1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 4. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_inet.h" 67 #include "opt_inet6.h" 68 #include "opt_ipfw.h" 69 #include "opt_ipsec.h" 70 #include "opt_sctp.h" 71 #include "opt_route.h" 72 #include "opt_rss.h" 73 74 #include <sys/param.h> 75 #include <sys/kernel.h> 76 #include <sys/malloc.h> 77 #include <sys/mbuf.h> 78 #include <sys/errno.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/protosw.h> 82 #include <sys/socket.h> 83 #include <sys/socketvar.h> 84 #include <sys/syslog.h> 85 #include <sys/ucred.h> 86 87 #include <machine/in_cksum.h> 88 89 #include <net/if.h> 90 #include <net/if_var.h> 91 #include <net/netisr.h> 92 #include <net/route.h> 93 #include <net/pfil.h> 94 #include <net/rss_config.h> 95 #include <net/vnet.h> 96 97 #include <netinet/in.h> 98 #include <netinet/in_var.h> 99 #include <netinet/ip_var.h> 100 #include <netinet6/in6_var.h> 101 #include <netinet/ip6.h> 102 #include <netinet/icmp6.h> 103 #include <netinet6/ip6_var.h> 104 #include <netinet/in_pcb.h> 105 #include <netinet/tcp_var.h> 106 #include <netinet6/nd6.h> 107 #include <netinet6/in6_rss.h> 108 109 #ifdef IPSEC 110 #include <netipsec/ipsec.h> 111 #include <netipsec/ipsec6.h> 112 #include <netipsec/key.h> 113 #include <netinet6/ip6_ipsec.h> 114 #endif /* IPSEC */ 115 #ifdef SCTP 116 #include <netinet/sctp.h> 117 #include <netinet/sctp_crc32.h> 118 #endif 119 120 #include <netinet6/ip6protosw.h> 121 #include <netinet6/scope6_var.h> 122 123 #ifdef FLOWTABLE 124 #include <net/flowtable.h> 125 #endif 126 127 extern int in6_mcast_loop; 128 129 struct ip6_exthdrs { 130 struct mbuf *ip6e_ip6; 131 struct mbuf *ip6e_hbh; 132 struct mbuf *ip6e_dest1; 133 struct mbuf *ip6e_rthdr; 134 struct mbuf *ip6e_dest2; 135 }; 136 137 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 138 struct ucred *, int); 139 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 140 struct socket *, struct sockopt *); 141 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 142 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 143 struct ucred *, int, int, int); 144 145 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 146 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 147 struct ip6_frag **); 148 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 149 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 150 static int ip6_getpmtu(struct route_in6 *, struct route_in6 *, 151 struct ifnet *, struct in6_addr *, u_long *, int *, u_int); 152 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 153 154 155 /* 156 * Make an extension header from option data. hp is the source, and 157 * mp is the destination. 158 */ 159 #define MAKE_EXTHDR(hp, mp) \ 160 do { \ 161 if (hp) { \ 162 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 163 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 164 ((eh)->ip6e_len + 1) << 3); \ 165 if (error) \ 166 goto freehdrs; \ 167 } \ 168 } while (/*CONSTCOND*/ 0) 169 170 /* 171 * Form a chain of extension headers. 172 * m is the extension header mbuf 173 * mp is the previous mbuf in the chain 174 * p is the next header 175 * i is the type of option. 176 */ 177 #define MAKE_CHAIN(m, mp, p, i)\ 178 do {\ 179 if (m) {\ 180 if (!hdrsplit) \ 181 panic("assumption failed: hdr not split"); \ 182 *mtod((m), u_char *) = *(p);\ 183 *(p) = (i);\ 184 p = mtod((m), u_char *);\ 185 (m)->m_next = (mp)->m_next;\ 186 (mp)->m_next = (m);\ 187 (mp) = (m);\ 188 }\ 189 } while (/*CONSTCOND*/ 0) 190 191 void 192 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 193 { 194 u_short csum; 195 196 csum = in_cksum_skip(m, offset + plen, offset); 197 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 198 csum = 0xffff; 199 offset += m->m_pkthdr.csum_data; /* checksum offset */ 200 201 if (offset + sizeof(u_short) > m->m_len) { 202 printf("%s: delayed m_pullup, m->len: %d plen %u off %u " 203 "csum_flags=%b\n", __func__, m->m_len, plen, offset, 204 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 205 /* 206 * XXX this should not happen, but if it does, the correct 207 * behavior may be to insert the checksum in the appropriate 208 * next mbuf in the chain. 209 */ 210 return; 211 } 212 *(u_short *)(m->m_data + offset) = csum; 213 } 214 215 int 216 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 217 int mtu) 218 { 219 struct mbuf *m, **mnext, *m_frgpart; 220 struct ip6_hdr *ip6, *mhip6; 221 struct ip6_frag *ip6f; 222 int off; 223 int error; 224 int tlen = m0->m_pkthdr.len; 225 uint32_t id = htonl(ip6_randomid()); 226 227 m = m0; 228 ip6 = mtod(m, struct ip6_hdr *); 229 mnext = &m->m_nextpkt; 230 231 for (off = hlen; off < tlen; off += mtu) { 232 m = m_gethdr(M_NOWAIT, MT_DATA); 233 if (!m) { 234 IP6STAT_INC(ip6s_odropped); 235 return (ENOBUFS); 236 } 237 m->m_flags = m0->m_flags & M_COPYFLAGS; 238 *mnext = m; 239 mnext = &m->m_nextpkt; 240 m->m_data += max_linkhdr; 241 mhip6 = mtod(m, struct ip6_hdr *); 242 *mhip6 = *ip6; 243 m->m_len = sizeof(*mhip6); 244 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 245 if (error) { 246 IP6STAT_INC(ip6s_odropped); 247 return (error); 248 } 249 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 250 if (off + mtu >= tlen) 251 mtu = tlen - off; 252 else 253 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 254 mhip6->ip6_plen = htons((u_short)(mtu + hlen + 255 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 256 if ((m_frgpart = m_copy(m0, off, mtu)) == 0) { 257 IP6STAT_INC(ip6s_odropped); 258 return (ENOBUFS); 259 } 260 m_cat(m, m_frgpart); 261 m->m_pkthdr.len = mtu + hlen + sizeof(*ip6f); 262 m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; 263 m->m_pkthdr.rcvif = NULL; 264 ip6f->ip6f_reserved = 0; 265 ip6f->ip6f_ident = id; 266 ip6f->ip6f_nxt = nextproto; 267 IP6STAT_INC(ip6s_ofragments); 268 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 269 } 270 271 return (0); 272 } 273 274 /* 275 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 276 * header (with pri, len, nxt, hlim, src, dst). 277 * This function may modify ver and hlim only. 278 * The mbuf chain containing the packet will be freed. 279 * The mbuf opt, if present, will not be freed. 280 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 281 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 282 * then result of route lookup is stored in ro->ro_rt. 283 * 284 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 285 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 286 * which is rt_mtu. 287 * 288 * ifpp - XXX: just for statistics 289 */ 290 /* 291 * XXX TODO: no flowid is assigned for outbound flows? 292 */ 293 int 294 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 295 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 296 struct ifnet **ifpp, struct inpcb *inp) 297 { 298 struct ip6_hdr *ip6; 299 struct ifnet *ifp, *origifp; 300 struct mbuf *m = m0; 301 struct mbuf *mprev = NULL; 302 int hlen, tlen, len; 303 struct route_in6 ip6route; 304 struct rtentry *rt = NULL; 305 struct sockaddr_in6 *dst, src_sa, dst_sa; 306 struct in6_addr odst; 307 int error = 0; 308 struct in6_ifaddr *ia = NULL; 309 u_long mtu; 310 int alwaysfrag, dontfrag; 311 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 312 struct ip6_exthdrs exthdrs; 313 struct in6_addr finaldst, src0, dst0; 314 u_int32_t zone; 315 struct route_in6 *ro_pmtu = NULL; 316 int hdrsplit = 0; 317 int sw_csum, tso; 318 int needfiblookup; 319 uint32_t fibnum; 320 struct m_tag *fwd_tag = NULL; 321 322 ip6 = mtod(m, struct ip6_hdr *); 323 if (ip6 == NULL) { 324 printf ("ip6 is NULL"); 325 goto bad; 326 } 327 328 if (inp != NULL) { 329 M_SETFIB(m, inp->inp_inc.inc_fibnum); 330 if ((flags & IP_NODEFAULTFLOWID) == 0) { 331 /* unconditionally set flowid */ 332 m->m_pkthdr.flowid = inp->inp_flowid; 333 M_HASHTYPE_SET(m, inp->inp_flowtype); 334 } 335 } 336 337 finaldst = ip6->ip6_dst; 338 bzero(&exthdrs, sizeof(exthdrs)); 339 if (opt) { 340 /* Hop-by-Hop options header */ 341 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 342 /* Destination options header(1st part) */ 343 if (opt->ip6po_rthdr) { 344 /* 345 * Destination options header(1st part) 346 * This only makes sense with a routing header. 347 * See Section 9.2 of RFC 3542. 348 * Disabling this part just for MIP6 convenience is 349 * a bad idea. We need to think carefully about a 350 * way to make the advanced API coexist with MIP6 351 * options, which might automatically be inserted in 352 * the kernel. 353 */ 354 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 355 } 356 /* Routing header */ 357 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 358 /* Destination options header(2nd part) */ 359 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 360 } 361 362 #ifdef IPSEC 363 /* 364 * IPSec checking which handles several cases. 365 * FAST IPSEC: We re-injected the packet. 366 * XXX: need scope argument. 367 */ 368 switch(ip6_ipsec_output(&m, inp, &error)) 369 { 370 case 1: /* Bad packet */ 371 goto freehdrs; 372 case -1: /* IPSec done */ 373 goto done; 374 case 0: /* No IPSec */ 375 default: 376 break; 377 } 378 #endif /* IPSEC */ 379 380 /* 381 * Calculate the total length of the extension header chain. 382 * Keep the length of the unfragmentable part for fragmentation. 383 */ 384 optlen = 0; 385 if (exthdrs.ip6e_hbh) 386 optlen += exthdrs.ip6e_hbh->m_len; 387 if (exthdrs.ip6e_dest1) 388 optlen += exthdrs.ip6e_dest1->m_len; 389 if (exthdrs.ip6e_rthdr) 390 optlen += exthdrs.ip6e_rthdr->m_len; 391 unfragpartlen = optlen + sizeof(struct ip6_hdr); 392 393 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 394 if (exthdrs.ip6e_dest2) 395 optlen += exthdrs.ip6e_dest2->m_len; 396 397 /* 398 * If there is at least one extension header, 399 * separate IP6 header from the payload. 400 */ 401 if (optlen && !hdrsplit) { 402 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 403 m = NULL; 404 goto freehdrs; 405 } 406 m = exthdrs.ip6e_ip6; 407 hdrsplit++; 408 } 409 410 /* adjust pointer */ 411 ip6 = mtod(m, struct ip6_hdr *); 412 413 /* adjust mbuf packet header length */ 414 m->m_pkthdr.len += optlen; 415 plen = m->m_pkthdr.len - sizeof(*ip6); 416 417 /* If this is a jumbo payload, insert a jumbo payload option. */ 418 if (plen > IPV6_MAXPACKET) { 419 if (!hdrsplit) { 420 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 421 m = NULL; 422 goto freehdrs; 423 } 424 m = exthdrs.ip6e_ip6; 425 hdrsplit++; 426 } 427 /* adjust pointer */ 428 ip6 = mtod(m, struct ip6_hdr *); 429 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 430 goto freehdrs; 431 ip6->ip6_plen = 0; 432 } else 433 ip6->ip6_plen = htons(plen); 434 435 /* 436 * Concatenate headers and fill in next header fields. 437 * Here we have, on "m" 438 * IPv6 payload 439 * and we insert headers accordingly. Finally, we should be getting: 440 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 441 * 442 * during the header composing process, "m" points to IPv6 header. 443 * "mprev" points to an extension header prior to esp. 444 */ 445 u_char *nexthdrp = &ip6->ip6_nxt; 446 mprev = m; 447 448 /* 449 * we treat dest2 specially. this makes IPsec processing 450 * much easier. the goal here is to make mprev point the 451 * mbuf prior to dest2. 452 * 453 * result: IPv6 dest2 payload 454 * m and mprev will point to IPv6 header. 455 */ 456 if (exthdrs.ip6e_dest2) { 457 if (!hdrsplit) 458 panic("assumption failed: hdr not split"); 459 exthdrs.ip6e_dest2->m_next = m->m_next; 460 m->m_next = exthdrs.ip6e_dest2; 461 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 462 ip6->ip6_nxt = IPPROTO_DSTOPTS; 463 } 464 465 /* 466 * result: IPv6 hbh dest1 rthdr dest2 payload 467 * m will point to IPv6 header. mprev will point to the 468 * extension header prior to dest2 (rthdr in the above case). 469 */ 470 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 471 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 472 IPPROTO_DSTOPTS); 473 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 474 IPPROTO_ROUTING); 475 476 /* 477 * If there is a routing header, discard the packet. 478 */ 479 if (exthdrs.ip6e_rthdr) { 480 error = EINVAL; 481 goto bad; 482 } 483 484 /* Source address validation */ 485 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 486 (flags & IPV6_UNSPECSRC) == 0) { 487 error = EOPNOTSUPP; 488 IP6STAT_INC(ip6s_badscope); 489 goto bad; 490 } 491 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 492 error = EOPNOTSUPP; 493 IP6STAT_INC(ip6s_badscope); 494 goto bad; 495 } 496 497 IP6STAT_INC(ip6s_localout); 498 499 /* 500 * Route packet. 501 */ 502 if (ro == 0) { 503 ro = &ip6route; 504 bzero((caddr_t)ro, sizeof(*ro)); 505 } 506 ro_pmtu = ro; 507 if (opt && opt->ip6po_rthdr) 508 ro = &opt->ip6po_route; 509 dst = (struct sockaddr_in6 *)&ro->ro_dst; 510 #ifdef FLOWTABLE 511 if (ro->ro_rt == NULL) 512 (void )flowtable_lookup(AF_INET6, m, (struct route *)ro); 513 #endif 514 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 515 again: 516 /* 517 * if specified, try to fill in the traffic class field. 518 * do not override if a non-zero value is already set. 519 * we check the diffserv field and the ecn field separately. 520 */ 521 if (opt && opt->ip6po_tclass >= 0) { 522 int mask = 0; 523 524 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 525 mask |= 0xfc; 526 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 527 mask |= 0x03; 528 if (mask != 0) 529 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 530 } 531 532 /* fill in or override the hop limit field, if necessary. */ 533 if (opt && opt->ip6po_hlim != -1) 534 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 535 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 536 if (im6o != NULL) 537 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 538 else 539 ip6->ip6_hlim = V_ip6_defmcasthlim; 540 } 541 542 /* adjust pointer */ 543 ip6 = mtod(m, struct ip6_hdr *); 544 545 if (ro->ro_rt && fwd_tag == NULL) { 546 rt = ro->ro_rt; 547 ifp = ro->ro_rt->rt_ifp; 548 } else { 549 if (fwd_tag == NULL) { 550 bzero(&dst_sa, sizeof(dst_sa)); 551 dst_sa.sin6_family = AF_INET6; 552 dst_sa.sin6_len = sizeof(dst_sa); 553 dst_sa.sin6_addr = ip6->ip6_dst; 554 } 555 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 556 &rt, fibnum); 557 if (error != 0) { 558 if (ifp != NULL) 559 in6_ifstat_inc(ifp, ifs6_out_discard); 560 goto bad; 561 } 562 } 563 if (rt == NULL) { 564 /* 565 * If in6_selectroute() does not return a route entry, 566 * dst may not have been updated. 567 */ 568 *dst = dst_sa; /* XXX */ 569 } 570 571 /* 572 * then rt (for unicast) and ifp must be non-NULL valid values. 573 */ 574 if ((flags & IPV6_FORWARDING) == 0) { 575 /* XXX: the FORWARDING flag can be set for mrouting. */ 576 in6_ifstat_inc(ifp, ifs6_out_request); 577 } 578 if (rt != NULL) { 579 ia = (struct in6_ifaddr *)(rt->rt_ifa); 580 counter_u64_add(rt->rt_pksent, 1); 581 } 582 583 584 /* 585 * The outgoing interface must be in the zone of source and 586 * destination addresses. 587 */ 588 origifp = ifp; 589 590 src0 = ip6->ip6_src; 591 if (in6_setscope(&src0, origifp, &zone)) 592 goto badscope; 593 bzero(&src_sa, sizeof(src_sa)); 594 src_sa.sin6_family = AF_INET6; 595 src_sa.sin6_len = sizeof(src_sa); 596 src_sa.sin6_addr = ip6->ip6_src; 597 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 598 goto badscope; 599 600 dst0 = ip6->ip6_dst; 601 if (in6_setscope(&dst0, origifp, &zone)) 602 goto badscope; 603 /* re-initialize to be sure */ 604 bzero(&dst_sa, sizeof(dst_sa)); 605 dst_sa.sin6_family = AF_INET6; 606 dst_sa.sin6_len = sizeof(dst_sa); 607 dst_sa.sin6_addr = ip6->ip6_dst; 608 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { 609 goto badscope; 610 } 611 612 /* We should use ia_ifp to support the case of 613 * sending packets to an address of our own. 614 */ 615 if (ia != NULL && ia->ia_ifp) 616 ifp = ia->ia_ifp; 617 618 /* scope check is done. */ 619 goto routefound; 620 621 badscope: 622 IP6STAT_INC(ip6s_badscope); 623 in6_ifstat_inc(origifp, ifs6_out_discard); 624 if (error == 0) 625 error = EHOSTUNREACH; /* XXX */ 626 goto bad; 627 628 routefound: 629 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 630 if (opt && opt->ip6po_nextroute.ro_rt) { 631 /* 632 * The nexthop is explicitly specified by the 633 * application. We assume the next hop is an IPv6 634 * address. 635 */ 636 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 637 } 638 else if ((rt->rt_flags & RTF_GATEWAY)) 639 dst = (struct sockaddr_in6 *)rt->rt_gateway; 640 } 641 642 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 643 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 644 } else { 645 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 646 in6_ifstat_inc(ifp, ifs6_out_mcast); 647 /* 648 * Confirm that the outgoing interface supports multicast. 649 */ 650 if (!(ifp->if_flags & IFF_MULTICAST)) { 651 IP6STAT_INC(ip6s_noroute); 652 in6_ifstat_inc(ifp, ifs6_out_discard); 653 error = ENETUNREACH; 654 goto bad; 655 } 656 if ((im6o == NULL && in6_mcast_loop) || 657 (im6o && im6o->im6o_multicast_loop)) { 658 /* 659 * Loop back multicast datagram if not expressly 660 * forbidden to do so, even if we have not joined 661 * the address; protocols will filter it later, 662 * thus deferring a hash lookup and lock acquisition 663 * at the expense of an m_copym(). 664 */ 665 ip6_mloopback(ifp, m, dst); 666 } else { 667 /* 668 * If we are acting as a multicast router, perform 669 * multicast forwarding as if the packet had just 670 * arrived on the interface to which we are about 671 * to send. The multicast forwarding function 672 * recursively calls this function, using the 673 * IPV6_FORWARDING flag to prevent infinite recursion. 674 * 675 * Multicasts that are looped back by ip6_mloopback(), 676 * above, will be forwarded by the ip6_input() routine, 677 * if necessary. 678 */ 679 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 680 /* 681 * XXX: ip6_mforward expects that rcvif is NULL 682 * when it is called from the originating path. 683 * However, it may not always be the case. 684 */ 685 m->m_pkthdr.rcvif = NULL; 686 if (ip6_mforward(ip6, ifp, m) != 0) { 687 m_freem(m); 688 goto done; 689 } 690 } 691 } 692 /* 693 * Multicasts with a hoplimit of zero may be looped back, 694 * above, but must not be transmitted on a network. 695 * Also, multicasts addressed to the loopback interface 696 * are not sent -- the above call to ip6_mloopback() will 697 * loop back a copy if this host actually belongs to the 698 * destination group on the loopback interface. 699 */ 700 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 701 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 702 m_freem(m); 703 goto done; 704 } 705 } 706 707 /* 708 * Fill the outgoing inteface to tell the upper layer 709 * to increment per-interface statistics. 710 */ 711 if (ifpp) 712 *ifpp = ifp; 713 714 /* Determine path MTU. */ 715 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 716 &alwaysfrag, fibnum)) != 0) 717 goto bad; 718 719 /* 720 * The caller of this function may specify to use the minimum MTU 721 * in some cases. 722 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 723 * setting. The logic is a bit complicated; by default, unicast 724 * packets will follow path MTU while multicast packets will be sent at 725 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 726 * including unicast ones will be sent at the minimum MTU. Multicast 727 * packets will always be sent at the minimum MTU unless 728 * IP6PO_MINMTU_DISABLE is explicitly specified. 729 * See RFC 3542 for more details. 730 */ 731 if (mtu > IPV6_MMTU) { 732 if ((flags & IPV6_MINMTU)) 733 mtu = IPV6_MMTU; 734 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 735 mtu = IPV6_MMTU; 736 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 737 (opt == NULL || 738 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 739 mtu = IPV6_MMTU; 740 } 741 } 742 743 /* 744 * clear embedded scope identifiers if necessary. 745 * in6_clearscope will touch the addresses only when necessary. 746 */ 747 in6_clearscope(&ip6->ip6_src); 748 in6_clearscope(&ip6->ip6_dst); 749 750 /* 751 * If the outgoing packet contains a hop-by-hop options header, 752 * it must be examined and processed even by the source node. 753 * (RFC 2460, section 4.) 754 */ 755 if (exthdrs.ip6e_hbh) { 756 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 757 u_int32_t dummy; /* XXX unused */ 758 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 759 760 #ifdef DIAGNOSTIC 761 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 762 panic("ip6e_hbh is not contiguous"); 763 #endif 764 /* 765 * XXX: if we have to send an ICMPv6 error to the sender, 766 * we need the M_LOOP flag since icmp6_error() expects 767 * the IPv6 and the hop-by-hop options header are 768 * contiguous unless the flag is set. 769 */ 770 m->m_flags |= M_LOOP; 771 m->m_pkthdr.rcvif = ifp; 772 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 773 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 774 &dummy, &plen) < 0) { 775 /* m was already freed at this point */ 776 error = EINVAL;/* better error? */ 777 goto done; 778 } 779 m->m_flags &= ~M_LOOP; /* XXX */ 780 m->m_pkthdr.rcvif = NULL; 781 } 782 783 /* Jump over all PFIL processing if hooks are not active. */ 784 if (!PFIL_HOOKED(&V_inet6_pfil_hook)) 785 goto passout; 786 787 odst = ip6->ip6_dst; 788 /* Run through list of hooks for output packets. */ 789 error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); 790 if (error != 0 || m == NULL) 791 goto done; 792 ip6 = mtod(m, struct ip6_hdr *); 793 794 needfiblookup = 0; 795 /* See if destination IP address was changed by packet filter. */ 796 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 797 m->m_flags |= M_SKIP_FIREWALL; 798 /* If destination is now ourself drop to ip6_input(). */ 799 if (in6_localip(&ip6->ip6_dst)) { 800 m->m_flags |= M_FASTFWD_OURS; 801 if (m->m_pkthdr.rcvif == NULL) 802 m->m_pkthdr.rcvif = V_loif; 803 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 804 m->m_pkthdr.csum_flags |= 805 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 806 m->m_pkthdr.csum_data = 0xffff; 807 } 808 #ifdef SCTP 809 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 810 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 811 #endif 812 error = netisr_queue(NETISR_IPV6, m); 813 goto done; 814 } else 815 needfiblookup = 1; /* Redo the routing table lookup. */ 816 } 817 /* See if fib was changed by packet filter. */ 818 if (fibnum != M_GETFIB(m)) { 819 m->m_flags |= M_SKIP_FIREWALL; 820 fibnum = M_GETFIB(m); 821 RO_RTFREE(ro); 822 needfiblookup = 1; 823 } 824 if (needfiblookup) 825 goto again; 826 827 /* See if local, if yes, send it to netisr. */ 828 if (m->m_flags & M_FASTFWD_OURS) { 829 if (m->m_pkthdr.rcvif == NULL) 830 m->m_pkthdr.rcvif = V_loif; 831 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 832 m->m_pkthdr.csum_flags |= 833 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 834 m->m_pkthdr.csum_data = 0xffff; 835 } 836 #ifdef SCTP 837 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 838 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 839 #endif 840 error = netisr_queue(NETISR_IPV6, m); 841 goto done; 842 } 843 /* Or forward to some other address? */ 844 if ((m->m_flags & M_IP6_NEXTHOP) && 845 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 846 dst = (struct sockaddr_in6 *)&ro->ro_dst; 847 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 848 m->m_flags |= M_SKIP_FIREWALL; 849 m->m_flags &= ~M_IP6_NEXTHOP; 850 m_tag_delete(m, fwd_tag); 851 goto again; 852 } 853 854 passout: 855 /* 856 * Send the packet to the outgoing interface. 857 * If necessary, do IPv6 fragmentation before sending. 858 * 859 * the logic here is rather complex: 860 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 861 * 1-a: send as is if tlen <= path mtu 862 * 1-b: fragment if tlen > path mtu 863 * 864 * 2: if user asks us not to fragment (dontfrag == 1) 865 * 2-a: send as is if tlen <= interface mtu 866 * 2-b: error if tlen > interface mtu 867 * 868 * 3: if we always need to attach fragment header (alwaysfrag == 1) 869 * always fragment 870 * 871 * 4: if dontfrag == 1 && alwaysfrag == 1 872 * error, as we cannot handle this conflicting request 873 */ 874 sw_csum = m->m_pkthdr.csum_flags; 875 if (!hdrsplit) { 876 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 877 sw_csum &= ~ifp->if_hwassist; 878 } else 879 tso = 0; 880 /* 881 * If we added extension headers, we will not do TSO and calculate the 882 * checksums ourselves for now. 883 * XXX-BZ Need a framework to know when the NIC can handle it, even 884 * with ext. hdrs. 885 */ 886 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 887 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 888 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 889 } 890 #ifdef SCTP 891 if (sw_csum & CSUM_SCTP_IPV6) { 892 sw_csum &= ~CSUM_SCTP_IPV6; 893 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 894 } 895 #endif 896 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 897 tlen = m->m_pkthdr.len; 898 899 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 900 dontfrag = 1; 901 else 902 dontfrag = 0; 903 if (dontfrag && alwaysfrag) { /* case 4 */ 904 /* conflicting request - can't transmit */ 905 error = EMSGSIZE; 906 goto bad; 907 } 908 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 909 /* 910 * Even if the DONTFRAG option is specified, we cannot send the 911 * packet when the data length is larger than the MTU of the 912 * outgoing interface. 913 * Notify the error by sending IPV6_PATHMTU ancillary data as 914 * well as returning an error code (the latter is not described 915 * in the API spec.) 916 */ 917 u_int32_t mtu32; 918 struct ip6ctlparam ip6cp; 919 920 mtu32 = (u_int32_t)mtu; 921 bzero(&ip6cp, sizeof(ip6cp)); 922 ip6cp.ip6c_cmdarg = (void *)&mtu32; 923 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 924 (void *)&ip6cp); 925 926 error = EMSGSIZE; 927 goto bad; 928 } 929 930 /* 931 * transmit packet without fragmentation 932 */ 933 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 934 struct in6_ifaddr *ia6; 935 936 ip6 = mtod(m, struct ip6_hdr *); 937 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 938 if (ia6) { 939 /* Record statistics for this interface address. */ 940 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 941 counter_u64_add(ia6->ia_ifa.ifa_obytes, 942 m->m_pkthdr.len); 943 ifa_free(&ia6->ia_ifa); 944 } 945 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 946 goto done; 947 } 948 949 /* 950 * try to fragment the packet. case 1-b and 3 951 */ 952 if (mtu < IPV6_MMTU) { 953 /* path MTU cannot be less than IPV6_MMTU */ 954 error = EMSGSIZE; 955 in6_ifstat_inc(ifp, ifs6_out_fragfail); 956 goto bad; 957 } else if (ip6->ip6_plen == 0) { 958 /* jumbo payload cannot be fragmented */ 959 error = EMSGSIZE; 960 in6_ifstat_inc(ifp, ifs6_out_fragfail); 961 goto bad; 962 } else { 963 u_char nextproto; 964 965 /* 966 * Too large for the destination or interface; 967 * fragment if possible. 968 * Must be able to put at least 8 bytes per fragment. 969 */ 970 hlen = unfragpartlen; 971 if (mtu > IPV6_MAXPACKET) 972 mtu = IPV6_MAXPACKET; 973 974 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 975 if (len < 8) { 976 error = EMSGSIZE; 977 in6_ifstat_inc(ifp, ifs6_out_fragfail); 978 goto bad; 979 } 980 981 /* 982 * If the interface will not calculate checksums on 983 * fragmented packets, then do it here. 984 * XXX-BZ handle the hw offloading case. Need flags. 985 */ 986 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 987 in6_delayed_cksum(m, plen, hlen); 988 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 989 } 990 #ifdef SCTP 991 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 992 sctp_delayed_cksum(m, hlen); 993 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 994 } 995 #endif 996 /* 997 * Change the next header field of the last header in the 998 * unfragmentable part. 999 */ 1000 if (exthdrs.ip6e_rthdr) { 1001 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1002 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1003 } else if (exthdrs.ip6e_dest1) { 1004 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1005 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1006 } else if (exthdrs.ip6e_hbh) { 1007 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1008 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1009 } else { 1010 nextproto = ip6->ip6_nxt; 1011 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1012 } 1013 1014 /* 1015 * Loop through length of segment after first fragment, 1016 * make new header and copy data of each part and link onto 1017 * chain. 1018 */ 1019 m0 = m; 1020 if ((error = ip6_fragment(ifp, m, hlen, nextproto, len))) 1021 goto sendorfree; 1022 1023 in6_ifstat_inc(ifp, ifs6_out_fragok); 1024 } 1025 1026 /* 1027 * Remove leading garbages. 1028 */ 1029 sendorfree: 1030 m = m0->m_nextpkt; 1031 m0->m_nextpkt = 0; 1032 m_freem(m0); 1033 for (m0 = m; m; m = m0) { 1034 m0 = m->m_nextpkt; 1035 m->m_nextpkt = 0; 1036 if (error == 0) { 1037 /* Record statistics for this interface address. */ 1038 if (ia) { 1039 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1040 counter_u64_add(ia->ia_ifa.ifa_obytes, 1041 m->m_pkthdr.len); 1042 } 1043 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1044 } else 1045 m_freem(m); 1046 } 1047 1048 if (error == 0) 1049 IP6STAT_INC(ip6s_fragmented); 1050 1051 done: 1052 if (ro == &ip6route) 1053 RO_RTFREE(ro); 1054 if (ro_pmtu == &ip6route) 1055 RO_RTFREE(ro_pmtu); 1056 return (error); 1057 1058 freehdrs: 1059 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1060 m_freem(exthdrs.ip6e_dest1); 1061 m_freem(exthdrs.ip6e_rthdr); 1062 m_freem(exthdrs.ip6e_dest2); 1063 /* FALLTHROUGH */ 1064 bad: 1065 if (m) 1066 m_freem(m); 1067 goto done; 1068 } 1069 1070 static int 1071 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1072 { 1073 struct mbuf *m; 1074 1075 if (hlen > MCLBYTES) 1076 return (ENOBUFS); /* XXX */ 1077 1078 if (hlen > MLEN) 1079 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1080 else 1081 m = m_get(M_NOWAIT, MT_DATA); 1082 if (m == NULL) 1083 return (ENOBUFS); 1084 m->m_len = hlen; 1085 if (hdr) 1086 bcopy(hdr, mtod(m, caddr_t), hlen); 1087 1088 *mp = m; 1089 return (0); 1090 } 1091 1092 /* 1093 * Insert jumbo payload option. 1094 */ 1095 static int 1096 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1097 { 1098 struct mbuf *mopt; 1099 u_char *optbuf; 1100 u_int32_t v; 1101 1102 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1103 1104 /* 1105 * If there is no hop-by-hop options header, allocate new one. 1106 * If there is one but it doesn't have enough space to store the 1107 * jumbo payload option, allocate a cluster to store the whole options. 1108 * Otherwise, use it to store the options. 1109 */ 1110 if (exthdrs->ip6e_hbh == 0) { 1111 mopt = m_get(M_NOWAIT, MT_DATA); 1112 if (mopt == NULL) 1113 return (ENOBUFS); 1114 mopt->m_len = JUMBOOPTLEN; 1115 optbuf = mtod(mopt, u_char *); 1116 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1117 exthdrs->ip6e_hbh = mopt; 1118 } else { 1119 struct ip6_hbh *hbh; 1120 1121 mopt = exthdrs->ip6e_hbh; 1122 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1123 /* 1124 * XXX assumption: 1125 * - exthdrs->ip6e_hbh is not referenced from places 1126 * other than exthdrs. 1127 * - exthdrs->ip6e_hbh is not an mbuf chain. 1128 */ 1129 int oldoptlen = mopt->m_len; 1130 struct mbuf *n; 1131 1132 /* 1133 * XXX: give up if the whole (new) hbh header does 1134 * not fit even in an mbuf cluster. 1135 */ 1136 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1137 return (ENOBUFS); 1138 1139 /* 1140 * As a consequence, we must always prepare a cluster 1141 * at this point. 1142 */ 1143 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1144 if (n == NULL) 1145 return (ENOBUFS); 1146 n->m_len = oldoptlen + JUMBOOPTLEN; 1147 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1148 oldoptlen); 1149 optbuf = mtod(n, caddr_t) + oldoptlen; 1150 m_freem(mopt); 1151 mopt = exthdrs->ip6e_hbh = n; 1152 } else { 1153 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1154 mopt->m_len += JUMBOOPTLEN; 1155 } 1156 optbuf[0] = IP6OPT_PADN; 1157 optbuf[1] = 1; 1158 1159 /* 1160 * Adjust the header length according to the pad and 1161 * the jumbo payload option. 1162 */ 1163 hbh = mtod(mopt, struct ip6_hbh *); 1164 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1165 } 1166 1167 /* fill in the option. */ 1168 optbuf[2] = IP6OPT_JUMBO; 1169 optbuf[3] = 4; 1170 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1171 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1172 1173 /* finally, adjust the packet header length */ 1174 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1175 1176 return (0); 1177 #undef JUMBOOPTLEN 1178 } 1179 1180 /* 1181 * Insert fragment header and copy unfragmentable header portions. 1182 */ 1183 static int 1184 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1185 struct ip6_frag **frghdrp) 1186 { 1187 struct mbuf *n, *mlast; 1188 1189 if (hlen > sizeof(struct ip6_hdr)) { 1190 n = m_copym(m0, sizeof(struct ip6_hdr), 1191 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1192 if (n == 0) 1193 return (ENOBUFS); 1194 m->m_next = n; 1195 } else 1196 n = m; 1197 1198 /* Search for the last mbuf of unfragmentable part. */ 1199 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1200 ; 1201 1202 if (M_WRITABLE(mlast) && 1203 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1204 /* use the trailing space of the last mbuf for the fragment hdr */ 1205 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1206 mlast->m_len); 1207 mlast->m_len += sizeof(struct ip6_frag); 1208 m->m_pkthdr.len += sizeof(struct ip6_frag); 1209 } else { 1210 /* allocate a new mbuf for the fragment header */ 1211 struct mbuf *mfrg; 1212 1213 mfrg = m_get(M_NOWAIT, MT_DATA); 1214 if (mfrg == NULL) 1215 return (ENOBUFS); 1216 mfrg->m_len = sizeof(struct ip6_frag); 1217 *frghdrp = mtod(mfrg, struct ip6_frag *); 1218 mlast->m_next = mfrg; 1219 } 1220 1221 return (0); 1222 } 1223 1224 static int 1225 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, 1226 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, 1227 int *alwaysfragp, u_int fibnum) 1228 { 1229 u_int32_t mtu = 0; 1230 int alwaysfrag = 0; 1231 int error = 0; 1232 1233 if (ro_pmtu != ro) { 1234 /* The first hop and the final destination may differ. */ 1235 struct sockaddr_in6 *sa6_dst = 1236 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1237 if (ro_pmtu->ro_rt && 1238 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1239 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1240 RTFREE(ro_pmtu->ro_rt); 1241 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1242 } 1243 if (ro_pmtu->ro_rt == NULL) { 1244 bzero(sa6_dst, sizeof(*sa6_dst)); 1245 sa6_dst->sin6_family = AF_INET6; 1246 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1247 sa6_dst->sin6_addr = *dst; 1248 1249 in6_rtalloc(ro_pmtu, fibnum); 1250 } 1251 } 1252 if (ro_pmtu->ro_rt) { 1253 u_int32_t ifmtu; 1254 struct in_conninfo inc; 1255 1256 bzero(&inc, sizeof(inc)); 1257 inc.inc_flags |= INC_ISIPV6; 1258 inc.inc6_faddr = *dst; 1259 1260 if (ifp == NULL) 1261 ifp = ro_pmtu->ro_rt->rt_ifp; 1262 ifmtu = IN6_LINKMTU(ifp); 1263 mtu = tcp_hc_getmtu(&inc); 1264 if (mtu) 1265 mtu = min(mtu, ro_pmtu->ro_rt->rt_mtu); 1266 else 1267 mtu = ro_pmtu->ro_rt->rt_mtu; 1268 if (mtu == 0) 1269 mtu = ifmtu; 1270 else if (mtu < IPV6_MMTU) { 1271 /* 1272 * RFC2460 section 5, last paragraph: 1273 * if we record ICMPv6 too big message with 1274 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1275 * or smaller, with framgent header attached. 1276 * (fragment header is needed regardless from the 1277 * packet size, for translators to identify packets) 1278 */ 1279 alwaysfrag = 1; 1280 mtu = IPV6_MMTU; 1281 } 1282 } else if (ifp) { 1283 mtu = IN6_LINKMTU(ifp); 1284 } else 1285 error = EHOSTUNREACH; /* XXX */ 1286 1287 *mtup = mtu; 1288 if (alwaysfragp) 1289 *alwaysfragp = alwaysfrag; 1290 return (error); 1291 } 1292 1293 /* 1294 * IP6 socket option processing. 1295 */ 1296 int 1297 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1298 { 1299 int optdatalen, uproto; 1300 void *optdata; 1301 struct inpcb *in6p = sotoinpcb(so); 1302 int error, optval; 1303 int level, op, optname; 1304 int optlen; 1305 struct thread *td; 1306 #ifdef RSS 1307 uint32_t rss_bucket; 1308 int retval; 1309 #endif 1310 1311 level = sopt->sopt_level; 1312 op = sopt->sopt_dir; 1313 optname = sopt->sopt_name; 1314 optlen = sopt->sopt_valsize; 1315 td = sopt->sopt_td; 1316 error = 0; 1317 optval = 0; 1318 uproto = (int)so->so_proto->pr_protocol; 1319 1320 if (level != IPPROTO_IPV6) { 1321 error = EINVAL; 1322 1323 if (sopt->sopt_level == SOL_SOCKET && 1324 sopt->sopt_dir == SOPT_SET) { 1325 switch (sopt->sopt_name) { 1326 case SO_REUSEADDR: 1327 INP_WLOCK(in6p); 1328 if ((so->so_options & SO_REUSEADDR) != 0) 1329 in6p->inp_flags2 |= INP_REUSEADDR; 1330 else 1331 in6p->inp_flags2 &= ~INP_REUSEADDR; 1332 INP_WUNLOCK(in6p); 1333 error = 0; 1334 break; 1335 case SO_REUSEPORT: 1336 INP_WLOCK(in6p); 1337 if ((so->so_options & SO_REUSEPORT) != 0) 1338 in6p->inp_flags2 |= INP_REUSEPORT; 1339 else 1340 in6p->inp_flags2 &= ~INP_REUSEPORT; 1341 INP_WUNLOCK(in6p); 1342 error = 0; 1343 break; 1344 case SO_SETFIB: 1345 INP_WLOCK(in6p); 1346 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1347 INP_WUNLOCK(in6p); 1348 error = 0; 1349 break; 1350 default: 1351 break; 1352 } 1353 } 1354 } else { /* level == IPPROTO_IPV6 */ 1355 switch (op) { 1356 1357 case SOPT_SET: 1358 switch (optname) { 1359 case IPV6_2292PKTOPTIONS: 1360 #ifdef IPV6_PKTOPTIONS 1361 case IPV6_PKTOPTIONS: 1362 #endif 1363 { 1364 struct mbuf *m; 1365 1366 error = soopt_getm(sopt, &m); /* XXX */ 1367 if (error != 0) 1368 break; 1369 error = soopt_mcopyin(sopt, m); /* XXX */ 1370 if (error != 0) 1371 break; 1372 error = ip6_pcbopts(&in6p->in6p_outputopts, 1373 m, so, sopt); 1374 m_freem(m); /* XXX */ 1375 break; 1376 } 1377 1378 /* 1379 * Use of some Hop-by-Hop options or some 1380 * Destination options, might require special 1381 * privilege. That is, normal applications 1382 * (without special privilege) might be forbidden 1383 * from setting certain options in outgoing packets, 1384 * and might never see certain options in received 1385 * packets. [RFC 2292 Section 6] 1386 * KAME specific note: 1387 * KAME prevents non-privileged users from sending or 1388 * receiving ANY hbh/dst options in order to avoid 1389 * overhead of parsing options in the kernel. 1390 */ 1391 case IPV6_RECVHOPOPTS: 1392 case IPV6_RECVDSTOPTS: 1393 case IPV6_RECVRTHDRDSTOPTS: 1394 if (td != NULL) { 1395 error = priv_check(td, 1396 PRIV_NETINET_SETHDROPTS); 1397 if (error) 1398 break; 1399 } 1400 /* FALLTHROUGH */ 1401 case IPV6_UNICAST_HOPS: 1402 case IPV6_HOPLIMIT: 1403 1404 case IPV6_RECVPKTINFO: 1405 case IPV6_RECVHOPLIMIT: 1406 case IPV6_RECVRTHDR: 1407 case IPV6_RECVPATHMTU: 1408 case IPV6_RECVTCLASS: 1409 case IPV6_V6ONLY: 1410 case IPV6_AUTOFLOWLABEL: 1411 case IPV6_BINDANY: 1412 case IPV6_BINDMULTI: 1413 #ifdef RSS 1414 case IPV6_RSS_LISTEN_BUCKET: 1415 #endif 1416 if (optname == IPV6_BINDANY && td != NULL) { 1417 error = priv_check(td, 1418 PRIV_NETINET_BINDANY); 1419 if (error) 1420 break; 1421 } 1422 1423 if (optlen != sizeof(int)) { 1424 error = EINVAL; 1425 break; 1426 } 1427 error = sooptcopyin(sopt, &optval, 1428 sizeof optval, sizeof optval); 1429 if (error) 1430 break; 1431 switch (optname) { 1432 1433 case IPV6_UNICAST_HOPS: 1434 if (optval < -1 || optval >= 256) 1435 error = EINVAL; 1436 else { 1437 /* -1 = kernel default */ 1438 in6p->in6p_hops = optval; 1439 if ((in6p->inp_vflag & 1440 INP_IPV4) != 0) 1441 in6p->inp_ip_ttl = optval; 1442 } 1443 break; 1444 #define OPTSET(bit) \ 1445 do { \ 1446 INP_WLOCK(in6p); \ 1447 if (optval) \ 1448 in6p->inp_flags |= (bit); \ 1449 else \ 1450 in6p->inp_flags &= ~(bit); \ 1451 INP_WUNLOCK(in6p); \ 1452 } while (/*CONSTCOND*/ 0) 1453 #define OPTSET2292(bit) \ 1454 do { \ 1455 INP_WLOCK(in6p); \ 1456 in6p->inp_flags |= IN6P_RFC2292; \ 1457 if (optval) \ 1458 in6p->inp_flags |= (bit); \ 1459 else \ 1460 in6p->inp_flags &= ~(bit); \ 1461 INP_WUNLOCK(in6p); \ 1462 } while (/*CONSTCOND*/ 0) 1463 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1464 1465 #define OPTSET2(bit, val) do { \ 1466 INP_WLOCK(in6p); \ 1467 if (val) \ 1468 in6p->inp_flags2 |= bit; \ 1469 else \ 1470 in6p->inp_flags2 &= ~bit; \ 1471 INP_WUNLOCK(in6p); \ 1472 } while (0) 1473 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) 1474 1475 case IPV6_RECVPKTINFO: 1476 /* cannot mix with RFC2292 */ 1477 if (OPTBIT(IN6P_RFC2292)) { 1478 error = EINVAL; 1479 break; 1480 } 1481 OPTSET(IN6P_PKTINFO); 1482 break; 1483 1484 case IPV6_HOPLIMIT: 1485 { 1486 struct ip6_pktopts **optp; 1487 1488 /* cannot mix with RFC2292 */ 1489 if (OPTBIT(IN6P_RFC2292)) { 1490 error = EINVAL; 1491 break; 1492 } 1493 optp = &in6p->in6p_outputopts; 1494 error = ip6_pcbopt(IPV6_HOPLIMIT, 1495 (u_char *)&optval, sizeof(optval), 1496 optp, (td != NULL) ? td->td_ucred : 1497 NULL, uproto); 1498 break; 1499 } 1500 1501 case IPV6_RECVHOPLIMIT: 1502 /* cannot mix with RFC2292 */ 1503 if (OPTBIT(IN6P_RFC2292)) { 1504 error = EINVAL; 1505 break; 1506 } 1507 OPTSET(IN6P_HOPLIMIT); 1508 break; 1509 1510 case IPV6_RECVHOPOPTS: 1511 /* cannot mix with RFC2292 */ 1512 if (OPTBIT(IN6P_RFC2292)) { 1513 error = EINVAL; 1514 break; 1515 } 1516 OPTSET(IN6P_HOPOPTS); 1517 break; 1518 1519 case IPV6_RECVDSTOPTS: 1520 /* cannot mix with RFC2292 */ 1521 if (OPTBIT(IN6P_RFC2292)) { 1522 error = EINVAL; 1523 break; 1524 } 1525 OPTSET(IN6P_DSTOPTS); 1526 break; 1527 1528 case IPV6_RECVRTHDRDSTOPTS: 1529 /* cannot mix with RFC2292 */ 1530 if (OPTBIT(IN6P_RFC2292)) { 1531 error = EINVAL; 1532 break; 1533 } 1534 OPTSET(IN6P_RTHDRDSTOPTS); 1535 break; 1536 1537 case IPV6_RECVRTHDR: 1538 /* cannot mix with RFC2292 */ 1539 if (OPTBIT(IN6P_RFC2292)) { 1540 error = EINVAL; 1541 break; 1542 } 1543 OPTSET(IN6P_RTHDR); 1544 break; 1545 1546 case IPV6_RECVPATHMTU: 1547 /* 1548 * We ignore this option for TCP 1549 * sockets. 1550 * (RFC3542 leaves this case 1551 * unspecified.) 1552 */ 1553 if (uproto != IPPROTO_TCP) 1554 OPTSET(IN6P_MTU); 1555 break; 1556 1557 case IPV6_V6ONLY: 1558 /* 1559 * make setsockopt(IPV6_V6ONLY) 1560 * available only prior to bind(2). 1561 * see ipng mailing list, Jun 22 2001. 1562 */ 1563 if (in6p->inp_lport || 1564 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1565 error = EINVAL; 1566 break; 1567 } 1568 OPTSET(IN6P_IPV6_V6ONLY); 1569 if (optval) 1570 in6p->inp_vflag &= ~INP_IPV4; 1571 else 1572 in6p->inp_vflag |= INP_IPV4; 1573 break; 1574 case IPV6_RECVTCLASS: 1575 /* cannot mix with RFC2292 XXX */ 1576 if (OPTBIT(IN6P_RFC2292)) { 1577 error = EINVAL; 1578 break; 1579 } 1580 OPTSET(IN6P_TCLASS); 1581 break; 1582 case IPV6_AUTOFLOWLABEL: 1583 OPTSET(IN6P_AUTOFLOWLABEL); 1584 break; 1585 1586 case IPV6_BINDANY: 1587 OPTSET(INP_BINDANY); 1588 break; 1589 1590 case IPV6_BINDMULTI: 1591 OPTSET2(INP_BINDMULTI, optval); 1592 break; 1593 #ifdef RSS 1594 case IPV6_RSS_LISTEN_BUCKET: 1595 if ((optval >= 0) && 1596 (optval < rss_getnumbuckets())) { 1597 in6p->inp_rss_listen_bucket = optval; 1598 OPTSET2(INP_RSS_BUCKET_SET, 1); 1599 } else { 1600 error = EINVAL; 1601 } 1602 break; 1603 #endif 1604 } 1605 break; 1606 1607 case IPV6_TCLASS: 1608 case IPV6_DONTFRAG: 1609 case IPV6_USE_MIN_MTU: 1610 case IPV6_PREFER_TEMPADDR: 1611 if (optlen != sizeof(optval)) { 1612 error = EINVAL; 1613 break; 1614 } 1615 error = sooptcopyin(sopt, &optval, 1616 sizeof optval, sizeof optval); 1617 if (error) 1618 break; 1619 { 1620 struct ip6_pktopts **optp; 1621 optp = &in6p->in6p_outputopts; 1622 error = ip6_pcbopt(optname, 1623 (u_char *)&optval, sizeof(optval), 1624 optp, (td != NULL) ? td->td_ucred : 1625 NULL, uproto); 1626 break; 1627 } 1628 1629 case IPV6_2292PKTINFO: 1630 case IPV6_2292HOPLIMIT: 1631 case IPV6_2292HOPOPTS: 1632 case IPV6_2292DSTOPTS: 1633 case IPV6_2292RTHDR: 1634 /* RFC 2292 */ 1635 if (optlen != sizeof(int)) { 1636 error = EINVAL; 1637 break; 1638 } 1639 error = sooptcopyin(sopt, &optval, 1640 sizeof optval, sizeof optval); 1641 if (error) 1642 break; 1643 switch (optname) { 1644 case IPV6_2292PKTINFO: 1645 OPTSET2292(IN6P_PKTINFO); 1646 break; 1647 case IPV6_2292HOPLIMIT: 1648 OPTSET2292(IN6P_HOPLIMIT); 1649 break; 1650 case IPV6_2292HOPOPTS: 1651 /* 1652 * Check super-user privilege. 1653 * See comments for IPV6_RECVHOPOPTS. 1654 */ 1655 if (td != NULL) { 1656 error = priv_check(td, 1657 PRIV_NETINET_SETHDROPTS); 1658 if (error) 1659 return (error); 1660 } 1661 OPTSET2292(IN6P_HOPOPTS); 1662 break; 1663 case IPV6_2292DSTOPTS: 1664 if (td != NULL) { 1665 error = priv_check(td, 1666 PRIV_NETINET_SETHDROPTS); 1667 if (error) 1668 return (error); 1669 } 1670 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1671 break; 1672 case IPV6_2292RTHDR: 1673 OPTSET2292(IN6P_RTHDR); 1674 break; 1675 } 1676 break; 1677 case IPV6_PKTINFO: 1678 case IPV6_HOPOPTS: 1679 case IPV6_RTHDR: 1680 case IPV6_DSTOPTS: 1681 case IPV6_RTHDRDSTOPTS: 1682 case IPV6_NEXTHOP: 1683 { 1684 /* new advanced API (RFC3542) */ 1685 u_char *optbuf; 1686 u_char optbuf_storage[MCLBYTES]; 1687 int optlen; 1688 struct ip6_pktopts **optp; 1689 1690 /* cannot mix with RFC2292 */ 1691 if (OPTBIT(IN6P_RFC2292)) { 1692 error = EINVAL; 1693 break; 1694 } 1695 1696 /* 1697 * We only ensure valsize is not too large 1698 * here. Further validation will be done 1699 * later. 1700 */ 1701 error = sooptcopyin(sopt, optbuf_storage, 1702 sizeof(optbuf_storage), 0); 1703 if (error) 1704 break; 1705 optlen = sopt->sopt_valsize; 1706 optbuf = optbuf_storage; 1707 optp = &in6p->in6p_outputopts; 1708 error = ip6_pcbopt(optname, optbuf, optlen, 1709 optp, (td != NULL) ? td->td_ucred : NULL, 1710 uproto); 1711 break; 1712 } 1713 #undef OPTSET 1714 1715 case IPV6_MULTICAST_IF: 1716 case IPV6_MULTICAST_HOPS: 1717 case IPV6_MULTICAST_LOOP: 1718 case IPV6_JOIN_GROUP: 1719 case IPV6_LEAVE_GROUP: 1720 case IPV6_MSFILTER: 1721 case MCAST_BLOCK_SOURCE: 1722 case MCAST_UNBLOCK_SOURCE: 1723 case MCAST_JOIN_GROUP: 1724 case MCAST_LEAVE_GROUP: 1725 case MCAST_JOIN_SOURCE_GROUP: 1726 case MCAST_LEAVE_SOURCE_GROUP: 1727 error = ip6_setmoptions(in6p, sopt); 1728 break; 1729 1730 case IPV6_PORTRANGE: 1731 error = sooptcopyin(sopt, &optval, 1732 sizeof optval, sizeof optval); 1733 if (error) 1734 break; 1735 1736 INP_WLOCK(in6p); 1737 switch (optval) { 1738 case IPV6_PORTRANGE_DEFAULT: 1739 in6p->inp_flags &= ~(INP_LOWPORT); 1740 in6p->inp_flags &= ~(INP_HIGHPORT); 1741 break; 1742 1743 case IPV6_PORTRANGE_HIGH: 1744 in6p->inp_flags &= ~(INP_LOWPORT); 1745 in6p->inp_flags |= INP_HIGHPORT; 1746 break; 1747 1748 case IPV6_PORTRANGE_LOW: 1749 in6p->inp_flags &= ~(INP_HIGHPORT); 1750 in6p->inp_flags |= INP_LOWPORT; 1751 break; 1752 1753 default: 1754 error = EINVAL; 1755 break; 1756 } 1757 INP_WUNLOCK(in6p); 1758 break; 1759 1760 #ifdef IPSEC 1761 case IPV6_IPSEC_POLICY: 1762 { 1763 caddr_t req; 1764 struct mbuf *m; 1765 1766 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ 1767 break; 1768 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ 1769 break; 1770 req = mtod(m, caddr_t); 1771 error = ipsec_set_policy(in6p, optname, req, 1772 m->m_len, (sopt->sopt_td != NULL) ? 1773 sopt->sopt_td->td_ucred : NULL); 1774 m_freem(m); 1775 break; 1776 } 1777 #endif /* IPSEC */ 1778 1779 default: 1780 error = ENOPROTOOPT; 1781 break; 1782 } 1783 break; 1784 1785 case SOPT_GET: 1786 switch (optname) { 1787 1788 case IPV6_2292PKTOPTIONS: 1789 #ifdef IPV6_PKTOPTIONS 1790 case IPV6_PKTOPTIONS: 1791 #endif 1792 /* 1793 * RFC3542 (effectively) deprecated the 1794 * semantics of the 2292-style pktoptions. 1795 * Since it was not reliable in nature (i.e., 1796 * applications had to expect the lack of some 1797 * information after all), it would make sense 1798 * to simplify this part by always returning 1799 * empty data. 1800 */ 1801 sopt->sopt_valsize = 0; 1802 break; 1803 1804 case IPV6_RECVHOPOPTS: 1805 case IPV6_RECVDSTOPTS: 1806 case IPV6_RECVRTHDRDSTOPTS: 1807 case IPV6_UNICAST_HOPS: 1808 case IPV6_RECVPKTINFO: 1809 case IPV6_RECVHOPLIMIT: 1810 case IPV6_RECVRTHDR: 1811 case IPV6_RECVPATHMTU: 1812 1813 case IPV6_V6ONLY: 1814 case IPV6_PORTRANGE: 1815 case IPV6_RECVTCLASS: 1816 case IPV6_AUTOFLOWLABEL: 1817 case IPV6_BINDANY: 1818 case IPV6_FLOWID: 1819 case IPV6_FLOWTYPE: 1820 #ifdef RSS 1821 case IPV6_RSSBUCKETID: 1822 #endif 1823 switch (optname) { 1824 1825 case IPV6_RECVHOPOPTS: 1826 optval = OPTBIT(IN6P_HOPOPTS); 1827 break; 1828 1829 case IPV6_RECVDSTOPTS: 1830 optval = OPTBIT(IN6P_DSTOPTS); 1831 break; 1832 1833 case IPV6_RECVRTHDRDSTOPTS: 1834 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1835 break; 1836 1837 case IPV6_UNICAST_HOPS: 1838 optval = in6p->in6p_hops; 1839 break; 1840 1841 case IPV6_RECVPKTINFO: 1842 optval = OPTBIT(IN6P_PKTINFO); 1843 break; 1844 1845 case IPV6_RECVHOPLIMIT: 1846 optval = OPTBIT(IN6P_HOPLIMIT); 1847 break; 1848 1849 case IPV6_RECVRTHDR: 1850 optval = OPTBIT(IN6P_RTHDR); 1851 break; 1852 1853 case IPV6_RECVPATHMTU: 1854 optval = OPTBIT(IN6P_MTU); 1855 break; 1856 1857 case IPV6_V6ONLY: 1858 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1859 break; 1860 1861 case IPV6_PORTRANGE: 1862 { 1863 int flags; 1864 flags = in6p->inp_flags; 1865 if (flags & INP_HIGHPORT) 1866 optval = IPV6_PORTRANGE_HIGH; 1867 else if (flags & INP_LOWPORT) 1868 optval = IPV6_PORTRANGE_LOW; 1869 else 1870 optval = 0; 1871 break; 1872 } 1873 case IPV6_RECVTCLASS: 1874 optval = OPTBIT(IN6P_TCLASS); 1875 break; 1876 1877 case IPV6_AUTOFLOWLABEL: 1878 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1879 break; 1880 1881 case IPV6_BINDANY: 1882 optval = OPTBIT(INP_BINDANY); 1883 break; 1884 1885 case IPV6_FLOWID: 1886 optval = in6p->inp_flowid; 1887 break; 1888 1889 case IPV6_FLOWTYPE: 1890 optval = in6p->inp_flowtype; 1891 break; 1892 #ifdef RSS 1893 case IPV6_RSSBUCKETID: 1894 retval = 1895 rss_hash2bucket(in6p->inp_flowid, 1896 in6p->inp_flowtype, 1897 &rss_bucket); 1898 if (retval == 0) 1899 optval = rss_bucket; 1900 else 1901 error = EINVAL; 1902 break; 1903 #endif 1904 1905 case IPV6_BINDMULTI: 1906 optval = OPTBIT2(INP_BINDMULTI); 1907 break; 1908 1909 } 1910 if (error) 1911 break; 1912 error = sooptcopyout(sopt, &optval, 1913 sizeof optval); 1914 break; 1915 1916 case IPV6_PATHMTU: 1917 { 1918 u_long pmtu = 0; 1919 struct ip6_mtuinfo mtuinfo; 1920 struct route_in6 sro; 1921 1922 bzero(&sro, sizeof(sro)); 1923 1924 if (!(so->so_state & SS_ISCONNECTED)) 1925 return (ENOTCONN); 1926 /* 1927 * XXX: we dot not consider the case of source 1928 * routing, or optional information to specify 1929 * the outgoing interface. 1930 */ 1931 error = ip6_getpmtu(&sro, NULL, NULL, 1932 &in6p->in6p_faddr, &pmtu, NULL, 1933 so->so_fibnum); 1934 if (sro.ro_rt) 1935 RTFREE(sro.ro_rt); 1936 if (error) 1937 break; 1938 if (pmtu > IPV6_MAXPACKET) 1939 pmtu = IPV6_MAXPACKET; 1940 1941 bzero(&mtuinfo, sizeof(mtuinfo)); 1942 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1943 optdata = (void *)&mtuinfo; 1944 optdatalen = sizeof(mtuinfo); 1945 error = sooptcopyout(sopt, optdata, 1946 optdatalen); 1947 break; 1948 } 1949 1950 case IPV6_2292PKTINFO: 1951 case IPV6_2292HOPLIMIT: 1952 case IPV6_2292HOPOPTS: 1953 case IPV6_2292RTHDR: 1954 case IPV6_2292DSTOPTS: 1955 switch (optname) { 1956 case IPV6_2292PKTINFO: 1957 optval = OPTBIT(IN6P_PKTINFO); 1958 break; 1959 case IPV6_2292HOPLIMIT: 1960 optval = OPTBIT(IN6P_HOPLIMIT); 1961 break; 1962 case IPV6_2292HOPOPTS: 1963 optval = OPTBIT(IN6P_HOPOPTS); 1964 break; 1965 case IPV6_2292RTHDR: 1966 optval = OPTBIT(IN6P_RTHDR); 1967 break; 1968 case IPV6_2292DSTOPTS: 1969 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1970 break; 1971 } 1972 error = sooptcopyout(sopt, &optval, 1973 sizeof optval); 1974 break; 1975 case IPV6_PKTINFO: 1976 case IPV6_HOPOPTS: 1977 case IPV6_RTHDR: 1978 case IPV6_DSTOPTS: 1979 case IPV6_RTHDRDSTOPTS: 1980 case IPV6_NEXTHOP: 1981 case IPV6_TCLASS: 1982 case IPV6_DONTFRAG: 1983 case IPV6_USE_MIN_MTU: 1984 case IPV6_PREFER_TEMPADDR: 1985 error = ip6_getpcbopt(in6p->in6p_outputopts, 1986 optname, sopt); 1987 break; 1988 1989 case IPV6_MULTICAST_IF: 1990 case IPV6_MULTICAST_HOPS: 1991 case IPV6_MULTICAST_LOOP: 1992 case IPV6_MSFILTER: 1993 error = ip6_getmoptions(in6p, sopt); 1994 break; 1995 1996 #ifdef IPSEC 1997 case IPV6_IPSEC_POLICY: 1998 { 1999 caddr_t req = NULL; 2000 size_t len = 0; 2001 struct mbuf *m = NULL; 2002 struct mbuf **mp = &m; 2003 size_t ovalsize = sopt->sopt_valsize; 2004 caddr_t oval = (caddr_t)sopt->sopt_val; 2005 2006 error = soopt_getm(sopt, &m); /* XXX */ 2007 if (error != 0) 2008 break; 2009 error = soopt_mcopyin(sopt, m); /* XXX */ 2010 if (error != 0) 2011 break; 2012 sopt->sopt_valsize = ovalsize; 2013 sopt->sopt_val = oval; 2014 if (m) { 2015 req = mtod(m, caddr_t); 2016 len = m->m_len; 2017 } 2018 error = ipsec_get_policy(in6p, req, len, mp); 2019 if (error == 0) 2020 error = soopt_mcopyout(sopt, m); /* XXX */ 2021 if (error == 0 && m) 2022 m_freem(m); 2023 break; 2024 } 2025 #endif /* IPSEC */ 2026 2027 default: 2028 error = ENOPROTOOPT; 2029 break; 2030 } 2031 break; 2032 } 2033 } 2034 return (error); 2035 } 2036 2037 int 2038 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2039 { 2040 int error = 0, optval, optlen; 2041 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2042 struct inpcb *in6p = sotoinpcb(so); 2043 int level, op, optname; 2044 2045 level = sopt->sopt_level; 2046 op = sopt->sopt_dir; 2047 optname = sopt->sopt_name; 2048 optlen = sopt->sopt_valsize; 2049 2050 if (level != IPPROTO_IPV6) { 2051 return (EINVAL); 2052 } 2053 2054 switch (optname) { 2055 case IPV6_CHECKSUM: 2056 /* 2057 * For ICMPv6 sockets, no modification allowed for checksum 2058 * offset, permit "no change" values to help existing apps. 2059 * 2060 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2061 * for an ICMPv6 socket will fail." 2062 * The current behavior does not meet RFC3542. 2063 */ 2064 switch (op) { 2065 case SOPT_SET: 2066 if (optlen != sizeof(int)) { 2067 error = EINVAL; 2068 break; 2069 } 2070 error = sooptcopyin(sopt, &optval, sizeof(optval), 2071 sizeof(optval)); 2072 if (error) 2073 break; 2074 if ((optval % 2) != 0) { 2075 /* the API assumes even offset values */ 2076 error = EINVAL; 2077 } else if (so->so_proto->pr_protocol == 2078 IPPROTO_ICMPV6) { 2079 if (optval != icmp6off) 2080 error = EINVAL; 2081 } else 2082 in6p->in6p_cksum = optval; 2083 break; 2084 2085 case SOPT_GET: 2086 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2087 optval = icmp6off; 2088 else 2089 optval = in6p->in6p_cksum; 2090 2091 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2092 break; 2093 2094 default: 2095 error = EINVAL; 2096 break; 2097 } 2098 break; 2099 2100 default: 2101 error = ENOPROTOOPT; 2102 break; 2103 } 2104 2105 return (error); 2106 } 2107 2108 /* 2109 * Set up IP6 options in pcb for insertion in output packets or 2110 * specifying behavior of outgoing packets. 2111 */ 2112 static int 2113 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2114 struct socket *so, struct sockopt *sopt) 2115 { 2116 struct ip6_pktopts *opt = *pktopt; 2117 int error = 0; 2118 struct thread *td = sopt->sopt_td; 2119 2120 /* turn off any old options. */ 2121 if (opt) { 2122 #ifdef DIAGNOSTIC 2123 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2124 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2125 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2126 printf("ip6_pcbopts: all specified options are cleared.\n"); 2127 #endif 2128 ip6_clearpktopts(opt, -1); 2129 } else 2130 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2131 *pktopt = NULL; 2132 2133 if (!m || m->m_len == 0) { 2134 /* 2135 * Only turning off any previous options, regardless of 2136 * whether the opt is just created or given. 2137 */ 2138 free(opt, M_IP6OPT); 2139 return (0); 2140 } 2141 2142 /* set options specified by user. */ 2143 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2144 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2145 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2146 free(opt, M_IP6OPT); 2147 return (error); 2148 } 2149 *pktopt = opt; 2150 return (0); 2151 } 2152 2153 /* 2154 * initialize ip6_pktopts. beware that there are non-zero default values in 2155 * the struct. 2156 */ 2157 void 2158 ip6_initpktopts(struct ip6_pktopts *opt) 2159 { 2160 2161 bzero(opt, sizeof(*opt)); 2162 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2163 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2164 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2165 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2166 } 2167 2168 static int 2169 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2170 struct ucred *cred, int uproto) 2171 { 2172 struct ip6_pktopts *opt; 2173 2174 if (*pktopt == NULL) { 2175 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2176 M_WAITOK); 2177 ip6_initpktopts(*pktopt); 2178 } 2179 opt = *pktopt; 2180 2181 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2182 } 2183 2184 static int 2185 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2186 { 2187 void *optdata = NULL; 2188 int optdatalen = 0; 2189 struct ip6_ext *ip6e; 2190 int error = 0; 2191 struct in6_pktinfo null_pktinfo; 2192 int deftclass = 0, on; 2193 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2194 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2195 2196 switch (optname) { 2197 case IPV6_PKTINFO: 2198 if (pktopt && pktopt->ip6po_pktinfo) 2199 optdata = (void *)pktopt->ip6po_pktinfo; 2200 else { 2201 /* XXX: we don't have to do this every time... */ 2202 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2203 optdata = (void *)&null_pktinfo; 2204 } 2205 optdatalen = sizeof(struct in6_pktinfo); 2206 break; 2207 case IPV6_TCLASS: 2208 if (pktopt && pktopt->ip6po_tclass >= 0) 2209 optdata = (void *)&pktopt->ip6po_tclass; 2210 else 2211 optdata = (void *)&deftclass; 2212 optdatalen = sizeof(int); 2213 break; 2214 case IPV6_HOPOPTS: 2215 if (pktopt && pktopt->ip6po_hbh) { 2216 optdata = (void *)pktopt->ip6po_hbh; 2217 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2218 optdatalen = (ip6e->ip6e_len + 1) << 3; 2219 } 2220 break; 2221 case IPV6_RTHDR: 2222 if (pktopt && pktopt->ip6po_rthdr) { 2223 optdata = (void *)pktopt->ip6po_rthdr; 2224 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2225 optdatalen = (ip6e->ip6e_len + 1) << 3; 2226 } 2227 break; 2228 case IPV6_RTHDRDSTOPTS: 2229 if (pktopt && pktopt->ip6po_dest1) { 2230 optdata = (void *)pktopt->ip6po_dest1; 2231 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2232 optdatalen = (ip6e->ip6e_len + 1) << 3; 2233 } 2234 break; 2235 case IPV6_DSTOPTS: 2236 if (pktopt && pktopt->ip6po_dest2) { 2237 optdata = (void *)pktopt->ip6po_dest2; 2238 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2239 optdatalen = (ip6e->ip6e_len + 1) << 3; 2240 } 2241 break; 2242 case IPV6_NEXTHOP: 2243 if (pktopt && pktopt->ip6po_nexthop) { 2244 optdata = (void *)pktopt->ip6po_nexthop; 2245 optdatalen = pktopt->ip6po_nexthop->sa_len; 2246 } 2247 break; 2248 case IPV6_USE_MIN_MTU: 2249 if (pktopt) 2250 optdata = (void *)&pktopt->ip6po_minmtu; 2251 else 2252 optdata = (void *)&defminmtu; 2253 optdatalen = sizeof(int); 2254 break; 2255 case IPV6_DONTFRAG: 2256 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2257 on = 1; 2258 else 2259 on = 0; 2260 optdata = (void *)&on; 2261 optdatalen = sizeof(on); 2262 break; 2263 case IPV6_PREFER_TEMPADDR: 2264 if (pktopt) 2265 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2266 else 2267 optdata = (void *)&defpreftemp; 2268 optdatalen = sizeof(int); 2269 break; 2270 default: /* should not happen */ 2271 #ifdef DIAGNOSTIC 2272 panic("ip6_getpcbopt: unexpected option\n"); 2273 #endif 2274 return (ENOPROTOOPT); 2275 } 2276 2277 error = sooptcopyout(sopt, optdata, optdatalen); 2278 2279 return (error); 2280 } 2281 2282 void 2283 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2284 { 2285 if (pktopt == NULL) 2286 return; 2287 2288 if (optname == -1 || optname == IPV6_PKTINFO) { 2289 if (pktopt->ip6po_pktinfo) 2290 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2291 pktopt->ip6po_pktinfo = NULL; 2292 } 2293 if (optname == -1 || optname == IPV6_HOPLIMIT) 2294 pktopt->ip6po_hlim = -1; 2295 if (optname == -1 || optname == IPV6_TCLASS) 2296 pktopt->ip6po_tclass = -1; 2297 if (optname == -1 || optname == IPV6_NEXTHOP) { 2298 if (pktopt->ip6po_nextroute.ro_rt) { 2299 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2300 pktopt->ip6po_nextroute.ro_rt = NULL; 2301 } 2302 if (pktopt->ip6po_nexthop) 2303 free(pktopt->ip6po_nexthop, M_IP6OPT); 2304 pktopt->ip6po_nexthop = NULL; 2305 } 2306 if (optname == -1 || optname == IPV6_HOPOPTS) { 2307 if (pktopt->ip6po_hbh) 2308 free(pktopt->ip6po_hbh, M_IP6OPT); 2309 pktopt->ip6po_hbh = NULL; 2310 } 2311 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2312 if (pktopt->ip6po_dest1) 2313 free(pktopt->ip6po_dest1, M_IP6OPT); 2314 pktopt->ip6po_dest1 = NULL; 2315 } 2316 if (optname == -1 || optname == IPV6_RTHDR) { 2317 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2318 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2319 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2320 if (pktopt->ip6po_route.ro_rt) { 2321 RTFREE(pktopt->ip6po_route.ro_rt); 2322 pktopt->ip6po_route.ro_rt = NULL; 2323 } 2324 } 2325 if (optname == -1 || optname == IPV6_DSTOPTS) { 2326 if (pktopt->ip6po_dest2) 2327 free(pktopt->ip6po_dest2, M_IP6OPT); 2328 pktopt->ip6po_dest2 = NULL; 2329 } 2330 } 2331 2332 #define PKTOPT_EXTHDRCPY(type) \ 2333 do {\ 2334 if (src->type) {\ 2335 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2336 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2337 if (dst->type == NULL && canwait == M_NOWAIT)\ 2338 goto bad;\ 2339 bcopy(src->type, dst->type, hlen);\ 2340 }\ 2341 } while (/*CONSTCOND*/ 0) 2342 2343 static int 2344 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2345 { 2346 if (dst == NULL || src == NULL) { 2347 printf("ip6_clearpktopts: invalid argument\n"); 2348 return (EINVAL); 2349 } 2350 2351 dst->ip6po_hlim = src->ip6po_hlim; 2352 dst->ip6po_tclass = src->ip6po_tclass; 2353 dst->ip6po_flags = src->ip6po_flags; 2354 dst->ip6po_minmtu = src->ip6po_minmtu; 2355 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2356 if (src->ip6po_pktinfo) { 2357 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2358 M_IP6OPT, canwait); 2359 if (dst->ip6po_pktinfo == NULL) 2360 goto bad; 2361 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2362 } 2363 if (src->ip6po_nexthop) { 2364 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2365 M_IP6OPT, canwait); 2366 if (dst->ip6po_nexthop == NULL) 2367 goto bad; 2368 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2369 src->ip6po_nexthop->sa_len); 2370 } 2371 PKTOPT_EXTHDRCPY(ip6po_hbh); 2372 PKTOPT_EXTHDRCPY(ip6po_dest1); 2373 PKTOPT_EXTHDRCPY(ip6po_dest2); 2374 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2375 return (0); 2376 2377 bad: 2378 ip6_clearpktopts(dst, -1); 2379 return (ENOBUFS); 2380 } 2381 #undef PKTOPT_EXTHDRCPY 2382 2383 struct ip6_pktopts * 2384 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2385 { 2386 int error; 2387 struct ip6_pktopts *dst; 2388 2389 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2390 if (dst == NULL) 2391 return (NULL); 2392 ip6_initpktopts(dst); 2393 2394 if ((error = copypktopts(dst, src, canwait)) != 0) { 2395 free(dst, M_IP6OPT); 2396 return (NULL); 2397 } 2398 2399 return (dst); 2400 } 2401 2402 void 2403 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2404 { 2405 if (pktopt == NULL) 2406 return; 2407 2408 ip6_clearpktopts(pktopt, -1); 2409 2410 free(pktopt, M_IP6OPT); 2411 } 2412 2413 /* 2414 * Set IPv6 outgoing packet options based on advanced API. 2415 */ 2416 int 2417 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2418 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2419 { 2420 struct cmsghdr *cm = 0; 2421 2422 if (control == NULL || opt == NULL) 2423 return (EINVAL); 2424 2425 ip6_initpktopts(opt); 2426 if (stickyopt) { 2427 int error; 2428 2429 /* 2430 * If stickyopt is provided, make a local copy of the options 2431 * for this particular packet, then override them by ancillary 2432 * objects. 2433 * XXX: copypktopts() does not copy the cached route to a next 2434 * hop (if any). This is not very good in terms of efficiency, 2435 * but we can allow this since this option should be rarely 2436 * used. 2437 */ 2438 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2439 return (error); 2440 } 2441 2442 /* 2443 * XXX: Currently, we assume all the optional information is stored 2444 * in a single mbuf. 2445 */ 2446 if (control->m_next) 2447 return (EINVAL); 2448 2449 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2450 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2451 int error; 2452 2453 if (control->m_len < CMSG_LEN(0)) 2454 return (EINVAL); 2455 2456 cm = mtod(control, struct cmsghdr *); 2457 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2458 return (EINVAL); 2459 if (cm->cmsg_level != IPPROTO_IPV6) 2460 continue; 2461 2462 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2463 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2464 if (error) 2465 return (error); 2466 } 2467 2468 return (0); 2469 } 2470 2471 /* 2472 * Set a particular packet option, as a sticky option or an ancillary data 2473 * item. "len" can be 0 only when it's a sticky option. 2474 * We have 4 cases of combination of "sticky" and "cmsg": 2475 * "sticky=0, cmsg=0": impossible 2476 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2477 * "sticky=1, cmsg=0": RFC3542 socket option 2478 * "sticky=1, cmsg=1": RFC2292 socket option 2479 */ 2480 static int 2481 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2482 struct ucred *cred, int sticky, int cmsg, int uproto) 2483 { 2484 int minmtupolicy, preftemp; 2485 int error; 2486 2487 if (!sticky && !cmsg) { 2488 #ifdef DIAGNOSTIC 2489 printf("ip6_setpktopt: impossible case\n"); 2490 #endif 2491 return (EINVAL); 2492 } 2493 2494 /* 2495 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2496 * not be specified in the context of RFC3542. Conversely, 2497 * RFC3542 types should not be specified in the context of RFC2292. 2498 */ 2499 if (!cmsg) { 2500 switch (optname) { 2501 case IPV6_2292PKTINFO: 2502 case IPV6_2292HOPLIMIT: 2503 case IPV6_2292NEXTHOP: 2504 case IPV6_2292HOPOPTS: 2505 case IPV6_2292DSTOPTS: 2506 case IPV6_2292RTHDR: 2507 case IPV6_2292PKTOPTIONS: 2508 return (ENOPROTOOPT); 2509 } 2510 } 2511 if (sticky && cmsg) { 2512 switch (optname) { 2513 case IPV6_PKTINFO: 2514 case IPV6_HOPLIMIT: 2515 case IPV6_NEXTHOP: 2516 case IPV6_HOPOPTS: 2517 case IPV6_DSTOPTS: 2518 case IPV6_RTHDRDSTOPTS: 2519 case IPV6_RTHDR: 2520 case IPV6_USE_MIN_MTU: 2521 case IPV6_DONTFRAG: 2522 case IPV6_TCLASS: 2523 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2524 return (ENOPROTOOPT); 2525 } 2526 } 2527 2528 switch (optname) { 2529 case IPV6_2292PKTINFO: 2530 case IPV6_PKTINFO: 2531 { 2532 struct ifnet *ifp = NULL; 2533 struct in6_pktinfo *pktinfo; 2534 2535 if (len != sizeof(struct in6_pktinfo)) 2536 return (EINVAL); 2537 2538 pktinfo = (struct in6_pktinfo *)buf; 2539 2540 /* 2541 * An application can clear any sticky IPV6_PKTINFO option by 2542 * doing a "regular" setsockopt with ipi6_addr being 2543 * in6addr_any and ipi6_ifindex being zero. 2544 * [RFC 3542, Section 6] 2545 */ 2546 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2547 pktinfo->ipi6_ifindex == 0 && 2548 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2549 ip6_clearpktopts(opt, optname); 2550 break; 2551 } 2552 2553 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2554 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2555 return (EINVAL); 2556 } 2557 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2558 return (EINVAL); 2559 /* validate the interface index if specified. */ 2560 if (pktinfo->ipi6_ifindex > V_if_index) 2561 return (ENXIO); 2562 if (pktinfo->ipi6_ifindex) { 2563 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2564 if (ifp == NULL) 2565 return (ENXIO); 2566 } 2567 if (ifp != NULL && ( 2568 ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) 2569 return (ENETDOWN); 2570 2571 if (ifp != NULL && 2572 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2573 struct in6_ifaddr *ia; 2574 2575 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2576 if (ia == NULL) 2577 return (EADDRNOTAVAIL); 2578 ifa_free(&ia->ia_ifa); 2579 } 2580 /* 2581 * We store the address anyway, and let in6_selectsrc() 2582 * validate the specified address. This is because ipi6_addr 2583 * may not have enough information about its scope zone, and 2584 * we may need additional information (such as outgoing 2585 * interface or the scope zone of a destination address) to 2586 * disambiguate the scope. 2587 * XXX: the delay of the validation may confuse the 2588 * application when it is used as a sticky option. 2589 */ 2590 if (opt->ip6po_pktinfo == NULL) { 2591 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2592 M_IP6OPT, M_NOWAIT); 2593 if (opt->ip6po_pktinfo == NULL) 2594 return (ENOBUFS); 2595 } 2596 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2597 break; 2598 } 2599 2600 case IPV6_2292HOPLIMIT: 2601 case IPV6_HOPLIMIT: 2602 { 2603 int *hlimp; 2604 2605 /* 2606 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2607 * to simplify the ordering among hoplimit options. 2608 */ 2609 if (optname == IPV6_HOPLIMIT && sticky) 2610 return (ENOPROTOOPT); 2611 2612 if (len != sizeof(int)) 2613 return (EINVAL); 2614 hlimp = (int *)buf; 2615 if (*hlimp < -1 || *hlimp > 255) 2616 return (EINVAL); 2617 2618 opt->ip6po_hlim = *hlimp; 2619 break; 2620 } 2621 2622 case IPV6_TCLASS: 2623 { 2624 int tclass; 2625 2626 if (len != sizeof(int)) 2627 return (EINVAL); 2628 tclass = *(int *)buf; 2629 if (tclass < -1 || tclass > 255) 2630 return (EINVAL); 2631 2632 opt->ip6po_tclass = tclass; 2633 break; 2634 } 2635 2636 case IPV6_2292NEXTHOP: 2637 case IPV6_NEXTHOP: 2638 if (cred != NULL) { 2639 error = priv_check_cred(cred, 2640 PRIV_NETINET_SETHDROPTS, 0); 2641 if (error) 2642 return (error); 2643 } 2644 2645 if (len == 0) { /* just remove the option */ 2646 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2647 break; 2648 } 2649 2650 /* check if cmsg_len is large enough for sa_len */ 2651 if (len < sizeof(struct sockaddr) || len < *buf) 2652 return (EINVAL); 2653 2654 switch (((struct sockaddr *)buf)->sa_family) { 2655 case AF_INET6: 2656 { 2657 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2658 int error; 2659 2660 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2661 return (EINVAL); 2662 2663 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2664 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2665 return (EINVAL); 2666 } 2667 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2668 != 0) { 2669 return (error); 2670 } 2671 break; 2672 } 2673 case AF_LINK: /* should eventually be supported */ 2674 default: 2675 return (EAFNOSUPPORT); 2676 } 2677 2678 /* turn off the previous option, then set the new option. */ 2679 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2680 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2681 if (opt->ip6po_nexthop == NULL) 2682 return (ENOBUFS); 2683 bcopy(buf, opt->ip6po_nexthop, *buf); 2684 break; 2685 2686 case IPV6_2292HOPOPTS: 2687 case IPV6_HOPOPTS: 2688 { 2689 struct ip6_hbh *hbh; 2690 int hbhlen; 2691 2692 /* 2693 * XXX: We don't allow a non-privileged user to set ANY HbH 2694 * options, since per-option restriction has too much 2695 * overhead. 2696 */ 2697 if (cred != NULL) { 2698 error = priv_check_cred(cred, 2699 PRIV_NETINET_SETHDROPTS, 0); 2700 if (error) 2701 return (error); 2702 } 2703 2704 if (len == 0) { 2705 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2706 break; /* just remove the option */ 2707 } 2708 2709 /* message length validation */ 2710 if (len < sizeof(struct ip6_hbh)) 2711 return (EINVAL); 2712 hbh = (struct ip6_hbh *)buf; 2713 hbhlen = (hbh->ip6h_len + 1) << 3; 2714 if (len != hbhlen) 2715 return (EINVAL); 2716 2717 /* turn off the previous option, then set the new option. */ 2718 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2719 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2720 if (opt->ip6po_hbh == NULL) 2721 return (ENOBUFS); 2722 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2723 2724 break; 2725 } 2726 2727 case IPV6_2292DSTOPTS: 2728 case IPV6_DSTOPTS: 2729 case IPV6_RTHDRDSTOPTS: 2730 { 2731 struct ip6_dest *dest, **newdest = NULL; 2732 int destlen; 2733 2734 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2735 error = priv_check_cred(cred, 2736 PRIV_NETINET_SETHDROPTS, 0); 2737 if (error) 2738 return (error); 2739 } 2740 2741 if (len == 0) { 2742 ip6_clearpktopts(opt, optname); 2743 break; /* just remove the option */ 2744 } 2745 2746 /* message length validation */ 2747 if (len < sizeof(struct ip6_dest)) 2748 return (EINVAL); 2749 dest = (struct ip6_dest *)buf; 2750 destlen = (dest->ip6d_len + 1) << 3; 2751 if (len != destlen) 2752 return (EINVAL); 2753 2754 /* 2755 * Determine the position that the destination options header 2756 * should be inserted; before or after the routing header. 2757 */ 2758 switch (optname) { 2759 case IPV6_2292DSTOPTS: 2760 /* 2761 * The old advacned API is ambiguous on this point. 2762 * Our approach is to determine the position based 2763 * according to the existence of a routing header. 2764 * Note, however, that this depends on the order of the 2765 * extension headers in the ancillary data; the 1st 2766 * part of the destination options header must appear 2767 * before the routing header in the ancillary data, 2768 * too. 2769 * RFC3542 solved the ambiguity by introducing 2770 * separate ancillary data or option types. 2771 */ 2772 if (opt->ip6po_rthdr == NULL) 2773 newdest = &opt->ip6po_dest1; 2774 else 2775 newdest = &opt->ip6po_dest2; 2776 break; 2777 case IPV6_RTHDRDSTOPTS: 2778 newdest = &opt->ip6po_dest1; 2779 break; 2780 case IPV6_DSTOPTS: 2781 newdest = &opt->ip6po_dest2; 2782 break; 2783 } 2784 2785 /* turn off the previous option, then set the new option. */ 2786 ip6_clearpktopts(opt, optname); 2787 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2788 if (*newdest == NULL) 2789 return (ENOBUFS); 2790 bcopy(dest, *newdest, destlen); 2791 2792 break; 2793 } 2794 2795 case IPV6_2292RTHDR: 2796 case IPV6_RTHDR: 2797 { 2798 struct ip6_rthdr *rth; 2799 int rthlen; 2800 2801 if (len == 0) { 2802 ip6_clearpktopts(opt, IPV6_RTHDR); 2803 break; /* just remove the option */ 2804 } 2805 2806 /* message length validation */ 2807 if (len < sizeof(struct ip6_rthdr)) 2808 return (EINVAL); 2809 rth = (struct ip6_rthdr *)buf; 2810 rthlen = (rth->ip6r_len + 1) << 3; 2811 if (len != rthlen) 2812 return (EINVAL); 2813 2814 switch (rth->ip6r_type) { 2815 case IPV6_RTHDR_TYPE_0: 2816 if (rth->ip6r_len == 0) /* must contain one addr */ 2817 return (EINVAL); 2818 if (rth->ip6r_len % 2) /* length must be even */ 2819 return (EINVAL); 2820 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2821 return (EINVAL); 2822 break; 2823 default: 2824 return (EINVAL); /* not supported */ 2825 } 2826 2827 /* turn off the previous option */ 2828 ip6_clearpktopts(opt, IPV6_RTHDR); 2829 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2830 if (opt->ip6po_rthdr == NULL) 2831 return (ENOBUFS); 2832 bcopy(rth, opt->ip6po_rthdr, rthlen); 2833 2834 break; 2835 } 2836 2837 case IPV6_USE_MIN_MTU: 2838 if (len != sizeof(int)) 2839 return (EINVAL); 2840 minmtupolicy = *(int *)buf; 2841 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2842 minmtupolicy != IP6PO_MINMTU_DISABLE && 2843 minmtupolicy != IP6PO_MINMTU_ALL) { 2844 return (EINVAL); 2845 } 2846 opt->ip6po_minmtu = minmtupolicy; 2847 break; 2848 2849 case IPV6_DONTFRAG: 2850 if (len != sizeof(int)) 2851 return (EINVAL); 2852 2853 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2854 /* 2855 * we ignore this option for TCP sockets. 2856 * (RFC3542 leaves this case unspecified.) 2857 */ 2858 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2859 } else 2860 opt->ip6po_flags |= IP6PO_DONTFRAG; 2861 break; 2862 2863 case IPV6_PREFER_TEMPADDR: 2864 if (len != sizeof(int)) 2865 return (EINVAL); 2866 preftemp = *(int *)buf; 2867 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 2868 preftemp != IP6PO_TEMPADDR_NOTPREFER && 2869 preftemp != IP6PO_TEMPADDR_PREFER) { 2870 return (EINVAL); 2871 } 2872 opt->ip6po_prefer_tempaddr = preftemp; 2873 break; 2874 2875 default: 2876 return (ENOPROTOOPT); 2877 } /* end of switch */ 2878 2879 return (0); 2880 } 2881 2882 /* 2883 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2884 * packet to the input queue of a specified interface. Note that this 2885 * calls the output routine of the loopback "driver", but with an interface 2886 * pointer that might NOT be &loif -- easier than replicating that code here. 2887 */ 2888 void 2889 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 2890 { 2891 struct mbuf *copym; 2892 struct ip6_hdr *ip6; 2893 2894 copym = m_copy(m, 0, M_COPYALL); 2895 if (copym == NULL) 2896 return; 2897 2898 /* 2899 * Make sure to deep-copy IPv6 header portion in case the data 2900 * is in an mbuf cluster, so that we can safely override the IPv6 2901 * header portion later. 2902 */ 2903 if (!M_WRITABLE(copym) || 2904 copym->m_len < sizeof(struct ip6_hdr)) { 2905 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2906 if (copym == NULL) 2907 return; 2908 } 2909 2910 #ifdef DIAGNOSTIC 2911 if (copym->m_len < sizeof(*ip6)) { 2912 m_freem(copym); 2913 return; 2914 } 2915 #endif 2916 2917 ip6 = mtod(copym, struct ip6_hdr *); 2918 /* 2919 * clear embedded scope identifiers if necessary. 2920 * in6_clearscope will touch the addresses only when necessary. 2921 */ 2922 in6_clearscope(&ip6->ip6_src); 2923 in6_clearscope(&ip6->ip6_dst); 2924 2925 (void)if_simloop(ifp, copym, dst->sin6_family, 0); 2926 } 2927 2928 /* 2929 * Chop IPv6 header off from the payload. 2930 */ 2931 static int 2932 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 2933 { 2934 struct mbuf *mh; 2935 struct ip6_hdr *ip6; 2936 2937 ip6 = mtod(m, struct ip6_hdr *); 2938 if (m->m_len > sizeof(*ip6)) { 2939 mh = m_gethdr(M_NOWAIT, MT_DATA); 2940 if (mh == NULL) { 2941 m_freem(m); 2942 return ENOBUFS; 2943 } 2944 m_move_pkthdr(mh, m); 2945 M_ALIGN(mh, sizeof(*ip6)); 2946 m->m_len -= sizeof(*ip6); 2947 m->m_data += sizeof(*ip6); 2948 mh->m_next = m; 2949 m = mh; 2950 m->m_len = sizeof(*ip6); 2951 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2952 } 2953 exthdrs->ip6e_ip6 = m; 2954 return 0; 2955 } 2956 2957 /* 2958 * Compute IPv6 extension header length. 2959 */ 2960 int 2961 ip6_optlen(struct inpcb *in6p) 2962 { 2963 int len; 2964 2965 if (!in6p->in6p_outputopts) 2966 return 0; 2967 2968 len = 0; 2969 #define elen(x) \ 2970 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2971 2972 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2973 if (in6p->in6p_outputopts->ip6po_rthdr) 2974 /* dest1 is valid with rthdr only */ 2975 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2976 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2977 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2978 return len; 2979 #undef elen 2980 } 2981