xref: /freebsd/sys/netinet6/ip6_id.c (revision eb69d1f144a6fcc765d1b9d44a5ae8082353e70b)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND BSD-2-Clause)
3  *
4  * Copyright (C) 2003 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	$KAME: ip6_id.c,v 1.13 2003/09/16 09:11:19 itojun Exp $
32  */
33 
34 /*-
35  * Copyright 1998 Niels Provos <provos@citi.umich.edu>
36  * All rights reserved.
37  *
38  * Theo de Raadt <deraadt@openbsd.org> came up with the idea of using
39  * such a mathematical system to generate more random (yet non-repeating)
40  * ids to solve the resolver/named problem.  But Niels designed the
41  * actual system based on the constraints.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
53  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
54  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
55  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
56  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
57  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
61  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  *
63  * $OpenBSD: ip6_id.c,v 1.3 2003/12/12 06:57:12 itojun Exp $
64  */
65 
66 #include <sys/cdefs.h>
67 __FBSDID("$FreeBSD$");
68 
69 /*
70  * seed = random (bits - 1) bit
71  * n = prime, g0 = generator to n,
72  * j = random so that gcd(j,n-1) == 1
73  * g = g0^j mod n will be a generator again.
74  *
75  * X[0] = random seed.
76  * X[n] = a*X[n-1]+b mod m is a Linear Congruential Generator
77  * with a = 7^(even random) mod m,
78  *      b = random with gcd(b,m) == 1
79  *      m = constant and a maximal period of m-1.
80  *
81  * The transaction id is determined by:
82  * id[n] = seed xor (g^X[n] mod n)
83  *
84  * Effectively the id is restricted to the lower (bits - 1) bits, thus
85  * yielding two different cycles by toggling the msb on and off.
86  * This avoids reuse issues caused by reseeding.
87  */
88 
89 #include <sys/types.h>
90 #include <sys/param.h>
91 #include <sys/kernel.h>
92 #include <sys/socket.h>
93 #include <sys/libkern.h>
94 
95 #include <net/if.h>
96 #include <net/route.h>
97 #include <net/vnet.h>
98 #include <netinet/in.h>
99 #include <netinet/ip6.h>
100 #include <netinet6/ip6_var.h>
101 
102 #ifndef INT32_MAX
103 #define INT32_MAX	0x7fffffffU
104 #endif
105 
106 struct randomtab {
107 	const int	ru_bits; /* resulting bits */
108 	const long	ru_out;	/* Time after which will be reseeded */
109 	const u_int32_t ru_max;	/* Uniq cycle, avoid blackjack prediction */
110 	const u_int32_t ru_gen;	/* Starting generator */
111 	const u_int32_t ru_n;	/* ru_n: prime, ru_n - 1: product of pfacts[] */
112 	const u_int32_t ru_agen; /* determine ru_a as ru_agen^(2*rand) */
113 	const u_int32_t ru_m;	/* ru_m = 2^x*3^y */
114 	const u_int32_t pfacts[4];	/* factors of ru_n */
115 
116 	u_int32_t ru_counter;
117 	u_int32_t ru_msb;
118 
119 	u_int32_t ru_x;
120 	u_int32_t ru_seed, ru_seed2;
121 	u_int32_t ru_a, ru_b;
122 	u_int32_t ru_g;
123 	long ru_reseed;
124 };
125 
126 static struct randomtab randomtab_32 = {
127 	32,			/* resulting bits */
128 	180,			/* Time after which will be reseeded */
129 	1000000000,		/* Uniq cycle, avoid blackjack prediction */
130 	2,			/* Starting generator */
131 	2147483629,		/* RU_N-1 = 2^2*3^2*59652323 */
132 	7,			/* determine ru_a as RU_AGEN^(2*rand) */
133 	1836660096,		/* RU_M = 2^7*3^15 - don't change */
134 	{ 2, 3, 59652323, 0 },	/* factors of ru_n */
135 };
136 
137 static struct randomtab randomtab_20 = {
138 	20,			/* resulting bits */
139 	180,			/* Time after which will be reseeded */
140 	200000,			/* Uniq cycle, avoid blackjack prediction */
141 	2,			/* Starting generator */
142 	524269,			/* RU_N-1 = 2^2*3^2*14563 */
143 	7,			/* determine ru_a as RU_AGEN^(2*rand) */
144 	279936,			/* RU_M = 2^7*3^7 - don't change */
145 	{ 2, 3, 14563, 0 },	/* factors of ru_n */
146 };
147 
148 static u_int32_t pmod(u_int32_t, u_int32_t, u_int32_t);
149 static void initid(struct randomtab *);
150 static u_int32_t randomid(struct randomtab *);
151 
152 /*
153  * Do a fast modular exponation, returned value will be in the range
154  * of 0 - (mod-1)
155  */
156 static u_int32_t
157 pmod(u_int32_t gen, u_int32_t expo, u_int32_t mod)
158 {
159 	u_int64_t s, t, u;
160 
161 	s = 1;
162 	t = gen;
163 	u = expo;
164 
165 	while (u) {
166 		if (u & 1)
167 			s = (s * t) % mod;
168 		u >>= 1;
169 		t = (t * t) % mod;
170 	}
171 	return (s);
172 }
173 
174 /*
175  * Initializes the seed and chooses a suitable generator. Also toggles
176  * the msb flag. The msb flag is used to generate two distinct
177  * cycles of random numbers and thus avoiding reuse of ids.
178  *
179  * This function is called from id_randomid() when needed, an
180  * application does not have to worry about it.
181  */
182 static void
183 initid(struct randomtab *p)
184 {
185 	u_int32_t j, i;
186 	int noprime = 1;
187 
188 	p->ru_x = arc4random() % p->ru_m;
189 
190 	/* (bits - 1) bits of random seed */
191 	p->ru_seed = arc4random() & (~0U >> (32 - p->ru_bits + 1));
192 	p->ru_seed2 = arc4random() & (~0U >> (32 - p->ru_bits + 1));
193 
194 	/* Determine the LCG we use */
195 	p->ru_b = (arc4random() & (~0U >> (32 - p->ru_bits))) | 1;
196 	p->ru_a = pmod(p->ru_agen,
197 	    (arc4random() & (~0U >> (32 - p->ru_bits))) & (~1U), p->ru_m);
198 	while (p->ru_b % 3 == 0)
199 		p->ru_b += 2;
200 
201 	j = arc4random() % p->ru_n;
202 
203 	/*
204 	 * Do a fast gcd(j, RU_N - 1), so we can find a j with
205 	 * gcd(j, RU_N - 1) == 1, giving a new generator for
206 	 * RU_GEN^j mod RU_N
207 	 */
208 	while (noprime) {
209 		for (i = 0; p->pfacts[i] > 0; i++)
210 			if (j % p->pfacts[i] == 0)
211 				break;
212 
213 		if (p->pfacts[i] == 0)
214 			noprime = 0;
215 		else
216 			j = (j + 1) % p->ru_n;
217 	}
218 
219 	p->ru_g = pmod(p->ru_gen, j, p->ru_n);
220 	p->ru_counter = 0;
221 
222 	p->ru_reseed = time_uptime + p->ru_out;
223 	p->ru_msb = p->ru_msb ? 0 : (1U << (p->ru_bits - 1));
224 }
225 
226 static u_int32_t
227 randomid(struct randomtab *p)
228 {
229 	int i, n;
230 
231 	if (p->ru_counter >= p->ru_max || time_uptime > p->ru_reseed)
232 		initid(p);
233 
234 	/* Skip a random number of ids */
235 	n = arc4random() & 0x3;
236 	if (p->ru_counter + n >= p->ru_max)
237 		initid(p);
238 
239 	for (i = 0; i <= n; i++) {
240 		/* Linear Congruential Generator */
241 		p->ru_x = (u_int32_t)((u_int64_t)p->ru_a * p->ru_x + p->ru_b) % p->ru_m;
242 	}
243 
244 	p->ru_counter += i;
245 
246 	return (p->ru_seed ^ pmod(p->ru_g, p->ru_seed2 + p->ru_x, p->ru_n)) |
247 	    p->ru_msb;
248 }
249 
250 u_int32_t
251 ip6_randomid(void)
252 {
253 
254 	return randomid(&randomtab_32);
255 }
256 
257 u_int32_t
258 ip6_randomflowlabel(void)
259 {
260 
261 	return randomid(&randomtab_20) & 0xfffff;
262 }
263