xref: /freebsd/sys/netinet6/ip6_id.c (revision b28624fde638caadd4a89f50c9b7e7da0f98c4d2)
1 /*	$KAME: ip6_id.c,v 1.13 2003/09/16 09:11:19 itojun Exp $	*/
2 /*	$OpenBSD: ip_id.c,v 1.6 2002/03/15 18:19:52 millert Exp $	*/
3 /* $FreeBSD$ */
4 
5 /*-
6  * Copyright (C) 2003 WIDE Project.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the project nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*-
35  * Copyright 1998 Niels Provos <provos@citi.umich.edu>
36  * All rights reserved.
37  *
38  * Theo de Raadt <deraadt@openbsd.org> came up with the idea of using
39  * such a mathematical system to generate more random (yet non-repeating)
40  * ids to solve the resolver/named problem.  But Niels designed the
41  * actual system based on the constraints.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *      This product includes software developed by Niels Provos.
54  * 4. The name of the author may not be used to endorse or promote products
55  *    derived from this software without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
61  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
62  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
63  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
64  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
65  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
66  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67  */
68 
69 /*
70  * seed = random (bits - 1) bit
71  * n = prime, g0 = generator to n,
72  * j = random so that gcd(j,n-1) == 1
73  * g = g0^j mod n will be a generator again.
74  *
75  * X[0] = random seed.
76  * X[n] = a*X[n-1]+b mod m is a Linear Congruential Generator
77  * with a = 7^(even random) mod m,
78  *      b = random with gcd(b,m) == 1
79  *      m = constant and a maximal period of m-1.
80  *
81  * The transaction id is determined by:
82  * id[n] = seed xor (g^X[n] mod n)
83  *
84  * Effectivly the id is restricted to the lower (bits - 1) bits, thus
85  * yielding two different cycles by toggling the msb on and off.
86  * This avoids reuse issues caused by reseeding.
87  */
88 
89 #include <sys/types.h>
90 #include <sys/param.h>
91 #include <sys/kernel.h>
92 #include <sys/socket.h>
93 #include <sys/libkern.h>
94 
95 #include <net/if.h>
96 #include <net/route.h>
97 #include <netinet/in.h>
98 #include <netinet/ip6.h>
99 #include <netinet6/ip6_var.h>
100 
101 #ifndef INT32_MAX
102 #define INT32_MAX	0x7fffffffU
103 #endif
104 
105 struct randomtab {
106 	const int	ru_bits; /* resulting bits */
107 	const long	ru_out;	/* Time after wich will be reseeded */
108 	const u_int32_t ru_max;	/* Uniq cycle, avoid blackjack prediction */
109 	const u_int32_t ru_gen;	/* Starting generator */
110 	const u_int32_t ru_n;	/* ru_n: prime, ru_n - 1: product of pfacts[] */
111 	const u_int32_t ru_agen; /* determine ru_a as ru_agen^(2*rand) */
112 	const u_int32_t ru_m;	/* ru_m = 2^x*3^y */
113 	const u_int32_t pfacts[4];	/* factors of ru_n */
114 
115 	u_int32_t ru_counter;
116 	u_int32_t ru_msb;
117 
118 	u_int32_t ru_x;
119 	u_int32_t ru_seed, ru_seed2;
120 	u_int32_t ru_a, ru_b;
121 	u_int32_t ru_g;
122 	long ru_reseed;
123 };
124 
125 static struct randomtab randomtab_32 = {
126 	32,			/* resulting bits */
127 	180,			/* Time after wich will be reseeded */
128 	1000000000,		/* Uniq cycle, avoid blackjack prediction */
129 	2,			/* Starting generator */
130 	2147483629,		/* RU_N-1 = 2^2*3^2*59652323 */
131 	7,			/* determine ru_a as RU_AGEN^(2*rand) */
132 	1836660096,		/* RU_M = 2^7*3^15 - don't change */
133 	{ 2, 3, 59652323, 0 },	/* factors of ru_n */
134 };
135 
136 static struct randomtab randomtab_20 = {
137 	20,			/* resulting bits */
138 	180,			/* Time after wich will be reseeded */
139 	200000,			/* Uniq cycle, avoid blackjack prediction */
140 	2,			/* Starting generator */
141 	524269,			/* RU_N-1 = 2^2*3^2*14563 */
142 	7,			/* determine ru_a as RU_AGEN^(2*rand) */
143 	279936,			/* RU_M = 2^7*3^7 - don't change */
144 	{ 2, 3, 14563, 0 },	/* factors of ru_n */
145 };
146 
147 static u_int32_t pmod(u_int32_t, u_int32_t, u_int32_t);
148 static void initid(struct randomtab *);
149 static u_int32_t randomid(struct randomtab *);
150 
151 /*
152  * Do a fast modular exponation, returned value will be in the range
153  * of 0 - (mod-1)
154  */
155 static u_int32_t
156 pmod(u_int32_t gen, u_int32_t expo, u_int32_t mod)
157 {
158 	u_int64_t s, t, u;
159 
160 	s = 1;
161 	t = gen;
162 	u = expo;
163 
164 	while (u) {
165 		if (u & 1)
166 			s = (s * t) % mod;
167 		u >>= 1;
168 		t = (t * t) % mod;
169 	}
170 	return (s);
171 }
172 
173 /*
174  * Initalizes the seed and chooses a suitable generator. Also toggles
175  * the msb flag. The msb flag is used to generate two distinct
176  * cycles of random numbers and thus avoiding reuse of ids.
177  *
178  * This function is called from id_randomid() when needed, an
179  * application does not have to worry about it.
180  */
181 static void
182 initid(struct randomtab *p)
183 {
184 	u_int32_t j, i;
185 	int noprime = 1;
186 
187 	p->ru_x = arc4random() % p->ru_m;
188 
189 	/* (bits - 1) bits of random seed */
190 	p->ru_seed = arc4random() & (~0U >> (32 - p->ru_bits + 1));
191 	p->ru_seed2 = arc4random() & (~0U >> (32 - p->ru_bits + 1));
192 
193 	/* Determine the LCG we use */
194 	p->ru_b = (arc4random() & (~0U >> (32 - p->ru_bits))) | 1;
195 	p->ru_a = pmod(p->ru_agen,
196 	    (arc4random() & (~0U >> (32 - p->ru_bits))) & (~1U), p->ru_m);
197 	while (p->ru_b % 3 == 0)
198 		p->ru_b += 2;
199 
200 	j = arc4random() % p->ru_n;
201 
202 	/*
203 	 * Do a fast gcd(j, RU_N - 1), so we can find a j with
204 	 * gcd(j, RU_N - 1) == 1, giving a new generator for
205 	 * RU_GEN^j mod RU_N
206 	 */
207 	while (noprime) {
208 		for (i = 0; p->pfacts[i] > 0; i++)
209 			if (j % p->pfacts[i] == 0)
210 				break;
211 
212 		if (p->pfacts[i] == 0)
213 			noprime = 0;
214 		else
215 			j = (j + 1) % p->ru_n;
216 	}
217 
218 	p->ru_g = pmod(p->ru_gen, j, p->ru_n);
219 	p->ru_counter = 0;
220 
221 	p->ru_reseed = time_second + p->ru_out;
222 	p->ru_msb = p->ru_msb ? 0 : (1U << (p->ru_bits - 1));
223 }
224 
225 static u_int32_t
226 randomid(struct randomtab *p)
227 {
228 	int i, n;
229 	u_int32_t tmp;
230 
231 	if (p->ru_counter >= p->ru_max || time_second > p->ru_reseed)
232 		initid(p);
233 
234 	tmp = arc4random();
235 
236 	/* Skip a random number of ids */
237 	n = tmp & 0x3; tmp = tmp >> 2;
238 	if (p->ru_counter + n >= p->ru_max)
239 		initid(p);
240 
241 	for (i = 0; i <= n; i++) {
242 		/* Linear Congruential Generator */
243 		p->ru_x = (u_int32_t)((u_int64_t)p->ru_a * p->ru_x + p->ru_b) % p->ru_m;
244 	}
245 
246 	p->ru_counter += i;
247 
248 	return (p->ru_seed ^ pmod(p->ru_g, p->ru_seed2 ^ p->ru_x, p->ru_n)) |
249 	    p->ru_msb;
250 }
251 
252 u_int32_t
253 ip6_randomid(void)
254 {
255 
256 	return randomid(&randomtab_32);
257 }
258 
259 u_int32_t
260 ip6_randomflowlabel(void)
261 {
262 
263 	return randomid(&randomtab_20) & 0xfffff;
264 }
265