1 /* 2 * Copyright (c) 2009 Bruce Simpson. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. The name of the author may not be used to endorse or promote 14 * products derived from this software without specific prior written 15 * permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * IPv6 multicast socket, group, and socket option processing module. 32 * Normative references: RFC 2292, RFC 3492, RFC 3542, RFC 3678, RFC 3810. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include "opt_inet6.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/protosw.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/protosw.h> 49 #include <sys/sysctl.h> 50 #include <sys/priv.h> 51 #include <sys/ktr.h> 52 #include <sys/tree.h> 53 54 #include <net/if.h> 55 #include <net/if_var.h> 56 #include <net/if_dl.h> 57 #include <net/route.h> 58 #include <net/vnet.h> 59 60 #include <netinet/in.h> 61 #include <netinet/in_var.h> 62 #include <netinet6/in6_fib.h> 63 #include <netinet6/in6_var.h> 64 #include <netinet/ip6.h> 65 #include <netinet/icmp6.h> 66 #include <netinet6/ip6_var.h> 67 #include <netinet/in_pcb.h> 68 #include <netinet/tcp_var.h> 69 #include <netinet6/nd6.h> 70 #include <netinet6/mld6_var.h> 71 #include <netinet6/scope6_var.h> 72 73 #ifndef KTR_MLD 74 #define KTR_MLD KTR_INET6 75 #endif 76 77 #ifndef __SOCKUNION_DECLARED 78 union sockunion { 79 struct sockaddr_storage ss; 80 struct sockaddr sa; 81 struct sockaddr_dl sdl; 82 struct sockaddr_in6 sin6; 83 }; 84 typedef union sockunion sockunion_t; 85 #define __SOCKUNION_DECLARED 86 #endif /* __SOCKUNION_DECLARED */ 87 88 static MALLOC_DEFINE(M_IN6MFILTER, "in6_mfilter", 89 "IPv6 multicast PCB-layer source filter"); 90 static MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "IPv6 multicast group"); 91 static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "IPv6 multicast options"); 92 static MALLOC_DEFINE(M_IP6MSOURCE, "ip6_msource", 93 "IPv6 multicast MLD-layer source filter"); 94 95 RB_GENERATE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp); 96 97 /* 98 * Locking: 99 * - Lock order is: Giant, INP_WLOCK, IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 100 * - The IF_ADDR_LOCK is implicitly taken by in6m_lookup() earlier, however 101 * it can be taken by code in net/if.c also. 102 * - ip6_moptions and in6_mfilter are covered by the INP_WLOCK. 103 * 104 * struct in6_multi is covered by IN6_MULTI_LOCK. There isn't strictly 105 * any need for in6_multi itself to be virtualized -- it is bound to an ifp 106 * anyway no matter what happens. 107 */ 108 struct mtx in6_multi_mtx; 109 MTX_SYSINIT(in6_multi_mtx, &in6_multi_mtx, "in6_multi_mtx", MTX_DEF); 110 111 static void im6f_commit(struct in6_mfilter *); 112 static int im6f_get_source(struct in6_mfilter *imf, 113 const struct sockaddr_in6 *psin, 114 struct in6_msource **); 115 static struct in6_msource * 116 im6f_graft(struct in6_mfilter *, const uint8_t, 117 const struct sockaddr_in6 *); 118 static void im6f_leave(struct in6_mfilter *); 119 static int im6f_prune(struct in6_mfilter *, const struct sockaddr_in6 *); 120 static void im6f_purge(struct in6_mfilter *); 121 static void im6f_rollback(struct in6_mfilter *); 122 static void im6f_reap(struct in6_mfilter *); 123 static int im6o_grow(struct ip6_moptions *); 124 static size_t im6o_match_group(const struct ip6_moptions *, 125 const struct ifnet *, const struct sockaddr *); 126 static struct in6_msource * 127 im6o_match_source(const struct ip6_moptions *, const size_t, 128 const struct sockaddr *); 129 static void im6s_merge(struct ip6_msource *ims, 130 const struct in6_msource *lims, const int rollback); 131 static int in6_mc_get(struct ifnet *, const struct in6_addr *, 132 struct in6_multi **); 133 static int in6m_get_source(struct in6_multi *inm, 134 const struct in6_addr *addr, const int noalloc, 135 struct ip6_msource **pims); 136 #ifdef KTR 137 static int in6m_is_ifp_detached(const struct in6_multi *); 138 #endif 139 static int in6m_merge(struct in6_multi *, /*const*/ struct in6_mfilter *); 140 static void in6m_purge(struct in6_multi *); 141 static void in6m_reap(struct in6_multi *); 142 static struct ip6_moptions * 143 in6p_findmoptions(struct inpcb *); 144 static int in6p_get_source_filters(struct inpcb *, struct sockopt *); 145 static int in6p_join_group(struct inpcb *, struct sockopt *); 146 static int in6p_leave_group(struct inpcb *, struct sockopt *); 147 static struct ifnet * 148 in6p_lookup_mcast_ifp(const struct inpcb *, 149 const struct sockaddr_in6 *); 150 static int in6p_block_unblock_source(struct inpcb *, struct sockopt *); 151 static int in6p_set_multicast_if(struct inpcb *, struct sockopt *); 152 static int in6p_set_source_filters(struct inpcb *, struct sockopt *); 153 static int sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS); 154 155 SYSCTL_DECL(_net_inet6_ip6); /* XXX Not in any common header. */ 156 157 static SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, mcast, CTLFLAG_RW, 0, 158 "IPv6 multicast"); 159 160 static u_long in6_mcast_maxgrpsrc = IPV6_MAX_GROUP_SRC_FILTER; 161 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxgrpsrc, 162 CTLFLAG_RWTUN, &in6_mcast_maxgrpsrc, 0, 163 "Max source filters per group"); 164 165 static u_long in6_mcast_maxsocksrc = IPV6_MAX_SOCK_SRC_FILTER; 166 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxsocksrc, 167 CTLFLAG_RWTUN, &in6_mcast_maxsocksrc, 0, 168 "Max source filters per socket"); 169 170 /* TODO Virtualize this switch. */ 171 int in6_mcast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 172 SYSCTL_INT(_net_inet6_ip6_mcast, OID_AUTO, loop, CTLFLAG_RWTUN, 173 &in6_mcast_loop, 0, "Loopback multicast datagrams by default"); 174 175 static SYSCTL_NODE(_net_inet6_ip6_mcast, OID_AUTO, filters, 176 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip6_mcast_filters, 177 "Per-interface stack-wide source filters"); 178 179 #ifdef KTR 180 /* 181 * Inline function which wraps assertions for a valid ifp. 182 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp 183 * is detached. 184 */ 185 static int __inline 186 in6m_is_ifp_detached(const struct in6_multi *inm) 187 { 188 struct ifnet *ifp; 189 190 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 191 ifp = inm->in6m_ifma->ifma_ifp; 192 if (ifp != NULL) { 193 /* 194 * Sanity check that network-layer notion of ifp is the 195 * same as that of link-layer. 196 */ 197 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 198 } 199 200 return (ifp == NULL); 201 } 202 #endif 203 204 /* 205 * Initialize an in6_mfilter structure to a known state at t0, t1 206 * with an empty source filter list. 207 */ 208 static __inline void 209 im6f_init(struct in6_mfilter *imf, const int st0, const int st1) 210 { 211 memset(imf, 0, sizeof(struct in6_mfilter)); 212 RB_INIT(&imf->im6f_sources); 213 imf->im6f_st[0] = st0; 214 imf->im6f_st[1] = st1; 215 } 216 217 /* 218 * Resize the ip6_moptions vector to the next power-of-two minus 1. 219 * May be called with locks held; do not sleep. 220 */ 221 static int 222 im6o_grow(struct ip6_moptions *imo) 223 { 224 struct in6_multi **nmships; 225 struct in6_multi **omships; 226 struct in6_mfilter *nmfilters; 227 struct in6_mfilter *omfilters; 228 size_t idx; 229 size_t newmax; 230 size_t oldmax; 231 232 nmships = NULL; 233 nmfilters = NULL; 234 omships = imo->im6o_membership; 235 omfilters = imo->im6o_mfilters; 236 oldmax = imo->im6o_max_memberships; 237 newmax = ((oldmax + 1) * 2) - 1; 238 239 if (newmax <= IPV6_MAX_MEMBERSHIPS) { 240 nmships = (struct in6_multi **)realloc(omships, 241 sizeof(struct in6_multi *) * newmax, M_IP6MOPTS, M_NOWAIT); 242 nmfilters = (struct in6_mfilter *)realloc(omfilters, 243 sizeof(struct in6_mfilter) * newmax, M_IN6MFILTER, 244 M_NOWAIT); 245 if (nmships != NULL && nmfilters != NULL) { 246 /* Initialize newly allocated source filter heads. */ 247 for (idx = oldmax; idx < newmax; idx++) { 248 im6f_init(&nmfilters[idx], MCAST_UNDEFINED, 249 MCAST_EXCLUDE); 250 } 251 imo->im6o_max_memberships = newmax; 252 imo->im6o_membership = nmships; 253 imo->im6o_mfilters = nmfilters; 254 } 255 } 256 257 if (nmships == NULL || nmfilters == NULL) { 258 if (nmships != NULL) 259 free(nmships, M_IP6MOPTS); 260 if (nmfilters != NULL) 261 free(nmfilters, M_IN6MFILTER); 262 return (ETOOMANYREFS); 263 } 264 265 return (0); 266 } 267 268 /* 269 * Find an IPv6 multicast group entry for this ip6_moptions instance 270 * which matches the specified group, and optionally an interface. 271 * Return its index into the array, or -1 if not found. 272 */ 273 static size_t 274 im6o_match_group(const struct ip6_moptions *imo, const struct ifnet *ifp, 275 const struct sockaddr *group) 276 { 277 const struct sockaddr_in6 *gsin6; 278 struct in6_multi **pinm; 279 int idx; 280 int nmships; 281 282 gsin6 = (const struct sockaddr_in6 *)group; 283 284 /* The im6o_membership array may be lazy allocated. */ 285 if (imo->im6o_membership == NULL || imo->im6o_num_memberships == 0) 286 return (-1); 287 288 nmships = imo->im6o_num_memberships; 289 pinm = &imo->im6o_membership[0]; 290 for (idx = 0; idx < nmships; idx++, pinm++) { 291 if (*pinm == NULL) 292 continue; 293 if ((ifp == NULL || ((*pinm)->in6m_ifp == ifp)) && 294 IN6_ARE_ADDR_EQUAL(&(*pinm)->in6m_addr, 295 &gsin6->sin6_addr)) { 296 break; 297 } 298 } 299 if (idx >= nmships) 300 idx = -1; 301 302 return (idx); 303 } 304 305 /* 306 * Find an IPv6 multicast source entry for this imo which matches 307 * the given group index for this socket, and source address. 308 * 309 * XXX TODO: The scope ID, if present in src, is stripped before 310 * any comparison. We SHOULD enforce scope/zone checks where the source 311 * filter entry has a link scope. 312 * 313 * NOTE: This does not check if the entry is in-mode, merely if 314 * it exists, which may not be the desired behaviour. 315 */ 316 static struct in6_msource * 317 im6o_match_source(const struct ip6_moptions *imo, const size_t gidx, 318 const struct sockaddr *src) 319 { 320 struct ip6_msource find; 321 struct in6_mfilter *imf; 322 struct ip6_msource *ims; 323 const sockunion_t *psa; 324 325 KASSERT(src->sa_family == AF_INET6, ("%s: !AF_INET6", __func__)); 326 KASSERT(gidx != -1 && gidx < imo->im6o_num_memberships, 327 ("%s: invalid index %d\n", __func__, (int)gidx)); 328 329 /* The im6o_mfilters array may be lazy allocated. */ 330 if (imo->im6o_mfilters == NULL) 331 return (NULL); 332 imf = &imo->im6o_mfilters[gidx]; 333 334 psa = (const sockunion_t *)src; 335 find.im6s_addr = psa->sin6.sin6_addr; 336 in6_clearscope(&find.im6s_addr); /* XXX */ 337 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 338 339 return ((struct in6_msource *)ims); 340 } 341 342 /* 343 * Perform filtering for multicast datagrams on a socket by group and source. 344 * 345 * Returns 0 if a datagram should be allowed through, or various error codes 346 * if the socket was not a member of the group, or the source was muted, etc. 347 */ 348 int 349 im6o_mc_filter(const struct ip6_moptions *imo, const struct ifnet *ifp, 350 const struct sockaddr *group, const struct sockaddr *src) 351 { 352 size_t gidx; 353 struct in6_msource *ims; 354 int mode; 355 356 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 357 358 gidx = im6o_match_group(imo, ifp, group); 359 if (gidx == -1) 360 return (MCAST_NOTGMEMBER); 361 362 /* 363 * Check if the source was included in an (S,G) join. 364 * Allow reception on exclusive memberships by default, 365 * reject reception on inclusive memberships by default. 366 * Exclude source only if an in-mode exclude filter exists. 367 * Include source only if an in-mode include filter exists. 368 * NOTE: We are comparing group state here at MLD t1 (now) 369 * with socket-layer t0 (since last downcall). 370 */ 371 mode = imo->im6o_mfilters[gidx].im6f_st[1]; 372 ims = im6o_match_source(imo, gidx, src); 373 374 if ((ims == NULL && mode == MCAST_INCLUDE) || 375 (ims != NULL && ims->im6sl_st[0] != mode)) 376 return (MCAST_NOTSMEMBER); 377 378 return (MCAST_PASS); 379 } 380 381 /* 382 * Find and return a reference to an in6_multi record for (ifp, group), 383 * and bump its reference count. 384 * If one does not exist, try to allocate it, and update link-layer multicast 385 * filters on ifp to listen for group. 386 * Assumes the IN6_MULTI lock is held across the call. 387 * Return 0 if successful, otherwise return an appropriate error code. 388 */ 389 static int 390 in6_mc_get(struct ifnet *ifp, const struct in6_addr *group, 391 struct in6_multi **pinm) 392 { 393 struct sockaddr_in6 gsin6; 394 struct ifmultiaddr *ifma; 395 struct in6_multi *inm; 396 int error; 397 398 error = 0; 399 400 /* 401 * XXX: Accesses to ifma_protospec must be covered by IF_ADDR_LOCK; 402 * if_addmulti() takes this mutex itself, so we must drop and 403 * re-acquire around the call. 404 */ 405 IN6_MULTI_LOCK_ASSERT(); 406 IF_ADDR_WLOCK(ifp); 407 408 inm = in6m_lookup_locked(ifp, group); 409 if (inm != NULL) { 410 /* 411 * If we already joined this group, just bump the 412 * refcount and return it. 413 */ 414 KASSERT(inm->in6m_refcount >= 1, 415 ("%s: bad refcount %d", __func__, inm->in6m_refcount)); 416 ++inm->in6m_refcount; 417 *pinm = inm; 418 goto out_locked; 419 } 420 421 memset(&gsin6, 0, sizeof(gsin6)); 422 gsin6.sin6_family = AF_INET6; 423 gsin6.sin6_len = sizeof(struct sockaddr_in6); 424 gsin6.sin6_addr = *group; 425 426 /* 427 * Check if a link-layer group is already associated 428 * with this network-layer group on the given ifnet. 429 */ 430 IF_ADDR_WUNLOCK(ifp); 431 error = if_addmulti(ifp, (struct sockaddr *)&gsin6, &ifma); 432 if (error != 0) 433 return (error); 434 IF_ADDR_WLOCK(ifp); 435 436 /* 437 * If something other than netinet6 is occupying the link-layer 438 * group, print a meaningful error message and back out of 439 * the allocation. 440 * Otherwise, bump the refcount on the existing network-layer 441 * group association and return it. 442 */ 443 if (ifma->ifma_protospec != NULL) { 444 inm = (struct in6_multi *)ifma->ifma_protospec; 445 #ifdef INVARIANTS 446 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", 447 __func__)); 448 KASSERT(ifma->ifma_addr->sa_family == AF_INET6, 449 ("%s: ifma not AF_INET6", __func__)); 450 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); 451 if (inm->in6m_ifma != ifma || inm->in6m_ifp != ifp || 452 !IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, group)) 453 panic("%s: ifma %p is inconsistent with %p (%p)", 454 __func__, ifma, inm, group); 455 #endif 456 ++inm->in6m_refcount; 457 *pinm = inm; 458 goto out_locked; 459 } 460 461 IF_ADDR_WLOCK_ASSERT(ifp); 462 463 /* 464 * A new in6_multi record is needed; allocate and initialize it. 465 * We DO NOT perform an MLD join as the in6_ layer may need to 466 * push an initial source list down to MLD to support SSM. 467 * 468 * The initial source filter state is INCLUDE, {} as per the RFC. 469 * Pending state-changes per group are subject to a bounds check. 470 */ 471 inm = malloc(sizeof(*inm), M_IP6MADDR, M_NOWAIT | M_ZERO); 472 if (inm == NULL) { 473 IF_ADDR_WUNLOCK(ifp); 474 if_delmulti_ifma(ifma); 475 return (ENOMEM); 476 } 477 inm->in6m_addr = *group; 478 inm->in6m_ifp = ifp; 479 inm->in6m_mli = MLD_IFINFO(ifp); 480 inm->in6m_ifma = ifma; 481 inm->in6m_refcount = 1; 482 inm->in6m_state = MLD_NOT_MEMBER; 483 mbufq_init(&inm->in6m_scq, MLD_MAX_STATE_CHANGES); 484 485 inm->in6m_st[0].iss_fmode = MCAST_UNDEFINED; 486 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 487 RB_INIT(&inm->in6m_srcs); 488 489 ifma->ifma_protospec = inm; 490 *pinm = inm; 491 492 out_locked: 493 IF_ADDR_WUNLOCK(ifp); 494 return (error); 495 } 496 497 /* 498 * Drop a reference to an in6_multi record. 499 * 500 * If the refcount drops to 0, free the in6_multi record and 501 * delete the underlying link-layer membership. 502 */ 503 void 504 in6m_release_locked(struct in6_multi *inm) 505 { 506 struct ifmultiaddr *ifma; 507 508 IN6_MULTI_LOCK_ASSERT(); 509 510 CTR2(KTR_MLD, "%s: refcount is %d", __func__, inm->in6m_refcount); 511 512 if (--inm->in6m_refcount > 0) { 513 CTR2(KTR_MLD, "%s: refcount is now %d", __func__, 514 inm->in6m_refcount); 515 return; 516 } 517 518 CTR2(KTR_MLD, "%s: freeing inm %p", __func__, inm); 519 520 ifma = inm->in6m_ifma; 521 522 /* XXX this access is not covered by IF_ADDR_LOCK */ 523 CTR2(KTR_MLD, "%s: purging ifma %p", __func__, ifma); 524 KASSERT(ifma->ifma_protospec == inm, 525 ("%s: ifma_protospec != inm", __func__)); 526 ifma->ifma_protospec = NULL; 527 528 in6m_purge(inm); 529 530 free(inm, M_IP6MADDR); 531 532 if_delmulti_ifma(ifma); 533 } 534 535 /* 536 * Clear recorded source entries for a group. 537 * Used by the MLD code. Caller must hold the IN6_MULTI lock. 538 * FIXME: Should reap. 539 */ 540 void 541 in6m_clear_recorded(struct in6_multi *inm) 542 { 543 struct ip6_msource *ims; 544 545 IN6_MULTI_LOCK_ASSERT(); 546 547 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 548 if (ims->im6s_stp) { 549 ims->im6s_stp = 0; 550 --inm->in6m_st[1].iss_rec; 551 } 552 } 553 KASSERT(inm->in6m_st[1].iss_rec == 0, 554 ("%s: iss_rec %d not 0", __func__, inm->in6m_st[1].iss_rec)); 555 } 556 557 /* 558 * Record a source as pending for a Source-Group MLDv2 query. 559 * This lives here as it modifies the shared tree. 560 * 561 * inm is the group descriptor. 562 * naddr is the address of the source to record in network-byte order. 563 * 564 * If the net.inet6.mld.sgalloc sysctl is non-zero, we will 565 * lazy-allocate a source node in response to an SG query. 566 * Otherwise, no allocation is performed. This saves some memory 567 * with the trade-off that the source will not be reported to the 568 * router if joined in the window between the query response and 569 * the group actually being joined on the local host. 570 * 571 * VIMAGE: XXX: Currently the mld_sgalloc feature has been removed. 572 * This turns off the allocation of a recorded source entry if 573 * the group has not been joined. 574 * 575 * Return 0 if the source didn't exist or was already marked as recorded. 576 * Return 1 if the source was marked as recorded by this function. 577 * Return <0 if any error occurred (negated errno code). 578 */ 579 int 580 in6m_record_source(struct in6_multi *inm, const struct in6_addr *addr) 581 { 582 struct ip6_msource find; 583 struct ip6_msource *ims, *nims; 584 585 IN6_MULTI_LOCK_ASSERT(); 586 587 find.im6s_addr = *addr; 588 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 589 if (ims && ims->im6s_stp) 590 return (0); 591 if (ims == NULL) { 592 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 593 return (-ENOSPC); 594 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 595 M_NOWAIT | M_ZERO); 596 if (nims == NULL) 597 return (-ENOMEM); 598 nims->im6s_addr = find.im6s_addr; 599 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 600 ++inm->in6m_nsrc; 601 ims = nims; 602 } 603 604 /* 605 * Mark the source as recorded and update the recorded 606 * source count. 607 */ 608 ++ims->im6s_stp; 609 ++inm->in6m_st[1].iss_rec; 610 611 return (1); 612 } 613 614 /* 615 * Return a pointer to an in6_msource owned by an in6_mfilter, 616 * given its source address. 617 * Lazy-allocate if needed. If this is a new entry its filter state is 618 * undefined at t0. 619 * 620 * imf is the filter set being modified. 621 * addr is the source address. 622 * 623 * SMPng: May be called with locks held; malloc must not block. 624 */ 625 static int 626 im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin, 627 struct in6_msource **plims) 628 { 629 struct ip6_msource find; 630 struct ip6_msource *ims, *nims; 631 struct in6_msource *lims; 632 int error; 633 634 error = 0; 635 ims = NULL; 636 lims = NULL; 637 638 find.im6s_addr = psin->sin6_addr; 639 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 640 lims = (struct in6_msource *)ims; 641 if (lims == NULL) { 642 if (imf->im6f_nsrc == in6_mcast_maxsocksrc) 643 return (ENOSPC); 644 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 645 M_NOWAIT | M_ZERO); 646 if (nims == NULL) 647 return (ENOMEM); 648 lims = (struct in6_msource *)nims; 649 lims->im6s_addr = find.im6s_addr; 650 lims->im6sl_st[0] = MCAST_UNDEFINED; 651 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 652 ++imf->im6f_nsrc; 653 } 654 655 *plims = lims; 656 657 return (error); 658 } 659 660 /* 661 * Graft a source entry into an existing socket-layer filter set, 662 * maintaining any required invariants and checking allocations. 663 * 664 * The source is marked as being in the new filter mode at t1. 665 * 666 * Return the pointer to the new node, otherwise return NULL. 667 */ 668 static struct in6_msource * 669 im6f_graft(struct in6_mfilter *imf, const uint8_t st1, 670 const struct sockaddr_in6 *psin) 671 { 672 struct ip6_msource *nims; 673 struct in6_msource *lims; 674 675 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 676 M_NOWAIT | M_ZERO); 677 if (nims == NULL) 678 return (NULL); 679 lims = (struct in6_msource *)nims; 680 lims->im6s_addr = psin->sin6_addr; 681 lims->im6sl_st[0] = MCAST_UNDEFINED; 682 lims->im6sl_st[1] = st1; 683 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 684 ++imf->im6f_nsrc; 685 686 return (lims); 687 } 688 689 /* 690 * Prune a source entry from an existing socket-layer filter set, 691 * maintaining any required invariants and checking allocations. 692 * 693 * The source is marked as being left at t1, it is not freed. 694 * 695 * Return 0 if no error occurred, otherwise return an errno value. 696 */ 697 static int 698 im6f_prune(struct in6_mfilter *imf, const struct sockaddr_in6 *psin) 699 { 700 struct ip6_msource find; 701 struct ip6_msource *ims; 702 struct in6_msource *lims; 703 704 find.im6s_addr = psin->sin6_addr; 705 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 706 if (ims == NULL) 707 return (ENOENT); 708 lims = (struct in6_msource *)ims; 709 lims->im6sl_st[1] = MCAST_UNDEFINED; 710 return (0); 711 } 712 713 /* 714 * Revert socket-layer filter set deltas at t1 to t0 state. 715 */ 716 static void 717 im6f_rollback(struct in6_mfilter *imf) 718 { 719 struct ip6_msource *ims, *tims; 720 struct in6_msource *lims; 721 722 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 723 lims = (struct in6_msource *)ims; 724 if (lims->im6sl_st[0] == lims->im6sl_st[1]) { 725 /* no change at t1 */ 726 continue; 727 } else if (lims->im6sl_st[0] != MCAST_UNDEFINED) { 728 /* revert change to existing source at t1 */ 729 lims->im6sl_st[1] = lims->im6sl_st[0]; 730 } else { 731 /* revert source added t1 */ 732 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 733 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 734 free(ims, M_IN6MFILTER); 735 imf->im6f_nsrc--; 736 } 737 } 738 imf->im6f_st[1] = imf->im6f_st[0]; 739 } 740 741 /* 742 * Mark socket-layer filter set as INCLUDE {} at t1. 743 */ 744 static void 745 im6f_leave(struct in6_mfilter *imf) 746 { 747 struct ip6_msource *ims; 748 struct in6_msource *lims; 749 750 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 751 lims = (struct in6_msource *)ims; 752 lims->im6sl_st[1] = MCAST_UNDEFINED; 753 } 754 imf->im6f_st[1] = MCAST_INCLUDE; 755 } 756 757 /* 758 * Mark socket-layer filter set deltas as committed. 759 */ 760 static void 761 im6f_commit(struct in6_mfilter *imf) 762 { 763 struct ip6_msource *ims; 764 struct in6_msource *lims; 765 766 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 767 lims = (struct in6_msource *)ims; 768 lims->im6sl_st[0] = lims->im6sl_st[1]; 769 } 770 imf->im6f_st[0] = imf->im6f_st[1]; 771 } 772 773 /* 774 * Reap unreferenced sources from socket-layer filter set. 775 */ 776 static void 777 im6f_reap(struct in6_mfilter *imf) 778 { 779 struct ip6_msource *ims, *tims; 780 struct in6_msource *lims; 781 782 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 783 lims = (struct in6_msource *)ims; 784 if ((lims->im6sl_st[0] == MCAST_UNDEFINED) && 785 (lims->im6sl_st[1] == MCAST_UNDEFINED)) { 786 CTR2(KTR_MLD, "%s: free lims %p", __func__, ims); 787 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 788 free(ims, M_IN6MFILTER); 789 imf->im6f_nsrc--; 790 } 791 } 792 } 793 794 /* 795 * Purge socket-layer filter set. 796 */ 797 static void 798 im6f_purge(struct in6_mfilter *imf) 799 { 800 struct ip6_msource *ims, *tims; 801 802 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 803 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 804 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 805 free(ims, M_IN6MFILTER); 806 imf->im6f_nsrc--; 807 } 808 imf->im6f_st[0] = imf->im6f_st[1] = MCAST_UNDEFINED; 809 KASSERT(RB_EMPTY(&imf->im6f_sources), 810 ("%s: im6f_sources not empty", __func__)); 811 } 812 813 /* 814 * Look up a source filter entry for a multicast group. 815 * 816 * inm is the group descriptor to work with. 817 * addr is the IPv6 address to look up. 818 * noalloc may be non-zero to suppress allocation of sources. 819 * *pims will be set to the address of the retrieved or allocated source. 820 * 821 * SMPng: NOTE: may be called with locks held. 822 * Return 0 if successful, otherwise return a non-zero error code. 823 */ 824 static int 825 in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr, 826 const int noalloc, struct ip6_msource **pims) 827 { 828 struct ip6_msource find; 829 struct ip6_msource *ims, *nims; 830 #ifdef KTR 831 char ip6tbuf[INET6_ADDRSTRLEN]; 832 #endif 833 834 find.im6s_addr = *addr; 835 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 836 if (ims == NULL && !noalloc) { 837 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 838 return (ENOSPC); 839 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 840 M_NOWAIT | M_ZERO); 841 if (nims == NULL) 842 return (ENOMEM); 843 nims->im6s_addr = *addr; 844 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 845 ++inm->in6m_nsrc; 846 ims = nims; 847 CTR3(KTR_MLD, "%s: allocated %s as %p", __func__, 848 ip6_sprintf(ip6tbuf, addr), ims); 849 } 850 851 *pims = ims; 852 return (0); 853 } 854 855 /* 856 * Merge socket-layer source into MLD-layer source. 857 * If rollback is non-zero, perform the inverse of the merge. 858 */ 859 static void 860 im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims, 861 const int rollback) 862 { 863 int n = rollback ? -1 : 1; 864 #ifdef KTR 865 char ip6tbuf[INET6_ADDRSTRLEN]; 866 867 ip6_sprintf(ip6tbuf, &lims->im6s_addr); 868 #endif 869 870 if (lims->im6sl_st[0] == MCAST_EXCLUDE) { 871 CTR3(KTR_MLD, "%s: t1 ex -= %d on %s", __func__, n, ip6tbuf); 872 ims->im6s_st[1].ex -= n; 873 } else if (lims->im6sl_st[0] == MCAST_INCLUDE) { 874 CTR3(KTR_MLD, "%s: t1 in -= %d on %s", __func__, n, ip6tbuf); 875 ims->im6s_st[1].in -= n; 876 } 877 878 if (lims->im6sl_st[1] == MCAST_EXCLUDE) { 879 CTR3(KTR_MLD, "%s: t1 ex += %d on %s", __func__, n, ip6tbuf); 880 ims->im6s_st[1].ex += n; 881 } else if (lims->im6sl_st[1] == MCAST_INCLUDE) { 882 CTR3(KTR_MLD, "%s: t1 in += %d on %s", __func__, n, ip6tbuf); 883 ims->im6s_st[1].in += n; 884 } 885 } 886 887 /* 888 * Atomically update the global in6_multi state, when a membership's 889 * filter list is being updated in any way. 890 * 891 * imf is the per-inpcb-membership group filter pointer. 892 * A fake imf may be passed for in-kernel consumers. 893 * 894 * XXX This is a candidate for a set-symmetric-difference style loop 895 * which would eliminate the repeated lookup from root of ims nodes, 896 * as they share the same key space. 897 * 898 * If any error occurred this function will back out of refcounts 899 * and return a non-zero value. 900 */ 901 static int 902 in6m_merge(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 903 { 904 struct ip6_msource *ims, *nims; 905 struct in6_msource *lims; 906 int schanged, error; 907 int nsrc0, nsrc1; 908 909 schanged = 0; 910 error = 0; 911 nsrc1 = nsrc0 = 0; 912 913 /* 914 * Update the source filters first, as this may fail. 915 * Maintain count of in-mode filters at t0, t1. These are 916 * used to work out if we transition into ASM mode or not. 917 * Maintain a count of source filters whose state was 918 * actually modified by this operation. 919 */ 920 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 921 lims = (struct in6_msource *)ims; 922 if (lims->im6sl_st[0] == imf->im6f_st[0]) nsrc0++; 923 if (lims->im6sl_st[1] == imf->im6f_st[1]) nsrc1++; 924 if (lims->im6sl_st[0] == lims->im6sl_st[1]) continue; 925 error = in6m_get_source(inm, &lims->im6s_addr, 0, &nims); 926 ++schanged; 927 if (error) 928 break; 929 im6s_merge(nims, lims, 0); 930 } 931 if (error) { 932 struct ip6_msource *bims; 933 934 RB_FOREACH_REVERSE_FROM(ims, ip6_msource_tree, nims) { 935 lims = (struct in6_msource *)ims; 936 if (lims->im6sl_st[0] == lims->im6sl_st[1]) 937 continue; 938 (void)in6m_get_source(inm, &lims->im6s_addr, 1, &bims); 939 if (bims == NULL) 940 continue; 941 im6s_merge(bims, lims, 1); 942 } 943 goto out_reap; 944 } 945 946 CTR3(KTR_MLD, "%s: imf filters in-mode: %d at t0, %d at t1", 947 __func__, nsrc0, nsrc1); 948 949 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ 950 if (imf->im6f_st[0] == imf->im6f_st[1] && 951 imf->im6f_st[1] == MCAST_INCLUDE) { 952 if (nsrc1 == 0) { 953 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 954 --inm->in6m_st[1].iss_in; 955 } 956 } 957 958 /* Handle filter mode transition on socket. */ 959 if (imf->im6f_st[0] != imf->im6f_st[1]) { 960 CTR3(KTR_MLD, "%s: imf transition %d to %d", 961 __func__, imf->im6f_st[0], imf->im6f_st[1]); 962 963 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 964 CTR1(KTR_MLD, "%s: --ex on inm at t1", __func__); 965 --inm->in6m_st[1].iss_ex; 966 } else if (imf->im6f_st[0] == MCAST_INCLUDE) { 967 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 968 --inm->in6m_st[1].iss_in; 969 } 970 971 if (imf->im6f_st[1] == MCAST_EXCLUDE) { 972 CTR1(KTR_MLD, "%s: ex++ on inm at t1", __func__); 973 inm->in6m_st[1].iss_ex++; 974 } else if (imf->im6f_st[1] == MCAST_INCLUDE && nsrc1 > 0) { 975 CTR1(KTR_MLD, "%s: in++ on inm at t1", __func__); 976 inm->in6m_st[1].iss_in++; 977 } 978 } 979 980 /* 981 * Track inm filter state in terms of listener counts. 982 * If there are any exclusive listeners, stack-wide 983 * membership is exclusive. 984 * Otherwise, if only inclusive listeners, stack-wide is inclusive. 985 * If no listeners remain, state is undefined at t1, 986 * and the MLD lifecycle for this group should finish. 987 */ 988 if (inm->in6m_st[1].iss_ex > 0) { 989 CTR1(KTR_MLD, "%s: transition to EX", __func__); 990 inm->in6m_st[1].iss_fmode = MCAST_EXCLUDE; 991 } else if (inm->in6m_st[1].iss_in > 0) { 992 CTR1(KTR_MLD, "%s: transition to IN", __func__); 993 inm->in6m_st[1].iss_fmode = MCAST_INCLUDE; 994 } else { 995 CTR1(KTR_MLD, "%s: transition to UNDEF", __func__); 996 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 997 } 998 999 /* Decrement ASM listener count on transition out of ASM mode. */ 1000 if (imf->im6f_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { 1001 if ((imf->im6f_st[1] != MCAST_EXCLUDE) || 1002 (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) { 1003 CTR1(KTR_MLD, "%s: --asm on inm at t1", __func__); 1004 --inm->in6m_st[1].iss_asm; 1005 } 1006 } 1007 1008 /* Increment ASM listener count on transition to ASM mode. */ 1009 if (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { 1010 CTR1(KTR_MLD, "%s: asm++ on inm at t1", __func__); 1011 inm->in6m_st[1].iss_asm++; 1012 } 1013 1014 CTR3(KTR_MLD, "%s: merged imf %p to inm %p", __func__, imf, inm); 1015 in6m_print(inm); 1016 1017 out_reap: 1018 if (schanged > 0) { 1019 CTR1(KTR_MLD, "%s: sources changed; reaping", __func__); 1020 in6m_reap(inm); 1021 } 1022 return (error); 1023 } 1024 1025 /* 1026 * Mark an in6_multi's filter set deltas as committed. 1027 * Called by MLD after a state change has been enqueued. 1028 */ 1029 void 1030 in6m_commit(struct in6_multi *inm) 1031 { 1032 struct ip6_msource *ims; 1033 1034 CTR2(KTR_MLD, "%s: commit inm %p", __func__, inm); 1035 CTR1(KTR_MLD, "%s: pre commit:", __func__); 1036 in6m_print(inm); 1037 1038 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 1039 ims->im6s_st[0] = ims->im6s_st[1]; 1040 } 1041 inm->in6m_st[0] = inm->in6m_st[1]; 1042 } 1043 1044 /* 1045 * Reap unreferenced nodes from an in6_multi's filter set. 1046 */ 1047 static void 1048 in6m_reap(struct in6_multi *inm) 1049 { 1050 struct ip6_msource *ims, *tims; 1051 1052 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1053 if (ims->im6s_st[0].ex > 0 || ims->im6s_st[0].in > 0 || 1054 ims->im6s_st[1].ex > 0 || ims->im6s_st[1].in > 0 || 1055 ims->im6s_stp != 0) 1056 continue; 1057 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1058 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1059 free(ims, M_IP6MSOURCE); 1060 inm->in6m_nsrc--; 1061 } 1062 } 1063 1064 /* 1065 * Purge all source nodes from an in6_multi's filter set. 1066 */ 1067 static void 1068 in6m_purge(struct in6_multi *inm) 1069 { 1070 struct ip6_msource *ims, *tims; 1071 1072 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1073 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1074 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1075 free(ims, M_IP6MSOURCE); 1076 inm->in6m_nsrc--; 1077 } 1078 /* Free state-change requests that might be queued. */ 1079 mbufq_drain(&inm->in6m_scq); 1080 } 1081 1082 /* 1083 * Join a multicast address w/o sources. 1084 * KAME compatibility entry point. 1085 * 1086 * SMPng: Assume no mc locks held by caller. 1087 */ 1088 struct in6_multi_mship * 1089 in6_joingroup(struct ifnet *ifp, struct in6_addr *mcaddr, 1090 int *errorp, int delay) 1091 { 1092 struct in6_multi_mship *imm; 1093 int error; 1094 1095 imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT); 1096 if (imm == NULL) { 1097 *errorp = ENOBUFS; 1098 return (NULL); 1099 } 1100 1101 delay = (delay * PR_FASTHZ) / hz; 1102 1103 error = in6_mc_join(ifp, mcaddr, NULL, &imm->i6mm_maddr, delay); 1104 if (error) { 1105 *errorp = error; 1106 free(imm, M_IP6MADDR); 1107 return (NULL); 1108 } 1109 1110 return (imm); 1111 } 1112 1113 /* 1114 * Leave a multicast address w/o sources. 1115 * KAME compatibility entry point. 1116 * 1117 * SMPng: Assume no mc locks held by caller. 1118 */ 1119 int 1120 in6_leavegroup(struct in6_multi_mship *imm) 1121 { 1122 1123 if (imm->i6mm_maddr != NULL) 1124 in6_mc_leave(imm->i6mm_maddr, NULL); 1125 free(imm, M_IP6MADDR); 1126 return 0; 1127 } 1128 1129 /* 1130 * Join a multicast group; unlocked entry point. 1131 * 1132 * SMPng: XXX: in6_mc_join() is called from in6_control() when upper 1133 * locks are not held. Fortunately, ifp is unlikely to have been detached 1134 * at this point, so we assume it's OK to recurse. 1135 */ 1136 int 1137 in6_mc_join(struct ifnet *ifp, const struct in6_addr *mcaddr, 1138 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1139 const int delay) 1140 { 1141 int error; 1142 1143 IN6_MULTI_LOCK(); 1144 error = in6_mc_join_locked(ifp, mcaddr, imf, pinm, delay); 1145 IN6_MULTI_UNLOCK(); 1146 1147 return (error); 1148 } 1149 1150 /* 1151 * Join a multicast group; real entry point. 1152 * 1153 * Only preserves atomicity at inm level. 1154 * NOTE: imf argument cannot be const due to sys/tree.h limitations. 1155 * 1156 * If the MLD downcall fails, the group is not joined, and an error 1157 * code is returned. 1158 */ 1159 int 1160 in6_mc_join_locked(struct ifnet *ifp, const struct in6_addr *mcaddr, 1161 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1162 const int delay) 1163 { 1164 struct in6_mfilter timf; 1165 struct in6_multi *inm; 1166 int error; 1167 #ifdef KTR 1168 char ip6tbuf[INET6_ADDRSTRLEN]; 1169 #endif 1170 1171 #ifdef INVARIANTS 1172 /* 1173 * Sanity: Check scope zone ID was set for ifp, if and 1174 * only if group is scoped to an interface. 1175 */ 1176 KASSERT(IN6_IS_ADDR_MULTICAST(mcaddr), 1177 ("%s: not a multicast address", __func__)); 1178 if (IN6_IS_ADDR_MC_LINKLOCAL(mcaddr) || 1179 IN6_IS_ADDR_MC_INTFACELOCAL(mcaddr)) { 1180 KASSERT(mcaddr->s6_addr16[1] != 0, 1181 ("%s: scope zone ID not set", __func__)); 1182 } 1183 #endif 1184 1185 IN6_MULTI_LOCK_ASSERT(); 1186 1187 CTR4(KTR_MLD, "%s: join %s on %p(%s))", __func__, 1188 ip6_sprintf(ip6tbuf, mcaddr), ifp, if_name(ifp)); 1189 1190 error = 0; 1191 inm = NULL; 1192 1193 /* 1194 * If no imf was specified (i.e. kernel consumer), 1195 * fake one up and assume it is an ASM join. 1196 */ 1197 if (imf == NULL) { 1198 im6f_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); 1199 imf = &timf; 1200 } 1201 1202 error = in6_mc_get(ifp, mcaddr, &inm); 1203 if (error) { 1204 CTR1(KTR_MLD, "%s: in6_mc_get() failure", __func__); 1205 return (error); 1206 } 1207 1208 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1209 error = in6m_merge(inm, imf); 1210 if (error) { 1211 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1212 goto out_in6m_release; 1213 } 1214 1215 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1216 error = mld_change_state(inm, delay); 1217 if (error) { 1218 CTR1(KTR_MLD, "%s: failed to update source", __func__); 1219 goto out_in6m_release; 1220 } 1221 1222 out_in6m_release: 1223 if (error) { 1224 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1225 in6m_release_locked(inm); 1226 } else { 1227 *pinm = inm; 1228 } 1229 1230 return (error); 1231 } 1232 1233 /* 1234 * Leave a multicast group; unlocked entry point. 1235 */ 1236 int 1237 in6_mc_leave(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1238 { 1239 struct ifnet *ifp; 1240 int error; 1241 1242 ifp = inm->in6m_ifp; 1243 1244 IN6_MULTI_LOCK(); 1245 error = in6_mc_leave_locked(inm, imf); 1246 IN6_MULTI_UNLOCK(); 1247 1248 return (error); 1249 } 1250 1251 /* 1252 * Leave a multicast group; real entry point. 1253 * All source filters will be expunged. 1254 * 1255 * Only preserves atomicity at inm level. 1256 * 1257 * Holding the write lock for the INP which contains imf 1258 * is highly advisable. We can't assert for it as imf does not 1259 * contain a back-pointer to the owning inp. 1260 * 1261 * Note: This is not the same as in6m_release(*) as this function also 1262 * makes a state change downcall into MLD. 1263 */ 1264 int 1265 in6_mc_leave_locked(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1266 { 1267 struct in6_mfilter timf; 1268 int error; 1269 #ifdef KTR 1270 char ip6tbuf[INET6_ADDRSTRLEN]; 1271 #endif 1272 1273 error = 0; 1274 1275 IN6_MULTI_LOCK_ASSERT(); 1276 1277 CTR5(KTR_MLD, "%s: leave inm %p, %s/%s, imf %p", __func__, 1278 inm, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1279 (in6m_is_ifp_detached(inm) ? "null" : if_name(inm->in6m_ifp)), 1280 imf); 1281 1282 /* 1283 * If no imf was specified (i.e. kernel consumer), 1284 * fake one up and assume it is an ASM join. 1285 */ 1286 if (imf == NULL) { 1287 im6f_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); 1288 imf = &timf; 1289 } 1290 1291 /* 1292 * Begin state merge transaction at MLD layer. 1293 * 1294 * As this particular invocation should not cause any memory 1295 * to be allocated, and there is no opportunity to roll back 1296 * the transaction, it MUST NOT fail. 1297 */ 1298 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1299 error = in6m_merge(inm, imf); 1300 KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); 1301 1302 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1303 error = mld_change_state(inm, 0); 1304 if (error) 1305 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1306 1307 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1308 in6m_release_locked(inm); 1309 1310 return (error); 1311 } 1312 1313 /* 1314 * Block or unblock an ASM multicast source on an inpcb. 1315 * This implements the delta-based API described in RFC 3678. 1316 * 1317 * The delta-based API applies only to exclusive-mode memberships. 1318 * An MLD downcall will be performed. 1319 * 1320 * SMPng: NOTE: Must take Giant as a join may create a new ifma. 1321 * 1322 * Return 0 if successful, otherwise return an appropriate error code. 1323 */ 1324 static int 1325 in6p_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) 1326 { 1327 struct group_source_req gsr; 1328 sockunion_t *gsa, *ssa; 1329 struct ifnet *ifp; 1330 struct in6_mfilter *imf; 1331 struct ip6_moptions *imo; 1332 struct in6_msource *ims; 1333 struct in6_multi *inm; 1334 size_t idx; 1335 uint16_t fmode; 1336 int error, doblock; 1337 #ifdef KTR 1338 char ip6tbuf[INET6_ADDRSTRLEN]; 1339 #endif 1340 1341 ifp = NULL; 1342 error = 0; 1343 doblock = 0; 1344 1345 memset(&gsr, 0, sizeof(struct group_source_req)); 1346 gsa = (sockunion_t *)&gsr.gsr_group; 1347 ssa = (sockunion_t *)&gsr.gsr_source; 1348 1349 switch (sopt->sopt_name) { 1350 case MCAST_BLOCK_SOURCE: 1351 case MCAST_UNBLOCK_SOURCE: 1352 error = sooptcopyin(sopt, &gsr, 1353 sizeof(struct group_source_req), 1354 sizeof(struct group_source_req)); 1355 if (error) 1356 return (error); 1357 1358 if (gsa->sin6.sin6_family != AF_INET6 || 1359 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1360 return (EINVAL); 1361 1362 if (ssa->sin6.sin6_family != AF_INET6 || 1363 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1364 return (EINVAL); 1365 1366 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1367 return (EADDRNOTAVAIL); 1368 1369 ifp = ifnet_byindex(gsr.gsr_interface); 1370 1371 if (sopt->sopt_name == MCAST_BLOCK_SOURCE) 1372 doblock = 1; 1373 break; 1374 1375 default: 1376 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 1377 __func__, sopt->sopt_name); 1378 return (EOPNOTSUPP); 1379 break; 1380 } 1381 1382 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1383 return (EINVAL); 1384 1385 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1386 1387 /* 1388 * Check if we are actually a member of this group. 1389 */ 1390 imo = in6p_findmoptions(inp); 1391 idx = im6o_match_group(imo, ifp, &gsa->sa); 1392 if (idx == -1 || imo->im6o_mfilters == NULL) { 1393 error = EADDRNOTAVAIL; 1394 goto out_in6p_locked; 1395 } 1396 1397 KASSERT(imo->im6o_mfilters != NULL, 1398 ("%s: im6o_mfilters not allocated", __func__)); 1399 imf = &imo->im6o_mfilters[idx]; 1400 inm = imo->im6o_membership[idx]; 1401 1402 /* 1403 * Attempting to use the delta-based API on an 1404 * non exclusive-mode membership is an error. 1405 */ 1406 fmode = imf->im6f_st[0]; 1407 if (fmode != MCAST_EXCLUDE) { 1408 error = EINVAL; 1409 goto out_in6p_locked; 1410 } 1411 1412 /* 1413 * Deal with error cases up-front: 1414 * Asked to block, but already blocked; or 1415 * Asked to unblock, but nothing to unblock. 1416 * If adding a new block entry, allocate it. 1417 */ 1418 ims = im6o_match_source(imo, idx, &ssa->sa); 1419 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { 1420 CTR3(KTR_MLD, "%s: source %s %spresent", __func__, 1421 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 1422 doblock ? "" : "not "); 1423 error = EADDRNOTAVAIL; 1424 goto out_in6p_locked; 1425 } 1426 1427 INP_WLOCK_ASSERT(inp); 1428 1429 /* 1430 * Begin state merge transaction at socket layer. 1431 */ 1432 if (doblock) { 1433 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 1434 ims = im6f_graft(imf, fmode, &ssa->sin6); 1435 if (ims == NULL) 1436 error = ENOMEM; 1437 } else { 1438 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 1439 error = im6f_prune(imf, &ssa->sin6); 1440 } 1441 1442 if (error) { 1443 CTR1(KTR_MLD, "%s: merge imf state failed", __func__); 1444 goto out_im6f_rollback; 1445 } 1446 1447 /* 1448 * Begin state merge transaction at MLD layer. 1449 */ 1450 IN6_MULTI_LOCK(); 1451 1452 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1453 error = in6m_merge(inm, imf); 1454 if (error) 1455 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1456 else { 1457 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1458 error = mld_change_state(inm, 0); 1459 if (error) 1460 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1461 } 1462 1463 IN6_MULTI_UNLOCK(); 1464 1465 out_im6f_rollback: 1466 if (error) 1467 im6f_rollback(imf); 1468 else 1469 im6f_commit(imf); 1470 1471 im6f_reap(imf); 1472 1473 out_in6p_locked: 1474 INP_WUNLOCK(inp); 1475 return (error); 1476 } 1477 1478 /* 1479 * Given an inpcb, return its multicast options structure pointer. Accepts 1480 * an unlocked inpcb pointer, but will return it locked. May sleep. 1481 * 1482 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 1483 * SMPng: NOTE: Returns with the INP write lock held. 1484 */ 1485 static struct ip6_moptions * 1486 in6p_findmoptions(struct inpcb *inp) 1487 { 1488 struct ip6_moptions *imo; 1489 struct in6_multi **immp; 1490 struct in6_mfilter *imfp; 1491 size_t idx; 1492 1493 INP_WLOCK(inp); 1494 if (inp->in6p_moptions != NULL) 1495 return (inp->in6p_moptions); 1496 1497 INP_WUNLOCK(inp); 1498 1499 imo = malloc(sizeof(*imo), M_IP6MOPTS, M_WAITOK); 1500 immp = malloc(sizeof(*immp) * IPV6_MIN_MEMBERSHIPS, M_IP6MOPTS, 1501 M_WAITOK | M_ZERO); 1502 imfp = malloc(sizeof(struct in6_mfilter) * IPV6_MIN_MEMBERSHIPS, 1503 M_IN6MFILTER, M_WAITOK); 1504 1505 imo->im6o_multicast_ifp = NULL; 1506 imo->im6o_multicast_hlim = V_ip6_defmcasthlim; 1507 imo->im6o_multicast_loop = in6_mcast_loop; 1508 imo->im6o_num_memberships = 0; 1509 imo->im6o_max_memberships = IPV6_MIN_MEMBERSHIPS; 1510 imo->im6o_membership = immp; 1511 1512 /* Initialize per-group source filters. */ 1513 for (idx = 0; idx < IPV6_MIN_MEMBERSHIPS; idx++) 1514 im6f_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); 1515 imo->im6o_mfilters = imfp; 1516 1517 INP_WLOCK(inp); 1518 if (inp->in6p_moptions != NULL) { 1519 free(imfp, M_IN6MFILTER); 1520 free(immp, M_IP6MOPTS); 1521 free(imo, M_IP6MOPTS); 1522 return (inp->in6p_moptions); 1523 } 1524 inp->in6p_moptions = imo; 1525 return (imo); 1526 } 1527 1528 /* 1529 * Discard the IPv6 multicast options (and source filters). 1530 * 1531 * SMPng: NOTE: assumes INP write lock is held. 1532 */ 1533 void 1534 ip6_freemoptions(struct ip6_moptions *imo) 1535 { 1536 struct in6_mfilter *imf; 1537 size_t idx, nmships; 1538 1539 KASSERT(imo != NULL, ("%s: ip6_moptions is NULL", __func__)); 1540 1541 nmships = imo->im6o_num_memberships; 1542 for (idx = 0; idx < nmships; ++idx) { 1543 imf = imo->im6o_mfilters ? &imo->im6o_mfilters[idx] : NULL; 1544 if (imf) 1545 im6f_leave(imf); 1546 /* XXX this will thrash the lock(s) */ 1547 (void)in6_mc_leave(imo->im6o_membership[idx], imf); 1548 if (imf) 1549 im6f_purge(imf); 1550 } 1551 1552 if (imo->im6o_mfilters) 1553 free(imo->im6o_mfilters, M_IN6MFILTER); 1554 free(imo->im6o_membership, M_IP6MOPTS); 1555 free(imo, M_IP6MOPTS); 1556 } 1557 1558 /* 1559 * Atomically get source filters on a socket for an IPv6 multicast group. 1560 * Called with INP lock held; returns with lock released. 1561 */ 1562 static int 1563 in6p_get_source_filters(struct inpcb *inp, struct sockopt *sopt) 1564 { 1565 struct __msfilterreq msfr; 1566 sockunion_t *gsa; 1567 struct ifnet *ifp; 1568 struct ip6_moptions *imo; 1569 struct in6_mfilter *imf; 1570 struct ip6_msource *ims; 1571 struct in6_msource *lims; 1572 struct sockaddr_in6 *psin; 1573 struct sockaddr_storage *ptss; 1574 struct sockaddr_storage *tss; 1575 int error; 1576 size_t idx, nsrcs, ncsrcs; 1577 1578 INP_WLOCK_ASSERT(inp); 1579 1580 imo = inp->in6p_moptions; 1581 KASSERT(imo != NULL, ("%s: null ip6_moptions", __func__)); 1582 1583 INP_WUNLOCK(inp); 1584 1585 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 1586 sizeof(struct __msfilterreq)); 1587 if (error) 1588 return (error); 1589 1590 if (msfr.msfr_group.ss_family != AF_INET6 || 1591 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 1592 return (EINVAL); 1593 1594 gsa = (sockunion_t *)&msfr.msfr_group; 1595 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1596 return (EINVAL); 1597 1598 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 1599 return (EADDRNOTAVAIL); 1600 ifp = ifnet_byindex(msfr.msfr_ifindex); 1601 if (ifp == NULL) 1602 return (EADDRNOTAVAIL); 1603 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1604 1605 INP_WLOCK(inp); 1606 1607 /* 1608 * Lookup group on the socket. 1609 */ 1610 idx = im6o_match_group(imo, ifp, &gsa->sa); 1611 if (idx == -1 || imo->im6o_mfilters == NULL) { 1612 INP_WUNLOCK(inp); 1613 return (EADDRNOTAVAIL); 1614 } 1615 imf = &imo->im6o_mfilters[idx]; 1616 1617 /* 1618 * Ignore memberships which are in limbo. 1619 */ 1620 if (imf->im6f_st[1] == MCAST_UNDEFINED) { 1621 INP_WUNLOCK(inp); 1622 return (EAGAIN); 1623 } 1624 msfr.msfr_fmode = imf->im6f_st[1]; 1625 1626 /* 1627 * If the user specified a buffer, copy out the source filter 1628 * entries to userland gracefully. 1629 * We only copy out the number of entries which userland 1630 * has asked for, but we always tell userland how big the 1631 * buffer really needs to be. 1632 */ 1633 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 1634 msfr.msfr_nsrcs = in6_mcast_maxsocksrc; 1635 tss = NULL; 1636 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { 1637 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 1638 M_TEMP, M_NOWAIT | M_ZERO); 1639 if (tss == NULL) { 1640 INP_WUNLOCK(inp); 1641 return (ENOBUFS); 1642 } 1643 } 1644 1645 /* 1646 * Count number of sources in-mode at t0. 1647 * If buffer space exists and remains, copy out source entries. 1648 */ 1649 nsrcs = msfr.msfr_nsrcs; 1650 ncsrcs = 0; 1651 ptss = tss; 1652 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 1653 lims = (struct in6_msource *)ims; 1654 if (lims->im6sl_st[0] == MCAST_UNDEFINED || 1655 lims->im6sl_st[0] != imf->im6f_st[0]) 1656 continue; 1657 ++ncsrcs; 1658 if (tss != NULL && nsrcs > 0) { 1659 psin = (struct sockaddr_in6 *)ptss; 1660 psin->sin6_family = AF_INET6; 1661 psin->sin6_len = sizeof(struct sockaddr_in6); 1662 psin->sin6_addr = lims->im6s_addr; 1663 psin->sin6_port = 0; 1664 --nsrcs; 1665 ++ptss; 1666 } 1667 } 1668 1669 INP_WUNLOCK(inp); 1670 1671 if (tss != NULL) { 1672 error = copyout(tss, msfr.msfr_srcs, 1673 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 1674 free(tss, M_TEMP); 1675 if (error) 1676 return (error); 1677 } 1678 1679 msfr.msfr_nsrcs = ncsrcs; 1680 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); 1681 1682 return (error); 1683 } 1684 1685 /* 1686 * Return the IP multicast options in response to user getsockopt(). 1687 */ 1688 int 1689 ip6_getmoptions(struct inpcb *inp, struct sockopt *sopt) 1690 { 1691 struct ip6_moptions *im6o; 1692 int error; 1693 u_int optval; 1694 1695 INP_WLOCK(inp); 1696 im6o = inp->in6p_moptions; 1697 /* 1698 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 1699 * or is a divert socket, reject it. 1700 */ 1701 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 1702 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 1703 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { 1704 INP_WUNLOCK(inp); 1705 return (EOPNOTSUPP); 1706 } 1707 1708 error = 0; 1709 switch (sopt->sopt_name) { 1710 case IPV6_MULTICAST_IF: 1711 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) { 1712 optval = 0; 1713 } else { 1714 optval = im6o->im6o_multicast_ifp->if_index; 1715 } 1716 INP_WUNLOCK(inp); 1717 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1718 break; 1719 1720 case IPV6_MULTICAST_HOPS: 1721 if (im6o == NULL) 1722 optval = V_ip6_defmcasthlim; 1723 else 1724 optval = im6o->im6o_multicast_hlim; 1725 INP_WUNLOCK(inp); 1726 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1727 break; 1728 1729 case IPV6_MULTICAST_LOOP: 1730 if (im6o == NULL) 1731 optval = in6_mcast_loop; /* XXX VIMAGE */ 1732 else 1733 optval = im6o->im6o_multicast_loop; 1734 INP_WUNLOCK(inp); 1735 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1736 break; 1737 1738 case IPV6_MSFILTER: 1739 if (im6o == NULL) { 1740 error = EADDRNOTAVAIL; 1741 INP_WUNLOCK(inp); 1742 } else { 1743 error = in6p_get_source_filters(inp, sopt); 1744 } 1745 break; 1746 1747 default: 1748 INP_WUNLOCK(inp); 1749 error = ENOPROTOOPT; 1750 break; 1751 } 1752 1753 INP_UNLOCK_ASSERT(inp); 1754 1755 return (error); 1756 } 1757 1758 /* 1759 * Look up the ifnet to use for a multicast group membership, 1760 * given the address of an IPv6 group. 1761 * 1762 * This routine exists to support legacy IPv6 multicast applications. 1763 * 1764 * If inp is non-NULL, use this socket's current FIB number for any 1765 * required FIB lookup. Look up the group address in the unicast FIB, 1766 * and use its ifp; usually, this points to the default next-hop. 1767 * If the FIB lookup fails, return NULL. 1768 * 1769 * FUTURE: Support multiple forwarding tables for IPv6. 1770 * 1771 * Returns NULL if no ifp could be found. 1772 */ 1773 static struct ifnet * 1774 in6p_lookup_mcast_ifp(const struct inpcb *in6p, 1775 const struct sockaddr_in6 *gsin6) 1776 { 1777 struct nhop6_basic nh6; 1778 struct in6_addr dst; 1779 uint32_t scopeid; 1780 uint32_t fibnum; 1781 1782 KASSERT(in6p->inp_vflag & INP_IPV6, 1783 ("%s: not INP_IPV6 inpcb", __func__)); 1784 KASSERT(gsin6->sin6_family == AF_INET6, 1785 ("%s: not AF_INET6 group", __func__)); 1786 1787 in6_splitscope(&gsin6->sin6_addr, &dst, &scopeid); 1788 fibnum = in6p ? in6p->inp_inc.inc_fibnum : RT_DEFAULT_FIB; 1789 if (fib6_lookup_nh_basic(fibnum, &dst, scopeid, 0, 0, &nh6) != 0) 1790 return (NULL); 1791 1792 return (nh6.nh_ifp); 1793 } 1794 1795 /* 1796 * Join an IPv6 multicast group, possibly with a source. 1797 * 1798 * FIXME: The KAME use of the unspecified address (::) 1799 * to join *all* multicast groups is currently unsupported. 1800 */ 1801 static int 1802 in6p_join_group(struct inpcb *inp, struct sockopt *sopt) 1803 { 1804 struct group_source_req gsr; 1805 sockunion_t *gsa, *ssa; 1806 struct ifnet *ifp; 1807 struct in6_mfilter *imf; 1808 struct ip6_moptions *imo; 1809 struct in6_multi *inm; 1810 struct in6_msource *lims; 1811 size_t idx; 1812 int error, is_new; 1813 1814 ifp = NULL; 1815 imf = NULL; 1816 lims = NULL; 1817 error = 0; 1818 is_new = 0; 1819 1820 memset(&gsr, 0, sizeof(struct group_source_req)); 1821 gsa = (sockunion_t *)&gsr.gsr_group; 1822 gsa->ss.ss_family = AF_UNSPEC; 1823 ssa = (sockunion_t *)&gsr.gsr_source; 1824 ssa->ss.ss_family = AF_UNSPEC; 1825 1826 /* 1827 * Chew everything into struct group_source_req. 1828 * Overwrite the port field if present, as the sockaddr 1829 * being copied in may be matched with a binary comparison. 1830 * Ignore passed-in scope ID. 1831 */ 1832 switch (sopt->sopt_name) { 1833 case IPV6_JOIN_GROUP: { 1834 struct ipv6_mreq mreq; 1835 1836 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 1837 sizeof(struct ipv6_mreq)); 1838 if (error) 1839 return (error); 1840 1841 gsa->sin6.sin6_family = AF_INET6; 1842 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 1843 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 1844 1845 if (mreq.ipv6mr_interface == 0) { 1846 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 1847 } else { 1848 if (V_if_index < mreq.ipv6mr_interface) 1849 return (EADDRNOTAVAIL); 1850 ifp = ifnet_byindex(mreq.ipv6mr_interface); 1851 } 1852 CTR3(KTR_MLD, "%s: ipv6mr_interface = %d, ifp = %p", 1853 __func__, mreq.ipv6mr_interface, ifp); 1854 } break; 1855 1856 case MCAST_JOIN_GROUP: 1857 case MCAST_JOIN_SOURCE_GROUP: 1858 if (sopt->sopt_name == MCAST_JOIN_GROUP) { 1859 error = sooptcopyin(sopt, &gsr, 1860 sizeof(struct group_req), 1861 sizeof(struct group_req)); 1862 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1863 error = sooptcopyin(sopt, &gsr, 1864 sizeof(struct group_source_req), 1865 sizeof(struct group_source_req)); 1866 } 1867 if (error) 1868 return (error); 1869 1870 if (gsa->sin6.sin6_family != AF_INET6 || 1871 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1872 return (EINVAL); 1873 1874 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1875 if (ssa->sin6.sin6_family != AF_INET6 || 1876 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1877 return (EINVAL); 1878 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 1879 return (EINVAL); 1880 /* 1881 * TODO: Validate embedded scope ID in source 1882 * list entry against passed-in ifp, if and only 1883 * if source list filter entry is iface or node local. 1884 */ 1885 in6_clearscope(&ssa->sin6.sin6_addr); 1886 ssa->sin6.sin6_port = 0; 1887 ssa->sin6.sin6_scope_id = 0; 1888 } 1889 1890 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1891 return (EADDRNOTAVAIL); 1892 ifp = ifnet_byindex(gsr.gsr_interface); 1893 break; 1894 1895 default: 1896 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 1897 __func__, sopt->sopt_name); 1898 return (EOPNOTSUPP); 1899 break; 1900 } 1901 1902 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1903 return (EINVAL); 1904 1905 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) 1906 return (EADDRNOTAVAIL); 1907 1908 gsa->sin6.sin6_port = 0; 1909 gsa->sin6.sin6_scope_id = 0; 1910 1911 /* 1912 * Always set the scope zone ID on memberships created from userland. 1913 * Use the passed-in ifp to do this. 1914 * XXX The in6_setscope() return value is meaningless. 1915 * XXX SCOPE6_LOCK() is taken by in6_setscope(). 1916 */ 1917 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1918 1919 imo = in6p_findmoptions(inp); 1920 idx = im6o_match_group(imo, ifp, &gsa->sa); 1921 if (idx == -1) { 1922 is_new = 1; 1923 } else { 1924 inm = imo->im6o_membership[idx]; 1925 imf = &imo->im6o_mfilters[idx]; 1926 if (ssa->ss.ss_family != AF_UNSPEC) { 1927 /* 1928 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership 1929 * is an error. On an existing inclusive membership, 1930 * it just adds the source to the filter list. 1931 */ 1932 if (imf->im6f_st[1] != MCAST_INCLUDE) { 1933 error = EINVAL; 1934 goto out_in6p_locked; 1935 } 1936 /* 1937 * Throw out duplicates. 1938 * 1939 * XXX FIXME: This makes a naive assumption that 1940 * even if entries exist for *ssa in this imf, 1941 * they will be rejected as dupes, even if they 1942 * are not valid in the current mode (in-mode). 1943 * 1944 * in6_msource is transactioned just as for anything 1945 * else in SSM -- but note naive use of in6m_graft() 1946 * below for allocating new filter entries. 1947 * 1948 * This is only an issue if someone mixes the 1949 * full-state SSM API with the delta-based API, 1950 * which is discouraged in the relevant RFCs. 1951 */ 1952 lims = im6o_match_source(imo, idx, &ssa->sa); 1953 if (lims != NULL /*&& 1954 lims->im6sl_st[1] == MCAST_INCLUDE*/) { 1955 error = EADDRNOTAVAIL; 1956 goto out_in6p_locked; 1957 } 1958 } else { 1959 /* 1960 * MCAST_JOIN_GROUP alone, on any existing membership, 1961 * is rejected, to stop the same inpcb tying up 1962 * multiple refs to the in_multi. 1963 * On an existing inclusive membership, this is also 1964 * an error; if you want to change filter mode, 1965 * you must use the userland API setsourcefilter(). 1966 * XXX We don't reject this for imf in UNDEFINED 1967 * state at t1, because allocation of a filter 1968 * is atomic with allocation of a membership. 1969 */ 1970 error = EINVAL; 1971 goto out_in6p_locked; 1972 } 1973 } 1974 1975 /* 1976 * Begin state merge transaction at socket layer. 1977 */ 1978 INP_WLOCK_ASSERT(inp); 1979 1980 if (is_new) { 1981 if (imo->im6o_num_memberships == imo->im6o_max_memberships) { 1982 error = im6o_grow(imo); 1983 if (error) 1984 goto out_in6p_locked; 1985 } 1986 /* 1987 * Allocate the new slot upfront so we can deal with 1988 * grafting the new source filter in same code path 1989 * as for join-source on existing membership. 1990 */ 1991 idx = imo->im6o_num_memberships; 1992 imo->im6o_membership[idx] = NULL; 1993 imo->im6o_num_memberships++; 1994 KASSERT(imo->im6o_mfilters != NULL, 1995 ("%s: im6f_mfilters vector was not allocated", __func__)); 1996 imf = &imo->im6o_mfilters[idx]; 1997 KASSERT(RB_EMPTY(&imf->im6f_sources), 1998 ("%s: im6f_sources not empty", __func__)); 1999 } 2000 2001 /* 2002 * Graft new source into filter list for this inpcb's 2003 * membership of the group. The in6_multi may not have 2004 * been allocated yet if this is a new membership, however, 2005 * the in_mfilter slot will be allocated and must be initialized. 2006 * 2007 * Note: Grafting of exclusive mode filters doesn't happen 2008 * in this path. 2009 * XXX: Should check for non-NULL lims (node exists but may 2010 * not be in-mode) for interop with full-state API. 2011 */ 2012 if (ssa->ss.ss_family != AF_UNSPEC) { 2013 /* Membership starts in IN mode */ 2014 if (is_new) { 2015 CTR1(KTR_MLD, "%s: new join w/source", __func__); 2016 im6f_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE); 2017 } else { 2018 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 2019 } 2020 lims = im6f_graft(imf, MCAST_INCLUDE, &ssa->sin6); 2021 if (lims == NULL) { 2022 CTR1(KTR_MLD, "%s: merge imf state failed", 2023 __func__); 2024 error = ENOMEM; 2025 goto out_im6o_free; 2026 } 2027 } else { 2028 /* No address specified; Membership starts in EX mode */ 2029 if (is_new) { 2030 CTR1(KTR_MLD, "%s: new join w/o source", __func__); 2031 im6f_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE); 2032 } 2033 } 2034 2035 /* 2036 * Begin state merge transaction at MLD layer. 2037 */ 2038 IN6_MULTI_LOCK(); 2039 2040 if (is_new) { 2041 error = in6_mc_join_locked(ifp, &gsa->sin6.sin6_addr, imf, 2042 &inm, 0); 2043 if (error) { 2044 IN6_MULTI_UNLOCK(); 2045 goto out_im6o_free; 2046 } 2047 imo->im6o_membership[idx] = inm; 2048 } else { 2049 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2050 error = in6m_merge(inm, imf); 2051 if (error) 2052 CTR1(KTR_MLD, "%s: failed to merge inm state", 2053 __func__); 2054 else { 2055 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2056 error = mld_change_state(inm, 0); 2057 if (error) 2058 CTR1(KTR_MLD, "%s: failed mld downcall", 2059 __func__); 2060 } 2061 } 2062 2063 IN6_MULTI_UNLOCK(); 2064 INP_WLOCK_ASSERT(inp); 2065 if (error) { 2066 im6f_rollback(imf); 2067 if (is_new) 2068 im6f_purge(imf); 2069 else 2070 im6f_reap(imf); 2071 } else { 2072 im6f_commit(imf); 2073 } 2074 2075 out_im6o_free: 2076 if (error && is_new) { 2077 imo->im6o_membership[idx] = NULL; 2078 --imo->im6o_num_memberships; 2079 } 2080 2081 out_in6p_locked: 2082 INP_WUNLOCK(inp); 2083 return (error); 2084 } 2085 2086 /* 2087 * Leave an IPv6 multicast group on an inpcb, possibly with a source. 2088 */ 2089 static int 2090 in6p_leave_group(struct inpcb *inp, struct sockopt *sopt) 2091 { 2092 struct ipv6_mreq mreq; 2093 struct group_source_req gsr; 2094 sockunion_t *gsa, *ssa; 2095 struct ifnet *ifp; 2096 struct in6_mfilter *imf; 2097 struct ip6_moptions *imo; 2098 struct in6_msource *ims; 2099 struct in6_multi *inm; 2100 uint32_t ifindex; 2101 size_t idx; 2102 int error, is_final; 2103 #ifdef KTR 2104 char ip6tbuf[INET6_ADDRSTRLEN]; 2105 #endif 2106 2107 ifp = NULL; 2108 ifindex = 0; 2109 error = 0; 2110 is_final = 1; 2111 2112 memset(&gsr, 0, sizeof(struct group_source_req)); 2113 gsa = (sockunion_t *)&gsr.gsr_group; 2114 gsa->ss.ss_family = AF_UNSPEC; 2115 ssa = (sockunion_t *)&gsr.gsr_source; 2116 ssa->ss.ss_family = AF_UNSPEC; 2117 2118 /* 2119 * Chew everything passed in up into a struct group_source_req 2120 * as that is easier to process. 2121 * Note: Any embedded scope ID in the multicast group passed 2122 * in by userland is ignored, the interface index is the recommended 2123 * mechanism to specify an interface; see below. 2124 */ 2125 switch (sopt->sopt_name) { 2126 case IPV6_LEAVE_GROUP: 2127 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 2128 sizeof(struct ipv6_mreq)); 2129 if (error) 2130 return (error); 2131 gsa->sin6.sin6_family = AF_INET6; 2132 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 2133 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 2134 gsa->sin6.sin6_port = 0; 2135 gsa->sin6.sin6_scope_id = 0; 2136 ifindex = mreq.ipv6mr_interface; 2137 break; 2138 2139 case MCAST_LEAVE_GROUP: 2140 case MCAST_LEAVE_SOURCE_GROUP: 2141 if (sopt->sopt_name == MCAST_LEAVE_GROUP) { 2142 error = sooptcopyin(sopt, &gsr, 2143 sizeof(struct group_req), 2144 sizeof(struct group_req)); 2145 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2146 error = sooptcopyin(sopt, &gsr, 2147 sizeof(struct group_source_req), 2148 sizeof(struct group_source_req)); 2149 } 2150 if (error) 2151 return (error); 2152 2153 if (gsa->sin6.sin6_family != AF_INET6 || 2154 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2155 return (EINVAL); 2156 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2157 if (ssa->sin6.sin6_family != AF_INET6 || 2158 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2159 return (EINVAL); 2160 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 2161 return (EINVAL); 2162 /* 2163 * TODO: Validate embedded scope ID in source 2164 * list entry against passed-in ifp, if and only 2165 * if source list filter entry is iface or node local. 2166 */ 2167 in6_clearscope(&ssa->sin6.sin6_addr); 2168 } 2169 gsa->sin6.sin6_port = 0; 2170 gsa->sin6.sin6_scope_id = 0; 2171 ifindex = gsr.gsr_interface; 2172 break; 2173 2174 default: 2175 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 2176 __func__, sopt->sopt_name); 2177 return (EOPNOTSUPP); 2178 break; 2179 } 2180 2181 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2182 return (EINVAL); 2183 2184 /* 2185 * Validate interface index if provided. If no interface index 2186 * was provided separately, attempt to look the membership up 2187 * from the default scope as a last resort to disambiguate 2188 * the membership we are being asked to leave. 2189 * XXX SCOPE6 lock potentially taken here. 2190 */ 2191 if (ifindex != 0) { 2192 if (V_if_index < ifindex) 2193 return (EADDRNOTAVAIL); 2194 ifp = ifnet_byindex(ifindex); 2195 if (ifp == NULL) 2196 return (EADDRNOTAVAIL); 2197 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2198 } else { 2199 error = sa6_embedscope(&gsa->sin6, V_ip6_use_defzone); 2200 if (error) 2201 return (EADDRNOTAVAIL); 2202 /* 2203 * Some badly behaved applications don't pass an ifindex 2204 * or a scope ID, which is an API violation. In this case, 2205 * perform a lookup as per a v6 join. 2206 * 2207 * XXX For now, stomp on zone ID for the corner case. 2208 * This is not the 'KAME way', but we need to see the ifp 2209 * directly until such time as this implementation is 2210 * refactored, assuming the scope IDs are the way to go. 2211 */ 2212 ifindex = ntohs(gsa->sin6.sin6_addr.s6_addr16[1]); 2213 if (ifindex == 0) { 2214 CTR2(KTR_MLD, "%s: warning: no ifindex, looking up " 2215 "ifp for group %s.", __func__, 2216 ip6_sprintf(ip6tbuf, &gsa->sin6.sin6_addr)); 2217 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 2218 } else { 2219 ifp = ifnet_byindex(ifindex); 2220 } 2221 if (ifp == NULL) 2222 return (EADDRNOTAVAIL); 2223 } 2224 2225 CTR2(KTR_MLD, "%s: ifp = %p", __func__, ifp); 2226 KASSERT(ifp != NULL, ("%s: ifp did not resolve", __func__)); 2227 2228 /* 2229 * Find the membership in the membership array. 2230 */ 2231 imo = in6p_findmoptions(inp); 2232 idx = im6o_match_group(imo, ifp, &gsa->sa); 2233 if (idx == -1) { 2234 error = EADDRNOTAVAIL; 2235 goto out_in6p_locked; 2236 } 2237 inm = imo->im6o_membership[idx]; 2238 imf = &imo->im6o_mfilters[idx]; 2239 2240 if (ssa->ss.ss_family != AF_UNSPEC) 2241 is_final = 0; 2242 2243 /* 2244 * Begin state merge transaction at socket layer. 2245 */ 2246 INP_WLOCK_ASSERT(inp); 2247 2248 /* 2249 * If we were instructed only to leave a given source, do so. 2250 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. 2251 */ 2252 if (is_final) { 2253 im6f_leave(imf); 2254 } else { 2255 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 2256 error = EADDRNOTAVAIL; 2257 goto out_in6p_locked; 2258 } 2259 ims = im6o_match_source(imo, idx, &ssa->sa); 2260 if (ims == NULL) { 2261 CTR3(KTR_MLD, "%s: source %p %spresent", __func__, 2262 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 2263 "not "); 2264 error = EADDRNOTAVAIL; 2265 goto out_in6p_locked; 2266 } 2267 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 2268 error = im6f_prune(imf, &ssa->sin6); 2269 if (error) { 2270 CTR1(KTR_MLD, "%s: merge imf state failed", 2271 __func__); 2272 goto out_in6p_locked; 2273 } 2274 } 2275 2276 /* 2277 * Begin state merge transaction at MLD layer. 2278 */ 2279 IN6_MULTI_LOCK(); 2280 2281 if (is_final) { 2282 /* 2283 * Give up the multicast address record to which 2284 * the membership points. 2285 */ 2286 (void)in6_mc_leave_locked(inm, imf); 2287 } else { 2288 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2289 error = in6m_merge(inm, imf); 2290 if (error) 2291 CTR1(KTR_MLD, "%s: failed to merge inm state", 2292 __func__); 2293 else { 2294 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2295 error = mld_change_state(inm, 0); 2296 if (error) 2297 CTR1(KTR_MLD, "%s: failed mld downcall", 2298 __func__); 2299 } 2300 } 2301 2302 IN6_MULTI_UNLOCK(); 2303 2304 if (error) 2305 im6f_rollback(imf); 2306 else 2307 im6f_commit(imf); 2308 2309 im6f_reap(imf); 2310 2311 if (is_final) { 2312 /* Remove the gap in the membership array. */ 2313 for (++idx; idx < imo->im6o_num_memberships; ++idx) { 2314 imo->im6o_membership[idx-1] = imo->im6o_membership[idx]; 2315 imo->im6o_mfilters[idx-1] = imo->im6o_mfilters[idx]; 2316 } 2317 imo->im6o_num_memberships--; 2318 } 2319 2320 out_in6p_locked: 2321 INP_WUNLOCK(inp); 2322 return (error); 2323 } 2324 2325 /* 2326 * Select the interface for transmitting IPv6 multicast datagrams. 2327 * 2328 * Either an instance of struct in6_addr or an instance of struct ipv6_mreqn 2329 * may be passed to this socket option. An address of in6addr_any or an 2330 * interface index of 0 is used to remove a previous selection. 2331 * When no interface is selected, one is chosen for every send. 2332 */ 2333 static int 2334 in6p_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) 2335 { 2336 struct ifnet *ifp; 2337 struct ip6_moptions *imo; 2338 u_int ifindex; 2339 int error; 2340 2341 if (sopt->sopt_valsize != sizeof(u_int)) 2342 return (EINVAL); 2343 2344 error = sooptcopyin(sopt, &ifindex, sizeof(u_int), sizeof(u_int)); 2345 if (error) 2346 return (error); 2347 if (V_if_index < ifindex) 2348 return (EINVAL); 2349 if (ifindex == 0) 2350 ifp = NULL; 2351 else { 2352 ifp = ifnet_byindex(ifindex); 2353 if (ifp == NULL) 2354 return (EINVAL); 2355 if ((ifp->if_flags & IFF_MULTICAST) == 0) 2356 return (EADDRNOTAVAIL); 2357 } 2358 imo = in6p_findmoptions(inp); 2359 imo->im6o_multicast_ifp = ifp; 2360 INP_WUNLOCK(inp); 2361 2362 return (0); 2363 } 2364 2365 /* 2366 * Atomically set source filters on a socket for an IPv6 multicast group. 2367 * 2368 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 2369 */ 2370 static int 2371 in6p_set_source_filters(struct inpcb *inp, struct sockopt *sopt) 2372 { 2373 struct __msfilterreq msfr; 2374 sockunion_t *gsa; 2375 struct ifnet *ifp; 2376 struct in6_mfilter *imf; 2377 struct ip6_moptions *imo; 2378 struct in6_multi *inm; 2379 size_t idx; 2380 int error; 2381 2382 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 2383 sizeof(struct __msfilterreq)); 2384 if (error) 2385 return (error); 2386 2387 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 2388 return (ENOBUFS); 2389 2390 if (msfr.msfr_fmode != MCAST_EXCLUDE && 2391 msfr.msfr_fmode != MCAST_INCLUDE) 2392 return (EINVAL); 2393 2394 if (msfr.msfr_group.ss_family != AF_INET6 || 2395 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 2396 return (EINVAL); 2397 2398 gsa = (sockunion_t *)&msfr.msfr_group; 2399 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2400 return (EINVAL); 2401 2402 gsa->sin6.sin6_port = 0; /* ignore port */ 2403 2404 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 2405 return (EADDRNOTAVAIL); 2406 ifp = ifnet_byindex(msfr.msfr_ifindex); 2407 if (ifp == NULL) 2408 return (EADDRNOTAVAIL); 2409 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2410 2411 /* 2412 * Take the INP write lock. 2413 * Check if this socket is a member of this group. 2414 */ 2415 imo = in6p_findmoptions(inp); 2416 idx = im6o_match_group(imo, ifp, &gsa->sa); 2417 if (idx == -1 || imo->im6o_mfilters == NULL) { 2418 error = EADDRNOTAVAIL; 2419 goto out_in6p_locked; 2420 } 2421 inm = imo->im6o_membership[idx]; 2422 imf = &imo->im6o_mfilters[idx]; 2423 2424 /* 2425 * Begin state merge transaction at socket layer. 2426 */ 2427 INP_WLOCK_ASSERT(inp); 2428 2429 imf->im6f_st[1] = msfr.msfr_fmode; 2430 2431 /* 2432 * Apply any new source filters, if present. 2433 * Make a copy of the user-space source vector so 2434 * that we may copy them with a single copyin. This 2435 * allows us to deal with page faults up-front. 2436 */ 2437 if (msfr.msfr_nsrcs > 0) { 2438 struct in6_msource *lims; 2439 struct sockaddr_in6 *psin; 2440 struct sockaddr_storage *kss, *pkss; 2441 int i; 2442 2443 INP_WUNLOCK(inp); 2444 2445 CTR2(KTR_MLD, "%s: loading %lu source list entries", 2446 __func__, (unsigned long)msfr.msfr_nsrcs); 2447 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 2448 M_TEMP, M_WAITOK); 2449 error = copyin(msfr.msfr_srcs, kss, 2450 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 2451 if (error) { 2452 free(kss, M_TEMP); 2453 return (error); 2454 } 2455 2456 INP_WLOCK(inp); 2457 2458 /* 2459 * Mark all source filters as UNDEFINED at t1. 2460 * Restore new group filter mode, as im6f_leave() 2461 * will set it to INCLUDE. 2462 */ 2463 im6f_leave(imf); 2464 imf->im6f_st[1] = msfr.msfr_fmode; 2465 2466 /* 2467 * Update socket layer filters at t1, lazy-allocating 2468 * new entries. This saves a bunch of memory at the 2469 * cost of one RB_FIND() per source entry; duplicate 2470 * entries in the msfr_nsrcs vector are ignored. 2471 * If we encounter an error, rollback transaction. 2472 * 2473 * XXX This too could be replaced with a set-symmetric 2474 * difference like loop to avoid walking from root 2475 * every time, as the key space is common. 2476 */ 2477 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { 2478 psin = (struct sockaddr_in6 *)pkss; 2479 if (psin->sin6_family != AF_INET6) { 2480 error = EAFNOSUPPORT; 2481 break; 2482 } 2483 if (psin->sin6_len != sizeof(struct sockaddr_in6)) { 2484 error = EINVAL; 2485 break; 2486 } 2487 if (IN6_IS_ADDR_MULTICAST(&psin->sin6_addr)) { 2488 error = EINVAL; 2489 break; 2490 } 2491 /* 2492 * TODO: Validate embedded scope ID in source 2493 * list entry against passed-in ifp, if and only 2494 * if source list filter entry is iface or node local. 2495 */ 2496 in6_clearscope(&psin->sin6_addr); 2497 error = im6f_get_source(imf, psin, &lims); 2498 if (error) 2499 break; 2500 lims->im6sl_st[1] = imf->im6f_st[1]; 2501 } 2502 free(kss, M_TEMP); 2503 } 2504 2505 if (error) 2506 goto out_im6f_rollback; 2507 2508 INP_WLOCK_ASSERT(inp); 2509 IN6_MULTI_LOCK(); 2510 2511 /* 2512 * Begin state merge transaction at MLD layer. 2513 */ 2514 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2515 error = in6m_merge(inm, imf); 2516 if (error) 2517 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 2518 else { 2519 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2520 error = mld_change_state(inm, 0); 2521 if (error) 2522 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 2523 } 2524 2525 IN6_MULTI_UNLOCK(); 2526 2527 out_im6f_rollback: 2528 if (error) 2529 im6f_rollback(imf); 2530 else 2531 im6f_commit(imf); 2532 2533 im6f_reap(imf); 2534 2535 out_in6p_locked: 2536 INP_WUNLOCK(inp); 2537 return (error); 2538 } 2539 2540 /* 2541 * Set the IP multicast options in response to user setsockopt(). 2542 * 2543 * Many of the socket options handled in this function duplicate the 2544 * functionality of socket options in the regular unicast API. However, 2545 * it is not possible to merge the duplicate code, because the idempotence 2546 * of the IPv6 multicast part of the BSD Sockets API must be preserved; 2547 * the effects of these options must be treated as separate and distinct. 2548 * 2549 * SMPng: XXX: Unlocked read of inp_socket believed OK. 2550 */ 2551 int 2552 ip6_setmoptions(struct inpcb *inp, struct sockopt *sopt) 2553 { 2554 struct ip6_moptions *im6o; 2555 int error; 2556 2557 error = 0; 2558 2559 /* 2560 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 2561 * or is a divert socket, reject it. 2562 */ 2563 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 2564 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 2565 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) 2566 return (EOPNOTSUPP); 2567 2568 switch (sopt->sopt_name) { 2569 case IPV6_MULTICAST_IF: 2570 error = in6p_set_multicast_if(inp, sopt); 2571 break; 2572 2573 case IPV6_MULTICAST_HOPS: { 2574 int hlim; 2575 2576 if (sopt->sopt_valsize != sizeof(int)) { 2577 error = EINVAL; 2578 break; 2579 } 2580 error = sooptcopyin(sopt, &hlim, sizeof(hlim), sizeof(int)); 2581 if (error) 2582 break; 2583 if (hlim < -1 || hlim > 255) { 2584 error = EINVAL; 2585 break; 2586 } else if (hlim == -1) { 2587 hlim = V_ip6_defmcasthlim; 2588 } 2589 im6o = in6p_findmoptions(inp); 2590 im6o->im6o_multicast_hlim = hlim; 2591 INP_WUNLOCK(inp); 2592 break; 2593 } 2594 2595 case IPV6_MULTICAST_LOOP: { 2596 u_int loop; 2597 2598 /* 2599 * Set the loopback flag for outgoing multicast packets. 2600 * Must be zero or one. 2601 */ 2602 if (sopt->sopt_valsize != sizeof(u_int)) { 2603 error = EINVAL; 2604 break; 2605 } 2606 error = sooptcopyin(sopt, &loop, sizeof(u_int), sizeof(u_int)); 2607 if (error) 2608 break; 2609 if (loop > 1) { 2610 error = EINVAL; 2611 break; 2612 } 2613 im6o = in6p_findmoptions(inp); 2614 im6o->im6o_multicast_loop = loop; 2615 INP_WUNLOCK(inp); 2616 break; 2617 } 2618 2619 case IPV6_JOIN_GROUP: 2620 case MCAST_JOIN_GROUP: 2621 case MCAST_JOIN_SOURCE_GROUP: 2622 error = in6p_join_group(inp, sopt); 2623 break; 2624 2625 case IPV6_LEAVE_GROUP: 2626 case MCAST_LEAVE_GROUP: 2627 case MCAST_LEAVE_SOURCE_GROUP: 2628 error = in6p_leave_group(inp, sopt); 2629 break; 2630 2631 case MCAST_BLOCK_SOURCE: 2632 case MCAST_UNBLOCK_SOURCE: 2633 error = in6p_block_unblock_source(inp, sopt); 2634 break; 2635 2636 case IPV6_MSFILTER: 2637 error = in6p_set_source_filters(inp, sopt); 2638 break; 2639 2640 default: 2641 error = EOPNOTSUPP; 2642 break; 2643 } 2644 2645 INP_UNLOCK_ASSERT(inp); 2646 2647 return (error); 2648 } 2649 2650 /* 2651 * Expose MLD's multicast filter mode and source list(s) to userland, 2652 * keyed by (ifindex, group). 2653 * The filter mode is written out as a uint32_t, followed by 2654 * 0..n of struct in6_addr. 2655 * For use by ifmcstat(8). 2656 * SMPng: NOTE: unlocked read of ifindex space. 2657 */ 2658 static int 2659 sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS) 2660 { 2661 struct in6_addr mcaddr; 2662 struct in6_addr src; 2663 struct ifnet *ifp; 2664 struct ifmultiaddr *ifma; 2665 struct in6_multi *inm; 2666 struct ip6_msource *ims; 2667 int *name; 2668 int retval; 2669 u_int namelen; 2670 uint32_t fmode, ifindex; 2671 #ifdef KTR 2672 char ip6tbuf[INET6_ADDRSTRLEN]; 2673 #endif 2674 2675 name = (int *)arg1; 2676 namelen = arg2; 2677 2678 if (req->newptr != NULL) 2679 return (EPERM); 2680 2681 /* int: ifindex + 4 * 32 bits of IPv6 address */ 2682 if (namelen != 5) 2683 return (EINVAL); 2684 2685 ifindex = name[0]; 2686 if (ifindex <= 0 || ifindex > V_if_index) { 2687 CTR2(KTR_MLD, "%s: ifindex %u out of range", 2688 __func__, ifindex); 2689 return (ENOENT); 2690 } 2691 2692 memcpy(&mcaddr, &name[1], sizeof(struct in6_addr)); 2693 if (!IN6_IS_ADDR_MULTICAST(&mcaddr)) { 2694 CTR2(KTR_MLD, "%s: group %s is not multicast", 2695 __func__, ip6_sprintf(ip6tbuf, &mcaddr)); 2696 return (EINVAL); 2697 } 2698 2699 ifp = ifnet_byindex(ifindex); 2700 if (ifp == NULL) { 2701 CTR2(KTR_MLD, "%s: no ifp for ifindex %u", 2702 __func__, ifindex); 2703 return (ENOENT); 2704 } 2705 /* 2706 * Internal MLD lookups require that scope/zone ID is set. 2707 */ 2708 (void)in6_setscope(&mcaddr, ifp, NULL); 2709 2710 retval = sysctl_wire_old_buffer(req, 2711 sizeof(uint32_t) + (in6_mcast_maxgrpsrc * sizeof(struct in6_addr))); 2712 if (retval) 2713 return (retval); 2714 2715 IN6_MULTI_LOCK(); 2716 2717 IF_ADDR_RLOCK(ifp); 2718 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2719 if (ifma->ifma_addr->sa_family != AF_INET6 || 2720 ifma->ifma_protospec == NULL) 2721 continue; 2722 inm = (struct in6_multi *)ifma->ifma_protospec; 2723 if (!IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, &mcaddr)) 2724 continue; 2725 fmode = inm->in6m_st[1].iss_fmode; 2726 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); 2727 if (retval != 0) 2728 break; 2729 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 2730 CTR2(KTR_MLD, "%s: visit node %p", __func__, ims); 2731 /* 2732 * Only copy-out sources which are in-mode. 2733 */ 2734 if (fmode != im6s_get_mode(inm, ims, 1)) { 2735 CTR1(KTR_MLD, "%s: skip non-in-mode", 2736 __func__); 2737 continue; 2738 } 2739 src = ims->im6s_addr; 2740 retval = SYSCTL_OUT(req, &src, 2741 sizeof(struct in6_addr)); 2742 if (retval != 0) 2743 break; 2744 } 2745 } 2746 IF_ADDR_RUNLOCK(ifp); 2747 2748 IN6_MULTI_UNLOCK(); 2749 2750 return (retval); 2751 } 2752 2753 #ifdef KTR 2754 2755 static const char *in6m_modestrs[] = { "un", "in", "ex" }; 2756 2757 static const char * 2758 in6m_mode_str(const int mode) 2759 { 2760 2761 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) 2762 return (in6m_modestrs[mode]); 2763 return ("??"); 2764 } 2765 2766 static const char *in6m_statestrs[] = { 2767 "not-member", 2768 "silent", 2769 "idle", 2770 "lazy", 2771 "sleeping", 2772 "awakening", 2773 "query-pending", 2774 "sg-query-pending", 2775 "leaving" 2776 }; 2777 2778 static const char * 2779 in6m_state_str(const int state) 2780 { 2781 2782 if (state >= MLD_NOT_MEMBER && state <= MLD_LEAVING_MEMBER) 2783 return (in6m_statestrs[state]); 2784 return ("??"); 2785 } 2786 2787 /* 2788 * Dump an in6_multi structure to the console. 2789 */ 2790 void 2791 in6m_print(const struct in6_multi *inm) 2792 { 2793 int t; 2794 char ip6tbuf[INET6_ADDRSTRLEN]; 2795 2796 if ((ktr_mask & KTR_MLD) == 0) 2797 return; 2798 2799 printf("%s: --- begin in6m %p ---\n", __func__, inm); 2800 printf("addr %s ifp %p(%s) ifma %p\n", 2801 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2802 inm->in6m_ifp, 2803 if_name(inm->in6m_ifp), 2804 inm->in6m_ifma); 2805 printf("timer %u state %s refcount %u scq.len %u\n", 2806 inm->in6m_timer, 2807 in6m_state_str(inm->in6m_state), 2808 inm->in6m_refcount, 2809 mbufq_len(&inm->in6m_scq)); 2810 printf("mli %p nsrc %lu sctimer %u scrv %u\n", 2811 inm->in6m_mli, 2812 inm->in6m_nsrc, 2813 inm->in6m_sctimer, 2814 inm->in6m_scrv); 2815 for (t = 0; t < 2; t++) { 2816 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, 2817 in6m_mode_str(inm->in6m_st[t].iss_fmode), 2818 inm->in6m_st[t].iss_asm, 2819 inm->in6m_st[t].iss_ex, 2820 inm->in6m_st[t].iss_in, 2821 inm->in6m_st[t].iss_rec); 2822 } 2823 printf("%s: --- end in6m %p ---\n", __func__, inm); 2824 } 2825 2826 #else /* !KTR */ 2827 2828 void 2829 in6m_print(const struct in6_multi *inm) 2830 { 2831 2832 } 2833 2834 #endif /* KTR */ 2835