1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ipfw.h" 69 #include "opt_ipsec.h" 70 #include "opt_sctp.h" 71 #include "opt_route.h" 72 73 #include <sys/param.h> 74 #include <sys/kernel.h> 75 #include <sys/malloc.h> 76 #include <sys/mbuf.h> 77 #include <sys/errno.h> 78 #include <sys/priv.h> 79 #include <sys/proc.h> 80 #include <sys/protosw.h> 81 #include <sys/socket.h> 82 #include <sys/socketvar.h> 83 #include <sys/syslog.h> 84 #include <sys/ucred.h> 85 86 #include <machine/in_cksum.h> 87 88 #include <net/if.h> 89 #include <net/netisr.h> 90 #include <net/route.h> 91 #include <net/pfil.h> 92 #include <net/vnet.h> 93 94 #include <netinet/in.h> 95 #include <netinet/in_var.h> 96 #include <netinet/ip_var.h> 97 #include <netinet6/in6_var.h> 98 #include <netinet/ip6.h> 99 #include <netinet/icmp6.h> 100 #include <netinet6/ip6_var.h> 101 #include <netinet/in_pcb.h> 102 #include <netinet/tcp_var.h> 103 #include <netinet6/nd6.h> 104 105 #ifdef IPSEC 106 #include <netipsec/ipsec.h> 107 #include <netipsec/ipsec6.h> 108 #include <netipsec/key.h> 109 #include <netinet6/ip6_ipsec.h> 110 #endif /* IPSEC */ 111 #ifdef SCTP 112 #include <netinet/sctp.h> 113 #include <netinet/sctp_crc32.h> 114 #endif 115 116 #include <netinet6/ip6protosw.h> 117 #include <netinet6/scope6_var.h> 118 119 #ifdef FLOWTABLE 120 #include <net/flowtable.h> 121 #endif 122 123 extern int in6_mcast_loop; 124 125 struct ip6_exthdrs { 126 struct mbuf *ip6e_ip6; 127 struct mbuf *ip6e_hbh; 128 struct mbuf *ip6e_dest1; 129 struct mbuf *ip6e_rthdr; 130 struct mbuf *ip6e_dest2; 131 }; 132 133 static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **, 134 struct ucred *, int)); 135 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 136 struct socket *, struct sockopt *)); 137 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 138 static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *, 139 struct ucred *, int, int, int)); 140 141 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 142 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 143 struct ip6_frag **)); 144 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 145 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 146 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *, 147 struct ifnet *, struct in6_addr *, u_long *, int *, u_int)); 148 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 149 150 151 /* 152 * Make an extension header from option data. hp is the source, and 153 * mp is the destination. 154 */ 155 #define MAKE_EXTHDR(hp, mp) \ 156 do { \ 157 if (hp) { \ 158 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 159 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 160 ((eh)->ip6e_len + 1) << 3); \ 161 if (error) \ 162 goto freehdrs; \ 163 } \ 164 } while (/*CONSTCOND*/ 0) 165 166 /* 167 * Form a chain of extension headers. 168 * m is the extension header mbuf 169 * mp is the previous mbuf in the chain 170 * p is the next header 171 * i is the type of option. 172 */ 173 #define MAKE_CHAIN(m, mp, p, i)\ 174 do {\ 175 if (m) {\ 176 if (!hdrsplit) \ 177 panic("assumption failed: hdr not split"); \ 178 *mtod((m), u_char *) = *(p);\ 179 *(p) = (i);\ 180 p = mtod((m), u_char *);\ 181 (m)->m_next = (mp)->m_next;\ 182 (mp)->m_next = (m);\ 183 (mp) = (m);\ 184 }\ 185 } while (/*CONSTCOND*/ 0) 186 187 static void 188 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 189 { 190 u_short csum; 191 192 csum = in_cksum_skip(m, offset + plen, offset); 193 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 194 csum = 0xffff; 195 offset += m->m_pkthdr.csum_data; /* checksum offset */ 196 197 if (offset + sizeof(u_short) > m->m_len) { 198 printf("%s: delayed m_pullup, m->len: %d plen %u off %u " 199 "csum_flags=0x%04x\n", __func__, m->m_len, plen, offset, 200 m->m_pkthdr.csum_flags); 201 /* 202 * XXX this should not happen, but if it does, the correct 203 * behavior may be to insert the checksum in the appropriate 204 * next mbuf in the chain. 205 */ 206 return; 207 } 208 *(u_short *)(m->m_data + offset) = csum; 209 } 210 211 /* 212 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 213 * header (with pri, len, nxt, hlim, src, dst). 214 * This function may modify ver and hlim only. 215 * The mbuf chain containing the packet will be freed. 216 * The mbuf opt, if present, will not be freed. 217 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 218 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 219 * then result of route lookup is stored in ro->ro_rt. 220 * 221 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 222 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 223 * which is rt_rmx.rmx_mtu. 224 * 225 * ifpp - XXX: just for statistics 226 */ 227 int 228 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 229 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 230 struct ifnet **ifpp, struct inpcb *inp) 231 { 232 struct ip6_hdr *ip6, *mhip6; 233 struct ifnet *ifp, *origifp; 234 struct mbuf *m = m0; 235 struct mbuf *mprev = NULL; 236 int hlen, tlen, len, off; 237 struct route_in6 ip6route; 238 struct rtentry *rt = NULL; 239 struct sockaddr_in6 *dst, src_sa, dst_sa; 240 struct in6_addr odst; 241 int error = 0; 242 struct in6_ifaddr *ia = NULL; 243 u_long mtu; 244 int alwaysfrag, dontfrag; 245 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 246 struct ip6_exthdrs exthdrs; 247 struct in6_addr finaldst, src0, dst0; 248 u_int32_t zone; 249 struct route_in6 *ro_pmtu = NULL; 250 int hdrsplit = 0; 251 int needipsec = 0; 252 int sw_csum, tso; 253 #ifdef IPSEC 254 struct ipsec_output_state state; 255 struct ip6_rthdr *rh = NULL; 256 int needipsectun = 0; 257 int segleft_org = 0; 258 struct secpolicy *sp = NULL; 259 #endif /* IPSEC */ 260 #ifdef IPFIREWALL_FORWARD 261 struct m_tag *fwd_tag; 262 #endif 263 264 ip6 = mtod(m, struct ip6_hdr *); 265 if (ip6 == NULL) { 266 printf ("ip6 is NULL"); 267 goto bad; 268 } 269 270 if (inp != NULL) 271 M_SETFIB(m, inp->inp_inc.inc_fibnum); 272 273 finaldst = ip6->ip6_dst; 274 bzero(&exthdrs, sizeof(exthdrs)); 275 if (opt) { 276 /* Hop-by-Hop options header */ 277 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 278 /* Destination options header(1st part) */ 279 if (opt->ip6po_rthdr) { 280 /* 281 * Destination options header(1st part) 282 * This only makes sense with a routing header. 283 * See Section 9.2 of RFC 3542. 284 * Disabling this part just for MIP6 convenience is 285 * a bad idea. We need to think carefully about a 286 * way to make the advanced API coexist with MIP6 287 * options, which might automatically be inserted in 288 * the kernel. 289 */ 290 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 291 } 292 /* Routing header */ 293 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 294 /* Destination options header(2nd part) */ 295 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 296 } 297 298 #ifdef IPSEC 299 /* 300 * IPSec checking which handles several cases. 301 * FAST IPSEC: We re-injected the packet. 302 */ 303 switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp)) 304 { 305 case 1: /* Bad packet */ 306 goto freehdrs; 307 case -1: /* Do IPSec */ 308 needipsec = 1; 309 /* 310 * Do delayed checksums now, as we may send before returning. 311 */ 312 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 313 plen = m->m_pkthdr.len - sizeof(*ip6); 314 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 315 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 316 } 317 #ifdef SCTP 318 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 319 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 320 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 321 } 322 #endif 323 case 0: /* No IPSec */ 324 default: 325 break; 326 } 327 #endif /* IPSEC */ 328 329 /* 330 * Calculate the total length of the extension header chain. 331 * Keep the length of the unfragmentable part for fragmentation. 332 */ 333 optlen = 0; 334 if (exthdrs.ip6e_hbh) 335 optlen += exthdrs.ip6e_hbh->m_len; 336 if (exthdrs.ip6e_dest1) 337 optlen += exthdrs.ip6e_dest1->m_len; 338 if (exthdrs.ip6e_rthdr) 339 optlen += exthdrs.ip6e_rthdr->m_len; 340 unfragpartlen = optlen + sizeof(struct ip6_hdr); 341 342 /* NOTE: we don't add AH/ESP length here. do that later. */ 343 if (exthdrs.ip6e_dest2) 344 optlen += exthdrs.ip6e_dest2->m_len; 345 346 /* 347 * If we need IPsec, or there is at least one extension header, 348 * separate IP6 header from the payload. 349 */ 350 if ((needipsec || optlen) && !hdrsplit) { 351 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 352 m = NULL; 353 goto freehdrs; 354 } 355 m = exthdrs.ip6e_ip6; 356 hdrsplit++; 357 } 358 359 /* adjust pointer */ 360 ip6 = mtod(m, struct ip6_hdr *); 361 362 /* adjust mbuf packet header length */ 363 m->m_pkthdr.len += optlen; 364 plen = m->m_pkthdr.len - sizeof(*ip6); 365 366 /* If this is a jumbo payload, insert a jumbo payload option. */ 367 if (plen > IPV6_MAXPACKET) { 368 if (!hdrsplit) { 369 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 370 m = NULL; 371 goto freehdrs; 372 } 373 m = exthdrs.ip6e_ip6; 374 hdrsplit++; 375 } 376 /* adjust pointer */ 377 ip6 = mtod(m, struct ip6_hdr *); 378 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 379 goto freehdrs; 380 ip6->ip6_plen = 0; 381 } else 382 ip6->ip6_plen = htons(plen); 383 384 /* 385 * Concatenate headers and fill in next header fields. 386 * Here we have, on "m" 387 * IPv6 payload 388 * and we insert headers accordingly. Finally, we should be getting: 389 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 390 * 391 * during the header composing process, "m" points to IPv6 header. 392 * "mprev" points to an extension header prior to esp. 393 */ 394 u_char *nexthdrp = &ip6->ip6_nxt; 395 mprev = m; 396 397 /* 398 * we treat dest2 specially. this makes IPsec processing 399 * much easier. the goal here is to make mprev point the 400 * mbuf prior to dest2. 401 * 402 * result: IPv6 dest2 payload 403 * m and mprev will point to IPv6 header. 404 */ 405 if (exthdrs.ip6e_dest2) { 406 if (!hdrsplit) 407 panic("assumption failed: hdr not split"); 408 exthdrs.ip6e_dest2->m_next = m->m_next; 409 m->m_next = exthdrs.ip6e_dest2; 410 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 411 ip6->ip6_nxt = IPPROTO_DSTOPTS; 412 } 413 414 /* 415 * result: IPv6 hbh dest1 rthdr dest2 payload 416 * m will point to IPv6 header. mprev will point to the 417 * extension header prior to dest2 (rthdr in the above case). 418 */ 419 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 420 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 421 IPPROTO_DSTOPTS); 422 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 423 IPPROTO_ROUTING); 424 425 #ifdef IPSEC 426 if (!needipsec) 427 goto skip_ipsec2; 428 429 /* 430 * pointers after IPsec headers are not valid any more. 431 * other pointers need a great care too. 432 * (IPsec routines should not mangle mbufs prior to AH/ESP) 433 */ 434 exthdrs.ip6e_dest2 = NULL; 435 436 if (exthdrs.ip6e_rthdr) { 437 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 438 segleft_org = rh->ip6r_segleft; 439 rh->ip6r_segleft = 0; 440 } 441 442 bzero(&state, sizeof(state)); 443 state.m = m; 444 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 445 &needipsectun); 446 m = state.m; 447 if (error == EJUSTRETURN) { 448 /* 449 * We had a SP with a level of 'use' and no SA. We 450 * will just continue to process the packet without 451 * IPsec processing. 452 */ 453 ; 454 } else if (error) { 455 /* mbuf is already reclaimed in ipsec6_output_trans. */ 456 m = NULL; 457 switch (error) { 458 case EHOSTUNREACH: 459 case ENETUNREACH: 460 case EMSGSIZE: 461 case ENOBUFS: 462 case ENOMEM: 463 break; 464 default: 465 printf("[%s:%d] (ipsec): error code %d\n", 466 __func__, __LINE__, error); 467 /* FALLTHROUGH */ 468 case ENOENT: 469 /* don't show these error codes to the user */ 470 error = 0; 471 break; 472 } 473 goto bad; 474 } else if (!needipsectun) { 475 /* 476 * In the FAST IPSec case we have already 477 * re-injected the packet and it has been freed 478 * by the ipsec_done() function. So, just clean 479 * up after ourselves. 480 */ 481 m = NULL; 482 goto done; 483 } 484 if (exthdrs.ip6e_rthdr) { 485 /* ah6_output doesn't modify mbuf chain */ 486 rh->ip6r_segleft = segleft_org; 487 } 488 skip_ipsec2:; 489 #endif /* IPSEC */ 490 491 /* 492 * If there is a routing header, discard the packet. 493 */ 494 if (exthdrs.ip6e_rthdr) { 495 error = EINVAL; 496 goto bad; 497 } 498 499 /* Source address validation */ 500 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 501 (flags & IPV6_UNSPECSRC) == 0) { 502 error = EOPNOTSUPP; 503 V_ip6stat.ip6s_badscope++; 504 goto bad; 505 } 506 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 507 error = EOPNOTSUPP; 508 V_ip6stat.ip6s_badscope++; 509 goto bad; 510 } 511 512 V_ip6stat.ip6s_localout++; 513 514 /* 515 * Route packet. 516 */ 517 if (ro == 0) { 518 ro = &ip6route; 519 bzero((caddr_t)ro, sizeof(*ro)); 520 } 521 ro_pmtu = ro; 522 if (opt && opt->ip6po_rthdr) 523 ro = &opt->ip6po_route; 524 dst = (struct sockaddr_in6 *)&ro->ro_dst; 525 #ifdef FLOWTABLE 526 if (ro->ro_rt == NULL) { 527 struct flentry *fle; 528 529 /* 530 * The flow table returns route entries valid for up to 30 531 * seconds; we rely on the remainder of ip_output() taking no 532 * longer than that long for the stability of ro_rt. The 533 * flow ID assignment must have happened before this point. 534 */ 535 fle = flowtable_lookup_mbuf(V_ip6_ft, m, AF_INET6); 536 if (fle != NULL) 537 flow_to_route_in6(fle, ro); 538 } 539 #endif 540 again: 541 /* 542 * if specified, try to fill in the traffic class field. 543 * do not override if a non-zero value is already set. 544 * we check the diffserv field and the ecn field separately. 545 */ 546 if (opt && opt->ip6po_tclass >= 0) { 547 int mask = 0; 548 549 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 550 mask |= 0xfc; 551 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 552 mask |= 0x03; 553 if (mask != 0) 554 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 555 } 556 557 /* fill in or override the hop limit field, if necessary. */ 558 if (opt && opt->ip6po_hlim != -1) 559 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 560 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 561 if (im6o != NULL) 562 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 563 else 564 ip6->ip6_hlim = V_ip6_defmcasthlim; 565 } 566 567 #ifdef IPSEC 568 /* 569 * We may re-inject packets into the stack here. 570 */ 571 if (needipsec && needipsectun) { 572 struct ipsec_output_state state; 573 574 /* 575 * All the extension headers will become inaccessible 576 * (since they can be encrypted). 577 * Don't panic, we need no more updates to extension headers 578 * on inner IPv6 packet (since they are now encapsulated). 579 * 580 * IPv6 [ESP|AH] IPv6 [extension headers] payload 581 */ 582 bzero(&exthdrs, sizeof(exthdrs)); 583 exthdrs.ip6e_ip6 = m; 584 585 bzero(&state, sizeof(state)); 586 state.m = m; 587 state.ro = (struct route *)ro; 588 state.dst = (struct sockaddr *)dst; 589 590 error = ipsec6_output_tunnel(&state, sp, flags); 591 592 m = state.m; 593 ro = (struct route_in6 *)state.ro; 594 dst = (struct sockaddr_in6 *)state.dst; 595 if (error == EJUSTRETURN) { 596 /* 597 * We had a SP with a level of 'use' and no SA. We 598 * will just continue to process the packet without 599 * IPsec processing. 600 */ 601 ; 602 } else if (error) { 603 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 604 m0 = m = NULL; 605 m = NULL; 606 switch (error) { 607 case EHOSTUNREACH: 608 case ENETUNREACH: 609 case EMSGSIZE: 610 case ENOBUFS: 611 case ENOMEM: 612 break; 613 default: 614 printf("[%s:%d] (ipsec): error code %d\n", 615 __func__, __LINE__, error); 616 /* FALLTHROUGH */ 617 case ENOENT: 618 /* don't show these error codes to the user */ 619 error = 0; 620 break; 621 } 622 goto bad; 623 } else { 624 /* 625 * In the FAST IPSec case we have already 626 * re-injected the packet and it has been freed 627 * by the ipsec_done() function. So, just clean 628 * up after ourselves. 629 */ 630 m = NULL; 631 goto done; 632 } 633 634 exthdrs.ip6e_ip6 = m; 635 } 636 #endif /* IPSEC */ 637 638 /* adjust pointer */ 639 ip6 = mtod(m, struct ip6_hdr *); 640 641 bzero(&dst_sa, sizeof(dst_sa)); 642 dst_sa.sin6_family = AF_INET6; 643 dst_sa.sin6_len = sizeof(dst_sa); 644 dst_sa.sin6_addr = ip6->ip6_dst; 645 if (ro->ro_rt) { 646 rt = ro->ro_rt; 647 ifp = ro->ro_rt->rt_ifp; 648 } else if ((error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, 649 &ifp, &rt, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m))) != 0) { 650 switch (error) { 651 case EHOSTUNREACH: 652 V_ip6stat.ip6s_noroute++; 653 break; 654 case EADDRNOTAVAIL: 655 default: 656 break; /* XXX statistics? */ 657 } 658 if (ifp != NULL) 659 in6_ifstat_inc(ifp, ifs6_out_discard); 660 goto bad; 661 } 662 if (rt == NULL) { 663 /* 664 * If in6_selectroute() does not return a route entry, 665 * dst may not have been updated. 666 */ 667 *dst = dst_sa; /* XXX */ 668 } 669 670 /* 671 * then rt (for unicast) and ifp must be non-NULL valid values. 672 */ 673 if ((flags & IPV6_FORWARDING) == 0) { 674 /* XXX: the FORWARDING flag can be set for mrouting. */ 675 in6_ifstat_inc(ifp, ifs6_out_request); 676 } 677 if (rt != NULL) { 678 ia = (struct in6_ifaddr *)(rt->rt_ifa); 679 rt->rt_use++; 680 } 681 682 683 /* 684 * The outgoing interface must be in the zone of source and 685 * destination addresses. 686 */ 687 origifp = ifp; 688 689 src0 = ip6->ip6_src; 690 if (in6_setscope(&src0, origifp, &zone)) 691 goto badscope; 692 bzero(&src_sa, sizeof(src_sa)); 693 src_sa.sin6_family = AF_INET6; 694 src_sa.sin6_len = sizeof(src_sa); 695 src_sa.sin6_addr = ip6->ip6_src; 696 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 697 goto badscope; 698 699 dst0 = ip6->ip6_dst; 700 if (in6_setscope(&dst0, origifp, &zone)) 701 goto badscope; 702 /* re-initialize to be sure */ 703 bzero(&dst_sa, sizeof(dst_sa)); 704 dst_sa.sin6_family = AF_INET6; 705 dst_sa.sin6_len = sizeof(dst_sa); 706 dst_sa.sin6_addr = ip6->ip6_dst; 707 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 708 goto badscope; 709 } 710 711 /* We should use ia_ifp to support the case of 712 * sending packets to an address of our own. 713 */ 714 if (ia != NULL && ia->ia_ifp) 715 ifp = ia->ia_ifp; 716 717 /* scope check is done. */ 718 goto routefound; 719 720 badscope: 721 V_ip6stat.ip6s_badscope++; 722 in6_ifstat_inc(origifp, ifs6_out_discard); 723 if (error == 0) 724 error = EHOSTUNREACH; /* XXX */ 725 goto bad; 726 727 routefound: 728 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 729 if (opt && opt->ip6po_nextroute.ro_rt) { 730 /* 731 * The nexthop is explicitly specified by the 732 * application. We assume the next hop is an IPv6 733 * address. 734 */ 735 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 736 } 737 else if ((rt->rt_flags & RTF_GATEWAY)) 738 dst = (struct sockaddr_in6 *)rt->rt_gateway; 739 } 740 741 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 742 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 743 } else { 744 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 745 in6_ifstat_inc(ifp, ifs6_out_mcast); 746 /* 747 * Confirm that the outgoing interface supports multicast. 748 */ 749 if (!(ifp->if_flags & IFF_MULTICAST)) { 750 V_ip6stat.ip6s_noroute++; 751 in6_ifstat_inc(ifp, ifs6_out_discard); 752 error = ENETUNREACH; 753 goto bad; 754 } 755 if ((im6o == NULL && in6_mcast_loop) || 756 (im6o && im6o->im6o_multicast_loop)) { 757 /* 758 * Loop back multicast datagram if not expressly 759 * forbidden to do so, even if we have not joined 760 * the address; protocols will filter it later, 761 * thus deferring a hash lookup and lock acquisition 762 * at the expense of an m_copym(). 763 */ 764 ip6_mloopback(ifp, m, dst); 765 } else { 766 /* 767 * If we are acting as a multicast router, perform 768 * multicast forwarding as if the packet had just 769 * arrived on the interface to which we are about 770 * to send. The multicast forwarding function 771 * recursively calls this function, using the 772 * IPV6_FORWARDING flag to prevent infinite recursion. 773 * 774 * Multicasts that are looped back by ip6_mloopback(), 775 * above, will be forwarded by the ip6_input() routine, 776 * if necessary. 777 */ 778 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 779 /* 780 * XXX: ip6_mforward expects that rcvif is NULL 781 * when it is called from the originating path. 782 * However, it is not always the case, since 783 * some versions of MGETHDR() does not 784 * initialize the field. 785 */ 786 m->m_pkthdr.rcvif = NULL; 787 if (ip6_mforward(ip6, ifp, m) != 0) { 788 m_freem(m); 789 goto done; 790 } 791 } 792 } 793 /* 794 * Multicasts with a hoplimit of zero may be looped back, 795 * above, but must not be transmitted on a network. 796 * Also, multicasts addressed to the loopback interface 797 * are not sent -- the above call to ip6_mloopback() will 798 * loop back a copy if this host actually belongs to the 799 * destination group on the loopback interface. 800 */ 801 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 802 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 803 m_freem(m); 804 goto done; 805 } 806 } 807 808 /* 809 * Fill the outgoing inteface to tell the upper layer 810 * to increment per-interface statistics. 811 */ 812 if (ifpp) 813 *ifpp = ifp; 814 815 /* Determine path MTU. */ 816 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 817 &alwaysfrag, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m))) != 0) 818 goto bad; 819 820 /* 821 * The caller of this function may specify to use the minimum MTU 822 * in some cases. 823 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 824 * setting. The logic is a bit complicated; by default, unicast 825 * packets will follow path MTU while multicast packets will be sent at 826 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 827 * including unicast ones will be sent at the minimum MTU. Multicast 828 * packets will always be sent at the minimum MTU unless 829 * IP6PO_MINMTU_DISABLE is explicitly specified. 830 * See RFC 3542 for more details. 831 */ 832 if (mtu > IPV6_MMTU) { 833 if ((flags & IPV6_MINMTU)) 834 mtu = IPV6_MMTU; 835 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 836 mtu = IPV6_MMTU; 837 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 838 (opt == NULL || 839 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 840 mtu = IPV6_MMTU; 841 } 842 } 843 844 /* 845 * clear embedded scope identifiers if necessary. 846 * in6_clearscope will touch the addresses only when necessary. 847 */ 848 in6_clearscope(&ip6->ip6_src); 849 in6_clearscope(&ip6->ip6_dst); 850 851 /* 852 * If the outgoing packet contains a hop-by-hop options header, 853 * it must be examined and processed even by the source node. 854 * (RFC 2460, section 4.) 855 */ 856 if (exthdrs.ip6e_hbh) { 857 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 858 u_int32_t dummy; /* XXX unused */ 859 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 860 861 #ifdef DIAGNOSTIC 862 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 863 panic("ip6e_hbh is not contiguous"); 864 #endif 865 /* 866 * XXX: if we have to send an ICMPv6 error to the sender, 867 * we need the M_LOOP flag since icmp6_error() expects 868 * the IPv6 and the hop-by-hop options header are 869 * contiguous unless the flag is set. 870 */ 871 m->m_flags |= M_LOOP; 872 m->m_pkthdr.rcvif = ifp; 873 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 874 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 875 &dummy, &plen) < 0) { 876 /* m was already freed at this point */ 877 error = EINVAL;/* better error? */ 878 goto done; 879 } 880 m->m_flags &= ~M_LOOP; /* XXX */ 881 m->m_pkthdr.rcvif = NULL; 882 } 883 884 /* Jump over all PFIL processing if hooks are not active. */ 885 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 886 goto passout; 887 888 odst = ip6->ip6_dst; 889 /* Run through list of hooks for output packets. */ 890 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 891 if (error != 0 || m == NULL) 892 goto done; 893 ip6 = mtod(m, struct ip6_hdr *); 894 895 /* See if destination IP address was changed by packet filter. */ 896 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 897 m->m_flags |= M_SKIP_FIREWALL; 898 /* If destination is now ourself drop to ip6_input(). */ 899 if (in6_localip(&ip6->ip6_dst)) { 900 m->m_flags |= M_FASTFWD_OURS; 901 if (m->m_pkthdr.rcvif == NULL) 902 m->m_pkthdr.rcvif = V_loif; 903 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 904 m->m_pkthdr.csum_flags |= 905 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 906 m->m_pkthdr.csum_data = 0xffff; 907 } 908 #ifdef SCTP 909 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 910 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 911 #endif 912 error = netisr_queue(NETISR_IPV6, m); 913 goto done; 914 } else 915 goto again; /* Redo the routing table lookup. */ 916 } 917 918 #ifdef IPFIREWALL_FORWARD 919 /* See if local, if yes, send it to netisr. */ 920 if (m->m_flags & M_FASTFWD_OURS) { 921 if (m->m_pkthdr.rcvif == NULL) 922 m->m_pkthdr.rcvif = V_loif; 923 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 924 m->m_pkthdr.csum_flags |= 925 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 926 m->m_pkthdr.csum_data = 0xffff; 927 } 928 #ifdef SCTP 929 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 930 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 931 #endif 932 error = netisr_queue(NETISR_IPV6, m); 933 goto done; 934 } 935 /* Or forward to some other address? */ 936 fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL); 937 if (fwd_tag) { 938 dst = (struct sockaddr_in6 *)&ro->ro_dst; 939 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in6)); 940 m->m_flags |= M_SKIP_FIREWALL; 941 m_tag_delete(m, fwd_tag); 942 goto again; 943 } 944 #endif /* IPFIREWALL_FORWARD */ 945 946 passout: 947 /* 948 * Send the packet to the outgoing interface. 949 * If necessary, do IPv6 fragmentation before sending. 950 * 951 * the logic here is rather complex: 952 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 953 * 1-a: send as is if tlen <= path mtu 954 * 1-b: fragment if tlen > path mtu 955 * 956 * 2: if user asks us not to fragment (dontfrag == 1) 957 * 2-a: send as is if tlen <= interface mtu 958 * 2-b: error if tlen > interface mtu 959 * 960 * 3: if we always need to attach fragment header (alwaysfrag == 1) 961 * always fragment 962 * 963 * 4: if dontfrag == 1 && alwaysfrag == 1 964 * error, as we cannot handle this conflicting request 965 */ 966 sw_csum = m->m_pkthdr.csum_flags; 967 if (!hdrsplit) { 968 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 969 sw_csum &= ~ifp->if_hwassist; 970 } else 971 tso = 0; 972 /* 973 * If we added extension headers, we will not do TSO and calculate the 974 * checksums ourselves for now. 975 * XXX-BZ Need a framework to know when the NIC can handle it, even 976 * with ext. hdrs. 977 */ 978 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 979 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 980 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 981 } 982 #ifdef SCTP 983 if (sw_csum & CSUM_SCTP_IPV6) { 984 sw_csum &= ~CSUM_SCTP_IPV6; 985 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 986 } 987 #endif 988 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 989 tlen = m->m_pkthdr.len; 990 991 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 992 dontfrag = 1; 993 else 994 dontfrag = 0; 995 if (dontfrag && alwaysfrag) { /* case 4 */ 996 /* conflicting request - can't transmit */ 997 error = EMSGSIZE; 998 goto bad; 999 } 1000 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 1001 /* 1002 * Even if the DONTFRAG option is specified, we cannot send the 1003 * packet when the data length is larger than the MTU of the 1004 * outgoing interface. 1005 * Notify the error by sending IPV6_PATHMTU ancillary data as 1006 * well as returning an error code (the latter is not described 1007 * in the API spec.) 1008 */ 1009 u_int32_t mtu32; 1010 struct ip6ctlparam ip6cp; 1011 1012 mtu32 = (u_int32_t)mtu; 1013 bzero(&ip6cp, sizeof(ip6cp)); 1014 ip6cp.ip6c_cmdarg = (void *)&mtu32; 1015 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 1016 (void *)&ip6cp); 1017 1018 error = EMSGSIZE; 1019 goto bad; 1020 } 1021 1022 /* 1023 * transmit packet without fragmentation 1024 */ 1025 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 1026 struct in6_ifaddr *ia6; 1027 1028 ip6 = mtod(m, struct ip6_hdr *); 1029 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1030 if (ia6) { 1031 /* Record statistics for this interface address. */ 1032 ia6->ia_ifa.if_opackets++; 1033 ia6->ia_ifa.if_obytes += m->m_pkthdr.len; 1034 ifa_free(&ia6->ia_ifa); 1035 } 1036 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1037 goto done; 1038 } 1039 1040 /* 1041 * try to fragment the packet. case 1-b and 3 1042 */ 1043 if (mtu < IPV6_MMTU) { 1044 /* path MTU cannot be less than IPV6_MMTU */ 1045 error = EMSGSIZE; 1046 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1047 goto bad; 1048 } else if (ip6->ip6_plen == 0) { 1049 /* jumbo payload cannot be fragmented */ 1050 error = EMSGSIZE; 1051 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1052 goto bad; 1053 } else { 1054 struct mbuf **mnext, *m_frgpart; 1055 struct ip6_frag *ip6f; 1056 u_int32_t id = htonl(ip6_randomid()); 1057 u_char nextproto; 1058 1059 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len; 1060 1061 /* 1062 * Too large for the destination or interface; 1063 * fragment if possible. 1064 * Must be able to put at least 8 bytes per fragment. 1065 */ 1066 hlen = unfragpartlen; 1067 if (mtu > IPV6_MAXPACKET) 1068 mtu = IPV6_MAXPACKET; 1069 1070 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 1071 if (len < 8) { 1072 error = EMSGSIZE; 1073 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1074 goto bad; 1075 } 1076 1077 /* 1078 * Verify that we have any chance at all of being able to queue 1079 * the packet or packet fragments 1080 */ 1081 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen) 1082 < tlen /* - hlen */)) { 1083 error = ENOBUFS; 1084 V_ip6stat.ip6s_odropped++; 1085 goto bad; 1086 } 1087 1088 1089 /* 1090 * If the interface will not calculate checksums on 1091 * fragmented packets, then do it here. 1092 * XXX-BZ handle the hw offloading case. Need flags. 1093 */ 1094 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1095 in6_delayed_cksum(m, plen, hlen); 1096 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 1097 } 1098 #ifdef SCTP 1099 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 1100 sctp_delayed_cksum(m, hlen); 1101 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 1102 } 1103 #endif 1104 mnext = &m->m_nextpkt; 1105 1106 /* 1107 * Change the next header field of the last header in the 1108 * unfragmentable part. 1109 */ 1110 if (exthdrs.ip6e_rthdr) { 1111 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1112 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1113 } else if (exthdrs.ip6e_dest1) { 1114 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1115 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1116 } else if (exthdrs.ip6e_hbh) { 1117 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1118 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1119 } else { 1120 nextproto = ip6->ip6_nxt; 1121 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1122 } 1123 1124 /* 1125 * Loop through length of segment after first fragment, 1126 * make new header and copy data of each part and link onto 1127 * chain. 1128 */ 1129 m0 = m; 1130 for (off = hlen; off < tlen; off += len) { 1131 MGETHDR(m, M_DONTWAIT, MT_HEADER); 1132 if (!m) { 1133 error = ENOBUFS; 1134 V_ip6stat.ip6s_odropped++; 1135 goto sendorfree; 1136 } 1137 m->m_pkthdr.rcvif = NULL; 1138 m->m_flags = m0->m_flags & M_COPYFLAGS; /* incl. FIB */ 1139 *mnext = m; 1140 mnext = &m->m_nextpkt; 1141 m->m_data += max_linkhdr; 1142 mhip6 = mtod(m, struct ip6_hdr *); 1143 *mhip6 = *ip6; 1144 m->m_len = sizeof(*mhip6); 1145 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1146 if (error) { 1147 V_ip6stat.ip6s_odropped++; 1148 goto sendorfree; 1149 } 1150 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 1151 if (off + len >= tlen) 1152 len = tlen - off; 1153 else 1154 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1155 mhip6->ip6_plen = htons((u_short)(len + hlen + 1156 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1157 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1158 error = ENOBUFS; 1159 V_ip6stat.ip6s_odropped++; 1160 goto sendorfree; 1161 } 1162 m_cat(m, m_frgpart); 1163 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1164 m->m_pkthdr.rcvif = NULL; 1165 ip6f->ip6f_reserved = 0; 1166 ip6f->ip6f_ident = id; 1167 ip6f->ip6f_nxt = nextproto; 1168 V_ip6stat.ip6s_ofragments++; 1169 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1170 } 1171 1172 in6_ifstat_inc(ifp, ifs6_out_fragok); 1173 } 1174 1175 /* 1176 * Remove leading garbages. 1177 */ 1178 sendorfree: 1179 m = m0->m_nextpkt; 1180 m0->m_nextpkt = 0; 1181 m_freem(m0); 1182 for (m0 = m; m; m = m0) { 1183 m0 = m->m_nextpkt; 1184 m->m_nextpkt = 0; 1185 if (error == 0) { 1186 /* Record statistics for this interface address. */ 1187 if (ia) { 1188 ia->ia_ifa.if_opackets++; 1189 ia->ia_ifa.if_obytes += m->m_pkthdr.len; 1190 } 1191 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1192 } else 1193 m_freem(m); 1194 } 1195 1196 if (error == 0) 1197 V_ip6stat.ip6s_fragmented++; 1198 1199 done: 1200 if (ro == &ip6route) 1201 RO_RTFREE(ro); 1202 if (ro_pmtu == &ip6route) 1203 RO_RTFREE(ro_pmtu); 1204 #ifdef IPSEC 1205 if (sp != NULL) 1206 KEY_FREESP(&sp); 1207 #endif 1208 1209 return (error); 1210 1211 freehdrs: 1212 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1213 m_freem(exthdrs.ip6e_dest1); 1214 m_freem(exthdrs.ip6e_rthdr); 1215 m_freem(exthdrs.ip6e_dest2); 1216 /* FALLTHROUGH */ 1217 bad: 1218 if (m) 1219 m_freem(m); 1220 goto done; 1221 } 1222 1223 static int 1224 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1225 { 1226 struct mbuf *m; 1227 1228 if (hlen > MCLBYTES) 1229 return (ENOBUFS); /* XXX */ 1230 1231 MGET(m, M_DONTWAIT, MT_DATA); 1232 if (!m) 1233 return (ENOBUFS); 1234 1235 if (hlen > MLEN) { 1236 MCLGET(m, M_DONTWAIT); 1237 if ((m->m_flags & M_EXT) == 0) { 1238 m_free(m); 1239 return (ENOBUFS); 1240 } 1241 } 1242 m->m_len = hlen; 1243 if (hdr) 1244 bcopy(hdr, mtod(m, caddr_t), hlen); 1245 1246 *mp = m; 1247 return (0); 1248 } 1249 1250 /* 1251 * Insert jumbo payload option. 1252 */ 1253 static int 1254 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1255 { 1256 struct mbuf *mopt; 1257 u_char *optbuf; 1258 u_int32_t v; 1259 1260 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1261 1262 /* 1263 * If there is no hop-by-hop options header, allocate new one. 1264 * If there is one but it doesn't have enough space to store the 1265 * jumbo payload option, allocate a cluster to store the whole options. 1266 * Otherwise, use it to store the options. 1267 */ 1268 if (exthdrs->ip6e_hbh == 0) { 1269 MGET(mopt, M_DONTWAIT, MT_DATA); 1270 if (mopt == 0) 1271 return (ENOBUFS); 1272 mopt->m_len = JUMBOOPTLEN; 1273 optbuf = mtod(mopt, u_char *); 1274 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1275 exthdrs->ip6e_hbh = mopt; 1276 } else { 1277 struct ip6_hbh *hbh; 1278 1279 mopt = exthdrs->ip6e_hbh; 1280 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1281 /* 1282 * XXX assumption: 1283 * - exthdrs->ip6e_hbh is not referenced from places 1284 * other than exthdrs. 1285 * - exthdrs->ip6e_hbh is not an mbuf chain. 1286 */ 1287 int oldoptlen = mopt->m_len; 1288 struct mbuf *n; 1289 1290 /* 1291 * XXX: give up if the whole (new) hbh header does 1292 * not fit even in an mbuf cluster. 1293 */ 1294 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1295 return (ENOBUFS); 1296 1297 /* 1298 * As a consequence, we must always prepare a cluster 1299 * at this point. 1300 */ 1301 MGET(n, M_DONTWAIT, MT_DATA); 1302 if (n) { 1303 MCLGET(n, M_DONTWAIT); 1304 if ((n->m_flags & M_EXT) == 0) { 1305 m_freem(n); 1306 n = NULL; 1307 } 1308 } 1309 if (!n) 1310 return (ENOBUFS); 1311 n->m_len = oldoptlen + JUMBOOPTLEN; 1312 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1313 oldoptlen); 1314 optbuf = mtod(n, caddr_t) + oldoptlen; 1315 m_freem(mopt); 1316 mopt = exthdrs->ip6e_hbh = n; 1317 } else { 1318 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1319 mopt->m_len += JUMBOOPTLEN; 1320 } 1321 optbuf[0] = IP6OPT_PADN; 1322 optbuf[1] = 1; 1323 1324 /* 1325 * Adjust the header length according to the pad and 1326 * the jumbo payload option. 1327 */ 1328 hbh = mtod(mopt, struct ip6_hbh *); 1329 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1330 } 1331 1332 /* fill in the option. */ 1333 optbuf[2] = IP6OPT_JUMBO; 1334 optbuf[3] = 4; 1335 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1336 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1337 1338 /* finally, adjust the packet header length */ 1339 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1340 1341 return (0); 1342 #undef JUMBOOPTLEN 1343 } 1344 1345 /* 1346 * Insert fragment header and copy unfragmentable header portions. 1347 */ 1348 static int 1349 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1350 struct ip6_frag **frghdrp) 1351 { 1352 struct mbuf *n, *mlast; 1353 1354 if (hlen > sizeof(struct ip6_hdr)) { 1355 n = m_copym(m0, sizeof(struct ip6_hdr), 1356 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1357 if (n == 0) 1358 return (ENOBUFS); 1359 m->m_next = n; 1360 } else 1361 n = m; 1362 1363 /* Search for the last mbuf of unfragmentable part. */ 1364 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1365 ; 1366 1367 if ((mlast->m_flags & M_EXT) == 0 && 1368 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1369 /* use the trailing space of the last mbuf for the fragment hdr */ 1370 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1371 mlast->m_len); 1372 mlast->m_len += sizeof(struct ip6_frag); 1373 m->m_pkthdr.len += sizeof(struct ip6_frag); 1374 } else { 1375 /* allocate a new mbuf for the fragment header */ 1376 struct mbuf *mfrg; 1377 1378 MGET(mfrg, M_DONTWAIT, MT_DATA); 1379 if (mfrg == 0) 1380 return (ENOBUFS); 1381 mfrg->m_len = sizeof(struct ip6_frag); 1382 *frghdrp = mtod(mfrg, struct ip6_frag *); 1383 mlast->m_next = mfrg; 1384 } 1385 1386 return (0); 1387 } 1388 1389 static int 1390 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, 1391 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, 1392 int *alwaysfragp, u_int fibnum) 1393 { 1394 u_int32_t mtu = 0; 1395 int alwaysfrag = 0; 1396 int error = 0; 1397 1398 if (ro_pmtu != ro) { 1399 /* The first hop and the final destination may differ. */ 1400 struct sockaddr_in6 *sa6_dst = 1401 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1402 if (ro_pmtu->ro_rt && 1403 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1404 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1405 RTFREE(ro_pmtu->ro_rt); 1406 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1407 } 1408 if (ro_pmtu->ro_rt == NULL) { 1409 bzero(sa6_dst, sizeof(*sa6_dst)); 1410 sa6_dst->sin6_family = AF_INET6; 1411 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1412 sa6_dst->sin6_addr = *dst; 1413 1414 in6_rtalloc(ro_pmtu, fibnum); 1415 } 1416 } 1417 if (ro_pmtu->ro_rt) { 1418 u_int32_t ifmtu; 1419 struct in_conninfo inc; 1420 1421 bzero(&inc, sizeof(inc)); 1422 inc.inc_flags |= INC_ISIPV6; 1423 inc.inc6_faddr = *dst; 1424 1425 if (ifp == NULL) 1426 ifp = ro_pmtu->ro_rt->rt_ifp; 1427 ifmtu = IN6_LINKMTU(ifp); 1428 mtu = tcp_hc_getmtu(&inc); 1429 if (mtu) 1430 mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu); 1431 else 1432 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 1433 if (mtu == 0) 1434 mtu = ifmtu; 1435 else if (mtu < IPV6_MMTU) { 1436 /* 1437 * RFC2460 section 5, last paragraph: 1438 * if we record ICMPv6 too big message with 1439 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1440 * or smaller, with framgent header attached. 1441 * (fragment header is needed regardless from the 1442 * packet size, for translators to identify packets) 1443 */ 1444 alwaysfrag = 1; 1445 mtu = IPV6_MMTU; 1446 } else if (mtu > ifmtu) { 1447 /* 1448 * The MTU on the route is larger than the MTU on 1449 * the interface! This shouldn't happen, unless the 1450 * MTU of the interface has been changed after the 1451 * interface was brought up. Change the MTU in the 1452 * route to match the interface MTU (as long as the 1453 * field isn't locked). 1454 */ 1455 mtu = ifmtu; 1456 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; 1457 } 1458 } else if (ifp) { 1459 mtu = IN6_LINKMTU(ifp); 1460 } else 1461 error = EHOSTUNREACH; /* XXX */ 1462 1463 *mtup = mtu; 1464 if (alwaysfragp) 1465 *alwaysfragp = alwaysfrag; 1466 return (error); 1467 } 1468 1469 /* 1470 * IP6 socket option processing. 1471 */ 1472 int 1473 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1474 { 1475 int optdatalen, uproto; 1476 void *optdata; 1477 struct inpcb *in6p = sotoinpcb(so); 1478 int error, optval; 1479 int level, op, optname; 1480 int optlen; 1481 struct thread *td; 1482 1483 level = sopt->sopt_level; 1484 op = sopt->sopt_dir; 1485 optname = sopt->sopt_name; 1486 optlen = sopt->sopt_valsize; 1487 td = sopt->sopt_td; 1488 error = 0; 1489 optval = 0; 1490 uproto = (int)so->so_proto->pr_protocol; 1491 1492 if (level != IPPROTO_IPV6) { 1493 error = EINVAL; 1494 1495 if (sopt->sopt_level == SOL_SOCKET && 1496 sopt->sopt_dir == SOPT_SET) { 1497 switch (sopt->sopt_name) { 1498 case SO_REUSEADDR: 1499 INP_WLOCK(in6p); 1500 if (IN_MULTICAST(ntohl(in6p->inp_laddr.s_addr))) { 1501 if ((so->so_options & 1502 (SO_REUSEADDR | SO_REUSEPORT)) != 0) 1503 in6p->inp_flags2 |= INP_REUSEPORT; 1504 else 1505 in6p->inp_flags2 &= ~INP_REUSEPORT; 1506 } 1507 INP_WUNLOCK(in6p); 1508 error = 0; 1509 break; 1510 case SO_REUSEPORT: 1511 INP_WLOCK(in6p); 1512 if ((so->so_options & SO_REUSEPORT) != 0) 1513 in6p->inp_flags2 |= INP_REUSEPORT; 1514 else 1515 in6p->inp_flags2 &= ~INP_REUSEPORT; 1516 INP_WUNLOCK(in6p); 1517 error = 0; 1518 break; 1519 case SO_SETFIB: 1520 INP_WLOCK(in6p); 1521 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1522 INP_WUNLOCK(in6p); 1523 error = 0; 1524 break; 1525 default: 1526 break; 1527 } 1528 } 1529 } else { /* level == IPPROTO_IPV6 */ 1530 switch (op) { 1531 1532 case SOPT_SET: 1533 switch (optname) { 1534 case IPV6_2292PKTOPTIONS: 1535 #ifdef IPV6_PKTOPTIONS 1536 case IPV6_PKTOPTIONS: 1537 #endif 1538 { 1539 struct mbuf *m; 1540 1541 error = soopt_getm(sopt, &m); /* XXX */ 1542 if (error != 0) 1543 break; 1544 error = soopt_mcopyin(sopt, m); /* XXX */ 1545 if (error != 0) 1546 break; 1547 error = ip6_pcbopts(&in6p->in6p_outputopts, 1548 m, so, sopt); 1549 m_freem(m); /* XXX */ 1550 break; 1551 } 1552 1553 /* 1554 * Use of some Hop-by-Hop options or some 1555 * Destination options, might require special 1556 * privilege. That is, normal applications 1557 * (without special privilege) might be forbidden 1558 * from setting certain options in outgoing packets, 1559 * and might never see certain options in received 1560 * packets. [RFC 2292 Section 6] 1561 * KAME specific note: 1562 * KAME prevents non-privileged users from sending or 1563 * receiving ANY hbh/dst options in order to avoid 1564 * overhead of parsing options in the kernel. 1565 */ 1566 case IPV6_RECVHOPOPTS: 1567 case IPV6_RECVDSTOPTS: 1568 case IPV6_RECVRTHDRDSTOPTS: 1569 if (td != NULL) { 1570 error = priv_check(td, 1571 PRIV_NETINET_SETHDROPTS); 1572 if (error) 1573 break; 1574 } 1575 /* FALLTHROUGH */ 1576 case IPV6_UNICAST_HOPS: 1577 case IPV6_HOPLIMIT: 1578 case IPV6_FAITH: 1579 1580 case IPV6_RECVPKTINFO: 1581 case IPV6_RECVHOPLIMIT: 1582 case IPV6_RECVRTHDR: 1583 case IPV6_RECVPATHMTU: 1584 case IPV6_RECVTCLASS: 1585 case IPV6_V6ONLY: 1586 case IPV6_AUTOFLOWLABEL: 1587 case IPV6_BINDANY: 1588 if (optname == IPV6_BINDANY && td != NULL) { 1589 error = priv_check(td, 1590 PRIV_NETINET_BINDANY); 1591 if (error) 1592 break; 1593 } 1594 1595 if (optlen != sizeof(int)) { 1596 error = EINVAL; 1597 break; 1598 } 1599 error = sooptcopyin(sopt, &optval, 1600 sizeof optval, sizeof optval); 1601 if (error) 1602 break; 1603 switch (optname) { 1604 1605 case IPV6_UNICAST_HOPS: 1606 if (optval < -1 || optval >= 256) 1607 error = EINVAL; 1608 else { 1609 /* -1 = kernel default */ 1610 in6p->in6p_hops = optval; 1611 if ((in6p->inp_vflag & 1612 INP_IPV4) != 0) 1613 in6p->inp_ip_ttl = optval; 1614 } 1615 break; 1616 #define OPTSET(bit) \ 1617 do { \ 1618 INP_WLOCK(in6p); \ 1619 if (optval) \ 1620 in6p->inp_flags |= (bit); \ 1621 else \ 1622 in6p->inp_flags &= ~(bit); \ 1623 INP_WUNLOCK(in6p); \ 1624 } while (/*CONSTCOND*/ 0) 1625 #define OPTSET2292(bit) \ 1626 do { \ 1627 INP_WLOCK(in6p); \ 1628 in6p->inp_flags |= IN6P_RFC2292; \ 1629 if (optval) \ 1630 in6p->inp_flags |= (bit); \ 1631 else \ 1632 in6p->inp_flags &= ~(bit); \ 1633 INP_WUNLOCK(in6p); \ 1634 } while (/*CONSTCOND*/ 0) 1635 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1636 1637 case IPV6_RECVPKTINFO: 1638 /* cannot mix with RFC2292 */ 1639 if (OPTBIT(IN6P_RFC2292)) { 1640 error = EINVAL; 1641 break; 1642 } 1643 OPTSET(IN6P_PKTINFO); 1644 break; 1645 1646 case IPV6_HOPLIMIT: 1647 { 1648 struct ip6_pktopts **optp; 1649 1650 /* cannot mix with RFC2292 */ 1651 if (OPTBIT(IN6P_RFC2292)) { 1652 error = EINVAL; 1653 break; 1654 } 1655 optp = &in6p->in6p_outputopts; 1656 error = ip6_pcbopt(IPV6_HOPLIMIT, 1657 (u_char *)&optval, sizeof(optval), 1658 optp, (td != NULL) ? td->td_ucred : 1659 NULL, uproto); 1660 break; 1661 } 1662 1663 case IPV6_RECVHOPLIMIT: 1664 /* cannot mix with RFC2292 */ 1665 if (OPTBIT(IN6P_RFC2292)) { 1666 error = EINVAL; 1667 break; 1668 } 1669 OPTSET(IN6P_HOPLIMIT); 1670 break; 1671 1672 case IPV6_RECVHOPOPTS: 1673 /* cannot mix with RFC2292 */ 1674 if (OPTBIT(IN6P_RFC2292)) { 1675 error = EINVAL; 1676 break; 1677 } 1678 OPTSET(IN6P_HOPOPTS); 1679 break; 1680 1681 case IPV6_RECVDSTOPTS: 1682 /* cannot mix with RFC2292 */ 1683 if (OPTBIT(IN6P_RFC2292)) { 1684 error = EINVAL; 1685 break; 1686 } 1687 OPTSET(IN6P_DSTOPTS); 1688 break; 1689 1690 case IPV6_RECVRTHDRDSTOPTS: 1691 /* cannot mix with RFC2292 */ 1692 if (OPTBIT(IN6P_RFC2292)) { 1693 error = EINVAL; 1694 break; 1695 } 1696 OPTSET(IN6P_RTHDRDSTOPTS); 1697 break; 1698 1699 case IPV6_RECVRTHDR: 1700 /* cannot mix with RFC2292 */ 1701 if (OPTBIT(IN6P_RFC2292)) { 1702 error = EINVAL; 1703 break; 1704 } 1705 OPTSET(IN6P_RTHDR); 1706 break; 1707 1708 case IPV6_FAITH: 1709 OPTSET(INP_FAITH); 1710 break; 1711 1712 case IPV6_RECVPATHMTU: 1713 /* 1714 * We ignore this option for TCP 1715 * sockets. 1716 * (RFC3542 leaves this case 1717 * unspecified.) 1718 */ 1719 if (uproto != IPPROTO_TCP) 1720 OPTSET(IN6P_MTU); 1721 break; 1722 1723 case IPV6_V6ONLY: 1724 /* 1725 * make setsockopt(IPV6_V6ONLY) 1726 * available only prior to bind(2). 1727 * see ipng mailing list, Jun 22 2001. 1728 */ 1729 if (in6p->inp_lport || 1730 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1731 error = EINVAL; 1732 break; 1733 } 1734 OPTSET(IN6P_IPV6_V6ONLY); 1735 if (optval) 1736 in6p->inp_vflag &= ~INP_IPV4; 1737 else 1738 in6p->inp_vflag |= INP_IPV4; 1739 break; 1740 case IPV6_RECVTCLASS: 1741 /* cannot mix with RFC2292 XXX */ 1742 if (OPTBIT(IN6P_RFC2292)) { 1743 error = EINVAL; 1744 break; 1745 } 1746 OPTSET(IN6P_TCLASS); 1747 break; 1748 case IPV6_AUTOFLOWLABEL: 1749 OPTSET(IN6P_AUTOFLOWLABEL); 1750 break; 1751 1752 case IPV6_BINDANY: 1753 OPTSET(INP_BINDANY); 1754 break; 1755 } 1756 break; 1757 1758 case IPV6_TCLASS: 1759 case IPV6_DONTFRAG: 1760 case IPV6_USE_MIN_MTU: 1761 case IPV6_PREFER_TEMPADDR: 1762 if (optlen != sizeof(optval)) { 1763 error = EINVAL; 1764 break; 1765 } 1766 error = sooptcopyin(sopt, &optval, 1767 sizeof optval, sizeof optval); 1768 if (error) 1769 break; 1770 { 1771 struct ip6_pktopts **optp; 1772 optp = &in6p->in6p_outputopts; 1773 error = ip6_pcbopt(optname, 1774 (u_char *)&optval, sizeof(optval), 1775 optp, (td != NULL) ? td->td_ucred : 1776 NULL, uproto); 1777 break; 1778 } 1779 1780 case IPV6_2292PKTINFO: 1781 case IPV6_2292HOPLIMIT: 1782 case IPV6_2292HOPOPTS: 1783 case IPV6_2292DSTOPTS: 1784 case IPV6_2292RTHDR: 1785 /* RFC 2292 */ 1786 if (optlen != sizeof(int)) { 1787 error = EINVAL; 1788 break; 1789 } 1790 error = sooptcopyin(sopt, &optval, 1791 sizeof optval, sizeof optval); 1792 if (error) 1793 break; 1794 switch (optname) { 1795 case IPV6_2292PKTINFO: 1796 OPTSET2292(IN6P_PKTINFO); 1797 break; 1798 case IPV6_2292HOPLIMIT: 1799 OPTSET2292(IN6P_HOPLIMIT); 1800 break; 1801 case IPV6_2292HOPOPTS: 1802 /* 1803 * Check super-user privilege. 1804 * See comments for IPV6_RECVHOPOPTS. 1805 */ 1806 if (td != NULL) { 1807 error = priv_check(td, 1808 PRIV_NETINET_SETHDROPTS); 1809 if (error) 1810 return (error); 1811 } 1812 OPTSET2292(IN6P_HOPOPTS); 1813 break; 1814 case IPV6_2292DSTOPTS: 1815 if (td != NULL) { 1816 error = priv_check(td, 1817 PRIV_NETINET_SETHDROPTS); 1818 if (error) 1819 return (error); 1820 } 1821 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1822 break; 1823 case IPV6_2292RTHDR: 1824 OPTSET2292(IN6P_RTHDR); 1825 break; 1826 } 1827 break; 1828 case IPV6_PKTINFO: 1829 case IPV6_HOPOPTS: 1830 case IPV6_RTHDR: 1831 case IPV6_DSTOPTS: 1832 case IPV6_RTHDRDSTOPTS: 1833 case IPV6_NEXTHOP: 1834 { 1835 /* new advanced API (RFC3542) */ 1836 u_char *optbuf; 1837 u_char optbuf_storage[MCLBYTES]; 1838 int optlen; 1839 struct ip6_pktopts **optp; 1840 1841 /* cannot mix with RFC2292 */ 1842 if (OPTBIT(IN6P_RFC2292)) { 1843 error = EINVAL; 1844 break; 1845 } 1846 1847 /* 1848 * We only ensure valsize is not too large 1849 * here. Further validation will be done 1850 * later. 1851 */ 1852 error = sooptcopyin(sopt, optbuf_storage, 1853 sizeof(optbuf_storage), 0); 1854 if (error) 1855 break; 1856 optlen = sopt->sopt_valsize; 1857 optbuf = optbuf_storage; 1858 optp = &in6p->in6p_outputopts; 1859 error = ip6_pcbopt(optname, optbuf, optlen, 1860 optp, (td != NULL) ? td->td_ucred : NULL, 1861 uproto); 1862 break; 1863 } 1864 #undef OPTSET 1865 1866 case IPV6_MULTICAST_IF: 1867 case IPV6_MULTICAST_HOPS: 1868 case IPV6_MULTICAST_LOOP: 1869 case IPV6_JOIN_GROUP: 1870 case IPV6_LEAVE_GROUP: 1871 case IPV6_MSFILTER: 1872 case MCAST_BLOCK_SOURCE: 1873 case MCAST_UNBLOCK_SOURCE: 1874 case MCAST_JOIN_GROUP: 1875 case MCAST_LEAVE_GROUP: 1876 case MCAST_JOIN_SOURCE_GROUP: 1877 case MCAST_LEAVE_SOURCE_GROUP: 1878 error = ip6_setmoptions(in6p, sopt); 1879 break; 1880 1881 case IPV6_PORTRANGE: 1882 error = sooptcopyin(sopt, &optval, 1883 sizeof optval, sizeof optval); 1884 if (error) 1885 break; 1886 1887 INP_WLOCK(in6p); 1888 switch (optval) { 1889 case IPV6_PORTRANGE_DEFAULT: 1890 in6p->inp_flags &= ~(INP_LOWPORT); 1891 in6p->inp_flags &= ~(INP_HIGHPORT); 1892 break; 1893 1894 case IPV6_PORTRANGE_HIGH: 1895 in6p->inp_flags &= ~(INP_LOWPORT); 1896 in6p->inp_flags |= INP_HIGHPORT; 1897 break; 1898 1899 case IPV6_PORTRANGE_LOW: 1900 in6p->inp_flags &= ~(INP_HIGHPORT); 1901 in6p->inp_flags |= INP_LOWPORT; 1902 break; 1903 1904 default: 1905 error = EINVAL; 1906 break; 1907 } 1908 INP_WUNLOCK(in6p); 1909 break; 1910 1911 #ifdef IPSEC 1912 case IPV6_IPSEC_POLICY: 1913 { 1914 caddr_t req; 1915 struct mbuf *m; 1916 1917 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1918 break; 1919 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1920 break; 1921 req = mtod(m, caddr_t); 1922 error = ipsec_set_policy(in6p, optname, req, 1923 m->m_len, (sopt->sopt_td != NULL) ? 1924 sopt->sopt_td->td_ucred : NULL); 1925 m_freem(m); 1926 break; 1927 } 1928 #endif /* IPSEC */ 1929 1930 default: 1931 error = ENOPROTOOPT; 1932 break; 1933 } 1934 break; 1935 1936 case SOPT_GET: 1937 switch (optname) { 1938 1939 case IPV6_2292PKTOPTIONS: 1940 #ifdef IPV6_PKTOPTIONS 1941 case IPV6_PKTOPTIONS: 1942 #endif 1943 /* 1944 * RFC3542 (effectively) deprecated the 1945 * semantics of the 2292-style pktoptions. 1946 * Since it was not reliable in nature (i.e., 1947 * applications had to expect the lack of some 1948 * information after all), it would make sense 1949 * to simplify this part by always returning 1950 * empty data. 1951 */ 1952 sopt->sopt_valsize = 0; 1953 break; 1954 1955 case IPV6_RECVHOPOPTS: 1956 case IPV6_RECVDSTOPTS: 1957 case IPV6_RECVRTHDRDSTOPTS: 1958 case IPV6_UNICAST_HOPS: 1959 case IPV6_RECVPKTINFO: 1960 case IPV6_RECVHOPLIMIT: 1961 case IPV6_RECVRTHDR: 1962 case IPV6_RECVPATHMTU: 1963 1964 case IPV6_FAITH: 1965 case IPV6_V6ONLY: 1966 case IPV6_PORTRANGE: 1967 case IPV6_RECVTCLASS: 1968 case IPV6_AUTOFLOWLABEL: 1969 case IPV6_BINDANY: 1970 switch (optname) { 1971 1972 case IPV6_RECVHOPOPTS: 1973 optval = OPTBIT(IN6P_HOPOPTS); 1974 break; 1975 1976 case IPV6_RECVDSTOPTS: 1977 optval = OPTBIT(IN6P_DSTOPTS); 1978 break; 1979 1980 case IPV6_RECVRTHDRDSTOPTS: 1981 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1982 break; 1983 1984 case IPV6_UNICAST_HOPS: 1985 optval = in6p->in6p_hops; 1986 break; 1987 1988 case IPV6_RECVPKTINFO: 1989 optval = OPTBIT(IN6P_PKTINFO); 1990 break; 1991 1992 case IPV6_RECVHOPLIMIT: 1993 optval = OPTBIT(IN6P_HOPLIMIT); 1994 break; 1995 1996 case IPV6_RECVRTHDR: 1997 optval = OPTBIT(IN6P_RTHDR); 1998 break; 1999 2000 case IPV6_RECVPATHMTU: 2001 optval = OPTBIT(IN6P_MTU); 2002 break; 2003 2004 case IPV6_FAITH: 2005 optval = OPTBIT(INP_FAITH); 2006 break; 2007 2008 case IPV6_V6ONLY: 2009 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2010 break; 2011 2012 case IPV6_PORTRANGE: 2013 { 2014 int flags; 2015 flags = in6p->inp_flags; 2016 if (flags & INP_HIGHPORT) 2017 optval = IPV6_PORTRANGE_HIGH; 2018 else if (flags & INP_LOWPORT) 2019 optval = IPV6_PORTRANGE_LOW; 2020 else 2021 optval = 0; 2022 break; 2023 } 2024 case IPV6_RECVTCLASS: 2025 optval = OPTBIT(IN6P_TCLASS); 2026 break; 2027 2028 case IPV6_AUTOFLOWLABEL: 2029 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2030 break; 2031 2032 case IPV6_BINDANY: 2033 optval = OPTBIT(INP_BINDANY); 2034 break; 2035 } 2036 if (error) 2037 break; 2038 error = sooptcopyout(sopt, &optval, 2039 sizeof optval); 2040 break; 2041 2042 case IPV6_PATHMTU: 2043 { 2044 u_long pmtu = 0; 2045 struct ip6_mtuinfo mtuinfo; 2046 struct route_in6 sro; 2047 2048 bzero(&sro, sizeof(sro)); 2049 2050 if (!(so->so_state & SS_ISCONNECTED)) 2051 return (ENOTCONN); 2052 /* 2053 * XXX: we dot not consider the case of source 2054 * routing, or optional information to specify 2055 * the outgoing interface. 2056 */ 2057 error = ip6_getpmtu(&sro, NULL, NULL, 2058 &in6p->in6p_faddr, &pmtu, NULL, 2059 so->so_fibnum); 2060 if (sro.ro_rt) 2061 RTFREE(sro.ro_rt); 2062 if (error) 2063 break; 2064 if (pmtu > IPV6_MAXPACKET) 2065 pmtu = IPV6_MAXPACKET; 2066 2067 bzero(&mtuinfo, sizeof(mtuinfo)); 2068 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2069 optdata = (void *)&mtuinfo; 2070 optdatalen = sizeof(mtuinfo); 2071 error = sooptcopyout(sopt, optdata, 2072 optdatalen); 2073 break; 2074 } 2075 2076 case IPV6_2292PKTINFO: 2077 case IPV6_2292HOPLIMIT: 2078 case IPV6_2292HOPOPTS: 2079 case IPV6_2292RTHDR: 2080 case IPV6_2292DSTOPTS: 2081 switch (optname) { 2082 case IPV6_2292PKTINFO: 2083 optval = OPTBIT(IN6P_PKTINFO); 2084 break; 2085 case IPV6_2292HOPLIMIT: 2086 optval = OPTBIT(IN6P_HOPLIMIT); 2087 break; 2088 case IPV6_2292HOPOPTS: 2089 optval = OPTBIT(IN6P_HOPOPTS); 2090 break; 2091 case IPV6_2292RTHDR: 2092 optval = OPTBIT(IN6P_RTHDR); 2093 break; 2094 case IPV6_2292DSTOPTS: 2095 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2096 break; 2097 } 2098 error = sooptcopyout(sopt, &optval, 2099 sizeof optval); 2100 break; 2101 case IPV6_PKTINFO: 2102 case IPV6_HOPOPTS: 2103 case IPV6_RTHDR: 2104 case IPV6_DSTOPTS: 2105 case IPV6_RTHDRDSTOPTS: 2106 case IPV6_NEXTHOP: 2107 case IPV6_TCLASS: 2108 case IPV6_DONTFRAG: 2109 case IPV6_USE_MIN_MTU: 2110 case IPV6_PREFER_TEMPADDR: 2111 error = ip6_getpcbopt(in6p->in6p_outputopts, 2112 optname, sopt); 2113 break; 2114 2115 case IPV6_MULTICAST_IF: 2116 case IPV6_MULTICAST_HOPS: 2117 case IPV6_MULTICAST_LOOP: 2118 case IPV6_MSFILTER: 2119 error = ip6_getmoptions(in6p, sopt); 2120 break; 2121 2122 #ifdef IPSEC 2123 case IPV6_IPSEC_POLICY: 2124 { 2125 caddr_t req = NULL; 2126 size_t len = 0; 2127 struct mbuf *m = NULL; 2128 struct mbuf **mp = &m; 2129 size_t ovalsize = sopt->sopt_valsize; 2130 caddr_t oval = (caddr_t)sopt->sopt_val; 2131 2132 error = soopt_getm(sopt, &m); /* XXX */ 2133 if (error != 0) 2134 break; 2135 error = soopt_mcopyin(sopt, m); /* XXX */ 2136 if (error != 0) 2137 break; 2138 sopt->sopt_valsize = ovalsize; 2139 sopt->sopt_val = oval; 2140 if (m) { 2141 req = mtod(m, caddr_t); 2142 len = m->m_len; 2143 } 2144 error = ipsec_get_policy(in6p, req, len, mp); 2145 if (error == 0) 2146 error = soopt_mcopyout(sopt, m); /* XXX */ 2147 if (error == 0 && m) 2148 m_freem(m); 2149 break; 2150 } 2151 #endif /* IPSEC */ 2152 2153 default: 2154 error = ENOPROTOOPT; 2155 break; 2156 } 2157 break; 2158 } 2159 } 2160 return (error); 2161 } 2162 2163 int 2164 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2165 { 2166 int error = 0, optval, optlen; 2167 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2168 struct inpcb *in6p = sotoinpcb(so); 2169 int level, op, optname; 2170 2171 level = sopt->sopt_level; 2172 op = sopt->sopt_dir; 2173 optname = sopt->sopt_name; 2174 optlen = sopt->sopt_valsize; 2175 2176 if (level != IPPROTO_IPV6) { 2177 return (EINVAL); 2178 } 2179 2180 switch (optname) { 2181 case IPV6_CHECKSUM: 2182 /* 2183 * For ICMPv6 sockets, no modification allowed for checksum 2184 * offset, permit "no change" values to help existing apps. 2185 * 2186 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2187 * for an ICMPv6 socket will fail." 2188 * The current behavior does not meet RFC3542. 2189 */ 2190 switch (op) { 2191 case SOPT_SET: 2192 if (optlen != sizeof(int)) { 2193 error = EINVAL; 2194 break; 2195 } 2196 error = sooptcopyin(sopt, &optval, sizeof(optval), 2197 sizeof(optval)); 2198 if (error) 2199 break; 2200 if ((optval % 2) != 0) { 2201 /* the API assumes even offset values */ 2202 error = EINVAL; 2203 } else if (so->so_proto->pr_protocol == 2204 IPPROTO_ICMPV6) { 2205 if (optval != icmp6off) 2206 error = EINVAL; 2207 } else 2208 in6p->in6p_cksum = optval; 2209 break; 2210 2211 case SOPT_GET: 2212 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2213 optval = icmp6off; 2214 else 2215 optval = in6p->in6p_cksum; 2216 2217 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2218 break; 2219 2220 default: 2221 error = EINVAL; 2222 break; 2223 } 2224 break; 2225 2226 default: 2227 error = ENOPROTOOPT; 2228 break; 2229 } 2230 2231 return (error); 2232 } 2233 2234 /* 2235 * Set up IP6 options in pcb for insertion in output packets or 2236 * specifying behavior of outgoing packets. 2237 */ 2238 static int 2239 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2240 struct socket *so, struct sockopt *sopt) 2241 { 2242 struct ip6_pktopts *opt = *pktopt; 2243 int error = 0; 2244 struct thread *td = sopt->sopt_td; 2245 2246 /* turn off any old options. */ 2247 if (opt) { 2248 #ifdef DIAGNOSTIC 2249 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2250 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2251 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2252 printf("ip6_pcbopts: all specified options are cleared.\n"); 2253 #endif 2254 ip6_clearpktopts(opt, -1); 2255 } else 2256 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2257 *pktopt = NULL; 2258 2259 if (!m || m->m_len == 0) { 2260 /* 2261 * Only turning off any previous options, regardless of 2262 * whether the opt is just created or given. 2263 */ 2264 free(opt, M_IP6OPT); 2265 return (0); 2266 } 2267 2268 /* set options specified by user. */ 2269 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2270 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2271 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2272 free(opt, M_IP6OPT); 2273 return (error); 2274 } 2275 *pktopt = opt; 2276 return (0); 2277 } 2278 2279 /* 2280 * initialize ip6_pktopts. beware that there are non-zero default values in 2281 * the struct. 2282 */ 2283 void 2284 ip6_initpktopts(struct ip6_pktopts *opt) 2285 { 2286 2287 bzero(opt, sizeof(*opt)); 2288 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2289 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2290 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2291 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2292 } 2293 2294 static int 2295 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2296 struct ucred *cred, int uproto) 2297 { 2298 struct ip6_pktopts *opt; 2299 2300 if (*pktopt == NULL) { 2301 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2302 M_WAITOK); 2303 ip6_initpktopts(*pktopt); 2304 } 2305 opt = *pktopt; 2306 2307 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2308 } 2309 2310 static int 2311 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2312 { 2313 void *optdata = NULL; 2314 int optdatalen = 0; 2315 struct ip6_ext *ip6e; 2316 int error = 0; 2317 struct in6_pktinfo null_pktinfo; 2318 int deftclass = 0, on; 2319 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2320 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2321 2322 switch (optname) { 2323 case IPV6_PKTINFO: 2324 if (pktopt && pktopt->ip6po_pktinfo) 2325 optdata = (void *)pktopt->ip6po_pktinfo; 2326 else { 2327 /* XXX: we don't have to do this every time... */ 2328 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2329 optdata = (void *)&null_pktinfo; 2330 } 2331 optdatalen = sizeof(struct in6_pktinfo); 2332 break; 2333 case IPV6_TCLASS: 2334 if (pktopt && pktopt->ip6po_tclass >= 0) 2335 optdata = (void *)&pktopt->ip6po_tclass; 2336 else 2337 optdata = (void *)&deftclass; 2338 optdatalen = sizeof(int); 2339 break; 2340 case IPV6_HOPOPTS: 2341 if (pktopt && pktopt->ip6po_hbh) { 2342 optdata = (void *)pktopt->ip6po_hbh; 2343 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2344 optdatalen = (ip6e->ip6e_len + 1) << 3; 2345 } 2346 break; 2347 case IPV6_RTHDR: 2348 if (pktopt && pktopt->ip6po_rthdr) { 2349 optdata = (void *)pktopt->ip6po_rthdr; 2350 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2351 optdatalen = (ip6e->ip6e_len + 1) << 3; 2352 } 2353 break; 2354 case IPV6_RTHDRDSTOPTS: 2355 if (pktopt && pktopt->ip6po_dest1) { 2356 optdata = (void *)pktopt->ip6po_dest1; 2357 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2358 optdatalen = (ip6e->ip6e_len + 1) << 3; 2359 } 2360 break; 2361 case IPV6_DSTOPTS: 2362 if (pktopt && pktopt->ip6po_dest2) { 2363 optdata = (void *)pktopt->ip6po_dest2; 2364 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2365 optdatalen = (ip6e->ip6e_len + 1) << 3; 2366 } 2367 break; 2368 case IPV6_NEXTHOP: 2369 if (pktopt && pktopt->ip6po_nexthop) { 2370 optdata = (void *)pktopt->ip6po_nexthop; 2371 optdatalen = pktopt->ip6po_nexthop->sa_len; 2372 } 2373 break; 2374 case IPV6_USE_MIN_MTU: 2375 if (pktopt) 2376 optdata = (void *)&pktopt->ip6po_minmtu; 2377 else 2378 optdata = (void *)&defminmtu; 2379 optdatalen = sizeof(int); 2380 break; 2381 case IPV6_DONTFRAG: 2382 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2383 on = 1; 2384 else 2385 on = 0; 2386 optdata = (void *)&on; 2387 optdatalen = sizeof(on); 2388 break; 2389 case IPV6_PREFER_TEMPADDR: 2390 if (pktopt) 2391 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2392 else 2393 optdata = (void *)&defpreftemp; 2394 optdatalen = sizeof(int); 2395 break; 2396 default: /* should not happen */ 2397 #ifdef DIAGNOSTIC 2398 panic("ip6_getpcbopt: unexpected option\n"); 2399 #endif 2400 return (ENOPROTOOPT); 2401 } 2402 2403 error = sooptcopyout(sopt, optdata, optdatalen); 2404 2405 return (error); 2406 } 2407 2408 void 2409 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2410 { 2411 if (pktopt == NULL) 2412 return; 2413 2414 if (optname == -1 || optname == IPV6_PKTINFO) { 2415 if (pktopt->ip6po_pktinfo) 2416 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2417 pktopt->ip6po_pktinfo = NULL; 2418 } 2419 if (optname == -1 || optname == IPV6_HOPLIMIT) 2420 pktopt->ip6po_hlim = -1; 2421 if (optname == -1 || optname == IPV6_TCLASS) 2422 pktopt->ip6po_tclass = -1; 2423 if (optname == -1 || optname == IPV6_NEXTHOP) { 2424 if (pktopt->ip6po_nextroute.ro_rt) { 2425 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2426 pktopt->ip6po_nextroute.ro_rt = NULL; 2427 } 2428 if (pktopt->ip6po_nexthop) 2429 free(pktopt->ip6po_nexthop, M_IP6OPT); 2430 pktopt->ip6po_nexthop = NULL; 2431 } 2432 if (optname == -1 || optname == IPV6_HOPOPTS) { 2433 if (pktopt->ip6po_hbh) 2434 free(pktopt->ip6po_hbh, M_IP6OPT); 2435 pktopt->ip6po_hbh = NULL; 2436 } 2437 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2438 if (pktopt->ip6po_dest1) 2439 free(pktopt->ip6po_dest1, M_IP6OPT); 2440 pktopt->ip6po_dest1 = NULL; 2441 } 2442 if (optname == -1 || optname == IPV6_RTHDR) { 2443 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2444 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2445 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2446 if (pktopt->ip6po_route.ro_rt) { 2447 RTFREE(pktopt->ip6po_route.ro_rt); 2448 pktopt->ip6po_route.ro_rt = NULL; 2449 } 2450 } 2451 if (optname == -1 || optname == IPV6_DSTOPTS) { 2452 if (pktopt->ip6po_dest2) 2453 free(pktopt->ip6po_dest2, M_IP6OPT); 2454 pktopt->ip6po_dest2 = NULL; 2455 } 2456 } 2457 2458 #define PKTOPT_EXTHDRCPY(type) \ 2459 do {\ 2460 if (src->type) {\ 2461 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2462 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2463 if (dst->type == NULL && canwait == M_NOWAIT)\ 2464 goto bad;\ 2465 bcopy(src->type, dst->type, hlen);\ 2466 }\ 2467 } while (/*CONSTCOND*/ 0) 2468 2469 static int 2470 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2471 { 2472 if (dst == NULL || src == NULL) { 2473 printf("ip6_clearpktopts: invalid argument\n"); 2474 return (EINVAL); 2475 } 2476 2477 dst->ip6po_hlim = src->ip6po_hlim; 2478 dst->ip6po_tclass = src->ip6po_tclass; 2479 dst->ip6po_flags = src->ip6po_flags; 2480 dst->ip6po_minmtu = src->ip6po_minmtu; 2481 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2482 if (src->ip6po_pktinfo) { 2483 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2484 M_IP6OPT, canwait); 2485 if (dst->ip6po_pktinfo == NULL) 2486 goto bad; 2487 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2488 } 2489 if (src->ip6po_nexthop) { 2490 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2491 M_IP6OPT, canwait); 2492 if (dst->ip6po_nexthop == NULL) 2493 goto bad; 2494 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2495 src->ip6po_nexthop->sa_len); 2496 } 2497 PKTOPT_EXTHDRCPY(ip6po_hbh); 2498 PKTOPT_EXTHDRCPY(ip6po_dest1); 2499 PKTOPT_EXTHDRCPY(ip6po_dest2); 2500 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2501 return (0); 2502 2503 bad: 2504 ip6_clearpktopts(dst, -1); 2505 return (ENOBUFS); 2506 } 2507 #undef PKTOPT_EXTHDRCPY 2508 2509 struct ip6_pktopts * 2510 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2511 { 2512 int error; 2513 struct ip6_pktopts *dst; 2514 2515 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2516 if (dst == NULL) 2517 return (NULL); 2518 ip6_initpktopts(dst); 2519 2520 if ((error = copypktopts(dst, src, canwait)) != 0) { 2521 free(dst, M_IP6OPT); 2522 return (NULL); 2523 } 2524 2525 return (dst); 2526 } 2527 2528 void 2529 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2530 { 2531 if (pktopt == NULL) 2532 return; 2533 2534 ip6_clearpktopts(pktopt, -1); 2535 2536 free(pktopt, M_IP6OPT); 2537 } 2538 2539 /* 2540 * Set IPv6 outgoing packet options based on advanced API. 2541 */ 2542 int 2543 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2544 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2545 { 2546 struct cmsghdr *cm = 0; 2547 2548 if (control == NULL || opt == NULL) 2549 return (EINVAL); 2550 2551 ip6_initpktopts(opt); 2552 if (stickyopt) { 2553 int error; 2554 2555 /* 2556 * If stickyopt is provided, make a local copy of the options 2557 * for this particular packet, then override them by ancillary 2558 * objects. 2559 * XXX: copypktopts() does not copy the cached route to a next 2560 * hop (if any). This is not very good in terms of efficiency, 2561 * but we can allow this since this option should be rarely 2562 * used. 2563 */ 2564 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2565 return (error); 2566 } 2567 2568 /* 2569 * XXX: Currently, we assume all the optional information is stored 2570 * in a single mbuf. 2571 */ 2572 if (control->m_next) 2573 return (EINVAL); 2574 2575 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2576 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2577 int error; 2578 2579 if (control->m_len < CMSG_LEN(0)) 2580 return (EINVAL); 2581 2582 cm = mtod(control, struct cmsghdr *); 2583 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2584 return (EINVAL); 2585 if (cm->cmsg_level != IPPROTO_IPV6) 2586 continue; 2587 2588 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2589 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2590 if (error) 2591 return (error); 2592 } 2593 2594 return (0); 2595 } 2596 2597 /* 2598 * Set a particular packet option, as a sticky option or an ancillary data 2599 * item. "len" can be 0 only when it's a sticky option. 2600 * We have 4 cases of combination of "sticky" and "cmsg": 2601 * "sticky=0, cmsg=0": impossible 2602 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2603 * "sticky=1, cmsg=0": RFC3542 socket option 2604 * "sticky=1, cmsg=1": RFC2292 socket option 2605 */ 2606 static int 2607 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2608 struct ucred *cred, int sticky, int cmsg, int uproto) 2609 { 2610 int minmtupolicy, preftemp; 2611 int error; 2612 2613 if (!sticky && !cmsg) { 2614 #ifdef DIAGNOSTIC 2615 printf("ip6_setpktopt: impossible case\n"); 2616 #endif 2617 return (EINVAL); 2618 } 2619 2620 /* 2621 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2622 * not be specified in the context of RFC3542. Conversely, 2623 * RFC3542 types should not be specified in the context of RFC2292. 2624 */ 2625 if (!cmsg) { 2626 switch (optname) { 2627 case IPV6_2292PKTINFO: 2628 case IPV6_2292HOPLIMIT: 2629 case IPV6_2292NEXTHOP: 2630 case IPV6_2292HOPOPTS: 2631 case IPV6_2292DSTOPTS: 2632 case IPV6_2292RTHDR: 2633 case IPV6_2292PKTOPTIONS: 2634 return (ENOPROTOOPT); 2635 } 2636 } 2637 if (sticky && cmsg) { 2638 switch (optname) { 2639 case IPV6_PKTINFO: 2640 case IPV6_HOPLIMIT: 2641 case IPV6_NEXTHOP: 2642 case IPV6_HOPOPTS: 2643 case IPV6_DSTOPTS: 2644 case IPV6_RTHDRDSTOPTS: 2645 case IPV6_RTHDR: 2646 case IPV6_USE_MIN_MTU: 2647 case IPV6_DONTFRAG: 2648 case IPV6_TCLASS: 2649 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2650 return (ENOPROTOOPT); 2651 } 2652 } 2653 2654 switch (optname) { 2655 case IPV6_2292PKTINFO: 2656 case IPV6_PKTINFO: 2657 { 2658 struct ifnet *ifp = NULL; 2659 struct in6_pktinfo *pktinfo; 2660 2661 if (len != sizeof(struct in6_pktinfo)) 2662 return (EINVAL); 2663 2664 pktinfo = (struct in6_pktinfo *)buf; 2665 2666 /* 2667 * An application can clear any sticky IPV6_PKTINFO option by 2668 * doing a "regular" setsockopt with ipi6_addr being 2669 * in6addr_any and ipi6_ifindex being zero. 2670 * [RFC 3542, Section 6] 2671 */ 2672 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2673 pktinfo->ipi6_ifindex == 0 && 2674 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2675 ip6_clearpktopts(opt, optname); 2676 break; 2677 } 2678 2679 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2680 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2681 return (EINVAL); 2682 } 2683 2684 /* validate the interface index if specified. */ 2685 if (pktinfo->ipi6_ifindex > V_if_index || 2686 pktinfo->ipi6_ifindex < 0) { 2687 return (ENXIO); 2688 } 2689 if (pktinfo->ipi6_ifindex) { 2690 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2691 if (ifp == NULL) 2692 return (ENXIO); 2693 } 2694 2695 /* 2696 * We store the address anyway, and let in6_selectsrc() 2697 * validate the specified address. This is because ipi6_addr 2698 * may not have enough information about its scope zone, and 2699 * we may need additional information (such as outgoing 2700 * interface or the scope zone of a destination address) to 2701 * disambiguate the scope. 2702 * XXX: the delay of the validation may confuse the 2703 * application when it is used as a sticky option. 2704 */ 2705 if (opt->ip6po_pktinfo == NULL) { 2706 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2707 M_IP6OPT, M_NOWAIT); 2708 if (opt->ip6po_pktinfo == NULL) 2709 return (ENOBUFS); 2710 } 2711 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2712 break; 2713 } 2714 2715 case IPV6_2292HOPLIMIT: 2716 case IPV6_HOPLIMIT: 2717 { 2718 int *hlimp; 2719 2720 /* 2721 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2722 * to simplify the ordering among hoplimit options. 2723 */ 2724 if (optname == IPV6_HOPLIMIT && sticky) 2725 return (ENOPROTOOPT); 2726 2727 if (len != sizeof(int)) 2728 return (EINVAL); 2729 hlimp = (int *)buf; 2730 if (*hlimp < -1 || *hlimp > 255) 2731 return (EINVAL); 2732 2733 opt->ip6po_hlim = *hlimp; 2734 break; 2735 } 2736 2737 case IPV6_TCLASS: 2738 { 2739 int tclass; 2740 2741 if (len != sizeof(int)) 2742 return (EINVAL); 2743 tclass = *(int *)buf; 2744 if (tclass < -1 || tclass > 255) 2745 return (EINVAL); 2746 2747 opt->ip6po_tclass = tclass; 2748 break; 2749 } 2750 2751 case IPV6_2292NEXTHOP: 2752 case IPV6_NEXTHOP: 2753 if (cred != NULL) { 2754 error = priv_check_cred(cred, 2755 PRIV_NETINET_SETHDROPTS, 0); 2756 if (error) 2757 return (error); 2758 } 2759 2760 if (len == 0) { /* just remove the option */ 2761 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2762 break; 2763 } 2764 2765 /* check if cmsg_len is large enough for sa_len */ 2766 if (len < sizeof(struct sockaddr) || len < *buf) 2767 return (EINVAL); 2768 2769 switch (((struct sockaddr *)buf)->sa_family) { 2770 case AF_INET6: 2771 { 2772 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2773 int error; 2774 2775 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2776 return (EINVAL); 2777 2778 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2779 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2780 return (EINVAL); 2781 } 2782 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2783 != 0) { 2784 return (error); 2785 } 2786 break; 2787 } 2788 case AF_LINK: /* should eventually be supported */ 2789 default: 2790 return (EAFNOSUPPORT); 2791 } 2792 2793 /* turn off the previous option, then set the new option. */ 2794 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2795 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2796 if (opt->ip6po_nexthop == NULL) 2797 return (ENOBUFS); 2798 bcopy(buf, opt->ip6po_nexthop, *buf); 2799 break; 2800 2801 case IPV6_2292HOPOPTS: 2802 case IPV6_HOPOPTS: 2803 { 2804 struct ip6_hbh *hbh; 2805 int hbhlen; 2806 2807 /* 2808 * XXX: We don't allow a non-privileged user to set ANY HbH 2809 * options, since per-option restriction has too much 2810 * overhead. 2811 */ 2812 if (cred != NULL) { 2813 error = priv_check_cred(cred, 2814 PRIV_NETINET_SETHDROPTS, 0); 2815 if (error) 2816 return (error); 2817 } 2818 2819 if (len == 0) { 2820 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2821 break; /* just remove the option */ 2822 } 2823 2824 /* message length validation */ 2825 if (len < sizeof(struct ip6_hbh)) 2826 return (EINVAL); 2827 hbh = (struct ip6_hbh *)buf; 2828 hbhlen = (hbh->ip6h_len + 1) << 3; 2829 if (len != hbhlen) 2830 return (EINVAL); 2831 2832 /* turn off the previous option, then set the new option. */ 2833 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2834 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2835 if (opt->ip6po_hbh == NULL) 2836 return (ENOBUFS); 2837 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2838 2839 break; 2840 } 2841 2842 case IPV6_2292DSTOPTS: 2843 case IPV6_DSTOPTS: 2844 case IPV6_RTHDRDSTOPTS: 2845 { 2846 struct ip6_dest *dest, **newdest = NULL; 2847 int destlen; 2848 2849 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2850 error = priv_check_cred(cred, 2851 PRIV_NETINET_SETHDROPTS, 0); 2852 if (error) 2853 return (error); 2854 } 2855 2856 if (len == 0) { 2857 ip6_clearpktopts(opt, optname); 2858 break; /* just remove the option */ 2859 } 2860 2861 /* message length validation */ 2862 if (len < sizeof(struct ip6_dest)) 2863 return (EINVAL); 2864 dest = (struct ip6_dest *)buf; 2865 destlen = (dest->ip6d_len + 1) << 3; 2866 if (len != destlen) 2867 return (EINVAL); 2868 2869 /* 2870 * Determine the position that the destination options header 2871 * should be inserted; before or after the routing header. 2872 */ 2873 switch (optname) { 2874 case IPV6_2292DSTOPTS: 2875 /* 2876 * The old advacned API is ambiguous on this point. 2877 * Our approach is to determine the position based 2878 * according to the existence of a routing header. 2879 * Note, however, that this depends on the order of the 2880 * extension headers in the ancillary data; the 1st 2881 * part of the destination options header must appear 2882 * before the routing header in the ancillary data, 2883 * too. 2884 * RFC3542 solved the ambiguity by introducing 2885 * separate ancillary data or option types. 2886 */ 2887 if (opt->ip6po_rthdr == NULL) 2888 newdest = &opt->ip6po_dest1; 2889 else 2890 newdest = &opt->ip6po_dest2; 2891 break; 2892 case IPV6_RTHDRDSTOPTS: 2893 newdest = &opt->ip6po_dest1; 2894 break; 2895 case IPV6_DSTOPTS: 2896 newdest = &opt->ip6po_dest2; 2897 break; 2898 } 2899 2900 /* turn off the previous option, then set the new option. */ 2901 ip6_clearpktopts(opt, optname); 2902 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2903 if (*newdest == NULL) 2904 return (ENOBUFS); 2905 bcopy(dest, *newdest, destlen); 2906 2907 break; 2908 } 2909 2910 case IPV6_2292RTHDR: 2911 case IPV6_RTHDR: 2912 { 2913 struct ip6_rthdr *rth; 2914 int rthlen; 2915 2916 if (len == 0) { 2917 ip6_clearpktopts(opt, IPV6_RTHDR); 2918 break; /* just remove the option */ 2919 } 2920 2921 /* message length validation */ 2922 if (len < sizeof(struct ip6_rthdr)) 2923 return (EINVAL); 2924 rth = (struct ip6_rthdr *)buf; 2925 rthlen = (rth->ip6r_len + 1) << 3; 2926 if (len != rthlen) 2927 return (EINVAL); 2928 2929 switch (rth->ip6r_type) { 2930 case IPV6_RTHDR_TYPE_0: 2931 if (rth->ip6r_len == 0) /* must contain one addr */ 2932 return (EINVAL); 2933 if (rth->ip6r_len % 2) /* length must be even */ 2934 return (EINVAL); 2935 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2936 return (EINVAL); 2937 break; 2938 default: 2939 return (EINVAL); /* not supported */ 2940 } 2941 2942 /* turn off the previous option */ 2943 ip6_clearpktopts(opt, IPV6_RTHDR); 2944 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2945 if (opt->ip6po_rthdr == NULL) 2946 return (ENOBUFS); 2947 bcopy(rth, opt->ip6po_rthdr, rthlen); 2948 2949 break; 2950 } 2951 2952 case IPV6_USE_MIN_MTU: 2953 if (len != sizeof(int)) 2954 return (EINVAL); 2955 minmtupolicy = *(int *)buf; 2956 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2957 minmtupolicy != IP6PO_MINMTU_DISABLE && 2958 minmtupolicy != IP6PO_MINMTU_ALL) { 2959 return (EINVAL); 2960 } 2961 opt->ip6po_minmtu = minmtupolicy; 2962 break; 2963 2964 case IPV6_DONTFRAG: 2965 if (len != sizeof(int)) 2966 return (EINVAL); 2967 2968 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2969 /* 2970 * we ignore this option for TCP sockets. 2971 * (RFC3542 leaves this case unspecified.) 2972 */ 2973 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2974 } else 2975 opt->ip6po_flags |= IP6PO_DONTFRAG; 2976 break; 2977 2978 case IPV6_PREFER_TEMPADDR: 2979 if (len != sizeof(int)) 2980 return (EINVAL); 2981 preftemp = *(int *)buf; 2982 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 2983 preftemp != IP6PO_TEMPADDR_NOTPREFER && 2984 preftemp != IP6PO_TEMPADDR_PREFER) { 2985 return (EINVAL); 2986 } 2987 opt->ip6po_prefer_tempaddr = preftemp; 2988 break; 2989 2990 default: 2991 return (ENOPROTOOPT); 2992 } /* end of switch */ 2993 2994 return (0); 2995 } 2996 2997 /* 2998 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2999 * packet to the input queue of a specified interface. Note that this 3000 * calls the output routine of the loopback "driver", but with an interface 3001 * pointer that might NOT be &loif -- easier than replicating that code here. 3002 */ 3003 void 3004 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 3005 { 3006 struct mbuf *copym; 3007 struct ip6_hdr *ip6; 3008 3009 copym = m_copy(m, 0, M_COPYALL); 3010 if (copym == NULL) 3011 return; 3012 3013 /* 3014 * Make sure to deep-copy IPv6 header portion in case the data 3015 * is in an mbuf cluster, so that we can safely override the IPv6 3016 * header portion later. 3017 */ 3018 if ((copym->m_flags & M_EXT) != 0 || 3019 copym->m_len < sizeof(struct ip6_hdr)) { 3020 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3021 if (copym == NULL) 3022 return; 3023 } 3024 3025 #ifdef DIAGNOSTIC 3026 if (copym->m_len < sizeof(*ip6)) { 3027 m_freem(copym); 3028 return; 3029 } 3030 #endif 3031 3032 ip6 = mtod(copym, struct ip6_hdr *); 3033 /* 3034 * clear embedded scope identifiers if necessary. 3035 * in6_clearscope will touch the addresses only when necessary. 3036 */ 3037 in6_clearscope(&ip6->ip6_src); 3038 in6_clearscope(&ip6->ip6_dst); 3039 3040 (void)if_simloop(ifp, copym, dst->sin6_family, 0); 3041 } 3042 3043 /* 3044 * Chop IPv6 header off from the payload. 3045 */ 3046 static int 3047 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3048 { 3049 struct mbuf *mh; 3050 struct ip6_hdr *ip6; 3051 3052 ip6 = mtod(m, struct ip6_hdr *); 3053 if (m->m_len > sizeof(*ip6)) { 3054 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3055 if (mh == 0) { 3056 m_freem(m); 3057 return ENOBUFS; 3058 } 3059 M_MOVE_PKTHDR(mh, m); 3060 MH_ALIGN(mh, sizeof(*ip6)); 3061 m->m_len -= sizeof(*ip6); 3062 m->m_data += sizeof(*ip6); 3063 mh->m_next = m; 3064 m = mh; 3065 m->m_len = sizeof(*ip6); 3066 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3067 } 3068 exthdrs->ip6e_ip6 = m; 3069 return 0; 3070 } 3071 3072 /* 3073 * Compute IPv6 extension header length. 3074 */ 3075 int 3076 ip6_optlen(struct inpcb *in6p) 3077 { 3078 int len; 3079 3080 if (!in6p->in6p_outputopts) 3081 return 0; 3082 3083 len = 0; 3084 #define elen(x) \ 3085 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3086 3087 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3088 if (in6p->in6p_outputopts->ip6po_rthdr) 3089 /* dest1 is valid with rthdr only */ 3090 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3091 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3092 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3093 return len; 3094 #undef elen 3095 } 3096