktopt->ip6po_route.ro_rt); 2312 pktopt->ip6po_route.ro_rt = NULL; 2313 } 2314 } 2315 if (optname == -1 || optname == IPV6_DSTOPTS) { 2316 if (pktopt->ip6po_dest2) 2317 free(pktopt->ip6po_dest2, M_IP6OPT); 2318 pktopt->ip6po_dest2 = NULL; 2319 } 2320 } 2321 2322 #define PKTOPT_EXTHDRCPY(type) \ 2323 do {\ 2324 if (src->type) {\ 2325 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2326 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2327 if (dst->type == NULL && canwait == M_NOWAIT)\ 2328 goto bad;\ 2329 bcopy(src->type, dst->type, hlen);\ 2330 }\ 2331 } while (/*CONSTCOND*/ 0) 2332 2333 static int 2334 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2335 { 2336 if (dst == NULL || src == NULL) { 2337 printf("ip6_clearpktopts: invalid argument\n"); 2338 return (EINVAL); 2339 } 2340 2341 dst->ip6po_hlim = src->ip6po_hlim; 2342 dst->ip6po_tclass = src->ip6po_tclass; 2343 dst->ip6po_flags = src->ip6po_flags; 2344 if (src->ip6po_pktinfo) { 2345 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2346 M_IP6OPT, canwait); 2347 if (dst->ip6po_pktinfo == NULL) 2348 goto bad; 2349 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2350 } 2351 if (src->ip6po_nexthop) { 2352 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2353 M_IP6OPT, canwait); 2354 if (dst->ip6po_nexthop == NULL) 2355 goto bad; 2356 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2357 src->ip6po_nexthop->sa_len); 2358 } 2359 PKTOPT_EXTHDRCPY(ip6po_hbh); 2360 PKTOPT_EXTHDRCPY(ip6po_dest1); 2361 PKTOPT_EXTHDRCPY(ip6po_dest2); 2362 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2363 return (0); 2364 2365 bad: 2366 ip6_clearpktopts(dst, -1); 2367 return (ENOBUFS); 2368 } 2369 #undef PKTOPT_EXTHDRCPY 2370 2371 struct ip6_pktopts * 2372 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2373 { 2374 int error; 2375 struct ip6_pktopts *dst; 2376 2377 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2378 if (dst == NULL) 2379 return (NULL); 2380 ip6_initpktopts(dst); 2381 2382 if ((error = copypktopts(dst, src, canwait)) != 0) { 2383 free(dst, M_IP6OPT); 2384 return (NULL); 2385 } 2386 2387 return (dst); 2388 } 2389 2390 void 2391 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2392 { 2393 if (pktopt == NULL) 2394 return; 2395 2396 ip6_clearpktopts(pktopt, -1); 2397 2398 free(pktopt, M_IP6OPT); 2399 } 2400 2401 /* 2402 * Set the IP6 multicast options in response to user setsockopt(). 2403 */ 2404 static int 2405 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m) 2406 { 2407 int error = 0; 2408 u_int loop, ifindex; 2409 struct ipv6_mreq *mreq; 2410 struct ifnet *ifp; 2411 struct ip6_moptions *im6o = *im6op; 2412 struct route_in6 ro; 2413 struct in6_multi_mship *imm; 2414 struct thread *td = curthread; 2415 2416 if (im6o == NULL) { 2417 /* 2418 * No multicast option buffer attached to the pcb; 2419 * allocate one and initialize to default values. 2420 */ 2421 im6o = (struct ip6_moptions *) 2422 malloc(sizeof(*im6o), M_IP6MOPTS, M_WAITOK); 2423 2424 if (im6o == NULL) 2425 return (ENOBUFS); 2426 *im6op = im6o; 2427 im6o->im6o_multicast_ifp = NULL; 2428 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2429 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2430 LIST_INIT(&im6o->im6o_memberships); 2431 } 2432 2433 switch (optname) { 2434 2435 case IPV6_MULTICAST_IF: 2436 /* 2437 * Select the interface for outgoing multicast packets. 2438 */ 2439 if (m == NULL || m->m_len != sizeof(u_int)) { 2440 error = EINVAL; 2441 break; 2442 } 2443 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 2444 if (ifindex < 0 || if_index < ifindex) { 2445 error = ENXIO; /* XXX EINVAL? */ 2446 break; 2447 } 2448 ifp = ifnet_byindex(ifindex); 2449 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2450 error = EADDRNOTAVAIL; 2451 break; 2452 } 2453 im6o->im6o_multicast_ifp = ifp; 2454 break; 2455 2456 case IPV6_MULTICAST_HOPS: 2457 { 2458 /* 2459 * Set the IP6 hoplimit for outgoing multicast packets. 2460 */ 2461 int optval; 2462 if (m == NULL || m->m_len != sizeof(int)) { 2463 error = EINVAL; 2464 break; 2465 } 2466 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 2467 if (optval < -1 || optval >= 256) 2468 error = EINVAL; 2469 else if (optval == -1) 2470 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2471 else 2472 im6o->im6o_multicast_hlim = optval; 2473 break; 2474 } 2475 2476 case IPV6_MULTICAST_LOOP: 2477 /* 2478 * Set the loopback flag for outgoing multicast packets. 2479 * Must be zero or one. 2480 */ 2481 if (m == NULL || m->m_len != sizeof(u_int)) { 2482 error = EINVAL; 2483 break; 2484 } 2485 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 2486 if (loop > 1) { 2487 error = EINVAL; 2488 break; 2489 } 2490 im6o->im6o_multicast_loop = loop; 2491 break; 2492 2493 case IPV6_JOIN_GROUP: 2494 /* 2495 * Add a multicast group membership. 2496 * Group must be a valid IP6 multicast address. 2497 */ 2498 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2499 error = EINVAL; 2500 break; 2501 } 2502 mreq = mtod(m, struct ipv6_mreq *); 2503 2504 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2505 /* 2506 * We use the unspecified address to specify to accept 2507 * all multicast addresses. Only super user is allowed 2508 * to do this. 2509 */ 2510 if (suser(td)) { 2511 error = EACCES; 2512 break; 2513 } 2514 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2515 error = EINVAL; 2516 break; 2517 } 2518 2519 /* 2520 * If no interface was explicitly specified, choose an 2521 * appropriate one according to the given multicast address. 2522 */ 2523 if (mreq->ipv6mr_interface == 0) { 2524 struct sockaddr_in6 *dst; 2525 2526 /* 2527 * Look up the routing table for the 2528 * address, and choose the outgoing interface. 2529 * XXX: is it a good approach? 2530 */ 2531 ro.ro_rt = NULL; 2532 dst = (struct sockaddr_in6 *)&ro.ro_dst; 2533 bzero(dst, sizeof(*dst)); 2534 dst->sin6_family = AF_INET6; 2535 dst->sin6_len = sizeof(*dst); 2536 dst->sin6_addr = mreq->ipv6mr_multiaddr; 2537 rtalloc((struct route *)&ro); 2538 if (ro.ro_rt == NULL) { 2539 error = EADDRNOTAVAIL; 2540 break; 2541 } 2542 ifp = ro.ro_rt->rt_ifp; 2543 RTFREE(ro.ro_rt); 2544 } else { 2545 /* 2546 * If the interface is specified, validate it. 2547 */ 2548 if (mreq->ipv6mr_interface < 0 || 2549 if_index < mreq->ipv6mr_interface) { 2550 error = ENXIO; /* XXX EINVAL? */ 2551 break; 2552 } 2553 ifp = ifnet_byindex(mreq->ipv6mr_interface); 2554 if (!ifp) { 2555 error = ENXIO; /* XXX EINVAL? */ 2556 break; 2557 } 2558 } 2559 2560 /* 2561 * See if we found an interface, and confirm that it 2562 * supports multicast 2563 */ 2564 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2565 error = EADDRNOTAVAIL; 2566 break; 2567 } 2568 2569 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) { 2570 error = EADDRNOTAVAIL; /* XXX: should not happen */ 2571 break; 2572 } 2573 2574 /* 2575 * See if the membership already exists. 2576 */ 2577 for (imm = im6o->im6o_memberships.lh_first; 2578 imm != NULL; imm = imm->i6mm_chain.le_next) 2579 if (imm->i6mm_maddr->in6m_ifp == ifp && 2580 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2581 &mreq->ipv6mr_multiaddr)) 2582 break; 2583 if (imm != NULL) { 2584 error = EADDRINUSE; 2585 break; 2586 } 2587 /* 2588 * Everything looks good; add a new record to the multicast 2589 * address list for the given interface. 2590 */ 2591 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error, 0); 2592 if (imm == NULL) 2593 break; 2594 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2595 break; 2596 2597 case IPV6_LEAVE_GROUP: 2598 /* 2599 * Drop a multicast group membership. 2600 * Group must be a valid IP6 multicast address. 2601 */ 2602 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2603 error = EINVAL; 2604 break; 2605 } 2606 mreq = mtod(m, struct ipv6_mreq *); 2607 2608 /* 2609 * If an interface address was specified, get a pointer 2610 * to its ifnet structure. 2611 */ 2612 if (mreq->ipv6mr_interface < 0 || 2613 if_index < mreq->ipv6mr_interface) { 2614 error = ENXIO; /* XXX EINVAL? */ 2615 break; 2616 } 2617 if (mreq->ipv6mr_interface == 0) 2618 ifp = NULL; 2619 else 2620 ifp = ifnet_byindex(mreq->ipv6mr_interface); 2621 2622 /* Fill in the scope zone ID */ 2623 if (ifp) { 2624 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) { 2625 /* XXX: should not happen */ 2626 error = EADDRNOTAVAIL; 2627 break; 2628 } 2629 } else if (mreq->ipv6mr_interface != 0) { 2630 /* 2631 * This case happens when the (positive) index is in 2632 * the valid range, but the corresponding interface has 2633 * been detached dynamically (XXX). 2634 */ 2635 error = EADDRNOTAVAIL; 2636 break; 2637 } else { /* ipv6mr_interface == 0 */ 2638 struct sockaddr_in6 sa6_mc; 2639 2640 /* 2641 * The API spec says as follows: 2642 * If the interface index is specified as 0, the 2643 * system may choose a multicast group membership to 2644 * drop by matching the multicast address only. 2645 * On the other hand, we cannot disambiguate the scope 2646 * zone unless an interface is provided. Thus, we 2647 * check if there's ambiguity with the default scope 2648 * zone as the last resort. 2649 */ 2650 bzero(&sa6_mc, sizeof(sa6_mc)); 2651 sa6_mc.sin6_family = AF_INET6; 2652 sa6_mc.sin6_len = sizeof(sa6_mc); 2653 sa6_mc.sin6_addr = mreq->ipv6mr_multiaddr; 2654 error = sa6_embedscope(&sa6_mc, ip6_use_defzone); 2655 if (error != 0) 2656 break; 2657 mreq->ipv6mr_multiaddr = sa6_mc.sin6_addr; 2658 } 2659 2660 /* 2661 * Find the membership in the membership list. 2662 */ 2663 for (imm = im6o->im6o_memberships.lh_first; 2664 imm != NULL; imm = imm->i6mm_chain.le_next) { 2665 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2666 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2667 &mreq->ipv6mr_multiaddr)) 2668 break; 2669 } 2670 if (imm == NULL) { 2671 /* Unable to resolve interface */ 2672 error = EADDRNOTAVAIL; 2673 break; 2674 } 2675 /* 2676 * Give up the multicast address record to which the 2677 * membership points. 2678 */ 2679 LIST_REMOVE(imm, i6mm_chain); 2680 in6_delmulti(imm->i6mm_maddr); 2681 free(imm, M_IP6MADDR); 2682 break; 2683 2684 default: 2685 error = EOPNOTSUPP; 2686 break; 2687 } 2688 2689 /* 2690 * If all options have default values, no need to keep the mbuf. 2691 */ 2692 if (im6o->im6o_multicast_ifp == NULL && 2693 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2694 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2695 im6o->im6o_memberships.lh_first == NULL) { 2696 free(*im6op, M_IP6MOPTS); 2697 *im6op = NULL; 2698 } 2699 2700 return (error); 2701 } 2702 2703 /* 2704 * Return the IP6 multicast options in response to user getsockopt(). 2705 */ 2706 static int 2707 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp) 2708 { 2709 u_int *hlim, *loop, *ifindex; 2710 2711 *mp = m_get(M_TRYWAIT, MT_HEADER); /* XXX */ 2712 2713 switch (optname) { 2714 2715 case IPV6_MULTICAST_IF: 2716 ifindex = mtod(*mp, u_int *); 2717 (*mp)->m_len = sizeof(u_int); 2718 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2719 *ifindex = 0; 2720 else 2721 *ifindex = im6o->im6o_multicast_ifp->if_index; 2722 return (0); 2723 2724 case IPV6_MULTICAST_HOPS: 2725 hlim = mtod(*mp, u_int *); 2726 (*mp)->m_len = sizeof(u_int); 2727 if (im6o == NULL) 2728 *hlim = ip6_defmcasthlim; 2729 else 2730 *hlim = im6o->im6o_multicast_hlim; 2731 return (0); 2732 2733 case IPV6_MULTICAST_LOOP: 2734 loop = mtod(*mp, u_int *); 2735 (*mp)->m_len = sizeof(u_int); 2736 if (im6o == NULL) 2737 *loop = ip6_defmcasthlim; 2738 else 2739 *loop = im6o->im6o_multicast_loop; 2740 return (0); 2741 2742 default: 2743 return (EOPNOTSUPP); 2744 } 2745 } 2746 2747 /* 2748 * Discard the IP6 multicast options. 2749 */ 2750 void 2751 ip6_freemoptions(struct ip6_moptions *im6o) 2752 { 2753 struct in6_multi_mship *imm; 2754 2755 if (im6o == NULL) 2756 return; 2757 2758 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2759 LIST_REMOVE(imm, i6mm_chain); 2760 if (imm->i6mm_maddr) 2761 in6_delmulti(imm->i6mm_maddr); 2762 free(imm, M_IP6MADDR); 2763 } 2764 free(im6o, M_IP6MOPTS); 2765 } 2766 2767 /* 2768 * Set IPv6 outgoing packet options based on advanced API. 2769 */ 2770 int 2771 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2772 struct ip6_pktopts *stickyopt, int priv, int uproto) 2773 { 2774 struct cmsghdr *cm = 0; 2775 2776 if (control == NULL || opt == NULL) 2777 return (EINVAL); 2778 2779 ip6_initpktopts(opt); 2780 if (stickyopt) { 2781 int error; 2782 2783 /* 2784 * If stickyopt is provided, make a local copy of the options 2785 * for this particular packet, then override them by ancillary 2786 * objects. 2787 * XXX: copypktopts() does not copy the cached route to a next 2788 * hop (if any). This is not very good in terms of efficiency, 2789 * but we can allow this since this option should be rarely 2790 * used. 2791 */ 2792 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2793 return (error); 2794 } 2795 2796 /* 2797 * XXX: Currently, we assume all the optional information is stored 2798 * in a single mbuf. 2799 */ 2800 if (control->m_next) 2801 return (EINVAL); 2802 2803 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2804 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2805 int error; 2806 2807 if (control->m_len < CMSG_LEN(0)) 2808 return (EINVAL); 2809 2810 cm = mtod(control, struct cmsghdr *); 2811 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2812 return (EINVAL); 2813 if (cm->cmsg_level != IPPROTO_IPV6) 2814 continue; 2815 2816 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2817 cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, 1, uproto); 2818 if (error) 2819 return (error); 2820 } 2821 2822 return (0); 2823 } 2824 2825 /* 2826 * Set a particular packet option, as a sticky option or an ancillary data 2827 * item. "len" can be 0 only when it's a sticky option. 2828 * We have 4 cases of combination of "sticky" and "cmsg": 2829 * "sticky=0, cmsg=0": impossible 2830 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2831 * "sticky=1, cmsg=0": RFC3542 socket option 2832 * "sticky=1, cmsg=1": RFC2292 socket option 2833 */ 2834 static int 2835 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2836 int priv, int sticky, int cmsg, int uproto) 2837 { 2838 int minmtupolicy, preftemp; 2839 2840 if (!sticky && !cmsg) { 2841 #ifdef DIAGNOSTIC 2842 printf("ip6_setpktopt: impossible case\n"); 2843 #endif 2844 return (EINVAL); 2845 } 2846 2847 /* 2848 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2849 * not be specified in the context of RFC3542. Conversely, 2850 * RFC3542 types should not be specified in the context of RFC2292. 2851 */ 2852 if (!cmsg) { 2853 switch (optname) { 2854 case IPV6_2292PKTINFO: 2855 case IPV6_2292HOPLIMIT: 2856 case IPV6_2292NEXTHOP: 2857 case IPV6_2292HOPOPTS: 2858 case IPV6_2292DSTOPTS: 2859 case IPV6_2292RTHDR: 2860 case IPV6_2292PKTOPTIONS: 2861 return (ENOPROTOOPT); 2862 } 2863 } 2864 if (sticky && cmsg) { 2865 switch (optname) { 2866 case IPV6_PKTINFO: 2867 case IPV6_HOPLIMIT: 2868 case IPV6_NEXTHOP: 2869 case IPV6_HOPOPTS: 2870 case IPV6_DSTOPTS: 2871 case IPV6_RTHDRDSTOPTS: 2872 case IPV6_RTHDR: 2873 case IPV6_USE_MIN_MTU: 2874 case IPV6_DONTFRAG: 2875 case IPV6_TCLASS: 2876 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2877 return (ENOPROTOOPT); 2878 } 2879 } 2880 2881 switch (optname) { 2882 case IPV6_2292PKTINFO: 2883 case IPV6_PKTINFO: 2884 { 2885 struct ifnet *ifp = NULL; 2886 struct in6_pktinfo *pktinfo; 2887 2888 if (len != sizeof(struct in6_pktinfo)) 2889 return (EINVAL); 2890 2891 pktinfo = (struct in6_pktinfo *)buf; 2892 2893 /* 2894 * An application can clear any sticky IPV6_PKTINFO option by 2895 * doing a "regular" setsockopt with ipi6_addr being 2896 * in6addr_any and ipi6_ifindex being zero. 2897 * [RFC 3542, Section 6] 2898 */ 2899 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2900 pktinfo->ipi6_ifindex == 0 && 2901 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2902 ip6_clearpktopts(opt, optname); 2903 break; 2904 } 2905 2906 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2907 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2908 return (EINVAL); 2909 } 2910 2911 /* validate the interface index if specified. */ 2912 if (pktinfo->ipi6_ifindex > if_index || 2913 pktinfo->ipi6_ifindex < 0) { 2914 return (ENXIO); 2915 } 2916 if (pktinfo->ipi6_ifindex) { 2917 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2918 if (ifp == NULL) 2919 return (ENXIO); 2920 } 2921 2922 /* 2923 * We store the address anyway, and let in6_selectsrc() 2924 * validate the specified address. This is because ipi6_addr 2925 * may not have enough information about its scope zone, and 2926 * we may need additional information (such as outgoing 2927 * interface or the scope zone of a destination address) to 2928 * disambiguate the scope. 2929 * XXX: the delay of the validation may confuse the 2930 * application when it is used as a sticky option. 2931 */ 2932 if (opt->ip6po_pktinfo == NULL) { 2933 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2934 M_IP6OPT, M_NOWAIT); 2935 if (opt->ip6po_pktinfo == NULL) 2936 return (ENOBUFS); 2937 } 2938 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2939 break; 2940 } 2941 2942 case IPV6_2292HOPLIMIT: 2943 case IPV6_HOPLIMIT: 2944 { 2945 int *hlimp; 2946 2947 /* 2948 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2949 * to simplify the ordering among hoplimit options. 2950 */ 2951 if (optname == IPV6_HOPLIMIT && sticky) 2952 return (ENOPROTOOPT); 2953 2954 if (len != sizeof(int)) 2955 return (EINVAL); 2956 hlimp = (int *)buf; 2957 if (*hlimp < -1 || *hlimp > 255) 2958 return (EINVAL); 2959 2960 opt->ip6po_hlim = *hlimp; 2961 break; 2962 } 2963 2964 case IPV6_TCLASS: 2965 { 2966 int tclass; 2967 2968 if (len != sizeof(int)) 2969 return (EINVAL); 2970 tclass = *(int *)buf; 2971 if (tclass < -1 || tclass > 255) 2972 return (EINVAL); 2973 2974 opt->ip6po_tclass = tclass; 2975 break; 2976 } 2977 2978 case IPV6_2292NEXTHOP: 2979 case IPV6_NEXTHOP: 2980 if (!priv) 2981 return (EPERM); 2982 2983 if (len == 0) { /* just remove the option */ 2984 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2985 break; 2986 } 2987 2988 /* check if cmsg_len is large enough for sa_len */ 2989 if (len < sizeof(struct sockaddr) || len < *buf) 2990 return (EINVAL); 2991 2992 switch (((struct sockaddr *)buf)->sa_family) { 2993 case AF_INET6: 2994 { 2995 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2996 int error; 2997 2998 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2999 return (EINVAL); 3000 3001 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3002 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3003 return (EINVAL); 3004 } 3005 if ((error = sa6_embedscope(sa6, ip6_use_defzone)) 3006 != 0) { 3007 return (error); 3008 } 3009 break; 3010 } 3011 case AF_LINK: /* should eventually be supported */ 3012 default: 3013 return (EAFNOSUPPORT); 3014 } 3015 3016 /* turn off the previous option, then set the new option. */ 3017 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3018 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3019 if (opt->ip6po_nexthop == NULL) 3020 return (ENOBUFS); 3021 bcopy(buf, opt->ip6po_nexthop, *buf); 3022 break; 3023 3024 case IPV6_2292HOPOPTS: 3025 case IPV6_HOPOPTS: 3026 { 3027 struct ip6_hbh *hbh; 3028 int hbhlen; 3029 3030 /* 3031 * XXX: We don't allow a non-privileged user to set ANY HbH 3032 * options, since per-option restriction has too much 3033 * overhead. 3034 */ 3035 if (!priv) 3036 return (EPERM); 3037 3038 if (len == 0) { 3039 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3040 break; /* just remove the option */ 3041 } 3042 3043 /* message length validation */ 3044 if (len < sizeof(struct ip6_hbh)) 3045 return (EINVAL); 3046 hbh = (struct ip6_hbh *)buf; 3047 hbhlen = (hbh->ip6h_len + 1) << 3; 3048 if (len != hbhlen) 3049 return (EINVAL); 3050 3051 /* turn off the previous option, then set the new option. */ 3052 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3053 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3054 if (opt->ip6po_hbh == NULL) 3055 return (ENOBUFS); 3056 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3057 3058 break; 3059 } 3060 3061 case IPV6_2292DSTOPTS: 3062 case IPV6_DSTOPTS: 3063 case IPV6_RTHDRDSTOPTS: 3064 { 3065 struct ip6_dest *dest, **newdest = NULL; 3066 int destlen; 3067 3068 if (!priv) /* XXX: see the comment for IPV6_HOPOPTS */ 3069 return (EPERM); 3070 3071 if (len == 0) { 3072 ip6_clearpktopts(opt, optname); 3073 break; /* just remove the option */ 3074 } 3075 3076 /* message length validation */ 3077 if (len < sizeof(struct ip6_dest)) 3078 return (EINVAL); 3079 dest = (struct ip6_dest *)buf; 3080 destlen = (dest->ip6d_len + 1) << 3; 3081 if (len != destlen) 3082 return (EINVAL); 3083 3084 /* 3085 * Determine the position that the destination options header 3086 * should be inserted; before or after the routing header. 3087 */ 3088 switch (optname) { 3089 case IPV6_2292DSTOPTS: 3090 /* 3091 * The old advacned API is ambiguous on this point. 3092 * Our approach is to determine the position based 3093 * according to the existence of a routing header. 3094 * Note, however, that this depends on the order of the 3095 * extension headers in the ancillary data; the 1st 3096 * part of the destination options header must appear 3097 * before the routing header in the ancillary data, 3098 * too. 3099 * RFC3542 solved the ambiguity by introducing 3100 * separate ancillary data or option types. 3101 */ 3102 if (opt->ip6po_rthdr == NULL) 3103 newdest = &opt->ip6po_dest1; 3104 else 3105 newdest = &opt->ip6po_dest2; 3106 break; 3107 case IPV6_RTHDRDSTOPTS: 3108 newdest = &opt->ip6po_dest1; 3109 break; 3110 case IPV6_DSTOPTS: 3111 newdest = &opt->ip6po_dest2; 3112 break; 3113 } 3114 3115 /* turn off the previous option, then set the new option. */ 3116 ip6_clearpktopts(opt, optname); 3117 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3118 if (*newdest == NULL) 3119 return (ENOBUFS); 3120 bcopy(dest, *newdest, destlen); 3121 3122 break; 3123 } 3124 3125 case IPV6_2292RTHDR: 3126 case IPV6_RTHDR: 3127 { 3128 struct ip6_rthdr *rth; 3129 int rthlen; 3130 3131 if (len == 0) { 3132 ip6_clearpktopts(opt, IPV6_RTHDR); 3133 break; /* just remove the option */ 3134 } 3135 3136 /* message length validation */ 3137 if (len < sizeof(struct ip6_rthdr)) 3138 return (EINVAL); 3139 rth = (struct ip6_rthdr *)buf; 3140 rthlen = (rth->ip6r_len + 1) << 3; 3141 if (len != rthlen) 3142 return (EINVAL); 3143 3144 switch (rth->ip6r_type) { 3145 case IPV6_RTHDR_TYPE_0: 3146 if (rth->ip6r_len == 0) /* must contain one addr */ 3147 return (EINVAL); 3148 if (rth->ip6r_len % 2) /* length must be even */ 3149 return (EINVAL); 3150 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3151 return (EINVAL); 3152 break; 3153 default: 3154 return (EINVAL); /* not supported */ 3155 } 3156 3157 /* turn off the previous option */ 3158 ip6_clearpktopts(opt, IPV6_RTHDR); 3159 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3160 if (opt->ip6po_rthdr == NULL) 3161 return (ENOBUFS); 3162 bcopy(rth, opt->ip6po_rthdr, rthlen); 3163 3164 break; 3165 } 3166 3167 case IPV6_USE_MIN_MTU: 3168 if (len != sizeof(int)) 3169 return (EINVAL); 3170 minmtupolicy = *(int *)buf; 3171 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3172 minmtupolicy != IP6PO_MINMTU_DISABLE && 3173 minmtupolicy != IP6PO_MINMTU_ALL) { 3174 return (EINVAL); 3175 } 3176 opt->ip6po_minmtu = minmtupolicy; 3177 break; 3178 3179 case IPV6_DONTFRAG: 3180 if (len != sizeof(int)) 3181 return (EINVAL); 3182 3183 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3184 /* 3185 * we ignore this option for TCP sockets. 3186 * (RFC3542 leaves this case unspecified.) 3187 */ 3188 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3189 } else 3190 opt->ip6po_flags |= IP6PO_DONTFRAG; 3191 break; 3192 3193 case IPV6_PREFER_TEMPADDR: 3194 if (len != sizeof(int)) 3195 return (EINVAL); 3196 preftemp = *(int *)buf; 3197 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3198 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3199 preftemp != IP6PO_TEMPADDR_PREFER) { 3200 return (EINVAL); 3201 } 3202 opt->ip6po_prefer_tempaddr = preftemp; 3203 break; 3204 3205 default: 3206 return (ENOPROTOOPT); 3207 } /* end of switch */ 3208 3209 return (0); 3210 } 3211 3212 /* 3213 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3214 * packet to the input queue of a specified interface. Note that this 3215 * calls the output routine of the loopback "driver", but with an interface 3216 * pointer that might NOT be &loif -- easier than replicating that code here. 3217 */ 3218 void 3219 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 3220 { 3221 struct mbuf *copym; 3222 struct ip6_hdr *ip6; 3223 3224 copym = m_copy(m, 0, M_COPYALL); 3225 if (copym == NULL) 3226 return; 3227 3228 /* 3229 * Make sure to deep-copy IPv6 header portion in case the data 3230 * is in an mbuf cluster, so that we can safely override the IPv6 3231 * header portion later. 3232 */ 3233 if ((copym->m_flags & M_EXT) != 0 || 3234 copym->m_len < sizeof(struct ip6_hdr)) { 3235 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3236 if (copym == NULL) 3237 return; 3238 } 3239 3240 #ifdef DIAGNOSTIC 3241 if (copym->m_len < sizeof(*ip6)) { 3242 m_freem(copym); 3243 return; 3244 } 3245 #endif 3246 3247 ip6 = mtod(copym, struct ip6_hdr *); 3248 /* 3249 * clear embedded scope identifiers if necessary. 3250 * in6_clearscope will touch the addresses only when necessary. 3251 */ 3252 in6_clearscope(&ip6->ip6_src); 3253 in6_clearscope(&ip6->ip6_dst); 3254 3255 (void)if_simloop(ifp, copym, dst->sin6_family, 0); 3256 } 3257 3258 /* 3259 * Chop IPv6 header off from the payload. 3260 */ 3261 static int 3262 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3263 { 3264 struct mbuf *mh; 3265 struct ip6_hdr *ip6; 3266 3267 ip6 = mtod(m, struct ip6_hdr *); 3268 if (m->m_len > sizeof(*ip6)) { 3269 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3270 if (mh == 0) { 3271 m_freem(m); 3272 return ENOBUFS; 3273 } 3274 M_MOVE_PKTHDR(mh, m); 3275 MH_ALIGN(mh, sizeof(*ip6)); 3276 m->m_len -= sizeof(*ip6); 3277 m->m_data += sizeof(*ip6); 3278 mh->m_next = m; 3279 m = mh; 3280 m->m_len = sizeof(*ip6); 3281 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3282 } 3283 exthdrs->ip6e_ip6 = m; 3284 return 0; 3285 } 3286 3287 /* 3288 * Compute IPv6 extension header length. 3289 */ 3290 int 3291 ip6_optlen(struct in6pcb *in6p) 3292 { 3293 int len; 3294 3295 if (!in6p->in6p_outputopts) 3296 return 0; 3297 3298 len = 0; 3299 #define elen(x) \ 3300 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3301 3302 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3303 if (in6p->in6p_outputopts->ip6po_rthdr) 3304 /* dest1 is valid with rthdr only */ 3305 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3306 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3307 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3308 return len; 3309 #undef elen 3310 } 3311