1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #include "opt_kern_tls.h" 72 #include "opt_ratelimit.h" 73 #include "opt_route.h" 74 #include "opt_rss.h" 75 #include "opt_sctp.h" 76 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/ktls.h> 80 #include <sys/malloc.h> 81 #include <sys/mbuf.h> 82 #include <sys/errno.h> 83 #include <sys/priv.h> 84 #include <sys/proc.h> 85 #include <sys/protosw.h> 86 #include <sys/socket.h> 87 #include <sys/socketvar.h> 88 #include <sys/syslog.h> 89 #include <sys/ucred.h> 90 91 #include <machine/in_cksum.h> 92 93 #include <net/if.h> 94 #include <net/if_var.h> 95 #include <net/if_llatbl.h> 96 #include <net/netisr.h> 97 #include <net/route.h> 98 #include <net/pfil.h> 99 #include <net/rss_config.h> 100 #include <net/vnet.h> 101 102 #include <netinet/in.h> 103 #include <netinet/in_var.h> 104 #include <netinet/ip_var.h> 105 #include <netinet6/in6_fib.h> 106 #include <netinet6/in6_var.h> 107 #include <netinet/ip6.h> 108 #include <netinet/icmp6.h> 109 #include <netinet6/ip6_var.h> 110 #include <netinet/in_pcb.h> 111 #include <netinet/tcp_var.h> 112 #include <netinet6/nd6.h> 113 #include <netinet6/in6_rss.h> 114 115 #include <netipsec/ipsec_support.h> 116 #ifdef SCTP 117 #include <netinet/sctp.h> 118 #include <netinet/sctp_crc32.h> 119 #endif 120 121 #include <netinet6/ip6protosw.h> 122 #include <netinet6/scope6_var.h> 123 124 extern int in6_mcast_loop; 125 126 struct ip6_exthdrs { 127 struct mbuf *ip6e_ip6; 128 struct mbuf *ip6e_hbh; 129 struct mbuf *ip6e_dest1; 130 struct mbuf *ip6e_rthdr; 131 struct mbuf *ip6e_dest2; 132 }; 133 134 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 135 136 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 137 struct ucred *, int); 138 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 139 struct socket *, struct sockopt *); 140 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 141 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 142 struct ucred *, int, int, int); 143 144 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 145 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 146 struct ip6_frag **); 147 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 148 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 149 static int ip6_getpmtu(struct route_in6 *, int, 150 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 151 u_int); 152 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 153 u_long *, int *, u_int); 154 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 155 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 156 157 158 /* 159 * Make an extension header from option data. hp is the source, and 160 * mp is the destination. 161 */ 162 #define MAKE_EXTHDR(hp, mp) \ 163 do { \ 164 if (hp) { \ 165 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 166 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 167 ((eh)->ip6e_len + 1) << 3); \ 168 if (error) \ 169 goto freehdrs; \ 170 } \ 171 } while (/*CONSTCOND*/ 0) 172 173 /* 174 * Form a chain of extension headers. 175 * m is the extension header mbuf 176 * mp is the previous mbuf in the chain 177 * p is the next header 178 * i is the type of option. 179 */ 180 #define MAKE_CHAIN(m, mp, p, i)\ 181 do {\ 182 if (m) {\ 183 if (!hdrsplit) \ 184 panic("assumption failed: hdr not split"); \ 185 *mtod((m), u_char *) = *(p);\ 186 *(p) = (i);\ 187 p = mtod((m), u_char *);\ 188 (m)->m_next = (mp)->m_next;\ 189 (mp)->m_next = (m);\ 190 (mp) = (m);\ 191 }\ 192 } while (/*CONSTCOND*/ 0) 193 194 void 195 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 196 { 197 u_short csum; 198 199 csum = in_cksum_skip(m, offset + plen, offset); 200 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 201 csum = 0xffff; 202 offset += m->m_pkthdr.csum_data; /* checksum offset */ 203 204 if (offset + sizeof(csum) > m->m_len) 205 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 206 else 207 *(u_short *)mtodo(m, offset) = csum; 208 } 209 210 int 211 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 212 int fraglen , uint32_t id) 213 { 214 struct mbuf *m, **mnext, *m_frgpart; 215 struct ip6_hdr *ip6, *mhip6; 216 struct ip6_frag *ip6f; 217 int off; 218 int error; 219 int tlen = m0->m_pkthdr.len; 220 221 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 222 223 m = m0; 224 ip6 = mtod(m, struct ip6_hdr *); 225 mnext = &m->m_nextpkt; 226 227 for (off = hlen; off < tlen; off += fraglen) { 228 m = m_gethdr(M_NOWAIT, MT_DATA); 229 if (!m) { 230 IP6STAT_INC(ip6s_odropped); 231 return (ENOBUFS); 232 } 233 234 /* 235 * Make sure the complete packet header gets copied 236 * from the originating mbuf to the newly created 237 * mbuf. This also ensures that existing firewall 238 * classification(s), VLAN tags and so on get copied 239 * to the resulting fragmented packet(s): 240 */ 241 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 242 m_free(m); 243 IP6STAT_INC(ip6s_odropped); 244 return (ENOBUFS); 245 } 246 247 *mnext = m; 248 mnext = &m->m_nextpkt; 249 m->m_data += max_linkhdr; 250 mhip6 = mtod(m, struct ip6_hdr *); 251 *mhip6 = *ip6; 252 m->m_len = sizeof(*mhip6); 253 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 254 if (error) { 255 IP6STAT_INC(ip6s_odropped); 256 return (error); 257 } 258 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 259 if (off + fraglen >= tlen) 260 fraglen = tlen - off; 261 else 262 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 263 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 264 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 265 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 266 IP6STAT_INC(ip6s_odropped); 267 return (ENOBUFS); 268 } 269 m_cat(m, m_frgpart); 270 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 271 ip6f->ip6f_reserved = 0; 272 ip6f->ip6f_ident = id; 273 ip6f->ip6f_nxt = nextproto; 274 IP6STAT_INC(ip6s_ofragments); 275 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 276 } 277 278 return (0); 279 } 280 281 static int 282 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp, 283 struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro) 284 { 285 #ifdef KERN_TLS 286 struct ktls_session *tls = NULL; 287 #endif 288 struct m_snd_tag *mst; 289 int error; 290 291 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 292 mst = NULL; 293 294 #ifdef KERN_TLS 295 /* 296 * If this is an unencrypted TLS record, save a reference to 297 * the record. This local reference is used to call 298 * ktls_output_eagain after the mbuf has been freed (thus 299 * dropping the mbuf's reference) in if_output. 300 */ 301 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 302 tls = ktls_hold(m->m_next->m_ext.ext_pgs->tls); 303 mst = tls->snd_tag; 304 305 /* 306 * If a TLS session doesn't have a valid tag, it must 307 * have had an earlier ifp mismatch, so drop this 308 * packet. 309 */ 310 if (mst == NULL) { 311 error = EAGAIN; 312 goto done; 313 } 314 } 315 #endif 316 #ifdef RATELIMIT 317 if (inp != NULL && mst == NULL) { 318 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 319 (inp->inp_snd_tag != NULL && 320 inp->inp_snd_tag->ifp != ifp)) 321 in_pcboutput_txrtlmt(inp, ifp, m); 322 323 if (inp->inp_snd_tag != NULL) 324 mst = inp->inp_snd_tag; 325 } 326 #endif 327 if (mst != NULL) { 328 KASSERT(m->m_pkthdr.rcvif == NULL, 329 ("trying to add a send tag to a forwarded packet")); 330 if (mst->ifp != ifp) { 331 error = EAGAIN; 332 goto done; 333 } 334 335 /* stamp send tag on mbuf */ 336 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 337 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 338 } 339 340 error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); 341 342 done: 343 /* Check for route change invalidating send tags. */ 344 #ifdef KERN_TLS 345 if (tls != NULL) { 346 if (error == EAGAIN) 347 error = ktls_output_eagain(inp, tls); 348 ktls_free(tls); 349 } 350 #endif 351 #ifdef RATELIMIT 352 if (error == EAGAIN) 353 in_pcboutput_eagain(inp); 354 #endif 355 return (error); 356 } 357 358 /* 359 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 360 * header (with pri, len, nxt, hlim, src, dst). 361 * This function may modify ver and hlim only. 362 * The mbuf chain containing the packet will be freed. 363 * The mbuf opt, if present, will not be freed. 364 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 365 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 366 * then result of route lookup is stored in ro->ro_rt. 367 * 368 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 369 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 370 * which is rt_mtu. 371 * 372 * ifpp - XXX: just for statistics 373 */ 374 /* 375 * XXX TODO: no flowid is assigned for outbound flows? 376 */ 377 int 378 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 379 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 380 struct ifnet **ifpp, struct inpcb *inp) 381 { 382 struct ip6_hdr *ip6; 383 struct ifnet *ifp, *origifp; 384 struct mbuf *m = m0; 385 struct mbuf *mprev = NULL; 386 int hlen, tlen, len; 387 struct route_in6 ip6route; 388 struct rtentry *rt = NULL; 389 struct sockaddr_in6 *dst, src_sa, dst_sa; 390 struct in6_addr odst; 391 int error = 0; 392 struct in6_ifaddr *ia = NULL; 393 u_long mtu; 394 int alwaysfrag, dontfrag; 395 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 396 struct ip6_exthdrs exthdrs; 397 struct in6_addr src0, dst0; 398 u_int32_t zone; 399 struct route_in6 *ro_pmtu = NULL; 400 int hdrsplit = 0; 401 int sw_csum, tso; 402 int needfiblookup; 403 uint32_t fibnum; 404 struct m_tag *fwd_tag = NULL; 405 uint32_t id; 406 407 if (inp != NULL) { 408 INP_LOCK_ASSERT(inp); 409 M_SETFIB(m, inp->inp_inc.inc_fibnum); 410 if ((flags & IP_NODEFAULTFLOWID) == 0) { 411 /* unconditionally set flowid */ 412 m->m_pkthdr.flowid = inp->inp_flowid; 413 M_HASHTYPE_SET(m, inp->inp_flowtype); 414 } 415 #ifdef NUMA 416 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 417 #endif 418 } 419 420 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 421 /* 422 * IPSec checking which handles several cases. 423 * FAST IPSEC: We re-injected the packet. 424 * XXX: need scope argument. 425 */ 426 if (IPSEC_ENABLED(ipv6)) { 427 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 428 if (error == EINPROGRESS) 429 error = 0; 430 goto done; 431 } 432 } 433 #endif /* IPSEC */ 434 435 bzero(&exthdrs, sizeof(exthdrs)); 436 if (opt) { 437 /* Hop-by-Hop options header */ 438 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 439 /* Destination options header(1st part) */ 440 if (opt->ip6po_rthdr) { 441 /* 442 * Destination options header(1st part) 443 * This only makes sense with a routing header. 444 * See Section 9.2 of RFC 3542. 445 * Disabling this part just for MIP6 convenience is 446 * a bad idea. We need to think carefully about a 447 * way to make the advanced API coexist with MIP6 448 * options, which might automatically be inserted in 449 * the kernel. 450 */ 451 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 452 } 453 /* Routing header */ 454 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 455 /* Destination options header(2nd part) */ 456 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 457 } 458 459 /* 460 * Calculate the total length of the extension header chain. 461 * Keep the length of the unfragmentable part for fragmentation. 462 */ 463 optlen = 0; 464 if (exthdrs.ip6e_hbh) 465 optlen += exthdrs.ip6e_hbh->m_len; 466 if (exthdrs.ip6e_dest1) 467 optlen += exthdrs.ip6e_dest1->m_len; 468 if (exthdrs.ip6e_rthdr) 469 optlen += exthdrs.ip6e_rthdr->m_len; 470 unfragpartlen = optlen + sizeof(struct ip6_hdr); 471 472 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 473 if (exthdrs.ip6e_dest2) 474 optlen += exthdrs.ip6e_dest2->m_len; 475 476 /* 477 * If there is at least one extension header, 478 * separate IP6 header from the payload. 479 */ 480 if (optlen && !hdrsplit) { 481 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 482 m = NULL; 483 goto freehdrs; 484 } 485 m = exthdrs.ip6e_ip6; 486 hdrsplit++; 487 } 488 489 ip6 = mtod(m, struct ip6_hdr *); 490 491 /* adjust mbuf packet header length */ 492 m->m_pkthdr.len += optlen; 493 plen = m->m_pkthdr.len - sizeof(*ip6); 494 495 /* If this is a jumbo payload, insert a jumbo payload option. */ 496 if (plen > IPV6_MAXPACKET) { 497 if (!hdrsplit) { 498 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 499 m = NULL; 500 goto freehdrs; 501 } 502 m = exthdrs.ip6e_ip6; 503 hdrsplit++; 504 } 505 /* adjust pointer */ 506 ip6 = mtod(m, struct ip6_hdr *); 507 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 508 goto freehdrs; 509 ip6->ip6_plen = 0; 510 } else 511 ip6->ip6_plen = htons(plen); 512 513 /* 514 * Concatenate headers and fill in next header fields. 515 * Here we have, on "m" 516 * IPv6 payload 517 * and we insert headers accordingly. Finally, we should be getting: 518 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 519 * 520 * during the header composing process, "m" points to IPv6 header. 521 * "mprev" points to an extension header prior to esp. 522 */ 523 u_char *nexthdrp = &ip6->ip6_nxt; 524 mprev = m; 525 526 /* 527 * we treat dest2 specially. this makes IPsec processing 528 * much easier. the goal here is to make mprev point the 529 * mbuf prior to dest2. 530 * 531 * result: IPv6 dest2 payload 532 * m and mprev will point to IPv6 header. 533 */ 534 if (exthdrs.ip6e_dest2) { 535 if (!hdrsplit) 536 panic("assumption failed: hdr not split"); 537 exthdrs.ip6e_dest2->m_next = m->m_next; 538 m->m_next = exthdrs.ip6e_dest2; 539 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 540 ip6->ip6_nxt = IPPROTO_DSTOPTS; 541 } 542 543 /* 544 * result: IPv6 hbh dest1 rthdr dest2 payload 545 * m will point to IPv6 header. mprev will point to the 546 * extension header prior to dest2 (rthdr in the above case). 547 */ 548 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 549 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 550 IPPROTO_DSTOPTS); 551 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 552 IPPROTO_ROUTING); 553 554 /* 555 * If there is a routing header, discard the packet. 556 */ 557 if (exthdrs.ip6e_rthdr) { 558 error = EINVAL; 559 goto bad; 560 } 561 562 /* Source address validation */ 563 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 564 (flags & IPV6_UNSPECSRC) == 0) { 565 error = EOPNOTSUPP; 566 IP6STAT_INC(ip6s_badscope); 567 goto bad; 568 } 569 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 570 error = EOPNOTSUPP; 571 IP6STAT_INC(ip6s_badscope); 572 goto bad; 573 } 574 575 IP6STAT_INC(ip6s_localout); 576 577 /* 578 * Route packet. 579 */ 580 if (ro == NULL) { 581 ro = &ip6route; 582 bzero((caddr_t)ro, sizeof(*ro)); 583 } 584 ro_pmtu = ro; 585 if (opt && opt->ip6po_rthdr) 586 ro = &opt->ip6po_route; 587 dst = (struct sockaddr_in6 *)&ro->ro_dst; 588 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 589 again: 590 /* 591 * if specified, try to fill in the traffic class field. 592 * do not override if a non-zero value is already set. 593 * we check the diffserv field and the ecn field separately. 594 */ 595 if (opt && opt->ip6po_tclass >= 0) { 596 int mask = 0; 597 598 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 599 mask |= 0xfc; 600 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 601 mask |= 0x03; 602 if (mask != 0) 603 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 604 } 605 606 /* fill in or override the hop limit field, if necessary. */ 607 if (opt && opt->ip6po_hlim != -1) 608 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 609 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 610 if (im6o != NULL) 611 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 612 else 613 ip6->ip6_hlim = V_ip6_defmcasthlim; 614 } 615 /* 616 * Validate route against routing table additions; 617 * a better/more specific route might have been added. 618 * Make sure address family is set in route. 619 */ 620 if (inp) { 621 ro->ro_dst.sin6_family = AF_INET6; 622 RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, fibnum); 623 } 624 if (ro->ro_rt && fwd_tag == NULL && (ro->ro_rt->rt_flags & RTF_UP) && 625 ro->ro_dst.sin6_family == AF_INET6 && 626 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 627 rt = ro->ro_rt; 628 ifp = ro->ro_rt->rt_ifp; 629 } else { 630 if (ro->ro_lle) 631 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 632 ro->ro_lle = NULL; 633 if (fwd_tag == NULL) { 634 bzero(&dst_sa, sizeof(dst_sa)); 635 dst_sa.sin6_family = AF_INET6; 636 dst_sa.sin6_len = sizeof(dst_sa); 637 dst_sa.sin6_addr = ip6->ip6_dst; 638 } 639 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 640 &rt, fibnum); 641 if (error != 0) { 642 if (ifp != NULL) 643 in6_ifstat_inc(ifp, ifs6_out_discard); 644 goto bad; 645 } 646 } 647 if (rt == NULL) { 648 /* 649 * If in6_selectroute() does not return a route entry, 650 * dst may not have been updated. 651 */ 652 *dst = dst_sa; /* XXX */ 653 } 654 655 /* 656 * then rt (for unicast) and ifp must be non-NULL valid values. 657 */ 658 if ((flags & IPV6_FORWARDING) == 0) { 659 /* XXX: the FORWARDING flag can be set for mrouting. */ 660 in6_ifstat_inc(ifp, ifs6_out_request); 661 } 662 if (rt != NULL) { 663 ia = (struct in6_ifaddr *)(rt->rt_ifa); 664 counter_u64_add(rt->rt_pksent, 1); 665 } 666 667 /* Setup data structures for scope ID checks. */ 668 src0 = ip6->ip6_src; 669 bzero(&src_sa, sizeof(src_sa)); 670 src_sa.sin6_family = AF_INET6; 671 src_sa.sin6_len = sizeof(src_sa); 672 src_sa.sin6_addr = ip6->ip6_src; 673 674 dst0 = ip6->ip6_dst; 675 /* re-initialize to be sure */ 676 bzero(&dst_sa, sizeof(dst_sa)); 677 dst_sa.sin6_family = AF_INET6; 678 dst_sa.sin6_len = sizeof(dst_sa); 679 dst_sa.sin6_addr = ip6->ip6_dst; 680 681 /* Check for valid scope ID. */ 682 if (in6_setscope(&src0, ifp, &zone) == 0 && 683 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && 684 in6_setscope(&dst0, ifp, &zone) == 0 && 685 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { 686 /* 687 * The outgoing interface is in the zone of the source 688 * and destination addresses. 689 * 690 * Because the loopback interface cannot receive 691 * packets with a different scope ID than its own, 692 * there is a trick is to pretend the outgoing packet 693 * was received by the real network interface, by 694 * setting "origifp" different from "ifp". This is 695 * only allowed when "ifp" is a loopback network 696 * interface. Refer to code in nd6_output_ifp() for 697 * more details. 698 */ 699 origifp = ifp; 700 701 /* 702 * We should use ia_ifp to support the case of sending 703 * packets to an address of our own. 704 */ 705 if (ia != NULL && ia->ia_ifp) 706 ifp = ia->ia_ifp; 707 708 } else if ((ifp->if_flags & IFF_LOOPBACK) == 0 || 709 sa6_recoverscope(&src_sa) != 0 || 710 sa6_recoverscope(&dst_sa) != 0 || 711 dst_sa.sin6_scope_id == 0 || 712 (src_sa.sin6_scope_id != 0 && 713 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || 714 (origifp = ifnet_byindex(dst_sa.sin6_scope_id)) == NULL) { 715 /* 716 * If the destination network interface is not a 717 * loopback interface, or the destination network 718 * address has no scope ID, or the source address has 719 * a scope ID set which is different from the 720 * destination address one, or there is no network 721 * interface representing this scope ID, the address 722 * pair is considered invalid. 723 */ 724 IP6STAT_INC(ip6s_badscope); 725 in6_ifstat_inc(ifp, ifs6_out_discard); 726 if (error == 0) 727 error = EHOSTUNREACH; /* XXX */ 728 goto bad; 729 } 730 731 /* All scope ID checks are successful. */ 732 733 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 734 if (opt && opt->ip6po_nextroute.ro_rt) { 735 /* 736 * The nexthop is explicitly specified by the 737 * application. We assume the next hop is an IPv6 738 * address. 739 */ 740 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 741 } 742 else if ((rt->rt_flags & RTF_GATEWAY)) 743 dst = (struct sockaddr_in6 *)rt->rt_gateway; 744 } 745 746 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 747 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 748 } else { 749 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 750 in6_ifstat_inc(ifp, ifs6_out_mcast); 751 /* 752 * Confirm that the outgoing interface supports multicast. 753 */ 754 if (!(ifp->if_flags & IFF_MULTICAST)) { 755 IP6STAT_INC(ip6s_noroute); 756 in6_ifstat_inc(ifp, ifs6_out_discard); 757 error = ENETUNREACH; 758 goto bad; 759 } 760 if ((im6o == NULL && in6_mcast_loop) || 761 (im6o && im6o->im6o_multicast_loop)) { 762 /* 763 * Loop back multicast datagram if not expressly 764 * forbidden to do so, even if we have not joined 765 * the address; protocols will filter it later, 766 * thus deferring a hash lookup and lock acquisition 767 * at the expense of an m_copym(). 768 */ 769 ip6_mloopback(ifp, m); 770 } else { 771 /* 772 * If we are acting as a multicast router, perform 773 * multicast forwarding as if the packet had just 774 * arrived on the interface to which we are about 775 * to send. The multicast forwarding function 776 * recursively calls this function, using the 777 * IPV6_FORWARDING flag to prevent infinite recursion. 778 * 779 * Multicasts that are looped back by ip6_mloopback(), 780 * above, will be forwarded by the ip6_input() routine, 781 * if necessary. 782 */ 783 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 784 /* 785 * XXX: ip6_mforward expects that rcvif is NULL 786 * when it is called from the originating path. 787 * However, it may not always be the case. 788 */ 789 m->m_pkthdr.rcvif = NULL; 790 if (ip6_mforward(ip6, ifp, m) != 0) { 791 m_freem(m); 792 goto done; 793 } 794 } 795 } 796 /* 797 * Multicasts with a hoplimit of zero may be looped back, 798 * above, but must not be transmitted on a network. 799 * Also, multicasts addressed to the loopback interface 800 * are not sent -- the above call to ip6_mloopback() will 801 * loop back a copy if this host actually belongs to the 802 * destination group on the loopback interface. 803 */ 804 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 805 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 806 m_freem(m); 807 goto done; 808 } 809 } 810 811 /* 812 * Fill the outgoing inteface to tell the upper layer 813 * to increment per-interface statistics. 814 */ 815 if (ifpp) 816 *ifpp = ifp; 817 818 /* Determine path MTU. */ 819 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 820 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 821 goto bad; 822 823 /* 824 * The caller of this function may specify to use the minimum MTU 825 * in some cases. 826 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 827 * setting. The logic is a bit complicated; by default, unicast 828 * packets will follow path MTU while multicast packets will be sent at 829 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 830 * including unicast ones will be sent at the minimum MTU. Multicast 831 * packets will always be sent at the minimum MTU unless 832 * IP6PO_MINMTU_DISABLE is explicitly specified. 833 * See RFC 3542 for more details. 834 */ 835 if (mtu > IPV6_MMTU) { 836 if ((flags & IPV6_MINMTU)) 837 mtu = IPV6_MMTU; 838 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 839 mtu = IPV6_MMTU; 840 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 841 (opt == NULL || 842 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 843 mtu = IPV6_MMTU; 844 } 845 } 846 847 /* 848 * clear embedded scope identifiers if necessary. 849 * in6_clearscope will touch the addresses only when necessary. 850 */ 851 in6_clearscope(&ip6->ip6_src); 852 in6_clearscope(&ip6->ip6_dst); 853 854 /* 855 * If the outgoing packet contains a hop-by-hop options header, 856 * it must be examined and processed even by the source node. 857 * (RFC 2460, section 4.) 858 */ 859 if (exthdrs.ip6e_hbh) { 860 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 861 u_int32_t dummy; /* XXX unused */ 862 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 863 864 #ifdef DIAGNOSTIC 865 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 866 panic("ip6e_hbh is not contiguous"); 867 #endif 868 /* 869 * XXX: if we have to send an ICMPv6 error to the sender, 870 * we need the M_LOOP flag since icmp6_error() expects 871 * the IPv6 and the hop-by-hop options header are 872 * contiguous unless the flag is set. 873 */ 874 m->m_flags |= M_LOOP; 875 m->m_pkthdr.rcvif = ifp; 876 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 877 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 878 &dummy, &plen) < 0) { 879 /* m was already freed at this point */ 880 error = EINVAL;/* better error? */ 881 goto done; 882 } 883 m->m_flags &= ~M_LOOP; /* XXX */ 884 m->m_pkthdr.rcvif = NULL; 885 } 886 887 /* Jump over all PFIL processing if hooks are not active. */ 888 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head)) 889 goto passout; 890 891 odst = ip6->ip6_dst; 892 /* Run through list of hooks for output packets. */ 893 switch (pfil_run_hooks(V_inet6_pfil_head, &m, ifp, PFIL_OUT, inp)) { 894 case PFIL_PASS: 895 ip6 = mtod(m, struct ip6_hdr *); 896 break; 897 case PFIL_DROPPED: 898 error = EPERM; 899 /* FALLTHROUGH */ 900 case PFIL_CONSUMED: 901 goto done; 902 } 903 904 needfiblookup = 0; 905 /* See if destination IP address was changed by packet filter. */ 906 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 907 m->m_flags |= M_SKIP_FIREWALL; 908 /* If destination is now ourself drop to ip6_input(). */ 909 if (in6_localip(&ip6->ip6_dst)) { 910 m->m_flags |= M_FASTFWD_OURS; 911 if (m->m_pkthdr.rcvif == NULL) 912 m->m_pkthdr.rcvif = V_loif; 913 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 914 m->m_pkthdr.csum_flags |= 915 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 916 m->m_pkthdr.csum_data = 0xffff; 917 } 918 #ifdef SCTP 919 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 920 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 921 #endif 922 error = netisr_queue(NETISR_IPV6, m); 923 goto done; 924 } else { 925 RO_INVALIDATE_CACHE(ro); 926 needfiblookup = 1; /* Redo the routing table lookup. */ 927 } 928 } 929 /* See if fib was changed by packet filter. */ 930 if (fibnum != M_GETFIB(m)) { 931 m->m_flags |= M_SKIP_FIREWALL; 932 fibnum = M_GETFIB(m); 933 RO_INVALIDATE_CACHE(ro); 934 needfiblookup = 1; 935 } 936 if (needfiblookup) 937 goto again; 938 939 /* See if local, if yes, send it to netisr. */ 940 if (m->m_flags & M_FASTFWD_OURS) { 941 if (m->m_pkthdr.rcvif == NULL) 942 m->m_pkthdr.rcvif = V_loif; 943 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 944 m->m_pkthdr.csum_flags |= 945 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 946 m->m_pkthdr.csum_data = 0xffff; 947 } 948 #ifdef SCTP 949 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 950 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 951 #endif 952 error = netisr_queue(NETISR_IPV6, m); 953 goto done; 954 } 955 /* Or forward to some other address? */ 956 if ((m->m_flags & M_IP6_NEXTHOP) && 957 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 958 dst = (struct sockaddr_in6 *)&ro->ro_dst; 959 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 960 m->m_flags |= M_SKIP_FIREWALL; 961 m->m_flags &= ~M_IP6_NEXTHOP; 962 m_tag_delete(m, fwd_tag); 963 goto again; 964 } 965 966 passout: 967 /* 968 * Send the packet to the outgoing interface. 969 * If necessary, do IPv6 fragmentation before sending. 970 * 971 * the logic here is rather complex: 972 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 973 * 1-a: send as is if tlen <= path mtu 974 * 1-b: fragment if tlen > path mtu 975 * 976 * 2: if user asks us not to fragment (dontfrag == 1) 977 * 2-a: send as is if tlen <= interface mtu 978 * 2-b: error if tlen > interface mtu 979 * 980 * 3: if we always need to attach fragment header (alwaysfrag == 1) 981 * always fragment 982 * 983 * 4: if dontfrag == 1 && alwaysfrag == 1 984 * error, as we cannot handle this conflicting request 985 */ 986 sw_csum = m->m_pkthdr.csum_flags; 987 if (!hdrsplit) { 988 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 989 sw_csum &= ~ifp->if_hwassist; 990 } else 991 tso = 0; 992 /* 993 * If we added extension headers, we will not do TSO and calculate the 994 * checksums ourselves for now. 995 * XXX-BZ Need a framework to know when the NIC can handle it, even 996 * with ext. hdrs. 997 */ 998 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 999 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 1000 m = mb_unmapped_to_ext(m); 1001 if (m == NULL) { 1002 error = ENOBUFS; 1003 IP6STAT_INC(ip6s_odropped); 1004 goto bad; 1005 } 1006 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 1007 } else if ((ifp->if_capenable & IFCAP_NOMAP) == 0) { 1008 m = mb_unmapped_to_ext(m); 1009 if (m == NULL) { 1010 error = ENOBUFS; 1011 IP6STAT_INC(ip6s_odropped); 1012 goto bad; 1013 } 1014 } 1015 #ifdef SCTP 1016 if (sw_csum & CSUM_SCTP_IPV6) { 1017 sw_csum &= ~CSUM_SCTP_IPV6; 1018 m = mb_unmapped_to_ext(m); 1019 if (m == NULL) { 1020 error = ENOBUFS; 1021 IP6STAT_INC(ip6s_odropped); 1022 goto bad; 1023 } 1024 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 1025 } 1026 #endif 1027 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 1028 tlen = m->m_pkthdr.len; 1029 1030 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 1031 dontfrag = 1; 1032 else 1033 dontfrag = 0; 1034 if (dontfrag && alwaysfrag) { /* case 4 */ 1035 /* conflicting request - can't transmit */ 1036 error = EMSGSIZE; 1037 goto bad; 1038 } 1039 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 1040 /* 1041 * Even if the DONTFRAG option is specified, we cannot send the 1042 * packet when the data length is larger than the MTU of the 1043 * outgoing interface. 1044 * Notify the error by sending IPV6_PATHMTU ancillary data if 1045 * application wanted to know the MTU value. Also return an 1046 * error code (this is not described in the API spec). 1047 */ 1048 if (inp != NULL) 1049 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 1050 error = EMSGSIZE; 1051 goto bad; 1052 } 1053 1054 /* 1055 * transmit packet without fragmentation 1056 */ 1057 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 1058 struct in6_ifaddr *ia6; 1059 1060 ip6 = mtod(m, struct ip6_hdr *); 1061 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1062 if (ia6) { 1063 /* Record statistics for this interface address. */ 1064 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 1065 counter_u64_add(ia6->ia_ifa.ifa_obytes, 1066 m->m_pkthdr.len); 1067 ifa_free(&ia6->ia_ifa); 1068 } 1069 error = ip6_output_send(inp, ifp, origifp, m, dst, ro); 1070 goto done; 1071 } 1072 1073 /* 1074 * try to fragment the packet. case 1-b and 3 1075 */ 1076 if (mtu < IPV6_MMTU) { 1077 /* path MTU cannot be less than IPV6_MMTU */ 1078 error = EMSGSIZE; 1079 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1080 goto bad; 1081 } else if (ip6->ip6_plen == 0) { 1082 /* jumbo payload cannot be fragmented */ 1083 error = EMSGSIZE; 1084 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1085 goto bad; 1086 } else { 1087 u_char nextproto; 1088 1089 /* 1090 * Too large for the destination or interface; 1091 * fragment if possible. 1092 * Must be able to put at least 8 bytes per fragment. 1093 */ 1094 hlen = unfragpartlen; 1095 if (mtu > IPV6_MAXPACKET) 1096 mtu = IPV6_MAXPACKET; 1097 1098 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 1099 if (len < 8) { 1100 error = EMSGSIZE; 1101 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1102 goto bad; 1103 } 1104 1105 /* 1106 * If the interface will not calculate checksums on 1107 * fragmented packets, then do it here. 1108 * XXX-BZ handle the hw offloading case. Need flags. 1109 */ 1110 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1111 m = mb_unmapped_to_ext(m); 1112 if (m == NULL) { 1113 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1114 error = ENOBUFS; 1115 goto bad; 1116 } 1117 in6_delayed_cksum(m, plen, hlen); 1118 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 1119 } 1120 #ifdef SCTP 1121 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 1122 m = mb_unmapped_to_ext(m); 1123 if (m == NULL) { 1124 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1125 error = ENOBUFS; 1126 goto bad; 1127 } 1128 sctp_delayed_cksum(m, hlen); 1129 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 1130 } 1131 #endif 1132 /* 1133 * Change the next header field of the last header in the 1134 * unfragmentable part. 1135 */ 1136 if (exthdrs.ip6e_rthdr) { 1137 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1138 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1139 } else if (exthdrs.ip6e_dest1) { 1140 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1141 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1142 } else if (exthdrs.ip6e_hbh) { 1143 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1144 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1145 } else { 1146 nextproto = ip6->ip6_nxt; 1147 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1148 } 1149 1150 /* 1151 * Loop through length of segment after first fragment, 1152 * make new header and copy data of each part and link onto 1153 * chain. 1154 */ 1155 m0 = m; 1156 id = htonl(ip6_randomid()); 1157 if ((error = ip6_fragment(ifp, m, hlen, nextproto, len, id))) 1158 goto sendorfree; 1159 1160 in6_ifstat_inc(ifp, ifs6_out_fragok); 1161 } 1162 1163 /* 1164 * Remove leading garbages. 1165 */ 1166 sendorfree: 1167 m = m0->m_nextpkt; 1168 m0->m_nextpkt = 0; 1169 m_freem(m0); 1170 for (; m; m = m0) { 1171 m0 = m->m_nextpkt; 1172 m->m_nextpkt = 0; 1173 if (error == 0) { 1174 /* Record statistics for this interface address. */ 1175 if (ia) { 1176 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1177 counter_u64_add(ia->ia_ifa.ifa_obytes, 1178 m->m_pkthdr.len); 1179 } 1180 error = ip6_output_send(inp, ifp, origifp, m, dst, ro); 1181 } else 1182 m_freem(m); 1183 } 1184 1185 if (error == 0) 1186 IP6STAT_INC(ip6s_fragmented); 1187 1188 done: 1189 if (ro == &ip6route) 1190 RO_RTFREE(ro); 1191 return (error); 1192 1193 freehdrs: 1194 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1195 m_freem(exthdrs.ip6e_dest1); 1196 m_freem(exthdrs.ip6e_rthdr); 1197 m_freem(exthdrs.ip6e_dest2); 1198 /* FALLTHROUGH */ 1199 bad: 1200 if (m) 1201 m_freem(m); 1202 goto done; 1203 } 1204 1205 static int 1206 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1207 { 1208 struct mbuf *m; 1209 1210 if (hlen > MCLBYTES) 1211 return (ENOBUFS); /* XXX */ 1212 1213 if (hlen > MLEN) 1214 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1215 else 1216 m = m_get(M_NOWAIT, MT_DATA); 1217 if (m == NULL) 1218 return (ENOBUFS); 1219 m->m_len = hlen; 1220 if (hdr) 1221 bcopy(hdr, mtod(m, caddr_t), hlen); 1222 1223 *mp = m; 1224 return (0); 1225 } 1226 1227 /* 1228 * Insert jumbo payload option. 1229 */ 1230 static int 1231 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1232 { 1233 struct mbuf *mopt; 1234 u_char *optbuf; 1235 u_int32_t v; 1236 1237 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1238 1239 /* 1240 * If there is no hop-by-hop options header, allocate new one. 1241 * If there is one but it doesn't have enough space to store the 1242 * jumbo payload option, allocate a cluster to store the whole options. 1243 * Otherwise, use it to store the options. 1244 */ 1245 if (exthdrs->ip6e_hbh == NULL) { 1246 mopt = m_get(M_NOWAIT, MT_DATA); 1247 if (mopt == NULL) 1248 return (ENOBUFS); 1249 mopt->m_len = JUMBOOPTLEN; 1250 optbuf = mtod(mopt, u_char *); 1251 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1252 exthdrs->ip6e_hbh = mopt; 1253 } else { 1254 struct ip6_hbh *hbh; 1255 1256 mopt = exthdrs->ip6e_hbh; 1257 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1258 /* 1259 * XXX assumption: 1260 * - exthdrs->ip6e_hbh is not referenced from places 1261 * other than exthdrs. 1262 * - exthdrs->ip6e_hbh is not an mbuf chain. 1263 */ 1264 int oldoptlen = mopt->m_len; 1265 struct mbuf *n; 1266 1267 /* 1268 * XXX: give up if the whole (new) hbh header does 1269 * not fit even in an mbuf cluster. 1270 */ 1271 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1272 return (ENOBUFS); 1273 1274 /* 1275 * As a consequence, we must always prepare a cluster 1276 * at this point. 1277 */ 1278 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1279 if (n == NULL) 1280 return (ENOBUFS); 1281 n->m_len = oldoptlen + JUMBOOPTLEN; 1282 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1283 oldoptlen); 1284 optbuf = mtod(n, caddr_t) + oldoptlen; 1285 m_freem(mopt); 1286 mopt = exthdrs->ip6e_hbh = n; 1287 } else { 1288 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1289 mopt->m_len += JUMBOOPTLEN; 1290 } 1291 optbuf[0] = IP6OPT_PADN; 1292 optbuf[1] = 1; 1293 1294 /* 1295 * Adjust the header length according to the pad and 1296 * the jumbo payload option. 1297 */ 1298 hbh = mtod(mopt, struct ip6_hbh *); 1299 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1300 } 1301 1302 /* fill in the option. */ 1303 optbuf[2] = IP6OPT_JUMBO; 1304 optbuf[3] = 4; 1305 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1306 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1307 1308 /* finally, adjust the packet header length */ 1309 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1310 1311 return (0); 1312 #undef JUMBOOPTLEN 1313 } 1314 1315 /* 1316 * Insert fragment header and copy unfragmentable header portions. 1317 */ 1318 static int 1319 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1320 struct ip6_frag **frghdrp) 1321 { 1322 struct mbuf *n, *mlast; 1323 1324 if (hlen > sizeof(struct ip6_hdr)) { 1325 n = m_copym(m0, sizeof(struct ip6_hdr), 1326 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1327 if (n == NULL) 1328 return (ENOBUFS); 1329 m->m_next = n; 1330 } else 1331 n = m; 1332 1333 /* Search for the last mbuf of unfragmentable part. */ 1334 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1335 ; 1336 1337 if (M_WRITABLE(mlast) && 1338 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1339 /* use the trailing space of the last mbuf for the fragment hdr */ 1340 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1341 mlast->m_len); 1342 mlast->m_len += sizeof(struct ip6_frag); 1343 m->m_pkthdr.len += sizeof(struct ip6_frag); 1344 } else { 1345 /* allocate a new mbuf for the fragment header */ 1346 struct mbuf *mfrg; 1347 1348 mfrg = m_get(M_NOWAIT, MT_DATA); 1349 if (mfrg == NULL) 1350 return (ENOBUFS); 1351 mfrg->m_len = sizeof(struct ip6_frag); 1352 *frghdrp = mtod(mfrg, struct ip6_frag *); 1353 mlast->m_next = mfrg; 1354 } 1355 1356 return (0); 1357 } 1358 1359 /* 1360 * Calculates IPv6 path mtu for destination @dst. 1361 * Resulting MTU is stored in @mtup. 1362 * 1363 * Returns 0 on success. 1364 */ 1365 static int 1366 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1367 { 1368 struct nhop6_extended nh6; 1369 struct in6_addr kdst; 1370 uint32_t scopeid; 1371 struct ifnet *ifp; 1372 u_long mtu; 1373 int error; 1374 1375 in6_splitscope(dst, &kdst, &scopeid); 1376 if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0) 1377 return (EHOSTUNREACH); 1378 1379 ifp = nh6.nh_ifp; 1380 mtu = nh6.nh_mtu; 1381 1382 error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL, 0); 1383 fib6_free_nh_ext(fibnum, &nh6); 1384 1385 return (error); 1386 } 1387 1388 /* 1389 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1390 * and cached data in @ro_pmtu. 1391 * MTU from (successful) route lookup is saved (along with dst) 1392 * inside @ro_pmtu to avoid subsequent route lookups after packet 1393 * filter processing. 1394 * 1395 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1396 * Returns 0 on success. 1397 */ 1398 static int 1399 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1400 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1401 int *alwaysfragp, u_int fibnum, u_int proto) 1402 { 1403 struct nhop6_basic nh6; 1404 struct in6_addr kdst; 1405 uint32_t scopeid; 1406 struct sockaddr_in6 *sa6_dst; 1407 u_long mtu; 1408 1409 mtu = 0; 1410 if (do_lookup) { 1411 1412 /* 1413 * Here ro_pmtu has final destination address, while 1414 * ro might represent immediate destination. 1415 * Use ro_pmtu destination since mtu might differ. 1416 */ 1417 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1418 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1419 ro_pmtu->ro_mtu = 0; 1420 1421 if (ro_pmtu->ro_mtu == 0) { 1422 bzero(sa6_dst, sizeof(*sa6_dst)); 1423 sa6_dst->sin6_family = AF_INET6; 1424 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1425 sa6_dst->sin6_addr = *dst; 1426 1427 in6_splitscope(dst, &kdst, &scopeid); 1428 if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0, 1429 &nh6) == 0) 1430 ro_pmtu->ro_mtu = nh6.nh_mtu; 1431 } 1432 1433 mtu = ro_pmtu->ro_mtu; 1434 } 1435 1436 if (ro_pmtu->ro_rt) 1437 mtu = ro_pmtu->ro_rt->rt_mtu; 1438 1439 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1440 } 1441 1442 /* 1443 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1444 * hostcache data for @dst. 1445 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1446 * 1447 * Returns 0 on success. 1448 */ 1449 static int 1450 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1451 u_long *mtup, int *alwaysfragp, u_int proto) 1452 { 1453 u_long mtu = 0; 1454 int alwaysfrag = 0; 1455 int error = 0; 1456 1457 if (rt_mtu > 0) { 1458 u_int32_t ifmtu; 1459 struct in_conninfo inc; 1460 1461 bzero(&inc, sizeof(inc)); 1462 inc.inc_flags |= INC_ISIPV6; 1463 inc.inc6_faddr = *dst; 1464 1465 ifmtu = IN6_LINKMTU(ifp); 1466 1467 /* TCP is known to react to pmtu changes so skip hc */ 1468 if (proto != IPPROTO_TCP) 1469 mtu = tcp_hc_getmtu(&inc); 1470 1471 if (mtu) 1472 mtu = min(mtu, rt_mtu); 1473 else 1474 mtu = rt_mtu; 1475 if (mtu == 0) 1476 mtu = ifmtu; 1477 else if (mtu < IPV6_MMTU) { 1478 /* 1479 * RFC2460 section 5, last paragraph: 1480 * if we record ICMPv6 too big message with 1481 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1482 * or smaller, with framgent header attached. 1483 * (fragment header is needed regardless from the 1484 * packet size, for translators to identify packets) 1485 */ 1486 alwaysfrag = 1; 1487 mtu = IPV6_MMTU; 1488 } 1489 } else if (ifp) { 1490 mtu = IN6_LINKMTU(ifp); 1491 } else 1492 error = EHOSTUNREACH; /* XXX */ 1493 1494 *mtup = mtu; 1495 if (alwaysfragp) 1496 *alwaysfragp = alwaysfrag; 1497 return (error); 1498 } 1499 1500 /* 1501 * IP6 socket option processing. 1502 */ 1503 int 1504 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1505 { 1506 int optdatalen, uproto; 1507 void *optdata; 1508 struct inpcb *inp = sotoinpcb(so); 1509 int error, optval; 1510 int level, op, optname; 1511 int optlen; 1512 struct thread *td; 1513 #ifdef RSS 1514 uint32_t rss_bucket; 1515 int retval; 1516 #endif 1517 1518 /* 1519 * Don't use more than a quarter of mbuf clusters. N.B.: 1520 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1521 * on LP64 architectures, so cast to u_long to avoid undefined 1522 * behavior. ILP32 architectures cannot have nmbclusters 1523 * large enough to overflow for other reasons. 1524 */ 1525 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1526 1527 level = sopt->sopt_level; 1528 op = sopt->sopt_dir; 1529 optname = sopt->sopt_name; 1530 optlen = sopt->sopt_valsize; 1531 td = sopt->sopt_td; 1532 error = 0; 1533 optval = 0; 1534 uproto = (int)so->so_proto->pr_protocol; 1535 1536 if (level != IPPROTO_IPV6) { 1537 error = EINVAL; 1538 1539 if (sopt->sopt_level == SOL_SOCKET && 1540 sopt->sopt_dir == SOPT_SET) { 1541 switch (sopt->sopt_name) { 1542 case SO_REUSEADDR: 1543 INP_WLOCK(inp); 1544 if ((so->so_options & SO_REUSEADDR) != 0) 1545 inp->inp_flags2 |= INP_REUSEADDR; 1546 else 1547 inp->inp_flags2 &= ~INP_REUSEADDR; 1548 INP_WUNLOCK(inp); 1549 error = 0; 1550 break; 1551 case SO_REUSEPORT: 1552 INP_WLOCK(inp); 1553 if ((so->so_options & SO_REUSEPORT) != 0) 1554 inp->inp_flags2 |= INP_REUSEPORT; 1555 else 1556 inp->inp_flags2 &= ~INP_REUSEPORT; 1557 INP_WUNLOCK(inp); 1558 error = 0; 1559 break; 1560 case SO_REUSEPORT_LB: 1561 INP_WLOCK(inp); 1562 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1563 inp->inp_flags2 |= INP_REUSEPORT_LB; 1564 else 1565 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1566 INP_WUNLOCK(inp); 1567 error = 0; 1568 break; 1569 case SO_SETFIB: 1570 INP_WLOCK(inp); 1571 inp->inp_inc.inc_fibnum = so->so_fibnum; 1572 INP_WUNLOCK(inp); 1573 error = 0; 1574 break; 1575 case SO_MAX_PACING_RATE: 1576 #ifdef RATELIMIT 1577 INP_WLOCK(inp); 1578 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1579 INP_WUNLOCK(inp); 1580 error = 0; 1581 #else 1582 error = EOPNOTSUPP; 1583 #endif 1584 break; 1585 default: 1586 break; 1587 } 1588 } 1589 } else { /* level == IPPROTO_IPV6 */ 1590 switch (op) { 1591 1592 case SOPT_SET: 1593 switch (optname) { 1594 case IPV6_2292PKTOPTIONS: 1595 #ifdef IPV6_PKTOPTIONS 1596 case IPV6_PKTOPTIONS: 1597 #endif 1598 { 1599 struct mbuf *m; 1600 1601 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1602 printf("ip6_ctloutput: mbuf limit hit\n"); 1603 error = ENOBUFS; 1604 break; 1605 } 1606 1607 error = soopt_getm(sopt, &m); /* XXX */ 1608 if (error != 0) 1609 break; 1610 error = soopt_mcopyin(sopt, m); /* XXX */ 1611 if (error != 0) 1612 break; 1613 error = ip6_pcbopts(&inp->in6p_outputopts, 1614 m, so, sopt); 1615 m_freem(m); /* XXX */ 1616 break; 1617 } 1618 1619 /* 1620 * Use of some Hop-by-Hop options or some 1621 * Destination options, might require special 1622 * privilege. That is, normal applications 1623 * (without special privilege) might be forbidden 1624 * from setting certain options in outgoing packets, 1625 * and might never see certain options in received 1626 * packets. [RFC 2292 Section 6] 1627 * KAME specific note: 1628 * KAME prevents non-privileged users from sending or 1629 * receiving ANY hbh/dst options in order to avoid 1630 * overhead of parsing options in the kernel. 1631 */ 1632 case IPV6_RECVHOPOPTS: 1633 case IPV6_RECVDSTOPTS: 1634 case IPV6_RECVRTHDRDSTOPTS: 1635 if (td != NULL) { 1636 error = priv_check(td, 1637 PRIV_NETINET_SETHDROPTS); 1638 if (error) 1639 break; 1640 } 1641 /* FALLTHROUGH */ 1642 case IPV6_UNICAST_HOPS: 1643 case IPV6_HOPLIMIT: 1644 1645 case IPV6_RECVPKTINFO: 1646 case IPV6_RECVHOPLIMIT: 1647 case IPV6_RECVRTHDR: 1648 case IPV6_RECVPATHMTU: 1649 case IPV6_RECVTCLASS: 1650 case IPV6_RECVFLOWID: 1651 #ifdef RSS 1652 case IPV6_RECVRSSBUCKETID: 1653 #endif 1654 case IPV6_V6ONLY: 1655 case IPV6_AUTOFLOWLABEL: 1656 case IPV6_ORIGDSTADDR: 1657 case IPV6_BINDANY: 1658 case IPV6_BINDMULTI: 1659 #ifdef RSS 1660 case IPV6_RSS_LISTEN_BUCKET: 1661 #endif 1662 if (optname == IPV6_BINDANY && td != NULL) { 1663 error = priv_check(td, 1664 PRIV_NETINET_BINDANY); 1665 if (error) 1666 break; 1667 } 1668 1669 if (optlen != sizeof(int)) { 1670 error = EINVAL; 1671 break; 1672 } 1673 error = sooptcopyin(sopt, &optval, 1674 sizeof optval, sizeof optval); 1675 if (error) 1676 break; 1677 switch (optname) { 1678 1679 case IPV6_UNICAST_HOPS: 1680 if (optval < -1 || optval >= 256) 1681 error = EINVAL; 1682 else { 1683 /* -1 = kernel default */ 1684 inp->in6p_hops = optval; 1685 if ((inp->inp_vflag & 1686 INP_IPV4) != 0) 1687 inp->inp_ip_ttl = optval; 1688 } 1689 break; 1690 #define OPTSET(bit) \ 1691 do { \ 1692 INP_WLOCK(inp); \ 1693 if (optval) \ 1694 inp->inp_flags |= (bit); \ 1695 else \ 1696 inp->inp_flags &= ~(bit); \ 1697 INP_WUNLOCK(inp); \ 1698 } while (/*CONSTCOND*/ 0) 1699 #define OPTSET2292(bit) \ 1700 do { \ 1701 INP_WLOCK(inp); \ 1702 inp->inp_flags |= IN6P_RFC2292; \ 1703 if (optval) \ 1704 inp->inp_flags |= (bit); \ 1705 else \ 1706 inp->inp_flags &= ~(bit); \ 1707 INP_WUNLOCK(inp); \ 1708 } while (/*CONSTCOND*/ 0) 1709 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1710 1711 #define OPTSET2_N(bit, val) do { \ 1712 if (val) \ 1713 inp->inp_flags2 |= bit; \ 1714 else \ 1715 inp->inp_flags2 &= ~bit; \ 1716 } while (0) 1717 #define OPTSET2(bit, val) do { \ 1718 INP_WLOCK(inp); \ 1719 OPTSET2_N(bit, val); \ 1720 INP_WUNLOCK(inp); \ 1721 } while (0) 1722 #define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0) 1723 #define OPTSET2292_EXCLUSIVE(bit) \ 1724 do { \ 1725 INP_WLOCK(inp); \ 1726 if (OPTBIT(IN6P_RFC2292)) { \ 1727 error = EINVAL; \ 1728 } else { \ 1729 if (optval) \ 1730 inp->inp_flags |= (bit); \ 1731 else \ 1732 inp->inp_flags &= ~(bit); \ 1733 } \ 1734 INP_WUNLOCK(inp); \ 1735 } while (/*CONSTCOND*/ 0) 1736 1737 case IPV6_RECVPKTINFO: 1738 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1739 break; 1740 1741 case IPV6_HOPLIMIT: 1742 { 1743 struct ip6_pktopts **optp; 1744 1745 /* cannot mix with RFC2292 */ 1746 if (OPTBIT(IN6P_RFC2292)) { 1747 error = EINVAL; 1748 break; 1749 } 1750 INP_WLOCK(inp); 1751 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1752 INP_WUNLOCK(inp); 1753 return (ECONNRESET); 1754 } 1755 optp = &inp->in6p_outputopts; 1756 error = ip6_pcbopt(IPV6_HOPLIMIT, 1757 (u_char *)&optval, sizeof(optval), 1758 optp, (td != NULL) ? td->td_ucred : 1759 NULL, uproto); 1760 INP_WUNLOCK(inp); 1761 break; 1762 } 1763 1764 case IPV6_RECVHOPLIMIT: 1765 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1766 break; 1767 1768 case IPV6_RECVHOPOPTS: 1769 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1770 break; 1771 1772 case IPV6_RECVDSTOPTS: 1773 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1774 break; 1775 1776 case IPV6_RECVRTHDRDSTOPTS: 1777 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1778 break; 1779 1780 case IPV6_RECVRTHDR: 1781 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1782 break; 1783 1784 case IPV6_RECVPATHMTU: 1785 /* 1786 * We ignore this option for TCP 1787 * sockets. 1788 * (RFC3542 leaves this case 1789 * unspecified.) 1790 */ 1791 if (uproto != IPPROTO_TCP) 1792 OPTSET(IN6P_MTU); 1793 break; 1794 1795 case IPV6_RECVFLOWID: 1796 OPTSET2(INP_RECVFLOWID, optval); 1797 break; 1798 1799 #ifdef RSS 1800 case IPV6_RECVRSSBUCKETID: 1801 OPTSET2(INP_RECVRSSBUCKETID, optval); 1802 break; 1803 #endif 1804 1805 case IPV6_V6ONLY: 1806 /* 1807 * make setsockopt(IPV6_V6ONLY) 1808 * available only prior to bind(2). 1809 * see ipng mailing list, Jun 22 2001. 1810 */ 1811 if (inp->inp_lport || 1812 !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { 1813 error = EINVAL; 1814 break; 1815 } 1816 OPTSET(IN6P_IPV6_V6ONLY); 1817 if (optval) 1818 inp->inp_vflag &= ~INP_IPV4; 1819 else 1820 inp->inp_vflag |= INP_IPV4; 1821 break; 1822 case IPV6_RECVTCLASS: 1823 /* cannot mix with RFC2292 XXX */ 1824 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1825 break; 1826 case IPV6_AUTOFLOWLABEL: 1827 OPTSET(IN6P_AUTOFLOWLABEL); 1828 break; 1829 1830 case IPV6_ORIGDSTADDR: 1831 OPTSET2(INP_ORIGDSTADDR, optval); 1832 break; 1833 case IPV6_BINDANY: 1834 OPTSET(INP_BINDANY); 1835 break; 1836 1837 case IPV6_BINDMULTI: 1838 OPTSET2(INP_BINDMULTI, optval); 1839 break; 1840 #ifdef RSS 1841 case IPV6_RSS_LISTEN_BUCKET: 1842 if ((optval >= 0) && 1843 (optval < rss_getnumbuckets())) { 1844 INP_WLOCK(inp); 1845 inp->inp_rss_listen_bucket = optval; 1846 OPTSET2_N(INP_RSS_BUCKET_SET, 1); 1847 INP_WUNLOCK(inp); 1848 } else { 1849 error = EINVAL; 1850 } 1851 break; 1852 #endif 1853 } 1854 break; 1855 1856 case IPV6_TCLASS: 1857 case IPV6_DONTFRAG: 1858 case IPV6_USE_MIN_MTU: 1859 case IPV6_PREFER_TEMPADDR: 1860 if (optlen != sizeof(optval)) { 1861 error = EINVAL; 1862 break; 1863 } 1864 error = sooptcopyin(sopt, &optval, 1865 sizeof optval, sizeof optval); 1866 if (error) 1867 break; 1868 { 1869 struct ip6_pktopts **optp; 1870 INP_WLOCK(inp); 1871 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1872 INP_WUNLOCK(inp); 1873 return (ECONNRESET); 1874 } 1875 optp = &inp->in6p_outputopts; 1876 error = ip6_pcbopt(optname, 1877 (u_char *)&optval, sizeof(optval), 1878 optp, (td != NULL) ? td->td_ucred : 1879 NULL, uproto); 1880 INP_WUNLOCK(inp); 1881 break; 1882 } 1883 1884 case IPV6_2292PKTINFO: 1885 case IPV6_2292HOPLIMIT: 1886 case IPV6_2292HOPOPTS: 1887 case IPV6_2292DSTOPTS: 1888 case IPV6_2292RTHDR: 1889 /* RFC 2292 */ 1890 if (optlen != sizeof(int)) { 1891 error = EINVAL; 1892 break; 1893 } 1894 error = sooptcopyin(sopt, &optval, 1895 sizeof optval, sizeof optval); 1896 if (error) 1897 break; 1898 switch (optname) { 1899 case IPV6_2292PKTINFO: 1900 OPTSET2292(IN6P_PKTINFO); 1901 break; 1902 case IPV6_2292HOPLIMIT: 1903 OPTSET2292(IN6P_HOPLIMIT); 1904 break; 1905 case IPV6_2292HOPOPTS: 1906 /* 1907 * Check super-user privilege. 1908 * See comments for IPV6_RECVHOPOPTS. 1909 */ 1910 if (td != NULL) { 1911 error = priv_check(td, 1912 PRIV_NETINET_SETHDROPTS); 1913 if (error) 1914 return (error); 1915 } 1916 OPTSET2292(IN6P_HOPOPTS); 1917 break; 1918 case IPV6_2292DSTOPTS: 1919 if (td != NULL) { 1920 error = priv_check(td, 1921 PRIV_NETINET_SETHDROPTS); 1922 if (error) 1923 return (error); 1924 } 1925 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1926 break; 1927 case IPV6_2292RTHDR: 1928 OPTSET2292(IN6P_RTHDR); 1929 break; 1930 } 1931 break; 1932 case IPV6_PKTINFO: 1933 case IPV6_HOPOPTS: 1934 case IPV6_RTHDR: 1935 case IPV6_DSTOPTS: 1936 case IPV6_RTHDRDSTOPTS: 1937 case IPV6_NEXTHOP: 1938 { 1939 /* new advanced API (RFC3542) */ 1940 u_char *optbuf; 1941 u_char optbuf_storage[MCLBYTES]; 1942 int optlen; 1943 struct ip6_pktopts **optp; 1944 1945 /* cannot mix with RFC2292 */ 1946 if (OPTBIT(IN6P_RFC2292)) { 1947 error = EINVAL; 1948 break; 1949 } 1950 1951 /* 1952 * We only ensure valsize is not too large 1953 * here. Further validation will be done 1954 * later. 1955 */ 1956 error = sooptcopyin(sopt, optbuf_storage, 1957 sizeof(optbuf_storage), 0); 1958 if (error) 1959 break; 1960 optlen = sopt->sopt_valsize; 1961 optbuf = optbuf_storage; 1962 INP_WLOCK(inp); 1963 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1964 INP_WUNLOCK(inp); 1965 return (ECONNRESET); 1966 } 1967 optp = &inp->in6p_outputopts; 1968 error = ip6_pcbopt(optname, optbuf, optlen, 1969 optp, (td != NULL) ? td->td_ucred : NULL, 1970 uproto); 1971 INP_WUNLOCK(inp); 1972 break; 1973 } 1974 #undef OPTSET 1975 1976 case IPV6_MULTICAST_IF: 1977 case IPV6_MULTICAST_HOPS: 1978 case IPV6_MULTICAST_LOOP: 1979 case IPV6_JOIN_GROUP: 1980 case IPV6_LEAVE_GROUP: 1981 case IPV6_MSFILTER: 1982 case MCAST_BLOCK_SOURCE: 1983 case MCAST_UNBLOCK_SOURCE: 1984 case MCAST_JOIN_GROUP: 1985 case MCAST_LEAVE_GROUP: 1986 case MCAST_JOIN_SOURCE_GROUP: 1987 case MCAST_LEAVE_SOURCE_GROUP: 1988 error = ip6_setmoptions(inp, sopt); 1989 break; 1990 1991 case IPV6_PORTRANGE: 1992 error = sooptcopyin(sopt, &optval, 1993 sizeof optval, sizeof optval); 1994 if (error) 1995 break; 1996 1997 INP_WLOCK(inp); 1998 switch (optval) { 1999 case IPV6_PORTRANGE_DEFAULT: 2000 inp->inp_flags &= ~(INP_LOWPORT); 2001 inp->inp_flags &= ~(INP_HIGHPORT); 2002 break; 2003 2004 case IPV6_PORTRANGE_HIGH: 2005 inp->inp_flags &= ~(INP_LOWPORT); 2006 inp->inp_flags |= INP_HIGHPORT; 2007 break; 2008 2009 case IPV6_PORTRANGE_LOW: 2010 inp->inp_flags &= ~(INP_HIGHPORT); 2011 inp->inp_flags |= INP_LOWPORT; 2012 break; 2013 2014 default: 2015 error = EINVAL; 2016 break; 2017 } 2018 INP_WUNLOCK(inp); 2019 break; 2020 2021 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2022 case IPV6_IPSEC_POLICY: 2023 if (IPSEC_ENABLED(ipv6)) { 2024 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2025 break; 2026 } 2027 /* FALLTHROUGH */ 2028 #endif /* IPSEC */ 2029 2030 default: 2031 error = ENOPROTOOPT; 2032 break; 2033 } 2034 break; 2035 2036 case SOPT_GET: 2037 switch (optname) { 2038 2039 case IPV6_2292PKTOPTIONS: 2040 #ifdef IPV6_PKTOPTIONS 2041 case IPV6_PKTOPTIONS: 2042 #endif 2043 /* 2044 * RFC3542 (effectively) deprecated the 2045 * semantics of the 2292-style pktoptions. 2046 * Since it was not reliable in nature (i.e., 2047 * applications had to expect the lack of some 2048 * information after all), it would make sense 2049 * to simplify this part by always returning 2050 * empty data. 2051 */ 2052 sopt->sopt_valsize = 0; 2053 break; 2054 2055 case IPV6_RECVHOPOPTS: 2056 case IPV6_RECVDSTOPTS: 2057 case IPV6_RECVRTHDRDSTOPTS: 2058 case IPV6_UNICAST_HOPS: 2059 case IPV6_RECVPKTINFO: 2060 case IPV6_RECVHOPLIMIT: 2061 case IPV6_RECVRTHDR: 2062 case IPV6_RECVPATHMTU: 2063 2064 case IPV6_V6ONLY: 2065 case IPV6_PORTRANGE: 2066 case IPV6_RECVTCLASS: 2067 case IPV6_AUTOFLOWLABEL: 2068 case IPV6_BINDANY: 2069 case IPV6_FLOWID: 2070 case IPV6_FLOWTYPE: 2071 case IPV6_RECVFLOWID: 2072 #ifdef RSS 2073 case IPV6_RSSBUCKETID: 2074 case IPV6_RECVRSSBUCKETID: 2075 #endif 2076 case IPV6_BINDMULTI: 2077 switch (optname) { 2078 2079 case IPV6_RECVHOPOPTS: 2080 optval = OPTBIT(IN6P_HOPOPTS); 2081 break; 2082 2083 case IPV6_RECVDSTOPTS: 2084 optval = OPTBIT(IN6P_DSTOPTS); 2085 break; 2086 2087 case IPV6_RECVRTHDRDSTOPTS: 2088 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 2089 break; 2090 2091 case IPV6_UNICAST_HOPS: 2092 optval = inp->in6p_hops; 2093 break; 2094 2095 case IPV6_RECVPKTINFO: 2096 optval = OPTBIT(IN6P_PKTINFO); 2097 break; 2098 2099 case IPV6_RECVHOPLIMIT: 2100 optval = OPTBIT(IN6P_HOPLIMIT); 2101 break; 2102 2103 case IPV6_RECVRTHDR: 2104 optval = OPTBIT(IN6P_RTHDR); 2105 break; 2106 2107 case IPV6_RECVPATHMTU: 2108 optval = OPTBIT(IN6P_MTU); 2109 break; 2110 2111 case IPV6_V6ONLY: 2112 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2113 break; 2114 2115 case IPV6_PORTRANGE: 2116 { 2117 int flags; 2118 flags = inp->inp_flags; 2119 if (flags & INP_HIGHPORT) 2120 optval = IPV6_PORTRANGE_HIGH; 2121 else if (flags & INP_LOWPORT) 2122 optval = IPV6_PORTRANGE_LOW; 2123 else 2124 optval = 0; 2125 break; 2126 } 2127 case IPV6_RECVTCLASS: 2128 optval = OPTBIT(IN6P_TCLASS); 2129 break; 2130 2131 case IPV6_AUTOFLOWLABEL: 2132 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2133 break; 2134 2135 case IPV6_ORIGDSTADDR: 2136 optval = OPTBIT2(INP_ORIGDSTADDR); 2137 break; 2138 2139 case IPV6_BINDANY: 2140 optval = OPTBIT(INP_BINDANY); 2141 break; 2142 2143 case IPV6_FLOWID: 2144 optval = inp->inp_flowid; 2145 break; 2146 2147 case IPV6_FLOWTYPE: 2148 optval = inp->inp_flowtype; 2149 break; 2150 2151 case IPV6_RECVFLOWID: 2152 optval = OPTBIT2(INP_RECVFLOWID); 2153 break; 2154 #ifdef RSS 2155 case IPV6_RSSBUCKETID: 2156 retval = 2157 rss_hash2bucket(inp->inp_flowid, 2158 inp->inp_flowtype, 2159 &rss_bucket); 2160 if (retval == 0) 2161 optval = rss_bucket; 2162 else 2163 error = EINVAL; 2164 break; 2165 2166 case IPV6_RECVRSSBUCKETID: 2167 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2168 break; 2169 #endif 2170 2171 case IPV6_BINDMULTI: 2172 optval = OPTBIT2(INP_BINDMULTI); 2173 break; 2174 2175 } 2176 if (error) 2177 break; 2178 error = sooptcopyout(sopt, &optval, 2179 sizeof optval); 2180 break; 2181 2182 case IPV6_PATHMTU: 2183 { 2184 u_long pmtu = 0; 2185 struct ip6_mtuinfo mtuinfo; 2186 struct in6_addr addr; 2187 2188 if (!(so->so_state & SS_ISCONNECTED)) 2189 return (ENOTCONN); 2190 /* 2191 * XXX: we dot not consider the case of source 2192 * routing, or optional information to specify 2193 * the outgoing interface. 2194 * Copy faddr out of inp to avoid holding lock 2195 * on inp during route lookup. 2196 */ 2197 INP_RLOCK(inp); 2198 bcopy(&inp->in6p_faddr, &addr, sizeof(addr)); 2199 INP_RUNLOCK(inp); 2200 error = ip6_getpmtu_ctl(so->so_fibnum, 2201 &addr, &pmtu); 2202 if (error) 2203 break; 2204 if (pmtu > IPV6_MAXPACKET) 2205 pmtu = IPV6_MAXPACKET; 2206 2207 bzero(&mtuinfo, sizeof(mtuinfo)); 2208 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2209 optdata = (void *)&mtuinfo; 2210 optdatalen = sizeof(mtuinfo); 2211 error = sooptcopyout(sopt, optdata, 2212 optdatalen); 2213 break; 2214 } 2215 2216 case IPV6_2292PKTINFO: 2217 case IPV6_2292HOPLIMIT: 2218 case IPV6_2292HOPOPTS: 2219 case IPV6_2292RTHDR: 2220 case IPV6_2292DSTOPTS: 2221 switch (optname) { 2222 case IPV6_2292PKTINFO: 2223 optval = OPTBIT(IN6P_PKTINFO); 2224 break; 2225 case IPV6_2292HOPLIMIT: 2226 optval = OPTBIT(IN6P_HOPLIMIT); 2227 break; 2228 case IPV6_2292HOPOPTS: 2229 optval = OPTBIT(IN6P_HOPOPTS); 2230 break; 2231 case IPV6_2292RTHDR: 2232 optval = OPTBIT(IN6P_RTHDR); 2233 break; 2234 case IPV6_2292DSTOPTS: 2235 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2236 break; 2237 } 2238 error = sooptcopyout(sopt, &optval, 2239 sizeof optval); 2240 break; 2241 case IPV6_PKTINFO: 2242 case IPV6_HOPOPTS: 2243 case IPV6_RTHDR: 2244 case IPV6_DSTOPTS: 2245 case IPV6_RTHDRDSTOPTS: 2246 case IPV6_NEXTHOP: 2247 case IPV6_TCLASS: 2248 case IPV6_DONTFRAG: 2249 case IPV6_USE_MIN_MTU: 2250 case IPV6_PREFER_TEMPADDR: 2251 error = ip6_getpcbopt(inp, optname, sopt); 2252 break; 2253 2254 case IPV6_MULTICAST_IF: 2255 case IPV6_MULTICAST_HOPS: 2256 case IPV6_MULTICAST_LOOP: 2257 case IPV6_MSFILTER: 2258 error = ip6_getmoptions(inp, sopt); 2259 break; 2260 2261 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2262 case IPV6_IPSEC_POLICY: 2263 if (IPSEC_ENABLED(ipv6)) { 2264 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2265 break; 2266 } 2267 /* FALLTHROUGH */ 2268 #endif /* IPSEC */ 2269 default: 2270 error = ENOPROTOOPT; 2271 break; 2272 } 2273 break; 2274 } 2275 } 2276 return (error); 2277 } 2278 2279 int 2280 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2281 { 2282 int error = 0, optval, optlen; 2283 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2284 struct inpcb *inp = sotoinpcb(so); 2285 int level, op, optname; 2286 2287 level = sopt->sopt_level; 2288 op = sopt->sopt_dir; 2289 optname = sopt->sopt_name; 2290 optlen = sopt->sopt_valsize; 2291 2292 if (level != IPPROTO_IPV6) { 2293 return (EINVAL); 2294 } 2295 2296 switch (optname) { 2297 case IPV6_CHECKSUM: 2298 /* 2299 * For ICMPv6 sockets, no modification allowed for checksum 2300 * offset, permit "no change" values to help existing apps. 2301 * 2302 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2303 * for an ICMPv6 socket will fail." 2304 * The current behavior does not meet RFC3542. 2305 */ 2306 switch (op) { 2307 case SOPT_SET: 2308 if (optlen != sizeof(int)) { 2309 error = EINVAL; 2310 break; 2311 } 2312 error = sooptcopyin(sopt, &optval, sizeof(optval), 2313 sizeof(optval)); 2314 if (error) 2315 break; 2316 if (optval < -1 || (optval % 2) != 0) { 2317 /* 2318 * The API assumes non-negative even offset 2319 * values or -1 as a special value. 2320 */ 2321 error = EINVAL; 2322 } else if (so->so_proto->pr_protocol == 2323 IPPROTO_ICMPV6) { 2324 if (optval != icmp6off) 2325 error = EINVAL; 2326 } else 2327 inp->in6p_cksum = optval; 2328 break; 2329 2330 case SOPT_GET: 2331 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2332 optval = icmp6off; 2333 else 2334 optval = inp->in6p_cksum; 2335 2336 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2337 break; 2338 2339 default: 2340 error = EINVAL; 2341 break; 2342 } 2343 break; 2344 2345 default: 2346 error = ENOPROTOOPT; 2347 break; 2348 } 2349 2350 return (error); 2351 } 2352 2353 /* 2354 * Set up IP6 options in pcb for insertion in output packets or 2355 * specifying behavior of outgoing packets. 2356 */ 2357 static int 2358 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2359 struct socket *so, struct sockopt *sopt) 2360 { 2361 struct ip6_pktopts *opt = *pktopt; 2362 int error = 0; 2363 struct thread *td = sopt->sopt_td; 2364 2365 /* turn off any old options. */ 2366 if (opt) { 2367 #ifdef DIAGNOSTIC 2368 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2369 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2370 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2371 printf("ip6_pcbopts: all specified options are cleared.\n"); 2372 #endif 2373 ip6_clearpktopts(opt, -1); 2374 } else 2375 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2376 *pktopt = NULL; 2377 2378 if (!m || m->m_len == 0) { 2379 /* 2380 * Only turning off any previous options, regardless of 2381 * whether the opt is just created or given. 2382 */ 2383 free(opt, M_IP6OPT); 2384 return (0); 2385 } 2386 2387 /* set options specified by user. */ 2388 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2389 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2390 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2391 free(opt, M_IP6OPT); 2392 return (error); 2393 } 2394 *pktopt = opt; 2395 return (0); 2396 } 2397 2398 /* 2399 * initialize ip6_pktopts. beware that there are non-zero default values in 2400 * the struct. 2401 */ 2402 void 2403 ip6_initpktopts(struct ip6_pktopts *opt) 2404 { 2405 2406 bzero(opt, sizeof(*opt)); 2407 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2408 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2409 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2410 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2411 } 2412 2413 static int 2414 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2415 struct ucred *cred, int uproto) 2416 { 2417 struct ip6_pktopts *opt; 2418 2419 if (*pktopt == NULL) { 2420 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2421 M_NOWAIT); 2422 if (*pktopt == NULL) 2423 return (ENOBUFS); 2424 ip6_initpktopts(*pktopt); 2425 } 2426 opt = *pktopt; 2427 2428 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2429 } 2430 2431 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2432 if (pktopt && pktopt->field) { \ 2433 INP_RUNLOCK(inp); \ 2434 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2435 malloc_optdata = true; \ 2436 INP_RLOCK(inp); \ 2437 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ 2438 INP_RUNLOCK(inp); \ 2439 free(optdata, M_TEMP); \ 2440 return (ECONNRESET); \ 2441 } \ 2442 pktopt = inp->in6p_outputopts; \ 2443 if (pktopt && pktopt->field) { \ 2444 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2445 bcopy(&pktopt->field, optdata, optdatalen); \ 2446 } else { \ 2447 free(optdata, M_TEMP); \ 2448 optdata = NULL; \ 2449 malloc_optdata = false; \ 2450 } \ 2451 } \ 2452 } while(0) 2453 2454 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2455 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2456 2457 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2458 pktopt->field->sa_len) 2459 2460 static int 2461 ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt) 2462 { 2463 void *optdata = NULL; 2464 bool malloc_optdata = false; 2465 int optdatalen = 0; 2466 int error = 0; 2467 struct in6_pktinfo null_pktinfo; 2468 int deftclass = 0, on; 2469 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2470 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2471 struct ip6_pktopts *pktopt; 2472 2473 INP_RLOCK(inp); 2474 pktopt = inp->in6p_outputopts; 2475 2476 switch (optname) { 2477 case IPV6_PKTINFO: 2478 optdata = (void *)&null_pktinfo; 2479 if (pktopt && pktopt->ip6po_pktinfo) { 2480 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2481 sizeof(null_pktinfo)); 2482 in6_clearscope(&null_pktinfo.ipi6_addr); 2483 } else { 2484 /* XXX: we don't have to do this every time... */ 2485 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2486 } 2487 optdatalen = sizeof(struct in6_pktinfo); 2488 break; 2489 case IPV6_TCLASS: 2490 if (pktopt && pktopt->ip6po_tclass >= 0) 2491 deftclass = pktopt->ip6po_tclass; 2492 optdata = (void *)&deftclass; 2493 optdatalen = sizeof(int); 2494 break; 2495 case IPV6_HOPOPTS: 2496 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2497 break; 2498 case IPV6_RTHDR: 2499 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2500 break; 2501 case IPV6_RTHDRDSTOPTS: 2502 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2503 break; 2504 case IPV6_DSTOPTS: 2505 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2506 break; 2507 case IPV6_NEXTHOP: 2508 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2509 break; 2510 case IPV6_USE_MIN_MTU: 2511 if (pktopt) 2512 defminmtu = pktopt->ip6po_minmtu; 2513 optdata = (void *)&defminmtu; 2514 optdatalen = sizeof(int); 2515 break; 2516 case IPV6_DONTFRAG: 2517 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2518 on = 1; 2519 else 2520 on = 0; 2521 optdata = (void *)&on; 2522 optdatalen = sizeof(on); 2523 break; 2524 case IPV6_PREFER_TEMPADDR: 2525 if (pktopt) 2526 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2527 optdata = (void *)&defpreftemp; 2528 optdatalen = sizeof(int); 2529 break; 2530 default: /* should not happen */ 2531 #ifdef DIAGNOSTIC 2532 panic("ip6_getpcbopt: unexpected option\n"); 2533 #endif 2534 INP_RUNLOCK(inp); 2535 return (ENOPROTOOPT); 2536 } 2537 INP_RUNLOCK(inp); 2538 2539 error = sooptcopyout(sopt, optdata, optdatalen); 2540 if (malloc_optdata) 2541 free(optdata, M_TEMP); 2542 2543 return (error); 2544 } 2545 2546 void 2547 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2548 { 2549 if (pktopt == NULL) 2550 return; 2551 2552 if (optname == -1 || optname == IPV6_PKTINFO) { 2553 if (pktopt->ip6po_pktinfo) 2554 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2555 pktopt->ip6po_pktinfo = NULL; 2556 } 2557 if (optname == -1 || optname == IPV6_HOPLIMIT) 2558 pktopt->ip6po_hlim = -1; 2559 if (optname == -1 || optname == IPV6_TCLASS) 2560 pktopt->ip6po_tclass = -1; 2561 if (optname == -1 || optname == IPV6_NEXTHOP) { 2562 if (pktopt->ip6po_nextroute.ro_rt) { 2563 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2564 pktopt->ip6po_nextroute.ro_rt = NULL; 2565 } 2566 if (pktopt->ip6po_nexthop) 2567 free(pktopt->ip6po_nexthop, M_IP6OPT); 2568 pktopt->ip6po_nexthop = NULL; 2569 } 2570 if (optname == -1 || optname == IPV6_HOPOPTS) { 2571 if (pktopt->ip6po_hbh) 2572 free(pktopt->ip6po_hbh, M_IP6OPT); 2573 pktopt->ip6po_hbh = NULL; 2574 } 2575 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2576 if (pktopt->ip6po_dest1) 2577 free(pktopt->ip6po_dest1, M_IP6OPT); 2578 pktopt->ip6po_dest1 = NULL; 2579 } 2580 if (optname == -1 || optname == IPV6_RTHDR) { 2581 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2582 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2583 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2584 if (pktopt->ip6po_route.ro_rt) { 2585 RTFREE(pktopt->ip6po_route.ro_rt); 2586 pktopt->ip6po_route.ro_rt = NULL; 2587 } 2588 } 2589 if (optname == -1 || optname == IPV6_DSTOPTS) { 2590 if (pktopt->ip6po_dest2) 2591 free(pktopt->ip6po_dest2, M_IP6OPT); 2592 pktopt->ip6po_dest2 = NULL; 2593 } 2594 } 2595 2596 #define PKTOPT_EXTHDRCPY(type) \ 2597 do {\ 2598 if (src->type) {\ 2599 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2600 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2601 if (dst->type == NULL)\ 2602 goto bad;\ 2603 bcopy(src->type, dst->type, hlen);\ 2604 }\ 2605 } while (/*CONSTCOND*/ 0) 2606 2607 static int 2608 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2609 { 2610 if (dst == NULL || src == NULL) { 2611 printf("ip6_clearpktopts: invalid argument\n"); 2612 return (EINVAL); 2613 } 2614 2615 dst->ip6po_hlim = src->ip6po_hlim; 2616 dst->ip6po_tclass = src->ip6po_tclass; 2617 dst->ip6po_flags = src->ip6po_flags; 2618 dst->ip6po_minmtu = src->ip6po_minmtu; 2619 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2620 if (src->ip6po_pktinfo) { 2621 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2622 M_IP6OPT, canwait); 2623 if (dst->ip6po_pktinfo == NULL) 2624 goto bad; 2625 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2626 } 2627 if (src->ip6po_nexthop) { 2628 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2629 M_IP6OPT, canwait); 2630 if (dst->ip6po_nexthop == NULL) 2631 goto bad; 2632 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2633 src->ip6po_nexthop->sa_len); 2634 } 2635 PKTOPT_EXTHDRCPY(ip6po_hbh); 2636 PKTOPT_EXTHDRCPY(ip6po_dest1); 2637 PKTOPT_EXTHDRCPY(ip6po_dest2); 2638 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2639 return (0); 2640 2641 bad: 2642 ip6_clearpktopts(dst, -1); 2643 return (ENOBUFS); 2644 } 2645 #undef PKTOPT_EXTHDRCPY 2646 2647 struct ip6_pktopts * 2648 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2649 { 2650 int error; 2651 struct ip6_pktopts *dst; 2652 2653 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2654 if (dst == NULL) 2655 return (NULL); 2656 ip6_initpktopts(dst); 2657 2658 if ((error = copypktopts(dst, src, canwait)) != 0) { 2659 free(dst, M_IP6OPT); 2660 return (NULL); 2661 } 2662 2663 return (dst); 2664 } 2665 2666 void 2667 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2668 { 2669 if (pktopt == NULL) 2670 return; 2671 2672 ip6_clearpktopts(pktopt, -1); 2673 2674 free(pktopt, M_IP6OPT); 2675 } 2676 2677 /* 2678 * Set IPv6 outgoing packet options based on advanced API. 2679 */ 2680 int 2681 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2682 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2683 { 2684 struct cmsghdr *cm = NULL; 2685 2686 if (control == NULL || opt == NULL) 2687 return (EINVAL); 2688 2689 ip6_initpktopts(opt); 2690 if (stickyopt) { 2691 int error; 2692 2693 /* 2694 * If stickyopt is provided, make a local copy of the options 2695 * for this particular packet, then override them by ancillary 2696 * objects. 2697 * XXX: copypktopts() does not copy the cached route to a next 2698 * hop (if any). This is not very good in terms of efficiency, 2699 * but we can allow this since this option should be rarely 2700 * used. 2701 */ 2702 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2703 return (error); 2704 } 2705 2706 /* 2707 * XXX: Currently, we assume all the optional information is stored 2708 * in a single mbuf. 2709 */ 2710 if (control->m_next) 2711 return (EINVAL); 2712 2713 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2714 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2715 int error; 2716 2717 if (control->m_len < CMSG_LEN(0)) 2718 return (EINVAL); 2719 2720 cm = mtod(control, struct cmsghdr *); 2721 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2722 return (EINVAL); 2723 if (cm->cmsg_level != IPPROTO_IPV6) 2724 continue; 2725 2726 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2727 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2728 if (error) 2729 return (error); 2730 } 2731 2732 return (0); 2733 } 2734 2735 /* 2736 * Set a particular packet option, as a sticky option or an ancillary data 2737 * item. "len" can be 0 only when it's a sticky option. 2738 * We have 4 cases of combination of "sticky" and "cmsg": 2739 * "sticky=0, cmsg=0": impossible 2740 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2741 * "sticky=1, cmsg=0": RFC3542 socket option 2742 * "sticky=1, cmsg=1": RFC2292 socket option 2743 */ 2744 static int 2745 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2746 struct ucred *cred, int sticky, int cmsg, int uproto) 2747 { 2748 int minmtupolicy, preftemp; 2749 int error; 2750 2751 if (!sticky && !cmsg) { 2752 #ifdef DIAGNOSTIC 2753 printf("ip6_setpktopt: impossible case\n"); 2754 #endif 2755 return (EINVAL); 2756 } 2757 2758 /* 2759 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2760 * not be specified in the context of RFC3542. Conversely, 2761 * RFC3542 types should not be specified in the context of RFC2292. 2762 */ 2763 if (!cmsg) { 2764 switch (optname) { 2765 case IPV6_2292PKTINFO: 2766 case IPV6_2292HOPLIMIT: 2767 case IPV6_2292NEXTHOP: 2768 case IPV6_2292HOPOPTS: 2769 case IPV6_2292DSTOPTS: 2770 case IPV6_2292RTHDR: 2771 case IPV6_2292PKTOPTIONS: 2772 return (ENOPROTOOPT); 2773 } 2774 } 2775 if (sticky && cmsg) { 2776 switch (optname) { 2777 case IPV6_PKTINFO: 2778 case IPV6_HOPLIMIT: 2779 case IPV6_NEXTHOP: 2780 case IPV6_HOPOPTS: 2781 case IPV6_DSTOPTS: 2782 case IPV6_RTHDRDSTOPTS: 2783 case IPV6_RTHDR: 2784 case IPV6_USE_MIN_MTU: 2785 case IPV6_DONTFRAG: 2786 case IPV6_TCLASS: 2787 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2788 return (ENOPROTOOPT); 2789 } 2790 } 2791 2792 switch (optname) { 2793 case IPV6_2292PKTINFO: 2794 case IPV6_PKTINFO: 2795 { 2796 struct ifnet *ifp = NULL; 2797 struct in6_pktinfo *pktinfo; 2798 2799 if (len != sizeof(struct in6_pktinfo)) 2800 return (EINVAL); 2801 2802 pktinfo = (struct in6_pktinfo *)buf; 2803 2804 /* 2805 * An application can clear any sticky IPV6_PKTINFO option by 2806 * doing a "regular" setsockopt with ipi6_addr being 2807 * in6addr_any and ipi6_ifindex being zero. 2808 * [RFC 3542, Section 6] 2809 */ 2810 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2811 pktinfo->ipi6_ifindex == 0 && 2812 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2813 ip6_clearpktopts(opt, optname); 2814 break; 2815 } 2816 2817 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2818 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2819 return (EINVAL); 2820 } 2821 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2822 return (EINVAL); 2823 /* validate the interface index if specified. */ 2824 if (pktinfo->ipi6_ifindex > V_if_index) 2825 return (ENXIO); 2826 if (pktinfo->ipi6_ifindex) { 2827 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2828 if (ifp == NULL) 2829 return (ENXIO); 2830 } 2831 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2832 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2833 return (ENETDOWN); 2834 2835 if (ifp != NULL && 2836 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2837 struct in6_ifaddr *ia; 2838 2839 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2840 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2841 if (ia == NULL) 2842 return (EADDRNOTAVAIL); 2843 ifa_free(&ia->ia_ifa); 2844 } 2845 /* 2846 * We store the address anyway, and let in6_selectsrc() 2847 * validate the specified address. This is because ipi6_addr 2848 * may not have enough information about its scope zone, and 2849 * we may need additional information (such as outgoing 2850 * interface or the scope zone of a destination address) to 2851 * disambiguate the scope. 2852 * XXX: the delay of the validation may confuse the 2853 * application when it is used as a sticky option. 2854 */ 2855 if (opt->ip6po_pktinfo == NULL) { 2856 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2857 M_IP6OPT, M_NOWAIT); 2858 if (opt->ip6po_pktinfo == NULL) 2859 return (ENOBUFS); 2860 } 2861 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2862 break; 2863 } 2864 2865 case IPV6_2292HOPLIMIT: 2866 case IPV6_HOPLIMIT: 2867 { 2868 int *hlimp; 2869 2870 /* 2871 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2872 * to simplify the ordering among hoplimit options. 2873 */ 2874 if (optname == IPV6_HOPLIMIT && sticky) 2875 return (ENOPROTOOPT); 2876 2877 if (len != sizeof(int)) 2878 return (EINVAL); 2879 hlimp = (int *)buf; 2880 if (*hlimp < -1 || *hlimp > 255) 2881 return (EINVAL); 2882 2883 opt->ip6po_hlim = *hlimp; 2884 break; 2885 } 2886 2887 case IPV6_TCLASS: 2888 { 2889 int tclass; 2890 2891 if (len != sizeof(int)) 2892 return (EINVAL); 2893 tclass = *(int *)buf; 2894 if (tclass < -1 || tclass > 255) 2895 return (EINVAL); 2896 2897 opt->ip6po_tclass = tclass; 2898 break; 2899 } 2900 2901 case IPV6_2292NEXTHOP: 2902 case IPV6_NEXTHOP: 2903 if (cred != NULL) { 2904 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 2905 if (error) 2906 return (error); 2907 } 2908 2909 if (len == 0) { /* just remove the option */ 2910 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2911 break; 2912 } 2913 2914 /* check if cmsg_len is large enough for sa_len */ 2915 if (len < sizeof(struct sockaddr) || len < *buf) 2916 return (EINVAL); 2917 2918 switch (((struct sockaddr *)buf)->sa_family) { 2919 case AF_INET6: 2920 { 2921 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2922 int error; 2923 2924 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2925 return (EINVAL); 2926 2927 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2928 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2929 return (EINVAL); 2930 } 2931 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2932 != 0) { 2933 return (error); 2934 } 2935 break; 2936 } 2937 case AF_LINK: /* should eventually be supported */ 2938 default: 2939 return (EAFNOSUPPORT); 2940 } 2941 2942 /* turn off the previous option, then set the new option. */ 2943 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2944 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2945 if (opt->ip6po_nexthop == NULL) 2946 return (ENOBUFS); 2947 bcopy(buf, opt->ip6po_nexthop, *buf); 2948 break; 2949 2950 case IPV6_2292HOPOPTS: 2951 case IPV6_HOPOPTS: 2952 { 2953 struct ip6_hbh *hbh; 2954 int hbhlen; 2955 2956 /* 2957 * XXX: We don't allow a non-privileged user to set ANY HbH 2958 * options, since per-option restriction has too much 2959 * overhead. 2960 */ 2961 if (cred != NULL) { 2962 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 2963 if (error) 2964 return (error); 2965 } 2966 2967 if (len == 0) { 2968 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2969 break; /* just remove the option */ 2970 } 2971 2972 /* message length validation */ 2973 if (len < sizeof(struct ip6_hbh)) 2974 return (EINVAL); 2975 hbh = (struct ip6_hbh *)buf; 2976 hbhlen = (hbh->ip6h_len + 1) << 3; 2977 if (len != hbhlen) 2978 return (EINVAL); 2979 2980 /* turn off the previous option, then set the new option. */ 2981 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2982 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2983 if (opt->ip6po_hbh == NULL) 2984 return (ENOBUFS); 2985 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2986 2987 break; 2988 } 2989 2990 case IPV6_2292DSTOPTS: 2991 case IPV6_DSTOPTS: 2992 case IPV6_RTHDRDSTOPTS: 2993 { 2994 struct ip6_dest *dest, **newdest = NULL; 2995 int destlen; 2996 2997 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2998 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 2999 if (error) 3000 return (error); 3001 } 3002 3003 if (len == 0) { 3004 ip6_clearpktopts(opt, optname); 3005 break; /* just remove the option */ 3006 } 3007 3008 /* message length validation */ 3009 if (len < sizeof(struct ip6_dest)) 3010 return (EINVAL); 3011 dest = (struct ip6_dest *)buf; 3012 destlen = (dest->ip6d_len + 1) << 3; 3013 if (len != destlen) 3014 return (EINVAL); 3015 3016 /* 3017 * Determine the position that the destination options header 3018 * should be inserted; before or after the routing header. 3019 */ 3020 switch (optname) { 3021 case IPV6_2292DSTOPTS: 3022 /* 3023 * The old advacned API is ambiguous on this point. 3024 * Our approach is to determine the position based 3025 * according to the existence of a routing header. 3026 * Note, however, that this depends on the order of the 3027 * extension headers in the ancillary data; the 1st 3028 * part of the destination options header must appear 3029 * before the routing header in the ancillary data, 3030 * too. 3031 * RFC3542 solved the ambiguity by introducing 3032 * separate ancillary data or option types. 3033 */ 3034 if (opt->ip6po_rthdr == NULL) 3035 newdest = &opt->ip6po_dest1; 3036 else 3037 newdest = &opt->ip6po_dest2; 3038 break; 3039 case IPV6_RTHDRDSTOPTS: 3040 newdest = &opt->ip6po_dest1; 3041 break; 3042 case IPV6_DSTOPTS: 3043 newdest = &opt->ip6po_dest2; 3044 break; 3045 } 3046 3047 /* turn off the previous option, then set the new option. */ 3048 ip6_clearpktopts(opt, optname); 3049 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3050 if (*newdest == NULL) 3051 return (ENOBUFS); 3052 bcopy(dest, *newdest, destlen); 3053 3054 break; 3055 } 3056 3057 case IPV6_2292RTHDR: 3058 case IPV6_RTHDR: 3059 { 3060 struct ip6_rthdr *rth; 3061 int rthlen; 3062 3063 if (len == 0) { 3064 ip6_clearpktopts(opt, IPV6_RTHDR); 3065 break; /* just remove the option */ 3066 } 3067 3068 /* message length validation */ 3069 if (len < sizeof(struct ip6_rthdr)) 3070 return (EINVAL); 3071 rth = (struct ip6_rthdr *)buf; 3072 rthlen = (rth->ip6r_len + 1) << 3; 3073 if (len != rthlen) 3074 return (EINVAL); 3075 3076 switch (rth->ip6r_type) { 3077 case IPV6_RTHDR_TYPE_0: 3078 if (rth->ip6r_len == 0) /* must contain one addr */ 3079 return (EINVAL); 3080 if (rth->ip6r_len % 2) /* length must be even */ 3081 return (EINVAL); 3082 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3083 return (EINVAL); 3084 break; 3085 default: 3086 return (EINVAL); /* not supported */ 3087 } 3088 3089 /* turn off the previous option */ 3090 ip6_clearpktopts(opt, IPV6_RTHDR); 3091 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3092 if (opt->ip6po_rthdr == NULL) 3093 return (ENOBUFS); 3094 bcopy(rth, opt->ip6po_rthdr, rthlen); 3095 3096 break; 3097 } 3098 3099 case IPV6_USE_MIN_MTU: 3100 if (len != sizeof(int)) 3101 return (EINVAL); 3102 minmtupolicy = *(int *)buf; 3103 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3104 minmtupolicy != IP6PO_MINMTU_DISABLE && 3105 minmtupolicy != IP6PO_MINMTU_ALL) { 3106 return (EINVAL); 3107 } 3108 opt->ip6po_minmtu = minmtupolicy; 3109 break; 3110 3111 case IPV6_DONTFRAG: 3112 if (len != sizeof(int)) 3113 return (EINVAL); 3114 3115 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3116 /* 3117 * we ignore this option for TCP sockets. 3118 * (RFC3542 leaves this case unspecified.) 3119 */ 3120 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3121 } else 3122 opt->ip6po_flags |= IP6PO_DONTFRAG; 3123 break; 3124 3125 case IPV6_PREFER_TEMPADDR: 3126 if (len != sizeof(int)) 3127 return (EINVAL); 3128 preftemp = *(int *)buf; 3129 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3130 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3131 preftemp != IP6PO_TEMPADDR_PREFER) { 3132 return (EINVAL); 3133 } 3134 opt->ip6po_prefer_tempaddr = preftemp; 3135 break; 3136 3137 default: 3138 return (ENOPROTOOPT); 3139 } /* end of switch */ 3140 3141 return (0); 3142 } 3143 3144 /* 3145 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3146 * packet to the input queue of a specified interface. Note that this 3147 * calls the output routine of the loopback "driver", but with an interface 3148 * pointer that might NOT be &loif -- easier than replicating that code here. 3149 */ 3150 void 3151 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3152 { 3153 struct mbuf *copym; 3154 struct ip6_hdr *ip6; 3155 3156 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3157 if (copym == NULL) 3158 return; 3159 3160 /* 3161 * Make sure to deep-copy IPv6 header portion in case the data 3162 * is in an mbuf cluster, so that we can safely override the IPv6 3163 * header portion later. 3164 */ 3165 if (!M_WRITABLE(copym) || 3166 copym->m_len < sizeof(struct ip6_hdr)) { 3167 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3168 if (copym == NULL) 3169 return; 3170 } 3171 ip6 = mtod(copym, struct ip6_hdr *); 3172 /* 3173 * clear embedded scope identifiers if necessary. 3174 * in6_clearscope will touch the addresses only when necessary. 3175 */ 3176 in6_clearscope(&ip6->ip6_src); 3177 in6_clearscope(&ip6->ip6_dst); 3178 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3179 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3180 CSUM_PSEUDO_HDR; 3181 copym->m_pkthdr.csum_data = 0xffff; 3182 } 3183 if_simloop(ifp, copym, AF_INET6, 0); 3184 } 3185 3186 /* 3187 * Chop IPv6 header off from the payload. 3188 */ 3189 static int 3190 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3191 { 3192 struct mbuf *mh; 3193 struct ip6_hdr *ip6; 3194 3195 ip6 = mtod(m, struct ip6_hdr *); 3196 if (m->m_len > sizeof(*ip6)) { 3197 mh = m_gethdr(M_NOWAIT, MT_DATA); 3198 if (mh == NULL) { 3199 m_freem(m); 3200 return ENOBUFS; 3201 } 3202 m_move_pkthdr(mh, m); 3203 M_ALIGN(mh, sizeof(*ip6)); 3204 m->m_len -= sizeof(*ip6); 3205 m->m_data += sizeof(*ip6); 3206 mh->m_next = m; 3207 m = mh; 3208 m->m_len = sizeof(*ip6); 3209 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3210 } 3211 exthdrs->ip6e_ip6 = m; 3212 return 0; 3213 } 3214 3215 /* 3216 * Compute IPv6 extension header length. 3217 */ 3218 int 3219 ip6_optlen(struct inpcb *inp) 3220 { 3221 int len; 3222 3223 if (!inp->in6p_outputopts) 3224 return 0; 3225 3226 len = 0; 3227 #define elen(x) \ 3228 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3229 3230 len += elen(inp->in6p_outputopts->ip6po_hbh); 3231 if (inp->in6p_outputopts->ip6po_rthdr) 3232 /* dest1 is valid with rthdr only */ 3233 len += elen(inp->in6p_outputopts->ip6po_dest1); 3234 len += elen(inp->in6p_outputopts->ip6po_rthdr); 3235 len += elen(inp->in6p_outputopts->ip6po_dest2); 3236 return len; 3237 #undef elen 3238 } 3239