1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2009 Bruce Simpson. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote 16 * products derived from this software without specific prior written 17 * permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * IPv6 multicast socket, group, and socket option processing module. 34 * Normative references: RFC 2292, RFC 3492, RFC 3542, RFC 3678, RFC 3810. 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_inet6.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/ktr.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/protosw.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/sysctl.h> 52 #include <sys/priv.h> 53 #include <sys/taskqueue.h> 54 #include <sys/tree.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <net/route/nhop.h> 61 #include <net/vnet.h> 62 63 #include <netinet/in.h> 64 #include <netinet/udp.h> 65 #include <netinet/in_var.h> 66 #include <netinet/ip_var.h> 67 #include <netinet/udp_var.h> 68 #include <netinet6/in6_fib.h> 69 #include <netinet6/in6_var.h> 70 #include <netinet/ip6.h> 71 #include <netinet/icmp6.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet/in_pcb.h> 74 #include <netinet/tcp_var.h> 75 #include <netinet6/nd6.h> 76 #include <netinet6/mld6_var.h> 77 #include <netinet6/scope6_var.h> 78 79 #ifndef KTR_MLD 80 #define KTR_MLD KTR_INET6 81 #endif 82 83 #ifndef __SOCKUNION_DECLARED 84 union sockunion { 85 struct sockaddr_storage ss; 86 struct sockaddr sa; 87 struct sockaddr_dl sdl; 88 struct sockaddr_in6 sin6; 89 }; 90 typedef union sockunion sockunion_t; 91 #define __SOCKUNION_DECLARED 92 #endif /* __SOCKUNION_DECLARED */ 93 94 static MALLOC_DEFINE(M_IN6MFILTER, "in6_mfilter", 95 "IPv6 multicast PCB-layer source filter"); 96 MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "IPv6 multicast group"); 97 static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "IPv6 multicast options"); 98 static MALLOC_DEFINE(M_IP6MSOURCE, "ip6_msource", 99 "IPv6 multicast MLD-layer source filter"); 100 101 RB_GENERATE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp); 102 103 /* 104 * Locking: 105 * - Lock order is: Giant, IN6_MULTI_LOCK, INP_WLOCK, 106 * IN6_MULTI_LIST_LOCK, MLD_LOCK, IF_ADDR_LOCK. 107 * - The IF_ADDR_LOCK is implicitly taken by in6m_lookup() earlier, however 108 * it can be taken by code in net/if.c also. 109 * - ip6_moptions and in6_mfilter are covered by the INP_WLOCK. 110 * 111 * struct in6_multi is covered by IN6_MULTI_LOCK. There isn't strictly 112 * any need for in6_multi itself to be virtualized -- it is bound to an ifp 113 * anyway no matter what happens. 114 */ 115 struct mtx in6_multi_list_mtx; 116 MTX_SYSINIT(in6_multi_mtx, &in6_multi_list_mtx, "in6_multi_list_mtx", MTX_DEF); 117 118 struct mtx in6_multi_free_mtx; 119 MTX_SYSINIT(in6_multi_free_mtx, &in6_multi_free_mtx, "in6_multi_free_mtx", MTX_DEF); 120 121 struct sx in6_multi_sx; 122 SX_SYSINIT(in6_multi_sx, &in6_multi_sx, "in6_multi_sx"); 123 124 static void im6f_commit(struct in6_mfilter *); 125 static int im6f_get_source(struct in6_mfilter *imf, 126 const struct sockaddr_in6 *psin, 127 struct in6_msource **); 128 static struct in6_msource * 129 im6f_graft(struct in6_mfilter *, const uint8_t, 130 const struct sockaddr_in6 *); 131 static void im6f_leave(struct in6_mfilter *); 132 static int im6f_prune(struct in6_mfilter *, const struct sockaddr_in6 *); 133 static void im6f_purge(struct in6_mfilter *); 134 static void im6f_rollback(struct in6_mfilter *); 135 static void im6f_reap(struct in6_mfilter *); 136 static struct in6_mfilter * 137 im6o_match_group(const struct ip6_moptions *, 138 const struct ifnet *, const struct sockaddr *); 139 static struct in6_msource * 140 im6o_match_source(struct in6_mfilter *, const struct sockaddr *); 141 static void im6s_merge(struct ip6_msource *ims, 142 const struct in6_msource *lims, const int rollback); 143 static int in6_getmulti(struct ifnet *, const struct in6_addr *, 144 struct in6_multi **); 145 static int in6_joingroup_locked(struct ifnet *, const struct in6_addr *, 146 struct in6_mfilter *, struct in6_multi **, int); 147 static int in6m_get_source(struct in6_multi *inm, 148 const struct in6_addr *addr, const int noalloc, 149 struct ip6_msource **pims); 150 #ifdef KTR 151 static int in6m_is_ifp_detached(const struct in6_multi *); 152 #endif 153 static int in6m_merge(struct in6_multi *, /*const*/ struct in6_mfilter *); 154 static void in6m_purge(struct in6_multi *); 155 static void in6m_reap(struct in6_multi *); 156 static struct ip6_moptions * 157 in6p_findmoptions(struct inpcb *); 158 static int in6p_get_source_filters(struct inpcb *, struct sockopt *); 159 static int in6p_join_group(struct inpcb *, struct sockopt *); 160 static int in6p_leave_group(struct inpcb *, struct sockopt *); 161 static struct ifnet * 162 in6p_lookup_mcast_ifp(const struct inpcb *, 163 const struct sockaddr_in6 *); 164 static int in6p_block_unblock_source(struct inpcb *, struct sockopt *); 165 static int in6p_set_multicast_if(struct inpcb *, struct sockopt *); 166 static int in6p_set_source_filters(struct inpcb *, struct sockopt *); 167 static int sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS); 168 169 SYSCTL_DECL(_net_inet6_ip6); /* XXX Not in any common header. */ 170 171 static SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, mcast, 172 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 173 "IPv6 multicast"); 174 175 static u_long in6_mcast_maxgrpsrc = IPV6_MAX_GROUP_SRC_FILTER; 176 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxgrpsrc, 177 CTLFLAG_RWTUN, &in6_mcast_maxgrpsrc, 0, 178 "Max source filters per group"); 179 180 static u_long in6_mcast_maxsocksrc = IPV6_MAX_SOCK_SRC_FILTER; 181 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxsocksrc, 182 CTLFLAG_RWTUN, &in6_mcast_maxsocksrc, 0, 183 "Max source filters per socket"); 184 185 /* TODO Virtualize this switch. */ 186 int in6_mcast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 187 SYSCTL_INT(_net_inet6_ip6_mcast, OID_AUTO, loop, CTLFLAG_RWTUN, 188 &in6_mcast_loop, 0, "Loopback multicast datagrams by default"); 189 190 static SYSCTL_NODE(_net_inet6_ip6_mcast, OID_AUTO, filters, 191 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip6_mcast_filters, 192 "Per-interface stack-wide source filters"); 193 194 #ifdef KTR 195 /* 196 * Inline function which wraps assertions for a valid ifp. 197 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp 198 * is detached. 199 */ 200 static int __inline 201 in6m_is_ifp_detached(const struct in6_multi *inm) 202 { 203 struct ifnet *ifp; 204 205 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 206 ifp = inm->in6m_ifma->ifma_ifp; 207 if (ifp != NULL) { 208 /* 209 * Sanity check that network-layer notion of ifp is the 210 * same as that of link-layer. 211 */ 212 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 213 } 214 215 return (ifp == NULL); 216 } 217 #endif 218 219 /* 220 * Initialize an in6_mfilter structure to a known state at t0, t1 221 * with an empty source filter list. 222 */ 223 static __inline void 224 im6f_init(struct in6_mfilter *imf, const int st0, const int st1) 225 { 226 memset(imf, 0, sizeof(struct in6_mfilter)); 227 RB_INIT(&imf->im6f_sources); 228 imf->im6f_st[0] = st0; 229 imf->im6f_st[1] = st1; 230 } 231 232 struct in6_mfilter * 233 ip6_mfilter_alloc(const int mflags, const int st0, const int st1) 234 { 235 struct in6_mfilter *imf; 236 237 imf = malloc(sizeof(*imf), M_IN6MFILTER, mflags); 238 239 if (imf != NULL) 240 im6f_init(imf, st0, st1); 241 242 return (imf); 243 } 244 245 void 246 ip6_mfilter_free(struct in6_mfilter *imf) 247 { 248 249 im6f_purge(imf); 250 free(imf, M_IN6MFILTER); 251 } 252 253 /* 254 * Find an IPv6 multicast group entry for this ip6_moptions instance 255 * which matches the specified group, and optionally an interface. 256 * Return its index into the array, or -1 if not found. 257 */ 258 static struct in6_mfilter * 259 im6o_match_group(const struct ip6_moptions *imo, const struct ifnet *ifp, 260 const struct sockaddr *group) 261 { 262 const struct sockaddr_in6 *gsin6; 263 struct in6_mfilter *imf; 264 struct in6_multi *inm; 265 266 gsin6 = (const struct sockaddr_in6 *)group; 267 268 IP6_MFILTER_FOREACH(imf, &imo->im6o_head) { 269 inm = imf->im6f_in6m; 270 if (inm == NULL) 271 continue; 272 if ((ifp == NULL || (inm->in6m_ifp == ifp)) && 273 IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, 274 &gsin6->sin6_addr)) { 275 break; 276 } 277 } 278 return (imf); 279 } 280 281 /* 282 * Find an IPv6 multicast source entry for this imo which matches 283 * the given group index for this socket, and source address. 284 * 285 * XXX TODO: The scope ID, if present in src, is stripped before 286 * any comparison. We SHOULD enforce scope/zone checks where the source 287 * filter entry has a link scope. 288 * 289 * NOTE: This does not check if the entry is in-mode, merely if 290 * it exists, which may not be the desired behaviour. 291 */ 292 static struct in6_msource * 293 im6o_match_source(struct in6_mfilter *imf, const struct sockaddr *src) 294 { 295 struct ip6_msource find; 296 struct ip6_msource *ims; 297 const sockunion_t *psa; 298 299 KASSERT(src->sa_family == AF_INET6, ("%s: !AF_INET6", __func__)); 300 301 psa = (const sockunion_t *)src; 302 find.im6s_addr = psa->sin6.sin6_addr; 303 in6_clearscope(&find.im6s_addr); /* XXX */ 304 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 305 306 return ((struct in6_msource *)ims); 307 } 308 309 /* 310 * Perform filtering for multicast datagrams on a socket by group and source. 311 * 312 * Returns 0 if a datagram should be allowed through, or various error codes 313 * if the socket was not a member of the group, or the source was muted, etc. 314 */ 315 int 316 im6o_mc_filter(const struct ip6_moptions *imo, const struct ifnet *ifp, 317 const struct sockaddr *group, const struct sockaddr *src) 318 { 319 struct in6_mfilter *imf; 320 struct in6_msource *ims; 321 int mode; 322 323 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 324 325 imf = im6o_match_group(imo, ifp, group); 326 if (imf == NULL) 327 return (MCAST_NOTGMEMBER); 328 329 /* 330 * Check if the source was included in an (S,G) join. 331 * Allow reception on exclusive memberships by default, 332 * reject reception on inclusive memberships by default. 333 * Exclude source only if an in-mode exclude filter exists. 334 * Include source only if an in-mode include filter exists. 335 * NOTE: We are comparing group state here at MLD t1 (now) 336 * with socket-layer t0 (since last downcall). 337 */ 338 mode = imf->im6f_st[1]; 339 ims = im6o_match_source(imf, src); 340 341 if ((ims == NULL && mode == MCAST_INCLUDE) || 342 (ims != NULL && ims->im6sl_st[0] != mode)) 343 return (MCAST_NOTSMEMBER); 344 345 return (MCAST_PASS); 346 } 347 348 /* 349 * Find and return a reference to an in6_multi record for (ifp, group), 350 * and bump its reference count. 351 * If one does not exist, try to allocate it, and update link-layer multicast 352 * filters on ifp to listen for group. 353 * Assumes the IN6_MULTI lock is held across the call. 354 * Return 0 if successful, otherwise return an appropriate error code. 355 */ 356 static int 357 in6_getmulti(struct ifnet *ifp, const struct in6_addr *group, 358 struct in6_multi **pinm) 359 { 360 struct epoch_tracker et; 361 struct sockaddr_in6 gsin6; 362 struct ifmultiaddr *ifma; 363 struct in6_multi *inm; 364 int error; 365 366 error = 0; 367 368 /* 369 * XXX: Accesses to ifma_protospec must be covered by IF_ADDR_LOCK; 370 * if_addmulti() takes this mutex itself, so we must drop and 371 * re-acquire around the call. 372 */ 373 IN6_MULTI_LOCK_ASSERT(); 374 IN6_MULTI_LIST_LOCK(); 375 IF_ADDR_WLOCK(ifp); 376 NET_EPOCH_ENTER(et); 377 /* 378 * Does ifp support IPv6 multicasts? 379 */ 380 if (ifp->if_afdata[AF_INET6] == NULL) 381 error = ENODEV; 382 else 383 inm = in6m_lookup_locked(ifp, group); 384 NET_EPOCH_EXIT(et); 385 386 if (error != 0) 387 goto out_locked; 388 389 if (inm != NULL) { 390 /* 391 * If we already joined this group, just bump the 392 * refcount and return it. 393 */ 394 KASSERT(inm->in6m_refcount >= 1, 395 ("%s: bad refcount %d", __func__, inm->in6m_refcount)); 396 in6m_acquire_locked(inm); 397 *pinm = inm; 398 goto out_locked; 399 } 400 401 memset(&gsin6, 0, sizeof(gsin6)); 402 gsin6.sin6_family = AF_INET6; 403 gsin6.sin6_len = sizeof(struct sockaddr_in6); 404 gsin6.sin6_addr = *group; 405 406 /* 407 * Check if a link-layer group is already associated 408 * with this network-layer group on the given ifnet. 409 */ 410 IN6_MULTI_LIST_UNLOCK(); 411 IF_ADDR_WUNLOCK(ifp); 412 error = if_addmulti(ifp, (struct sockaddr *)&gsin6, &ifma); 413 if (error != 0) 414 return (error); 415 IN6_MULTI_LIST_LOCK(); 416 IF_ADDR_WLOCK(ifp); 417 418 /* 419 * If something other than netinet6 is occupying the link-layer 420 * group, print a meaningful error message and back out of 421 * the allocation. 422 * Otherwise, bump the refcount on the existing network-layer 423 * group association and return it. 424 */ 425 if (ifma->ifma_protospec != NULL) { 426 inm = (struct in6_multi *)ifma->ifma_protospec; 427 #ifdef INVARIANTS 428 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", 429 __func__)); 430 KASSERT(ifma->ifma_addr->sa_family == AF_INET6, 431 ("%s: ifma not AF_INET6", __func__)); 432 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); 433 if (inm->in6m_ifma != ifma || inm->in6m_ifp != ifp || 434 !IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, group)) 435 panic("%s: ifma %p is inconsistent with %p (%p)", 436 __func__, ifma, inm, group); 437 #endif 438 in6m_acquire_locked(inm); 439 *pinm = inm; 440 goto out_locked; 441 } 442 443 IF_ADDR_WLOCK_ASSERT(ifp); 444 445 /* 446 * A new in6_multi record is needed; allocate and initialize it. 447 * We DO NOT perform an MLD join as the in6_ layer may need to 448 * push an initial source list down to MLD to support SSM. 449 * 450 * The initial source filter state is INCLUDE, {} as per the RFC. 451 * Pending state-changes per group are subject to a bounds check. 452 */ 453 inm = malloc(sizeof(*inm), M_IP6MADDR, M_NOWAIT | M_ZERO); 454 if (inm == NULL) { 455 IN6_MULTI_LIST_UNLOCK(); 456 IF_ADDR_WUNLOCK(ifp); 457 if_delmulti_ifma(ifma); 458 return (ENOMEM); 459 } 460 inm->in6m_addr = *group; 461 inm->in6m_ifp = ifp; 462 inm->in6m_mli = MLD_IFINFO(ifp); 463 inm->in6m_ifma = ifma; 464 inm->in6m_refcount = 1; 465 inm->in6m_state = MLD_NOT_MEMBER; 466 mbufq_init(&inm->in6m_scq, MLD_MAX_STATE_CHANGES); 467 468 inm->in6m_st[0].iss_fmode = MCAST_UNDEFINED; 469 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 470 RB_INIT(&inm->in6m_srcs); 471 472 ifma->ifma_protospec = inm; 473 *pinm = inm; 474 475 out_locked: 476 IN6_MULTI_LIST_UNLOCK(); 477 IF_ADDR_WUNLOCK(ifp); 478 return (error); 479 } 480 481 /* 482 * Drop a reference to an in6_multi record. 483 * 484 * If the refcount drops to 0, free the in6_multi record and 485 * delete the underlying link-layer membership. 486 */ 487 static void 488 in6m_release(struct in6_multi *inm) 489 { 490 struct ifmultiaddr *ifma; 491 struct ifnet *ifp; 492 493 CTR2(KTR_MLD, "%s: refcount is %d", __func__, inm->in6m_refcount); 494 495 MPASS(inm->in6m_refcount == 0); 496 CTR2(KTR_MLD, "%s: freeing inm %p", __func__, inm); 497 498 ifma = inm->in6m_ifma; 499 ifp = inm->in6m_ifp; 500 MPASS(ifma->ifma_llifma == NULL); 501 502 /* XXX this access is not covered by IF_ADDR_LOCK */ 503 CTR2(KTR_MLD, "%s: purging ifma %p", __func__, ifma); 504 KASSERT(ifma->ifma_protospec == NULL, 505 ("%s: ifma_protospec != NULL", __func__)); 506 if (ifp == NULL) 507 ifp = ifma->ifma_ifp; 508 509 if (ifp != NULL) { 510 CURVNET_SET(ifp->if_vnet); 511 in6m_purge(inm); 512 free(inm, M_IP6MADDR); 513 if_delmulti_ifma_flags(ifma, 1); 514 CURVNET_RESTORE(); 515 if_rele(ifp); 516 } else { 517 in6m_purge(inm); 518 free(inm, M_IP6MADDR); 519 if_delmulti_ifma_flags(ifma, 1); 520 } 521 } 522 523 /* 524 * Interface detach can happen in a taskqueue thread context, so we must use a 525 * dedicated thread to avoid deadlocks when draining in6m_release tasks. 526 */ 527 TASKQUEUE_DEFINE_THREAD(in6m_free); 528 static struct in6_multi_head in6m_free_list = SLIST_HEAD_INITIALIZER(); 529 static void in6m_release_task(void *arg __unused, int pending __unused); 530 static struct task in6m_free_task = TASK_INITIALIZER(0, in6m_release_task, NULL); 531 532 void 533 in6m_release_list_deferred(struct in6_multi_head *inmh) 534 { 535 if (SLIST_EMPTY(inmh)) 536 return; 537 mtx_lock(&in6_multi_free_mtx); 538 SLIST_CONCAT(&in6m_free_list, inmh, in6_multi, in6m_nrele); 539 mtx_unlock(&in6_multi_free_mtx); 540 taskqueue_enqueue(taskqueue_in6m_free, &in6m_free_task); 541 } 542 543 void 544 in6m_release_wait(void *arg __unused) 545 { 546 547 /* 548 * Make sure all pending multicast addresses are freed before 549 * the VNET or network device is destroyed: 550 */ 551 taskqueue_drain_all(taskqueue_in6m_free); 552 } 553 #ifdef VIMAGE 554 /* XXX-BZ FIXME, see D24914. */ 555 VNET_SYSUNINIT(in6m_release_wait, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, in6m_release_wait, NULL); 556 #endif 557 558 void 559 in6m_disconnect_locked(struct in6_multi_head *inmh, struct in6_multi *inm) 560 { 561 struct ifnet *ifp; 562 struct ifaddr *ifa; 563 struct in6_ifaddr *ifa6; 564 struct in6_multi_mship *imm, *imm_tmp; 565 struct ifmultiaddr *ifma, *ll_ifma; 566 567 IN6_MULTI_LIST_LOCK_ASSERT(); 568 569 ifp = inm->in6m_ifp; 570 if (ifp == NULL) 571 return; /* already called */ 572 573 inm->in6m_ifp = NULL; 574 IF_ADDR_WLOCK_ASSERT(ifp); 575 ifma = inm->in6m_ifma; 576 if (ifma == NULL) 577 return; 578 579 if_ref(ifp); 580 if (ifma->ifma_flags & IFMA_F_ENQUEUED) { 581 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 582 ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 583 } 584 MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname); 585 if ((ll_ifma = ifma->ifma_llifma) != NULL) { 586 MPASS(ifma != ll_ifma); 587 ifma->ifma_llifma = NULL; 588 MPASS(ll_ifma->ifma_llifma == NULL); 589 MPASS(ll_ifma->ifma_ifp == ifp); 590 if (--ll_ifma->ifma_refcount == 0) { 591 if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) { 592 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link); 593 ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 594 } 595 MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname); 596 if_freemulti(ll_ifma); 597 } 598 } 599 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 600 if (ifa->ifa_addr->sa_family != AF_INET6) 601 continue; 602 ifa6 = (void *)ifa; 603 LIST_FOREACH_SAFE(imm, &ifa6->ia6_memberships, 604 i6mm_chain, imm_tmp) { 605 if (inm == imm->i6mm_maddr) { 606 LIST_REMOVE(imm, i6mm_chain); 607 free(imm, M_IP6MADDR); 608 in6m_rele_locked(inmh, inm); 609 } 610 } 611 } 612 } 613 614 static void 615 in6m_release_task(void *arg __unused, int pending __unused) 616 { 617 struct in6_multi_head in6m_free_tmp; 618 struct in6_multi *inm, *tinm; 619 620 SLIST_INIT(&in6m_free_tmp); 621 mtx_lock(&in6_multi_free_mtx); 622 SLIST_CONCAT(&in6m_free_tmp, &in6m_free_list, in6_multi, in6m_nrele); 623 mtx_unlock(&in6_multi_free_mtx); 624 IN6_MULTI_LOCK(); 625 SLIST_FOREACH_SAFE(inm, &in6m_free_tmp, in6m_nrele, tinm) { 626 SLIST_REMOVE_HEAD(&in6m_free_tmp, in6m_nrele); 627 in6m_release(inm); 628 } 629 IN6_MULTI_UNLOCK(); 630 } 631 632 /* 633 * Clear recorded source entries for a group. 634 * Used by the MLD code. Caller must hold the IN6_MULTI lock. 635 * FIXME: Should reap. 636 */ 637 void 638 in6m_clear_recorded(struct in6_multi *inm) 639 { 640 struct ip6_msource *ims; 641 642 IN6_MULTI_LIST_LOCK_ASSERT(); 643 644 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 645 if (ims->im6s_stp) { 646 ims->im6s_stp = 0; 647 --inm->in6m_st[1].iss_rec; 648 } 649 } 650 KASSERT(inm->in6m_st[1].iss_rec == 0, 651 ("%s: iss_rec %d not 0", __func__, inm->in6m_st[1].iss_rec)); 652 } 653 654 /* 655 * Record a source as pending for a Source-Group MLDv2 query. 656 * This lives here as it modifies the shared tree. 657 * 658 * inm is the group descriptor. 659 * naddr is the address of the source to record in network-byte order. 660 * 661 * If the net.inet6.mld.sgalloc sysctl is non-zero, we will 662 * lazy-allocate a source node in response to an SG query. 663 * Otherwise, no allocation is performed. This saves some memory 664 * with the trade-off that the source will not be reported to the 665 * router if joined in the window between the query response and 666 * the group actually being joined on the local host. 667 * 668 * VIMAGE: XXX: Currently the mld_sgalloc feature has been removed. 669 * This turns off the allocation of a recorded source entry if 670 * the group has not been joined. 671 * 672 * Return 0 if the source didn't exist or was already marked as recorded. 673 * Return 1 if the source was marked as recorded by this function. 674 * Return <0 if any error occurred (negated errno code). 675 */ 676 int 677 in6m_record_source(struct in6_multi *inm, const struct in6_addr *addr) 678 { 679 struct ip6_msource find; 680 struct ip6_msource *ims, *nims; 681 682 IN6_MULTI_LIST_LOCK_ASSERT(); 683 684 find.im6s_addr = *addr; 685 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 686 if (ims && ims->im6s_stp) 687 return (0); 688 if (ims == NULL) { 689 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 690 return (-ENOSPC); 691 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 692 M_NOWAIT | M_ZERO); 693 if (nims == NULL) 694 return (-ENOMEM); 695 nims->im6s_addr = find.im6s_addr; 696 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 697 ++inm->in6m_nsrc; 698 ims = nims; 699 } 700 701 /* 702 * Mark the source as recorded and update the recorded 703 * source count. 704 */ 705 ++ims->im6s_stp; 706 ++inm->in6m_st[1].iss_rec; 707 708 return (1); 709 } 710 711 /* 712 * Return a pointer to an in6_msource owned by an in6_mfilter, 713 * given its source address. 714 * Lazy-allocate if needed. If this is a new entry its filter state is 715 * undefined at t0. 716 * 717 * imf is the filter set being modified. 718 * addr is the source address. 719 * 720 * SMPng: May be called with locks held; malloc must not block. 721 */ 722 static int 723 im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin, 724 struct in6_msource **plims) 725 { 726 struct ip6_msource find; 727 struct ip6_msource *ims, *nims; 728 struct in6_msource *lims; 729 int error; 730 731 error = 0; 732 ims = NULL; 733 lims = NULL; 734 735 find.im6s_addr = psin->sin6_addr; 736 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 737 lims = (struct in6_msource *)ims; 738 if (lims == NULL) { 739 if (imf->im6f_nsrc == in6_mcast_maxsocksrc) 740 return (ENOSPC); 741 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 742 M_NOWAIT | M_ZERO); 743 if (nims == NULL) 744 return (ENOMEM); 745 lims = (struct in6_msource *)nims; 746 lims->im6s_addr = find.im6s_addr; 747 lims->im6sl_st[0] = MCAST_UNDEFINED; 748 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 749 ++imf->im6f_nsrc; 750 } 751 752 *plims = lims; 753 754 return (error); 755 } 756 757 /* 758 * Graft a source entry into an existing socket-layer filter set, 759 * maintaining any required invariants and checking allocations. 760 * 761 * The source is marked as being in the new filter mode at t1. 762 * 763 * Return the pointer to the new node, otherwise return NULL. 764 */ 765 static struct in6_msource * 766 im6f_graft(struct in6_mfilter *imf, const uint8_t st1, 767 const struct sockaddr_in6 *psin) 768 { 769 struct ip6_msource *nims; 770 struct in6_msource *lims; 771 772 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 773 M_NOWAIT | M_ZERO); 774 if (nims == NULL) 775 return (NULL); 776 lims = (struct in6_msource *)nims; 777 lims->im6s_addr = psin->sin6_addr; 778 lims->im6sl_st[0] = MCAST_UNDEFINED; 779 lims->im6sl_st[1] = st1; 780 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 781 ++imf->im6f_nsrc; 782 783 return (lims); 784 } 785 786 /* 787 * Prune a source entry from an existing socket-layer filter set, 788 * maintaining any required invariants and checking allocations. 789 * 790 * The source is marked as being left at t1, it is not freed. 791 * 792 * Return 0 if no error occurred, otherwise return an errno value. 793 */ 794 static int 795 im6f_prune(struct in6_mfilter *imf, const struct sockaddr_in6 *psin) 796 { 797 struct ip6_msource find; 798 struct ip6_msource *ims; 799 struct in6_msource *lims; 800 801 find.im6s_addr = psin->sin6_addr; 802 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 803 if (ims == NULL) 804 return (ENOENT); 805 lims = (struct in6_msource *)ims; 806 lims->im6sl_st[1] = MCAST_UNDEFINED; 807 return (0); 808 } 809 810 /* 811 * Revert socket-layer filter set deltas at t1 to t0 state. 812 */ 813 static void 814 im6f_rollback(struct in6_mfilter *imf) 815 { 816 struct ip6_msource *ims, *tims; 817 struct in6_msource *lims; 818 819 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 820 lims = (struct in6_msource *)ims; 821 if (lims->im6sl_st[0] == lims->im6sl_st[1]) { 822 /* no change at t1 */ 823 continue; 824 } else if (lims->im6sl_st[0] != MCAST_UNDEFINED) { 825 /* revert change to existing source at t1 */ 826 lims->im6sl_st[1] = lims->im6sl_st[0]; 827 } else { 828 /* revert source added t1 */ 829 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 830 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 831 free(ims, M_IN6MFILTER); 832 imf->im6f_nsrc--; 833 } 834 } 835 imf->im6f_st[1] = imf->im6f_st[0]; 836 } 837 838 /* 839 * Mark socket-layer filter set as INCLUDE {} at t1. 840 */ 841 static void 842 im6f_leave(struct in6_mfilter *imf) 843 { 844 struct ip6_msource *ims; 845 struct in6_msource *lims; 846 847 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 848 lims = (struct in6_msource *)ims; 849 lims->im6sl_st[1] = MCAST_UNDEFINED; 850 } 851 imf->im6f_st[1] = MCAST_INCLUDE; 852 } 853 854 /* 855 * Mark socket-layer filter set deltas as committed. 856 */ 857 static void 858 im6f_commit(struct in6_mfilter *imf) 859 { 860 struct ip6_msource *ims; 861 struct in6_msource *lims; 862 863 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 864 lims = (struct in6_msource *)ims; 865 lims->im6sl_st[0] = lims->im6sl_st[1]; 866 } 867 imf->im6f_st[0] = imf->im6f_st[1]; 868 } 869 870 /* 871 * Reap unreferenced sources from socket-layer filter set. 872 */ 873 static void 874 im6f_reap(struct in6_mfilter *imf) 875 { 876 struct ip6_msource *ims, *tims; 877 struct in6_msource *lims; 878 879 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 880 lims = (struct in6_msource *)ims; 881 if ((lims->im6sl_st[0] == MCAST_UNDEFINED) && 882 (lims->im6sl_st[1] == MCAST_UNDEFINED)) { 883 CTR2(KTR_MLD, "%s: free lims %p", __func__, ims); 884 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 885 free(ims, M_IN6MFILTER); 886 imf->im6f_nsrc--; 887 } 888 } 889 } 890 891 /* 892 * Purge socket-layer filter set. 893 */ 894 static void 895 im6f_purge(struct in6_mfilter *imf) 896 { 897 struct ip6_msource *ims, *tims; 898 899 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 900 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 901 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 902 free(ims, M_IN6MFILTER); 903 imf->im6f_nsrc--; 904 } 905 imf->im6f_st[0] = imf->im6f_st[1] = MCAST_UNDEFINED; 906 KASSERT(RB_EMPTY(&imf->im6f_sources), 907 ("%s: im6f_sources not empty", __func__)); 908 } 909 910 /* 911 * Look up a source filter entry for a multicast group. 912 * 913 * inm is the group descriptor to work with. 914 * addr is the IPv6 address to look up. 915 * noalloc may be non-zero to suppress allocation of sources. 916 * *pims will be set to the address of the retrieved or allocated source. 917 * 918 * SMPng: NOTE: may be called with locks held. 919 * Return 0 if successful, otherwise return a non-zero error code. 920 */ 921 static int 922 in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr, 923 const int noalloc, struct ip6_msource **pims) 924 { 925 struct ip6_msource find; 926 struct ip6_msource *ims, *nims; 927 #ifdef KTR 928 char ip6tbuf[INET6_ADDRSTRLEN]; 929 #endif 930 931 find.im6s_addr = *addr; 932 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 933 if (ims == NULL && !noalloc) { 934 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 935 return (ENOSPC); 936 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 937 M_NOWAIT | M_ZERO); 938 if (nims == NULL) 939 return (ENOMEM); 940 nims->im6s_addr = *addr; 941 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 942 ++inm->in6m_nsrc; 943 ims = nims; 944 CTR3(KTR_MLD, "%s: allocated %s as %p", __func__, 945 ip6_sprintf(ip6tbuf, addr), ims); 946 } 947 948 *pims = ims; 949 return (0); 950 } 951 952 /* 953 * Merge socket-layer source into MLD-layer source. 954 * If rollback is non-zero, perform the inverse of the merge. 955 */ 956 static void 957 im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims, 958 const int rollback) 959 { 960 int n = rollback ? -1 : 1; 961 #ifdef KTR 962 char ip6tbuf[INET6_ADDRSTRLEN]; 963 964 ip6_sprintf(ip6tbuf, &lims->im6s_addr); 965 #endif 966 967 if (lims->im6sl_st[0] == MCAST_EXCLUDE) { 968 CTR3(KTR_MLD, "%s: t1 ex -= %d on %s", __func__, n, ip6tbuf); 969 ims->im6s_st[1].ex -= n; 970 } else if (lims->im6sl_st[0] == MCAST_INCLUDE) { 971 CTR3(KTR_MLD, "%s: t1 in -= %d on %s", __func__, n, ip6tbuf); 972 ims->im6s_st[1].in -= n; 973 } 974 975 if (lims->im6sl_st[1] == MCAST_EXCLUDE) { 976 CTR3(KTR_MLD, "%s: t1 ex += %d on %s", __func__, n, ip6tbuf); 977 ims->im6s_st[1].ex += n; 978 } else if (lims->im6sl_st[1] == MCAST_INCLUDE) { 979 CTR3(KTR_MLD, "%s: t1 in += %d on %s", __func__, n, ip6tbuf); 980 ims->im6s_st[1].in += n; 981 } 982 } 983 984 /* 985 * Atomically update the global in6_multi state, when a membership's 986 * filter list is being updated in any way. 987 * 988 * imf is the per-inpcb-membership group filter pointer. 989 * A fake imf may be passed for in-kernel consumers. 990 * 991 * XXX This is a candidate for a set-symmetric-difference style loop 992 * which would eliminate the repeated lookup from root of ims nodes, 993 * as they share the same key space. 994 * 995 * If any error occurred this function will back out of refcounts 996 * and return a non-zero value. 997 */ 998 static int 999 in6m_merge(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1000 { 1001 struct ip6_msource *ims, *nims; 1002 struct in6_msource *lims; 1003 int schanged, error; 1004 int nsrc0, nsrc1; 1005 1006 schanged = 0; 1007 error = 0; 1008 nsrc1 = nsrc0 = 0; 1009 IN6_MULTI_LIST_LOCK_ASSERT(); 1010 1011 /* 1012 * Update the source filters first, as this may fail. 1013 * Maintain count of in-mode filters at t0, t1. These are 1014 * used to work out if we transition into ASM mode or not. 1015 * Maintain a count of source filters whose state was 1016 * actually modified by this operation. 1017 */ 1018 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 1019 lims = (struct in6_msource *)ims; 1020 if (lims->im6sl_st[0] == imf->im6f_st[0]) nsrc0++; 1021 if (lims->im6sl_st[1] == imf->im6f_st[1]) nsrc1++; 1022 if (lims->im6sl_st[0] == lims->im6sl_st[1]) continue; 1023 error = in6m_get_source(inm, &lims->im6s_addr, 0, &nims); 1024 ++schanged; 1025 if (error) 1026 break; 1027 im6s_merge(nims, lims, 0); 1028 } 1029 if (error) { 1030 struct ip6_msource *bims; 1031 1032 RB_FOREACH_REVERSE_FROM(ims, ip6_msource_tree, nims) { 1033 lims = (struct in6_msource *)ims; 1034 if (lims->im6sl_st[0] == lims->im6sl_st[1]) 1035 continue; 1036 (void)in6m_get_source(inm, &lims->im6s_addr, 1, &bims); 1037 if (bims == NULL) 1038 continue; 1039 im6s_merge(bims, lims, 1); 1040 } 1041 goto out_reap; 1042 } 1043 1044 CTR3(KTR_MLD, "%s: imf filters in-mode: %d at t0, %d at t1", 1045 __func__, nsrc0, nsrc1); 1046 1047 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ 1048 if (imf->im6f_st[0] == imf->im6f_st[1] && 1049 imf->im6f_st[1] == MCAST_INCLUDE) { 1050 if (nsrc1 == 0) { 1051 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 1052 --inm->in6m_st[1].iss_in; 1053 } 1054 } 1055 1056 /* Handle filter mode transition on socket. */ 1057 if (imf->im6f_st[0] != imf->im6f_st[1]) { 1058 CTR3(KTR_MLD, "%s: imf transition %d to %d", 1059 __func__, imf->im6f_st[0], imf->im6f_st[1]); 1060 1061 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 1062 CTR1(KTR_MLD, "%s: --ex on inm at t1", __func__); 1063 --inm->in6m_st[1].iss_ex; 1064 } else if (imf->im6f_st[0] == MCAST_INCLUDE) { 1065 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 1066 --inm->in6m_st[1].iss_in; 1067 } 1068 1069 if (imf->im6f_st[1] == MCAST_EXCLUDE) { 1070 CTR1(KTR_MLD, "%s: ex++ on inm at t1", __func__); 1071 inm->in6m_st[1].iss_ex++; 1072 } else if (imf->im6f_st[1] == MCAST_INCLUDE && nsrc1 > 0) { 1073 CTR1(KTR_MLD, "%s: in++ on inm at t1", __func__); 1074 inm->in6m_st[1].iss_in++; 1075 } 1076 } 1077 1078 /* 1079 * Track inm filter state in terms of listener counts. 1080 * If there are any exclusive listeners, stack-wide 1081 * membership is exclusive. 1082 * Otherwise, if only inclusive listeners, stack-wide is inclusive. 1083 * If no listeners remain, state is undefined at t1, 1084 * and the MLD lifecycle for this group should finish. 1085 */ 1086 if (inm->in6m_st[1].iss_ex > 0) { 1087 CTR1(KTR_MLD, "%s: transition to EX", __func__); 1088 inm->in6m_st[1].iss_fmode = MCAST_EXCLUDE; 1089 } else if (inm->in6m_st[1].iss_in > 0) { 1090 CTR1(KTR_MLD, "%s: transition to IN", __func__); 1091 inm->in6m_st[1].iss_fmode = MCAST_INCLUDE; 1092 } else { 1093 CTR1(KTR_MLD, "%s: transition to UNDEF", __func__); 1094 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 1095 } 1096 1097 /* Decrement ASM listener count on transition out of ASM mode. */ 1098 if (imf->im6f_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { 1099 if ((imf->im6f_st[1] != MCAST_EXCLUDE) || 1100 (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) { 1101 CTR1(KTR_MLD, "%s: --asm on inm at t1", __func__); 1102 --inm->in6m_st[1].iss_asm; 1103 } 1104 } 1105 1106 /* Increment ASM listener count on transition to ASM mode. */ 1107 if (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { 1108 CTR1(KTR_MLD, "%s: asm++ on inm at t1", __func__); 1109 inm->in6m_st[1].iss_asm++; 1110 } 1111 1112 CTR3(KTR_MLD, "%s: merged imf %p to inm %p", __func__, imf, inm); 1113 in6m_print(inm); 1114 1115 out_reap: 1116 if (schanged > 0) { 1117 CTR1(KTR_MLD, "%s: sources changed; reaping", __func__); 1118 in6m_reap(inm); 1119 } 1120 return (error); 1121 } 1122 1123 /* 1124 * Mark an in6_multi's filter set deltas as committed. 1125 * Called by MLD after a state change has been enqueued. 1126 */ 1127 void 1128 in6m_commit(struct in6_multi *inm) 1129 { 1130 struct ip6_msource *ims; 1131 1132 CTR2(KTR_MLD, "%s: commit inm %p", __func__, inm); 1133 CTR1(KTR_MLD, "%s: pre commit:", __func__); 1134 in6m_print(inm); 1135 1136 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 1137 ims->im6s_st[0] = ims->im6s_st[1]; 1138 } 1139 inm->in6m_st[0] = inm->in6m_st[1]; 1140 } 1141 1142 /* 1143 * Reap unreferenced nodes from an in6_multi's filter set. 1144 */ 1145 static void 1146 in6m_reap(struct in6_multi *inm) 1147 { 1148 struct ip6_msource *ims, *tims; 1149 1150 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1151 if (ims->im6s_st[0].ex > 0 || ims->im6s_st[0].in > 0 || 1152 ims->im6s_st[1].ex > 0 || ims->im6s_st[1].in > 0 || 1153 ims->im6s_stp != 0) 1154 continue; 1155 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1156 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1157 free(ims, M_IP6MSOURCE); 1158 inm->in6m_nsrc--; 1159 } 1160 } 1161 1162 /* 1163 * Purge all source nodes from an in6_multi's filter set. 1164 */ 1165 static void 1166 in6m_purge(struct in6_multi *inm) 1167 { 1168 struct ip6_msource *ims, *tims; 1169 1170 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1171 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1172 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1173 free(ims, M_IP6MSOURCE); 1174 inm->in6m_nsrc--; 1175 } 1176 /* Free state-change requests that might be queued. */ 1177 mbufq_drain(&inm->in6m_scq); 1178 } 1179 1180 /* 1181 * Join a multicast address w/o sources. 1182 * KAME compatibility entry point. 1183 * 1184 * SMPng: Assume no mc locks held by caller. 1185 */ 1186 int 1187 in6_joingroup(struct ifnet *ifp, const struct in6_addr *mcaddr, 1188 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1189 const int delay) 1190 { 1191 int error; 1192 1193 IN6_MULTI_LOCK(); 1194 error = in6_joingroup_locked(ifp, mcaddr, NULL, pinm, delay); 1195 IN6_MULTI_UNLOCK(); 1196 return (error); 1197 } 1198 1199 /* 1200 * Join a multicast group; real entry point. 1201 * 1202 * Only preserves atomicity at inm level. 1203 * NOTE: imf argument cannot be const due to sys/tree.h limitations. 1204 * 1205 * If the MLD downcall fails, the group is not joined, and an error 1206 * code is returned. 1207 */ 1208 static int 1209 in6_joingroup_locked(struct ifnet *ifp, const struct in6_addr *mcaddr, 1210 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1211 const int delay) 1212 { 1213 struct in6_multi_head inmh; 1214 struct in6_mfilter timf; 1215 struct in6_multi *inm; 1216 struct ifmultiaddr *ifma; 1217 int error; 1218 #ifdef KTR 1219 char ip6tbuf[INET6_ADDRSTRLEN]; 1220 #endif 1221 1222 /* 1223 * Sanity: Check scope zone ID was set for ifp, if and 1224 * only if group is scoped to an interface. 1225 */ 1226 KASSERT(IN6_IS_ADDR_MULTICAST(mcaddr), 1227 ("%s: not a multicast address", __func__)); 1228 if (IN6_IS_ADDR_MC_LINKLOCAL(mcaddr) || 1229 IN6_IS_ADDR_MC_INTFACELOCAL(mcaddr)) { 1230 KASSERT(mcaddr->s6_addr16[1] != 0, 1231 ("%s: scope zone ID not set", __func__)); 1232 } 1233 1234 IN6_MULTI_LOCK_ASSERT(); 1235 IN6_MULTI_LIST_UNLOCK_ASSERT(); 1236 1237 CTR4(KTR_MLD, "%s: join %s on %p(%s))", __func__, 1238 ip6_sprintf(ip6tbuf, mcaddr), ifp, if_name(ifp)); 1239 1240 error = 0; 1241 inm = NULL; 1242 1243 /* 1244 * If no imf was specified (i.e. kernel consumer), 1245 * fake one up and assume it is an ASM join. 1246 */ 1247 if (imf == NULL) { 1248 im6f_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); 1249 imf = &timf; 1250 } 1251 error = in6_getmulti(ifp, mcaddr, &inm); 1252 if (error) { 1253 CTR1(KTR_MLD, "%s: in6_getmulti() failure", __func__); 1254 return (error); 1255 } 1256 1257 IN6_MULTI_LIST_LOCK(); 1258 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1259 error = in6m_merge(inm, imf); 1260 if (error) { 1261 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1262 goto out_in6m_release; 1263 } 1264 1265 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1266 error = mld_change_state(inm, delay); 1267 if (error) { 1268 CTR1(KTR_MLD, "%s: failed to update source", __func__); 1269 goto out_in6m_release; 1270 } 1271 1272 out_in6m_release: 1273 SLIST_INIT(&inmh); 1274 if (error) { 1275 struct epoch_tracker et; 1276 1277 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1278 IF_ADDR_WLOCK(ifp); 1279 NET_EPOCH_ENTER(et); 1280 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1281 if (ifma->ifma_protospec == inm) { 1282 ifma->ifma_protospec = NULL; 1283 break; 1284 } 1285 } 1286 in6m_disconnect_locked(&inmh, inm); 1287 in6m_rele_locked(&inmh, inm); 1288 NET_EPOCH_EXIT(et); 1289 IF_ADDR_WUNLOCK(ifp); 1290 } else { 1291 *pinm = inm; 1292 } 1293 IN6_MULTI_LIST_UNLOCK(); 1294 in6m_release_list_deferred(&inmh); 1295 return (error); 1296 } 1297 1298 /* 1299 * Leave a multicast group; unlocked entry point. 1300 */ 1301 int 1302 in6_leavegroup(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1303 { 1304 int error; 1305 1306 IN6_MULTI_LOCK(); 1307 error = in6_leavegroup_locked(inm, imf); 1308 IN6_MULTI_UNLOCK(); 1309 return (error); 1310 } 1311 1312 /* 1313 * Leave a multicast group; real entry point. 1314 * All source filters will be expunged. 1315 * 1316 * Only preserves atomicity at inm level. 1317 * 1318 * Holding the write lock for the INP which contains imf 1319 * is highly advisable. We can't assert for it as imf does not 1320 * contain a back-pointer to the owning inp. 1321 * 1322 * Note: This is not the same as in6m_release(*) as this function also 1323 * makes a state change downcall into MLD. 1324 */ 1325 int 1326 in6_leavegroup_locked(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1327 { 1328 struct in6_multi_head inmh; 1329 struct in6_mfilter timf; 1330 struct ifnet *ifp; 1331 int error; 1332 #ifdef KTR 1333 char ip6tbuf[INET6_ADDRSTRLEN]; 1334 #endif 1335 1336 error = 0; 1337 1338 IN6_MULTI_LOCK_ASSERT(); 1339 1340 CTR5(KTR_MLD, "%s: leave inm %p, %s/%s, imf %p", __func__, 1341 inm, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1342 (in6m_is_ifp_detached(inm) ? "null" : if_name(inm->in6m_ifp)), 1343 imf); 1344 1345 /* 1346 * If no imf was specified (i.e. kernel consumer), 1347 * fake one up and assume it is an ASM join. 1348 */ 1349 if (imf == NULL) { 1350 im6f_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); 1351 imf = &timf; 1352 } 1353 1354 /* 1355 * Begin state merge transaction at MLD layer. 1356 * 1357 * As this particular invocation should not cause any memory 1358 * to be allocated, and there is no opportunity to roll back 1359 * the transaction, it MUST NOT fail. 1360 */ 1361 1362 ifp = inm->in6m_ifp; 1363 IN6_MULTI_LIST_LOCK(); 1364 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1365 error = in6m_merge(inm, imf); 1366 KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); 1367 1368 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1369 error = 0; 1370 if (ifp) 1371 error = mld_change_state(inm, 0); 1372 if (error) 1373 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1374 1375 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1376 if (ifp) 1377 IF_ADDR_WLOCK(ifp); 1378 1379 SLIST_INIT(&inmh); 1380 if (inm->in6m_refcount == 1) 1381 in6m_disconnect_locked(&inmh, inm); 1382 in6m_rele_locked(&inmh, inm); 1383 if (ifp) 1384 IF_ADDR_WUNLOCK(ifp); 1385 IN6_MULTI_LIST_UNLOCK(); 1386 in6m_release_list_deferred(&inmh); 1387 return (error); 1388 } 1389 1390 /* 1391 * Block or unblock an ASM multicast source on an inpcb. 1392 * This implements the delta-based API described in RFC 3678. 1393 * 1394 * The delta-based API applies only to exclusive-mode memberships. 1395 * An MLD downcall will be performed. 1396 * 1397 * SMPng: NOTE: Must take Giant as a join may create a new ifma. 1398 * 1399 * Return 0 if successful, otherwise return an appropriate error code. 1400 */ 1401 static int 1402 in6p_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) 1403 { 1404 struct group_source_req gsr; 1405 sockunion_t *gsa, *ssa; 1406 struct ifnet *ifp; 1407 struct in6_mfilter *imf; 1408 struct ip6_moptions *imo; 1409 struct in6_msource *ims; 1410 struct in6_multi *inm; 1411 uint16_t fmode; 1412 int error, doblock; 1413 #ifdef KTR 1414 char ip6tbuf[INET6_ADDRSTRLEN]; 1415 #endif 1416 1417 ifp = NULL; 1418 error = 0; 1419 doblock = 0; 1420 1421 memset(&gsr, 0, sizeof(struct group_source_req)); 1422 gsa = (sockunion_t *)&gsr.gsr_group; 1423 ssa = (sockunion_t *)&gsr.gsr_source; 1424 1425 switch (sopt->sopt_name) { 1426 case MCAST_BLOCK_SOURCE: 1427 case MCAST_UNBLOCK_SOURCE: 1428 error = sooptcopyin(sopt, &gsr, 1429 sizeof(struct group_source_req), 1430 sizeof(struct group_source_req)); 1431 if (error) 1432 return (error); 1433 1434 if (gsa->sin6.sin6_family != AF_INET6 || 1435 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1436 return (EINVAL); 1437 1438 if (ssa->sin6.sin6_family != AF_INET6 || 1439 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1440 return (EINVAL); 1441 1442 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1443 return (EADDRNOTAVAIL); 1444 1445 ifp = ifnet_byindex(gsr.gsr_interface); 1446 1447 if (sopt->sopt_name == MCAST_BLOCK_SOURCE) 1448 doblock = 1; 1449 break; 1450 1451 default: 1452 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 1453 __func__, sopt->sopt_name); 1454 return (EOPNOTSUPP); 1455 break; 1456 } 1457 1458 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1459 return (EINVAL); 1460 1461 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1462 1463 /* 1464 * Check if we are actually a member of this group. 1465 */ 1466 imo = in6p_findmoptions(inp); 1467 imf = im6o_match_group(imo, ifp, &gsa->sa); 1468 if (imf == NULL) { 1469 error = EADDRNOTAVAIL; 1470 goto out_in6p_locked; 1471 } 1472 inm = imf->im6f_in6m; 1473 1474 /* 1475 * Attempting to use the delta-based API on an 1476 * non exclusive-mode membership is an error. 1477 */ 1478 fmode = imf->im6f_st[0]; 1479 if (fmode != MCAST_EXCLUDE) { 1480 error = EINVAL; 1481 goto out_in6p_locked; 1482 } 1483 1484 /* 1485 * Deal with error cases up-front: 1486 * Asked to block, but already blocked; or 1487 * Asked to unblock, but nothing to unblock. 1488 * If adding a new block entry, allocate it. 1489 */ 1490 ims = im6o_match_source(imf, &ssa->sa); 1491 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { 1492 CTR3(KTR_MLD, "%s: source %s %spresent", __func__, 1493 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 1494 doblock ? "" : "not "); 1495 error = EADDRNOTAVAIL; 1496 goto out_in6p_locked; 1497 } 1498 1499 INP_WLOCK_ASSERT(inp); 1500 1501 /* 1502 * Begin state merge transaction at socket layer. 1503 */ 1504 if (doblock) { 1505 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 1506 ims = im6f_graft(imf, fmode, &ssa->sin6); 1507 if (ims == NULL) 1508 error = ENOMEM; 1509 } else { 1510 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 1511 error = im6f_prune(imf, &ssa->sin6); 1512 } 1513 1514 if (error) { 1515 CTR1(KTR_MLD, "%s: merge imf state failed", __func__); 1516 goto out_im6f_rollback; 1517 } 1518 1519 /* 1520 * Begin state merge transaction at MLD layer. 1521 */ 1522 IN6_MULTI_LIST_LOCK(); 1523 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1524 error = in6m_merge(inm, imf); 1525 if (error) 1526 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1527 else { 1528 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1529 error = mld_change_state(inm, 0); 1530 if (error) 1531 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1532 } 1533 1534 IN6_MULTI_LIST_UNLOCK(); 1535 1536 out_im6f_rollback: 1537 if (error) 1538 im6f_rollback(imf); 1539 else 1540 im6f_commit(imf); 1541 1542 im6f_reap(imf); 1543 1544 out_in6p_locked: 1545 INP_WUNLOCK(inp); 1546 return (error); 1547 } 1548 1549 /* 1550 * Given an inpcb, return its multicast options structure pointer. Accepts 1551 * an unlocked inpcb pointer, but will return it locked. May sleep. 1552 * 1553 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 1554 * SMPng: NOTE: Returns with the INP write lock held. 1555 */ 1556 static struct ip6_moptions * 1557 in6p_findmoptions(struct inpcb *inp) 1558 { 1559 struct ip6_moptions *imo; 1560 1561 INP_WLOCK(inp); 1562 if (inp->in6p_moptions != NULL) 1563 return (inp->in6p_moptions); 1564 1565 INP_WUNLOCK(inp); 1566 1567 imo = malloc(sizeof(*imo), M_IP6MOPTS, M_WAITOK); 1568 1569 imo->im6o_multicast_ifp = NULL; 1570 imo->im6o_multicast_hlim = V_ip6_defmcasthlim; 1571 imo->im6o_multicast_loop = in6_mcast_loop; 1572 STAILQ_INIT(&imo->im6o_head); 1573 1574 INP_WLOCK(inp); 1575 if (inp->in6p_moptions != NULL) { 1576 free(imo, M_IP6MOPTS); 1577 return (inp->in6p_moptions); 1578 } 1579 inp->in6p_moptions = imo; 1580 return (imo); 1581 } 1582 1583 /* 1584 * Discard the IPv6 multicast options (and source filters). 1585 * 1586 * SMPng: NOTE: assumes INP write lock is held. 1587 * 1588 * XXX can all be safely deferred to epoch_call 1589 * 1590 */ 1591 1592 static void 1593 inp_gcmoptions(struct ip6_moptions *imo) 1594 { 1595 struct in6_mfilter *imf; 1596 struct in6_multi *inm; 1597 struct ifnet *ifp; 1598 1599 while ((imf = ip6_mfilter_first(&imo->im6o_head)) != NULL) { 1600 ip6_mfilter_remove(&imo->im6o_head, imf); 1601 1602 im6f_leave(imf); 1603 if ((inm = imf->im6f_in6m) != NULL) { 1604 if ((ifp = inm->in6m_ifp) != NULL) { 1605 CURVNET_SET(ifp->if_vnet); 1606 (void)in6_leavegroup(inm, imf); 1607 CURVNET_RESTORE(); 1608 } else { 1609 (void)in6_leavegroup(inm, imf); 1610 } 1611 } 1612 ip6_mfilter_free(imf); 1613 } 1614 free(imo, M_IP6MOPTS); 1615 } 1616 1617 void 1618 ip6_freemoptions(struct ip6_moptions *imo) 1619 { 1620 if (imo == NULL) 1621 return; 1622 inp_gcmoptions(imo); 1623 } 1624 1625 /* 1626 * Atomically get source filters on a socket for an IPv6 multicast group. 1627 * Called with INP lock held; returns with lock released. 1628 */ 1629 static int 1630 in6p_get_source_filters(struct inpcb *inp, struct sockopt *sopt) 1631 { 1632 struct __msfilterreq msfr; 1633 sockunion_t *gsa; 1634 struct ifnet *ifp; 1635 struct ip6_moptions *imo; 1636 struct in6_mfilter *imf; 1637 struct ip6_msource *ims; 1638 struct in6_msource *lims; 1639 struct sockaddr_in6 *psin; 1640 struct sockaddr_storage *ptss; 1641 struct sockaddr_storage *tss; 1642 int error; 1643 size_t nsrcs, ncsrcs; 1644 1645 INP_WLOCK_ASSERT(inp); 1646 1647 imo = inp->in6p_moptions; 1648 KASSERT(imo != NULL, ("%s: null ip6_moptions", __func__)); 1649 1650 INP_WUNLOCK(inp); 1651 1652 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 1653 sizeof(struct __msfilterreq)); 1654 if (error) 1655 return (error); 1656 1657 if (msfr.msfr_group.ss_family != AF_INET6 || 1658 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 1659 return (EINVAL); 1660 1661 gsa = (sockunion_t *)&msfr.msfr_group; 1662 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1663 return (EINVAL); 1664 1665 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 1666 return (EADDRNOTAVAIL); 1667 ifp = ifnet_byindex(msfr.msfr_ifindex); 1668 if (ifp == NULL) 1669 return (EADDRNOTAVAIL); 1670 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1671 1672 INP_WLOCK(inp); 1673 1674 /* 1675 * Lookup group on the socket. 1676 */ 1677 imf = im6o_match_group(imo, ifp, &gsa->sa); 1678 if (imf == NULL) { 1679 INP_WUNLOCK(inp); 1680 return (EADDRNOTAVAIL); 1681 } 1682 1683 /* 1684 * Ignore memberships which are in limbo. 1685 */ 1686 if (imf->im6f_st[1] == MCAST_UNDEFINED) { 1687 INP_WUNLOCK(inp); 1688 return (EAGAIN); 1689 } 1690 msfr.msfr_fmode = imf->im6f_st[1]; 1691 1692 /* 1693 * If the user specified a buffer, copy out the source filter 1694 * entries to userland gracefully. 1695 * We only copy out the number of entries which userland 1696 * has asked for, but we always tell userland how big the 1697 * buffer really needs to be. 1698 */ 1699 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 1700 msfr.msfr_nsrcs = in6_mcast_maxsocksrc; 1701 tss = NULL; 1702 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { 1703 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 1704 M_TEMP, M_NOWAIT | M_ZERO); 1705 if (tss == NULL) { 1706 INP_WUNLOCK(inp); 1707 return (ENOBUFS); 1708 } 1709 } 1710 1711 /* 1712 * Count number of sources in-mode at t0. 1713 * If buffer space exists and remains, copy out source entries. 1714 */ 1715 nsrcs = msfr.msfr_nsrcs; 1716 ncsrcs = 0; 1717 ptss = tss; 1718 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 1719 lims = (struct in6_msource *)ims; 1720 if (lims->im6sl_st[0] == MCAST_UNDEFINED || 1721 lims->im6sl_st[0] != imf->im6f_st[0]) 1722 continue; 1723 ++ncsrcs; 1724 if (tss != NULL && nsrcs > 0) { 1725 psin = (struct sockaddr_in6 *)ptss; 1726 psin->sin6_family = AF_INET6; 1727 psin->sin6_len = sizeof(struct sockaddr_in6); 1728 psin->sin6_addr = lims->im6s_addr; 1729 psin->sin6_port = 0; 1730 --nsrcs; 1731 ++ptss; 1732 } 1733 } 1734 1735 INP_WUNLOCK(inp); 1736 1737 if (tss != NULL) { 1738 error = copyout(tss, msfr.msfr_srcs, 1739 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 1740 free(tss, M_TEMP); 1741 if (error) 1742 return (error); 1743 } 1744 1745 msfr.msfr_nsrcs = ncsrcs; 1746 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); 1747 1748 return (error); 1749 } 1750 1751 /* 1752 * Return the IP multicast options in response to user getsockopt(). 1753 */ 1754 int 1755 ip6_getmoptions(struct inpcb *inp, struct sockopt *sopt) 1756 { 1757 struct ip6_moptions *im6o; 1758 int error; 1759 u_int optval; 1760 1761 INP_WLOCK(inp); 1762 im6o = inp->in6p_moptions; 1763 /* 1764 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 1765 * or is a divert socket, reject it. 1766 */ 1767 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 1768 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 1769 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { 1770 INP_WUNLOCK(inp); 1771 return (EOPNOTSUPP); 1772 } 1773 1774 error = 0; 1775 switch (sopt->sopt_name) { 1776 case IPV6_MULTICAST_IF: 1777 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) { 1778 optval = 0; 1779 } else { 1780 optval = im6o->im6o_multicast_ifp->if_index; 1781 } 1782 INP_WUNLOCK(inp); 1783 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1784 break; 1785 1786 case IPV6_MULTICAST_HOPS: 1787 if (im6o == NULL) 1788 optval = V_ip6_defmcasthlim; 1789 else 1790 optval = im6o->im6o_multicast_hlim; 1791 INP_WUNLOCK(inp); 1792 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1793 break; 1794 1795 case IPV6_MULTICAST_LOOP: 1796 if (im6o == NULL) 1797 optval = in6_mcast_loop; /* XXX VIMAGE */ 1798 else 1799 optval = im6o->im6o_multicast_loop; 1800 INP_WUNLOCK(inp); 1801 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1802 break; 1803 1804 case IPV6_MSFILTER: 1805 if (im6o == NULL) { 1806 error = EADDRNOTAVAIL; 1807 INP_WUNLOCK(inp); 1808 } else { 1809 error = in6p_get_source_filters(inp, sopt); 1810 } 1811 break; 1812 1813 default: 1814 INP_WUNLOCK(inp); 1815 error = ENOPROTOOPT; 1816 break; 1817 } 1818 1819 INP_UNLOCK_ASSERT(inp); 1820 1821 return (error); 1822 } 1823 1824 /* 1825 * Look up the ifnet to use for a multicast group membership, 1826 * given the address of an IPv6 group. 1827 * 1828 * This routine exists to support legacy IPv6 multicast applications. 1829 * 1830 * Use the socket's current FIB number for any required FIB lookup. Look up the 1831 * group address in the unicast FIB, and use its ifp; usually, this points to 1832 * the default next-hop. If the FIB lookup fails, return NULL. 1833 * 1834 * FUTURE: Support multiple forwarding tables for IPv6. 1835 * 1836 * Returns NULL if no ifp could be found. 1837 */ 1838 static struct ifnet * 1839 in6p_lookup_mcast_ifp(const struct inpcb *inp, const struct sockaddr_in6 *gsin6) 1840 { 1841 struct nhop_object *nh; 1842 struct in6_addr dst; 1843 uint32_t scopeid; 1844 uint32_t fibnum; 1845 1846 KASSERT(gsin6->sin6_family == AF_INET6, 1847 ("%s: not AF_INET6 group", __func__)); 1848 1849 in6_splitscope(&gsin6->sin6_addr, &dst, &scopeid); 1850 fibnum = inp->inp_inc.inc_fibnum; 1851 nh = fib6_lookup(fibnum, &dst, scopeid, 0, 0); 1852 1853 return (nh ? nh->nh_ifp : NULL); 1854 } 1855 1856 /* 1857 * Join an IPv6 multicast group, possibly with a source. 1858 * 1859 * FIXME: The KAME use of the unspecified address (::) 1860 * to join *all* multicast groups is currently unsupported. 1861 */ 1862 static int 1863 in6p_join_group(struct inpcb *inp, struct sockopt *sopt) 1864 { 1865 struct in6_multi_head inmh; 1866 struct group_source_req gsr; 1867 sockunion_t *gsa, *ssa; 1868 struct ifnet *ifp; 1869 struct in6_mfilter *imf; 1870 struct ip6_moptions *imo; 1871 struct in6_multi *inm; 1872 struct in6_msource *lims; 1873 int error, is_new; 1874 1875 SLIST_INIT(&inmh); 1876 ifp = NULL; 1877 lims = NULL; 1878 error = 0; 1879 1880 memset(&gsr, 0, sizeof(struct group_source_req)); 1881 gsa = (sockunion_t *)&gsr.gsr_group; 1882 gsa->ss.ss_family = AF_UNSPEC; 1883 ssa = (sockunion_t *)&gsr.gsr_source; 1884 ssa->ss.ss_family = AF_UNSPEC; 1885 1886 /* 1887 * Chew everything into struct group_source_req. 1888 * Overwrite the port field if present, as the sockaddr 1889 * being copied in may be matched with a binary comparison. 1890 * Ignore passed-in scope ID. 1891 */ 1892 switch (sopt->sopt_name) { 1893 case IPV6_JOIN_GROUP: { 1894 struct ipv6_mreq mreq; 1895 1896 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 1897 sizeof(struct ipv6_mreq)); 1898 if (error) 1899 return (error); 1900 1901 gsa->sin6.sin6_family = AF_INET6; 1902 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 1903 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 1904 1905 if (mreq.ipv6mr_interface == 0) { 1906 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 1907 } else { 1908 if (V_if_index < mreq.ipv6mr_interface) 1909 return (EADDRNOTAVAIL); 1910 ifp = ifnet_byindex(mreq.ipv6mr_interface); 1911 } 1912 CTR3(KTR_MLD, "%s: ipv6mr_interface = %d, ifp = %p", 1913 __func__, mreq.ipv6mr_interface, ifp); 1914 } break; 1915 1916 case MCAST_JOIN_GROUP: 1917 case MCAST_JOIN_SOURCE_GROUP: 1918 if (sopt->sopt_name == MCAST_JOIN_GROUP) { 1919 error = sooptcopyin(sopt, &gsr, 1920 sizeof(struct group_req), 1921 sizeof(struct group_req)); 1922 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1923 error = sooptcopyin(sopt, &gsr, 1924 sizeof(struct group_source_req), 1925 sizeof(struct group_source_req)); 1926 } 1927 if (error) 1928 return (error); 1929 1930 if (gsa->sin6.sin6_family != AF_INET6 || 1931 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1932 return (EINVAL); 1933 1934 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1935 if (ssa->sin6.sin6_family != AF_INET6 || 1936 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1937 return (EINVAL); 1938 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 1939 return (EINVAL); 1940 /* 1941 * TODO: Validate embedded scope ID in source 1942 * list entry against passed-in ifp, if and only 1943 * if source list filter entry is iface or node local. 1944 */ 1945 in6_clearscope(&ssa->sin6.sin6_addr); 1946 ssa->sin6.sin6_port = 0; 1947 ssa->sin6.sin6_scope_id = 0; 1948 } 1949 1950 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1951 return (EADDRNOTAVAIL); 1952 ifp = ifnet_byindex(gsr.gsr_interface); 1953 break; 1954 1955 default: 1956 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 1957 __func__, sopt->sopt_name); 1958 return (EOPNOTSUPP); 1959 break; 1960 } 1961 1962 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1963 return (EINVAL); 1964 1965 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) 1966 return (EADDRNOTAVAIL); 1967 1968 gsa->sin6.sin6_port = 0; 1969 gsa->sin6.sin6_scope_id = 0; 1970 1971 /* 1972 * Always set the scope zone ID on memberships created from userland. 1973 * Use the passed-in ifp to do this. 1974 * XXX The in6_setscope() return value is meaningless. 1975 * XXX SCOPE6_LOCK() is taken by in6_setscope(). 1976 */ 1977 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1978 1979 IN6_MULTI_LOCK(); 1980 1981 /* 1982 * Find the membership in the membership list. 1983 */ 1984 imo = in6p_findmoptions(inp); 1985 imf = im6o_match_group(imo, ifp, &gsa->sa); 1986 if (imf == NULL) { 1987 is_new = 1; 1988 inm = NULL; 1989 1990 if (ip6_mfilter_count(&imo->im6o_head) >= IPV6_MAX_MEMBERSHIPS) { 1991 error = ENOMEM; 1992 goto out_in6p_locked; 1993 } 1994 } else { 1995 is_new = 0; 1996 inm = imf->im6f_in6m; 1997 1998 if (ssa->ss.ss_family != AF_UNSPEC) { 1999 /* 2000 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership 2001 * is an error. On an existing inclusive membership, 2002 * it just adds the source to the filter list. 2003 */ 2004 if (imf->im6f_st[1] != MCAST_INCLUDE) { 2005 error = EINVAL; 2006 goto out_in6p_locked; 2007 } 2008 /* 2009 * Throw out duplicates. 2010 * 2011 * XXX FIXME: This makes a naive assumption that 2012 * even if entries exist for *ssa in this imf, 2013 * they will be rejected as dupes, even if they 2014 * are not valid in the current mode (in-mode). 2015 * 2016 * in6_msource is transactioned just as for anything 2017 * else in SSM -- but note naive use of in6m_graft() 2018 * below for allocating new filter entries. 2019 * 2020 * This is only an issue if someone mixes the 2021 * full-state SSM API with the delta-based API, 2022 * which is discouraged in the relevant RFCs. 2023 */ 2024 lims = im6o_match_source(imf, &ssa->sa); 2025 if (lims != NULL /*&& 2026 lims->im6sl_st[1] == MCAST_INCLUDE*/) { 2027 error = EADDRNOTAVAIL; 2028 goto out_in6p_locked; 2029 } 2030 } else { 2031 /* 2032 * MCAST_JOIN_GROUP alone, on any existing membership, 2033 * is rejected, to stop the same inpcb tying up 2034 * multiple refs to the in_multi. 2035 * On an existing inclusive membership, this is also 2036 * an error; if you want to change filter mode, 2037 * you must use the userland API setsourcefilter(). 2038 * XXX We don't reject this for imf in UNDEFINED 2039 * state at t1, because allocation of a filter 2040 * is atomic with allocation of a membership. 2041 */ 2042 error = EADDRINUSE; 2043 goto out_in6p_locked; 2044 } 2045 } 2046 2047 /* 2048 * Begin state merge transaction at socket layer. 2049 */ 2050 INP_WLOCK_ASSERT(inp); 2051 2052 /* 2053 * Graft new source into filter list for this inpcb's 2054 * membership of the group. The in6_multi may not have 2055 * been allocated yet if this is a new membership, however, 2056 * the in_mfilter slot will be allocated and must be initialized. 2057 * 2058 * Note: Grafting of exclusive mode filters doesn't happen 2059 * in this path. 2060 * XXX: Should check for non-NULL lims (node exists but may 2061 * not be in-mode) for interop with full-state API. 2062 */ 2063 if (ssa->ss.ss_family != AF_UNSPEC) { 2064 /* Membership starts in IN mode */ 2065 if (is_new) { 2066 CTR1(KTR_MLD, "%s: new join w/source", __func__); 2067 imf = ip6_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_INCLUDE); 2068 if (imf == NULL) { 2069 error = ENOMEM; 2070 goto out_in6p_locked; 2071 } 2072 } else { 2073 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 2074 } 2075 lims = im6f_graft(imf, MCAST_INCLUDE, &ssa->sin6); 2076 if (lims == NULL) { 2077 CTR1(KTR_MLD, "%s: merge imf state failed", 2078 __func__); 2079 error = ENOMEM; 2080 goto out_in6p_locked; 2081 } 2082 } else { 2083 /* No address specified; Membership starts in EX mode */ 2084 if (is_new) { 2085 CTR1(KTR_MLD, "%s: new join w/o source", __func__); 2086 imf = ip6_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_EXCLUDE); 2087 if (imf == NULL) { 2088 error = ENOMEM; 2089 goto out_in6p_locked; 2090 } 2091 } 2092 } 2093 2094 /* 2095 * Begin state merge transaction at MLD layer. 2096 */ 2097 if (is_new) { 2098 in_pcbref(inp); 2099 INP_WUNLOCK(inp); 2100 2101 error = in6_joingroup_locked(ifp, &gsa->sin6.sin6_addr, imf, 2102 &imf->im6f_in6m, 0); 2103 2104 INP_WLOCK(inp); 2105 if (in_pcbrele_wlocked(inp)) { 2106 error = ENXIO; 2107 goto out_in6p_unlocked; 2108 } 2109 if (error) { 2110 goto out_in6p_locked; 2111 } 2112 /* 2113 * NOTE: Refcount from in6_joingroup_locked() 2114 * is protecting membership. 2115 */ 2116 ip6_mfilter_insert(&imo->im6o_head, imf); 2117 } else { 2118 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2119 IN6_MULTI_LIST_LOCK(); 2120 error = in6m_merge(inm, imf); 2121 if (error) { 2122 CTR1(KTR_MLD, "%s: failed to merge inm state", 2123 __func__); 2124 IN6_MULTI_LIST_UNLOCK(); 2125 im6f_rollback(imf); 2126 im6f_reap(imf); 2127 goto out_in6p_locked; 2128 } 2129 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2130 error = mld_change_state(inm, 0); 2131 IN6_MULTI_LIST_UNLOCK(); 2132 2133 if (error) { 2134 CTR1(KTR_MLD, "%s: failed mld downcall", 2135 __func__); 2136 im6f_rollback(imf); 2137 im6f_reap(imf); 2138 goto out_in6p_locked; 2139 } 2140 } 2141 2142 im6f_commit(imf); 2143 imf = NULL; 2144 2145 out_in6p_locked: 2146 INP_WUNLOCK(inp); 2147 out_in6p_unlocked: 2148 IN6_MULTI_UNLOCK(); 2149 2150 if (is_new && imf) { 2151 if (imf->im6f_in6m != NULL) { 2152 struct in6_multi_head inmh; 2153 2154 SLIST_INIT(&inmh); 2155 SLIST_INSERT_HEAD(&inmh, imf->im6f_in6m, in6m_defer); 2156 in6m_release_list_deferred(&inmh); 2157 } 2158 ip6_mfilter_free(imf); 2159 } 2160 return (error); 2161 } 2162 2163 /* 2164 * Leave an IPv6 multicast group on an inpcb, possibly with a source. 2165 */ 2166 static int 2167 in6p_leave_group(struct inpcb *inp, struct sockopt *sopt) 2168 { 2169 struct ipv6_mreq mreq; 2170 struct group_source_req gsr; 2171 sockunion_t *gsa, *ssa; 2172 struct ifnet *ifp; 2173 struct in6_mfilter *imf; 2174 struct ip6_moptions *imo; 2175 struct in6_msource *ims; 2176 struct in6_multi *inm; 2177 uint32_t ifindex; 2178 int error; 2179 bool is_final; 2180 #ifdef KTR 2181 char ip6tbuf[INET6_ADDRSTRLEN]; 2182 #endif 2183 2184 ifp = NULL; 2185 ifindex = 0; 2186 error = 0; 2187 is_final = true; 2188 2189 memset(&gsr, 0, sizeof(struct group_source_req)); 2190 gsa = (sockunion_t *)&gsr.gsr_group; 2191 gsa->ss.ss_family = AF_UNSPEC; 2192 ssa = (sockunion_t *)&gsr.gsr_source; 2193 ssa->ss.ss_family = AF_UNSPEC; 2194 2195 /* 2196 * Chew everything passed in up into a struct group_source_req 2197 * as that is easier to process. 2198 * Note: Any embedded scope ID in the multicast group passed 2199 * in by userland is ignored, the interface index is the recommended 2200 * mechanism to specify an interface; see below. 2201 */ 2202 switch (sopt->sopt_name) { 2203 case IPV6_LEAVE_GROUP: 2204 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 2205 sizeof(struct ipv6_mreq)); 2206 if (error) 2207 return (error); 2208 gsa->sin6.sin6_family = AF_INET6; 2209 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 2210 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 2211 gsa->sin6.sin6_port = 0; 2212 gsa->sin6.sin6_scope_id = 0; 2213 ifindex = mreq.ipv6mr_interface; 2214 break; 2215 2216 case MCAST_LEAVE_GROUP: 2217 case MCAST_LEAVE_SOURCE_GROUP: 2218 if (sopt->sopt_name == MCAST_LEAVE_GROUP) { 2219 error = sooptcopyin(sopt, &gsr, 2220 sizeof(struct group_req), 2221 sizeof(struct group_req)); 2222 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2223 error = sooptcopyin(sopt, &gsr, 2224 sizeof(struct group_source_req), 2225 sizeof(struct group_source_req)); 2226 } 2227 if (error) 2228 return (error); 2229 2230 if (gsa->sin6.sin6_family != AF_INET6 || 2231 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2232 return (EINVAL); 2233 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2234 if (ssa->sin6.sin6_family != AF_INET6 || 2235 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2236 return (EINVAL); 2237 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 2238 return (EINVAL); 2239 /* 2240 * TODO: Validate embedded scope ID in source 2241 * list entry against passed-in ifp, if and only 2242 * if source list filter entry is iface or node local. 2243 */ 2244 in6_clearscope(&ssa->sin6.sin6_addr); 2245 } 2246 gsa->sin6.sin6_port = 0; 2247 gsa->sin6.sin6_scope_id = 0; 2248 ifindex = gsr.gsr_interface; 2249 break; 2250 2251 default: 2252 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 2253 __func__, sopt->sopt_name); 2254 return (EOPNOTSUPP); 2255 break; 2256 } 2257 2258 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2259 return (EINVAL); 2260 2261 /* 2262 * Validate interface index if provided. If no interface index 2263 * was provided separately, attempt to look the membership up 2264 * from the default scope as a last resort to disambiguate 2265 * the membership we are being asked to leave. 2266 * XXX SCOPE6 lock potentially taken here. 2267 */ 2268 if (ifindex != 0) { 2269 if (V_if_index < ifindex) 2270 return (EADDRNOTAVAIL); 2271 ifp = ifnet_byindex(ifindex); 2272 if (ifp == NULL) 2273 return (EADDRNOTAVAIL); 2274 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2275 } else { 2276 error = sa6_embedscope(&gsa->sin6, V_ip6_use_defzone); 2277 if (error) 2278 return (EADDRNOTAVAIL); 2279 /* 2280 * Some badly behaved applications don't pass an ifindex 2281 * or a scope ID, which is an API violation. In this case, 2282 * perform a lookup as per a v6 join. 2283 * 2284 * XXX For now, stomp on zone ID for the corner case. 2285 * This is not the 'KAME way', but we need to see the ifp 2286 * directly until such time as this implementation is 2287 * refactored, assuming the scope IDs are the way to go. 2288 */ 2289 ifindex = ntohs(gsa->sin6.sin6_addr.s6_addr16[1]); 2290 if (ifindex == 0) { 2291 CTR2(KTR_MLD, "%s: warning: no ifindex, looking up " 2292 "ifp for group %s.", __func__, 2293 ip6_sprintf(ip6tbuf, &gsa->sin6.sin6_addr)); 2294 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 2295 } else { 2296 ifp = ifnet_byindex(ifindex); 2297 } 2298 if (ifp == NULL) 2299 return (EADDRNOTAVAIL); 2300 } 2301 2302 CTR2(KTR_MLD, "%s: ifp = %p", __func__, ifp); 2303 KASSERT(ifp != NULL, ("%s: ifp did not resolve", __func__)); 2304 2305 IN6_MULTI_LOCK(); 2306 2307 /* 2308 * Find the membership in the membership list. 2309 */ 2310 imo = in6p_findmoptions(inp); 2311 imf = im6o_match_group(imo, ifp, &gsa->sa); 2312 if (imf == NULL) { 2313 error = EADDRNOTAVAIL; 2314 goto out_in6p_locked; 2315 } 2316 inm = imf->im6f_in6m; 2317 2318 if (ssa->ss.ss_family != AF_UNSPEC) 2319 is_final = false; 2320 2321 /* 2322 * Begin state merge transaction at socket layer. 2323 */ 2324 INP_WLOCK_ASSERT(inp); 2325 2326 /* 2327 * If we were instructed only to leave a given source, do so. 2328 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. 2329 */ 2330 if (is_final) { 2331 ip6_mfilter_remove(&imo->im6o_head, imf); 2332 im6f_leave(imf); 2333 2334 /* 2335 * Give up the multicast address record to which 2336 * the membership points. 2337 */ 2338 (void)in6_leavegroup_locked(inm, imf); 2339 } else { 2340 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 2341 error = EADDRNOTAVAIL; 2342 goto out_in6p_locked; 2343 } 2344 ims = im6o_match_source(imf, &ssa->sa); 2345 if (ims == NULL) { 2346 CTR3(KTR_MLD, "%s: source %p %spresent", __func__, 2347 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 2348 "not "); 2349 error = EADDRNOTAVAIL; 2350 goto out_in6p_locked; 2351 } 2352 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 2353 error = im6f_prune(imf, &ssa->sin6); 2354 if (error) { 2355 CTR1(KTR_MLD, "%s: merge imf state failed", 2356 __func__); 2357 goto out_in6p_locked; 2358 } 2359 } 2360 2361 /* 2362 * Begin state merge transaction at MLD layer. 2363 */ 2364 if (!is_final) { 2365 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2366 IN6_MULTI_LIST_LOCK(); 2367 error = in6m_merge(inm, imf); 2368 if (error) { 2369 CTR1(KTR_MLD, "%s: failed to merge inm state", 2370 __func__); 2371 IN6_MULTI_LIST_UNLOCK(); 2372 im6f_rollback(imf); 2373 im6f_reap(imf); 2374 goto out_in6p_locked; 2375 } 2376 2377 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2378 error = mld_change_state(inm, 0); 2379 IN6_MULTI_LIST_UNLOCK(); 2380 if (error) { 2381 CTR1(KTR_MLD, "%s: failed mld downcall", 2382 __func__); 2383 im6f_rollback(imf); 2384 im6f_reap(imf); 2385 goto out_in6p_locked; 2386 } 2387 } 2388 2389 im6f_commit(imf); 2390 im6f_reap(imf); 2391 2392 out_in6p_locked: 2393 INP_WUNLOCK(inp); 2394 2395 if (is_final && imf) 2396 ip6_mfilter_free(imf); 2397 2398 IN6_MULTI_UNLOCK(); 2399 return (error); 2400 } 2401 2402 /* 2403 * Select the interface for transmitting IPv6 multicast datagrams. 2404 * 2405 * Either an instance of struct in6_addr or an instance of struct ipv6_mreqn 2406 * may be passed to this socket option. An address of in6addr_any or an 2407 * interface index of 0 is used to remove a previous selection. 2408 * When no interface is selected, one is chosen for every send. 2409 */ 2410 static int 2411 in6p_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) 2412 { 2413 struct ifnet *ifp; 2414 struct ip6_moptions *imo; 2415 u_int ifindex; 2416 int error; 2417 2418 if (sopt->sopt_valsize != sizeof(u_int)) 2419 return (EINVAL); 2420 2421 error = sooptcopyin(sopt, &ifindex, sizeof(u_int), sizeof(u_int)); 2422 if (error) 2423 return (error); 2424 if (V_if_index < ifindex) 2425 return (EINVAL); 2426 if (ifindex == 0) 2427 ifp = NULL; 2428 else { 2429 ifp = ifnet_byindex(ifindex); 2430 if (ifp == NULL) 2431 return (EINVAL); 2432 if ((ifp->if_flags & IFF_MULTICAST) == 0) 2433 return (EADDRNOTAVAIL); 2434 } 2435 imo = in6p_findmoptions(inp); 2436 imo->im6o_multicast_ifp = ifp; 2437 INP_WUNLOCK(inp); 2438 2439 return (0); 2440 } 2441 2442 /* 2443 * Atomically set source filters on a socket for an IPv6 multicast group. 2444 * 2445 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 2446 */ 2447 static int 2448 in6p_set_source_filters(struct inpcb *inp, struct sockopt *sopt) 2449 { 2450 struct __msfilterreq msfr; 2451 sockunion_t *gsa; 2452 struct ifnet *ifp; 2453 struct in6_mfilter *imf; 2454 struct ip6_moptions *imo; 2455 struct in6_multi *inm; 2456 int error; 2457 2458 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 2459 sizeof(struct __msfilterreq)); 2460 if (error) 2461 return (error); 2462 2463 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 2464 return (ENOBUFS); 2465 2466 if (msfr.msfr_fmode != MCAST_EXCLUDE && 2467 msfr.msfr_fmode != MCAST_INCLUDE) 2468 return (EINVAL); 2469 2470 if (msfr.msfr_group.ss_family != AF_INET6 || 2471 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 2472 return (EINVAL); 2473 2474 gsa = (sockunion_t *)&msfr.msfr_group; 2475 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2476 return (EINVAL); 2477 2478 gsa->sin6.sin6_port = 0; /* ignore port */ 2479 2480 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 2481 return (EADDRNOTAVAIL); 2482 ifp = ifnet_byindex(msfr.msfr_ifindex); 2483 if (ifp == NULL) 2484 return (EADDRNOTAVAIL); 2485 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2486 2487 /* 2488 * Take the INP write lock. 2489 * Check if this socket is a member of this group. 2490 */ 2491 imo = in6p_findmoptions(inp); 2492 imf = im6o_match_group(imo, ifp, &gsa->sa); 2493 if (imf == NULL) { 2494 error = EADDRNOTAVAIL; 2495 goto out_in6p_locked; 2496 } 2497 inm = imf->im6f_in6m; 2498 2499 /* 2500 * Begin state merge transaction at socket layer. 2501 */ 2502 INP_WLOCK_ASSERT(inp); 2503 2504 imf->im6f_st[1] = msfr.msfr_fmode; 2505 2506 /* 2507 * Apply any new source filters, if present. 2508 * Make a copy of the user-space source vector so 2509 * that we may copy them with a single copyin. This 2510 * allows us to deal with page faults up-front. 2511 */ 2512 if (msfr.msfr_nsrcs > 0) { 2513 struct in6_msource *lims; 2514 struct sockaddr_in6 *psin; 2515 struct sockaddr_storage *kss, *pkss; 2516 int i; 2517 2518 INP_WUNLOCK(inp); 2519 2520 CTR2(KTR_MLD, "%s: loading %lu source list entries", 2521 __func__, (unsigned long)msfr.msfr_nsrcs); 2522 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 2523 M_TEMP, M_WAITOK); 2524 error = copyin(msfr.msfr_srcs, kss, 2525 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 2526 if (error) { 2527 free(kss, M_TEMP); 2528 return (error); 2529 } 2530 2531 INP_WLOCK(inp); 2532 2533 /* 2534 * Mark all source filters as UNDEFINED at t1. 2535 * Restore new group filter mode, as im6f_leave() 2536 * will set it to INCLUDE. 2537 */ 2538 im6f_leave(imf); 2539 imf->im6f_st[1] = msfr.msfr_fmode; 2540 2541 /* 2542 * Update socket layer filters at t1, lazy-allocating 2543 * new entries. This saves a bunch of memory at the 2544 * cost of one RB_FIND() per source entry; duplicate 2545 * entries in the msfr_nsrcs vector are ignored. 2546 * If we encounter an error, rollback transaction. 2547 * 2548 * XXX This too could be replaced with a set-symmetric 2549 * difference like loop to avoid walking from root 2550 * every time, as the key space is common. 2551 */ 2552 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { 2553 psin = (struct sockaddr_in6 *)pkss; 2554 if (psin->sin6_family != AF_INET6) { 2555 error = EAFNOSUPPORT; 2556 break; 2557 } 2558 if (psin->sin6_len != sizeof(struct sockaddr_in6)) { 2559 error = EINVAL; 2560 break; 2561 } 2562 if (IN6_IS_ADDR_MULTICAST(&psin->sin6_addr)) { 2563 error = EINVAL; 2564 break; 2565 } 2566 /* 2567 * TODO: Validate embedded scope ID in source 2568 * list entry against passed-in ifp, if and only 2569 * if source list filter entry is iface or node local. 2570 */ 2571 in6_clearscope(&psin->sin6_addr); 2572 error = im6f_get_source(imf, psin, &lims); 2573 if (error) 2574 break; 2575 lims->im6sl_st[1] = imf->im6f_st[1]; 2576 } 2577 free(kss, M_TEMP); 2578 } 2579 2580 if (error) 2581 goto out_im6f_rollback; 2582 2583 INP_WLOCK_ASSERT(inp); 2584 IN6_MULTI_LIST_LOCK(); 2585 2586 /* 2587 * Begin state merge transaction at MLD layer. 2588 */ 2589 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2590 error = in6m_merge(inm, imf); 2591 if (error) 2592 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 2593 else { 2594 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2595 error = mld_change_state(inm, 0); 2596 if (error) 2597 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 2598 } 2599 2600 IN6_MULTI_LIST_UNLOCK(); 2601 2602 out_im6f_rollback: 2603 if (error) 2604 im6f_rollback(imf); 2605 else 2606 im6f_commit(imf); 2607 2608 im6f_reap(imf); 2609 2610 out_in6p_locked: 2611 INP_WUNLOCK(inp); 2612 return (error); 2613 } 2614 2615 /* 2616 * Set the IP multicast options in response to user setsockopt(). 2617 * 2618 * Many of the socket options handled in this function duplicate the 2619 * functionality of socket options in the regular unicast API. However, 2620 * it is not possible to merge the duplicate code, because the idempotence 2621 * of the IPv6 multicast part of the BSD Sockets API must be preserved; 2622 * the effects of these options must be treated as separate and distinct. 2623 * 2624 * SMPng: XXX: Unlocked read of inp_socket believed OK. 2625 */ 2626 int 2627 ip6_setmoptions(struct inpcb *inp, struct sockopt *sopt) 2628 { 2629 struct ip6_moptions *im6o; 2630 int error; 2631 2632 error = 0; 2633 2634 /* 2635 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 2636 * or is a divert socket, reject it. 2637 */ 2638 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 2639 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 2640 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) 2641 return (EOPNOTSUPP); 2642 2643 switch (sopt->sopt_name) { 2644 case IPV6_MULTICAST_IF: 2645 error = in6p_set_multicast_if(inp, sopt); 2646 break; 2647 2648 case IPV6_MULTICAST_HOPS: { 2649 int hlim; 2650 2651 if (sopt->sopt_valsize != sizeof(int)) { 2652 error = EINVAL; 2653 break; 2654 } 2655 error = sooptcopyin(sopt, &hlim, sizeof(hlim), sizeof(int)); 2656 if (error) 2657 break; 2658 if (hlim < -1 || hlim > 255) { 2659 error = EINVAL; 2660 break; 2661 } else if (hlim == -1) { 2662 hlim = V_ip6_defmcasthlim; 2663 } 2664 im6o = in6p_findmoptions(inp); 2665 im6o->im6o_multicast_hlim = hlim; 2666 INP_WUNLOCK(inp); 2667 break; 2668 } 2669 2670 case IPV6_MULTICAST_LOOP: { 2671 u_int loop; 2672 2673 /* 2674 * Set the loopback flag for outgoing multicast packets. 2675 * Must be zero or one. 2676 */ 2677 if (sopt->sopt_valsize != sizeof(u_int)) { 2678 error = EINVAL; 2679 break; 2680 } 2681 error = sooptcopyin(sopt, &loop, sizeof(u_int), sizeof(u_int)); 2682 if (error) 2683 break; 2684 if (loop > 1) { 2685 error = EINVAL; 2686 break; 2687 } 2688 im6o = in6p_findmoptions(inp); 2689 im6o->im6o_multicast_loop = loop; 2690 INP_WUNLOCK(inp); 2691 break; 2692 } 2693 2694 case IPV6_JOIN_GROUP: 2695 case MCAST_JOIN_GROUP: 2696 case MCAST_JOIN_SOURCE_GROUP: 2697 error = in6p_join_group(inp, sopt); 2698 break; 2699 2700 case IPV6_LEAVE_GROUP: 2701 case MCAST_LEAVE_GROUP: 2702 case MCAST_LEAVE_SOURCE_GROUP: 2703 error = in6p_leave_group(inp, sopt); 2704 break; 2705 2706 case MCAST_BLOCK_SOURCE: 2707 case MCAST_UNBLOCK_SOURCE: 2708 error = in6p_block_unblock_source(inp, sopt); 2709 break; 2710 2711 case IPV6_MSFILTER: 2712 error = in6p_set_source_filters(inp, sopt); 2713 break; 2714 2715 default: 2716 error = EOPNOTSUPP; 2717 break; 2718 } 2719 2720 INP_UNLOCK_ASSERT(inp); 2721 2722 return (error); 2723 } 2724 2725 /* 2726 * Expose MLD's multicast filter mode and source list(s) to userland, 2727 * keyed by (ifindex, group). 2728 * The filter mode is written out as a uint32_t, followed by 2729 * 0..n of struct in6_addr. 2730 * For use by ifmcstat(8). 2731 * SMPng: NOTE: unlocked read of ifindex space. 2732 */ 2733 static int 2734 sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS) 2735 { 2736 struct in6_addr mcaddr; 2737 struct in6_addr src; 2738 struct epoch_tracker et; 2739 struct ifnet *ifp; 2740 struct ifmultiaddr *ifma; 2741 struct in6_multi *inm; 2742 struct ip6_msource *ims; 2743 int *name; 2744 int retval; 2745 u_int namelen; 2746 uint32_t fmode, ifindex; 2747 #ifdef KTR 2748 char ip6tbuf[INET6_ADDRSTRLEN]; 2749 #endif 2750 2751 name = (int *)arg1; 2752 namelen = arg2; 2753 2754 if (req->newptr != NULL) 2755 return (EPERM); 2756 2757 /* int: ifindex + 4 * 32 bits of IPv6 address */ 2758 if (namelen != 5) 2759 return (EINVAL); 2760 2761 ifindex = name[0]; 2762 if (ifindex <= 0 || ifindex > V_if_index) { 2763 CTR2(KTR_MLD, "%s: ifindex %u out of range", 2764 __func__, ifindex); 2765 return (ENOENT); 2766 } 2767 2768 memcpy(&mcaddr, &name[1], sizeof(struct in6_addr)); 2769 if (!IN6_IS_ADDR_MULTICAST(&mcaddr)) { 2770 CTR2(KTR_MLD, "%s: group %s is not multicast", 2771 __func__, ip6_sprintf(ip6tbuf, &mcaddr)); 2772 return (EINVAL); 2773 } 2774 2775 NET_EPOCH_ENTER(et); 2776 ifp = ifnet_byindex(ifindex); 2777 if (ifp == NULL) { 2778 NET_EPOCH_EXIT(et); 2779 CTR2(KTR_MLD, "%s: no ifp for ifindex %u", 2780 __func__, ifindex); 2781 return (ENOENT); 2782 } 2783 /* 2784 * Internal MLD lookups require that scope/zone ID is set. 2785 */ 2786 (void)in6_setscope(&mcaddr, ifp, NULL); 2787 2788 retval = sysctl_wire_old_buffer(req, 2789 sizeof(uint32_t) + (in6_mcast_maxgrpsrc * sizeof(struct in6_addr))); 2790 if (retval) { 2791 NET_EPOCH_EXIT(et); 2792 return (retval); 2793 } 2794 2795 IN6_MULTI_LOCK(); 2796 IN6_MULTI_LIST_LOCK(); 2797 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2798 inm = in6m_ifmultiaddr_get_inm(ifma); 2799 if (inm == NULL) 2800 continue; 2801 if (!IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, &mcaddr)) 2802 continue; 2803 fmode = inm->in6m_st[1].iss_fmode; 2804 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); 2805 if (retval != 0) 2806 break; 2807 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 2808 CTR2(KTR_MLD, "%s: visit node %p", __func__, ims); 2809 /* 2810 * Only copy-out sources which are in-mode. 2811 */ 2812 if (fmode != im6s_get_mode(inm, ims, 1)) { 2813 CTR1(KTR_MLD, "%s: skip non-in-mode", 2814 __func__); 2815 continue; 2816 } 2817 src = ims->im6s_addr; 2818 retval = SYSCTL_OUT(req, &src, 2819 sizeof(struct in6_addr)); 2820 if (retval != 0) 2821 break; 2822 } 2823 } 2824 IN6_MULTI_LIST_UNLOCK(); 2825 IN6_MULTI_UNLOCK(); 2826 NET_EPOCH_EXIT(et); 2827 2828 return (retval); 2829 } 2830 2831 #ifdef KTR 2832 2833 static const char *in6m_modestrs[] = { "un", "in", "ex" }; 2834 2835 static const char * 2836 in6m_mode_str(const int mode) 2837 { 2838 2839 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) 2840 return (in6m_modestrs[mode]); 2841 return ("??"); 2842 } 2843 2844 static const char *in6m_statestrs[] = { 2845 "not-member", 2846 "silent", 2847 "idle", 2848 "lazy", 2849 "sleeping", 2850 "awakening", 2851 "query-pending", 2852 "sg-query-pending", 2853 "leaving" 2854 }; 2855 2856 static const char * 2857 in6m_state_str(const int state) 2858 { 2859 2860 if (state >= MLD_NOT_MEMBER && state <= MLD_LEAVING_MEMBER) 2861 return (in6m_statestrs[state]); 2862 return ("??"); 2863 } 2864 2865 /* 2866 * Dump an in6_multi structure to the console. 2867 */ 2868 void 2869 in6m_print(const struct in6_multi *inm) 2870 { 2871 int t; 2872 char ip6tbuf[INET6_ADDRSTRLEN]; 2873 2874 if ((ktr_mask & KTR_MLD) == 0) 2875 return; 2876 2877 printf("%s: --- begin in6m %p ---\n", __func__, inm); 2878 printf("addr %s ifp %p(%s) ifma %p\n", 2879 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2880 inm->in6m_ifp, 2881 if_name(inm->in6m_ifp), 2882 inm->in6m_ifma); 2883 printf("timer %u state %s refcount %u scq.len %u\n", 2884 inm->in6m_timer, 2885 in6m_state_str(inm->in6m_state), 2886 inm->in6m_refcount, 2887 mbufq_len(&inm->in6m_scq)); 2888 printf("mli %p nsrc %lu sctimer %u scrv %u\n", 2889 inm->in6m_mli, 2890 inm->in6m_nsrc, 2891 inm->in6m_sctimer, 2892 inm->in6m_scrv); 2893 for (t = 0; t < 2; t++) { 2894 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, 2895 in6m_mode_str(inm->in6m_st[t].iss_fmode), 2896 inm->in6m_st[t].iss_asm, 2897 inm->in6m_st[t].iss_ex, 2898 inm->in6m_st[t].iss_in, 2899 inm->in6m_st[t].iss_rec); 2900 } 2901 printf("%s: --- end in6m %p ---\n", __func__, inm); 2902 } 2903 2904 #else /* !KTR */ 2905 2906 void 2907 in6m_print(const struct in6_multi *inm) 2908 { 2909 2910 } 2911 2912 #endif /* KTR */ 2913