1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #include "opt_ratelimit.h" 72 #include "opt_route.h" 73 #include "opt_rss.h" 74 #include "opt_sctp.h" 75 76 #include <sys/param.h> 77 #include <sys/kernel.h> 78 #include <sys/malloc.h> 79 #include <sys/mbuf.h> 80 #include <sys/errno.h> 81 #include <sys/priv.h> 82 #include <sys/proc.h> 83 #include <sys/protosw.h> 84 #include <sys/socket.h> 85 #include <sys/socketvar.h> 86 #include <sys/syslog.h> 87 #include <sys/ucred.h> 88 89 #include <machine/in_cksum.h> 90 91 #include <net/if.h> 92 #include <net/if_var.h> 93 #include <net/if_llatbl.h> 94 #include <net/netisr.h> 95 #include <net/route.h> 96 #include <net/pfil.h> 97 #include <net/rss_config.h> 98 #include <net/vnet.h> 99 100 #include <netinet/in.h> 101 #include <netinet/in_var.h> 102 #include <netinet/ip_var.h> 103 #include <netinet6/in6_fib.h> 104 #include <netinet6/in6_var.h> 105 #include <netinet/ip6.h> 106 #include <netinet/icmp6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet/in_pcb.h> 109 #include <netinet/tcp_var.h> 110 #include <netinet6/nd6.h> 111 #include <netinet6/in6_rss.h> 112 113 #include <netipsec/ipsec_support.h> 114 #ifdef SCTP 115 #include <netinet/sctp.h> 116 #include <netinet/sctp_crc32.h> 117 #endif 118 119 #include <netinet6/ip6protosw.h> 120 #include <netinet6/scope6_var.h> 121 122 extern int in6_mcast_loop; 123 124 struct ip6_exthdrs { 125 struct mbuf *ip6e_ip6; 126 struct mbuf *ip6e_hbh; 127 struct mbuf *ip6e_dest1; 128 struct mbuf *ip6e_rthdr; 129 struct mbuf *ip6e_dest2; 130 }; 131 132 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 133 134 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 135 struct ucred *, int); 136 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 137 struct socket *, struct sockopt *); 138 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 139 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 140 struct ucred *, int, int, int); 141 142 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 143 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 144 struct ip6_frag **); 145 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 146 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 147 static int ip6_getpmtu(struct route_in6 *, int, 148 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 149 u_int); 150 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 151 u_long *, int *, u_int); 152 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 153 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 154 155 156 /* 157 * Make an extension header from option data. hp is the source, and 158 * mp is the destination. 159 */ 160 #define MAKE_EXTHDR(hp, mp) \ 161 do { \ 162 if (hp) { \ 163 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 164 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 165 ((eh)->ip6e_len + 1) << 3); \ 166 if (error) \ 167 goto freehdrs; \ 168 } \ 169 } while (/*CONSTCOND*/ 0) 170 171 /* 172 * Form a chain of extension headers. 173 * m is the extension header mbuf 174 * mp is the previous mbuf in the chain 175 * p is the next header 176 * i is the type of option. 177 */ 178 #define MAKE_CHAIN(m, mp, p, i)\ 179 do {\ 180 if (m) {\ 181 if (!hdrsplit) \ 182 panic("assumption failed: hdr not split"); \ 183 *mtod((m), u_char *) = *(p);\ 184 *(p) = (i);\ 185 p = mtod((m), u_char *);\ 186 (m)->m_next = (mp)->m_next;\ 187 (mp)->m_next = (m);\ 188 (mp) = (m);\ 189 }\ 190 } while (/*CONSTCOND*/ 0) 191 192 void 193 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 194 { 195 u_short csum; 196 197 csum = in_cksum_skip(m, offset + plen, offset); 198 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 199 csum = 0xffff; 200 offset += m->m_pkthdr.csum_data; /* checksum offset */ 201 202 if (offset + sizeof(csum) > m->m_len) 203 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 204 else 205 *(u_short *)mtodo(m, offset) = csum; 206 } 207 208 int 209 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 210 int fraglen , uint32_t id) 211 { 212 struct mbuf *m, **mnext, *m_frgpart; 213 struct ip6_hdr *ip6, *mhip6; 214 struct ip6_frag *ip6f; 215 int off; 216 int error; 217 int tlen = m0->m_pkthdr.len; 218 219 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 220 221 m = m0; 222 ip6 = mtod(m, struct ip6_hdr *); 223 mnext = &m->m_nextpkt; 224 225 for (off = hlen; off < tlen; off += fraglen) { 226 m = m_gethdr(M_NOWAIT, MT_DATA); 227 if (!m) { 228 IP6STAT_INC(ip6s_odropped); 229 return (ENOBUFS); 230 } 231 232 /* 233 * Make sure the complete packet header gets copied 234 * from the originating mbuf to the newly created 235 * mbuf. This also ensures that existing firewall 236 * classification(s), VLAN tags and so on get copied 237 * to the resulting fragmented packet(s): 238 */ 239 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 240 m_free(m); 241 IP6STAT_INC(ip6s_odropped); 242 return (ENOBUFS); 243 } 244 245 *mnext = m; 246 mnext = &m->m_nextpkt; 247 m->m_data += max_linkhdr; 248 mhip6 = mtod(m, struct ip6_hdr *); 249 *mhip6 = *ip6; 250 m->m_len = sizeof(*mhip6); 251 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 252 if (error) { 253 IP6STAT_INC(ip6s_odropped); 254 return (error); 255 } 256 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 257 if (off + fraglen >= tlen) 258 fraglen = tlen - off; 259 else 260 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 261 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 262 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 263 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 264 IP6STAT_INC(ip6s_odropped); 265 return (ENOBUFS); 266 } 267 m_cat(m, m_frgpart); 268 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 269 ip6f->ip6f_reserved = 0; 270 ip6f->ip6f_ident = id; 271 ip6f->ip6f_nxt = nextproto; 272 IP6STAT_INC(ip6s_ofragments); 273 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 274 } 275 276 return (0); 277 } 278 279 static int 280 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp, 281 struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro) 282 { 283 struct m_snd_tag *mst; 284 int error; 285 286 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 287 mst = NULL; 288 289 #ifdef RATELIMIT 290 if (inp != NULL) { 291 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 292 (inp->inp_snd_tag != NULL && 293 inp->inp_snd_tag->ifp != ifp)) 294 in_pcboutput_txrtlmt(inp, ifp, m); 295 296 if (inp->inp_snd_tag != NULL) 297 mst = inp->inp_snd_tag; 298 } 299 #endif 300 if (mst != NULL) { 301 KASSERT(m->m_pkthdr.rcvif == NULL, 302 ("trying to add a send tag to a forwarded packet")); 303 if (mst->ifp != ifp) { 304 error = EAGAIN; 305 goto done; 306 } 307 308 /* stamp send tag on mbuf */ 309 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 310 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 311 } 312 313 error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); 314 315 done: 316 /* Check for route change invalidating send tags. */ 317 #ifdef RATELIMIT 318 if (error == EAGAIN) 319 in_pcboutput_eagain(inp); 320 #endif 321 return (error); 322 } 323 324 /* 325 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 326 * header (with pri, len, nxt, hlim, src, dst). 327 * This function may modify ver and hlim only. 328 * The mbuf chain containing the packet will be freed. 329 * The mbuf opt, if present, will not be freed. 330 * If route_in6 ro is present and has ro_rt initialized, route lookup would be 331 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, 332 * then result of route lookup is stored in ro->ro_rt. 333 * 334 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 335 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 336 * which is rt_mtu. 337 * 338 * ifpp - XXX: just for statistics 339 */ 340 /* 341 * XXX TODO: no flowid is assigned for outbound flows? 342 */ 343 int 344 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 345 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 346 struct ifnet **ifpp, struct inpcb *inp) 347 { 348 struct ip6_hdr *ip6; 349 struct ifnet *ifp, *origifp; 350 struct mbuf *m = m0; 351 struct mbuf *mprev = NULL; 352 int hlen, tlen, len; 353 struct route_in6 ip6route; 354 struct rtentry *rt = NULL; 355 struct sockaddr_in6 *dst, src_sa, dst_sa; 356 struct in6_addr odst; 357 int error = 0; 358 struct in6_ifaddr *ia = NULL; 359 u_long mtu; 360 int alwaysfrag, dontfrag; 361 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 362 struct ip6_exthdrs exthdrs; 363 struct in6_addr src0, dst0; 364 u_int32_t zone; 365 struct route_in6 *ro_pmtu = NULL; 366 int hdrsplit = 0; 367 int sw_csum, tso; 368 int needfiblookup; 369 uint32_t fibnum; 370 struct m_tag *fwd_tag = NULL; 371 uint32_t id; 372 373 if (inp != NULL) { 374 INP_LOCK_ASSERT(inp); 375 M_SETFIB(m, inp->inp_inc.inc_fibnum); 376 if ((flags & IP_NODEFAULTFLOWID) == 0) { 377 /* unconditionally set flowid */ 378 m->m_pkthdr.flowid = inp->inp_flowid; 379 M_HASHTYPE_SET(m, inp->inp_flowtype); 380 } 381 #ifdef NUMA 382 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 383 #endif 384 } 385 386 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 387 /* 388 * IPSec checking which handles several cases. 389 * FAST IPSEC: We re-injected the packet. 390 * XXX: need scope argument. 391 */ 392 if (IPSEC_ENABLED(ipv6)) { 393 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 394 if (error == EINPROGRESS) 395 error = 0; 396 goto done; 397 } 398 } 399 #endif /* IPSEC */ 400 401 bzero(&exthdrs, sizeof(exthdrs)); 402 if (opt) { 403 /* Hop-by-Hop options header */ 404 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 405 /* Destination options header(1st part) */ 406 if (opt->ip6po_rthdr) { 407 /* 408 * Destination options header(1st part) 409 * This only makes sense with a routing header. 410 * See Section 9.2 of RFC 3542. 411 * Disabling this part just for MIP6 convenience is 412 * a bad idea. We need to think carefully about a 413 * way to make the advanced API coexist with MIP6 414 * options, which might automatically be inserted in 415 * the kernel. 416 */ 417 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 418 } 419 /* Routing header */ 420 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 421 /* Destination options header(2nd part) */ 422 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 423 } 424 425 /* 426 * Calculate the total length of the extension header chain. 427 * Keep the length of the unfragmentable part for fragmentation. 428 */ 429 optlen = 0; 430 if (exthdrs.ip6e_hbh) 431 optlen += exthdrs.ip6e_hbh->m_len; 432 if (exthdrs.ip6e_dest1) 433 optlen += exthdrs.ip6e_dest1->m_len; 434 if (exthdrs.ip6e_rthdr) 435 optlen += exthdrs.ip6e_rthdr->m_len; 436 unfragpartlen = optlen + sizeof(struct ip6_hdr); 437 438 /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ 439 if (exthdrs.ip6e_dest2) 440 optlen += exthdrs.ip6e_dest2->m_len; 441 442 /* 443 * If there is at least one extension header, 444 * separate IP6 header from the payload. 445 */ 446 if (optlen && !hdrsplit) { 447 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 448 m = NULL; 449 goto freehdrs; 450 } 451 m = exthdrs.ip6e_ip6; 452 hdrsplit++; 453 } 454 455 ip6 = mtod(m, struct ip6_hdr *); 456 457 /* adjust mbuf packet header length */ 458 m->m_pkthdr.len += optlen; 459 plen = m->m_pkthdr.len - sizeof(*ip6); 460 461 /* If this is a jumbo payload, insert a jumbo payload option. */ 462 if (plen > IPV6_MAXPACKET) { 463 if (!hdrsplit) { 464 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 465 m = NULL; 466 goto freehdrs; 467 } 468 m = exthdrs.ip6e_ip6; 469 hdrsplit++; 470 } 471 /* adjust pointer */ 472 ip6 = mtod(m, struct ip6_hdr *); 473 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 474 goto freehdrs; 475 ip6->ip6_plen = 0; 476 } else 477 ip6->ip6_plen = htons(plen); 478 479 /* 480 * Concatenate headers and fill in next header fields. 481 * Here we have, on "m" 482 * IPv6 payload 483 * and we insert headers accordingly. Finally, we should be getting: 484 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 485 * 486 * during the header composing process, "m" points to IPv6 header. 487 * "mprev" points to an extension header prior to esp. 488 */ 489 u_char *nexthdrp = &ip6->ip6_nxt; 490 mprev = m; 491 492 /* 493 * we treat dest2 specially. this makes IPsec processing 494 * much easier. the goal here is to make mprev point the 495 * mbuf prior to dest2. 496 * 497 * result: IPv6 dest2 payload 498 * m and mprev will point to IPv6 header. 499 */ 500 if (exthdrs.ip6e_dest2) { 501 if (!hdrsplit) 502 panic("assumption failed: hdr not split"); 503 exthdrs.ip6e_dest2->m_next = m->m_next; 504 m->m_next = exthdrs.ip6e_dest2; 505 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 506 ip6->ip6_nxt = IPPROTO_DSTOPTS; 507 } 508 509 /* 510 * result: IPv6 hbh dest1 rthdr dest2 payload 511 * m will point to IPv6 header. mprev will point to the 512 * extension header prior to dest2 (rthdr in the above case). 513 */ 514 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 515 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 516 IPPROTO_DSTOPTS); 517 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 518 IPPROTO_ROUTING); 519 520 /* 521 * If there is a routing header, discard the packet. 522 */ 523 if (exthdrs.ip6e_rthdr) { 524 error = EINVAL; 525 goto bad; 526 } 527 528 /* Source address validation */ 529 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 530 (flags & IPV6_UNSPECSRC) == 0) { 531 error = EOPNOTSUPP; 532 IP6STAT_INC(ip6s_badscope); 533 goto bad; 534 } 535 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 536 error = EOPNOTSUPP; 537 IP6STAT_INC(ip6s_badscope); 538 goto bad; 539 } 540 541 IP6STAT_INC(ip6s_localout); 542 543 /* 544 * Route packet. 545 */ 546 if (ro == NULL) { 547 ro = &ip6route; 548 bzero((caddr_t)ro, sizeof(*ro)); 549 } 550 ro_pmtu = ro; 551 if (opt && opt->ip6po_rthdr) 552 ro = &opt->ip6po_route; 553 dst = (struct sockaddr_in6 *)&ro->ro_dst; 554 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 555 again: 556 /* 557 * if specified, try to fill in the traffic class field. 558 * do not override if a non-zero value is already set. 559 * we check the diffserv field and the ecn field separately. 560 */ 561 if (opt && opt->ip6po_tclass >= 0) { 562 int mask = 0; 563 564 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 565 mask |= 0xfc; 566 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 567 mask |= 0x03; 568 if (mask != 0) 569 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 570 } 571 572 /* fill in or override the hop limit field, if necessary. */ 573 if (opt && opt->ip6po_hlim != -1) 574 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 575 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 576 if (im6o != NULL) 577 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 578 else 579 ip6->ip6_hlim = V_ip6_defmcasthlim; 580 } 581 /* 582 * Validate route against routing table additions; 583 * a better/more specific route might have been added. 584 * Make sure address family is set in route. 585 */ 586 if (inp) { 587 ro->ro_dst.sin6_family = AF_INET6; 588 RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, fibnum); 589 } 590 if (ro->ro_rt && fwd_tag == NULL && (ro->ro_rt->rt_flags & RTF_UP) && 591 ro->ro_dst.sin6_family == AF_INET6 && 592 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 593 rt = ro->ro_rt; 594 ifp = ro->ro_rt->rt_ifp; 595 } else { 596 if (ro->ro_lle) 597 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 598 ro->ro_lle = NULL; 599 if (fwd_tag == NULL) { 600 bzero(&dst_sa, sizeof(dst_sa)); 601 dst_sa.sin6_family = AF_INET6; 602 dst_sa.sin6_len = sizeof(dst_sa); 603 dst_sa.sin6_addr = ip6->ip6_dst; 604 } 605 error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, 606 &rt, fibnum); 607 if (error != 0) { 608 if (ifp != NULL) 609 in6_ifstat_inc(ifp, ifs6_out_discard); 610 goto bad; 611 } 612 } 613 if (rt == NULL) { 614 /* 615 * If in6_selectroute() does not return a route entry, 616 * dst may not have been updated. 617 */ 618 *dst = dst_sa; /* XXX */ 619 } 620 621 /* 622 * then rt (for unicast) and ifp must be non-NULL valid values. 623 */ 624 if ((flags & IPV6_FORWARDING) == 0) { 625 /* XXX: the FORWARDING flag can be set for mrouting. */ 626 in6_ifstat_inc(ifp, ifs6_out_request); 627 } 628 if (rt != NULL) { 629 ia = (struct in6_ifaddr *)(rt->rt_ifa); 630 counter_u64_add(rt->rt_pksent, 1); 631 } 632 633 /* Setup data structures for scope ID checks. */ 634 src0 = ip6->ip6_src; 635 bzero(&src_sa, sizeof(src_sa)); 636 src_sa.sin6_family = AF_INET6; 637 src_sa.sin6_len = sizeof(src_sa); 638 src_sa.sin6_addr = ip6->ip6_src; 639 640 dst0 = ip6->ip6_dst; 641 /* re-initialize to be sure */ 642 bzero(&dst_sa, sizeof(dst_sa)); 643 dst_sa.sin6_family = AF_INET6; 644 dst_sa.sin6_len = sizeof(dst_sa); 645 dst_sa.sin6_addr = ip6->ip6_dst; 646 647 /* Check for valid scope ID. */ 648 if (in6_setscope(&src0, ifp, &zone) == 0 && 649 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && 650 in6_setscope(&dst0, ifp, &zone) == 0 && 651 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { 652 /* 653 * The outgoing interface is in the zone of the source 654 * and destination addresses. 655 * 656 * Because the loopback interface cannot receive 657 * packets with a different scope ID than its own, 658 * there is a trick is to pretend the outgoing packet 659 * was received by the real network interface, by 660 * setting "origifp" different from "ifp". This is 661 * only allowed when "ifp" is a loopback network 662 * interface. Refer to code in nd6_output_ifp() for 663 * more details. 664 */ 665 origifp = ifp; 666 667 /* 668 * We should use ia_ifp to support the case of sending 669 * packets to an address of our own. 670 */ 671 if (ia != NULL && ia->ia_ifp) 672 ifp = ia->ia_ifp; 673 674 } else if ((ifp->if_flags & IFF_LOOPBACK) == 0 || 675 sa6_recoverscope(&src_sa) != 0 || 676 sa6_recoverscope(&dst_sa) != 0 || 677 dst_sa.sin6_scope_id == 0 || 678 (src_sa.sin6_scope_id != 0 && 679 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || 680 (origifp = ifnet_byindex(dst_sa.sin6_scope_id)) == NULL) { 681 /* 682 * If the destination network interface is not a 683 * loopback interface, or the destination network 684 * address has no scope ID, or the source address has 685 * a scope ID set which is different from the 686 * destination address one, or there is no network 687 * interface representing this scope ID, the address 688 * pair is considered invalid. 689 */ 690 IP6STAT_INC(ip6s_badscope); 691 in6_ifstat_inc(ifp, ifs6_out_discard); 692 if (error == 0) 693 error = EHOSTUNREACH; /* XXX */ 694 goto bad; 695 } 696 697 /* All scope ID checks are successful. */ 698 699 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 700 if (opt && opt->ip6po_nextroute.ro_rt) { 701 /* 702 * The nexthop is explicitly specified by the 703 * application. We assume the next hop is an IPv6 704 * address. 705 */ 706 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 707 } 708 else if ((rt->rt_flags & RTF_GATEWAY)) 709 dst = (struct sockaddr_in6 *)rt->rt_gateway; 710 } 711 712 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 713 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 714 } else { 715 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 716 in6_ifstat_inc(ifp, ifs6_out_mcast); 717 /* 718 * Confirm that the outgoing interface supports multicast. 719 */ 720 if (!(ifp->if_flags & IFF_MULTICAST)) { 721 IP6STAT_INC(ip6s_noroute); 722 in6_ifstat_inc(ifp, ifs6_out_discard); 723 error = ENETUNREACH; 724 goto bad; 725 } 726 if ((im6o == NULL && in6_mcast_loop) || 727 (im6o && im6o->im6o_multicast_loop)) { 728 /* 729 * Loop back multicast datagram if not expressly 730 * forbidden to do so, even if we have not joined 731 * the address; protocols will filter it later, 732 * thus deferring a hash lookup and lock acquisition 733 * at the expense of an m_copym(). 734 */ 735 ip6_mloopback(ifp, m); 736 } else { 737 /* 738 * If we are acting as a multicast router, perform 739 * multicast forwarding as if the packet had just 740 * arrived on the interface to which we are about 741 * to send. The multicast forwarding function 742 * recursively calls this function, using the 743 * IPV6_FORWARDING flag to prevent infinite recursion. 744 * 745 * Multicasts that are looped back by ip6_mloopback(), 746 * above, will be forwarded by the ip6_input() routine, 747 * if necessary. 748 */ 749 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 750 /* 751 * XXX: ip6_mforward expects that rcvif is NULL 752 * when it is called from the originating path. 753 * However, it may not always be the case. 754 */ 755 m->m_pkthdr.rcvif = NULL; 756 if (ip6_mforward(ip6, ifp, m) != 0) { 757 m_freem(m); 758 goto done; 759 } 760 } 761 } 762 /* 763 * Multicasts with a hoplimit of zero may be looped back, 764 * above, but must not be transmitted on a network. 765 * Also, multicasts addressed to the loopback interface 766 * are not sent -- the above call to ip6_mloopback() will 767 * loop back a copy if this host actually belongs to the 768 * destination group on the loopback interface. 769 */ 770 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 771 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 772 m_freem(m); 773 goto done; 774 } 775 } 776 777 /* 778 * Fill the outgoing inteface to tell the upper layer 779 * to increment per-interface statistics. 780 */ 781 if (ifpp) 782 *ifpp = ifp; 783 784 /* Determine path MTU. */ 785 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 786 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 787 goto bad; 788 789 /* 790 * The caller of this function may specify to use the minimum MTU 791 * in some cases. 792 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 793 * setting. The logic is a bit complicated; by default, unicast 794 * packets will follow path MTU while multicast packets will be sent at 795 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 796 * including unicast ones will be sent at the minimum MTU. Multicast 797 * packets will always be sent at the minimum MTU unless 798 * IP6PO_MINMTU_DISABLE is explicitly specified. 799 * See RFC 3542 for more details. 800 */ 801 if (mtu > IPV6_MMTU) { 802 if ((flags & IPV6_MINMTU)) 803 mtu = IPV6_MMTU; 804 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 805 mtu = IPV6_MMTU; 806 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 807 (opt == NULL || 808 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 809 mtu = IPV6_MMTU; 810 } 811 } 812 813 /* 814 * clear embedded scope identifiers if necessary. 815 * in6_clearscope will touch the addresses only when necessary. 816 */ 817 in6_clearscope(&ip6->ip6_src); 818 in6_clearscope(&ip6->ip6_dst); 819 820 /* 821 * If the outgoing packet contains a hop-by-hop options header, 822 * it must be examined and processed even by the source node. 823 * (RFC 2460, section 4.) 824 */ 825 if (exthdrs.ip6e_hbh) { 826 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 827 u_int32_t dummy; /* XXX unused */ 828 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 829 830 #ifdef DIAGNOSTIC 831 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 832 panic("ip6e_hbh is not contiguous"); 833 #endif 834 /* 835 * XXX: if we have to send an ICMPv6 error to the sender, 836 * we need the M_LOOP flag since icmp6_error() expects 837 * the IPv6 and the hop-by-hop options header are 838 * contiguous unless the flag is set. 839 */ 840 m->m_flags |= M_LOOP; 841 m->m_pkthdr.rcvif = ifp; 842 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 843 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 844 &dummy, &plen) < 0) { 845 /* m was already freed at this point */ 846 error = EINVAL;/* better error? */ 847 goto done; 848 } 849 m->m_flags &= ~M_LOOP; /* XXX */ 850 m->m_pkthdr.rcvif = NULL; 851 } 852 853 /* Jump over all PFIL processing if hooks are not active. */ 854 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head)) 855 goto passout; 856 857 odst = ip6->ip6_dst; 858 /* Run through list of hooks for output packets. */ 859 switch (pfil_run_hooks(V_inet6_pfil_head, &m, ifp, PFIL_OUT, inp)) { 860 case PFIL_PASS: 861 ip6 = mtod(m, struct ip6_hdr *); 862 break; 863 case PFIL_DROPPED: 864 error = EPERM; 865 /* FALLTHROUGH */ 866 case PFIL_CONSUMED: 867 goto done; 868 } 869 870 needfiblookup = 0; 871 /* See if destination IP address was changed by packet filter. */ 872 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 873 m->m_flags |= M_SKIP_FIREWALL; 874 /* If destination is now ourself drop to ip6_input(). */ 875 if (in6_localip(&ip6->ip6_dst)) { 876 m->m_flags |= M_FASTFWD_OURS; 877 if (m->m_pkthdr.rcvif == NULL) 878 m->m_pkthdr.rcvif = V_loif; 879 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 880 m->m_pkthdr.csum_flags |= 881 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 882 m->m_pkthdr.csum_data = 0xffff; 883 } 884 #ifdef SCTP 885 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 886 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 887 #endif 888 error = netisr_queue(NETISR_IPV6, m); 889 goto done; 890 } else { 891 RO_INVALIDATE_CACHE(ro); 892 needfiblookup = 1; /* Redo the routing table lookup. */ 893 } 894 } 895 /* See if fib was changed by packet filter. */ 896 if (fibnum != M_GETFIB(m)) { 897 m->m_flags |= M_SKIP_FIREWALL; 898 fibnum = M_GETFIB(m); 899 RO_INVALIDATE_CACHE(ro); 900 needfiblookup = 1; 901 } 902 if (needfiblookup) 903 goto again; 904 905 /* See if local, if yes, send it to netisr. */ 906 if (m->m_flags & M_FASTFWD_OURS) { 907 if (m->m_pkthdr.rcvif == NULL) 908 m->m_pkthdr.rcvif = V_loif; 909 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 910 m->m_pkthdr.csum_flags |= 911 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 912 m->m_pkthdr.csum_data = 0xffff; 913 } 914 #ifdef SCTP 915 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 916 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 917 #endif 918 error = netisr_queue(NETISR_IPV6, m); 919 goto done; 920 } 921 /* Or forward to some other address? */ 922 if ((m->m_flags & M_IP6_NEXTHOP) && 923 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 924 dst = (struct sockaddr_in6 *)&ro->ro_dst; 925 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 926 m->m_flags |= M_SKIP_FIREWALL; 927 m->m_flags &= ~M_IP6_NEXTHOP; 928 m_tag_delete(m, fwd_tag); 929 goto again; 930 } 931 932 passout: 933 /* 934 * Send the packet to the outgoing interface. 935 * If necessary, do IPv6 fragmentation before sending. 936 * 937 * the logic here is rather complex: 938 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 939 * 1-a: send as is if tlen <= path mtu 940 * 1-b: fragment if tlen > path mtu 941 * 942 * 2: if user asks us not to fragment (dontfrag == 1) 943 * 2-a: send as is if tlen <= interface mtu 944 * 2-b: error if tlen > interface mtu 945 * 946 * 3: if we always need to attach fragment header (alwaysfrag == 1) 947 * always fragment 948 * 949 * 4: if dontfrag == 1 && alwaysfrag == 1 950 * error, as we cannot handle this conflicting request 951 */ 952 sw_csum = m->m_pkthdr.csum_flags; 953 if (!hdrsplit) { 954 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 955 sw_csum &= ~ifp->if_hwassist; 956 } else 957 tso = 0; 958 /* 959 * If we added extension headers, we will not do TSO and calculate the 960 * checksums ourselves for now. 961 * XXX-BZ Need a framework to know when the NIC can handle it, even 962 * with ext. hdrs. 963 */ 964 if (sw_csum & CSUM_DELAY_DATA_IPV6) { 965 sw_csum &= ~CSUM_DELAY_DATA_IPV6; 966 m = mb_unmapped_to_ext(m); 967 if (m == NULL) { 968 error = ENOBUFS; 969 IP6STAT_INC(ip6s_odropped); 970 goto bad; 971 } 972 in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); 973 } else if ((ifp->if_capenable & IFCAP_NOMAP) == 0) { 974 m = mb_unmapped_to_ext(m); 975 if (m == NULL) { 976 error = ENOBUFS; 977 IP6STAT_INC(ip6s_odropped); 978 goto bad; 979 } 980 } 981 #ifdef SCTP 982 if (sw_csum & CSUM_SCTP_IPV6) { 983 sw_csum &= ~CSUM_SCTP_IPV6; 984 m = mb_unmapped_to_ext(m); 985 if (m == NULL) { 986 error = ENOBUFS; 987 IP6STAT_INC(ip6s_odropped); 988 goto bad; 989 } 990 sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); 991 } 992 #endif 993 m->m_pkthdr.csum_flags &= ifp->if_hwassist; 994 tlen = m->m_pkthdr.len; 995 996 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 997 dontfrag = 1; 998 else 999 dontfrag = 0; 1000 if (dontfrag && alwaysfrag) { /* case 4 */ 1001 /* conflicting request - can't transmit */ 1002 error = EMSGSIZE; 1003 goto bad; 1004 } 1005 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ 1006 /* 1007 * Even if the DONTFRAG option is specified, we cannot send the 1008 * packet when the data length is larger than the MTU of the 1009 * outgoing interface. 1010 * Notify the error by sending IPV6_PATHMTU ancillary data if 1011 * application wanted to know the MTU value. Also return an 1012 * error code (this is not described in the API spec). 1013 */ 1014 if (inp != NULL) 1015 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 1016 error = EMSGSIZE; 1017 goto bad; 1018 } 1019 1020 /* 1021 * transmit packet without fragmentation 1022 */ 1023 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 1024 struct in6_ifaddr *ia6; 1025 1026 ip6 = mtod(m, struct ip6_hdr *); 1027 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1028 if (ia6) { 1029 /* Record statistics for this interface address. */ 1030 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 1031 counter_u64_add(ia6->ia_ifa.ifa_obytes, 1032 m->m_pkthdr.len); 1033 ifa_free(&ia6->ia_ifa); 1034 } 1035 error = ip6_output_send(inp, ifp, origifp, m, dst, ro); 1036 goto done; 1037 } 1038 1039 /* 1040 * try to fragment the packet. case 1-b and 3 1041 */ 1042 if (mtu < IPV6_MMTU) { 1043 /* path MTU cannot be less than IPV6_MMTU */ 1044 error = EMSGSIZE; 1045 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1046 goto bad; 1047 } else if (ip6->ip6_plen == 0) { 1048 /* jumbo payload cannot be fragmented */ 1049 error = EMSGSIZE; 1050 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1051 goto bad; 1052 } else { 1053 u_char nextproto; 1054 1055 /* 1056 * Too large for the destination or interface; 1057 * fragment if possible. 1058 * Must be able to put at least 8 bytes per fragment. 1059 */ 1060 hlen = unfragpartlen; 1061 if (mtu > IPV6_MAXPACKET) 1062 mtu = IPV6_MAXPACKET; 1063 1064 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 1065 if (len < 8) { 1066 error = EMSGSIZE; 1067 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1068 goto bad; 1069 } 1070 1071 /* 1072 * If the interface will not calculate checksums on 1073 * fragmented packets, then do it here. 1074 * XXX-BZ handle the hw offloading case. Need flags. 1075 */ 1076 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1077 m = mb_unmapped_to_ext(m); 1078 if (m == NULL) { 1079 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1080 error = ENOBUFS; 1081 goto bad; 1082 } 1083 in6_delayed_cksum(m, plen, hlen); 1084 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 1085 } 1086 #ifdef SCTP 1087 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { 1088 m = mb_unmapped_to_ext(m); 1089 if (m == NULL) { 1090 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1091 error = ENOBUFS; 1092 goto bad; 1093 } 1094 sctp_delayed_cksum(m, hlen); 1095 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 1096 } 1097 #endif 1098 /* 1099 * Change the next header field of the last header in the 1100 * unfragmentable part. 1101 */ 1102 if (exthdrs.ip6e_rthdr) { 1103 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1104 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1105 } else if (exthdrs.ip6e_dest1) { 1106 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1107 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1108 } else if (exthdrs.ip6e_hbh) { 1109 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1110 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1111 } else { 1112 nextproto = ip6->ip6_nxt; 1113 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1114 } 1115 1116 /* 1117 * Loop through length of segment after first fragment, 1118 * make new header and copy data of each part and link onto 1119 * chain. 1120 */ 1121 m0 = m; 1122 id = htonl(ip6_randomid()); 1123 if ((error = ip6_fragment(ifp, m, hlen, nextproto, len, id))) 1124 goto sendorfree; 1125 1126 in6_ifstat_inc(ifp, ifs6_out_fragok); 1127 } 1128 1129 /* 1130 * Remove leading garbages. 1131 */ 1132 sendorfree: 1133 m = m0->m_nextpkt; 1134 m0->m_nextpkt = 0; 1135 m_freem(m0); 1136 for (; m; m = m0) { 1137 m0 = m->m_nextpkt; 1138 m->m_nextpkt = 0; 1139 if (error == 0) { 1140 /* Record statistics for this interface address. */ 1141 if (ia) { 1142 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1143 counter_u64_add(ia->ia_ifa.ifa_obytes, 1144 m->m_pkthdr.len); 1145 } 1146 error = ip6_output_send(inp, ifp, origifp, m, dst, ro); 1147 } else 1148 m_freem(m); 1149 } 1150 1151 if (error == 0) 1152 IP6STAT_INC(ip6s_fragmented); 1153 1154 done: 1155 if (ro == &ip6route) 1156 RO_RTFREE(ro); 1157 return (error); 1158 1159 freehdrs: 1160 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1161 m_freem(exthdrs.ip6e_dest1); 1162 m_freem(exthdrs.ip6e_rthdr); 1163 m_freem(exthdrs.ip6e_dest2); 1164 /* FALLTHROUGH */ 1165 bad: 1166 if (m) 1167 m_freem(m); 1168 goto done; 1169 } 1170 1171 static int 1172 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1173 { 1174 struct mbuf *m; 1175 1176 if (hlen > MCLBYTES) 1177 return (ENOBUFS); /* XXX */ 1178 1179 if (hlen > MLEN) 1180 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1181 else 1182 m = m_get(M_NOWAIT, MT_DATA); 1183 if (m == NULL) 1184 return (ENOBUFS); 1185 m->m_len = hlen; 1186 if (hdr) 1187 bcopy(hdr, mtod(m, caddr_t), hlen); 1188 1189 *mp = m; 1190 return (0); 1191 } 1192 1193 /* 1194 * Insert jumbo payload option. 1195 */ 1196 static int 1197 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1198 { 1199 struct mbuf *mopt; 1200 u_char *optbuf; 1201 u_int32_t v; 1202 1203 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1204 1205 /* 1206 * If there is no hop-by-hop options header, allocate new one. 1207 * If there is one but it doesn't have enough space to store the 1208 * jumbo payload option, allocate a cluster to store the whole options. 1209 * Otherwise, use it to store the options. 1210 */ 1211 if (exthdrs->ip6e_hbh == NULL) { 1212 mopt = m_get(M_NOWAIT, MT_DATA); 1213 if (mopt == NULL) 1214 return (ENOBUFS); 1215 mopt->m_len = JUMBOOPTLEN; 1216 optbuf = mtod(mopt, u_char *); 1217 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1218 exthdrs->ip6e_hbh = mopt; 1219 } else { 1220 struct ip6_hbh *hbh; 1221 1222 mopt = exthdrs->ip6e_hbh; 1223 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1224 /* 1225 * XXX assumption: 1226 * - exthdrs->ip6e_hbh is not referenced from places 1227 * other than exthdrs. 1228 * - exthdrs->ip6e_hbh is not an mbuf chain. 1229 */ 1230 int oldoptlen = mopt->m_len; 1231 struct mbuf *n; 1232 1233 /* 1234 * XXX: give up if the whole (new) hbh header does 1235 * not fit even in an mbuf cluster. 1236 */ 1237 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1238 return (ENOBUFS); 1239 1240 /* 1241 * As a consequence, we must always prepare a cluster 1242 * at this point. 1243 */ 1244 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1245 if (n == NULL) 1246 return (ENOBUFS); 1247 n->m_len = oldoptlen + JUMBOOPTLEN; 1248 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1249 oldoptlen); 1250 optbuf = mtod(n, caddr_t) + oldoptlen; 1251 m_freem(mopt); 1252 mopt = exthdrs->ip6e_hbh = n; 1253 } else { 1254 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1255 mopt->m_len += JUMBOOPTLEN; 1256 } 1257 optbuf[0] = IP6OPT_PADN; 1258 optbuf[1] = 1; 1259 1260 /* 1261 * Adjust the header length according to the pad and 1262 * the jumbo payload option. 1263 */ 1264 hbh = mtod(mopt, struct ip6_hbh *); 1265 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1266 } 1267 1268 /* fill in the option. */ 1269 optbuf[2] = IP6OPT_JUMBO; 1270 optbuf[3] = 4; 1271 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1272 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1273 1274 /* finally, adjust the packet header length */ 1275 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1276 1277 return (0); 1278 #undef JUMBOOPTLEN 1279 } 1280 1281 /* 1282 * Insert fragment header and copy unfragmentable header portions. 1283 */ 1284 static int 1285 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1286 struct ip6_frag **frghdrp) 1287 { 1288 struct mbuf *n, *mlast; 1289 1290 if (hlen > sizeof(struct ip6_hdr)) { 1291 n = m_copym(m0, sizeof(struct ip6_hdr), 1292 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1293 if (n == NULL) 1294 return (ENOBUFS); 1295 m->m_next = n; 1296 } else 1297 n = m; 1298 1299 /* Search for the last mbuf of unfragmentable part. */ 1300 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1301 ; 1302 1303 if (M_WRITABLE(mlast) && 1304 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1305 /* use the trailing space of the last mbuf for the fragment hdr */ 1306 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1307 mlast->m_len); 1308 mlast->m_len += sizeof(struct ip6_frag); 1309 m->m_pkthdr.len += sizeof(struct ip6_frag); 1310 } else { 1311 /* allocate a new mbuf for the fragment header */ 1312 struct mbuf *mfrg; 1313 1314 mfrg = m_get(M_NOWAIT, MT_DATA); 1315 if (mfrg == NULL) 1316 return (ENOBUFS); 1317 mfrg->m_len = sizeof(struct ip6_frag); 1318 *frghdrp = mtod(mfrg, struct ip6_frag *); 1319 mlast->m_next = mfrg; 1320 } 1321 1322 return (0); 1323 } 1324 1325 /* 1326 * Calculates IPv6 path mtu for destination @dst. 1327 * Resulting MTU is stored in @mtup. 1328 * 1329 * Returns 0 on success. 1330 */ 1331 static int 1332 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1333 { 1334 struct nhop6_extended nh6; 1335 struct in6_addr kdst; 1336 uint32_t scopeid; 1337 struct ifnet *ifp; 1338 u_long mtu; 1339 int error; 1340 1341 in6_splitscope(dst, &kdst, &scopeid); 1342 if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0) 1343 return (EHOSTUNREACH); 1344 1345 ifp = nh6.nh_ifp; 1346 mtu = nh6.nh_mtu; 1347 1348 error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL, 0); 1349 fib6_free_nh_ext(fibnum, &nh6); 1350 1351 return (error); 1352 } 1353 1354 /* 1355 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1356 * and cached data in @ro_pmtu. 1357 * MTU from (successful) route lookup is saved (along with dst) 1358 * inside @ro_pmtu to avoid subsequent route lookups after packet 1359 * filter processing. 1360 * 1361 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1362 * Returns 0 on success. 1363 */ 1364 static int 1365 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1366 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1367 int *alwaysfragp, u_int fibnum, u_int proto) 1368 { 1369 struct nhop6_basic nh6; 1370 struct in6_addr kdst; 1371 uint32_t scopeid; 1372 struct sockaddr_in6 *sa6_dst; 1373 u_long mtu; 1374 1375 mtu = 0; 1376 if (do_lookup) { 1377 1378 /* 1379 * Here ro_pmtu has final destination address, while 1380 * ro might represent immediate destination. 1381 * Use ro_pmtu destination since mtu might differ. 1382 */ 1383 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1384 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1385 ro_pmtu->ro_mtu = 0; 1386 1387 if (ro_pmtu->ro_mtu == 0) { 1388 bzero(sa6_dst, sizeof(*sa6_dst)); 1389 sa6_dst->sin6_family = AF_INET6; 1390 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1391 sa6_dst->sin6_addr = *dst; 1392 1393 in6_splitscope(dst, &kdst, &scopeid); 1394 if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0, 1395 &nh6) == 0) 1396 ro_pmtu->ro_mtu = nh6.nh_mtu; 1397 } 1398 1399 mtu = ro_pmtu->ro_mtu; 1400 } 1401 1402 if (ro_pmtu->ro_rt) 1403 mtu = ro_pmtu->ro_rt->rt_mtu; 1404 1405 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1406 } 1407 1408 /* 1409 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1410 * hostcache data for @dst. 1411 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1412 * 1413 * Returns 0 on success. 1414 */ 1415 static int 1416 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1417 u_long *mtup, int *alwaysfragp, u_int proto) 1418 { 1419 u_long mtu = 0; 1420 int alwaysfrag = 0; 1421 int error = 0; 1422 1423 if (rt_mtu > 0) { 1424 u_int32_t ifmtu; 1425 struct in_conninfo inc; 1426 1427 bzero(&inc, sizeof(inc)); 1428 inc.inc_flags |= INC_ISIPV6; 1429 inc.inc6_faddr = *dst; 1430 1431 ifmtu = IN6_LINKMTU(ifp); 1432 1433 /* TCP is known to react to pmtu changes so skip hc */ 1434 if (proto != IPPROTO_TCP) 1435 mtu = tcp_hc_getmtu(&inc); 1436 1437 if (mtu) 1438 mtu = min(mtu, rt_mtu); 1439 else 1440 mtu = rt_mtu; 1441 if (mtu == 0) 1442 mtu = ifmtu; 1443 else if (mtu < IPV6_MMTU) { 1444 /* 1445 * RFC2460 section 5, last paragraph: 1446 * if we record ICMPv6 too big message with 1447 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1448 * or smaller, with framgent header attached. 1449 * (fragment header is needed regardless from the 1450 * packet size, for translators to identify packets) 1451 */ 1452 alwaysfrag = 1; 1453 mtu = IPV6_MMTU; 1454 } 1455 } else if (ifp) { 1456 mtu = IN6_LINKMTU(ifp); 1457 } else 1458 error = EHOSTUNREACH; /* XXX */ 1459 1460 *mtup = mtu; 1461 if (alwaysfragp) 1462 *alwaysfragp = alwaysfrag; 1463 return (error); 1464 } 1465 1466 /* 1467 * IP6 socket option processing. 1468 */ 1469 int 1470 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1471 { 1472 int optdatalen, uproto; 1473 void *optdata; 1474 struct inpcb *in6p = sotoinpcb(so); 1475 int error, optval; 1476 int level, op, optname; 1477 int optlen; 1478 struct thread *td; 1479 #ifdef RSS 1480 uint32_t rss_bucket; 1481 int retval; 1482 #endif 1483 1484 /* 1485 * Don't use more than a quarter of mbuf clusters. N.B.: 1486 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1487 * on LP64 architectures, so cast to u_long to avoid undefined 1488 * behavior. ILP32 architectures cannot have nmbclusters 1489 * large enough to overflow for other reasons. 1490 */ 1491 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1492 1493 level = sopt->sopt_level; 1494 op = sopt->sopt_dir; 1495 optname = sopt->sopt_name; 1496 optlen = sopt->sopt_valsize; 1497 td = sopt->sopt_td; 1498 error = 0; 1499 optval = 0; 1500 uproto = (int)so->so_proto->pr_protocol; 1501 1502 if (level != IPPROTO_IPV6) { 1503 error = EINVAL; 1504 1505 if (sopt->sopt_level == SOL_SOCKET && 1506 sopt->sopt_dir == SOPT_SET) { 1507 switch (sopt->sopt_name) { 1508 case SO_REUSEADDR: 1509 INP_WLOCK(in6p); 1510 if ((so->so_options & SO_REUSEADDR) != 0) 1511 in6p->inp_flags2 |= INP_REUSEADDR; 1512 else 1513 in6p->inp_flags2 &= ~INP_REUSEADDR; 1514 INP_WUNLOCK(in6p); 1515 error = 0; 1516 break; 1517 case SO_REUSEPORT: 1518 INP_WLOCK(in6p); 1519 if ((so->so_options & SO_REUSEPORT) != 0) 1520 in6p->inp_flags2 |= INP_REUSEPORT; 1521 else 1522 in6p->inp_flags2 &= ~INP_REUSEPORT; 1523 INP_WUNLOCK(in6p); 1524 error = 0; 1525 break; 1526 case SO_REUSEPORT_LB: 1527 INP_WLOCK(in6p); 1528 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1529 in6p->inp_flags2 |= INP_REUSEPORT_LB; 1530 else 1531 in6p->inp_flags2 &= ~INP_REUSEPORT_LB; 1532 INP_WUNLOCK(in6p); 1533 error = 0; 1534 break; 1535 case SO_SETFIB: 1536 INP_WLOCK(in6p); 1537 in6p->inp_inc.inc_fibnum = so->so_fibnum; 1538 INP_WUNLOCK(in6p); 1539 error = 0; 1540 break; 1541 case SO_MAX_PACING_RATE: 1542 #ifdef RATELIMIT 1543 INP_WLOCK(in6p); 1544 in6p->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1545 INP_WUNLOCK(in6p); 1546 error = 0; 1547 #else 1548 error = EOPNOTSUPP; 1549 #endif 1550 break; 1551 default: 1552 break; 1553 } 1554 } 1555 } else { /* level == IPPROTO_IPV6 */ 1556 switch (op) { 1557 1558 case SOPT_SET: 1559 switch (optname) { 1560 case IPV6_2292PKTOPTIONS: 1561 #ifdef IPV6_PKTOPTIONS 1562 case IPV6_PKTOPTIONS: 1563 #endif 1564 { 1565 struct mbuf *m; 1566 1567 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1568 printf("ip6_ctloutput: mbuf limit hit\n"); 1569 error = ENOBUFS; 1570 break; 1571 } 1572 1573 error = soopt_getm(sopt, &m); /* XXX */ 1574 if (error != 0) 1575 break; 1576 error = soopt_mcopyin(sopt, m); /* XXX */ 1577 if (error != 0) 1578 break; 1579 error = ip6_pcbopts(&in6p->in6p_outputopts, 1580 m, so, sopt); 1581 m_freem(m); /* XXX */ 1582 break; 1583 } 1584 1585 /* 1586 * Use of some Hop-by-Hop options or some 1587 * Destination options, might require special 1588 * privilege. That is, normal applications 1589 * (without special privilege) might be forbidden 1590 * from setting certain options in outgoing packets, 1591 * and might never see certain options in received 1592 * packets. [RFC 2292 Section 6] 1593 * KAME specific note: 1594 * KAME prevents non-privileged users from sending or 1595 * receiving ANY hbh/dst options in order to avoid 1596 * overhead of parsing options in the kernel. 1597 */ 1598 case IPV6_RECVHOPOPTS: 1599 case IPV6_RECVDSTOPTS: 1600 case IPV6_RECVRTHDRDSTOPTS: 1601 if (td != NULL) { 1602 error = priv_check(td, 1603 PRIV_NETINET_SETHDROPTS); 1604 if (error) 1605 break; 1606 } 1607 /* FALLTHROUGH */ 1608 case IPV6_UNICAST_HOPS: 1609 case IPV6_HOPLIMIT: 1610 1611 case IPV6_RECVPKTINFO: 1612 case IPV6_RECVHOPLIMIT: 1613 case IPV6_RECVRTHDR: 1614 case IPV6_RECVPATHMTU: 1615 case IPV6_RECVTCLASS: 1616 case IPV6_RECVFLOWID: 1617 #ifdef RSS 1618 case IPV6_RECVRSSBUCKETID: 1619 #endif 1620 case IPV6_V6ONLY: 1621 case IPV6_AUTOFLOWLABEL: 1622 case IPV6_ORIGDSTADDR: 1623 case IPV6_BINDANY: 1624 case IPV6_BINDMULTI: 1625 #ifdef RSS 1626 case IPV6_RSS_LISTEN_BUCKET: 1627 #endif 1628 if (optname == IPV6_BINDANY && td != NULL) { 1629 error = priv_check(td, 1630 PRIV_NETINET_BINDANY); 1631 if (error) 1632 break; 1633 } 1634 1635 if (optlen != sizeof(int)) { 1636 error = EINVAL; 1637 break; 1638 } 1639 error = sooptcopyin(sopt, &optval, 1640 sizeof optval, sizeof optval); 1641 if (error) 1642 break; 1643 switch (optname) { 1644 1645 case IPV6_UNICAST_HOPS: 1646 if (optval < -1 || optval >= 256) 1647 error = EINVAL; 1648 else { 1649 /* -1 = kernel default */ 1650 in6p->in6p_hops = optval; 1651 if ((in6p->inp_vflag & 1652 INP_IPV4) != 0) 1653 in6p->inp_ip_ttl = optval; 1654 } 1655 break; 1656 #define OPTSET(bit) \ 1657 do { \ 1658 INP_WLOCK(in6p); \ 1659 if (optval) \ 1660 in6p->inp_flags |= (bit); \ 1661 else \ 1662 in6p->inp_flags &= ~(bit); \ 1663 INP_WUNLOCK(in6p); \ 1664 } while (/*CONSTCOND*/ 0) 1665 #define OPTSET2292(bit) \ 1666 do { \ 1667 INP_WLOCK(in6p); \ 1668 in6p->inp_flags |= IN6P_RFC2292; \ 1669 if (optval) \ 1670 in6p->inp_flags |= (bit); \ 1671 else \ 1672 in6p->inp_flags &= ~(bit); \ 1673 INP_WUNLOCK(in6p); \ 1674 } while (/*CONSTCOND*/ 0) 1675 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) 1676 1677 #define OPTSET2_N(bit, val) do { \ 1678 if (val) \ 1679 in6p->inp_flags2 |= bit; \ 1680 else \ 1681 in6p->inp_flags2 &= ~bit; \ 1682 } while (0) 1683 #define OPTSET2(bit, val) do { \ 1684 INP_WLOCK(in6p); \ 1685 OPTSET2_N(bit, val); \ 1686 INP_WUNLOCK(in6p); \ 1687 } while (0) 1688 #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) 1689 #define OPTSET2292_EXCLUSIVE(bit) \ 1690 do { \ 1691 INP_WLOCK(in6p); \ 1692 if (OPTBIT(IN6P_RFC2292)) { \ 1693 error = EINVAL; \ 1694 } else { \ 1695 if (optval) \ 1696 in6p->inp_flags |= (bit); \ 1697 else \ 1698 in6p->inp_flags &= ~(bit); \ 1699 } \ 1700 INP_WUNLOCK(in6p); \ 1701 } while (/*CONSTCOND*/ 0) 1702 1703 case IPV6_RECVPKTINFO: 1704 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1705 break; 1706 1707 case IPV6_HOPLIMIT: 1708 { 1709 struct ip6_pktopts **optp; 1710 1711 /* cannot mix with RFC2292 */ 1712 if (OPTBIT(IN6P_RFC2292)) { 1713 error = EINVAL; 1714 break; 1715 } 1716 INP_WLOCK(in6p); 1717 if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1718 INP_WUNLOCK(in6p); 1719 return (ECONNRESET); 1720 } 1721 optp = &in6p->in6p_outputopts; 1722 error = ip6_pcbopt(IPV6_HOPLIMIT, 1723 (u_char *)&optval, sizeof(optval), 1724 optp, (td != NULL) ? td->td_ucred : 1725 NULL, uproto); 1726 INP_WUNLOCK(in6p); 1727 break; 1728 } 1729 1730 case IPV6_RECVHOPLIMIT: 1731 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1732 break; 1733 1734 case IPV6_RECVHOPOPTS: 1735 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1736 break; 1737 1738 case IPV6_RECVDSTOPTS: 1739 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1740 break; 1741 1742 case IPV6_RECVRTHDRDSTOPTS: 1743 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1744 break; 1745 1746 case IPV6_RECVRTHDR: 1747 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1748 break; 1749 1750 case IPV6_RECVPATHMTU: 1751 /* 1752 * We ignore this option for TCP 1753 * sockets. 1754 * (RFC3542 leaves this case 1755 * unspecified.) 1756 */ 1757 if (uproto != IPPROTO_TCP) 1758 OPTSET(IN6P_MTU); 1759 break; 1760 1761 case IPV6_RECVFLOWID: 1762 OPTSET2(INP_RECVFLOWID, optval); 1763 break; 1764 1765 #ifdef RSS 1766 case IPV6_RECVRSSBUCKETID: 1767 OPTSET2(INP_RECVRSSBUCKETID, optval); 1768 break; 1769 #endif 1770 1771 case IPV6_V6ONLY: 1772 /* 1773 * make setsockopt(IPV6_V6ONLY) 1774 * available only prior to bind(2). 1775 * see ipng mailing list, Jun 22 2001. 1776 */ 1777 if (in6p->inp_lport || 1778 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1779 error = EINVAL; 1780 break; 1781 } 1782 OPTSET(IN6P_IPV6_V6ONLY); 1783 if (optval) 1784 in6p->inp_vflag &= ~INP_IPV4; 1785 else 1786 in6p->inp_vflag |= INP_IPV4; 1787 break; 1788 case IPV6_RECVTCLASS: 1789 /* cannot mix with RFC2292 XXX */ 1790 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1791 break; 1792 case IPV6_AUTOFLOWLABEL: 1793 OPTSET(IN6P_AUTOFLOWLABEL); 1794 break; 1795 1796 case IPV6_ORIGDSTADDR: 1797 OPTSET2(INP_ORIGDSTADDR, optval); 1798 break; 1799 case IPV6_BINDANY: 1800 OPTSET(INP_BINDANY); 1801 break; 1802 1803 case IPV6_BINDMULTI: 1804 OPTSET2(INP_BINDMULTI, optval); 1805 break; 1806 #ifdef RSS 1807 case IPV6_RSS_LISTEN_BUCKET: 1808 if ((optval >= 0) && 1809 (optval < rss_getnumbuckets())) { 1810 INP_WLOCK(in6p); 1811 in6p->inp_rss_listen_bucket = optval; 1812 OPTSET2_N(INP_RSS_BUCKET_SET, 1); 1813 INP_WUNLOCK(in6p); 1814 } else { 1815 error = EINVAL; 1816 } 1817 break; 1818 #endif 1819 } 1820 break; 1821 1822 case IPV6_TCLASS: 1823 case IPV6_DONTFRAG: 1824 case IPV6_USE_MIN_MTU: 1825 case IPV6_PREFER_TEMPADDR: 1826 if (optlen != sizeof(optval)) { 1827 error = EINVAL; 1828 break; 1829 } 1830 error = sooptcopyin(sopt, &optval, 1831 sizeof optval, sizeof optval); 1832 if (error) 1833 break; 1834 { 1835 struct ip6_pktopts **optp; 1836 INP_WLOCK(in6p); 1837 if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1838 INP_WUNLOCK(in6p); 1839 return (ECONNRESET); 1840 } 1841 optp = &in6p->in6p_outputopts; 1842 error = ip6_pcbopt(optname, 1843 (u_char *)&optval, sizeof(optval), 1844 optp, (td != NULL) ? td->td_ucred : 1845 NULL, uproto); 1846 INP_WUNLOCK(in6p); 1847 break; 1848 } 1849 1850 case IPV6_2292PKTINFO: 1851 case IPV6_2292HOPLIMIT: 1852 case IPV6_2292HOPOPTS: 1853 case IPV6_2292DSTOPTS: 1854 case IPV6_2292RTHDR: 1855 /* RFC 2292 */ 1856 if (optlen != sizeof(int)) { 1857 error = EINVAL; 1858 break; 1859 } 1860 error = sooptcopyin(sopt, &optval, 1861 sizeof optval, sizeof optval); 1862 if (error) 1863 break; 1864 switch (optname) { 1865 case IPV6_2292PKTINFO: 1866 OPTSET2292(IN6P_PKTINFO); 1867 break; 1868 case IPV6_2292HOPLIMIT: 1869 OPTSET2292(IN6P_HOPLIMIT); 1870 break; 1871 case IPV6_2292HOPOPTS: 1872 /* 1873 * Check super-user privilege. 1874 * See comments for IPV6_RECVHOPOPTS. 1875 */ 1876 if (td != NULL) { 1877 error = priv_check(td, 1878 PRIV_NETINET_SETHDROPTS); 1879 if (error) 1880 return (error); 1881 } 1882 OPTSET2292(IN6P_HOPOPTS); 1883 break; 1884 case IPV6_2292DSTOPTS: 1885 if (td != NULL) { 1886 error = priv_check(td, 1887 PRIV_NETINET_SETHDROPTS); 1888 if (error) 1889 return (error); 1890 } 1891 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1892 break; 1893 case IPV6_2292RTHDR: 1894 OPTSET2292(IN6P_RTHDR); 1895 break; 1896 } 1897 break; 1898 case IPV6_PKTINFO: 1899 case IPV6_HOPOPTS: 1900 case IPV6_RTHDR: 1901 case IPV6_DSTOPTS: 1902 case IPV6_RTHDRDSTOPTS: 1903 case IPV6_NEXTHOP: 1904 { 1905 /* new advanced API (RFC3542) */ 1906 u_char *optbuf; 1907 u_char optbuf_storage[MCLBYTES]; 1908 int optlen; 1909 struct ip6_pktopts **optp; 1910 1911 /* cannot mix with RFC2292 */ 1912 if (OPTBIT(IN6P_RFC2292)) { 1913 error = EINVAL; 1914 break; 1915 } 1916 1917 /* 1918 * We only ensure valsize is not too large 1919 * here. Further validation will be done 1920 * later. 1921 */ 1922 error = sooptcopyin(sopt, optbuf_storage, 1923 sizeof(optbuf_storage), 0); 1924 if (error) 1925 break; 1926 optlen = sopt->sopt_valsize; 1927 optbuf = optbuf_storage; 1928 INP_WLOCK(in6p); 1929 if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1930 INP_WUNLOCK(in6p); 1931 return (ECONNRESET); 1932 } 1933 optp = &in6p->in6p_outputopts; 1934 error = ip6_pcbopt(optname, optbuf, optlen, 1935 optp, (td != NULL) ? td->td_ucred : NULL, 1936 uproto); 1937 INP_WUNLOCK(in6p); 1938 break; 1939 } 1940 #undef OPTSET 1941 1942 case IPV6_MULTICAST_IF: 1943 case IPV6_MULTICAST_HOPS: 1944 case IPV6_MULTICAST_LOOP: 1945 case IPV6_JOIN_GROUP: 1946 case IPV6_LEAVE_GROUP: 1947 case IPV6_MSFILTER: 1948 case MCAST_BLOCK_SOURCE: 1949 case MCAST_UNBLOCK_SOURCE: 1950 case MCAST_JOIN_GROUP: 1951 case MCAST_LEAVE_GROUP: 1952 case MCAST_JOIN_SOURCE_GROUP: 1953 case MCAST_LEAVE_SOURCE_GROUP: 1954 error = ip6_setmoptions(in6p, sopt); 1955 break; 1956 1957 case IPV6_PORTRANGE: 1958 error = sooptcopyin(sopt, &optval, 1959 sizeof optval, sizeof optval); 1960 if (error) 1961 break; 1962 1963 INP_WLOCK(in6p); 1964 switch (optval) { 1965 case IPV6_PORTRANGE_DEFAULT: 1966 in6p->inp_flags &= ~(INP_LOWPORT); 1967 in6p->inp_flags &= ~(INP_HIGHPORT); 1968 break; 1969 1970 case IPV6_PORTRANGE_HIGH: 1971 in6p->inp_flags &= ~(INP_LOWPORT); 1972 in6p->inp_flags |= INP_HIGHPORT; 1973 break; 1974 1975 case IPV6_PORTRANGE_LOW: 1976 in6p->inp_flags &= ~(INP_HIGHPORT); 1977 in6p->inp_flags |= INP_LOWPORT; 1978 break; 1979 1980 default: 1981 error = EINVAL; 1982 break; 1983 } 1984 INP_WUNLOCK(in6p); 1985 break; 1986 1987 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1988 case IPV6_IPSEC_POLICY: 1989 if (IPSEC_ENABLED(ipv6)) { 1990 error = IPSEC_PCBCTL(ipv6, in6p, sopt); 1991 break; 1992 } 1993 /* FALLTHROUGH */ 1994 #endif /* IPSEC */ 1995 1996 default: 1997 error = ENOPROTOOPT; 1998 break; 1999 } 2000 break; 2001 2002 case SOPT_GET: 2003 switch (optname) { 2004 2005 case IPV6_2292PKTOPTIONS: 2006 #ifdef IPV6_PKTOPTIONS 2007 case IPV6_PKTOPTIONS: 2008 #endif 2009 /* 2010 * RFC3542 (effectively) deprecated the 2011 * semantics of the 2292-style pktoptions. 2012 * Since it was not reliable in nature (i.e., 2013 * applications had to expect the lack of some 2014 * information after all), it would make sense 2015 * to simplify this part by always returning 2016 * empty data. 2017 */ 2018 sopt->sopt_valsize = 0; 2019 break; 2020 2021 case IPV6_RECVHOPOPTS: 2022 case IPV6_RECVDSTOPTS: 2023 case IPV6_RECVRTHDRDSTOPTS: 2024 case IPV6_UNICAST_HOPS: 2025 case IPV6_RECVPKTINFO: 2026 case IPV6_RECVHOPLIMIT: 2027 case IPV6_RECVRTHDR: 2028 case IPV6_RECVPATHMTU: 2029 2030 case IPV6_V6ONLY: 2031 case IPV6_PORTRANGE: 2032 case IPV6_RECVTCLASS: 2033 case IPV6_AUTOFLOWLABEL: 2034 case IPV6_BINDANY: 2035 case IPV6_FLOWID: 2036 case IPV6_FLOWTYPE: 2037 case IPV6_RECVFLOWID: 2038 #ifdef RSS 2039 case IPV6_RSSBUCKETID: 2040 case IPV6_RECVRSSBUCKETID: 2041 #endif 2042 case IPV6_BINDMULTI: 2043 switch (optname) { 2044 2045 case IPV6_RECVHOPOPTS: 2046 optval = OPTBIT(IN6P_HOPOPTS); 2047 break; 2048 2049 case IPV6_RECVDSTOPTS: 2050 optval = OPTBIT(IN6P_DSTOPTS); 2051 break; 2052 2053 case IPV6_RECVRTHDRDSTOPTS: 2054 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 2055 break; 2056 2057 case IPV6_UNICAST_HOPS: 2058 optval = in6p->in6p_hops; 2059 break; 2060 2061 case IPV6_RECVPKTINFO: 2062 optval = OPTBIT(IN6P_PKTINFO); 2063 break; 2064 2065 case IPV6_RECVHOPLIMIT: 2066 optval = OPTBIT(IN6P_HOPLIMIT); 2067 break; 2068 2069 case IPV6_RECVRTHDR: 2070 optval = OPTBIT(IN6P_RTHDR); 2071 break; 2072 2073 case IPV6_RECVPATHMTU: 2074 optval = OPTBIT(IN6P_MTU); 2075 break; 2076 2077 case IPV6_V6ONLY: 2078 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2079 break; 2080 2081 case IPV6_PORTRANGE: 2082 { 2083 int flags; 2084 flags = in6p->inp_flags; 2085 if (flags & INP_HIGHPORT) 2086 optval = IPV6_PORTRANGE_HIGH; 2087 else if (flags & INP_LOWPORT) 2088 optval = IPV6_PORTRANGE_LOW; 2089 else 2090 optval = 0; 2091 break; 2092 } 2093 case IPV6_RECVTCLASS: 2094 optval = OPTBIT(IN6P_TCLASS); 2095 break; 2096 2097 case IPV6_AUTOFLOWLABEL: 2098 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2099 break; 2100 2101 case IPV6_ORIGDSTADDR: 2102 optval = OPTBIT2(INP_ORIGDSTADDR); 2103 break; 2104 2105 case IPV6_BINDANY: 2106 optval = OPTBIT(INP_BINDANY); 2107 break; 2108 2109 case IPV6_FLOWID: 2110 optval = in6p->inp_flowid; 2111 break; 2112 2113 case IPV6_FLOWTYPE: 2114 optval = in6p->inp_flowtype; 2115 break; 2116 2117 case IPV6_RECVFLOWID: 2118 optval = OPTBIT2(INP_RECVFLOWID); 2119 break; 2120 #ifdef RSS 2121 case IPV6_RSSBUCKETID: 2122 retval = 2123 rss_hash2bucket(in6p->inp_flowid, 2124 in6p->inp_flowtype, 2125 &rss_bucket); 2126 if (retval == 0) 2127 optval = rss_bucket; 2128 else 2129 error = EINVAL; 2130 break; 2131 2132 case IPV6_RECVRSSBUCKETID: 2133 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2134 break; 2135 #endif 2136 2137 case IPV6_BINDMULTI: 2138 optval = OPTBIT2(INP_BINDMULTI); 2139 break; 2140 2141 } 2142 if (error) 2143 break; 2144 error = sooptcopyout(sopt, &optval, 2145 sizeof optval); 2146 break; 2147 2148 case IPV6_PATHMTU: 2149 { 2150 u_long pmtu = 0; 2151 struct ip6_mtuinfo mtuinfo; 2152 struct in6_addr addr; 2153 2154 if (!(so->so_state & SS_ISCONNECTED)) 2155 return (ENOTCONN); 2156 /* 2157 * XXX: we dot not consider the case of source 2158 * routing, or optional information to specify 2159 * the outgoing interface. 2160 * Copy faddr out of in6p to avoid holding lock 2161 * on inp during route lookup. 2162 */ 2163 INP_RLOCK(in6p); 2164 bcopy(&in6p->in6p_faddr, &addr, sizeof(addr)); 2165 INP_RUNLOCK(in6p); 2166 error = ip6_getpmtu_ctl(so->so_fibnum, 2167 &addr, &pmtu); 2168 if (error) 2169 break; 2170 if (pmtu > IPV6_MAXPACKET) 2171 pmtu = IPV6_MAXPACKET; 2172 2173 bzero(&mtuinfo, sizeof(mtuinfo)); 2174 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2175 optdata = (void *)&mtuinfo; 2176 optdatalen = sizeof(mtuinfo); 2177 error = sooptcopyout(sopt, optdata, 2178 optdatalen); 2179 break; 2180 } 2181 2182 case IPV6_2292PKTINFO: 2183 case IPV6_2292HOPLIMIT: 2184 case IPV6_2292HOPOPTS: 2185 case IPV6_2292RTHDR: 2186 case IPV6_2292DSTOPTS: 2187 switch (optname) { 2188 case IPV6_2292PKTINFO: 2189 optval = OPTBIT(IN6P_PKTINFO); 2190 break; 2191 case IPV6_2292HOPLIMIT: 2192 optval = OPTBIT(IN6P_HOPLIMIT); 2193 break; 2194 case IPV6_2292HOPOPTS: 2195 optval = OPTBIT(IN6P_HOPOPTS); 2196 break; 2197 case IPV6_2292RTHDR: 2198 optval = OPTBIT(IN6P_RTHDR); 2199 break; 2200 case IPV6_2292DSTOPTS: 2201 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2202 break; 2203 } 2204 error = sooptcopyout(sopt, &optval, 2205 sizeof optval); 2206 break; 2207 case IPV6_PKTINFO: 2208 case IPV6_HOPOPTS: 2209 case IPV6_RTHDR: 2210 case IPV6_DSTOPTS: 2211 case IPV6_RTHDRDSTOPTS: 2212 case IPV6_NEXTHOP: 2213 case IPV6_TCLASS: 2214 case IPV6_DONTFRAG: 2215 case IPV6_USE_MIN_MTU: 2216 case IPV6_PREFER_TEMPADDR: 2217 error = ip6_getpcbopt(in6p, optname, sopt); 2218 break; 2219 2220 case IPV6_MULTICAST_IF: 2221 case IPV6_MULTICAST_HOPS: 2222 case IPV6_MULTICAST_LOOP: 2223 case IPV6_MSFILTER: 2224 error = ip6_getmoptions(in6p, sopt); 2225 break; 2226 2227 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2228 case IPV6_IPSEC_POLICY: 2229 if (IPSEC_ENABLED(ipv6)) { 2230 error = IPSEC_PCBCTL(ipv6, in6p, sopt); 2231 break; 2232 } 2233 /* FALLTHROUGH */ 2234 #endif /* IPSEC */ 2235 default: 2236 error = ENOPROTOOPT; 2237 break; 2238 } 2239 break; 2240 } 2241 } 2242 return (error); 2243 } 2244 2245 int 2246 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2247 { 2248 int error = 0, optval, optlen; 2249 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2250 struct inpcb *in6p = sotoinpcb(so); 2251 int level, op, optname; 2252 2253 level = sopt->sopt_level; 2254 op = sopt->sopt_dir; 2255 optname = sopt->sopt_name; 2256 optlen = sopt->sopt_valsize; 2257 2258 if (level != IPPROTO_IPV6) { 2259 return (EINVAL); 2260 } 2261 2262 switch (optname) { 2263 case IPV6_CHECKSUM: 2264 /* 2265 * For ICMPv6 sockets, no modification allowed for checksum 2266 * offset, permit "no change" values to help existing apps. 2267 * 2268 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2269 * for an ICMPv6 socket will fail." 2270 * The current behavior does not meet RFC3542. 2271 */ 2272 switch (op) { 2273 case SOPT_SET: 2274 if (optlen != sizeof(int)) { 2275 error = EINVAL; 2276 break; 2277 } 2278 error = sooptcopyin(sopt, &optval, sizeof(optval), 2279 sizeof(optval)); 2280 if (error) 2281 break; 2282 if (optval < -1 || (optval % 2) != 0) { 2283 /* 2284 * The API assumes non-negative even offset 2285 * values or -1 as a special value. 2286 */ 2287 error = EINVAL; 2288 } else if (so->so_proto->pr_protocol == 2289 IPPROTO_ICMPV6) { 2290 if (optval != icmp6off) 2291 error = EINVAL; 2292 } else 2293 in6p->in6p_cksum = optval; 2294 break; 2295 2296 case SOPT_GET: 2297 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2298 optval = icmp6off; 2299 else 2300 optval = in6p->in6p_cksum; 2301 2302 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2303 break; 2304 2305 default: 2306 error = EINVAL; 2307 break; 2308 } 2309 break; 2310 2311 default: 2312 error = ENOPROTOOPT; 2313 break; 2314 } 2315 2316 return (error); 2317 } 2318 2319 /* 2320 * Set up IP6 options in pcb for insertion in output packets or 2321 * specifying behavior of outgoing packets. 2322 */ 2323 static int 2324 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2325 struct socket *so, struct sockopt *sopt) 2326 { 2327 struct ip6_pktopts *opt = *pktopt; 2328 int error = 0; 2329 struct thread *td = sopt->sopt_td; 2330 2331 /* turn off any old options. */ 2332 if (opt) { 2333 #ifdef DIAGNOSTIC 2334 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2335 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2336 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2337 printf("ip6_pcbopts: all specified options are cleared.\n"); 2338 #endif 2339 ip6_clearpktopts(opt, -1); 2340 } else 2341 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2342 *pktopt = NULL; 2343 2344 if (!m || m->m_len == 0) { 2345 /* 2346 * Only turning off any previous options, regardless of 2347 * whether the opt is just created or given. 2348 */ 2349 free(opt, M_IP6OPT); 2350 return (0); 2351 } 2352 2353 /* set options specified by user. */ 2354 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2355 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2356 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2357 free(opt, M_IP6OPT); 2358 return (error); 2359 } 2360 *pktopt = opt; 2361 return (0); 2362 } 2363 2364 /* 2365 * initialize ip6_pktopts. beware that there are non-zero default values in 2366 * the struct. 2367 */ 2368 void 2369 ip6_initpktopts(struct ip6_pktopts *opt) 2370 { 2371 2372 bzero(opt, sizeof(*opt)); 2373 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2374 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2375 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2376 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2377 } 2378 2379 static int 2380 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2381 struct ucred *cred, int uproto) 2382 { 2383 struct ip6_pktopts *opt; 2384 2385 if (*pktopt == NULL) { 2386 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2387 M_NOWAIT); 2388 if (*pktopt == NULL) 2389 return (ENOBUFS); 2390 ip6_initpktopts(*pktopt); 2391 } 2392 opt = *pktopt; 2393 2394 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2395 } 2396 2397 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2398 if (pktopt && pktopt->field) { \ 2399 INP_RUNLOCK(in6p); \ 2400 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2401 malloc_optdata = true; \ 2402 INP_RLOCK(in6p); \ 2403 if (in6p->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ 2404 INP_RUNLOCK(in6p); \ 2405 free(optdata, M_TEMP); \ 2406 return (ECONNRESET); \ 2407 } \ 2408 pktopt = in6p->in6p_outputopts; \ 2409 if (pktopt && pktopt->field) { \ 2410 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2411 bcopy(&pktopt->field, optdata, optdatalen); \ 2412 } else { \ 2413 free(optdata, M_TEMP); \ 2414 optdata = NULL; \ 2415 malloc_optdata = false; \ 2416 } \ 2417 } \ 2418 } while(0) 2419 2420 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2421 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2422 2423 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2424 pktopt->field->sa_len) 2425 2426 static int 2427 ip6_getpcbopt(struct inpcb *in6p, int optname, struct sockopt *sopt) 2428 { 2429 void *optdata = NULL; 2430 bool malloc_optdata = false; 2431 int optdatalen = 0; 2432 int error = 0; 2433 struct in6_pktinfo null_pktinfo; 2434 int deftclass = 0, on; 2435 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2436 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2437 struct ip6_pktopts *pktopt; 2438 2439 INP_RLOCK(in6p); 2440 pktopt = in6p->in6p_outputopts; 2441 2442 switch (optname) { 2443 case IPV6_PKTINFO: 2444 optdata = (void *)&null_pktinfo; 2445 if (pktopt && pktopt->ip6po_pktinfo) { 2446 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2447 sizeof(null_pktinfo)); 2448 in6_clearscope(&null_pktinfo.ipi6_addr); 2449 } else { 2450 /* XXX: we don't have to do this every time... */ 2451 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2452 } 2453 optdatalen = sizeof(struct in6_pktinfo); 2454 break; 2455 case IPV6_TCLASS: 2456 if (pktopt && pktopt->ip6po_tclass >= 0) 2457 deftclass = pktopt->ip6po_tclass; 2458 optdata = (void *)&deftclass; 2459 optdatalen = sizeof(int); 2460 break; 2461 case IPV6_HOPOPTS: 2462 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2463 break; 2464 case IPV6_RTHDR: 2465 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2466 break; 2467 case IPV6_RTHDRDSTOPTS: 2468 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2469 break; 2470 case IPV6_DSTOPTS: 2471 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2472 break; 2473 case IPV6_NEXTHOP: 2474 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2475 break; 2476 case IPV6_USE_MIN_MTU: 2477 if (pktopt) 2478 defminmtu = pktopt->ip6po_minmtu; 2479 optdata = (void *)&defminmtu; 2480 optdatalen = sizeof(int); 2481 break; 2482 case IPV6_DONTFRAG: 2483 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2484 on = 1; 2485 else 2486 on = 0; 2487 optdata = (void *)&on; 2488 optdatalen = sizeof(on); 2489 break; 2490 case IPV6_PREFER_TEMPADDR: 2491 if (pktopt) 2492 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2493 optdata = (void *)&defpreftemp; 2494 optdatalen = sizeof(int); 2495 break; 2496 default: /* should not happen */ 2497 #ifdef DIAGNOSTIC 2498 panic("ip6_getpcbopt: unexpected option\n"); 2499 #endif 2500 INP_RUNLOCK(in6p); 2501 return (ENOPROTOOPT); 2502 } 2503 INP_RUNLOCK(in6p); 2504 2505 error = sooptcopyout(sopt, optdata, optdatalen); 2506 if (malloc_optdata) 2507 free(optdata, M_TEMP); 2508 2509 return (error); 2510 } 2511 2512 void 2513 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2514 { 2515 if (pktopt == NULL) 2516 return; 2517 2518 if (optname == -1 || optname == IPV6_PKTINFO) { 2519 if (pktopt->ip6po_pktinfo) 2520 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2521 pktopt->ip6po_pktinfo = NULL; 2522 } 2523 if (optname == -1 || optname == IPV6_HOPLIMIT) 2524 pktopt->ip6po_hlim = -1; 2525 if (optname == -1 || optname == IPV6_TCLASS) 2526 pktopt->ip6po_tclass = -1; 2527 if (optname == -1 || optname == IPV6_NEXTHOP) { 2528 if (pktopt->ip6po_nextroute.ro_rt) { 2529 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2530 pktopt->ip6po_nextroute.ro_rt = NULL; 2531 } 2532 if (pktopt->ip6po_nexthop) 2533 free(pktopt->ip6po_nexthop, M_IP6OPT); 2534 pktopt->ip6po_nexthop = NULL; 2535 } 2536 if (optname == -1 || optname == IPV6_HOPOPTS) { 2537 if (pktopt->ip6po_hbh) 2538 free(pktopt->ip6po_hbh, M_IP6OPT); 2539 pktopt->ip6po_hbh = NULL; 2540 } 2541 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2542 if (pktopt->ip6po_dest1) 2543 free(pktopt->ip6po_dest1, M_IP6OPT); 2544 pktopt->ip6po_dest1 = NULL; 2545 } 2546 if (optname == -1 || optname == IPV6_RTHDR) { 2547 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2548 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2549 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2550 if (pktopt->ip6po_route.ro_rt) { 2551 RTFREE(pktopt->ip6po_route.ro_rt); 2552 pktopt->ip6po_route.ro_rt = NULL; 2553 } 2554 } 2555 if (optname == -1 || optname == IPV6_DSTOPTS) { 2556 if (pktopt->ip6po_dest2) 2557 free(pktopt->ip6po_dest2, M_IP6OPT); 2558 pktopt->ip6po_dest2 = NULL; 2559 } 2560 } 2561 2562 #define PKTOPT_EXTHDRCPY(type) \ 2563 do {\ 2564 if (src->type) {\ 2565 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2566 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2567 if (dst->type == NULL)\ 2568 goto bad;\ 2569 bcopy(src->type, dst->type, hlen);\ 2570 }\ 2571 } while (/*CONSTCOND*/ 0) 2572 2573 static int 2574 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2575 { 2576 if (dst == NULL || src == NULL) { 2577 printf("ip6_clearpktopts: invalid argument\n"); 2578 return (EINVAL); 2579 } 2580 2581 dst->ip6po_hlim = src->ip6po_hlim; 2582 dst->ip6po_tclass = src->ip6po_tclass; 2583 dst->ip6po_flags = src->ip6po_flags; 2584 dst->ip6po_minmtu = src->ip6po_minmtu; 2585 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2586 if (src->ip6po_pktinfo) { 2587 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2588 M_IP6OPT, canwait); 2589 if (dst->ip6po_pktinfo == NULL) 2590 goto bad; 2591 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2592 } 2593 if (src->ip6po_nexthop) { 2594 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2595 M_IP6OPT, canwait); 2596 if (dst->ip6po_nexthop == NULL) 2597 goto bad; 2598 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2599 src->ip6po_nexthop->sa_len); 2600 } 2601 PKTOPT_EXTHDRCPY(ip6po_hbh); 2602 PKTOPT_EXTHDRCPY(ip6po_dest1); 2603 PKTOPT_EXTHDRCPY(ip6po_dest2); 2604 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2605 return (0); 2606 2607 bad: 2608 ip6_clearpktopts(dst, -1); 2609 return (ENOBUFS); 2610 } 2611 #undef PKTOPT_EXTHDRCPY 2612 2613 struct ip6_pktopts * 2614 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2615 { 2616 int error; 2617 struct ip6_pktopts *dst; 2618 2619 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2620 if (dst == NULL) 2621 return (NULL); 2622 ip6_initpktopts(dst); 2623 2624 if ((error = copypktopts(dst, src, canwait)) != 0) { 2625 free(dst, M_IP6OPT); 2626 return (NULL); 2627 } 2628 2629 return (dst); 2630 } 2631 2632 void 2633 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2634 { 2635 if (pktopt == NULL) 2636 return; 2637 2638 ip6_clearpktopts(pktopt, -1); 2639 2640 free(pktopt, M_IP6OPT); 2641 } 2642 2643 /* 2644 * Set IPv6 outgoing packet options based on advanced API. 2645 */ 2646 int 2647 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2648 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2649 { 2650 struct cmsghdr *cm = NULL; 2651 2652 if (control == NULL || opt == NULL) 2653 return (EINVAL); 2654 2655 ip6_initpktopts(opt); 2656 if (stickyopt) { 2657 int error; 2658 2659 /* 2660 * If stickyopt is provided, make a local copy of the options 2661 * for this particular packet, then override them by ancillary 2662 * objects. 2663 * XXX: copypktopts() does not copy the cached route to a next 2664 * hop (if any). This is not very good in terms of efficiency, 2665 * but we can allow this since this option should be rarely 2666 * used. 2667 */ 2668 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2669 return (error); 2670 } 2671 2672 /* 2673 * XXX: Currently, we assume all the optional information is stored 2674 * in a single mbuf. 2675 */ 2676 if (control->m_next) 2677 return (EINVAL); 2678 2679 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2680 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2681 int error; 2682 2683 if (control->m_len < CMSG_LEN(0)) 2684 return (EINVAL); 2685 2686 cm = mtod(control, struct cmsghdr *); 2687 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2688 return (EINVAL); 2689 if (cm->cmsg_level != IPPROTO_IPV6) 2690 continue; 2691 2692 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2693 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2694 if (error) 2695 return (error); 2696 } 2697 2698 return (0); 2699 } 2700 2701 /* 2702 * Set a particular packet option, as a sticky option or an ancillary data 2703 * item. "len" can be 0 only when it's a sticky option. 2704 * We have 4 cases of combination of "sticky" and "cmsg": 2705 * "sticky=0, cmsg=0": impossible 2706 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2707 * "sticky=1, cmsg=0": RFC3542 socket option 2708 * "sticky=1, cmsg=1": RFC2292 socket option 2709 */ 2710 static int 2711 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2712 struct ucred *cred, int sticky, int cmsg, int uproto) 2713 { 2714 int minmtupolicy, preftemp; 2715 int error; 2716 2717 if (!sticky && !cmsg) { 2718 #ifdef DIAGNOSTIC 2719 printf("ip6_setpktopt: impossible case\n"); 2720 #endif 2721 return (EINVAL); 2722 } 2723 2724 /* 2725 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2726 * not be specified in the context of RFC3542. Conversely, 2727 * RFC3542 types should not be specified in the context of RFC2292. 2728 */ 2729 if (!cmsg) { 2730 switch (optname) { 2731 case IPV6_2292PKTINFO: 2732 case IPV6_2292HOPLIMIT: 2733 case IPV6_2292NEXTHOP: 2734 case IPV6_2292HOPOPTS: 2735 case IPV6_2292DSTOPTS: 2736 case IPV6_2292RTHDR: 2737 case IPV6_2292PKTOPTIONS: 2738 return (ENOPROTOOPT); 2739 } 2740 } 2741 if (sticky && cmsg) { 2742 switch (optname) { 2743 case IPV6_PKTINFO: 2744 case IPV6_HOPLIMIT: 2745 case IPV6_NEXTHOP: 2746 case IPV6_HOPOPTS: 2747 case IPV6_DSTOPTS: 2748 case IPV6_RTHDRDSTOPTS: 2749 case IPV6_RTHDR: 2750 case IPV6_USE_MIN_MTU: 2751 case IPV6_DONTFRAG: 2752 case IPV6_TCLASS: 2753 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2754 return (ENOPROTOOPT); 2755 } 2756 } 2757 2758 switch (optname) { 2759 case IPV6_2292PKTINFO: 2760 case IPV6_PKTINFO: 2761 { 2762 struct ifnet *ifp = NULL; 2763 struct in6_pktinfo *pktinfo; 2764 2765 if (len != sizeof(struct in6_pktinfo)) 2766 return (EINVAL); 2767 2768 pktinfo = (struct in6_pktinfo *)buf; 2769 2770 /* 2771 * An application can clear any sticky IPV6_PKTINFO option by 2772 * doing a "regular" setsockopt with ipi6_addr being 2773 * in6addr_any and ipi6_ifindex being zero. 2774 * [RFC 3542, Section 6] 2775 */ 2776 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2777 pktinfo->ipi6_ifindex == 0 && 2778 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2779 ip6_clearpktopts(opt, optname); 2780 break; 2781 } 2782 2783 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2784 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2785 return (EINVAL); 2786 } 2787 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2788 return (EINVAL); 2789 /* validate the interface index if specified. */ 2790 if (pktinfo->ipi6_ifindex > V_if_index) 2791 return (ENXIO); 2792 if (pktinfo->ipi6_ifindex) { 2793 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2794 if (ifp == NULL) 2795 return (ENXIO); 2796 } 2797 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2798 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2799 return (ENETDOWN); 2800 2801 if (ifp != NULL && 2802 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2803 struct in6_ifaddr *ia; 2804 2805 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2806 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2807 if (ia == NULL) 2808 return (EADDRNOTAVAIL); 2809 ifa_free(&ia->ia_ifa); 2810 } 2811 /* 2812 * We store the address anyway, and let in6_selectsrc() 2813 * validate the specified address. This is because ipi6_addr 2814 * may not have enough information about its scope zone, and 2815 * we may need additional information (such as outgoing 2816 * interface or the scope zone of a destination address) to 2817 * disambiguate the scope. 2818 * XXX: the delay of the validation may confuse the 2819 * application when it is used as a sticky option. 2820 */ 2821 if (opt->ip6po_pktinfo == NULL) { 2822 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2823 M_IP6OPT, M_NOWAIT); 2824 if (opt->ip6po_pktinfo == NULL) 2825 return (ENOBUFS); 2826 } 2827 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2828 break; 2829 } 2830 2831 case IPV6_2292HOPLIMIT: 2832 case IPV6_HOPLIMIT: 2833 { 2834 int *hlimp; 2835 2836 /* 2837 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2838 * to simplify the ordering among hoplimit options. 2839 */ 2840 if (optname == IPV6_HOPLIMIT && sticky) 2841 return (ENOPROTOOPT); 2842 2843 if (len != sizeof(int)) 2844 return (EINVAL); 2845 hlimp = (int *)buf; 2846 if (*hlimp < -1 || *hlimp > 255) 2847 return (EINVAL); 2848 2849 opt->ip6po_hlim = *hlimp; 2850 break; 2851 } 2852 2853 case IPV6_TCLASS: 2854 { 2855 int tclass; 2856 2857 if (len != sizeof(int)) 2858 return (EINVAL); 2859 tclass = *(int *)buf; 2860 if (tclass < -1 || tclass > 255) 2861 return (EINVAL); 2862 2863 opt->ip6po_tclass = tclass; 2864 break; 2865 } 2866 2867 case IPV6_2292NEXTHOP: 2868 case IPV6_NEXTHOP: 2869 if (cred != NULL) { 2870 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 2871 if (error) 2872 return (error); 2873 } 2874 2875 if (len == 0) { /* just remove the option */ 2876 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2877 break; 2878 } 2879 2880 /* check if cmsg_len is large enough for sa_len */ 2881 if (len < sizeof(struct sockaddr) || len < *buf) 2882 return (EINVAL); 2883 2884 switch (((struct sockaddr *)buf)->sa_family) { 2885 case AF_INET6: 2886 { 2887 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2888 int error; 2889 2890 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2891 return (EINVAL); 2892 2893 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2894 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2895 return (EINVAL); 2896 } 2897 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 2898 != 0) { 2899 return (error); 2900 } 2901 break; 2902 } 2903 case AF_LINK: /* should eventually be supported */ 2904 default: 2905 return (EAFNOSUPPORT); 2906 } 2907 2908 /* turn off the previous option, then set the new option. */ 2909 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2910 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2911 if (opt->ip6po_nexthop == NULL) 2912 return (ENOBUFS); 2913 bcopy(buf, opt->ip6po_nexthop, *buf); 2914 break; 2915 2916 case IPV6_2292HOPOPTS: 2917 case IPV6_HOPOPTS: 2918 { 2919 struct ip6_hbh *hbh; 2920 int hbhlen; 2921 2922 /* 2923 * XXX: We don't allow a non-privileged user to set ANY HbH 2924 * options, since per-option restriction has too much 2925 * overhead. 2926 */ 2927 if (cred != NULL) { 2928 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 2929 if (error) 2930 return (error); 2931 } 2932 2933 if (len == 0) { 2934 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2935 break; /* just remove the option */ 2936 } 2937 2938 /* message length validation */ 2939 if (len < sizeof(struct ip6_hbh)) 2940 return (EINVAL); 2941 hbh = (struct ip6_hbh *)buf; 2942 hbhlen = (hbh->ip6h_len + 1) << 3; 2943 if (len != hbhlen) 2944 return (EINVAL); 2945 2946 /* turn off the previous option, then set the new option. */ 2947 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2948 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2949 if (opt->ip6po_hbh == NULL) 2950 return (ENOBUFS); 2951 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2952 2953 break; 2954 } 2955 2956 case IPV6_2292DSTOPTS: 2957 case IPV6_DSTOPTS: 2958 case IPV6_RTHDRDSTOPTS: 2959 { 2960 struct ip6_dest *dest, **newdest = NULL; 2961 int destlen; 2962 2963 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 2964 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 2965 if (error) 2966 return (error); 2967 } 2968 2969 if (len == 0) { 2970 ip6_clearpktopts(opt, optname); 2971 break; /* just remove the option */ 2972 } 2973 2974 /* message length validation */ 2975 if (len < sizeof(struct ip6_dest)) 2976 return (EINVAL); 2977 dest = (struct ip6_dest *)buf; 2978 destlen = (dest->ip6d_len + 1) << 3; 2979 if (len != destlen) 2980 return (EINVAL); 2981 2982 /* 2983 * Determine the position that the destination options header 2984 * should be inserted; before or after the routing header. 2985 */ 2986 switch (optname) { 2987 case IPV6_2292DSTOPTS: 2988 /* 2989 * The old advacned API is ambiguous on this point. 2990 * Our approach is to determine the position based 2991 * according to the existence of a routing header. 2992 * Note, however, that this depends on the order of the 2993 * extension headers in the ancillary data; the 1st 2994 * part of the destination options header must appear 2995 * before the routing header in the ancillary data, 2996 * too. 2997 * RFC3542 solved the ambiguity by introducing 2998 * separate ancillary data or option types. 2999 */ 3000 if (opt->ip6po_rthdr == NULL) 3001 newdest = &opt->ip6po_dest1; 3002 else 3003 newdest = &opt->ip6po_dest2; 3004 break; 3005 case IPV6_RTHDRDSTOPTS: 3006 newdest = &opt->ip6po_dest1; 3007 break; 3008 case IPV6_DSTOPTS: 3009 newdest = &opt->ip6po_dest2; 3010 break; 3011 } 3012 3013 /* turn off the previous option, then set the new option. */ 3014 ip6_clearpktopts(opt, optname); 3015 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3016 if (*newdest == NULL) 3017 return (ENOBUFS); 3018 bcopy(dest, *newdest, destlen); 3019 3020 break; 3021 } 3022 3023 case IPV6_2292RTHDR: 3024 case IPV6_RTHDR: 3025 { 3026 struct ip6_rthdr *rth; 3027 int rthlen; 3028 3029 if (len == 0) { 3030 ip6_clearpktopts(opt, IPV6_RTHDR); 3031 break; /* just remove the option */ 3032 } 3033 3034 /* message length validation */ 3035 if (len < sizeof(struct ip6_rthdr)) 3036 return (EINVAL); 3037 rth = (struct ip6_rthdr *)buf; 3038 rthlen = (rth->ip6r_len + 1) << 3; 3039 if (len != rthlen) 3040 return (EINVAL); 3041 3042 switch (rth->ip6r_type) { 3043 case IPV6_RTHDR_TYPE_0: 3044 if (rth->ip6r_len == 0) /* must contain one addr */ 3045 return (EINVAL); 3046 if (rth->ip6r_len % 2) /* length must be even */ 3047 return (EINVAL); 3048 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3049 return (EINVAL); 3050 break; 3051 default: 3052 return (EINVAL); /* not supported */ 3053 } 3054 3055 /* turn off the previous option */ 3056 ip6_clearpktopts(opt, IPV6_RTHDR); 3057 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3058 if (opt->ip6po_rthdr == NULL) 3059 return (ENOBUFS); 3060 bcopy(rth, opt->ip6po_rthdr, rthlen); 3061 3062 break; 3063 } 3064 3065 case IPV6_USE_MIN_MTU: 3066 if (len != sizeof(int)) 3067 return (EINVAL); 3068 minmtupolicy = *(int *)buf; 3069 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3070 minmtupolicy != IP6PO_MINMTU_DISABLE && 3071 minmtupolicy != IP6PO_MINMTU_ALL) { 3072 return (EINVAL); 3073 } 3074 opt->ip6po_minmtu = minmtupolicy; 3075 break; 3076 3077 case IPV6_DONTFRAG: 3078 if (len != sizeof(int)) 3079 return (EINVAL); 3080 3081 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3082 /* 3083 * we ignore this option for TCP sockets. 3084 * (RFC3542 leaves this case unspecified.) 3085 */ 3086 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3087 } else 3088 opt->ip6po_flags |= IP6PO_DONTFRAG; 3089 break; 3090 3091 case IPV6_PREFER_TEMPADDR: 3092 if (len != sizeof(int)) 3093 return (EINVAL); 3094 preftemp = *(int *)buf; 3095 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3096 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3097 preftemp != IP6PO_TEMPADDR_PREFER) { 3098 return (EINVAL); 3099 } 3100 opt->ip6po_prefer_tempaddr = preftemp; 3101 break; 3102 3103 default: 3104 return (ENOPROTOOPT); 3105 } /* end of switch */ 3106 3107 return (0); 3108 } 3109 3110 /* 3111 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3112 * packet to the input queue of a specified interface. Note that this 3113 * calls the output routine of the loopback "driver", but with an interface 3114 * pointer that might NOT be &loif -- easier than replicating that code here. 3115 */ 3116 void 3117 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3118 { 3119 struct mbuf *copym; 3120 struct ip6_hdr *ip6; 3121 3122 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3123 if (copym == NULL) 3124 return; 3125 3126 /* 3127 * Make sure to deep-copy IPv6 header portion in case the data 3128 * is in an mbuf cluster, so that we can safely override the IPv6 3129 * header portion later. 3130 */ 3131 if (!M_WRITABLE(copym) || 3132 copym->m_len < sizeof(struct ip6_hdr)) { 3133 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3134 if (copym == NULL) 3135 return; 3136 } 3137 ip6 = mtod(copym, struct ip6_hdr *); 3138 /* 3139 * clear embedded scope identifiers if necessary. 3140 * in6_clearscope will touch the addresses only when necessary. 3141 */ 3142 in6_clearscope(&ip6->ip6_src); 3143 in6_clearscope(&ip6->ip6_dst); 3144 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3145 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3146 CSUM_PSEUDO_HDR; 3147 copym->m_pkthdr.csum_data = 0xffff; 3148 } 3149 if_simloop(ifp, copym, AF_INET6, 0); 3150 } 3151 3152 /* 3153 * Chop IPv6 header off from the payload. 3154 */ 3155 static int 3156 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3157 { 3158 struct mbuf *mh; 3159 struct ip6_hdr *ip6; 3160 3161 ip6 = mtod(m, struct ip6_hdr *); 3162 if (m->m_len > sizeof(*ip6)) { 3163 mh = m_gethdr(M_NOWAIT, MT_DATA); 3164 if (mh == NULL) { 3165 m_freem(m); 3166 return ENOBUFS; 3167 } 3168 m_move_pkthdr(mh, m); 3169 M_ALIGN(mh, sizeof(*ip6)); 3170 m->m_len -= sizeof(*ip6); 3171 m->m_data += sizeof(*ip6); 3172 mh->m_next = m; 3173 m = mh; 3174 m->m_len = sizeof(*ip6); 3175 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3176 } 3177 exthdrs->ip6e_ip6 = m; 3178 return 0; 3179 } 3180 3181 /* 3182 * Compute IPv6 extension header length. 3183 */ 3184 int 3185 ip6_optlen(struct inpcb *in6p) 3186 { 3187 int len; 3188 3189 if (!in6p->in6p_outputopts) 3190 return 0; 3191 3192 len = 0; 3193 #define elen(x) \ 3194 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3195 3196 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3197 if (in6p->in6p_outputopts->ip6po_rthdr) 3198 /* dest1 is valid with rthdr only */ 3199 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3200 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3201 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3202 return len; 3203 #undef elen 3204 } 3205