1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ipfw.h" 69 #include "opt_ipsec.h" 70 #include "opt_sctp.h" 71 #include "opt_route.h" 72 #include "opt_rss.h" 73 74 #include <sys/param.h> 75 #include <sys/kernel.h> 76 #include <sys/malloc.h> 77 #include <sys/mbuf.h> 78 #include <sys/errno.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/protosw.h> 82 #include <sys/socket.h> 83 #include <sys/socketvar.h> 84 #include <sys/syslog.h> 85 #include <sys/ucred.h> 86 87 #include <machine/in_cksum.h> 88 89 #include <net/if.h> 90 #include <net/if_var.h> 91 #include <net/netisr.h> 92 #include <net/route.h> 93 #include <net/pfil.h> 94 #include <net/rss_config.h> 95 #include <net/vnet.h> 96 97 #include <netinet/in.h> 98 #include <netinet/in_var.h> 99 #include <netinet/ip_var.h> 100 #include <netinet6/in6_fib.h> 101 #include <netinet6/in6_var.h> 102 #include <netinet/ip6.h> 103 #include <netinet/icmp6.h> 104 #include <netinet6/ip6_var.h> 105 #include <netinet/in_pcb.h> 106 #include <netinet/tcp_var.h> 107 #include <netinet6/nd6.h> 108 #include <netinet6/in6_rss.h> 109 110 #ifdef IPSEC 111 #include <netipsec/ipsec.h> 112 #include <netipsec/ipsec6.h> 113 #include <netipsec/key.h> 114 #include <netinet6/ip6_ipsec.h> 115 #endif /* IPSEC */ 116 #ifdef SCTP 117 #include <netinet/sctp.h> 118 #include <netinet/sctp_crc32.h> 119 #endif 120 121 #include <netinet6/ip6protosw.h> 122 #include <netinet6/scope6_var.h> 123 124 #ifdef FLOWTABLE 125 #include <net/flowtable.h> 126 #endif 127 128 extern int in6_mcast_loop; 129 130 struct ip6_exthdrs { 131 struct mbuf *ip6e_ip6; 132 struct mbuf *ip6e_hbh; 133 struct mbuf *ip6e_dest1; 134 struct mbuf *ip6e_rthdr; 135 struct mbuf *ip6e_dest2; 136 }; 137 138 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 139 struct ucred *, int); 140 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 141 struct socket *, struct sockopt *); 142 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 143 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 144 struct ucred *, int, int, int); 145 146 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 147 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 148 struct ip6_frag **); 149 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 150 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 151 static int ip6_getpmtu(struct route_in6 *, int, 152 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int); 153 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 154 u_long *, int *); 155 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 156 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 157 158 159 /* 160 * Make an extension header from option data. hp is the source, and 161 * mp is the destination. 162 */ 163 #define MAKE_EXTHDR(hp, mp) \ 164 do { \ 165 if (hp) { \ 166 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 167 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 168 ((eh)->ip6e_len + 1) << 3); \ 169 if (error) \ 170 goto freehdrs; \ 171 } \ 172 } while (/*CONSTCOND*/ 0) 173 174 /* 175 * Form a chain of extension headers. 176 * m is the extension header mbuf 177 * mp is the previous mbuf in the chain 178 * p is the next header 179 * i is the type of option. 180 */ 181 #define MAKE_CHAIN(m, mp, p, i)\ 182 do {\ 183 if (m) {\ 184 if (!hdrsplit) \ 185 panic("assumption failed: hdr not split"); \ 186 *mtod((m), u_char *) = *(p);\ 187 *(p) = (i);\ 188 p = mtod((m), u_char *);\ 189 (m)->m_next = (mp)->m_next;\ 190 (mp)->m_next = (m);\ 191 (mp) = (m);\ 192 }\ 193 } while (/*CONSTCOND*/ 0) 194 195 void 196 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 197 { 198 u_short csum; 199 200 csum = in_cksum_skip(m, offset + plen, offset); 201 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 202 csum = 0xffff; 203 offset += m->m_pkthdr.csum_data; /* checksum offset */ 204 205 if (offset + sizeof(u_short) > m->m_len) { 206 printf("%s: delayed m_pullup, m->len: %d plen %u off %u " 207 "csum_flags=%b\n", __func__, m->m_len, plen, offset, 208 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 209 /* 210 * XXX this should not happen, but if it does, the correct 211 * behavior may be to insert the checksum in the appropriate 212 * next mbuf in the chain. 213 */ 214 return; 215 } 216 *(u_short *)(m->m_data + offset) = csum; 217 } 218 219 int 220 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 221 int mtu, uint32_t id) 222 { 223 struct mbuf *m, **mnext, *m_frgpart; 224 struct ip6_hdr *ip6, *mhip6; 225 struct ip6_frag *ip6f; 226 int off; 227 int error; 228 int tlen = m0->m_pkthdr.len; 229 230 m = m0; 231 ip6 = mtod(m, struct ip6_hdr *); 232 mnext = &m->m_nextpkt; 233 234 for (off = hlen; off < tlen; off += mtu) { 235 m = m_gethdr(M_NOWAIT, MT_DATA); 236 if (!m) { 237 IP6STAT_INC(ip6s_odropped); 238 return (ENOBUFS); 239 } 240 m->m_flags = m0->m_flags & M_COPYFLAGS; 241 *mnext = m; 242 mnext = &m->m_nextpkt; 243 m->m_data += max_linkhdr; 244 mhip6 = mtod(m, struct ip6_hdr *); 245 *mhip6 = *ip6; 246 m->m_len = sizeof(*mhip6); 247 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 248 if (error) { 249 IP6STAT_INC(ip6s_odropped); 250 return (error); 251 } 252 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 253 if (off + mtu >= tlen) 254 mtu = tlen - off; 255 else 256 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 257 mhip6->ip6_plen = htons((u_short)(mtu + hlen + 258 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 259 if ((m_frgpart = m_copy(m0, off, mtu)) == NULL) { 260 IP6STAT_INC(ip6s_odropped); 261 return (ENOBUFS); 262 } 263 m_cat(m, m_frgpart); 264 m->m_pkthdr.len = mtu + hlen + sizeof(*ip6f); 265 m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; 266 m->m_pkthdr.rcvif = NULL; 267 ip6f->ip6f_reserved = 0; 268 ip6f->ip6f_ident = id; 269 ip6f->ip6f_nxt = nextproto; 270 IP6STAT_INC(ip6s_ofragments); 271 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 272 } 273 274 return (0); 275 } 276 277 /* 278 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 279 * header (with pri, len, nxt, hlim, src, dst). 280 * This function may modify ver and hlim only. 281 * The mbuf chain containing the packet will be freed. 282 * The mbuf opt, if present, will not be freed. 283 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 284 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 285 * then result of route lookup is stored in ro->ro_rt. 286 * 287 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 288 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 289 * which is rt_mtu. 290 * 291 * ifpp - XXX: just for statistics 292 */ 293 /* 294 * XXX TODO: no flowid is assigned for outbound flows? 295 */ 296 int 297 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 298 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 299 struct ifnet **ifpp, struct inpcb *inp) 300 { 301 struct ip6_hdr *ip6; 302 struct ifnet *ifp, *origifp; 303 struct mbuf *m = m0; 304 struct mbuf *mprev = NULL; 305 int hlen, tlen, len; 306 struct route_in6 ip6route; 307 struct rtentry *rt = NULL; 308 struct sockaddr_in6 *dst, src_sa, dst_sa; 309 struct in6_addr odst; 310 int error = 0; 311 struct in6_ifaddr *ia = NULL; 312 u_long mtu; 313 int alwaysfrag, dontfrag; 314 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 315 struct ip6_exthdrs exthdrs; 316 struct in6_addr src0, dst0; 317 u_int32_t zone; 318 struct route_in6 *ro_pmtu = NULL; 319 int hdrsplit = 0; 320 int sw_csum, tso; 321 int needfiblookup; 322 uint32_t fibnum; 323 struct m_tag *fwd_tag = NULL; 324 uint32_t id; 325 326 ip6 = mtod(m, struct ip6_hdr *); 327 if (ip6 == NULL) { 328 printf ("ip6 is NULL"); 329 goto bad; 330 } 331 332 if (inp != NULL) { 333 M_SETFIB(m, inp->inp_inc.inc_fibnum); 334 if ((flags & IP_NODEFAULTFLOWID) == 0) { 335 /* unconditionally set flowid */ 336 m->m_pkthdr.flowid = inp->inp_flowid; 337 M_HASHTYPE_SET(m, inp->inp_flowtype); 338 } 339 } 340 341 bzero(&exthdrs, sizeof(exthdrs)); 342 if (opt) { 343 /* Hop-by-Hop options header */ 344 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 345 /* Destination options header(1st part) */ 346 if (opt->ip6po_rthdr) { 347 /* 348 * Destination options header(1st part) 349 * This only makes sense with a routing header. 350 * See Section 9.2 of RFC 3542. 351 * Disabling this part just for MIP6 convenience is 352 * a bad idea. We need to think carefully about a 353 * way to make the advanced API coexist with MIP6 354 * options, which might automatically be inserted in 355 * the kernel. 356 */ 357 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 358 } 359 /* Routing header */ 360 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 361 /* Destination options header(2nd part) */ 362 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 363 } 364 365 #ifdef IPSEC 366 /* 367 * IPSec checking which handles several cases. 368 * FAST IPSEC: We re-injected the packet. 369 * XXX: need scope argument. 370 */ 371 switch(ip6_ipsec_output(&m, inp, &error)) 372 { 373 case 1: /* Bad packet */ 374 goto freehdrs; 375 case -1: /* IPSec done */ 376 goto done; 377 case 0: /* No IPSec */ 378 default: 379 break; 380 } 381 #endif /* IPSEC */ 382 383 /* 384 * Calculate the total length of the extension header chain. 385 * Keep the length of the unfragmentable part for fragmentation. 386 */ 387 optlen = 0; 388 if (exthdrs.ip6e_hbh) 389 optlen += exthdrs.ip6e_hbh->m_len; 390 if (exthdrs.ip6e_dest1) 391 optlen += exthdrs.ip6e_dest1->m_len; 392 if (exthdrs.ip6e_rthdr) 393 optlen += exthdrs.ip6e_rthdr->m_len; 394 unfragpartlen = optlen + sizeof(struct ip6_hdr); 395 396 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 397 if (exthdrs.ip6e_dest2) 398 optlen += exthdrs.ip6e_dest2->m_len; 399 400 /* 401 * If there is at least one extension header, 402 * separate IP6 header from the payload. 403 */ 404 if (optlen && !hdrsplit) { 405 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 406 m = NULL; 407 goto freehdrs; 408 } 409 m = exthdrs.ip6e_ip6; 410 hdrsplit++; 411 } 412 413 /* adjust pointer */ 414 ip6 = mtod(m, struct ip6_hdr *); 415 416 /* adjust mbuf packet header length */ 417 m->m_pkthdr.len += optlen; 418 plen = m->m_pkthdr.len - sizeof(*ip6); 419 420 /* If this is a jumbo payload, insert a jumbo payload option. */ 421 if (plen > IPV6_MAXPACKET) { 422 if (!hdrsplit) { 423 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 424 m = NULL; 425 goto freehdrs; 426 } 427 m = exthdrs.ip6e_ip6; 428 hdrsplit++; 429 } 430 /* adjust pointer */ 431 ip6 = mtod(m, struct ip6_hdr *); 432 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 433 goto freehdrs; 434 ip6->ip6_plen = 0; 435 } else 436 ip6->ip6_plen = htons(plen); 437 438 /* 439 * Concatenate headers and fill in next header fields. 440 * Here we have, on "m" 441 * IPv6 payload 442 * and we insert headers accordingly. Finally, we should be getting: 443 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 444 * 445 * during the header composing process, "m" points to IPv6 header. 446 * "mprev" points to an extension header prior to esp. 447 */ 448 u_char *nexthdrp = &ip6->ip6_nxt; 449 mprev = m; 450 451 /* 452 * we treat dest2 specially. this makes IPsec processing 453 * much easier. the goal here is to make mprev point the 454 * mbuf prior to dest2. 455 * 456 * result: IPv6 dest2 payload 457 * m and mprev will point to IPv6 header. 458 */ 459 if (exthdrs.ip6e_dest2) { 460 if (!hdrsplit) 461 panic("assumption failed: hdr not split"); 462 exthdrs.ip6e_dest2->m_next = m->m_next; 463 m->m_next = exthdrs.ip6e_dest2; 464 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 465 ip6->ip6_nxt = IPPROTO_DSTOPTS; 466 } 467 468 /* 469 * result: IPv6 hbh dest1 rthdr dest2 payload 470 * m will point to IPv6 header. mprev will point to the 471 * extension header prior to dest2 (rthdr in the above case). 472 */ 473 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 474 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 475 IPPROTO_DSTOPTS); 476 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 477 IPPROTO_ROUTING); 478 479 /* 480 * If there is a routing header, discard the packet. 481 */ 482 if (exthdrs.ip6e_rthdr) { 483 error = EINVAL; 484 goto bad; 485 } 486 487 /* Source address validation */ 488 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 489 (flags & IPV6_UNSPECSRC) == 0) { 490 error = EOPNOTSUPP; 491 IP6STAT_INC(ip6s_badscope); 492 goto bad; 493 } 494 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 495 error = EOPNOTSUPP; 496 IP6STAT_INC(ip6s_badscope); 497 goto bad; 498 } 499 500 IP6STAT_INC(ip6s_localout); 501 502 /* 503 * Route packet. 504 */ 505 if (ro == NULL) { 506 ro = &ip6route; 507 bzero((caddr_t)ro, sizeof(*ro)); 508 } 509 ro_pmtu = ro; 510 if (opt && opt->ip6po_rthdr) 511 ro = &opt->ip6po_route; 512 dst = (struct sockaddr_in6 *)&ro->ro_dst; 513 #ifdef FLOWTABLE 514 if (ro->ro_rt == NULL) 515 (void )flowtable_lookup(AF_INET6, m, (struct route *)ro); 516 #endif 517 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 518 again: 519 /* 520 * if specified, try to fill in the traffic class field. 521 * do not override if a non-zero value is already set. 522 * we check the diffserv field and the ecn field separately. 523 */ 524 if (opt && opt->ip6po_tclass >= 0) { 525 int mask = 0; 526 527 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 528 mask |= 0xfc; 529 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 530 mask |= 0x03; 531 if (mask != 0) 532 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 533 } 534 535 /* fill in or override the hop limit field, if necessary. */ 536 if (opt && opt->ip6po_hlim != -1) 537 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 538 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 539 if (im6o != NULL) 540 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 541 else 542 ip6->ip6_hlim = V_ip6_defmcasthlim; 543 } 544 545 /* adjust pointer */ 546 ip6 = mtod(m, struct ip6_hdr *); 547 548 /* 549 * Validate route against routing table additions; 550 * a better/more specific route might have been added. 551 * Make sure address family is set in route. 552 */ 553 if (inp) { 554 ro->ro_dst.sin6_family = AF_INET6; 555 RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, fibnum); 556 } 557 if (ro->ro_rt && fwd_tag == NULL && (ro->ro_rt->rt_flags & RTF_UP) && 558 ro->ro_dst.sin6_family == AF_INET6 && 559 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 560 rt = ro->ro_rt; 561 ifp = ro->ro_rt->rt_ifp; 562 } else { 563 if (fwd_tag == NULL) { 564 bzero(&dst_sa, sizeof(dst_sa)); 565 dst_sa.sin6_family = AF_INET6; 566 dst_sa.sin6_len = sizeof(dst_sa); 567 dst_sa.sin6_addr = ip6->ip6_dst; 568 } 569 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 570 &rt, fibnum); 571 if (error != 0) { 572 if (ifp != NULL) 573 in6_ifstat_inc(ifp, ifs6_out_discard); 574 goto bad; 575 } 576 } 577 if (rt == NULL) { 578 /* 579 * If in6_selectroute() does not return a route entry, 580 * dst may not have been updated. 581 */ 582 *dst = dst_sa; /* XXX */ 583 } 584 585 /* 586 * then rt (for unicast) and ifp must be non-NULL valid values. 587 */ 588 if ((flags & IPV6_FORWARDING) == 0) { 589 /* XXX: the FORWARDING flag can be set for mrouting. */ 590 in6_ifstat_inc(ifp, ifs6_out_request); 591 } 592 if (rt != NULL) { 593 ia = (struct in6_ifaddr *)(rt->rt_ifa); 594 counter_u64_add(rt->rt_pksent, 1); 595 } 596 597 598 /* 599 * The outgoing interface must be in the zone of source and 600 * destination addresses. 601 */ 602 origifp = ifp; 603 604 src0 = ip6->ip6_src; 605 if (in6_setscope(&src0, origifp, &zone)) 606 goto badscope; 607 bzero(&src_sa, sizeof(src_sa)); 608 src_sa.sin6_family = AF_INET6; 609 src_sa.sin6_len = sizeof(src_sa); 610 src_sa.sin6_addr = ip6->ip6_src; 611 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 612 goto badscope; 613 614 dst0 = ip6->ip6_dst; 615 if (in6_setscope(&dst0, origifp, &zone)) 616 goto badscope; 617 /* re-initialize to be sure */ 618 bzero(&dst_sa, sizeof(dst_sa)); 619 dst_sa.sin6_family = AF_INET6; 620 dst_sa.sin6_len = sizeof(dst_sa); 621 dst_sa.sin6_addr = ip6->ip6_dst; 622 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 623 goto badscope; 624 } 625 626 /* We should use ia_ifp to support the case of 627 * sending packets to an address of our own. 628 */ 629 if (ia != NULL && ia->ia_ifp) 630 ifp = ia->ia_ifp; 631 632 /* scope check is done. */ 633 goto routefound; 634 635 badscope: 636 IP6STAT_INC(ip6s_badscope); 637 in6_ifstat_inc(origifp, ifs6_out_discard); 638 if (error == 0) 639 error = EHOSTUNREACH; /* XXX */ 640 goto bad; 641 642 routefound: 643 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 644 if (opt && opt->ip6po_nextroute.ro_rt) { 645 /* 646 * The nexthop is explicitly specified by the 647 * application. We assume the next hop is an IPv6 648 * address. 649 */ 650 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 651 } 652 else if ((rt->rt_flags & RTF_GATEWAY)) 653 dst = (struct sockaddr_in6 *)rt->rt_gateway; 654 } 655 656 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 657 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 658 } else { 659 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 660 in6_ifstat_inc(ifp, ifs6_out_mcast); 661 /* 662 * Confirm that the outgoing interface supports multicast. 663 */ 664 if (!(ifp->if_flags & IFF_MULTICAST)) { 665 IP6STAT_INC(ip6s_noroute); 666 in6_ifstat_inc(ifp, ifs6_out_discard); 667 error = ENETUNREACH; 668 goto bad; 669 } 670 if ((im6o == NULL && in6_mcast_loop) || 671 (im6o && im6o->im6o_multicast_loop)) { 672 /* 673 * Loop back multicast datagram if not expressly 674 * forbidden to do so, even if we have not joined 675 * the address; protocols will filter it later, 676 * thus deferring a hash lookup and lock acquisition 677 * at the expense of an m_copym(). 678 */ 679 ip6_mloopback(ifp, m); 680 } else { 681 /* 682 * If we are acting as a multicast router, perform 683 * multicast forwarding as if the packet had just 684 * arrived on the interface to which we are about 685 * to send. The multicast forwarding function 686 * recursively calls this function, using the 687 * IPV6_FORWARDING flag to prevent infinite recursion. 688 * 689 * Multicasts that are looped back by ip6_mloopback(), 690 * above, will be forwarded by the ip6_input() routine, 691 * if necessary. 692 */ 693 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 694 /* 695 * XXX: ip6_mforward expects that rcvif is NULL 696 * when it is called from the originating path. 697 * However, it may not always be the case. 698 */ 699 m->m_pkthdr.rcvif = NULL; 700 if (ip6_mforward(ip6, ifp, m) != 0) { 701 m_freem(m); 702 goto done; 703 } 704 } 705 } 706 /* 707 * Multicasts with a hoplimit of zero may be looped back, 708 * above, but must not be transmitted on a network. 709 * Also, multicasts addressed to the loopback interface 710 * are not sent -- the above call to ip6_mloopback() will 711 * loop back a copy if this host actually belongs to the 712 * destination group on the loopback interface. 713 */ 714 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 715 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 716 m_freem(m); 717 goto done; 718 } 719 } 720 721 /* 722 * Fill the outgoing inteface to tell the upper layer 723 * to increment per-interface statistics. 724 */ 725 if (ifpp) 726 *ifpp = ifp; 727 728 /* Determine path MTU. */ 729 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 730 &mtu, &alwaysfrag, fibnum)) != 0) 731 goto bad; 732 733 /* 734 * The caller of this function may specify to use the minimum MTU 735 * in some cases. 736 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 737 * setting. The logic is a bit complicated; by default, unicast 738 * packets will follow path MTU while multicast packets will be sent at 739 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 740 * including unicast ones will be sent at the minimum MTU. Multicast 741 * packets will always be sent at the minimum MTU unless 742 * IP6PO_MINMTU_DISABLE is explicitly specified. 743 * See RFC 3542 for more details. 744 */ 745 if (mtu > IPV6_MMTU) { 746 if ((flags & IPV6_MINMTU)) 747 mtu = IPV6_MMTU; 748 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 749 mtu = IPV6_MMTU; 750 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 751 (opt == NULL || 752 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 753 mtu = IPV6_MMTU; 754 } 755 } 756 757 /* 758 * clear embedded scope identifiers if necessary. 759 * in6_clearscope will touch the addresses only when necessary. 760 */ 761 in6_clearscope(&ip6->ip6_src); 762 in6_clearscope(&ip6->ip6_dst); 763 764 /* 765 * If the outgoing packet contains a hop-by-hop options header, 766 * it must be examined and processed even by the source node. 767 * (RFC 2460, section 4.) 768 */ 769 if (exthdrs.ip6e_hbh) { 770 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 771 u_int32_t dummy; /* XXX unused */ 772 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 773 774 #ifdef DIAGNOSTIC 775 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 776 panic("ip6e_hbh is not contiguous"); 777 #endif 778 /* 779 * XXX: if we have to send an ICMPv6 error to the sender, 780 * we need the M_LOOP flag since icmp6_error() expects 781 * the IPv6 and the hop-by-hop options header are 782 * contiguous unless the flag is set. 783 */ 784 m->m_flags |= M_LOOP; 785 m->m_pkthdr.rcvif = ifp; 786 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 787 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 788 &dummy, &plen) < 0) { 789 /* m was already freed at this point */ 790 error = EINVAL;/* better error? */ 791 goto done; 792 } 793 m->m_flags &= ~M_LOOP; /* XXX */ 794 m->m_pkthdr.rcvif = NULL; 795 } 796 797 /* Jump over all PFIL processing if hooks are not active. */ 798 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 799 goto passout; 800 801 odst = ip6->ip6_dst; 802 /* Run through list of hooks for output packets. */ 803 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 804 if (error != 0 || m == NULL) 805 goto done; 806 ip6 = mtod(m, struct ip6_hdr *); 807 808 needfiblookup = 0; 809 /* See if destination IP address was changed by packet filter. */ 810 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 811 m->m_flags |= M_SKIP_FIREWALL; 812 /* If destination is now ourself drop to ip6_input(). */ 813 if (in6_localip(&ip6->ip6_dst)) { 814 m->m_flags |= M_FASTFWD_OURS; 815 if (m->m_pkthdr.rcvif == NULL) 816 m->m_pkthdr.rcvif = V_loif; 817 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 818 m->m_pkthdr.csum_flags |= 819 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 820 m->m_pkthdr.csum_data = 0xffff; 821 } 822 #ifdef SCTP 823 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 824 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 825 #endif 826 error = netisr_queue(NETISR_IPV6, m); 827 goto done; 828 } else { 829 RO_RTFREE(ro); 830 needfiblookup = 1; /* Redo the routing table lookup. */ 831 } 832 } 833 /* See if fib was changed by packet filter. */ 834 if (fibnum != M_GETFIB(m)) { 835 m->m_flags |= M_SKIP_FIREWALL; 836 fibnum = M_GETFIB(m); 837 RO_RTFREE(ro); 838 needfiblookup = 1; 839 } 840 if (needfiblookup) 841 goto again; 842 843 /* See if local, if yes, send it to netisr. */ 844 if (m->m_flags & M_FASTFWD_OURS) { 845 if (m->m_pkthdr.rcvif == NULL) 846 m->m_pkthdr.rcvif = V_loif; 847 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 848 m->m_pkthdr.csum_flags |= 849 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 850 m->m_pkthdr.csum_data = 0xffff; 851 } 852 #ifdef SCTP 853 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 854 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 855 #endif 856 error = netisr_queue(NETISR_IPV6, m); 857 goto done; 858 } 859 /* Or forward to some other address? */ 860 if ((m->m_flags & M_IP6_NEXTHOP) && 861 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 862 dst = (struct sockaddr_in6 *)&ro->ro_dst; 863 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 864 m->m_flags |= M_SKIP_FIREWALL; 865 m->m_flags &= ~M_IP6_NEXTHOP; 866 m_tag_delete(m, fwd_tag); 867 goto again; 868 } 869 870 passout: 871 /* 872 * Send the packet to the outgoing interface. 873 * If necessary, do IPv6 fragmentation before sending. 874 * 875 * the logic here is rather complex: 876 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 877 * 1-a: send as is if tlen <= path mtu 878 * 1-b: fragment if tlen > path mtu 879 * 880 * 2: if user asks us not to fragment (dontfrag == 1) 881 * 2-a: send as is if tlen <= interface mtu 882 * 2-b: error if tlen > interface mtu 883 * 884 * 3: if we always need to attach fragment header (alwaysfrag == 1) 885 * always fragment 886 * 887 * 4: if dontfrag == 1 && alwaysfrag == 1 888 * error, as we cannot handle this conflicting request 889 */ 890 sw_csum = m->m_pkthdr.csum_flags; 891 if (!hdrsplit) { 892 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 893 sw_csum &= ~ifp->if_hwassist; 894 } else 895 tso = 0; 896 /* 897 * If we added extension headers, we will not do TSO and calculate the 898 * checksums ourselves for now. 899 * XXX-BZ Need a framework to know when the NIC can handle it, even 900 * with ext. hdrs. 901 */ 902 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 903 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 904 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 905 } 906 #ifdef SCTP 907 if (sw_csum & CSUM_SCTP_IPV6) { 908 sw_csum &= ~CSUM_SCTP_IPV6; 909 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 910 } 911 #endif 912 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 913 tlen = m->m_pkthdr.len; 914 915 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 916 dontfrag = 1; 917 else 918 dontfrag = 0; 919 if (dontfrag && alwaysfrag) { /* case 4 */ 920 /* conflicting request - can't transmit */ 921 error = EMSGSIZE; 922 goto bad; 923 } 924 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 925 /* 926 * Even if the DONTFRAG option is specified, we cannot send the 927 * packet when the data length is larger than the MTU of the 928 * outgoing interface. 929 * Notify the error by sending IPV6_PATHMTU ancillary data if 930 * application wanted to know the MTU value. Also return an 931 * error code (this is not described in the API spec). 932 */ 933 if (inp != NULL) 934 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 935 error = EMSGSIZE; 936 goto bad; 937 } 938 939 /* 940 * transmit packet without fragmentation 941 */ 942 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 943 struct in6_ifaddr *ia6; 944 945 ip6 = mtod(m, struct ip6_hdr *); 946 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 947 if (ia6) { 948 /* Record statistics for this interface address. */ 949 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 950 counter_u64_add(ia6->ia_ifa.ifa_obytes, 951 m->m_pkthdr.len); 952 ifa_free(&ia6->ia_ifa); 953 } 954 error = nd6_output_ifp(ifp, origifp, m, dst, 955 (struct route *)ro); 956 goto done; 957 } 958 959 /* 960 * try to fragment the packet. case 1-b and 3 961 */ 962 if (mtu < IPV6_MMTU) { 963 /* path MTU cannot be less than IPV6_MMTU */ 964 error = EMSGSIZE; 965 in6_ifstat_inc(ifp, ifs6_out_fragfail); 966 goto bad; 967 } else if (ip6->ip6_plen == 0) { 968 /* jumbo payload cannot be fragmented */ 969 error = EMSGSIZE; 970 in6_ifstat_inc(ifp, ifs6_out_fragfail); 971 goto bad; 972 } else { 973 u_char nextproto; 974 975 /* 976 * Too large for the destination or interface; 977 * fragment if possible. 978 * Must be able to put at least 8 bytes per fragment. 979 */ 980 hlen = unfragpartlen; 981 if (mtu > IPV6_MAXPACKET) 982 mtu = IPV6_MAXPACKET; 983 984 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 985 if (len < 8) { 986 error = EMSGSIZE; 987 in6_ifstat_inc(ifp, ifs6_out_fragfail); 988 goto bad; 989 } 990 991 /* 992 * If the interface will not calculate checksums on 993 * fragmented packets, then do it here. 994 * XXX-BZ handle the hw offloading case. Need flags. 995 */ 996 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 997 in6_delayed_cksum(m, plen, hlen); 998 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 999 } 1000 #ifdef SCTP 1001 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 1002 sctp_delayed_cksum(m, hlen); 1003 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 1004 } 1005 #endif 1006 /* 1007 * Change the next header field of the last header in the 1008 * unfragmentable part. 1009 */ 1010 if (exthdrs.ip6e_rthdr) { 1011 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1012 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1013 } else if (exthdrs.ip6e_dest1) { 1014 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1015 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1016 } else if (exthdrs.ip6e_hbh) { 1017 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1018 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1019 } else { 1020 nextproto = ip6->ip6_nxt; 1021 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1022 } 1023 1024 /* 1025 * Loop through length of segment after first fragment, 1026 * make new header and copy data of each part and link onto 1027 * chain. 1028 */ 1029 m0 = m; 1030 id = htonl(ip6_randomid()); 1031 if ((error = ip6_fragment(ifp, m, hlen, nextproto, len, id))) 1032 goto sendorfree; 1033 1034 in6_ifstat_inc(ifp, ifs6_out_fragok); 1035 } 1036 1037 /* 1038 * Remove leading garbages. 1039 */ 1040 sendorfree: 1041 m = m0->m_nextpkt; 1042 m0->m_nextpkt = 0; 1043 m_freem(m0); 1044 for (m0 = m; m; m = m0) { 1045 m0 = m->m_nextpkt; 1046 m->m_nextpkt = 0; 1047 if (error == 0) { 1048 /* Record statistics for this interface address. */ 1049 if (ia) { 1050 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1051 counter_u64_add(ia->ia_ifa.ifa_obytes, 1052 m->m_pkthdr.len); 1053 } 1054 error = nd6_output_ifp(ifp, origifp, m, dst, 1055 (struct route *)ro); 1056 } else 1057 m_freem(m); 1058 } 1059 1060 if (error == 0) 1061 IP6STAT_INC(ip6s_fragmented); 1062 1063 done: 1064 if (ro == &ip6route) 1065 RO_RTFREE(ro); 1066 return (error); 1067 1068 freehdrs: 1069 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1070 m_freem(exthdrs.ip6e_dest1); 1071 m_freem(exthdrs.ip6e_rthdr); 1072 m_freem(exthdrs.ip6e_dest2); 1073 /* FALLTHROUGH */ 1074 bad: 1075 if (m) 1076 m_freem(m); 1077 goto done; 1078 } 1079 1080 static int 1081 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1082 { 1083 struct mbuf *m; 1084 1085 if (hlen > MCLBYTES) 1086 return (ENOBUFS); /* XXX */ 1087 1088 if (hlen > MLEN) 1089 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1090 else 1091 m = m_get(M_NOWAIT, MT_DATA); 1092 if (m == NULL) 1093 return (ENOBUFS); 1094 m->m_len = hlen; 1095 if (hdr) 1096 bcopy(hdr, mtod(m, caddr_t), hlen); 1097 1098 *mp = m; 1099 return (0); 1100 } 1101 1102 /* 1103 * Insert jumbo payload option. 1104 */ 1105 static int 1106 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1107 { 1108 struct mbuf *mopt; 1109 u_char *optbuf; 1110 u_int32_t v; 1111 1112 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1113 1114 /* 1115 * If there is no hop-by-hop options header, allocate new one. 1116 * If there is one but it doesn't have enough space to store the 1117 * jumbo payload option, allocate a cluster to store the whole options. 1118 * Otherwise, use it to store the options. 1119 */ 1120 if (exthdrs->ip6e_hbh == NULL) { 1121 mopt = m_get(M_NOWAIT, MT_DATA); 1122 if (mopt == NULL) 1123 return (ENOBUFS); 1124 mopt->m_len = JUMBOOPTLEN; 1125 optbuf = mtod(mopt, u_char *); 1126 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1127 exthdrs->ip6e_hbh = mopt; 1128 } else { 1129 struct ip6_hbh *hbh; 1130 1131 mopt = exthdrs->ip6e_hbh; 1132 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1133 /* 1134 * XXX assumption: 1135 * - exthdrs->ip6e_hbh is not referenced from places 1136 * other than exthdrs. 1137 * - exthdrs->ip6e_hbh is not an mbuf chain. 1138 */ 1139 int oldoptlen = mopt->m_len; 1140 struct mbuf *n; 1141 1142 /* 1143 * XXX: give up if the whole (new) hbh header does 1144 * not fit even in an mbuf cluster. 1145 */ 1146 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1147 return (ENOBUFS); 1148 1149 /* 1150 * As a consequence, we must always prepare a cluster 1151 * at this point. 1152 */ 1153 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1154 if (n == NULL) 1155 return (ENOBUFS); 1156 n->m_len = oldoptlen + JUMBOOPTLEN; 1157 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1158 oldoptlen); 1159 optbuf = mtod(n, caddr_t) + oldoptlen; 1160 m_freem(mopt); 1161 mopt = exthdrs->ip6e_hbh = n; 1162 } else { 1163 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1164 mopt->m_len += JUMBOOPTLEN; 1165 } 1166 optbuf[0] = IP6OPT_PADN; 1167 optbuf[1] = 1; 1168 1169 /* 1170 * Adjust the header length according to the pad and 1171 * the jumbo payload option. 1172 */ 1173 hbh = mtod(mopt, struct ip6_hbh *); 1174 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1175 } 1176 1177 /* fill in the option. */ 1178 optbuf[2] = IP6OPT_JUMBO; 1179 optbuf[3] = 4; 1180 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1181 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1182 1183 /* finally, adjust the packet header length */ 1184 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1185 1186 return (0); 1187 #undef JUMBOOPTLEN 1188 } 1189 1190 /* 1191 * Insert fragment header and copy unfragmentable header portions. 1192 */ 1193 static int 1194 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1195 struct ip6_frag **frghdrp) 1196 { 1197 struct mbuf *n, *mlast; 1198 1199 if (hlen > sizeof(struct ip6_hdr)) { 1200 n = m_copym(m0, sizeof(struct ip6_hdr), 1201 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1202 if (n == NULL) 1203 return (ENOBUFS); 1204 m->m_next = n; 1205 } else 1206 n = m; 1207 1208 /* Search for the last mbuf of unfragmentable part. */ 1209 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1210 ; 1211 1212 if (M_WRITABLE(mlast) && 1213 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1214 /* use the trailing space of the last mbuf for the fragment hdr */ 1215 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1216 mlast->m_len); 1217 mlast->m_len += sizeof(struct ip6_frag); 1218 m->m_pkthdr.len += sizeof(struct ip6_frag); 1219 } else { 1220 /* allocate a new mbuf for the fragment header */ 1221 struct mbuf *mfrg; 1222 1223 mfrg = m_get(M_NOWAIT, MT_DATA); 1224 if (mfrg == NULL) 1225 return (ENOBUFS); 1226 mfrg->m_len = sizeof(struct ip6_frag); 1227 *frghdrp = mtod(mfrg, struct ip6_frag *); 1228 mlast->m_next = mfrg; 1229 } 1230 1231 return (0); 1232 } 1233 1234 /* 1235 * Calculates IPv6 path mtu for destination @dst. 1236 * Resulting MTU is stored in @mtup. 1237 * 1238 * Returns 0 on success. 1239 */ 1240 static int 1241 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1242 { 1243 struct nhop6_extended nh6; 1244 struct in6_addr kdst; 1245 uint32_t scopeid; 1246 struct ifnet *ifp; 1247 u_long mtu; 1248 int error; 1249 1250 in6_splitscope(dst, &kdst, &scopeid); 1251 if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0) 1252 return (EHOSTUNREACH); 1253 1254 ifp = nh6.nh_ifp; 1255 mtu = nh6.nh_mtu; 1256 1257 error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL); 1258 fib6_free_nh_ext(fibnum, &nh6); 1259 1260 return (error); 1261 } 1262 1263 /* 1264 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1265 * and cached data in @ro_pmtu. 1266 * MTU from (successful) route lookup is saved (along with dst) 1267 * inside @ro_pmtu to avoid subsequent route lookups after packet 1268 * filter processing. 1269 * 1270 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1271 * Returns 0 on success. 1272 */ 1273 static int 1274 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1275 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1276 int *alwaysfragp, u_int fibnum) 1277 { 1278 struct nhop6_basic nh6; 1279 struct in6_addr kdst; 1280 uint32_t scopeid; 1281 struct sockaddr_in6 *sa6_dst; 1282 u_long mtu; 1283 1284 mtu = 0; 1285 if (do_lookup) { 1286 1287 /* 1288 * Here ro_pmtu has final destination address, while 1289 * ro might represent immediate destination. 1290 * Use ro_pmtu destination since mtu might differ. 1291 */ 1292 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1293 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1294 ro_pmtu->ro_mtu = 0; 1295 1296 if (ro_pmtu->ro_mtu == 0) { 1297 bzero(sa6_dst, sizeof(*sa6_dst)); 1298 sa6_dst->sin6_family = AF_INET6; 1299 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1300 sa6_dst->sin6_addr = *dst; 1301 1302 in6_splitscope(dst, &kdst, &scopeid); 1303 if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0, 1304 &nh6) == 0) 1305 ro_pmtu->ro_mtu = nh6.nh_mtu; 1306 } 1307 1308 mtu = ro_pmtu->ro_mtu; 1309 } 1310 1311 if (ro_pmtu->ro_rt) 1312 mtu = ro_pmtu->ro_rt->rt_mtu; 1313 1314 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp)); 1315 } 1316 1317 /* 1318 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1319 * hostcache data for @dst. 1320 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1321 * 1322 * Returns 0 on success. 1323 */ 1324 static int 1325 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1326 u_long *mtup, int *alwaysfragp) 1327 { 1328 u_long mtu = 0; 1329 int alwaysfrag = 0; 1330 int error = 0; 1331 1332 if (rt_mtu > 0) { 1333 u_int32_t ifmtu; 1334 struct in_conninfo inc; 1335 1336 bzero(&inc, sizeof(inc)); 1337 inc.inc_flags |= INC_ISIPV6; 1338 inc.inc6_faddr = *dst; 1339 1340 ifmtu = IN6_LINKMTU(ifp); 1341 mtu = tcp_hc_getmtu(&inc); 1342 if (mtu) 1343 mtu = min(mtu, rt_mtu); 1344 else 1345 mtu = rt_mtu; 1346 if (mtu == 0) 1347 mtu = ifmtu; 1348 else if (mtu < IPV6_MMTU) { 1349 /* 1350 * RFC2460 section 5, last paragraph: 1351 * if we record ICMPv6 too big message with 1352 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1353 * or smaller, with framgent header attached. 1354 * (fragment header is needed regardless from the 1355 * packet size, for translators to identify packets) 1356 */ 1357 alwaysfrag = 1; 1358 mtu = IPV6_MMTU; 1359 } 1360 } else if (ifp) { 1361 mtu = IN6_LINKMTU(ifp); 1362 } else 1363 error = EHOSTUNREACH; /* XXX */ 1364 1365 *mtup = mtu; 1366 if (alwaysfragp) 1367 *alwaysfragp = alwaysfrag; 1368 return (error); 1369 } 1370 1371 /* 1372 * IP6 socket option processing. 1373 */ 1374 int 1375 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1376 { 1377 int optdatalen, uproto; 1378 void *optdata; 1379 struct inpcb *in6p = sotoinpcb(so); 1380 int error, optval; 1381 int level, op, optname; 1382 int optlen; 1383 struct thread *td; 1384 #ifdef RSS 1385 uint32_t rss_bucket; 1386 int retval; 1387 #endif 1388 1389 level = sopt->sopt_level; 1390 op = sopt->sopt_dir; 1391 optname = sopt->sopt_name; 1392 optlen = sopt->sopt_valsize; 1393 td = sopt->sopt_td; 1394 error = 0; 1395 optval = 0; 1396 uproto = (int)so->so_proto->pr_protocol; 1397 1398 if (level != IPPROTO_IPV6) { 1399 error = EINVAL; 1400 1401 if (sopt->sopt_level == SOL_SOCKET && 1402 sopt->sopt_dir == SOPT_SET) { 1403 switch (sopt->sopt_name) { 1404 case SO_REUSEADDR: 1405 INP_WLOCK(in6p); 1406 if ((so->so_options & SO_REUSEADDR) != 0) 1407 in6p->inp_flags2 |= INP_REUSEADDR; 1408 else 1409 in6p->inp_flags2 &= ~INP_REUSEADDR; 1410 INP_WUNLOCK(in6p); 1411 error = 0; 1412 break; 1413 case SO_REUSEPORT: 1414 INP_WLOCK(in6p); 1415 if ((so->so_options & SO_REUSEPORT) != 0) 1416 in6p->inp_flags2 |= INP_REUSEPORT; 1417 else 1418 in6p->inp_flags2 &= ~INP_REUSEPORT; 1419 INP_WUNLOCK(in6p); 1420 error = 0; 1421 break; 1422 case SO_SETFIB: 1423 INP_WLOCK(in6p); 1424 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1425 INP_WUNLOCK(in6p); 1426 error = 0; 1427 break; 1428 default: 1429 break; 1430 } 1431 } 1432 } else { /* level == IPPROTO_IPV6 */ 1433 switch (op) { 1434 1435 case SOPT_SET: 1436 switch (optname) { 1437 case IPV6_2292PKTOPTIONS: 1438 #ifdef IPV6_PKTOPTIONS 1439 case IPV6_PKTOPTIONS: 1440 #endif 1441 { 1442 struct mbuf *m; 1443 1444 error = soopt_getm(sopt, &m); /* XXX */ 1445 if (error != 0) 1446 break; 1447 error = soopt_mcopyin(sopt, m); /* XXX */ 1448 if (error != 0) 1449 break; 1450 error = ip6_pcbopts(&in6p->in6p_outputopts, 1451 m, so, sopt); 1452 m_freem(m); /* XXX */ 1453 break; 1454 } 1455 1456 /* 1457 * Use of some Hop-by-Hop options or some 1458 * Destination options, might require special 1459 * privilege. That is, normal applications 1460 * (without special privilege) might be forbidden 1461 * from setting certain options in outgoing packets, 1462 * and might never see certain options in received 1463 * packets. [RFC 2292 Section 6] 1464 * KAME specific note: 1465 * KAME prevents non-privileged users from sending or 1466 * receiving ANY hbh/dst options in order to avoid 1467 * overhead of parsing options in the kernel. 1468 */ 1469 case IPV6_RECVHOPOPTS: 1470 case IPV6_RECVDSTOPTS: 1471 case IPV6_RECVRTHDRDSTOPTS: 1472 if (td != NULL) { 1473 error = priv_check(td, 1474 PRIV_NETINET_SETHDROPTS); 1475 if (error) 1476 break; 1477 } 1478 /* FALLTHROUGH */ 1479 case IPV6_UNICAST_HOPS: 1480 case IPV6_HOPLIMIT: 1481 1482 case IPV6_RECVPKTINFO: 1483 case IPV6_RECVHOPLIMIT: 1484 case IPV6_RECVRTHDR: 1485 case IPV6_RECVPATHMTU: 1486 case IPV6_RECVTCLASS: 1487 case IPV6_RECVFLOWID: 1488 #ifdef RSS 1489 case IPV6_RECVRSSBUCKETID: 1490 #endif 1491 case IPV6_V6ONLY: 1492 case IPV6_AUTOFLOWLABEL: 1493 case IPV6_BINDANY: 1494 case IPV6_BINDMULTI: 1495 #ifdef RSS 1496 case IPV6_RSS_LISTEN_BUCKET: 1497 #endif 1498 if (optname == IPV6_BINDANY && td != NULL) { 1499 error = priv_check(td, 1500 PRIV_NETINET_BINDANY); 1501 if (error) 1502 break; 1503 } 1504 1505 if (optlen != sizeof(int)) { 1506 error = EINVAL; 1507 break; 1508 } 1509 error = sooptcopyin(sopt, &optval, 1510 sizeof optval, sizeof optval); 1511 if (error) 1512 break; 1513 switch (optname) { 1514 1515 case IPV6_UNICAST_HOPS: 1516 if (optval < -1 || optval >= 256) 1517 error = EINVAL; 1518 else { 1519 /* -1 = kernel default */ 1520 in6p->in6p_hops = optval; 1521 if ((in6p->inp_vflag & 1522 INP_IPV4) != 0) 1523 in6p->inp_ip_ttl = optval; 1524 } 1525 break; 1526 #define OPTSET(bit) \ 1527 do { \ 1528 INP_WLOCK(in6p); \ 1529 if (optval) \ 1530 in6p->inp_flags |= (bit); \ 1531 else \ 1532 in6p->inp_flags &= ~(bit); \ 1533 INP_WUNLOCK(in6p); \ 1534 } while (/*CONSTCOND*/ 0) 1535 #define OPTSET2292(bit) \ 1536 do { \ 1537 INP_WLOCK(in6p); \ 1538 in6p->inp_flags |= IN6P_RFC2292; \ 1539 if (optval) \ 1540 in6p->inp_flags |= (bit); \ 1541 else \ 1542 in6p->inp_flags &= ~(bit); \ 1543 INP_WUNLOCK(in6p); \ 1544 } while (/*CONSTCOND*/ 0) 1545 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1546 1547 #define OPTSET2(bit, val) do { \ 1548 INP_WLOCK(in6p); \ 1549 if (val) \ 1550 in6p->inp_flags2 |= bit; \ 1551 else \ 1552 in6p->inp_flags2 &= ~bit; \ 1553 INP_WUNLOCK(in6p); \ 1554 } while (0) 1555 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) 1556 1557 case IPV6_RECVPKTINFO: 1558 /* cannot mix with RFC2292 */ 1559 if (OPTBIT(IN6P_RFC2292)) { 1560 error = EINVAL; 1561 break; 1562 } 1563 OPTSET(IN6P_PKTINFO); 1564 break; 1565 1566 case IPV6_HOPLIMIT: 1567 { 1568 struct ip6_pktopts **optp; 1569 1570 /* cannot mix with RFC2292 */ 1571 if (OPTBIT(IN6P_RFC2292)) { 1572 error = EINVAL; 1573 break; 1574 } 1575 optp = &in6p->in6p_outputopts; 1576 error = ip6_pcbopt(IPV6_HOPLIMIT, 1577 (u_char *)&optval, sizeof(optval), 1578 optp, (td != NULL) ? td->td_ucred : 1579 NULL, uproto); 1580 break; 1581 } 1582 1583 case IPV6_RECVHOPLIMIT: 1584 /* cannot mix with RFC2292 */ 1585 if (OPTBIT(IN6P_RFC2292)) { 1586 error = EINVAL; 1587 break; 1588 } 1589 OPTSET(IN6P_HOPLIMIT); 1590 break; 1591 1592 case IPV6_RECVHOPOPTS: 1593 /* cannot mix with RFC2292 */ 1594 if (OPTBIT(IN6P_RFC2292)) { 1595 error = EINVAL; 1596 break; 1597 } 1598 OPTSET(IN6P_HOPOPTS); 1599 break; 1600 1601 case IPV6_RECVDSTOPTS: 1602 /* cannot mix with RFC2292 */ 1603 if (OPTBIT(IN6P_RFC2292)) { 1604 error = EINVAL; 1605 break; 1606 } 1607 OPTSET(IN6P_DSTOPTS); 1608 break; 1609 1610 case IPV6_RECVRTHDRDSTOPTS: 1611 /* cannot mix with RFC2292 */ 1612 if (OPTBIT(IN6P_RFC2292)) { 1613 error = EINVAL; 1614 break; 1615 } 1616 OPTSET(IN6P_RTHDRDSTOPTS); 1617 break; 1618 1619 case IPV6_RECVRTHDR: 1620 /* cannot mix with RFC2292 */ 1621 if (OPTBIT(IN6P_RFC2292)) { 1622 error = EINVAL; 1623 break; 1624 } 1625 OPTSET(IN6P_RTHDR); 1626 break; 1627 1628 case IPV6_RECVPATHMTU: 1629 /* 1630 * We ignore this option for TCP 1631 * sockets. 1632 * (RFC3542 leaves this case 1633 * unspecified.) 1634 */ 1635 if (uproto != IPPROTO_TCP) 1636 OPTSET(IN6P_MTU); 1637 break; 1638 1639 case IPV6_RECVFLOWID: 1640 OPTSET2(INP_RECVFLOWID, optval); 1641 break; 1642 1643 #ifdef RSS 1644 case IPV6_RECVRSSBUCKETID: 1645 OPTSET2(INP_RECVRSSBUCKETID, optval); 1646 break; 1647 #endif 1648 1649 case IPV6_V6ONLY: 1650 /* 1651 * make setsockopt(IPV6_V6ONLY) 1652 * available only prior to bind(2). 1653 * see ipng mailing list, Jun 22 2001. 1654 */ 1655 if (in6p->inp_lport || 1656 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1657 error = EINVAL; 1658 break; 1659 } 1660 OPTSET(IN6P_IPV6_V6ONLY); 1661 if (optval) 1662 in6p->inp_vflag &= ~INP_IPV4; 1663 else 1664 in6p->inp_vflag |= INP_IPV4; 1665 break; 1666 case IPV6_RECVTCLASS: 1667 /* cannot mix with RFC2292 XXX */ 1668 if (OPTBIT(IN6P_RFC2292)) { 1669 error = EINVAL; 1670 break; 1671 } 1672 OPTSET(IN6P_TCLASS); 1673 break; 1674 case IPV6_AUTOFLOWLABEL: 1675 OPTSET(IN6P_AUTOFLOWLABEL); 1676 break; 1677 1678 case IPV6_BINDANY: 1679 OPTSET(INP_BINDANY); 1680 break; 1681 1682 case IPV6_BINDMULTI: 1683 OPTSET2(INP_BINDMULTI, optval); 1684 break; 1685 #ifdef RSS 1686 case IPV6_RSS_LISTEN_BUCKET: 1687 if ((optval >= 0) && 1688 (optval < rss_getnumbuckets())) { 1689 in6p->inp_rss_listen_bucket = optval; 1690 OPTSET2(INP_RSS_BUCKET_SET, 1); 1691 } else { 1692 error = EINVAL; 1693 } 1694 break; 1695 #endif 1696 } 1697 break; 1698 1699 case IPV6_TCLASS: 1700 case IPV6_DONTFRAG: 1701 case IPV6_USE_MIN_MTU: 1702 case IPV6_PREFER_TEMPADDR: 1703 if (optlen != sizeof(optval)) { 1704 error = EINVAL; 1705 break; 1706 } 1707 error = sooptcopyin(sopt, &optval, 1708 sizeof optval, sizeof optval); 1709 if (error) 1710 break; 1711 { 1712 struct ip6_pktopts **optp; 1713 optp = &in6p->in6p_outputopts; 1714 error = ip6_pcbopt(optname, 1715 (u_char *)&optval, sizeof(optval), 1716 optp, (td != NULL) ? td->td_ucred : 1717 NULL, uproto); 1718 break; 1719 } 1720 1721 case IPV6_2292PKTINFO: 1722 case IPV6_2292HOPLIMIT: 1723 case IPV6_2292HOPOPTS: 1724 case IPV6_2292DSTOPTS: 1725 case IPV6_2292RTHDR: 1726 /* RFC 2292 */ 1727 if (optlen != sizeof(int)) { 1728 error = EINVAL; 1729 break; 1730 } 1731 error = sooptcopyin(sopt, &optval, 1732 sizeof optval, sizeof optval); 1733 if (error) 1734 break; 1735 switch (optname) { 1736 case IPV6_2292PKTINFO: 1737 OPTSET2292(IN6P_PKTINFO); 1738 break; 1739 case IPV6_2292HOPLIMIT: 1740 OPTSET2292(IN6P_HOPLIMIT); 1741 break; 1742 case IPV6_2292HOPOPTS: 1743 /* 1744 * Check super-user privilege. 1745 * See comments for IPV6_RECVHOPOPTS. 1746 */ 1747 if (td != NULL) { 1748 error = priv_check(td, 1749 PRIV_NETINET_SETHDROPTS); 1750 if (error) 1751 return (error); 1752 } 1753 OPTSET2292(IN6P_HOPOPTS); 1754 break; 1755 case IPV6_2292DSTOPTS: 1756 if (td != NULL) { 1757 error = priv_check(td, 1758 PRIV_NETINET_SETHDROPTS); 1759 if (error) 1760 return (error); 1761 } 1762 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1763 break; 1764 case IPV6_2292RTHDR: 1765 OPTSET2292(IN6P_RTHDR); 1766 break; 1767 } 1768 break; 1769 case IPV6_PKTINFO: 1770 case IPV6_HOPOPTS: 1771 case IPV6_RTHDR: 1772 case IPV6_DSTOPTS: 1773 case IPV6_RTHDRDSTOPTS: 1774 case IPV6_NEXTHOP: 1775 { 1776 /* new advanced API (RFC3542) */ 1777 u_char *optbuf; 1778 u_char optbuf_storage[MCLBYTES]; 1779 int optlen; 1780 struct ip6_pktopts **optp; 1781 1782 /* cannot mix with RFC2292 */ 1783 if (OPTBIT(IN6P_RFC2292)) { 1784 error = EINVAL; 1785 break; 1786 } 1787 1788 /* 1789 * We only ensure valsize is not too large 1790 * here. Further validation will be done 1791 * later. 1792 */ 1793 error = sooptcopyin(sopt, optbuf_storage, 1794 sizeof(optbuf_storage), 0); 1795 if (error) 1796 break; 1797 optlen = sopt->sopt_valsize; 1798 optbuf = optbuf_storage; 1799 optp = &in6p->in6p_outputopts; 1800 error = ip6_pcbopt(optname, optbuf, optlen, 1801 optp, (td != NULL) ? td->td_ucred : NULL, 1802 uproto); 1803 break; 1804 } 1805 #undef OPTSET 1806 1807 case IPV6_MULTICAST_IF: 1808 case IPV6_MULTICAST_HOPS: 1809 case IPV6_MULTICAST_LOOP: 1810 case IPV6_JOIN_GROUP: 1811 case IPV6_LEAVE_GROUP: 1812 case IPV6_MSFILTER: 1813 case MCAST_BLOCK_SOURCE: 1814 case MCAST_UNBLOCK_SOURCE: 1815 case MCAST_JOIN_GROUP: 1816 case MCAST_LEAVE_GROUP: 1817 case MCAST_JOIN_SOURCE_GROUP: 1818 case MCAST_LEAVE_SOURCE_GROUP: 1819 error = ip6_setmoptions(in6p, sopt); 1820 break; 1821 1822 case IPV6_PORTRANGE: 1823 error = sooptcopyin(sopt, &optval, 1824 sizeof optval, sizeof optval); 1825 if (error) 1826 break; 1827 1828 INP_WLOCK(in6p); 1829 switch (optval) { 1830 case IPV6_PORTRANGE_DEFAULT: 1831 in6p->inp_flags &= ~(INP_LOWPORT); 1832 in6p->inp_flags &= ~(INP_HIGHPORT); 1833 break; 1834 1835 case IPV6_PORTRANGE_HIGH: 1836 in6p->inp_flags &= ~(INP_LOWPORT); 1837 in6p->inp_flags |= INP_HIGHPORT; 1838 break; 1839 1840 case IPV6_PORTRANGE_LOW: 1841 in6p->inp_flags &= ~(INP_HIGHPORT); 1842 in6p->inp_flags |= INP_LOWPORT; 1843 break; 1844 1845 default: 1846 error = EINVAL; 1847 break; 1848 } 1849 INP_WUNLOCK(in6p); 1850 break; 1851 1852 #ifdef IPSEC 1853 case IPV6_IPSEC_POLICY: 1854 { 1855 caddr_t req; 1856 struct mbuf *m; 1857 1858 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1859 break; 1860 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1861 break; 1862 req = mtod(m, caddr_t); 1863 error = ipsec_set_policy(in6p, optname, req, 1864 m->m_len, (sopt->sopt_td != NULL) ? 1865 sopt->sopt_td->td_ucred : NULL); 1866 m_freem(m); 1867 break; 1868 } 1869 #endif /* IPSEC */ 1870 1871 default: 1872 error = ENOPROTOOPT; 1873 break; 1874 } 1875 break; 1876 1877 case SOPT_GET: 1878 switch (optname) { 1879 1880 case IPV6_2292PKTOPTIONS: 1881 #ifdef IPV6_PKTOPTIONS 1882 case IPV6_PKTOPTIONS: 1883 #endif 1884 /* 1885 * RFC3542 (effectively) deprecated the 1886 * semantics of the 2292-style pktoptions. 1887 * Since it was not reliable in nature (i.e., 1888 * applications had to expect the lack of some 1889 * information after all), it would make sense 1890 * to simplify this part by always returning 1891 * empty data. 1892 */ 1893 sopt->sopt_valsize = 0; 1894 break; 1895 1896 case IPV6_RECVHOPOPTS: 1897 case IPV6_RECVDSTOPTS: 1898 case IPV6_RECVRTHDRDSTOPTS: 1899 case IPV6_UNICAST_HOPS: 1900 case IPV6_RECVPKTINFO: 1901 case IPV6_RECVHOPLIMIT: 1902 case IPV6_RECVRTHDR: 1903 case IPV6_RECVPATHMTU: 1904 1905 case IPV6_V6ONLY: 1906 case IPV6_PORTRANGE: 1907 case IPV6_RECVTCLASS: 1908 case IPV6_AUTOFLOWLABEL: 1909 case IPV6_BINDANY: 1910 case IPV6_FLOWID: 1911 case IPV6_FLOWTYPE: 1912 case IPV6_RECVFLOWID: 1913 #ifdef RSS 1914 case IPV6_RSSBUCKETID: 1915 case IPV6_RECVRSSBUCKETID: 1916 #endif 1917 case IPV6_BINDMULTI: 1918 switch (optname) { 1919 1920 case IPV6_RECVHOPOPTS: 1921 optval = OPTBIT(IN6P_HOPOPTS); 1922 break; 1923 1924 case IPV6_RECVDSTOPTS: 1925 optval = OPTBIT(IN6P_DSTOPTS); 1926 break; 1927 1928 case IPV6_RECVRTHDRDSTOPTS: 1929 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1930 break; 1931 1932 case IPV6_UNICAST_HOPS: 1933 optval = in6p->in6p_hops; 1934 break; 1935 1936 case IPV6_RECVPKTINFO: 1937 optval = OPTBIT(IN6P_PKTINFO); 1938 break; 1939 1940 case IPV6_RECVHOPLIMIT: 1941 optval = OPTBIT(IN6P_HOPLIMIT); 1942 break; 1943 1944 case IPV6_RECVRTHDR: 1945 optval = OPTBIT(IN6P_RTHDR); 1946 break; 1947 1948 case IPV6_RECVPATHMTU: 1949 optval = OPTBIT(IN6P_MTU); 1950 break; 1951 1952 case IPV6_V6ONLY: 1953 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1954 break; 1955 1956 case IPV6_PORTRANGE: 1957 { 1958 int flags; 1959 flags = in6p->inp_flags; 1960 if (flags & INP_HIGHPORT) 1961 optval = IPV6_PORTRANGE_HIGH; 1962 else if (flags & INP_LOWPORT) 1963 optval = IPV6_PORTRANGE_LOW; 1964 else 1965 optval = 0; 1966 break; 1967 } 1968 case IPV6_RECVTCLASS: 1969 optval = OPTBIT(IN6P_TCLASS); 1970 break; 1971 1972 case IPV6_AUTOFLOWLABEL: 1973 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1974 break; 1975 1976 case IPV6_BINDANY: 1977 optval = OPTBIT(INP_BINDANY); 1978 break; 1979 1980 case IPV6_FLOWID: 1981 optval = in6p->inp_flowid; 1982 break; 1983 1984 case IPV6_FLOWTYPE: 1985 optval = in6p->inp_flowtype; 1986 break; 1987 1988 case IPV6_RECVFLOWID: 1989 optval = OPTBIT2(INP_RECVFLOWID); 1990 break; 1991 #ifdef RSS 1992 case IPV6_RSSBUCKETID: 1993 retval = 1994 rss_hash2bucket(in6p->inp_flowid, 1995 in6p->inp_flowtype, 1996 &rss_bucket); 1997 if (retval == 0) 1998 optval = rss_bucket; 1999 else 2000 error = EINVAL; 2001 break; 2002 2003 case IPV6_RECVRSSBUCKETID: 2004 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2005 break; 2006 #endif 2007 2008 case IPV6_BINDMULTI: 2009 optval = OPTBIT2(INP_BINDMULTI); 2010 break; 2011 2012 } 2013 if (error) 2014 break; 2015 error = sooptcopyout(sopt, &optval, 2016 sizeof optval); 2017 break; 2018 2019 case IPV6_PATHMTU: 2020 { 2021 u_long pmtu = 0; 2022 struct ip6_mtuinfo mtuinfo; 2023 2024 if (!(so->so_state & SS_ISCONNECTED)) 2025 return (ENOTCONN); 2026 /* 2027 * XXX: we dot not consider the case of source 2028 * routing, or optional information to specify 2029 * the outgoing interface. 2030 */ 2031 error = ip6_getpmtu_ctl(so->so_fibnum, 2032 &in6p->in6p_faddr, &pmtu); 2033 if (error) 2034 break; 2035 if (pmtu > IPV6_MAXPACKET) 2036 pmtu = IPV6_MAXPACKET; 2037 2038 bzero(&mtuinfo, sizeof(mtuinfo)); 2039 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2040 optdata = (void *)&mtuinfo; 2041 optdatalen = sizeof(mtuinfo); 2042 error = sooptcopyout(sopt, optdata, 2043 optdatalen); 2044 break; 2045 } 2046 2047 case IPV6_2292PKTINFO: 2048 case IPV6_2292HOPLIMIT: 2049 case IPV6_2292HOPOPTS: 2050 case IPV6_2292RTHDR: 2051 case IPV6_2292DSTOPTS: 2052 switch (optname) { 2053 case IPV6_2292PKTINFO: 2054 optval = OPTBIT(IN6P_PKTINFO); 2055 break; 2056 case IPV6_2292HOPLIMIT: 2057 optval = OPTBIT(IN6P_HOPLIMIT); 2058 break; 2059 case IPV6_2292HOPOPTS: 2060 optval = OPTBIT(IN6P_HOPOPTS); 2061 break; 2062 case IPV6_2292RTHDR: 2063 optval = OPTBIT(IN6P_RTHDR); 2064 break; 2065 case IPV6_2292DSTOPTS: 2066 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2067 break; 2068 } 2069 error = sooptcopyout(sopt, &optval, 2070 sizeof optval); 2071 break; 2072 case IPV6_PKTINFO: 2073 case IPV6_HOPOPTS: 2074 case IPV6_RTHDR: 2075 case IPV6_DSTOPTS: 2076 case IPV6_RTHDRDSTOPTS: 2077 case IPV6_NEXTHOP: 2078 case IPV6_TCLASS: 2079 case IPV6_DONTFRAG: 2080 case IPV6_USE_MIN_MTU: 2081 case IPV6_PREFER_TEMPADDR: 2082 error = ip6_getpcbopt(in6p->in6p_outputopts, 2083 optname, sopt); 2084 break; 2085 2086 case IPV6_MULTICAST_IF: 2087 case IPV6_MULTICAST_HOPS: 2088 case IPV6_MULTICAST_LOOP: 2089 case IPV6_MSFILTER: 2090 error = ip6_getmoptions(in6p, sopt); 2091 break; 2092 2093 #ifdef IPSEC 2094 case IPV6_IPSEC_POLICY: 2095 { 2096 caddr_t req = NULL; 2097 size_t len = 0; 2098 struct mbuf *m = NULL; 2099 struct mbuf **mp = &m; 2100 size_t ovalsize = sopt->sopt_valsize; 2101 caddr_t oval = (caddr_t)sopt->sopt_val; 2102 2103 error = soopt_getm(sopt, &m); /* XXX */ 2104 if (error != 0) 2105 break; 2106 error = soopt_mcopyin(sopt, m); /* XXX */ 2107 if (error != 0) 2108 break; 2109 sopt->sopt_valsize = ovalsize; 2110 sopt->sopt_val = oval; 2111 if (m) { 2112 req = mtod(m, caddr_t); 2113 len = m->m_len; 2114 } 2115 error = ipsec_get_policy(in6p, req, len, mp); 2116 if (error == 0) 2117 error = soopt_mcopyout(sopt, m); /* XXX */ 2118 if (error == 0 && m) 2119 m_freem(m); 2120 break; 2121 } 2122 #endif /* IPSEC */ 2123 2124 default: 2125 error = ENOPROTOOPT; 2126 break; 2127 } 2128 break; 2129 } 2130 } 2131 return (error); 2132 } 2133 2134 int 2135 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2136 { 2137 int error = 0, optval, optlen; 2138 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2139 struct inpcb *in6p = sotoinpcb(so); 2140 int level, op, optname; 2141 2142 level = sopt->sopt_level; 2143 op = sopt->sopt_dir; 2144 optname = sopt->sopt_name; 2145 optlen = sopt->sopt_valsize; 2146 2147 if (level != IPPROTO_IPV6) { 2148 return (EINVAL); 2149 } 2150 2151 switch (optname) { 2152 case IPV6_CHECKSUM: 2153 /* 2154 * For ICMPv6 sockets, no modification allowed for checksum 2155 * offset, permit "no change" values to help existing apps. 2156 * 2157 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2158 * for an ICMPv6 socket will fail." 2159 * The current behavior does not meet RFC3542. 2160 */ 2161 switch (op) { 2162 case SOPT_SET: 2163 if (optlen != sizeof(int)) { 2164 error = EINVAL; 2165 break; 2166 } 2167 error = sooptcopyin(sopt, &optval, sizeof(optval), 2168 sizeof(optval)); 2169 if (error) 2170 break; 2171 if ((optval % 2) != 0) { 2172 /* the API assumes even offset values */ 2173 error = EINVAL; 2174 } else if (so->so_proto->pr_protocol == 2175 IPPROTO_ICMPV6) { 2176 if (optval != icmp6off) 2177 error = EINVAL; 2178 } else 2179 in6p->in6p_cksum = optval; 2180 break; 2181 2182 case SOPT_GET: 2183 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2184 optval = icmp6off; 2185 else 2186 optval = in6p->in6p_cksum; 2187 2188 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2189 break; 2190 2191 default: 2192 error = EINVAL; 2193 break; 2194 } 2195 break; 2196 2197 default: 2198 error = ENOPROTOOPT; 2199 break; 2200 } 2201 2202 return (error); 2203 } 2204 2205 /* 2206 * Set up IP6 options in pcb for insertion in output packets or 2207 * specifying behavior of outgoing packets. 2208 */ 2209 static int 2210 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2211 struct socket *so, struct sockopt *sopt) 2212 { 2213 struct ip6_pktopts *opt = *pktopt; 2214 int error = 0; 2215 struct thread *td = sopt->sopt_td; 2216 2217 /* turn off any old options. */ 2218 if (opt) { 2219 #ifdef DIAGNOSTIC 2220 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2221 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2222 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2223 printf("ip6_pcbopts: all specified options are cleared.\n"); 2224 #endif 2225 ip6_clearpktopts(opt, -1); 2226 } else 2227 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2228 *pktopt = NULL; 2229 2230 if (!m || m->m_len == 0) { 2231 /* 2232 * Only turning off any previous options, regardless of 2233 * whether the opt is just created or given. 2234 */ 2235 free(opt, M_IP6OPT); 2236 return (0); 2237 } 2238 2239 /* set options specified by user. */ 2240 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2241 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2242 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2243 free(opt, M_IP6OPT); 2244 return (error); 2245 } 2246 *pktopt = opt; 2247 return (0); 2248 } 2249 2250 /* 2251 * initialize ip6_pktopts. beware that there are non-zero default values in 2252 * the struct. 2253 */ 2254 void 2255 ip6_initpktopts(struct ip6_pktopts *opt) 2256 { 2257 2258 bzero(opt, sizeof(*opt)); 2259 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2260 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2261 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2262 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2263 } 2264 2265 static int 2266 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2267 struct ucred *cred, int uproto) 2268 { 2269 struct ip6_pktopts *opt; 2270 2271 if (*pktopt == NULL) { 2272 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2273 M_WAITOK); 2274 ip6_initpktopts(*pktopt); 2275 } 2276 opt = *pktopt; 2277 2278 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2279 } 2280 2281 static int 2282 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2283 { 2284 void *optdata = NULL; 2285 int optdatalen = 0; 2286 struct ip6_ext *ip6e; 2287 int error = 0; 2288 struct in6_pktinfo null_pktinfo; 2289 int deftclass = 0, on; 2290 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2291 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2292 2293 switch (optname) { 2294 case IPV6_PKTINFO: 2295 optdata = (void *)&null_pktinfo; 2296 if (pktopt && pktopt->ip6po_pktinfo) { 2297 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2298 sizeof(null_pktinfo)); 2299 in6_clearscope(&null_pktinfo.ipi6_addr); 2300 } else { 2301 /* XXX: we don't have to do this every time... */ 2302 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2303 } 2304 optdatalen = sizeof(struct in6_pktinfo); 2305 break; 2306 case IPV6_TCLASS: 2307 if (pktopt && pktopt->ip6po_tclass >= 0) 2308 optdata = (void *)&pktopt->ip6po_tclass; 2309 else 2310 optdata = (void *)&deftclass; 2311 optdatalen = sizeof(int); 2312 break; 2313 case IPV6_HOPOPTS: 2314 if (pktopt && pktopt->ip6po_hbh) { 2315 optdata = (void *)pktopt->ip6po_hbh; 2316 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2317 optdatalen = (ip6e->ip6e_len + 1) << 3; 2318 } 2319 break; 2320 case IPV6_RTHDR: 2321 if (pktopt && pktopt->ip6po_rthdr) { 2322 optdata = (void *)pktopt->ip6po_rthdr; 2323 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2324 optdatalen = (ip6e->ip6e_len + 1) << 3; 2325 } 2326 break; 2327 case IPV6_RTHDRDSTOPTS: 2328 if (pktopt && pktopt->ip6po_dest1) { 2329 optdata = (void *)pktopt->ip6po_dest1; 2330 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2331 optdatalen = (ip6e->ip6e_len + 1) << 3; 2332 } 2333 break; 2334 case IPV6_DSTOPTS: 2335 if (pktopt && pktopt->ip6po_dest2) { 2336 optdata = (void *)pktopt->ip6po_dest2; 2337 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2338 optdatalen = (ip6e->ip6e_len + 1) << 3; 2339 } 2340 break; 2341 case IPV6_NEXTHOP: 2342 if (pktopt && pktopt->ip6po_nexthop) { 2343 optdata = (void *)pktopt->ip6po_nexthop; 2344 optdatalen = pktopt->ip6po_nexthop->sa_len; 2345 } 2346 break; 2347 case IPV6_USE_MIN_MTU: 2348 if (pktopt) 2349 optdata = (void *)&pktopt->ip6po_minmtu; 2350 else 2351 optdata = (void *)&defminmtu; 2352 optdatalen = sizeof(int); 2353 break; 2354 case IPV6_DONTFRAG: 2355 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2356 on = 1; 2357 else 2358 on = 0; 2359 optdata = (void *)&on; 2360 optdatalen = sizeof(on); 2361 break; 2362 case IPV6_PREFER_TEMPADDR: 2363 if (pktopt) 2364 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2365 else 2366 optdata = (void *)&defpreftemp; 2367 optdatalen = sizeof(int); 2368 break; 2369 default: /* should not happen */ 2370 #ifdef DIAGNOSTIC 2371 panic("ip6_getpcbopt: unexpected option\n"); 2372 #endif 2373 return (ENOPROTOOPT); 2374 } 2375 2376 error = sooptcopyout(sopt, optdata, optdatalen); 2377 2378 return (error); 2379 } 2380 2381 void 2382 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2383 { 2384 if (pktopt == NULL) 2385 return; 2386 2387 if (optname == -1 || optname == IPV6_PKTINFO) { 2388 if (pktopt->ip6po_pktinfo) 2389 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2390 pktopt->ip6po_pktinfo = NULL; 2391 } 2392 if (optname == -1 || optname == IPV6_HOPLIMIT) 2393 pktopt->ip6po_hlim = -1; 2394 if (optname == -1 || optname == IPV6_TCLASS) 2395 pktopt->ip6po_tclass = -1; 2396 if (optname == -1 || optname == IPV6_NEXTHOP) { 2397 if (pktopt->ip6po_nextroute.ro_rt) { 2398 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2399 pktopt->ip6po_nextroute.ro_rt = NULL; 2400 } 2401 if (pktopt->ip6po_nexthop) 2402 free(pktopt->ip6po_nexthop, M_IP6OPT); 2403 pktopt->ip6po_nexthop = NULL; 2404 } 2405 if (optname == -1 || optname == IPV6_HOPOPTS) { 2406 if (pktopt->ip6po_hbh) 2407 free(pktopt->ip6po_hbh, M_IP6OPT); 2408 pktopt->ip6po_hbh = NULL; 2409 } 2410 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2411 if (pktopt->ip6po_dest1) 2412 free(pktopt->ip6po_dest1, M_IP6OPT); 2413 pktopt->ip6po_dest1 = NULL; 2414 } 2415 if (optname == -1 || optname == IPV6_RTHDR) { 2416 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2417 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2418 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2419 if (pktopt->ip6po_route.ro_rt) { 2420 RTFREE(pktopt->ip6po_route.ro_rt); 2421 pktopt->ip6po_route.ro_rt = NULL; 2422 } 2423 } 2424 if (optname == -1 || optname == IPV6_DSTOPTS) { 2425 if (pktopt->ip6po_dest2) 2426 free(pktopt->ip6po_dest2, M_IP6OPT); 2427 pktopt->ip6po_dest2 = NULL; 2428 } 2429 } 2430 2431 #define PKTOPT_EXTHDRCPY(type) \ 2432 do {\ 2433 if (src->type) {\ 2434 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2435 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2436 if (dst->type == NULL && canwait == M_NOWAIT)\ 2437 goto bad;\ 2438 bcopy(src->type, dst->type, hlen);\ 2439 }\ 2440 } while (/*CONSTCOND*/ 0) 2441 2442 static int 2443 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2444 { 2445 if (dst == NULL || src == NULL) { 2446 printf("ip6_clearpktopts: invalid argument\n"); 2447 return (EINVAL); 2448 } 2449 2450 dst->ip6po_hlim = src->ip6po_hlim; 2451 dst->ip6po_tclass = src->ip6po_tclass; 2452 dst->ip6po_flags = src->ip6po_flags; 2453 dst->ip6po_minmtu = src->ip6po_minmtu; 2454 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2455 if (src->ip6po_pktinfo) { 2456 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2457 M_IP6OPT, canwait); 2458 if (dst->ip6po_pktinfo == NULL) 2459 goto bad; 2460 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2461 } 2462 if (src->ip6po_nexthop) { 2463 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2464 M_IP6OPT, canwait); 2465 if (dst->ip6po_nexthop == NULL) 2466 goto bad; 2467 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2468 src->ip6po_nexthop->sa_len); 2469 } 2470 PKTOPT_EXTHDRCPY(ip6po_hbh); 2471 PKTOPT_EXTHDRCPY(ip6po_dest1); 2472 PKTOPT_EXTHDRCPY(ip6po_dest2); 2473 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2474 return (0); 2475 2476 bad: 2477 ip6_clearpktopts(dst, -1); 2478 return (ENOBUFS); 2479 } 2480 #undef PKTOPT_EXTHDRCPY 2481 2482 struct ip6_pktopts * 2483 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2484 { 2485 int error; 2486 struct ip6_pktopts *dst; 2487 2488 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2489 if (dst == NULL) 2490 return (NULL); 2491 ip6_initpktopts(dst); 2492 2493 if ((error = copypktopts(dst, src, canwait)) != 0) { 2494 free(dst, M_IP6OPT); 2495 return (NULL); 2496 } 2497 2498 return (dst); 2499 } 2500 2501 void 2502 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2503 { 2504 if (pktopt == NULL) 2505 return; 2506 2507 ip6_clearpktopts(pktopt, -1); 2508 2509 free(pktopt, M_IP6OPT); 2510 } 2511 2512 /* 2513 * Set IPv6 outgoing packet options based on advanced API. 2514 */ 2515 int 2516 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2517 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2518 { 2519 struct cmsghdr *cm = NULL; 2520 2521 if (control == NULL || opt == NULL) 2522 return (EINVAL); 2523 2524 ip6_initpktopts(opt); 2525 if (stickyopt) { 2526 int error; 2527 2528 /* 2529 * If stickyopt is provided, make a local copy of the options 2530 * for this particular packet, then override them by ancillary 2531 * objects. 2532 * XXX: copypktopts() does not copy the cached route to a next 2533 * hop (if any). This is not very good in terms of efficiency, 2534 * but we can allow this since this option should be rarely 2535 * used. 2536 */ 2537 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2538 return (error); 2539 } 2540 2541 /* 2542 * XXX: Currently, we assume all the optional information is stored 2543 * in a single mbuf. 2544 */ 2545 if (control->m_next) 2546 return (EINVAL); 2547 2548 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2549 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2550 int error; 2551 2552 if (control->m_len < CMSG_LEN(0)) 2553 return (EINVAL); 2554 2555 cm = mtod(control, struct cmsghdr *); 2556 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2557 return (EINVAL); 2558 if (cm->cmsg_level != IPPROTO_IPV6) 2559 continue; 2560 2561 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2562 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2563 if (error) 2564 return (error); 2565 } 2566 2567 return (0); 2568 } 2569 2570 /* 2571 * Set a particular packet option, as a sticky option or an ancillary data 2572 * item. "len" can be 0 only when it's a sticky option. 2573 * We have 4 cases of combination of "sticky" and "cmsg": 2574 * "sticky=0, cmsg=0": impossible 2575 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2576 * "sticky=1, cmsg=0": RFC3542 socket option 2577 * "sticky=1, cmsg=1": RFC2292 socket option 2578 */ 2579 static int 2580 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2581 struct ucred *cred, int sticky, int cmsg, int uproto) 2582 { 2583 int minmtupolicy, preftemp; 2584 int error; 2585 2586 if (!sticky && !cmsg) { 2587 #ifdef DIAGNOSTIC 2588 printf("ip6_setpktopt: impossible case\n"); 2589 #endif 2590 return (EINVAL); 2591 } 2592 2593 /* 2594 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2595 * not be specified in the context of RFC3542. Conversely, 2596 * RFC3542 types should not be specified in the context of RFC2292. 2597 */ 2598 if (!cmsg) { 2599 switch (optname) { 2600 case IPV6_2292PKTINFO: 2601 case IPV6_2292HOPLIMIT: 2602 case IPV6_2292NEXTHOP: 2603 case IPV6_2292HOPOPTS: 2604 case IPV6_2292DSTOPTS: 2605 case IPV6_2292RTHDR: 2606 case IPV6_2292PKTOPTIONS: 2607 return (ENOPROTOOPT); 2608 } 2609 } 2610 if (sticky && cmsg) { 2611 switch (optname) { 2612 case IPV6_PKTINFO: 2613 case IPV6_HOPLIMIT: 2614 case IPV6_NEXTHOP: 2615 case IPV6_HOPOPTS: 2616 case IPV6_DSTOPTS: 2617 case IPV6_RTHDRDSTOPTS: 2618 case IPV6_RTHDR: 2619 case IPV6_USE_MIN_MTU: 2620 case IPV6_DONTFRAG: 2621 case IPV6_TCLASS: 2622 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2623 return (ENOPROTOOPT); 2624 } 2625 } 2626 2627 switch (optname) { 2628 case IPV6_2292PKTINFO: 2629 case IPV6_PKTINFO: 2630 { 2631 struct ifnet *ifp = NULL; 2632 struct in6_pktinfo *pktinfo; 2633 2634 if (len != sizeof(struct in6_pktinfo)) 2635 return (EINVAL); 2636 2637 pktinfo = (struct in6_pktinfo *)buf; 2638 2639 /* 2640 * An application can clear any sticky IPV6_PKTINFO option by 2641 * doing a "regular" setsockopt with ipi6_addr being 2642 * in6addr_any and ipi6_ifindex being zero. 2643 * [RFC 3542, Section 6] 2644 */ 2645 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2646 pktinfo->ipi6_ifindex == 0 && 2647 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2648 ip6_clearpktopts(opt, optname); 2649 break; 2650 } 2651 2652 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2653 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2654 return (EINVAL); 2655 } 2656 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2657 return (EINVAL); 2658 /* validate the interface index if specified. */ 2659 if (pktinfo->ipi6_ifindex > V_if_index) 2660 return (ENXIO); 2661 if (pktinfo->ipi6_ifindex) { 2662 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2663 if (ifp == NULL) 2664 return (ENXIO); 2665 } 2666 if (ifp != NULL && ( 2667 ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) 2668 return (ENETDOWN); 2669 2670 if (ifp != NULL && 2671 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2672 struct in6_ifaddr *ia; 2673 2674 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2675 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2676 if (ia == NULL) 2677 return (EADDRNOTAVAIL); 2678 ifa_free(&ia->ia_ifa); 2679 } 2680 /* 2681 * We store the address anyway, and let in6_selectsrc() 2682 * validate the specified address. This is because ipi6_addr 2683 * may not have enough information about its scope zone, and 2684 * we may need additional information (such as outgoing 2685 * interface or the scope zone of a destination address) to 2686 * disambiguate the scope. 2687 * XXX: the delay of the validation may confuse the 2688 * application when it is used as a sticky option. 2689 */ 2690 if (opt->ip6po_pktinfo == NULL) { 2691 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2692 M_IP6OPT, M_NOWAIT); 2693 if (opt->ip6po_pktinfo == NULL) 2694 return (ENOBUFS); 2695 } 2696 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2697 break; 2698 } 2699 2700 case IPV6_2292HOPLIMIT: 2701 case IPV6_HOPLIMIT: 2702 { 2703 int *hlimp; 2704 2705 /* 2706 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2707 * to simplify the ordering among hoplimit options. 2708 */ 2709 if (optname == IPV6_HOPLIMIT && sticky) 2710 return (ENOPROTOOPT); 2711 2712 if (len != sizeof(int)) 2713 return (EINVAL); 2714 hlimp = (int *)buf; 2715 if (*hlimp < -1 || *hlimp > 255) 2716 return (EINVAL); 2717 2718 opt->ip6po_hlim = *hlimp; 2719 break; 2720 } 2721 2722 case IPV6_TCLASS: 2723 { 2724 int tclass; 2725 2726 if (len != sizeof(int)) 2727 return (EINVAL); 2728 tclass = *(int *)buf; 2729 if (tclass < -1 || tclass > 255) 2730 return (EINVAL); 2731 2732 opt->ip6po_tclass = tclass; 2733 break; 2734 } 2735 2736 case IPV6_2292NEXTHOP: 2737 case IPV6_NEXTHOP: 2738 if (cred != NULL) { 2739 error = priv_check_cred(cred, 2740 PRIV_NETINET_SETHDROPTS, 0); 2741 if (error) 2742 return (error); 2743 } 2744 2745 if (len == 0) { /* just remove the option */ 2746 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2747 break; 2748 } 2749 2750 /* check if cmsg_len is large enough for sa_len */ 2751 if (len < sizeof(struct sockaddr) || len < *buf) 2752 return (EINVAL); 2753 2754 switch (((struct sockaddr *)buf)->sa_family) { 2755 case AF_INET6: 2756 { 2757 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2758 int error; 2759 2760 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2761 return (EINVAL); 2762 2763 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2764 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2765 return (EINVAL); 2766 } 2767 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2768 != 0) { 2769 return (error); 2770 } 2771 break; 2772 } 2773 case AF_LINK: /* should eventually be supported */ 2774 default: 2775 return (EAFNOSUPPORT); 2776 } 2777 2778 /* turn off the previous option, then set the new option. */ 2779 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2780 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2781 if (opt->ip6po_nexthop == NULL) 2782 return (ENOBUFS); 2783 bcopy(buf, opt->ip6po_nexthop, *buf); 2784 break; 2785 2786 case IPV6_2292HOPOPTS: 2787 case IPV6_HOPOPTS: 2788 { 2789 struct ip6_hbh *hbh; 2790 int hbhlen; 2791 2792 /* 2793 * XXX: We don't allow a non-privileged user to set ANY HbH 2794 * options, since per-option restriction has too much 2795 * overhead. 2796 */ 2797 if (cred != NULL) { 2798 error = priv_check_cred(cred, 2799 PRIV_NETINET_SETHDROPTS, 0); 2800 if (error) 2801 return (error); 2802 } 2803 2804 if (len == 0) { 2805 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2806 break; /* just remove the option */ 2807 } 2808 2809 /* message length validation */ 2810 if (len < sizeof(struct ip6_hbh)) 2811 return (EINVAL); 2812 hbh = (struct ip6_hbh *)buf; 2813 hbhlen = (hbh->ip6h_len + 1) << 3; 2814 if (len != hbhlen) 2815 return (EINVAL); 2816 2817 /* turn off the previous option, then set the new option. */ 2818 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2819 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2820 if (opt->ip6po_hbh == NULL) 2821 return (ENOBUFS); 2822 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2823 2824 break; 2825 } 2826 2827 case IPV6_2292DSTOPTS: 2828 case IPV6_DSTOPTS: 2829 case IPV6_RTHDRDSTOPTS: 2830 { 2831 struct ip6_dest *dest, **newdest = NULL; 2832 int destlen; 2833 2834 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2835 error = priv_check_cred(cred, 2836 PRIV_NETINET_SETHDROPTS, 0); 2837 if (error) 2838 return (error); 2839 } 2840 2841 if (len == 0) { 2842 ip6_clearpktopts(opt, optname); 2843 break; /* just remove the option */ 2844 } 2845 2846 /* message length validation */ 2847 if (len < sizeof(struct ip6_dest)) 2848 return (EINVAL); 2849 dest = (struct ip6_dest *)buf; 2850 destlen = (dest->ip6d_len + 1) << 3; 2851 if (len != destlen) 2852 return (EINVAL); 2853 2854 /* 2855 * Determine the position that the destination options header 2856 * should be inserted; before or after the routing header. 2857 */ 2858 switch (optname) { 2859 case IPV6_2292DSTOPTS: 2860 /* 2861 * The old advacned API is ambiguous on this point. 2862 * Our approach is to determine the position based 2863 * according to the existence of a routing header. 2864 * Note, however, that this depends on the order of the 2865 * extension headers in the ancillary data; the 1st 2866 * part of the destination options header must appear 2867 * before the routing header in the ancillary data, 2868 * too. 2869 * RFC3542 solved the ambiguity by introducing 2870 * separate ancillary data or option types. 2871 */ 2872 if (opt->ip6po_rthdr == NULL) 2873 newdest = &opt->ip6po_dest1; 2874 else 2875 newdest = &opt->ip6po_dest2; 2876 break; 2877 case IPV6_RTHDRDSTOPTS: 2878 newdest = &opt->ip6po_dest1; 2879 break; 2880 case IPV6_DSTOPTS: 2881 newdest = &opt->ip6po_dest2; 2882 break; 2883 } 2884 2885 /* turn off the previous option, then set the new option. */ 2886 ip6_clearpktopts(opt, optname); 2887 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2888 if (*newdest == NULL) 2889 return (ENOBUFS); 2890 bcopy(dest, *newdest, destlen); 2891 2892 break; 2893 } 2894 2895 case IPV6_2292RTHDR: 2896 case IPV6_RTHDR: 2897 { 2898 struct ip6_rthdr *rth; 2899 int rthlen; 2900 2901 if (len == 0) { 2902 ip6_clearpktopts(opt, IPV6_RTHDR); 2903 break; /* just remove the option */ 2904 } 2905 2906 /* message length validation */ 2907 if (len < sizeof(struct ip6_rthdr)) 2908 return (EINVAL); 2909 rth = (struct ip6_rthdr *)buf; 2910 rthlen = (rth->ip6r_len + 1) << 3; 2911 if (len != rthlen) 2912 return (EINVAL); 2913 2914 switch (rth->ip6r_type) { 2915 case IPV6_RTHDR_TYPE_0: 2916 if (rth->ip6r_len == 0) /* must contain one addr */ 2917 return (EINVAL); 2918 if (rth->ip6r_len % 2) /* length must be even */ 2919 return (EINVAL); 2920 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2921 return (EINVAL); 2922 break; 2923 default: 2924 return (EINVAL); /* not supported */ 2925 } 2926 2927 /* turn off the previous option */ 2928 ip6_clearpktopts(opt, IPV6_RTHDR); 2929 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2930 if (opt->ip6po_rthdr == NULL) 2931 return (ENOBUFS); 2932 bcopy(rth, opt->ip6po_rthdr, rthlen); 2933 2934 break; 2935 } 2936 2937 case IPV6_USE_MIN_MTU: 2938 if (len != sizeof(int)) 2939 return (EINVAL); 2940 minmtupolicy = *(int *)buf; 2941 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2942 minmtupolicy != IP6PO_MINMTU_DISABLE && 2943 minmtupolicy != IP6PO_MINMTU_ALL) { 2944 return (EINVAL); 2945 } 2946 opt->ip6po_minmtu = minmtupolicy; 2947 break; 2948 2949 case IPV6_DONTFRAG: 2950 if (len != sizeof(int)) 2951 return (EINVAL); 2952 2953 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2954 /* 2955 * we ignore this option for TCP sockets. 2956 * (RFC3542 leaves this case unspecified.) 2957 */ 2958 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2959 } else 2960 opt->ip6po_flags |= IP6PO_DONTFRAG; 2961 break; 2962 2963 case IPV6_PREFER_TEMPADDR: 2964 if (len != sizeof(int)) 2965 return (EINVAL); 2966 preftemp = *(int *)buf; 2967 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 2968 preftemp != IP6PO_TEMPADDR_NOTPREFER && 2969 preftemp != IP6PO_TEMPADDR_PREFER) { 2970 return (EINVAL); 2971 } 2972 opt->ip6po_prefer_tempaddr = preftemp; 2973 break; 2974 2975 default: 2976 return (ENOPROTOOPT); 2977 } /* end of switch */ 2978 2979 return (0); 2980 } 2981 2982 /* 2983 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2984 * packet to the input queue of a specified interface. Note that this 2985 * calls the output routine of the loopback "driver", but with an interface 2986 * pointer that might NOT be &loif -- easier than replicating that code here. 2987 */ 2988 void 2989 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 2990 { 2991 struct mbuf *copym; 2992 struct ip6_hdr *ip6; 2993 2994 copym = m_copy(m, 0, M_COPYALL); 2995 if (copym == NULL) 2996 return; 2997 2998 /* 2999 * Make sure to deep-copy IPv6 header portion in case the data 3000 * is in an mbuf cluster, so that we can safely override the IPv6 3001 * header portion later. 3002 */ 3003 if (!M_WRITABLE(copym) || 3004 copym->m_len < sizeof(struct ip6_hdr)) { 3005 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3006 if (copym == NULL) 3007 return; 3008 } 3009 ip6 = mtod(copym, struct ip6_hdr *); 3010 /* 3011 * clear embedded scope identifiers if necessary. 3012 * in6_clearscope will touch the addresses only when necessary. 3013 */ 3014 in6_clearscope(&ip6->ip6_src); 3015 in6_clearscope(&ip6->ip6_dst); 3016 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3017 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3018 CSUM_PSEUDO_HDR; 3019 copym->m_pkthdr.csum_data = 0xffff; 3020 } 3021 if_simloop(ifp, copym, AF_INET6, 0); 3022 } 3023 3024 /* 3025 * Chop IPv6 header off from the payload. 3026 */ 3027 static int 3028 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3029 { 3030 struct mbuf *mh; 3031 struct ip6_hdr *ip6; 3032 3033 ip6 = mtod(m, struct ip6_hdr *); 3034 if (m->m_len > sizeof(*ip6)) { 3035 mh = m_gethdr(M_NOWAIT, MT_DATA); 3036 if (mh == NULL) { 3037 m_freem(m); 3038 return ENOBUFS; 3039 } 3040 m_move_pkthdr(mh, m); 3041 M_ALIGN(mh, sizeof(*ip6)); 3042 m->m_len -= sizeof(*ip6); 3043 m->m_data += sizeof(*ip6); 3044 mh->m_next = m; 3045 m = mh; 3046 m->m_len = sizeof(*ip6); 3047 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3048 } 3049 exthdrs->ip6e_ip6 = m; 3050 return 0; 3051 } 3052 3053 /* 3054 * Compute IPv6 extension header length. 3055 */ 3056 int 3057 ip6_optlen(struct inpcb *in6p) 3058 { 3059 int len; 3060 3061 if (!in6p->in6p_outputopts) 3062 return 0; 3063 3064 len = 0; 3065 #define elen(x) \ 3066 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3067 3068 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3069 if (in6p->in6p_outputopts->ip6po_rthdr) 3070 /* dest1 is valid with rthdr only */ 3071 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3072 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3073 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3074 return len; 3075 #undef elen 3076 } 3077