1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #include "opt_kern_tls.h" 72 #include "opt_ratelimit.h" 73 #include "opt_route.h" 74 #include "opt_rss.h" 75 #include "opt_sctp.h" 76 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/ktls.h> 80 #include <sys/malloc.h> 81 #include <sys/mbuf.h> 82 #include <sys/errno.h> 83 #include <sys/priv.h> 84 #include <sys/proc.h> 85 #include <sys/protosw.h> 86 #include <sys/socket.h> 87 #include <sys/socketvar.h> 88 #include <sys/syslog.h> 89 #include <sys/ucred.h> 90 91 #include <machine/in_cksum.h> 92 93 #include <net/if.h> 94 #include <net/if_var.h> 95 #include <net/if_llatbl.h> 96 #include <net/netisr.h> 97 #include <net/route.h> 98 #include <net/pfil.h> 99 #include <net/rss_config.h> 100 #include <net/vnet.h> 101 102 #include <netinet/in.h> 103 #include <netinet/in_var.h> 104 #include <netinet/ip_var.h> 105 #include <netinet6/in6_fib.h> 106 #include <netinet6/in6_var.h> 107 #include <netinet/ip6.h> 108 #include <netinet/icmp6.h> 109 #include <netinet6/ip6_var.h> 110 #include <netinet/in_pcb.h> 111 #include <netinet/tcp_var.h> 112 #include <netinet6/nd6.h> 113 #include <netinet6/in6_rss.h> 114 115 #include <netipsec/ipsec_support.h> 116 #ifdef SCTP 117 #include <netinet/sctp.h> 118 #include <netinet/sctp_crc32.h> 119 #endif 120 121 #include <netinet6/ip6protosw.h> 122 #include <netinet6/scope6_var.h> 123 124 extern int in6_mcast_loop; 125 126 struct ip6_exthdrs { 127 struct mbuf *ip6e_ip6; 128 struct mbuf *ip6e_hbh; 129 struct mbuf *ip6e_dest1; 130 struct mbuf *ip6e_rthdr; 131 struct mbuf *ip6e_dest2; 132 }; 133 134 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 135 136 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 137 struct ucred *, int); 138 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 139 struct socket *, struct sockopt *); 140 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 141 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 142 struct ucred *, int, int, int); 143 144 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 145 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 146 struct ip6_frag **); 147 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 148 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 149 static int ip6_getpmtu(struct route_in6 *, int, 150 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 151 u_int); 152 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 153 u_long *, int *, u_int); 154 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 155 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 156 157 158 /* 159 * Make an extension header from option data. hp is the source, 160 * mp is the destination, and _ol is the optlen. 161 */ 162 #define MAKE_EXTHDR(hp, mp, _ol) \ 163 do { \ 164 if (hp) { \ 165 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 166 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 167 ((eh)->ip6e_len + 1) << 3); \ 168 if (error) \ 169 goto freehdrs; \ 170 (_ol) += (*(mp))->m_len; \ 171 } \ 172 } while (/*CONSTCOND*/ 0) 173 174 /* 175 * Form a chain of extension headers. 176 * m is the extension header mbuf 177 * mp is the previous mbuf in the chain 178 * p is the next header 179 * i is the type of option. 180 */ 181 #define MAKE_CHAIN(m, mp, p, i)\ 182 do {\ 183 if (m) {\ 184 if (!hdrsplit) \ 185 panic("%s:%d: assumption failed: "\ 186 "hdr not split: hdrsplit %d exthdrs %p",\ 187 __func__, __LINE__, hdrsplit, &exthdrs);\ 188 *mtod((m), u_char *) = *(p);\ 189 *(p) = (i);\ 190 p = mtod((m), u_char *);\ 191 (m)->m_next = (mp)->m_next;\ 192 (mp)->m_next = (m);\ 193 (mp) = (m);\ 194 }\ 195 } while (/*CONSTCOND*/ 0) 196 197 void 198 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 199 { 200 u_short csum; 201 202 csum = in_cksum_skip(m, offset + plen, offset); 203 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 204 csum = 0xffff; 205 offset += m->m_pkthdr.csum_data; /* checksum offset */ 206 207 if (offset + sizeof(csum) > m->m_len) 208 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 209 else 210 *(u_short *)mtodo(m, offset) = csum; 211 } 212 213 static int 214 ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags, 215 int plen, int optlen, bool frag) 216 { 217 218 KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p " 219 "csum_flags %#x frag %d\n", 220 __func__, __LINE__, plen, optlen, m, ifp, csum_flags, frag)); 221 222 if ((csum_flags & CSUM_DELAY_DATA_IPV6) || 223 #ifdef SCTP 224 (csum_flags & CSUM_SCTP_IPV6) || 225 #endif 226 (!frag && (ifp->if_capenable & IFCAP_NOMAP) == 0)) { 227 m = mb_unmapped_to_ext(m); 228 if (m == NULL) { 229 if (frag) 230 in6_ifstat_inc(ifp, ifs6_out_fragfail); 231 else 232 IP6STAT_INC(ip6s_odropped); 233 return (ENOBUFS); 234 } 235 if (csum_flags & CSUM_DELAY_DATA_IPV6) { 236 in6_delayed_cksum(m, plen - optlen, 237 sizeof(struct ip6_hdr) + optlen); 238 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 239 } 240 #ifdef SCTP 241 if (csum_flags & CSUM_SCTP_IPV6) { 242 sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen); 243 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 244 } 245 #endif 246 } 247 248 return (0); 249 } 250 251 int 252 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 253 int fraglen , uint32_t id) 254 { 255 struct mbuf *m, **mnext, *m_frgpart; 256 struct ip6_hdr *ip6, *mhip6; 257 struct ip6_frag *ip6f; 258 int off; 259 int error; 260 int tlen = m0->m_pkthdr.len; 261 262 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 263 264 m = m0; 265 ip6 = mtod(m, struct ip6_hdr *); 266 mnext = &m->m_nextpkt; 267 268 for (off = hlen; off < tlen; off += fraglen) { 269 m = m_gethdr(M_NOWAIT, MT_DATA); 270 if (!m) { 271 IP6STAT_INC(ip6s_odropped); 272 return (ENOBUFS); 273 } 274 275 /* 276 * Make sure the complete packet header gets copied 277 * from the originating mbuf to the newly created 278 * mbuf. This also ensures that existing firewall 279 * classification(s), VLAN tags and so on get copied 280 * to the resulting fragmented packet(s): 281 */ 282 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 283 m_free(m); 284 IP6STAT_INC(ip6s_odropped); 285 return (ENOBUFS); 286 } 287 288 *mnext = m; 289 mnext = &m->m_nextpkt; 290 m->m_data += max_linkhdr; 291 mhip6 = mtod(m, struct ip6_hdr *); 292 *mhip6 = *ip6; 293 m->m_len = sizeof(*mhip6); 294 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 295 if (error) { 296 IP6STAT_INC(ip6s_odropped); 297 return (error); 298 } 299 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 300 if (off + fraglen >= tlen) 301 fraglen = tlen - off; 302 else 303 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 304 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 305 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 306 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 307 IP6STAT_INC(ip6s_odropped); 308 return (ENOBUFS); 309 } 310 m_cat(m, m_frgpart); 311 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 312 ip6f->ip6f_reserved = 0; 313 ip6f->ip6f_ident = id; 314 ip6f->ip6f_nxt = nextproto; 315 IP6STAT_INC(ip6s_ofragments); 316 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 317 } 318 319 return (0); 320 } 321 322 static int 323 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp, 324 struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro) 325 { 326 #ifdef KERN_TLS 327 struct ktls_session *tls = NULL; 328 #endif 329 struct m_snd_tag *mst; 330 int error; 331 332 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 333 mst = NULL; 334 335 #ifdef KERN_TLS 336 /* 337 * If this is an unencrypted TLS record, save a reference to 338 * the record. This local reference is used to call 339 * ktls_output_eagain after the mbuf has been freed (thus 340 * dropping the mbuf's reference) in if_output. 341 */ 342 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 343 tls = ktls_hold(m->m_next->m_ext.ext_pgs->tls); 344 mst = tls->snd_tag; 345 346 /* 347 * If a TLS session doesn't have a valid tag, it must 348 * have had an earlier ifp mismatch, so drop this 349 * packet. 350 */ 351 if (mst == NULL) { 352 error = EAGAIN; 353 goto done; 354 } 355 } 356 #endif 357 #ifdef RATELIMIT 358 if (inp != NULL && mst == NULL) { 359 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 360 (inp->inp_snd_tag != NULL && 361 inp->inp_snd_tag->ifp != ifp)) 362 in_pcboutput_txrtlmt(inp, ifp, m); 363 364 if (inp->inp_snd_tag != NULL) 365 mst = inp->inp_snd_tag; 366 } 367 #endif 368 if (mst != NULL) { 369 KASSERT(m->m_pkthdr.rcvif == NULL, 370 ("trying to add a send tag to a forwarded packet")); 371 if (mst->ifp != ifp) { 372 error = EAGAIN; 373 goto done; 374 } 375 376 /* stamp send tag on mbuf */ 377 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 378 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 379 } 380 381 error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); 382 383 done: 384 /* Check for route change invalidating send tags. */ 385 #ifdef KERN_TLS 386 if (tls != NULL) { 387 if (error == EAGAIN) 388 error = ktls_output_eagain(inp, tls); 389 ktls_free(tls); 390 } 391 #endif 392 #ifdef RATELIMIT 393 if (error == EAGAIN) 394 in_pcboutput_eagain(inp); 395 #endif 396 return (error); 397 } 398 399 /* 400 * IP6 output. 401 * The packet in mbuf chain m contains a skeletal IP6 header (with pri, len, 402 * nxt, hlim, src, dst). 403 * This function may modify ver and hlim only. 404 * The mbuf chain containing the packet will be freed. 405 * The mbuf opt, if present, will not be freed. 406 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 407 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 408 * then result of route lookup is stored in ro->ro_rt. 409 * 410 * Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu 411 * is uint32_t. So we use u_long to hold largest one, which is rt_mtu. 412 * 413 * ifpp - XXX: just for statistics 414 */ 415 /* 416 * XXX TODO: no flowid is assigned for outbound flows? 417 */ 418 int 419 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 420 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 421 struct ifnet **ifpp, struct inpcb *inp) 422 { 423 struct ip6_hdr *ip6; 424 struct ifnet *ifp, *origifp; 425 struct mbuf *m = m0; 426 struct mbuf *mprev; 427 struct route_in6 *ro_pmtu; 428 struct rtentry *rt; 429 struct sockaddr_in6 *dst, sin6, src_sa, dst_sa; 430 struct in6_addr odst; 431 u_char *nexthdrp; 432 int tlen, len; 433 int error = 0; 434 struct in6_ifaddr *ia = NULL; 435 u_long mtu; 436 int alwaysfrag, dontfrag; 437 u_int32_t optlen, plen = 0, unfragpartlen; 438 struct ip6_exthdrs exthdrs; 439 struct in6_addr src0, dst0; 440 u_int32_t zone; 441 bool hdrsplit; 442 int sw_csum, tso; 443 int needfiblookup; 444 uint32_t fibnum; 445 struct m_tag *fwd_tag = NULL; 446 uint32_t id; 447 448 NET_EPOCH_ASSERT(); 449 450 if (inp != NULL) { 451 INP_LOCK_ASSERT(inp); 452 M_SETFIB(m, inp->inp_inc.inc_fibnum); 453 if ((flags & IP_NODEFAULTFLOWID) == 0) { 454 /* Unconditionally set flowid. */ 455 m->m_pkthdr.flowid = inp->inp_flowid; 456 M_HASHTYPE_SET(m, inp->inp_flowtype); 457 } 458 #ifdef NUMA 459 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 460 #endif 461 } 462 463 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 464 /* 465 * IPSec checking which handles several cases. 466 * FAST IPSEC: We re-injected the packet. 467 * XXX: need scope argument. 468 */ 469 if (IPSEC_ENABLED(ipv6)) { 470 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 471 if (error == EINPROGRESS) 472 error = 0; 473 goto done; 474 } 475 } 476 #endif /* IPSEC */ 477 478 /* Source address validation. */ 479 ip6 = mtod(m, struct ip6_hdr *); 480 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 481 (flags & IPV6_UNSPECSRC) == 0) { 482 error = EOPNOTSUPP; 483 IP6STAT_INC(ip6s_badscope); 484 goto bad; 485 } 486 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 487 error = EOPNOTSUPP; 488 IP6STAT_INC(ip6s_badscope); 489 goto bad; 490 } 491 492 /* 493 * If we are given packet options to add extension headers prepare them. 494 * Calculate the total length of the extension header chain. 495 * Keep the length of the unfragmentable part for fragmentation. 496 */ 497 bzero(&exthdrs, sizeof(exthdrs)); 498 optlen = 0; 499 unfragpartlen = sizeof(struct ip6_hdr); 500 if (opt) { 501 /* Hop-by-Hop options header. */ 502 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen); 503 504 /* Destination options header (1st part). */ 505 if (opt->ip6po_rthdr) { 506 #ifndef RTHDR_SUPPORT_IMPLEMENTED 507 /* 508 * If there is a routing header, discard the packet 509 * right away here. RH0/1 are obsolete and we do not 510 * currently support RH2/3/4. 511 * People trying to use RH253/254 may want to disable 512 * this check. 513 * The moment we do support any routing header (again) 514 * this block should check the routing type more 515 * selectively. 516 */ 517 error = EINVAL; 518 goto bad; 519 #endif 520 521 /* 522 * Destination options header (1st part). 523 * This only makes sense with a routing header. 524 * See Section 9.2 of RFC 3542. 525 * Disabling this part just for MIP6 convenience is 526 * a bad idea. We need to think carefully about a 527 * way to make the advanced API coexist with MIP6 528 * options, which might automatically be inserted in 529 * the kernel. 530 */ 531 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1, 532 optlen); 533 } 534 /* Routing header. */ 535 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen); 536 537 unfragpartlen += optlen; 538 539 /* 540 * NOTE: we don't add AH/ESP length here (done in 541 * ip6_ipsec_output()). 542 */ 543 544 /* Destination options header (2nd part). */ 545 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen); 546 } 547 548 /* 549 * If there is at least one extension header, 550 * separate IP6 header from the payload. 551 */ 552 hdrsplit = false; 553 if (optlen) { 554 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 555 m = NULL; 556 goto freehdrs; 557 } 558 m = exthdrs.ip6e_ip6; 559 ip6 = mtod(m, struct ip6_hdr *); 560 hdrsplit = true; 561 } 562 563 /* Adjust mbuf packet header length. */ 564 m->m_pkthdr.len += optlen; 565 plen = m->m_pkthdr.len - sizeof(*ip6); 566 567 /* If this is a jumbo payload, insert a jumbo payload option. */ 568 if (plen > IPV6_MAXPACKET) { 569 if (!hdrsplit) { 570 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 571 m = NULL; 572 goto freehdrs; 573 } 574 m = exthdrs.ip6e_ip6; 575 ip6 = mtod(m, struct ip6_hdr *); 576 hdrsplit = true; 577 } 578 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 579 goto freehdrs; 580 ip6->ip6_plen = 0; 581 } else 582 ip6->ip6_plen = htons(plen); 583 nexthdrp = &ip6->ip6_nxt; 584 585 if (optlen) { 586 /* 587 * Concatenate headers and fill in next header fields. 588 * Here we have, on "m" 589 * IPv6 payload 590 * and we insert headers accordingly. 591 * Finally, we should be getting: 592 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]. 593 * 594 * During the header composing process "m" points to IPv6 595 * header. "mprev" points to an extension header prior to esp. 596 */ 597 mprev = m; 598 599 /* 600 * We treat dest2 specially. This makes IPsec processing 601 * much easier. The goal here is to make mprev point the 602 * mbuf prior to dest2. 603 * 604 * Result: IPv6 dest2 payload. 605 * m and mprev will point to IPv6 header. 606 */ 607 if (exthdrs.ip6e_dest2) { 608 if (!hdrsplit) 609 panic("%s:%d: assumption failed: " 610 "hdr not split: hdrsplit %d exthdrs %p", 611 __func__, __LINE__, hdrsplit, &exthdrs); 612 exthdrs.ip6e_dest2->m_next = m->m_next; 613 m->m_next = exthdrs.ip6e_dest2; 614 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 615 ip6->ip6_nxt = IPPROTO_DSTOPTS; 616 } 617 618 /* 619 * Result: IPv6 hbh dest1 rthdr dest2 payload. 620 * m will point to IPv6 header. mprev will point to the 621 * extension header prior to dest2 (rthdr in the above case). 622 */ 623 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 624 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 625 IPPROTO_DSTOPTS); 626 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 627 IPPROTO_ROUTING); 628 } 629 630 IP6STAT_INC(ip6s_localout); 631 632 /* Route packet. */ 633 ro_pmtu = ro; 634 if (opt && opt->ip6po_rthdr) 635 ro = &opt->ip6po_route; 636 if (ro != NULL) 637 dst = (struct sockaddr_in6 *)&ro->ro_dst; 638 else 639 dst = &sin6; 640 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 641 642 again: 643 /* 644 * If specified, try to fill in the traffic class field. 645 * Do not override if a non-zero value is already set. 646 * We check the diffserv field and the ECN field separately. 647 */ 648 if (opt && opt->ip6po_tclass >= 0) { 649 int mask = 0; 650 651 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 652 mask |= 0xfc; 653 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 654 mask |= 0x03; 655 if (mask != 0) 656 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 657 } 658 659 /* Fill in or override the hop limit field, if necessary. */ 660 if (opt && opt->ip6po_hlim != -1) 661 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 662 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 663 if (im6o != NULL) 664 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 665 else 666 ip6->ip6_hlim = V_ip6_defmcasthlim; 667 } 668 669 if (ro == NULL || ro->ro_rt == NULL) { 670 bzero(dst, sizeof(*dst)); 671 dst->sin6_family = AF_INET6; 672 dst->sin6_len = sizeof(*dst); 673 dst->sin6_addr = ip6->ip6_dst; 674 } 675 /* 676 * Validate route against routing table changes. 677 * Make sure that the address family is set in route. 678 */ 679 rt = NULL; 680 ifp = NULL; 681 mtu = 0; 682 if (ro != NULL) { 683 if (ro->ro_rt != NULL && inp != NULL) { 684 ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */ 685 RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, 686 fibnum); 687 } 688 if (ro->ro_rt != NULL && fwd_tag == NULL && 689 ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 690 ro->ro_rt->rt_ifp == NULL || 691 !RT_LINK_IS_UP(ro->ro_rt->rt_ifp) || 692 ro->ro_dst.sin6_family != AF_INET6 || 693 !IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst))) 694 RO_INVALIDATE_CACHE(ro); 695 696 if (ro->ro_rt != NULL && fwd_tag == NULL && 697 (ro->ro_rt->rt_flags & RTF_UP) && 698 ro->ro_dst.sin6_family == AF_INET6 && 699 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 700 rt = ro->ro_rt; 701 ifp = ro->ro_rt->rt_ifp; 702 } else { 703 if (ro->ro_lle) 704 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 705 ro->ro_lle = NULL; 706 if (fwd_tag == NULL) { 707 bzero(&dst_sa, sizeof(dst_sa)); 708 dst_sa.sin6_family = AF_INET6; 709 dst_sa.sin6_len = sizeof(dst_sa); 710 dst_sa.sin6_addr = ip6->ip6_dst; 711 } 712 error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, 713 &rt, fibnum); 714 if (error != 0) { 715 IP6STAT_INC(ip6s_noroute); 716 if (ifp != NULL) 717 in6_ifstat_inc(ifp, ifs6_out_discard); 718 goto bad; 719 } 720 if (ifp != NULL) 721 mtu = ifp->if_mtu; 722 } 723 if (rt == NULL) { 724 /* 725 * If in6_selectroute() does not return a route entry 726 * dst may not have been updated. 727 */ 728 *dst = dst_sa; /* XXX */ 729 } else { 730 if (rt->rt_flags & RTF_HOST) 731 mtu = rt->rt_mtu; 732 ia = (struct in6_ifaddr *)(rt->rt_ifa); 733 counter_u64_add(rt->rt_pksent, 1); 734 } 735 } else { 736 struct nhop6_extended nh6; 737 struct in6_addr kdst; 738 uint32_t scopeid; 739 740 if (fwd_tag == NULL) { 741 bzero(&dst_sa, sizeof(dst_sa)); 742 dst_sa.sin6_family = AF_INET6; 743 dst_sa.sin6_len = sizeof(dst_sa); 744 dst_sa.sin6_addr = ip6->ip6_dst; 745 } 746 747 if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) && 748 im6o != NULL && 749 (ifp = im6o->im6o_multicast_ifp) != NULL) { 750 /* We do not need a route lookup. */ 751 *dst = dst_sa; /* XXX */ 752 goto nonh6lookup; 753 } 754 755 in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid); 756 757 if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) || 758 IN6_IS_ADDR_MC_NODELOCAL(&dst_sa.sin6_addr)) { 759 if (scopeid > 0) { 760 ifp = in6_getlinkifnet(scopeid); 761 *dst = dst_sa; /* XXX */ 762 goto nonh6lookup; 763 } 764 } 765 766 error = fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, 767 &nh6); 768 if (error != 0) { 769 IP6STAT_INC(ip6s_noroute); 770 /* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */ 771 error = EHOSTUNREACH;; 772 goto bad; 773 } 774 775 ifp = nh6.nh_ifp; 776 mtu = nh6.nh_mtu; 777 dst->sin6_addr = nh6.nh_addr; 778 ia = nh6.nh_ia; 779 fib6_free_nh_ext(fibnum, &nh6); 780 nonh6lookup: 781 ; 782 } 783 784 /* Then rt (for unicast) and ifp must be non-NULL valid values. */ 785 if ((flags & IPV6_FORWARDING) == 0) { 786 /* XXX: the FORWARDING flag can be set for mrouting. */ 787 in6_ifstat_inc(ifp, ifs6_out_request); 788 } 789 790 /* Setup data structures for scope ID checks. */ 791 src0 = ip6->ip6_src; 792 bzero(&src_sa, sizeof(src_sa)); 793 src_sa.sin6_family = AF_INET6; 794 src_sa.sin6_len = sizeof(src_sa); 795 src_sa.sin6_addr = ip6->ip6_src; 796 797 dst0 = ip6->ip6_dst; 798 /* Re-initialize to be sure. */ 799 bzero(&dst_sa, sizeof(dst_sa)); 800 dst_sa.sin6_family = AF_INET6; 801 dst_sa.sin6_len = sizeof(dst_sa); 802 dst_sa.sin6_addr = ip6->ip6_dst; 803 804 /* Check for valid scope ID. */ 805 if (in6_setscope(&src0, ifp, &zone) == 0 && 806 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && 807 in6_setscope(&dst0, ifp, &zone) == 0 && 808 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { 809 /* 810 * The outgoing interface is in the zone of the source 811 * and destination addresses. 812 * 813 * Because the loopback interface cannot receive 814 * packets with a different scope ID than its own, 815 * there is a trick to pretend the outgoing packet 816 * was received by the real network interface, by 817 * setting "origifp" different from "ifp". This is 818 * only allowed when "ifp" is a loopback network 819 * interface. Refer to code in nd6_output_ifp() for 820 * more details. 821 */ 822 origifp = ifp; 823 824 /* 825 * We should use ia_ifp to support the case of sending 826 * packets to an address of our own. 827 */ 828 if (ia != NULL && ia->ia_ifp) 829 ifp = ia->ia_ifp; 830 831 } else if ((ifp->if_flags & IFF_LOOPBACK) == 0 || 832 sa6_recoverscope(&src_sa) != 0 || 833 sa6_recoverscope(&dst_sa) != 0 || 834 dst_sa.sin6_scope_id == 0 || 835 (src_sa.sin6_scope_id != 0 && 836 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || 837 (origifp = ifnet_byindex(dst_sa.sin6_scope_id)) == NULL) { 838 /* 839 * If the destination network interface is not a 840 * loopback interface, or the destination network 841 * address has no scope ID, or the source address has 842 * a scope ID set which is different from the 843 * destination address one, or there is no network 844 * interface representing this scope ID, the address 845 * pair is considered invalid. 846 */ 847 IP6STAT_INC(ip6s_badscope); 848 in6_ifstat_inc(ifp, ifs6_out_discard); 849 if (error == 0) 850 error = EHOSTUNREACH; /* XXX */ 851 goto bad; 852 } 853 /* All scope ID checks are successful. */ 854 855 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 856 if (opt && opt->ip6po_nextroute.ro_rt) { 857 /* 858 * The nexthop is explicitly specified by the 859 * application. We assume the next hop is an IPv6 860 * address. 861 */ 862 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 863 } 864 else if ((rt->rt_flags & RTF_GATEWAY)) 865 dst = (struct sockaddr_in6 *)rt->rt_gateway; 866 } 867 868 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 869 m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */ 870 } else { 871 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 872 in6_ifstat_inc(ifp, ifs6_out_mcast); 873 874 /* Confirm that the outgoing interface supports multicast. */ 875 if (!(ifp->if_flags & IFF_MULTICAST)) { 876 IP6STAT_INC(ip6s_noroute); 877 in6_ifstat_inc(ifp, ifs6_out_discard); 878 error = ENETUNREACH; 879 goto bad; 880 } 881 if ((im6o == NULL && in6_mcast_loop) || 882 (im6o && im6o->im6o_multicast_loop)) { 883 /* 884 * Loop back multicast datagram if not expressly 885 * forbidden to do so, even if we have not joined 886 * the address; protocols will filter it later, 887 * thus deferring a hash lookup and lock acquisition 888 * at the expense of an m_copym(). 889 */ 890 ip6_mloopback(ifp, m); 891 } else { 892 /* 893 * If we are acting as a multicast router, perform 894 * multicast forwarding as if the packet had just 895 * arrived on the interface to which we are about 896 * to send. The multicast forwarding function 897 * recursively calls this function, using the 898 * IPV6_FORWARDING flag to prevent infinite recursion. 899 * 900 * Multicasts that are looped back by ip6_mloopback(), 901 * above, will be forwarded by the ip6_input() routine, 902 * if necessary. 903 */ 904 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 905 /* 906 * XXX: ip6_mforward expects that rcvif is NULL 907 * when it is called from the originating path. 908 * However, it may not always be the case. 909 */ 910 m->m_pkthdr.rcvif = NULL; 911 if (ip6_mforward(ip6, ifp, m) != 0) { 912 m_freem(m); 913 goto done; 914 } 915 } 916 } 917 /* 918 * Multicasts with a hoplimit of zero may be looped back, 919 * above, but must not be transmitted on a network. 920 * Also, multicasts addressed to the loopback interface 921 * are not sent -- the above call to ip6_mloopback() will 922 * loop back a copy if this host actually belongs to the 923 * destination group on the loopback interface. 924 */ 925 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 926 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 927 m_freem(m); 928 goto done; 929 } 930 } 931 932 /* 933 * Fill the outgoing inteface to tell the upper layer 934 * to increment per-interface statistics. 935 */ 936 if (ifpp) 937 *ifpp = ifp; 938 939 /* Determine path MTU. */ 940 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 941 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 942 goto bad; 943 KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p " 944 "alwaysfrag %d fibnum %u\n", __func__, __LINE__, mtu, ro_pmtu, ro, 945 ifp, alwaysfrag, fibnum)); 946 947 /* 948 * The caller of this function may specify to use the minimum MTU 949 * in some cases. 950 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 951 * setting. The logic is a bit complicated; by default, unicast 952 * packets will follow path MTU while multicast packets will be sent at 953 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 954 * including unicast ones will be sent at the minimum MTU. Multicast 955 * packets will always be sent at the minimum MTU unless 956 * IP6PO_MINMTU_DISABLE is explicitly specified. 957 * See RFC 3542 for more details. 958 */ 959 if (mtu > IPV6_MMTU) { 960 if ((flags & IPV6_MINMTU)) 961 mtu = IPV6_MMTU; 962 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 963 mtu = IPV6_MMTU; 964 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 965 (opt == NULL || 966 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 967 mtu = IPV6_MMTU; 968 } 969 } 970 971 /* 972 * Clear embedded scope identifiers if necessary. 973 * in6_clearscope() will touch the addresses only when necessary. 974 */ 975 in6_clearscope(&ip6->ip6_src); 976 in6_clearscope(&ip6->ip6_dst); 977 978 /* 979 * If the outgoing packet contains a hop-by-hop options header, 980 * it must be examined and processed even by the source node. 981 * (RFC 2460, section 4.) 982 */ 983 if (exthdrs.ip6e_hbh) { 984 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 985 u_int32_t dummy; /* XXX unused */ 986 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 987 988 #ifdef DIAGNOSTIC 989 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 990 panic("ip6e_hbh is not contiguous"); 991 #endif 992 /* 993 * XXX: if we have to send an ICMPv6 error to the sender, 994 * we need the M_LOOP flag since icmp6_error() expects 995 * the IPv6 and the hop-by-hop options header are 996 * contiguous unless the flag is set. 997 */ 998 m->m_flags |= M_LOOP; 999 m->m_pkthdr.rcvif = ifp; 1000 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 1001 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 1002 &dummy, &plen) < 0) { 1003 /* m was already freed at this point. */ 1004 error = EINVAL;/* better error? */ 1005 goto done; 1006 } 1007 m->m_flags &= ~M_LOOP; /* XXX */ 1008 m->m_pkthdr.rcvif = NULL; 1009 } 1010 1011 /* Jump over all PFIL processing if hooks are not active. */ 1012 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head)) 1013 goto passout; 1014 1015 odst = ip6->ip6_dst; 1016 /* Run through list of hooks for output packets. */ 1017 switch (pfil_run_hooks(V_inet6_pfil_head, &m, ifp, PFIL_OUT, inp)) { 1018 case PFIL_PASS: 1019 ip6 = mtod(m, struct ip6_hdr *); 1020 break; 1021 case PFIL_DROPPED: 1022 error = EACCES; 1023 /* FALLTHROUGH */ 1024 case PFIL_CONSUMED: 1025 goto done; 1026 } 1027 1028 needfiblookup = 0; 1029 /* See if destination IP address was changed by packet filter. */ 1030 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 1031 m->m_flags |= M_SKIP_FIREWALL; 1032 /* If destination is now ourself drop to ip6_input(). */ 1033 if (in6_localip(&ip6->ip6_dst)) { 1034 m->m_flags |= M_FASTFWD_OURS; 1035 if (m->m_pkthdr.rcvif == NULL) 1036 m->m_pkthdr.rcvif = V_loif; 1037 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1038 m->m_pkthdr.csum_flags |= 1039 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1040 m->m_pkthdr.csum_data = 0xffff; 1041 } 1042 #ifdef SCTP 1043 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1044 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1045 #endif 1046 error = netisr_queue(NETISR_IPV6, m); 1047 goto done; 1048 } else { 1049 if (ro != NULL) 1050 RO_INVALIDATE_CACHE(ro); 1051 needfiblookup = 1; /* Redo the routing table lookup. */ 1052 } 1053 } 1054 /* See if fib was changed by packet filter. */ 1055 if (fibnum != M_GETFIB(m)) { 1056 m->m_flags |= M_SKIP_FIREWALL; 1057 fibnum = M_GETFIB(m); 1058 if (ro != NULL) 1059 RO_INVALIDATE_CACHE(ro); 1060 needfiblookup = 1; 1061 } 1062 if (needfiblookup) 1063 goto again; 1064 1065 /* See if local, if yes, send it to netisr. */ 1066 if (m->m_flags & M_FASTFWD_OURS) { 1067 if (m->m_pkthdr.rcvif == NULL) 1068 m->m_pkthdr.rcvif = V_loif; 1069 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1070 m->m_pkthdr.csum_flags |= 1071 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1072 m->m_pkthdr.csum_data = 0xffff; 1073 } 1074 #ifdef SCTP 1075 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1076 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1077 #endif 1078 error = netisr_queue(NETISR_IPV6, m); 1079 goto done; 1080 } 1081 /* Or forward to some other address? */ 1082 if ((m->m_flags & M_IP6_NEXTHOP) && 1083 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 1084 if (ro != NULL) 1085 dst = (struct sockaddr_in6 *)&ro->ro_dst; 1086 else 1087 dst = &sin6; 1088 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 1089 m->m_flags |= M_SKIP_FIREWALL; 1090 m->m_flags &= ~M_IP6_NEXTHOP; 1091 m_tag_delete(m, fwd_tag); 1092 goto again; 1093 } 1094 1095 passout: 1096 /* 1097 * Send the packet to the outgoing interface. 1098 * If necessary, do IPv6 fragmentation before sending. 1099 * 1100 * The logic here is rather complex: 1101 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 1102 * 1-a: send as is if tlen <= path mtu 1103 * 1-b: fragment if tlen > path mtu 1104 * 1105 * 2: if user asks us not to fragment (dontfrag == 1) 1106 * 2-a: send as is if tlen <= interface mtu 1107 * 2-b: error if tlen > interface mtu 1108 * 1109 * 3: if we always need to attach fragment header (alwaysfrag == 1) 1110 * always fragment 1111 * 1112 * 4: if dontfrag == 1 && alwaysfrag == 1 1113 * error, as we cannot handle this conflicting request. 1114 */ 1115 sw_csum = m->m_pkthdr.csum_flags; 1116 if (!hdrsplit) { 1117 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 1118 sw_csum &= ~ifp->if_hwassist; 1119 } else 1120 tso = 0; 1121 /* 1122 * If we added extension headers, we will not do TSO and calculate the 1123 * checksums ourselves for now. 1124 * XXX-BZ Need a framework to know when the NIC can handle it, even 1125 * with ext. hdrs. 1126 */ 1127 error = ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen, false); 1128 if (error != 0) 1129 goto bad; 1130 /* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */ 1131 tlen = m->m_pkthdr.len; 1132 1133 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 1134 dontfrag = 1; 1135 else 1136 dontfrag = 0; 1137 if (dontfrag && alwaysfrag) { /* Case 4. */ 1138 /* Conflicting request - can't transmit. */ 1139 error = EMSGSIZE; 1140 goto bad; 1141 } 1142 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* Case 2-b. */ 1143 /* 1144 * Even if the DONTFRAG option is specified, we cannot send the 1145 * packet when the data length is larger than the MTU of the 1146 * outgoing interface. 1147 * Notify the error by sending IPV6_PATHMTU ancillary data if 1148 * application wanted to know the MTU value. Also return an 1149 * error code (this is not described in the API spec). 1150 */ 1151 if (inp != NULL) 1152 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 1153 error = EMSGSIZE; 1154 goto bad; 1155 } 1156 1157 /* Transmit packet without fragmentation. */ 1158 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* Cases 1-a and 2-a. */ 1159 struct in6_ifaddr *ia6; 1160 1161 ip6 = mtod(m, struct ip6_hdr *); 1162 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1163 if (ia6) { 1164 /* Record statistics for this interface address. */ 1165 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 1166 counter_u64_add(ia6->ia_ifa.ifa_obytes, 1167 m->m_pkthdr.len); 1168 ifa_free(&ia6->ia_ifa); 1169 } 1170 error = ip6_output_send(inp, ifp, origifp, m, dst, ro); 1171 goto done; 1172 } 1173 1174 /* Try to fragment the packet. Cases 1-b and 3. */ 1175 if (mtu < IPV6_MMTU) { 1176 /* Path MTU cannot be less than IPV6_MMTU. */ 1177 error = EMSGSIZE; 1178 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1179 goto bad; 1180 } else if (ip6->ip6_plen == 0) { 1181 /* Jumbo payload cannot be fragmented. */ 1182 error = EMSGSIZE; 1183 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1184 goto bad; 1185 } else { 1186 u_char nextproto; 1187 1188 /* 1189 * Too large for the destination or interface; 1190 * fragment if possible. 1191 * Must be able to put at least 8 bytes per fragment. 1192 */ 1193 if (mtu > IPV6_MAXPACKET) 1194 mtu = IPV6_MAXPACKET; 1195 1196 len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7; 1197 if (len < 8) { 1198 error = EMSGSIZE; 1199 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1200 goto bad; 1201 } 1202 1203 /* 1204 * If the interface will not calculate checksums on 1205 * fragmented packets, then do it here. 1206 * XXX-BZ handle the hw offloading case. Need flags. 1207 */ 1208 error = ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags, 1209 plen, optlen, true); 1210 if (error != 0) 1211 goto bad; 1212 1213 /* 1214 * Change the next header field of the last header in the 1215 * unfragmentable part. 1216 */ 1217 if (exthdrs.ip6e_rthdr) { 1218 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1219 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1220 } else if (exthdrs.ip6e_dest1) { 1221 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1222 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1223 } else if (exthdrs.ip6e_hbh) { 1224 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1225 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1226 } else { 1227 ip6 = mtod(m, struct ip6_hdr *); 1228 nextproto = ip6->ip6_nxt; 1229 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1230 } 1231 1232 /* 1233 * Loop through length of segment after first fragment, 1234 * make new header and copy data of each part and link onto 1235 * chain. 1236 */ 1237 m0 = m; 1238 id = htonl(ip6_randomid()); 1239 error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id); 1240 if (error != 0) 1241 goto sendorfree; 1242 1243 in6_ifstat_inc(ifp, ifs6_out_fragok); 1244 } 1245 1246 /* Remove leading garbage. */ 1247 sendorfree: 1248 m = m0->m_nextpkt; 1249 m0->m_nextpkt = 0; 1250 m_freem(m0); 1251 for (; m; m = m0) { 1252 m0 = m->m_nextpkt; 1253 m->m_nextpkt = 0; 1254 if (error == 0) { 1255 /* Record statistics for this interface address. */ 1256 if (ia) { 1257 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1258 counter_u64_add(ia->ia_ifa.ifa_obytes, 1259 m->m_pkthdr.len); 1260 } 1261 error = ip6_output_send(inp, ifp, origifp, m, dst, ro); 1262 } else 1263 m_freem(m); 1264 } 1265 1266 if (error == 0) 1267 IP6STAT_INC(ip6s_fragmented); 1268 1269 done: 1270 return (error); 1271 1272 freehdrs: 1273 m_freem(exthdrs.ip6e_hbh); /* m_freem() checks if mbuf is NULL. */ 1274 m_freem(exthdrs.ip6e_dest1); 1275 m_freem(exthdrs.ip6e_rthdr); 1276 m_freem(exthdrs.ip6e_dest2); 1277 /* FALLTHROUGH */ 1278 bad: 1279 if (m) 1280 m_freem(m); 1281 goto done; 1282 } 1283 1284 static int 1285 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1286 { 1287 struct mbuf *m; 1288 1289 if (hlen > MCLBYTES) 1290 return (ENOBUFS); /* XXX */ 1291 1292 if (hlen > MLEN) 1293 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1294 else 1295 m = m_get(M_NOWAIT, MT_DATA); 1296 if (m == NULL) 1297 return (ENOBUFS); 1298 m->m_len = hlen; 1299 if (hdr) 1300 bcopy(hdr, mtod(m, caddr_t), hlen); 1301 1302 *mp = m; 1303 return (0); 1304 } 1305 1306 /* 1307 * Insert jumbo payload option. 1308 */ 1309 static int 1310 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1311 { 1312 struct mbuf *mopt; 1313 u_char *optbuf; 1314 u_int32_t v; 1315 1316 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1317 1318 /* 1319 * If there is no hop-by-hop options header, allocate new one. 1320 * If there is one but it doesn't have enough space to store the 1321 * jumbo payload option, allocate a cluster to store the whole options. 1322 * Otherwise, use it to store the options. 1323 */ 1324 if (exthdrs->ip6e_hbh == NULL) { 1325 mopt = m_get(M_NOWAIT, MT_DATA); 1326 if (mopt == NULL) 1327 return (ENOBUFS); 1328 mopt->m_len = JUMBOOPTLEN; 1329 optbuf = mtod(mopt, u_char *); 1330 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1331 exthdrs->ip6e_hbh = mopt; 1332 } else { 1333 struct ip6_hbh *hbh; 1334 1335 mopt = exthdrs->ip6e_hbh; 1336 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1337 /* 1338 * XXX assumption: 1339 * - exthdrs->ip6e_hbh is not referenced from places 1340 * other than exthdrs. 1341 * - exthdrs->ip6e_hbh is not an mbuf chain. 1342 */ 1343 int oldoptlen = mopt->m_len; 1344 struct mbuf *n; 1345 1346 /* 1347 * XXX: give up if the whole (new) hbh header does 1348 * not fit even in an mbuf cluster. 1349 */ 1350 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1351 return (ENOBUFS); 1352 1353 /* 1354 * As a consequence, we must always prepare a cluster 1355 * at this point. 1356 */ 1357 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1358 if (n == NULL) 1359 return (ENOBUFS); 1360 n->m_len = oldoptlen + JUMBOOPTLEN; 1361 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1362 oldoptlen); 1363 optbuf = mtod(n, caddr_t) + oldoptlen; 1364 m_freem(mopt); 1365 mopt = exthdrs->ip6e_hbh = n; 1366 } else { 1367 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1368 mopt->m_len += JUMBOOPTLEN; 1369 } 1370 optbuf[0] = IP6OPT_PADN; 1371 optbuf[1] = 1; 1372 1373 /* 1374 * Adjust the header length according to the pad and 1375 * the jumbo payload option. 1376 */ 1377 hbh = mtod(mopt, struct ip6_hbh *); 1378 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1379 } 1380 1381 /* fill in the option. */ 1382 optbuf[2] = IP6OPT_JUMBO; 1383 optbuf[3] = 4; 1384 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1385 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1386 1387 /* finally, adjust the packet header length */ 1388 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1389 1390 return (0); 1391 #undef JUMBOOPTLEN 1392 } 1393 1394 /* 1395 * Insert fragment header and copy unfragmentable header portions. 1396 */ 1397 static int 1398 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1399 struct ip6_frag **frghdrp) 1400 { 1401 struct mbuf *n, *mlast; 1402 1403 if (hlen > sizeof(struct ip6_hdr)) { 1404 n = m_copym(m0, sizeof(struct ip6_hdr), 1405 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1406 if (n == NULL) 1407 return (ENOBUFS); 1408 m->m_next = n; 1409 } else 1410 n = m; 1411 1412 /* Search for the last mbuf of unfragmentable part. */ 1413 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1414 ; 1415 1416 if (M_WRITABLE(mlast) && 1417 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1418 /* use the trailing space of the last mbuf for the fragment hdr */ 1419 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1420 mlast->m_len); 1421 mlast->m_len += sizeof(struct ip6_frag); 1422 m->m_pkthdr.len += sizeof(struct ip6_frag); 1423 } else { 1424 /* allocate a new mbuf for the fragment header */ 1425 struct mbuf *mfrg; 1426 1427 mfrg = m_get(M_NOWAIT, MT_DATA); 1428 if (mfrg == NULL) 1429 return (ENOBUFS); 1430 mfrg->m_len = sizeof(struct ip6_frag); 1431 *frghdrp = mtod(mfrg, struct ip6_frag *); 1432 mlast->m_next = mfrg; 1433 } 1434 1435 return (0); 1436 } 1437 1438 /* 1439 * Calculates IPv6 path mtu for destination @dst. 1440 * Resulting MTU is stored in @mtup. 1441 * 1442 * Returns 0 on success. 1443 */ 1444 static int 1445 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1446 { 1447 struct nhop6_extended nh6; 1448 struct in6_addr kdst; 1449 uint32_t scopeid; 1450 struct ifnet *ifp; 1451 u_long mtu; 1452 int error; 1453 1454 in6_splitscope(dst, &kdst, &scopeid); 1455 if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0) 1456 return (EHOSTUNREACH); 1457 1458 ifp = nh6.nh_ifp; 1459 mtu = nh6.nh_mtu; 1460 1461 error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL, 0); 1462 fib6_free_nh_ext(fibnum, &nh6); 1463 1464 return (error); 1465 } 1466 1467 /* 1468 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1469 * and cached data in @ro_pmtu. 1470 * MTU from (successful) route lookup is saved (along with dst) 1471 * inside @ro_pmtu to avoid subsequent route lookups after packet 1472 * filter processing. 1473 * 1474 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1475 * Returns 0 on success. 1476 */ 1477 static int 1478 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1479 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1480 int *alwaysfragp, u_int fibnum, u_int proto) 1481 { 1482 struct nhop6_basic nh6; 1483 struct in6_addr kdst; 1484 uint32_t scopeid; 1485 struct sockaddr_in6 *sa6_dst, sin6; 1486 u_long mtu; 1487 1488 mtu = 0; 1489 if (ro_pmtu == NULL || do_lookup) { 1490 1491 /* 1492 * Here ro_pmtu has final destination address, while 1493 * ro might represent immediate destination. 1494 * Use ro_pmtu destination since mtu might differ. 1495 */ 1496 if (ro_pmtu != NULL) { 1497 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1498 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1499 ro_pmtu->ro_mtu = 0; 1500 } else 1501 sa6_dst = &sin6; 1502 1503 if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) { 1504 bzero(sa6_dst, sizeof(*sa6_dst)); 1505 sa6_dst->sin6_family = AF_INET6; 1506 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1507 sa6_dst->sin6_addr = *dst; 1508 1509 in6_splitscope(dst, &kdst, &scopeid); 1510 if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0, 1511 &nh6) == 0) { 1512 mtu = nh6.nh_mtu; 1513 if (ro_pmtu != NULL) 1514 ro_pmtu->ro_mtu = mtu; 1515 } 1516 } else 1517 mtu = ro_pmtu->ro_mtu; 1518 } 1519 1520 if (ro_pmtu != NULL && ro_pmtu->ro_rt != NULL) 1521 mtu = ro_pmtu->ro_rt->rt_mtu; 1522 1523 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1524 } 1525 1526 /* 1527 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1528 * hostcache data for @dst. 1529 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1530 * 1531 * Returns 0 on success. 1532 */ 1533 static int 1534 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1535 u_long *mtup, int *alwaysfragp, u_int proto) 1536 { 1537 u_long mtu = 0; 1538 int alwaysfrag = 0; 1539 int error = 0; 1540 1541 if (rt_mtu > 0) { 1542 u_int32_t ifmtu; 1543 struct in_conninfo inc; 1544 1545 bzero(&inc, sizeof(inc)); 1546 inc.inc_flags |= INC_ISIPV6; 1547 inc.inc6_faddr = *dst; 1548 1549 ifmtu = IN6_LINKMTU(ifp); 1550 1551 /* TCP is known to react to pmtu changes so skip hc */ 1552 if (proto != IPPROTO_TCP) 1553 mtu = tcp_hc_getmtu(&inc); 1554 1555 if (mtu) 1556 mtu = min(mtu, rt_mtu); 1557 else 1558 mtu = rt_mtu; 1559 if (mtu == 0) 1560 mtu = ifmtu; 1561 else if (mtu < IPV6_MMTU) { 1562 /* 1563 * RFC2460 section 5, last paragraph: 1564 * if we record ICMPv6 too big message with 1565 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1566 * or smaller, with framgent header attached. 1567 * (fragment header is needed regardless from the 1568 * packet size, for translators to identify packets) 1569 */ 1570 alwaysfrag = 1; 1571 mtu = IPV6_MMTU; 1572 } 1573 } else if (ifp) { 1574 mtu = IN6_LINKMTU(ifp); 1575 } else 1576 error = EHOSTUNREACH; /* XXX */ 1577 1578 *mtup = mtu; 1579 if (alwaysfragp) 1580 *alwaysfragp = alwaysfrag; 1581 return (error); 1582 } 1583 1584 /* 1585 * IP6 socket option processing. 1586 */ 1587 int 1588 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1589 { 1590 int optdatalen, uproto; 1591 void *optdata; 1592 struct inpcb *inp = sotoinpcb(so); 1593 int error, optval; 1594 int level, op, optname; 1595 int optlen; 1596 struct thread *td; 1597 #ifdef RSS 1598 uint32_t rss_bucket; 1599 int retval; 1600 #endif 1601 1602 /* 1603 * Don't use more than a quarter of mbuf clusters. N.B.: 1604 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1605 * on LP64 architectures, so cast to u_long to avoid undefined 1606 * behavior. ILP32 architectures cannot have nmbclusters 1607 * large enough to overflow for other reasons. 1608 */ 1609 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1610 1611 level = sopt->sopt_level; 1612 op = sopt->sopt_dir; 1613 optname = sopt->sopt_name; 1614 optlen = sopt->sopt_valsize; 1615 td = sopt->sopt_td; 1616 error = 0; 1617 optval = 0; 1618 uproto = (int)so->so_proto->pr_protocol; 1619 1620 if (level != IPPROTO_IPV6) { 1621 error = EINVAL; 1622 1623 if (sopt->sopt_level == SOL_SOCKET && 1624 sopt->sopt_dir == SOPT_SET) { 1625 switch (sopt->sopt_name) { 1626 case SO_REUSEADDR: 1627 INP_WLOCK(inp); 1628 if ((so->so_options & SO_REUSEADDR) != 0) 1629 inp->inp_flags2 |= INP_REUSEADDR; 1630 else 1631 inp->inp_flags2 &= ~INP_REUSEADDR; 1632 INP_WUNLOCK(inp); 1633 error = 0; 1634 break; 1635 case SO_REUSEPORT: 1636 INP_WLOCK(inp); 1637 if ((so->so_options & SO_REUSEPORT) != 0) 1638 inp->inp_flags2 |= INP_REUSEPORT; 1639 else 1640 inp->inp_flags2 &= ~INP_REUSEPORT; 1641 INP_WUNLOCK(inp); 1642 error = 0; 1643 break; 1644 case SO_REUSEPORT_LB: 1645 INP_WLOCK(inp); 1646 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1647 inp->inp_flags2 |= INP_REUSEPORT_LB; 1648 else 1649 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1650 INP_WUNLOCK(inp); 1651 error = 0; 1652 break; 1653 case SO_SETFIB: 1654 INP_WLOCK(inp); 1655 inp->inp_inc.inc_fibnum = so->so_fibnum; 1656 INP_WUNLOCK(inp); 1657 error = 0; 1658 break; 1659 case SO_MAX_PACING_RATE: 1660 #ifdef RATELIMIT 1661 INP_WLOCK(inp); 1662 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1663 INP_WUNLOCK(inp); 1664 error = 0; 1665 #else 1666 error = EOPNOTSUPP; 1667 #endif 1668 break; 1669 default: 1670 break; 1671 } 1672 } 1673 } else { /* level == IPPROTO_IPV6 */ 1674 switch (op) { 1675 1676 case SOPT_SET: 1677 switch (optname) { 1678 case IPV6_2292PKTOPTIONS: 1679 #ifdef IPV6_PKTOPTIONS 1680 case IPV6_PKTOPTIONS: 1681 #endif 1682 { 1683 struct mbuf *m; 1684 1685 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1686 printf("ip6_ctloutput: mbuf limit hit\n"); 1687 error = ENOBUFS; 1688 break; 1689 } 1690 1691 error = soopt_getm(sopt, &m); /* XXX */ 1692 if (error != 0) 1693 break; 1694 error = soopt_mcopyin(sopt, m); /* XXX */ 1695 if (error != 0) 1696 break; 1697 error = ip6_pcbopts(&inp->in6p_outputopts, 1698 m, so, sopt); 1699 m_freem(m); /* XXX */ 1700 break; 1701 } 1702 1703 /* 1704 * Use of some Hop-by-Hop options or some 1705 * Destination options, might require special 1706 * privilege. That is, normal applications 1707 * (without special privilege) might be forbidden 1708 * from setting certain options in outgoing packets, 1709 * and might never see certain options in received 1710 * packets. [RFC 2292 Section 6] 1711 * KAME specific note: 1712 * KAME prevents non-privileged users from sending or 1713 * receiving ANY hbh/dst options in order to avoid 1714 * overhead of parsing options in the kernel. 1715 */ 1716 case IPV6_RECVHOPOPTS: 1717 case IPV6_RECVDSTOPTS: 1718 case IPV6_RECVRTHDRDSTOPTS: 1719 if (td != NULL) { 1720 error = priv_check(td, 1721 PRIV_NETINET_SETHDROPTS); 1722 if (error) 1723 break; 1724 } 1725 /* FALLTHROUGH */ 1726 case IPV6_UNICAST_HOPS: 1727 case IPV6_HOPLIMIT: 1728 1729 case IPV6_RECVPKTINFO: 1730 case IPV6_RECVHOPLIMIT: 1731 case IPV6_RECVRTHDR: 1732 case IPV6_RECVPATHMTU: 1733 case IPV6_RECVTCLASS: 1734 case IPV6_RECVFLOWID: 1735 #ifdef RSS 1736 case IPV6_RECVRSSBUCKETID: 1737 #endif 1738 case IPV6_V6ONLY: 1739 case IPV6_AUTOFLOWLABEL: 1740 case IPV6_ORIGDSTADDR: 1741 case IPV6_BINDANY: 1742 case IPV6_BINDMULTI: 1743 #ifdef RSS 1744 case IPV6_RSS_LISTEN_BUCKET: 1745 #endif 1746 if (optname == IPV6_BINDANY && td != NULL) { 1747 error = priv_check(td, 1748 PRIV_NETINET_BINDANY); 1749 if (error) 1750 break; 1751 } 1752 1753 if (optlen != sizeof(int)) { 1754 error = EINVAL; 1755 break; 1756 } 1757 error = sooptcopyin(sopt, &optval, 1758 sizeof optval, sizeof optval); 1759 if (error) 1760 break; 1761 switch (optname) { 1762 1763 case IPV6_UNICAST_HOPS: 1764 if (optval < -1 || optval >= 256) 1765 error = EINVAL; 1766 else { 1767 /* -1 = kernel default */ 1768 inp->in6p_hops = optval; 1769 if ((inp->inp_vflag & 1770 INP_IPV4) != 0) 1771 inp->inp_ip_ttl = optval; 1772 } 1773 break; 1774 #define OPTSET(bit) \ 1775 do { \ 1776 INP_WLOCK(inp); \ 1777 if (optval) \ 1778 inp->inp_flags |= (bit); \ 1779 else \ 1780 inp->inp_flags &= ~(bit); \ 1781 INP_WUNLOCK(inp); \ 1782 } while (/*CONSTCOND*/ 0) 1783 #define OPTSET2292(bit) \ 1784 do { \ 1785 INP_WLOCK(inp); \ 1786 inp->inp_flags |= IN6P_RFC2292; \ 1787 if (optval) \ 1788 inp->inp_flags |= (bit); \ 1789 else \ 1790 inp->inp_flags &= ~(bit); \ 1791 INP_WUNLOCK(inp); \ 1792 } while (/*CONSTCOND*/ 0) 1793 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1794 1795 #define OPTSET2_N(bit, val) do { \ 1796 if (val) \ 1797 inp->inp_flags2 |= bit; \ 1798 else \ 1799 inp->inp_flags2 &= ~bit; \ 1800 } while (0) 1801 #define OPTSET2(bit, val) do { \ 1802 INP_WLOCK(inp); \ 1803 OPTSET2_N(bit, val); \ 1804 INP_WUNLOCK(inp); \ 1805 } while (0) 1806 #define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0) 1807 #define OPTSET2292_EXCLUSIVE(bit) \ 1808 do { \ 1809 INP_WLOCK(inp); \ 1810 if (OPTBIT(IN6P_RFC2292)) { \ 1811 error = EINVAL; \ 1812 } else { \ 1813 if (optval) \ 1814 inp->inp_flags |= (bit); \ 1815 else \ 1816 inp->inp_flags &= ~(bit); \ 1817 } \ 1818 INP_WUNLOCK(inp); \ 1819 } while (/*CONSTCOND*/ 0) 1820 1821 case IPV6_RECVPKTINFO: 1822 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1823 break; 1824 1825 case IPV6_HOPLIMIT: 1826 { 1827 struct ip6_pktopts **optp; 1828 1829 /* cannot mix with RFC2292 */ 1830 if (OPTBIT(IN6P_RFC2292)) { 1831 error = EINVAL; 1832 break; 1833 } 1834 INP_WLOCK(inp); 1835 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1836 INP_WUNLOCK(inp); 1837 return (ECONNRESET); 1838 } 1839 optp = &inp->in6p_outputopts; 1840 error = ip6_pcbopt(IPV6_HOPLIMIT, 1841 (u_char *)&optval, sizeof(optval), 1842 optp, (td != NULL) ? td->td_ucred : 1843 NULL, uproto); 1844 INP_WUNLOCK(inp); 1845 break; 1846 } 1847 1848 case IPV6_RECVHOPLIMIT: 1849 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1850 break; 1851 1852 case IPV6_RECVHOPOPTS: 1853 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1854 break; 1855 1856 case IPV6_RECVDSTOPTS: 1857 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1858 break; 1859 1860 case IPV6_RECVRTHDRDSTOPTS: 1861 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1862 break; 1863 1864 case IPV6_RECVRTHDR: 1865 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1866 break; 1867 1868 case IPV6_RECVPATHMTU: 1869 /* 1870 * We ignore this option for TCP 1871 * sockets. 1872 * (RFC3542 leaves this case 1873 * unspecified.) 1874 */ 1875 if (uproto != IPPROTO_TCP) 1876 OPTSET(IN6P_MTU); 1877 break; 1878 1879 case IPV6_RECVFLOWID: 1880 OPTSET2(INP_RECVFLOWID, optval); 1881 break; 1882 1883 #ifdef RSS 1884 case IPV6_RECVRSSBUCKETID: 1885 OPTSET2(INP_RECVRSSBUCKETID, optval); 1886 break; 1887 #endif 1888 1889 case IPV6_V6ONLY: 1890 INP_WLOCK(inp); 1891 if (inp->inp_lport || 1892 !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { 1893 /* 1894 * The socket is already bound. 1895 */ 1896 INP_WUNLOCK(inp); 1897 error = EINVAL; 1898 break; 1899 } 1900 if (optval) { 1901 inp->inp_flags |= IN6P_IPV6_V6ONLY; 1902 inp->inp_vflag &= ~INP_IPV4; 1903 } else { 1904 inp->inp_flags &= ~IN6P_IPV6_V6ONLY; 1905 inp->inp_vflag |= INP_IPV4; 1906 } 1907 INP_WUNLOCK(inp); 1908 break; 1909 case IPV6_RECVTCLASS: 1910 /* cannot mix with RFC2292 XXX */ 1911 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1912 break; 1913 case IPV6_AUTOFLOWLABEL: 1914 OPTSET(IN6P_AUTOFLOWLABEL); 1915 break; 1916 1917 case IPV6_ORIGDSTADDR: 1918 OPTSET2(INP_ORIGDSTADDR, optval); 1919 break; 1920 case IPV6_BINDANY: 1921 OPTSET(INP_BINDANY); 1922 break; 1923 1924 case IPV6_BINDMULTI: 1925 OPTSET2(INP_BINDMULTI, optval); 1926 break; 1927 #ifdef RSS 1928 case IPV6_RSS_LISTEN_BUCKET: 1929 if ((optval >= 0) && 1930 (optval < rss_getnumbuckets())) { 1931 INP_WLOCK(inp); 1932 inp->inp_rss_listen_bucket = optval; 1933 OPTSET2_N(INP_RSS_BUCKET_SET, 1); 1934 INP_WUNLOCK(inp); 1935 } else { 1936 error = EINVAL; 1937 } 1938 break; 1939 #endif 1940 } 1941 break; 1942 1943 case IPV6_TCLASS: 1944 case IPV6_DONTFRAG: 1945 case IPV6_USE_MIN_MTU: 1946 case IPV6_PREFER_TEMPADDR: 1947 if (optlen != sizeof(optval)) { 1948 error = EINVAL; 1949 break; 1950 } 1951 error = sooptcopyin(sopt, &optval, 1952 sizeof optval, sizeof optval); 1953 if (error) 1954 break; 1955 { 1956 struct ip6_pktopts **optp; 1957 INP_WLOCK(inp); 1958 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1959 INP_WUNLOCK(inp); 1960 return (ECONNRESET); 1961 } 1962 optp = &inp->in6p_outputopts; 1963 error = ip6_pcbopt(optname, 1964 (u_char *)&optval, sizeof(optval), 1965 optp, (td != NULL) ? td->td_ucred : 1966 NULL, uproto); 1967 INP_WUNLOCK(inp); 1968 break; 1969 } 1970 1971 case IPV6_2292PKTINFO: 1972 case IPV6_2292HOPLIMIT: 1973 case IPV6_2292HOPOPTS: 1974 case IPV6_2292DSTOPTS: 1975 case IPV6_2292RTHDR: 1976 /* RFC 2292 */ 1977 if (optlen != sizeof(int)) { 1978 error = EINVAL; 1979 break; 1980 } 1981 error = sooptcopyin(sopt, &optval, 1982 sizeof optval, sizeof optval); 1983 if (error) 1984 break; 1985 switch (optname) { 1986 case IPV6_2292PKTINFO: 1987 OPTSET2292(IN6P_PKTINFO); 1988 break; 1989 case IPV6_2292HOPLIMIT: 1990 OPTSET2292(IN6P_HOPLIMIT); 1991 break; 1992 case IPV6_2292HOPOPTS: 1993 /* 1994 * Check super-user privilege. 1995 * See comments for IPV6_RECVHOPOPTS. 1996 */ 1997 if (td != NULL) { 1998 error = priv_check(td, 1999 PRIV_NETINET_SETHDROPTS); 2000 if (error) 2001 return (error); 2002 } 2003 OPTSET2292(IN6P_HOPOPTS); 2004 break; 2005 case IPV6_2292DSTOPTS: 2006 if (td != NULL) { 2007 error = priv_check(td, 2008 PRIV_NETINET_SETHDROPTS); 2009 if (error) 2010 return (error); 2011 } 2012 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 2013 break; 2014 case IPV6_2292RTHDR: 2015 OPTSET2292(IN6P_RTHDR); 2016 break; 2017 } 2018 break; 2019 case IPV6_PKTINFO: 2020 case IPV6_HOPOPTS: 2021 case IPV6_RTHDR: 2022 case IPV6_DSTOPTS: 2023 case IPV6_RTHDRDSTOPTS: 2024 case IPV6_NEXTHOP: 2025 { 2026 /* new advanced API (RFC3542) */ 2027 u_char *optbuf; 2028 u_char optbuf_storage[MCLBYTES]; 2029 int optlen; 2030 struct ip6_pktopts **optp; 2031 2032 /* cannot mix with RFC2292 */ 2033 if (OPTBIT(IN6P_RFC2292)) { 2034 error = EINVAL; 2035 break; 2036 } 2037 2038 /* 2039 * We only ensure valsize is not too large 2040 * here. Further validation will be done 2041 * later. 2042 */ 2043 error = sooptcopyin(sopt, optbuf_storage, 2044 sizeof(optbuf_storage), 0); 2045 if (error) 2046 break; 2047 optlen = sopt->sopt_valsize; 2048 optbuf = optbuf_storage; 2049 INP_WLOCK(inp); 2050 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 2051 INP_WUNLOCK(inp); 2052 return (ECONNRESET); 2053 } 2054 optp = &inp->in6p_outputopts; 2055 error = ip6_pcbopt(optname, optbuf, optlen, 2056 optp, (td != NULL) ? td->td_ucred : NULL, 2057 uproto); 2058 INP_WUNLOCK(inp); 2059 break; 2060 } 2061 #undef OPTSET 2062 2063 case IPV6_MULTICAST_IF: 2064 case IPV6_MULTICAST_HOPS: 2065 case IPV6_MULTICAST_LOOP: 2066 case IPV6_JOIN_GROUP: 2067 case IPV6_LEAVE_GROUP: 2068 case IPV6_MSFILTER: 2069 case MCAST_BLOCK_SOURCE: 2070 case MCAST_UNBLOCK_SOURCE: 2071 case MCAST_JOIN_GROUP: 2072 case MCAST_LEAVE_GROUP: 2073 case MCAST_JOIN_SOURCE_GROUP: 2074 case MCAST_LEAVE_SOURCE_GROUP: 2075 error = ip6_setmoptions(inp, sopt); 2076 break; 2077 2078 case IPV6_PORTRANGE: 2079 error = sooptcopyin(sopt, &optval, 2080 sizeof optval, sizeof optval); 2081 if (error) 2082 break; 2083 2084 INP_WLOCK(inp); 2085 switch (optval) { 2086 case IPV6_PORTRANGE_DEFAULT: 2087 inp->inp_flags &= ~(INP_LOWPORT); 2088 inp->inp_flags &= ~(INP_HIGHPORT); 2089 break; 2090 2091 case IPV6_PORTRANGE_HIGH: 2092 inp->inp_flags &= ~(INP_LOWPORT); 2093 inp->inp_flags |= INP_HIGHPORT; 2094 break; 2095 2096 case IPV6_PORTRANGE_LOW: 2097 inp->inp_flags &= ~(INP_HIGHPORT); 2098 inp->inp_flags |= INP_LOWPORT; 2099 break; 2100 2101 default: 2102 error = EINVAL; 2103 break; 2104 } 2105 INP_WUNLOCK(inp); 2106 break; 2107 2108 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2109 case IPV6_IPSEC_POLICY: 2110 if (IPSEC_ENABLED(ipv6)) { 2111 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2112 break; 2113 } 2114 /* FALLTHROUGH */ 2115 #endif /* IPSEC */ 2116 2117 default: 2118 error = ENOPROTOOPT; 2119 break; 2120 } 2121 break; 2122 2123 case SOPT_GET: 2124 switch (optname) { 2125 2126 case IPV6_2292PKTOPTIONS: 2127 #ifdef IPV6_PKTOPTIONS 2128 case IPV6_PKTOPTIONS: 2129 #endif 2130 /* 2131 * RFC3542 (effectively) deprecated the 2132 * semantics of the 2292-style pktoptions. 2133 * Since it was not reliable in nature (i.e., 2134 * applications had to expect the lack of some 2135 * information after all), it would make sense 2136 * to simplify this part by always returning 2137 * empty data. 2138 */ 2139 sopt->sopt_valsize = 0; 2140 break; 2141 2142 case IPV6_RECVHOPOPTS: 2143 case IPV6_RECVDSTOPTS: 2144 case IPV6_RECVRTHDRDSTOPTS: 2145 case IPV6_UNICAST_HOPS: 2146 case IPV6_RECVPKTINFO: 2147 case IPV6_RECVHOPLIMIT: 2148 case IPV6_RECVRTHDR: 2149 case IPV6_RECVPATHMTU: 2150 2151 case IPV6_V6ONLY: 2152 case IPV6_PORTRANGE: 2153 case IPV6_RECVTCLASS: 2154 case IPV6_AUTOFLOWLABEL: 2155 case IPV6_BINDANY: 2156 case IPV6_FLOWID: 2157 case IPV6_FLOWTYPE: 2158 case IPV6_RECVFLOWID: 2159 #ifdef RSS 2160 case IPV6_RSSBUCKETID: 2161 case IPV6_RECVRSSBUCKETID: 2162 #endif 2163 case IPV6_BINDMULTI: 2164 switch (optname) { 2165 2166 case IPV6_RECVHOPOPTS: 2167 optval = OPTBIT(IN6P_HOPOPTS); 2168 break; 2169 2170 case IPV6_RECVDSTOPTS: 2171 optval = OPTBIT(IN6P_DSTOPTS); 2172 break; 2173 2174 case IPV6_RECVRTHDRDSTOPTS: 2175 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 2176 break; 2177 2178 case IPV6_UNICAST_HOPS: 2179 optval = inp->in6p_hops; 2180 break; 2181 2182 case IPV6_RECVPKTINFO: 2183 optval = OPTBIT(IN6P_PKTINFO); 2184 break; 2185 2186 case IPV6_RECVHOPLIMIT: 2187 optval = OPTBIT(IN6P_HOPLIMIT); 2188 break; 2189 2190 case IPV6_RECVRTHDR: 2191 optval = OPTBIT(IN6P_RTHDR); 2192 break; 2193 2194 case IPV6_RECVPATHMTU: 2195 optval = OPTBIT(IN6P_MTU); 2196 break; 2197 2198 case IPV6_V6ONLY: 2199 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2200 break; 2201 2202 case IPV6_PORTRANGE: 2203 { 2204 int flags; 2205 flags = inp->inp_flags; 2206 if (flags & INP_HIGHPORT) 2207 optval = IPV6_PORTRANGE_HIGH; 2208 else if (flags & INP_LOWPORT) 2209 optval = IPV6_PORTRANGE_LOW; 2210 else 2211 optval = 0; 2212 break; 2213 } 2214 case IPV6_RECVTCLASS: 2215 optval = OPTBIT(IN6P_TCLASS); 2216 break; 2217 2218 case IPV6_AUTOFLOWLABEL: 2219 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2220 break; 2221 2222 case IPV6_ORIGDSTADDR: 2223 optval = OPTBIT2(INP_ORIGDSTADDR); 2224 break; 2225 2226 case IPV6_BINDANY: 2227 optval = OPTBIT(INP_BINDANY); 2228 break; 2229 2230 case IPV6_FLOWID: 2231 optval = inp->inp_flowid; 2232 break; 2233 2234 case IPV6_FLOWTYPE: 2235 optval = inp->inp_flowtype; 2236 break; 2237 2238 case IPV6_RECVFLOWID: 2239 optval = OPTBIT2(INP_RECVFLOWID); 2240 break; 2241 #ifdef RSS 2242 case IPV6_RSSBUCKETID: 2243 retval = 2244 rss_hash2bucket(inp->inp_flowid, 2245 inp->inp_flowtype, 2246 &rss_bucket); 2247 if (retval == 0) 2248 optval = rss_bucket; 2249 else 2250 error = EINVAL; 2251 break; 2252 2253 case IPV6_RECVRSSBUCKETID: 2254 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2255 break; 2256 #endif 2257 2258 case IPV6_BINDMULTI: 2259 optval = OPTBIT2(INP_BINDMULTI); 2260 break; 2261 2262 } 2263 if (error) 2264 break; 2265 error = sooptcopyout(sopt, &optval, 2266 sizeof optval); 2267 break; 2268 2269 case IPV6_PATHMTU: 2270 { 2271 u_long pmtu = 0; 2272 struct ip6_mtuinfo mtuinfo; 2273 struct in6_addr addr; 2274 2275 if (!(so->so_state & SS_ISCONNECTED)) 2276 return (ENOTCONN); 2277 /* 2278 * XXX: we dot not consider the case of source 2279 * routing, or optional information to specify 2280 * the outgoing interface. 2281 * Copy faddr out of inp to avoid holding lock 2282 * on inp during route lookup. 2283 */ 2284 INP_RLOCK(inp); 2285 bcopy(&inp->in6p_faddr, &addr, sizeof(addr)); 2286 INP_RUNLOCK(inp); 2287 error = ip6_getpmtu_ctl(so->so_fibnum, 2288 &addr, &pmtu); 2289 if (error) 2290 break; 2291 if (pmtu > IPV6_MAXPACKET) 2292 pmtu = IPV6_MAXPACKET; 2293 2294 bzero(&mtuinfo, sizeof(mtuinfo)); 2295 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2296 optdata = (void *)&mtuinfo; 2297 optdatalen = sizeof(mtuinfo); 2298 error = sooptcopyout(sopt, optdata, 2299 optdatalen); 2300 break; 2301 } 2302 2303 case IPV6_2292PKTINFO: 2304 case IPV6_2292HOPLIMIT: 2305 case IPV6_2292HOPOPTS: 2306 case IPV6_2292RTHDR: 2307 case IPV6_2292DSTOPTS: 2308 switch (optname) { 2309 case IPV6_2292PKTINFO: 2310 optval = OPTBIT(IN6P_PKTINFO); 2311 break; 2312 case IPV6_2292HOPLIMIT: 2313 optval = OPTBIT(IN6P_HOPLIMIT); 2314 break; 2315 case IPV6_2292HOPOPTS: 2316 optval = OPTBIT(IN6P_HOPOPTS); 2317 break; 2318 case IPV6_2292RTHDR: 2319 optval = OPTBIT(IN6P_RTHDR); 2320 break; 2321 case IPV6_2292DSTOPTS: 2322 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2323 break; 2324 } 2325 error = sooptcopyout(sopt, &optval, 2326 sizeof optval); 2327 break; 2328 case IPV6_PKTINFO: 2329 case IPV6_HOPOPTS: 2330 case IPV6_RTHDR: 2331 case IPV6_DSTOPTS: 2332 case IPV6_RTHDRDSTOPTS: 2333 case IPV6_NEXTHOP: 2334 case IPV6_TCLASS: 2335 case IPV6_DONTFRAG: 2336 case IPV6_USE_MIN_MTU: 2337 case IPV6_PREFER_TEMPADDR: 2338 error = ip6_getpcbopt(inp, optname, sopt); 2339 break; 2340 2341 case IPV6_MULTICAST_IF: 2342 case IPV6_MULTICAST_HOPS: 2343 case IPV6_MULTICAST_LOOP: 2344 case IPV6_MSFILTER: 2345 error = ip6_getmoptions(inp, sopt); 2346 break; 2347 2348 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2349 case IPV6_IPSEC_POLICY: 2350 if (IPSEC_ENABLED(ipv6)) { 2351 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2352 break; 2353 } 2354 /* FALLTHROUGH */ 2355 #endif /* IPSEC */ 2356 default: 2357 error = ENOPROTOOPT; 2358 break; 2359 } 2360 break; 2361 } 2362 } 2363 return (error); 2364 } 2365 2366 int 2367 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2368 { 2369 int error = 0, optval, optlen; 2370 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2371 struct inpcb *inp = sotoinpcb(so); 2372 int level, op, optname; 2373 2374 level = sopt->sopt_level; 2375 op = sopt->sopt_dir; 2376 optname = sopt->sopt_name; 2377 optlen = sopt->sopt_valsize; 2378 2379 if (level != IPPROTO_IPV6) { 2380 return (EINVAL); 2381 } 2382 2383 switch (optname) { 2384 case IPV6_CHECKSUM: 2385 /* 2386 * For ICMPv6 sockets, no modification allowed for checksum 2387 * offset, permit "no change" values to help existing apps. 2388 * 2389 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2390 * for an ICMPv6 socket will fail." 2391 * The current behavior does not meet RFC3542. 2392 */ 2393 switch (op) { 2394 case SOPT_SET: 2395 if (optlen != sizeof(int)) { 2396 error = EINVAL; 2397 break; 2398 } 2399 error = sooptcopyin(sopt, &optval, sizeof(optval), 2400 sizeof(optval)); 2401 if (error) 2402 break; 2403 if (optval < -1 || (optval % 2) != 0) { 2404 /* 2405 * The API assumes non-negative even offset 2406 * values or -1 as a special value. 2407 */ 2408 error = EINVAL; 2409 } else if (so->so_proto->pr_protocol == 2410 IPPROTO_ICMPV6) { 2411 if (optval != icmp6off) 2412 error = EINVAL; 2413 } else 2414 inp->in6p_cksum = optval; 2415 break; 2416 2417 case SOPT_GET: 2418 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2419 optval = icmp6off; 2420 else 2421 optval = inp->in6p_cksum; 2422 2423 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2424 break; 2425 2426 default: 2427 error = EINVAL; 2428 break; 2429 } 2430 break; 2431 2432 default: 2433 error = ENOPROTOOPT; 2434 break; 2435 } 2436 2437 return (error); 2438 } 2439 2440 /* 2441 * Set up IP6 options in pcb for insertion in output packets or 2442 * specifying behavior of outgoing packets. 2443 */ 2444 static int 2445 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2446 struct socket *so, struct sockopt *sopt) 2447 { 2448 struct ip6_pktopts *opt = *pktopt; 2449 int error = 0; 2450 struct thread *td = sopt->sopt_td; 2451 2452 /* turn off any old options. */ 2453 if (opt) { 2454 #ifdef DIAGNOSTIC 2455 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2456 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2457 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2458 printf("ip6_pcbopts: all specified options are cleared.\n"); 2459 #endif 2460 ip6_clearpktopts(opt, -1); 2461 } else 2462 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2463 *pktopt = NULL; 2464 2465 if (!m || m->m_len == 0) { 2466 /* 2467 * Only turning off any previous options, regardless of 2468 * whether the opt is just created or given. 2469 */ 2470 free(opt, M_IP6OPT); 2471 return (0); 2472 } 2473 2474 /* set options specified by user. */ 2475 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2476 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2477 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2478 free(opt, M_IP6OPT); 2479 return (error); 2480 } 2481 *pktopt = opt; 2482 return (0); 2483 } 2484 2485 /* 2486 * initialize ip6_pktopts. beware that there are non-zero default values in 2487 * the struct. 2488 */ 2489 void 2490 ip6_initpktopts(struct ip6_pktopts *opt) 2491 { 2492 2493 bzero(opt, sizeof(*opt)); 2494 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2495 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2496 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2497 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2498 } 2499 2500 static int 2501 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2502 struct ucred *cred, int uproto) 2503 { 2504 struct ip6_pktopts *opt; 2505 2506 if (*pktopt == NULL) { 2507 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2508 M_NOWAIT); 2509 if (*pktopt == NULL) 2510 return (ENOBUFS); 2511 ip6_initpktopts(*pktopt); 2512 } 2513 opt = *pktopt; 2514 2515 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2516 } 2517 2518 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2519 if (pktopt && pktopt->field) { \ 2520 INP_RUNLOCK(inp); \ 2521 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2522 malloc_optdata = true; \ 2523 INP_RLOCK(inp); \ 2524 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ 2525 INP_RUNLOCK(inp); \ 2526 free(optdata, M_TEMP); \ 2527 return (ECONNRESET); \ 2528 } \ 2529 pktopt = inp->in6p_outputopts; \ 2530 if (pktopt && pktopt->field) { \ 2531 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2532 bcopy(&pktopt->field, optdata, optdatalen); \ 2533 } else { \ 2534 free(optdata, M_TEMP); \ 2535 optdata = NULL; \ 2536 malloc_optdata = false; \ 2537 } \ 2538 } \ 2539 } while(0) 2540 2541 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2542 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2543 2544 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2545 pktopt->field->sa_len) 2546 2547 static int 2548 ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt) 2549 { 2550 void *optdata = NULL; 2551 bool malloc_optdata = false; 2552 int optdatalen = 0; 2553 int error = 0; 2554 struct in6_pktinfo null_pktinfo; 2555 int deftclass = 0, on; 2556 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2557 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2558 struct ip6_pktopts *pktopt; 2559 2560 INP_RLOCK(inp); 2561 pktopt = inp->in6p_outputopts; 2562 2563 switch (optname) { 2564 case IPV6_PKTINFO: 2565 optdata = (void *)&null_pktinfo; 2566 if (pktopt && pktopt->ip6po_pktinfo) { 2567 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2568 sizeof(null_pktinfo)); 2569 in6_clearscope(&null_pktinfo.ipi6_addr); 2570 } else { 2571 /* XXX: we don't have to do this every time... */ 2572 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2573 } 2574 optdatalen = sizeof(struct in6_pktinfo); 2575 break; 2576 case IPV6_TCLASS: 2577 if (pktopt && pktopt->ip6po_tclass >= 0) 2578 deftclass = pktopt->ip6po_tclass; 2579 optdata = (void *)&deftclass; 2580 optdatalen = sizeof(int); 2581 break; 2582 case IPV6_HOPOPTS: 2583 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2584 break; 2585 case IPV6_RTHDR: 2586 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2587 break; 2588 case IPV6_RTHDRDSTOPTS: 2589 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2590 break; 2591 case IPV6_DSTOPTS: 2592 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2593 break; 2594 case IPV6_NEXTHOP: 2595 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2596 break; 2597 case IPV6_USE_MIN_MTU: 2598 if (pktopt) 2599 defminmtu = pktopt->ip6po_minmtu; 2600 optdata = (void *)&defminmtu; 2601 optdatalen = sizeof(int); 2602 break; 2603 case IPV6_DONTFRAG: 2604 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2605 on = 1; 2606 else 2607 on = 0; 2608 optdata = (void *)&on; 2609 optdatalen = sizeof(on); 2610 break; 2611 case IPV6_PREFER_TEMPADDR: 2612 if (pktopt) 2613 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2614 optdata = (void *)&defpreftemp; 2615 optdatalen = sizeof(int); 2616 break; 2617 default: /* should not happen */ 2618 #ifdef DIAGNOSTIC 2619 panic("ip6_getpcbopt: unexpected option\n"); 2620 #endif 2621 INP_RUNLOCK(inp); 2622 return (ENOPROTOOPT); 2623 } 2624 INP_RUNLOCK(inp); 2625 2626 error = sooptcopyout(sopt, optdata, optdatalen); 2627 if (malloc_optdata) 2628 free(optdata, M_TEMP); 2629 2630 return (error); 2631 } 2632 2633 void 2634 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2635 { 2636 if (pktopt == NULL) 2637 return; 2638 2639 if (optname == -1 || optname == IPV6_PKTINFO) { 2640 if (pktopt->ip6po_pktinfo) 2641 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2642 pktopt->ip6po_pktinfo = NULL; 2643 } 2644 if (optname == -1 || optname == IPV6_HOPLIMIT) 2645 pktopt->ip6po_hlim = -1; 2646 if (optname == -1 || optname == IPV6_TCLASS) 2647 pktopt->ip6po_tclass = -1; 2648 if (optname == -1 || optname == IPV6_NEXTHOP) { 2649 if (pktopt->ip6po_nextroute.ro_rt) { 2650 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2651 pktopt->ip6po_nextroute.ro_rt = NULL; 2652 } 2653 if (pktopt->ip6po_nexthop) 2654 free(pktopt->ip6po_nexthop, M_IP6OPT); 2655 pktopt->ip6po_nexthop = NULL; 2656 } 2657 if (optname == -1 || optname == IPV6_HOPOPTS) { 2658 if (pktopt->ip6po_hbh) 2659 free(pktopt->ip6po_hbh, M_IP6OPT); 2660 pktopt->ip6po_hbh = NULL; 2661 } 2662 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2663 if (pktopt->ip6po_dest1) 2664 free(pktopt->ip6po_dest1, M_IP6OPT); 2665 pktopt->ip6po_dest1 = NULL; 2666 } 2667 if (optname == -1 || optname == IPV6_RTHDR) { 2668 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2669 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2670 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2671 if (pktopt->ip6po_route.ro_rt) { 2672 RTFREE(pktopt->ip6po_route.ro_rt); 2673 pktopt->ip6po_route.ro_rt = NULL; 2674 } 2675 } 2676 if (optname == -1 || optname == IPV6_DSTOPTS) { 2677 if (pktopt->ip6po_dest2) 2678 free(pktopt->ip6po_dest2, M_IP6OPT); 2679 pktopt->ip6po_dest2 = NULL; 2680 } 2681 } 2682 2683 #define PKTOPT_EXTHDRCPY(type) \ 2684 do {\ 2685 if (src->type) {\ 2686 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2687 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2688 if (dst->type == NULL)\ 2689 goto bad;\ 2690 bcopy(src->type, dst->type, hlen);\ 2691 }\ 2692 } while (/*CONSTCOND*/ 0) 2693 2694 static int 2695 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2696 { 2697 if (dst == NULL || src == NULL) { 2698 printf("ip6_clearpktopts: invalid argument\n"); 2699 return (EINVAL); 2700 } 2701 2702 dst->ip6po_hlim = src->ip6po_hlim; 2703 dst->ip6po_tclass = src->ip6po_tclass; 2704 dst->ip6po_flags = src->ip6po_flags; 2705 dst->ip6po_minmtu = src->ip6po_minmtu; 2706 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2707 if (src->ip6po_pktinfo) { 2708 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2709 M_IP6OPT, canwait); 2710 if (dst->ip6po_pktinfo == NULL) 2711 goto bad; 2712 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2713 } 2714 if (src->ip6po_nexthop) { 2715 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2716 M_IP6OPT, canwait); 2717 if (dst->ip6po_nexthop == NULL) 2718 goto bad; 2719 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2720 src->ip6po_nexthop->sa_len); 2721 } 2722 PKTOPT_EXTHDRCPY(ip6po_hbh); 2723 PKTOPT_EXTHDRCPY(ip6po_dest1); 2724 PKTOPT_EXTHDRCPY(ip6po_dest2); 2725 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2726 return (0); 2727 2728 bad: 2729 ip6_clearpktopts(dst, -1); 2730 return (ENOBUFS); 2731 } 2732 #undef PKTOPT_EXTHDRCPY 2733 2734 struct ip6_pktopts * 2735 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2736 { 2737 int error; 2738 struct ip6_pktopts *dst; 2739 2740 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2741 if (dst == NULL) 2742 return (NULL); 2743 ip6_initpktopts(dst); 2744 2745 if ((error = copypktopts(dst, src, canwait)) != 0) { 2746 free(dst, M_IP6OPT); 2747 return (NULL); 2748 } 2749 2750 return (dst); 2751 } 2752 2753 void 2754 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2755 { 2756 if (pktopt == NULL) 2757 return; 2758 2759 ip6_clearpktopts(pktopt, -1); 2760 2761 free(pktopt, M_IP6OPT); 2762 } 2763 2764 /* 2765 * Set IPv6 outgoing packet options based on advanced API. 2766 */ 2767 int 2768 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2769 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2770 { 2771 struct cmsghdr *cm = NULL; 2772 2773 if (control == NULL || opt == NULL) 2774 return (EINVAL); 2775 2776 ip6_initpktopts(opt); 2777 if (stickyopt) { 2778 int error; 2779 2780 /* 2781 * If stickyopt is provided, make a local copy of the options 2782 * for this particular packet, then override them by ancillary 2783 * objects. 2784 * XXX: copypktopts() does not copy the cached route to a next 2785 * hop (if any). This is not very good in terms of efficiency, 2786 * but we can allow this since this option should be rarely 2787 * used. 2788 */ 2789 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2790 return (error); 2791 } 2792 2793 /* 2794 * XXX: Currently, we assume all the optional information is stored 2795 * in a single mbuf. 2796 */ 2797 if (control->m_next) 2798 return (EINVAL); 2799 2800 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2801 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2802 int error; 2803 2804 if (control->m_len < CMSG_LEN(0)) 2805 return (EINVAL); 2806 2807 cm = mtod(control, struct cmsghdr *); 2808 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2809 return (EINVAL); 2810 if (cm->cmsg_level != IPPROTO_IPV6) 2811 continue; 2812 2813 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2814 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2815 if (error) 2816 return (error); 2817 } 2818 2819 return (0); 2820 } 2821 2822 /* 2823 * Set a particular packet option, as a sticky option or an ancillary data 2824 * item. "len" can be 0 only when it's a sticky option. 2825 * We have 4 cases of combination of "sticky" and "cmsg": 2826 * "sticky=0, cmsg=0": impossible 2827 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2828 * "sticky=1, cmsg=0": RFC3542 socket option 2829 * "sticky=1, cmsg=1": RFC2292 socket option 2830 */ 2831 static int 2832 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2833 struct ucred *cred, int sticky, int cmsg, int uproto) 2834 { 2835 int minmtupolicy, preftemp; 2836 int error; 2837 2838 if (!sticky && !cmsg) { 2839 #ifdef DIAGNOSTIC 2840 printf("ip6_setpktopt: impossible case\n"); 2841 #endif 2842 return (EINVAL); 2843 } 2844 2845 /* 2846 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2847 * not be specified in the context of RFC3542. Conversely, 2848 * RFC3542 types should not be specified in the context of RFC2292. 2849 */ 2850 if (!cmsg) { 2851 switch (optname) { 2852 case IPV6_2292PKTINFO: 2853 case IPV6_2292HOPLIMIT: 2854 case IPV6_2292NEXTHOP: 2855 case IPV6_2292HOPOPTS: 2856 case IPV6_2292DSTOPTS: 2857 case IPV6_2292RTHDR: 2858 case IPV6_2292PKTOPTIONS: 2859 return (ENOPROTOOPT); 2860 } 2861 } 2862 if (sticky && cmsg) { 2863 switch (optname) { 2864 case IPV6_PKTINFO: 2865 case IPV6_HOPLIMIT: 2866 case IPV6_NEXTHOP: 2867 case IPV6_HOPOPTS: 2868 case IPV6_DSTOPTS: 2869 case IPV6_RTHDRDSTOPTS: 2870 case IPV6_RTHDR: 2871 case IPV6_USE_MIN_MTU: 2872 case IPV6_DONTFRAG: 2873 case IPV6_TCLASS: 2874 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2875 return (ENOPROTOOPT); 2876 } 2877 } 2878 2879 switch (optname) { 2880 case IPV6_2292PKTINFO: 2881 case IPV6_PKTINFO: 2882 { 2883 struct ifnet *ifp = NULL; 2884 struct in6_pktinfo *pktinfo; 2885 2886 if (len != sizeof(struct in6_pktinfo)) 2887 return (EINVAL); 2888 2889 pktinfo = (struct in6_pktinfo *)buf; 2890 2891 /* 2892 * An application can clear any sticky IPV6_PKTINFO option by 2893 * doing a "regular" setsockopt with ipi6_addr being 2894 * in6addr_any and ipi6_ifindex being zero. 2895 * [RFC 3542, Section 6] 2896 */ 2897 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2898 pktinfo->ipi6_ifindex == 0 && 2899 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2900 ip6_clearpktopts(opt, optname); 2901 break; 2902 } 2903 2904 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2905 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2906 return (EINVAL); 2907 } 2908 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2909 return (EINVAL); 2910 /* validate the interface index if specified. */ 2911 if (pktinfo->ipi6_ifindex > V_if_index) 2912 return (ENXIO); 2913 if (pktinfo->ipi6_ifindex) { 2914 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2915 if (ifp == NULL) 2916 return (ENXIO); 2917 } 2918 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2919 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2920 return (ENETDOWN); 2921 2922 if (ifp != NULL && 2923 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2924 struct in6_ifaddr *ia; 2925 2926 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2927 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2928 if (ia == NULL) 2929 return (EADDRNOTAVAIL); 2930 ifa_free(&ia->ia_ifa); 2931 } 2932 /* 2933 * We store the address anyway, and let in6_selectsrc() 2934 * validate the specified address. This is because ipi6_addr 2935 * may not have enough information about its scope zone, and 2936 * we may need additional information (such as outgoing 2937 * interface or the scope zone of a destination address) to 2938 * disambiguate the scope. 2939 * XXX: the delay of the validation may confuse the 2940 * application when it is used as a sticky option. 2941 */ 2942 if (opt->ip6po_pktinfo == NULL) { 2943 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2944 M_IP6OPT, M_NOWAIT); 2945 if (opt->ip6po_pktinfo == NULL) 2946 return (ENOBUFS); 2947 } 2948 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2949 break; 2950 } 2951 2952 case IPV6_2292HOPLIMIT: 2953 case IPV6_HOPLIMIT: 2954 { 2955 int *hlimp; 2956 2957 /* 2958 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2959 * to simplify the ordering among hoplimit options. 2960 */ 2961 if (optname == IPV6_HOPLIMIT && sticky) 2962 return (ENOPROTOOPT); 2963 2964 if (len != sizeof(int)) 2965 return (EINVAL); 2966 hlimp = (int *)buf; 2967 if (*hlimp < -1 || *hlimp > 255) 2968 return (EINVAL); 2969 2970 opt->ip6po_hlim = *hlimp; 2971 break; 2972 } 2973 2974 case IPV6_TCLASS: 2975 { 2976 int tclass; 2977 2978 if (len != sizeof(int)) 2979 return (EINVAL); 2980 tclass = *(int *)buf; 2981 if (tclass < -1 || tclass > 255) 2982 return (EINVAL); 2983 2984 opt->ip6po_tclass = tclass; 2985 break; 2986 } 2987 2988 case IPV6_2292NEXTHOP: 2989 case IPV6_NEXTHOP: 2990 if (cred != NULL) { 2991 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 2992 if (error) 2993 return (error); 2994 } 2995 2996 if (len == 0) { /* just remove the option */ 2997 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2998 break; 2999 } 3000 3001 /* check if cmsg_len is large enough for sa_len */ 3002 if (len < sizeof(struct sockaddr) || len < *buf) 3003 return (EINVAL); 3004 3005 switch (((struct sockaddr *)buf)->sa_family) { 3006 case AF_INET6: 3007 { 3008 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3009 int error; 3010 3011 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3012 return (EINVAL); 3013 3014 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3015 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3016 return (EINVAL); 3017 } 3018 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 3019 != 0) { 3020 return (error); 3021 } 3022 break; 3023 } 3024 case AF_LINK: /* should eventually be supported */ 3025 default: 3026 return (EAFNOSUPPORT); 3027 } 3028 3029 /* turn off the previous option, then set the new option. */ 3030 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3031 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3032 if (opt->ip6po_nexthop == NULL) 3033 return (ENOBUFS); 3034 bcopy(buf, opt->ip6po_nexthop, *buf); 3035 break; 3036 3037 case IPV6_2292HOPOPTS: 3038 case IPV6_HOPOPTS: 3039 { 3040 struct ip6_hbh *hbh; 3041 int hbhlen; 3042 3043 /* 3044 * XXX: We don't allow a non-privileged user to set ANY HbH 3045 * options, since per-option restriction has too much 3046 * overhead. 3047 */ 3048 if (cred != NULL) { 3049 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3050 if (error) 3051 return (error); 3052 } 3053 3054 if (len == 0) { 3055 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3056 break; /* just remove the option */ 3057 } 3058 3059 /* message length validation */ 3060 if (len < sizeof(struct ip6_hbh)) 3061 return (EINVAL); 3062 hbh = (struct ip6_hbh *)buf; 3063 hbhlen = (hbh->ip6h_len + 1) << 3; 3064 if (len != hbhlen) 3065 return (EINVAL); 3066 3067 /* turn off the previous option, then set the new option. */ 3068 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3069 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3070 if (opt->ip6po_hbh == NULL) 3071 return (ENOBUFS); 3072 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3073 3074 break; 3075 } 3076 3077 case IPV6_2292DSTOPTS: 3078 case IPV6_DSTOPTS: 3079 case IPV6_RTHDRDSTOPTS: 3080 { 3081 struct ip6_dest *dest, **newdest = NULL; 3082 int destlen; 3083 3084 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 3085 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3086 if (error) 3087 return (error); 3088 } 3089 3090 if (len == 0) { 3091 ip6_clearpktopts(opt, optname); 3092 break; /* just remove the option */ 3093 } 3094 3095 /* message length validation */ 3096 if (len < sizeof(struct ip6_dest)) 3097 return (EINVAL); 3098 dest = (struct ip6_dest *)buf; 3099 destlen = (dest->ip6d_len + 1) << 3; 3100 if (len != destlen) 3101 return (EINVAL); 3102 3103 /* 3104 * Determine the position that the destination options header 3105 * should be inserted; before or after the routing header. 3106 */ 3107 switch (optname) { 3108 case IPV6_2292DSTOPTS: 3109 /* 3110 * The old advacned API is ambiguous on this point. 3111 * Our approach is to determine the position based 3112 * according to the existence of a routing header. 3113 * Note, however, that this depends on the order of the 3114 * extension headers in the ancillary data; the 1st 3115 * part of the destination options header must appear 3116 * before the routing header in the ancillary data, 3117 * too. 3118 * RFC3542 solved the ambiguity by introducing 3119 * separate ancillary data or option types. 3120 */ 3121 if (opt->ip6po_rthdr == NULL) 3122 newdest = &opt->ip6po_dest1; 3123 else 3124 newdest = &opt->ip6po_dest2; 3125 break; 3126 case IPV6_RTHDRDSTOPTS: 3127 newdest = &opt->ip6po_dest1; 3128 break; 3129 case IPV6_DSTOPTS: 3130 newdest = &opt->ip6po_dest2; 3131 break; 3132 } 3133 3134 /* turn off the previous option, then set the new option. */ 3135 ip6_clearpktopts(opt, optname); 3136 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3137 if (*newdest == NULL) 3138 return (ENOBUFS); 3139 bcopy(dest, *newdest, destlen); 3140 3141 break; 3142 } 3143 3144 case IPV6_2292RTHDR: 3145 case IPV6_RTHDR: 3146 { 3147 struct ip6_rthdr *rth; 3148 int rthlen; 3149 3150 if (len == 0) { 3151 ip6_clearpktopts(opt, IPV6_RTHDR); 3152 break; /* just remove the option */ 3153 } 3154 3155 /* message length validation */ 3156 if (len < sizeof(struct ip6_rthdr)) 3157 return (EINVAL); 3158 rth = (struct ip6_rthdr *)buf; 3159 rthlen = (rth->ip6r_len + 1) << 3; 3160 if (len != rthlen) 3161 return (EINVAL); 3162 3163 switch (rth->ip6r_type) { 3164 case IPV6_RTHDR_TYPE_0: 3165 if (rth->ip6r_len == 0) /* must contain one addr */ 3166 return (EINVAL); 3167 if (rth->ip6r_len % 2) /* length must be even */ 3168 return (EINVAL); 3169 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3170 return (EINVAL); 3171 break; 3172 default: 3173 return (EINVAL); /* not supported */ 3174 } 3175 3176 /* turn off the previous option */ 3177 ip6_clearpktopts(opt, IPV6_RTHDR); 3178 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3179 if (opt->ip6po_rthdr == NULL) 3180 return (ENOBUFS); 3181 bcopy(rth, opt->ip6po_rthdr, rthlen); 3182 3183 break; 3184 } 3185 3186 case IPV6_USE_MIN_MTU: 3187 if (len != sizeof(int)) 3188 return (EINVAL); 3189 minmtupolicy = *(int *)buf; 3190 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3191 minmtupolicy != IP6PO_MINMTU_DISABLE && 3192 minmtupolicy != IP6PO_MINMTU_ALL) { 3193 return (EINVAL); 3194 } 3195 opt->ip6po_minmtu = minmtupolicy; 3196 break; 3197 3198 case IPV6_DONTFRAG: 3199 if (len != sizeof(int)) 3200 return (EINVAL); 3201 3202 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3203 /* 3204 * we ignore this option for TCP sockets. 3205 * (RFC3542 leaves this case unspecified.) 3206 */ 3207 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3208 } else 3209 opt->ip6po_flags |= IP6PO_DONTFRAG; 3210 break; 3211 3212 case IPV6_PREFER_TEMPADDR: 3213 if (len != sizeof(int)) 3214 return (EINVAL); 3215 preftemp = *(int *)buf; 3216 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3217 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3218 preftemp != IP6PO_TEMPADDR_PREFER) { 3219 return (EINVAL); 3220 } 3221 opt->ip6po_prefer_tempaddr = preftemp; 3222 break; 3223 3224 default: 3225 return (ENOPROTOOPT); 3226 } /* end of switch */ 3227 3228 return (0); 3229 } 3230 3231 /* 3232 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3233 * packet to the input queue of a specified interface. Note that this 3234 * calls the output routine of the loopback "driver", but with an interface 3235 * pointer that might NOT be &loif -- easier than replicating that code here. 3236 */ 3237 void 3238 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3239 { 3240 struct mbuf *copym; 3241 struct ip6_hdr *ip6; 3242 3243 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3244 if (copym == NULL) 3245 return; 3246 3247 /* 3248 * Make sure to deep-copy IPv6 header portion in case the data 3249 * is in an mbuf cluster, so that we can safely override the IPv6 3250 * header portion later. 3251 */ 3252 if (!M_WRITABLE(copym) || 3253 copym->m_len < sizeof(struct ip6_hdr)) { 3254 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3255 if (copym == NULL) 3256 return; 3257 } 3258 ip6 = mtod(copym, struct ip6_hdr *); 3259 /* 3260 * clear embedded scope identifiers if necessary. 3261 * in6_clearscope will touch the addresses only when necessary. 3262 */ 3263 in6_clearscope(&ip6->ip6_src); 3264 in6_clearscope(&ip6->ip6_dst); 3265 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3266 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3267 CSUM_PSEUDO_HDR; 3268 copym->m_pkthdr.csum_data = 0xffff; 3269 } 3270 if_simloop(ifp, copym, AF_INET6, 0); 3271 } 3272 3273 /* 3274 * Chop IPv6 header off from the payload. 3275 */ 3276 static int 3277 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3278 { 3279 struct mbuf *mh; 3280 struct ip6_hdr *ip6; 3281 3282 ip6 = mtod(m, struct ip6_hdr *); 3283 if (m->m_len > sizeof(*ip6)) { 3284 mh = m_gethdr(M_NOWAIT, MT_DATA); 3285 if (mh == NULL) { 3286 m_freem(m); 3287 return ENOBUFS; 3288 } 3289 m_move_pkthdr(mh, m); 3290 M_ALIGN(mh, sizeof(*ip6)); 3291 m->m_len -= sizeof(*ip6); 3292 m->m_data += sizeof(*ip6); 3293 mh->m_next = m; 3294 m = mh; 3295 m->m_len = sizeof(*ip6); 3296 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3297 } 3298 exthdrs->ip6e_ip6 = m; 3299 return 0; 3300 } 3301 3302 /* 3303 * Compute IPv6 extension header length. 3304 */ 3305 int 3306 ip6_optlen(struct inpcb *inp) 3307 { 3308 int len; 3309 3310 if (!inp->in6p_outputopts) 3311 return 0; 3312 3313 len = 0; 3314 #define elen(x) \ 3315 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3316 3317 len += elen(inp->in6p_outputopts->ip6po_hbh); 3318 if (inp->in6p_outputopts->ip6po_rthdr) 3319 /* dest1 is valid with rthdr only */ 3320 len += elen(inp->in6p_outputopts->ip6po_dest1); 3321 len += elen(inp->in6p_outputopts->ip6po_rthdr); 3322 len += elen(inp->in6p_outputopts->ip6po_dest2); 3323 return len; 3324 #undef elen 3325 } 3326