1 /* 2 * Copyright (c) 2009 Bruce Simpson. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. The name of the author may not be used to endorse or promote 14 * products derived from this software without specific prior written 15 * permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * IPv6 multicast socket, group, and socket option processing module. 32 * Normative references: RFC 2292, RFC 3492, RFC 3542, RFC 3678, RFC 3810. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include "opt_inet6.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/protosw.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/protosw.h> 49 #include <sys/sysctl.h> 50 #include <sys/priv.h> 51 #include <sys/ktr.h> 52 #include <sys/tree.h> 53 54 #include <net/if.h> 55 #include <net/if_dl.h> 56 #include <net/route.h> 57 #include <net/vnet.h> 58 59 #include <netinet/in.h> 60 #include <netinet/in_var.h> 61 #include <netinet6/in6_var.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet6/ip6_var.h> 65 #include <netinet/in_pcb.h> 66 #include <netinet/tcp_var.h> 67 #include <netinet6/nd6.h> 68 #include <netinet6/mld6_var.h> 69 #include <netinet6/scope6_var.h> 70 71 #ifndef KTR_MLD 72 #define KTR_MLD KTR_INET6 73 #endif 74 75 #ifndef __SOCKUNION_DECLARED 76 union sockunion { 77 struct sockaddr_storage ss; 78 struct sockaddr sa; 79 struct sockaddr_dl sdl; 80 struct sockaddr_in6 sin6; 81 }; 82 typedef union sockunion sockunion_t; 83 #define __SOCKUNION_DECLARED 84 #endif /* __SOCKUNION_DECLARED */ 85 86 static MALLOC_DEFINE(M_IN6MFILTER, "in6_mfilter", 87 "IPv6 multicast PCB-layer source filter"); 88 static MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "IPv6 multicast group"); 89 static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "IPv6 multicast options"); 90 static MALLOC_DEFINE(M_IP6MSOURCE, "ip6_msource", 91 "IPv6 multicast MLD-layer source filter"); 92 93 RB_GENERATE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp); 94 95 /* 96 * Locking: 97 * - Lock order is: Giant, INP_WLOCK, IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 98 * - The IF_ADDR_LOCK is implicitly taken by in6m_lookup() earlier, however 99 * it can be taken by code in net/if.c also. 100 * - ip6_moptions and in6_mfilter are covered by the INP_WLOCK. 101 * 102 * struct in6_multi is covered by IN6_MULTI_LOCK. There isn't strictly 103 * any need for in6_multi itself to be virtualized -- it is bound to an ifp 104 * anyway no matter what happens. 105 */ 106 struct mtx in6_multi_mtx; 107 MTX_SYSINIT(in6_multi_mtx, &in6_multi_mtx, "in6_multi_mtx", MTX_DEF); 108 109 static void im6f_commit(struct in6_mfilter *); 110 static int im6f_get_source(struct in6_mfilter *imf, 111 const struct sockaddr_in6 *psin, 112 struct in6_msource **); 113 static struct in6_msource * 114 im6f_graft(struct in6_mfilter *, const uint8_t, 115 const struct sockaddr_in6 *); 116 static void im6f_leave(struct in6_mfilter *); 117 static int im6f_prune(struct in6_mfilter *, const struct sockaddr_in6 *); 118 static void im6f_purge(struct in6_mfilter *); 119 static void im6f_rollback(struct in6_mfilter *); 120 static void im6f_reap(struct in6_mfilter *); 121 static int im6o_grow(struct ip6_moptions *); 122 static size_t im6o_match_group(const struct ip6_moptions *, 123 const struct ifnet *, const struct sockaddr *); 124 static struct in6_msource * 125 im6o_match_source(const struct ip6_moptions *, const size_t, 126 const struct sockaddr *); 127 static void im6s_merge(struct ip6_msource *ims, 128 const struct in6_msource *lims, const int rollback); 129 static int in6_mc_get(struct ifnet *, const struct in6_addr *, 130 struct in6_multi **); 131 static int in6m_get_source(struct in6_multi *inm, 132 const struct in6_addr *addr, const int noalloc, 133 struct ip6_msource **pims); 134 static int in6m_is_ifp_detached(const struct in6_multi *); 135 static int in6m_merge(struct in6_multi *, /*const*/ struct in6_mfilter *); 136 static void in6m_purge(struct in6_multi *); 137 static void in6m_reap(struct in6_multi *); 138 static struct ip6_moptions * 139 in6p_findmoptions(struct inpcb *); 140 static int in6p_get_source_filters(struct inpcb *, struct sockopt *); 141 static int in6p_join_group(struct inpcb *, struct sockopt *); 142 static int in6p_leave_group(struct inpcb *, struct sockopt *); 143 static struct ifnet * 144 in6p_lookup_mcast_ifp(const struct inpcb *, 145 const struct sockaddr_in6 *); 146 static int in6p_block_unblock_source(struct inpcb *, struct sockopt *); 147 static int in6p_set_multicast_if(struct inpcb *, struct sockopt *); 148 static int in6p_set_source_filters(struct inpcb *, struct sockopt *); 149 static int sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS); 150 151 SYSCTL_DECL(_net_inet6_ip6); /* XXX Not in any common header. */ 152 153 static SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, mcast, CTLFLAG_RW, 0, 154 "IPv6 multicast"); 155 156 static u_long in6_mcast_maxgrpsrc = IPV6_MAX_GROUP_SRC_FILTER; 157 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxgrpsrc, 158 CTLFLAG_RW | CTLFLAG_TUN, &in6_mcast_maxgrpsrc, 0, 159 "Max source filters per group"); 160 TUNABLE_ULONG("net.inet6.ip6.mcast.maxgrpsrc", &in6_mcast_maxgrpsrc); 161 162 static u_long in6_mcast_maxsocksrc = IPV6_MAX_SOCK_SRC_FILTER; 163 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxsocksrc, 164 CTLFLAG_RW | CTLFLAG_TUN, &in6_mcast_maxsocksrc, 0, 165 "Max source filters per socket"); 166 TUNABLE_ULONG("net.inet6.ip6.mcast.maxsocksrc", &in6_mcast_maxsocksrc); 167 168 /* TODO Virtualize this switch. */ 169 int in6_mcast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 170 SYSCTL_INT(_net_inet6_ip6_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_TUN, 171 &in6_mcast_loop, 0, "Loopback multicast datagrams by default"); 172 TUNABLE_INT("net.inet6.ip6.mcast.loop", &in6_mcast_loop); 173 174 static SYSCTL_NODE(_net_inet6_ip6_mcast, OID_AUTO, filters, 175 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip6_mcast_filters, 176 "Per-interface stack-wide source filters"); 177 178 /* 179 * Inline function which wraps assertions for a valid ifp. 180 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp 181 * is detached. 182 */ 183 static int __inline 184 in6m_is_ifp_detached(const struct in6_multi *inm) 185 { 186 struct ifnet *ifp; 187 188 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 189 ifp = inm->in6m_ifma->ifma_ifp; 190 if (ifp != NULL) { 191 /* 192 * Sanity check that network-layer notion of ifp is the 193 * same as that of link-layer. 194 */ 195 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 196 } 197 198 return (ifp == NULL); 199 } 200 201 /* 202 * Initialize an in6_mfilter structure to a known state at t0, t1 203 * with an empty source filter list. 204 */ 205 static __inline void 206 im6f_init(struct in6_mfilter *imf, const int st0, const int st1) 207 { 208 memset(imf, 0, sizeof(struct in6_mfilter)); 209 RB_INIT(&imf->im6f_sources); 210 imf->im6f_st[0] = st0; 211 imf->im6f_st[1] = st1; 212 } 213 214 /* 215 * Resize the ip6_moptions vector to the next power-of-two minus 1. 216 * May be called with locks held; do not sleep. 217 */ 218 static int 219 im6o_grow(struct ip6_moptions *imo) 220 { 221 struct in6_multi **nmships; 222 struct in6_multi **omships; 223 struct in6_mfilter *nmfilters; 224 struct in6_mfilter *omfilters; 225 size_t idx; 226 size_t newmax; 227 size_t oldmax; 228 229 nmships = NULL; 230 nmfilters = NULL; 231 omships = imo->im6o_membership; 232 omfilters = imo->im6o_mfilters; 233 oldmax = imo->im6o_max_memberships; 234 newmax = ((oldmax + 1) * 2) - 1; 235 236 if (newmax <= IPV6_MAX_MEMBERSHIPS) { 237 nmships = (struct in6_multi **)realloc(omships, 238 sizeof(struct in6_multi *) * newmax, M_IP6MOPTS, M_NOWAIT); 239 nmfilters = (struct in6_mfilter *)realloc(omfilters, 240 sizeof(struct in6_mfilter) * newmax, M_IN6MFILTER, 241 M_NOWAIT); 242 if (nmships != NULL && nmfilters != NULL) { 243 /* Initialize newly allocated source filter heads. */ 244 for (idx = oldmax; idx < newmax; idx++) { 245 im6f_init(&nmfilters[idx], MCAST_UNDEFINED, 246 MCAST_EXCLUDE); 247 } 248 imo->im6o_max_memberships = newmax; 249 imo->im6o_membership = nmships; 250 imo->im6o_mfilters = nmfilters; 251 } 252 } 253 254 if (nmships == NULL || nmfilters == NULL) { 255 if (nmships != NULL) 256 free(nmships, M_IP6MOPTS); 257 if (nmfilters != NULL) 258 free(nmfilters, M_IN6MFILTER); 259 return (ETOOMANYREFS); 260 } 261 262 return (0); 263 } 264 265 /* 266 * Find an IPv6 multicast group entry for this ip6_moptions instance 267 * which matches the specified group, and optionally an interface. 268 * Return its index into the array, or -1 if not found. 269 */ 270 static size_t 271 im6o_match_group(const struct ip6_moptions *imo, const struct ifnet *ifp, 272 const struct sockaddr *group) 273 { 274 const struct sockaddr_in6 *gsin6; 275 struct in6_multi **pinm; 276 int idx; 277 int nmships; 278 279 gsin6 = (const struct sockaddr_in6 *)group; 280 281 /* The im6o_membership array may be lazy allocated. */ 282 if (imo->im6o_membership == NULL || imo->im6o_num_memberships == 0) 283 return (-1); 284 285 nmships = imo->im6o_num_memberships; 286 pinm = &imo->im6o_membership[0]; 287 for (idx = 0; idx < nmships; idx++, pinm++) { 288 if (*pinm == NULL) 289 continue; 290 if ((ifp == NULL || ((*pinm)->in6m_ifp == ifp)) && 291 IN6_ARE_ADDR_EQUAL(&(*pinm)->in6m_addr, 292 &gsin6->sin6_addr)) { 293 break; 294 } 295 } 296 if (idx >= nmships) 297 idx = -1; 298 299 return (idx); 300 } 301 302 /* 303 * Find an IPv6 multicast source entry for this imo which matches 304 * the given group index for this socket, and source address. 305 * 306 * XXX TODO: The scope ID, if present in src, is stripped before 307 * any comparison. We SHOULD enforce scope/zone checks where the source 308 * filter entry has a link scope. 309 * 310 * NOTE: This does not check if the entry is in-mode, merely if 311 * it exists, which may not be the desired behaviour. 312 */ 313 static struct in6_msource * 314 im6o_match_source(const struct ip6_moptions *imo, const size_t gidx, 315 const struct sockaddr *src) 316 { 317 struct ip6_msource find; 318 struct in6_mfilter *imf; 319 struct ip6_msource *ims; 320 const sockunion_t *psa; 321 322 KASSERT(src->sa_family == AF_INET6, ("%s: !AF_INET6", __func__)); 323 KASSERT(gidx != -1 && gidx < imo->im6o_num_memberships, 324 ("%s: invalid index %d\n", __func__, (int)gidx)); 325 326 /* The im6o_mfilters array may be lazy allocated. */ 327 if (imo->im6o_mfilters == NULL) 328 return (NULL); 329 imf = &imo->im6o_mfilters[gidx]; 330 331 psa = (const sockunion_t *)src; 332 find.im6s_addr = psa->sin6.sin6_addr; 333 in6_clearscope(&find.im6s_addr); /* XXX */ 334 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 335 336 return ((struct in6_msource *)ims); 337 } 338 339 /* 340 * Perform filtering for multicast datagrams on a socket by group and source. 341 * 342 * Returns 0 if a datagram should be allowed through, or various error codes 343 * if the socket was not a member of the group, or the source was muted, etc. 344 */ 345 int 346 im6o_mc_filter(const struct ip6_moptions *imo, const struct ifnet *ifp, 347 const struct sockaddr *group, const struct sockaddr *src) 348 { 349 size_t gidx; 350 struct in6_msource *ims; 351 int mode; 352 353 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 354 355 gidx = im6o_match_group(imo, ifp, group); 356 if (gidx == -1) 357 return (MCAST_NOTGMEMBER); 358 359 /* 360 * Check if the source was included in an (S,G) join. 361 * Allow reception on exclusive memberships by default, 362 * reject reception on inclusive memberships by default. 363 * Exclude source only if an in-mode exclude filter exists. 364 * Include source only if an in-mode include filter exists. 365 * NOTE: We are comparing group state here at MLD t1 (now) 366 * with socket-layer t0 (since last downcall). 367 */ 368 mode = imo->im6o_mfilters[gidx].im6f_st[1]; 369 ims = im6o_match_source(imo, gidx, src); 370 371 if ((ims == NULL && mode == MCAST_INCLUDE) || 372 (ims != NULL && ims->im6sl_st[0] != mode)) 373 return (MCAST_NOTSMEMBER); 374 375 return (MCAST_PASS); 376 } 377 378 /* 379 * Find and return a reference to an in6_multi record for (ifp, group), 380 * and bump its reference count. 381 * If one does not exist, try to allocate it, and update link-layer multicast 382 * filters on ifp to listen for group. 383 * Assumes the IN6_MULTI lock is held across the call. 384 * Return 0 if successful, otherwise return an appropriate error code. 385 */ 386 static int 387 in6_mc_get(struct ifnet *ifp, const struct in6_addr *group, 388 struct in6_multi **pinm) 389 { 390 struct sockaddr_in6 gsin6; 391 struct ifmultiaddr *ifma; 392 struct in6_multi *inm; 393 int error; 394 395 error = 0; 396 397 /* 398 * XXX: Accesses to ifma_protospec must be covered by IF_ADDR_LOCK; 399 * if_addmulti() takes this mutex itself, so we must drop and 400 * re-acquire around the call. 401 */ 402 IN6_MULTI_LOCK_ASSERT(); 403 IF_ADDR_WLOCK(ifp); 404 405 inm = in6m_lookup_locked(ifp, group); 406 if (inm != NULL) { 407 /* 408 * If we already joined this group, just bump the 409 * refcount and return it. 410 */ 411 KASSERT(inm->in6m_refcount >= 1, 412 ("%s: bad refcount %d", __func__, inm->in6m_refcount)); 413 ++inm->in6m_refcount; 414 *pinm = inm; 415 goto out_locked; 416 } 417 418 memset(&gsin6, 0, sizeof(gsin6)); 419 gsin6.sin6_family = AF_INET6; 420 gsin6.sin6_len = sizeof(struct sockaddr_in6); 421 gsin6.sin6_addr = *group; 422 423 /* 424 * Check if a link-layer group is already associated 425 * with this network-layer group on the given ifnet. 426 */ 427 IF_ADDR_WUNLOCK(ifp); 428 error = if_addmulti(ifp, (struct sockaddr *)&gsin6, &ifma); 429 if (error != 0) 430 return (error); 431 IF_ADDR_WLOCK(ifp); 432 433 /* 434 * If something other than netinet6 is occupying the link-layer 435 * group, print a meaningful error message and back out of 436 * the allocation. 437 * Otherwise, bump the refcount on the existing network-layer 438 * group association and return it. 439 */ 440 if (ifma->ifma_protospec != NULL) { 441 inm = (struct in6_multi *)ifma->ifma_protospec; 442 #ifdef INVARIANTS 443 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", 444 __func__)); 445 KASSERT(ifma->ifma_addr->sa_family == AF_INET6, 446 ("%s: ifma not AF_INET6", __func__)); 447 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); 448 if (inm->in6m_ifma != ifma || inm->in6m_ifp != ifp || 449 !IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, group)) 450 panic("%s: ifma %p is inconsistent with %p (%p)", 451 __func__, ifma, inm, group); 452 #endif 453 ++inm->in6m_refcount; 454 *pinm = inm; 455 goto out_locked; 456 } 457 458 IF_ADDR_WLOCK_ASSERT(ifp); 459 460 /* 461 * A new in6_multi record is needed; allocate and initialize it. 462 * We DO NOT perform an MLD join as the in6_ layer may need to 463 * push an initial source list down to MLD to support SSM. 464 * 465 * The initial source filter state is INCLUDE, {} as per the RFC. 466 * Pending state-changes per group are subject to a bounds check. 467 */ 468 inm = malloc(sizeof(*inm), M_IP6MADDR, M_NOWAIT | M_ZERO); 469 if (inm == NULL) { 470 if_delmulti_ifma(ifma); 471 error = ENOMEM; 472 goto out_locked; 473 } 474 inm->in6m_addr = *group; 475 inm->in6m_ifp = ifp; 476 inm->in6m_mli = MLD_IFINFO(ifp); 477 inm->in6m_ifma = ifma; 478 inm->in6m_refcount = 1; 479 inm->in6m_state = MLD_NOT_MEMBER; 480 IFQ_SET_MAXLEN(&inm->in6m_scq, MLD_MAX_STATE_CHANGES); 481 482 inm->in6m_st[0].iss_fmode = MCAST_UNDEFINED; 483 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 484 RB_INIT(&inm->in6m_srcs); 485 486 ifma->ifma_protospec = inm; 487 *pinm = inm; 488 489 out_locked: 490 IF_ADDR_WUNLOCK(ifp); 491 return (error); 492 } 493 494 /* 495 * Drop a reference to an in6_multi record. 496 * 497 * If the refcount drops to 0, free the in6_multi record and 498 * delete the underlying link-layer membership. 499 */ 500 void 501 in6m_release_locked(struct in6_multi *inm) 502 { 503 struct ifmultiaddr *ifma; 504 505 IN6_MULTI_LOCK_ASSERT(); 506 507 CTR2(KTR_MLD, "%s: refcount is %d", __func__, inm->in6m_refcount); 508 509 if (--inm->in6m_refcount > 0) { 510 CTR2(KTR_MLD, "%s: refcount is now %d", __func__, 511 inm->in6m_refcount); 512 return; 513 } 514 515 CTR2(KTR_MLD, "%s: freeing inm %p", __func__, inm); 516 517 ifma = inm->in6m_ifma; 518 519 /* XXX this access is not covered by IF_ADDR_LOCK */ 520 CTR2(KTR_MLD, "%s: purging ifma %p", __func__, ifma); 521 KASSERT(ifma->ifma_protospec == inm, 522 ("%s: ifma_protospec != inm", __func__)); 523 ifma->ifma_protospec = NULL; 524 525 in6m_purge(inm); 526 527 free(inm, M_IP6MADDR); 528 529 if_delmulti_ifma(ifma); 530 } 531 532 /* 533 * Clear recorded source entries for a group. 534 * Used by the MLD code. Caller must hold the IN6_MULTI lock. 535 * FIXME: Should reap. 536 */ 537 void 538 in6m_clear_recorded(struct in6_multi *inm) 539 { 540 struct ip6_msource *ims; 541 542 IN6_MULTI_LOCK_ASSERT(); 543 544 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 545 if (ims->im6s_stp) { 546 ims->im6s_stp = 0; 547 --inm->in6m_st[1].iss_rec; 548 } 549 } 550 KASSERT(inm->in6m_st[1].iss_rec == 0, 551 ("%s: iss_rec %d not 0", __func__, inm->in6m_st[1].iss_rec)); 552 } 553 554 /* 555 * Record a source as pending for a Source-Group MLDv2 query. 556 * This lives here as it modifies the shared tree. 557 * 558 * inm is the group descriptor. 559 * naddr is the address of the source to record in network-byte order. 560 * 561 * If the net.inet6.mld.sgalloc sysctl is non-zero, we will 562 * lazy-allocate a source node in response to an SG query. 563 * Otherwise, no allocation is performed. This saves some memory 564 * with the trade-off that the source will not be reported to the 565 * router if joined in the window between the query response and 566 * the group actually being joined on the local host. 567 * 568 * VIMAGE: XXX: Currently the mld_sgalloc feature has been removed. 569 * This turns off the allocation of a recorded source entry if 570 * the group has not been joined. 571 * 572 * Return 0 if the source didn't exist or was already marked as recorded. 573 * Return 1 if the source was marked as recorded by this function. 574 * Return <0 if any error occured (negated errno code). 575 */ 576 int 577 in6m_record_source(struct in6_multi *inm, const struct in6_addr *addr) 578 { 579 struct ip6_msource find; 580 struct ip6_msource *ims, *nims; 581 582 IN6_MULTI_LOCK_ASSERT(); 583 584 find.im6s_addr = *addr; 585 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 586 if (ims && ims->im6s_stp) 587 return (0); 588 if (ims == NULL) { 589 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 590 return (-ENOSPC); 591 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 592 M_NOWAIT | M_ZERO); 593 if (nims == NULL) 594 return (-ENOMEM); 595 nims->im6s_addr = find.im6s_addr; 596 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 597 ++inm->in6m_nsrc; 598 ims = nims; 599 } 600 601 /* 602 * Mark the source as recorded and update the recorded 603 * source count. 604 */ 605 ++ims->im6s_stp; 606 ++inm->in6m_st[1].iss_rec; 607 608 return (1); 609 } 610 611 /* 612 * Return a pointer to an in6_msource owned by an in6_mfilter, 613 * given its source address. 614 * Lazy-allocate if needed. If this is a new entry its filter state is 615 * undefined at t0. 616 * 617 * imf is the filter set being modified. 618 * addr is the source address. 619 * 620 * SMPng: May be called with locks held; malloc must not block. 621 */ 622 static int 623 im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin, 624 struct in6_msource **plims) 625 { 626 struct ip6_msource find; 627 struct ip6_msource *ims, *nims; 628 struct in6_msource *lims; 629 int error; 630 631 error = 0; 632 ims = NULL; 633 lims = NULL; 634 635 find.im6s_addr = psin->sin6_addr; 636 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 637 lims = (struct in6_msource *)ims; 638 if (lims == NULL) { 639 if (imf->im6f_nsrc == in6_mcast_maxsocksrc) 640 return (ENOSPC); 641 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 642 M_NOWAIT | M_ZERO); 643 if (nims == NULL) 644 return (ENOMEM); 645 lims = (struct in6_msource *)nims; 646 lims->im6s_addr = find.im6s_addr; 647 lims->im6sl_st[0] = MCAST_UNDEFINED; 648 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 649 ++imf->im6f_nsrc; 650 } 651 652 *plims = lims; 653 654 return (error); 655 } 656 657 /* 658 * Graft a source entry into an existing socket-layer filter set, 659 * maintaining any required invariants and checking allocations. 660 * 661 * The source is marked as being in the new filter mode at t1. 662 * 663 * Return the pointer to the new node, otherwise return NULL. 664 */ 665 static struct in6_msource * 666 im6f_graft(struct in6_mfilter *imf, const uint8_t st1, 667 const struct sockaddr_in6 *psin) 668 { 669 struct ip6_msource *nims; 670 struct in6_msource *lims; 671 672 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 673 M_NOWAIT | M_ZERO); 674 if (nims == NULL) 675 return (NULL); 676 lims = (struct in6_msource *)nims; 677 lims->im6s_addr = psin->sin6_addr; 678 lims->im6sl_st[0] = MCAST_UNDEFINED; 679 lims->im6sl_st[1] = st1; 680 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 681 ++imf->im6f_nsrc; 682 683 return (lims); 684 } 685 686 /* 687 * Prune a source entry from an existing socket-layer filter set, 688 * maintaining any required invariants and checking allocations. 689 * 690 * The source is marked as being left at t1, it is not freed. 691 * 692 * Return 0 if no error occurred, otherwise return an errno value. 693 */ 694 static int 695 im6f_prune(struct in6_mfilter *imf, const struct sockaddr_in6 *psin) 696 { 697 struct ip6_msource find; 698 struct ip6_msource *ims; 699 struct in6_msource *lims; 700 701 find.im6s_addr = psin->sin6_addr; 702 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 703 if (ims == NULL) 704 return (ENOENT); 705 lims = (struct in6_msource *)ims; 706 lims->im6sl_st[1] = MCAST_UNDEFINED; 707 return (0); 708 } 709 710 /* 711 * Revert socket-layer filter set deltas at t1 to t0 state. 712 */ 713 static void 714 im6f_rollback(struct in6_mfilter *imf) 715 { 716 struct ip6_msource *ims, *tims; 717 struct in6_msource *lims; 718 719 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 720 lims = (struct in6_msource *)ims; 721 if (lims->im6sl_st[0] == lims->im6sl_st[1]) { 722 /* no change at t1 */ 723 continue; 724 } else if (lims->im6sl_st[0] != MCAST_UNDEFINED) { 725 /* revert change to existing source at t1 */ 726 lims->im6sl_st[1] = lims->im6sl_st[0]; 727 } else { 728 /* revert source added t1 */ 729 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 730 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 731 free(ims, M_IN6MFILTER); 732 imf->im6f_nsrc--; 733 } 734 } 735 imf->im6f_st[1] = imf->im6f_st[0]; 736 } 737 738 /* 739 * Mark socket-layer filter set as INCLUDE {} at t1. 740 */ 741 static void 742 im6f_leave(struct in6_mfilter *imf) 743 { 744 struct ip6_msource *ims; 745 struct in6_msource *lims; 746 747 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 748 lims = (struct in6_msource *)ims; 749 lims->im6sl_st[1] = MCAST_UNDEFINED; 750 } 751 imf->im6f_st[1] = MCAST_INCLUDE; 752 } 753 754 /* 755 * Mark socket-layer filter set deltas as committed. 756 */ 757 static void 758 im6f_commit(struct in6_mfilter *imf) 759 { 760 struct ip6_msource *ims; 761 struct in6_msource *lims; 762 763 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 764 lims = (struct in6_msource *)ims; 765 lims->im6sl_st[0] = lims->im6sl_st[1]; 766 } 767 imf->im6f_st[0] = imf->im6f_st[1]; 768 } 769 770 /* 771 * Reap unreferenced sources from socket-layer filter set. 772 */ 773 static void 774 im6f_reap(struct in6_mfilter *imf) 775 { 776 struct ip6_msource *ims, *tims; 777 struct in6_msource *lims; 778 779 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 780 lims = (struct in6_msource *)ims; 781 if ((lims->im6sl_st[0] == MCAST_UNDEFINED) && 782 (lims->im6sl_st[1] == MCAST_UNDEFINED)) { 783 CTR2(KTR_MLD, "%s: free lims %p", __func__, ims); 784 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 785 free(ims, M_IN6MFILTER); 786 imf->im6f_nsrc--; 787 } 788 } 789 } 790 791 /* 792 * Purge socket-layer filter set. 793 */ 794 static void 795 im6f_purge(struct in6_mfilter *imf) 796 { 797 struct ip6_msource *ims, *tims; 798 799 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 800 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 801 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 802 free(ims, M_IN6MFILTER); 803 imf->im6f_nsrc--; 804 } 805 imf->im6f_st[0] = imf->im6f_st[1] = MCAST_UNDEFINED; 806 KASSERT(RB_EMPTY(&imf->im6f_sources), 807 ("%s: im6f_sources not empty", __func__)); 808 } 809 810 /* 811 * Look up a source filter entry for a multicast group. 812 * 813 * inm is the group descriptor to work with. 814 * addr is the IPv6 address to look up. 815 * noalloc may be non-zero to suppress allocation of sources. 816 * *pims will be set to the address of the retrieved or allocated source. 817 * 818 * SMPng: NOTE: may be called with locks held. 819 * Return 0 if successful, otherwise return a non-zero error code. 820 */ 821 static int 822 in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr, 823 const int noalloc, struct ip6_msource **pims) 824 { 825 struct ip6_msource find; 826 struct ip6_msource *ims, *nims; 827 #ifdef KTR 828 char ip6tbuf[INET6_ADDRSTRLEN]; 829 #endif 830 831 find.im6s_addr = *addr; 832 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 833 if (ims == NULL && !noalloc) { 834 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 835 return (ENOSPC); 836 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 837 M_NOWAIT | M_ZERO); 838 if (nims == NULL) 839 return (ENOMEM); 840 nims->im6s_addr = *addr; 841 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 842 ++inm->in6m_nsrc; 843 ims = nims; 844 CTR3(KTR_MLD, "%s: allocated %s as %p", __func__, 845 ip6_sprintf(ip6tbuf, addr), ims); 846 } 847 848 *pims = ims; 849 return (0); 850 } 851 852 /* 853 * Merge socket-layer source into MLD-layer source. 854 * If rollback is non-zero, perform the inverse of the merge. 855 */ 856 static void 857 im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims, 858 const int rollback) 859 { 860 int n = rollback ? -1 : 1; 861 #ifdef KTR 862 char ip6tbuf[INET6_ADDRSTRLEN]; 863 864 ip6_sprintf(ip6tbuf, &lims->im6s_addr); 865 #endif 866 867 if (lims->im6sl_st[0] == MCAST_EXCLUDE) { 868 CTR3(KTR_MLD, "%s: t1 ex -= %d on %s", __func__, n, ip6tbuf); 869 ims->im6s_st[1].ex -= n; 870 } else if (lims->im6sl_st[0] == MCAST_INCLUDE) { 871 CTR3(KTR_MLD, "%s: t1 in -= %d on %s", __func__, n, ip6tbuf); 872 ims->im6s_st[1].in -= n; 873 } 874 875 if (lims->im6sl_st[1] == MCAST_EXCLUDE) { 876 CTR3(KTR_MLD, "%s: t1 ex += %d on %s", __func__, n, ip6tbuf); 877 ims->im6s_st[1].ex += n; 878 } else if (lims->im6sl_st[1] == MCAST_INCLUDE) { 879 CTR3(KTR_MLD, "%s: t1 in += %d on %s", __func__, n, ip6tbuf); 880 ims->im6s_st[1].in += n; 881 } 882 } 883 884 /* 885 * Atomically update the global in6_multi state, when a membership's 886 * filter list is being updated in any way. 887 * 888 * imf is the per-inpcb-membership group filter pointer. 889 * A fake imf may be passed for in-kernel consumers. 890 * 891 * XXX This is a candidate for a set-symmetric-difference style loop 892 * which would eliminate the repeated lookup from root of ims nodes, 893 * as they share the same key space. 894 * 895 * If any error occurred this function will back out of refcounts 896 * and return a non-zero value. 897 */ 898 static int 899 in6m_merge(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 900 { 901 struct ip6_msource *ims, *nims; 902 struct in6_msource *lims; 903 int schanged, error; 904 int nsrc0, nsrc1; 905 906 schanged = 0; 907 error = 0; 908 nsrc1 = nsrc0 = 0; 909 910 /* 911 * Update the source filters first, as this may fail. 912 * Maintain count of in-mode filters at t0, t1. These are 913 * used to work out if we transition into ASM mode or not. 914 * Maintain a count of source filters whose state was 915 * actually modified by this operation. 916 */ 917 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 918 lims = (struct in6_msource *)ims; 919 if (lims->im6sl_st[0] == imf->im6f_st[0]) nsrc0++; 920 if (lims->im6sl_st[1] == imf->im6f_st[1]) nsrc1++; 921 if (lims->im6sl_st[0] == lims->im6sl_st[1]) continue; 922 error = in6m_get_source(inm, &lims->im6s_addr, 0, &nims); 923 ++schanged; 924 if (error) 925 break; 926 im6s_merge(nims, lims, 0); 927 } 928 if (error) { 929 struct ip6_msource *bims; 930 931 RB_FOREACH_REVERSE_FROM(ims, ip6_msource_tree, nims) { 932 lims = (struct in6_msource *)ims; 933 if (lims->im6sl_st[0] == lims->im6sl_st[1]) 934 continue; 935 (void)in6m_get_source(inm, &lims->im6s_addr, 1, &bims); 936 if (bims == NULL) 937 continue; 938 im6s_merge(bims, lims, 1); 939 } 940 goto out_reap; 941 } 942 943 CTR3(KTR_MLD, "%s: imf filters in-mode: %d at t0, %d at t1", 944 __func__, nsrc0, nsrc1); 945 946 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ 947 if (imf->im6f_st[0] == imf->im6f_st[1] && 948 imf->im6f_st[1] == MCAST_INCLUDE) { 949 if (nsrc1 == 0) { 950 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 951 --inm->in6m_st[1].iss_in; 952 } 953 } 954 955 /* Handle filter mode transition on socket. */ 956 if (imf->im6f_st[0] != imf->im6f_st[1]) { 957 CTR3(KTR_MLD, "%s: imf transition %d to %d", 958 __func__, imf->im6f_st[0], imf->im6f_st[1]); 959 960 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 961 CTR1(KTR_MLD, "%s: --ex on inm at t1", __func__); 962 --inm->in6m_st[1].iss_ex; 963 } else if (imf->im6f_st[0] == MCAST_INCLUDE) { 964 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 965 --inm->in6m_st[1].iss_in; 966 } 967 968 if (imf->im6f_st[1] == MCAST_EXCLUDE) { 969 CTR1(KTR_MLD, "%s: ex++ on inm at t1", __func__); 970 inm->in6m_st[1].iss_ex++; 971 } else if (imf->im6f_st[1] == MCAST_INCLUDE && nsrc1 > 0) { 972 CTR1(KTR_MLD, "%s: in++ on inm at t1", __func__); 973 inm->in6m_st[1].iss_in++; 974 } 975 } 976 977 /* 978 * Track inm filter state in terms of listener counts. 979 * If there are any exclusive listeners, stack-wide 980 * membership is exclusive. 981 * Otherwise, if only inclusive listeners, stack-wide is inclusive. 982 * If no listeners remain, state is undefined at t1, 983 * and the MLD lifecycle for this group should finish. 984 */ 985 if (inm->in6m_st[1].iss_ex > 0) { 986 CTR1(KTR_MLD, "%s: transition to EX", __func__); 987 inm->in6m_st[1].iss_fmode = MCAST_EXCLUDE; 988 } else if (inm->in6m_st[1].iss_in > 0) { 989 CTR1(KTR_MLD, "%s: transition to IN", __func__); 990 inm->in6m_st[1].iss_fmode = MCAST_INCLUDE; 991 } else { 992 CTR1(KTR_MLD, "%s: transition to UNDEF", __func__); 993 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 994 } 995 996 /* Decrement ASM listener count on transition out of ASM mode. */ 997 if (imf->im6f_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { 998 if ((imf->im6f_st[1] != MCAST_EXCLUDE) || 999 (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) 1000 CTR1(KTR_MLD, "%s: --asm on inm at t1", __func__); 1001 --inm->in6m_st[1].iss_asm; 1002 } 1003 1004 /* Increment ASM listener count on transition to ASM mode. */ 1005 if (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { 1006 CTR1(KTR_MLD, "%s: asm++ on inm at t1", __func__); 1007 inm->in6m_st[1].iss_asm++; 1008 } 1009 1010 CTR3(KTR_MLD, "%s: merged imf %p to inm %p", __func__, imf, inm); 1011 in6m_print(inm); 1012 1013 out_reap: 1014 if (schanged > 0) { 1015 CTR1(KTR_MLD, "%s: sources changed; reaping", __func__); 1016 in6m_reap(inm); 1017 } 1018 return (error); 1019 } 1020 1021 /* 1022 * Mark an in6_multi's filter set deltas as committed. 1023 * Called by MLD after a state change has been enqueued. 1024 */ 1025 void 1026 in6m_commit(struct in6_multi *inm) 1027 { 1028 struct ip6_msource *ims; 1029 1030 CTR2(KTR_MLD, "%s: commit inm %p", __func__, inm); 1031 CTR1(KTR_MLD, "%s: pre commit:", __func__); 1032 in6m_print(inm); 1033 1034 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 1035 ims->im6s_st[0] = ims->im6s_st[1]; 1036 } 1037 inm->in6m_st[0] = inm->in6m_st[1]; 1038 } 1039 1040 /* 1041 * Reap unreferenced nodes from an in6_multi's filter set. 1042 */ 1043 static void 1044 in6m_reap(struct in6_multi *inm) 1045 { 1046 struct ip6_msource *ims, *tims; 1047 1048 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1049 if (ims->im6s_st[0].ex > 0 || ims->im6s_st[0].in > 0 || 1050 ims->im6s_st[1].ex > 0 || ims->im6s_st[1].in > 0 || 1051 ims->im6s_stp != 0) 1052 continue; 1053 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1054 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1055 free(ims, M_IP6MSOURCE); 1056 inm->in6m_nsrc--; 1057 } 1058 } 1059 1060 /* 1061 * Purge all source nodes from an in6_multi's filter set. 1062 */ 1063 static void 1064 in6m_purge(struct in6_multi *inm) 1065 { 1066 struct ip6_msource *ims, *tims; 1067 1068 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1069 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1070 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1071 free(ims, M_IP6MSOURCE); 1072 inm->in6m_nsrc--; 1073 } 1074 } 1075 1076 /* 1077 * Join a multicast address w/o sources. 1078 * KAME compatibility entry point. 1079 * 1080 * SMPng: Assume no mc locks held by caller. 1081 */ 1082 struct in6_multi_mship * 1083 in6_joingroup(struct ifnet *ifp, struct in6_addr *mcaddr, 1084 int *errorp, int delay) 1085 { 1086 struct in6_multi_mship *imm; 1087 int error; 1088 1089 imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT); 1090 if (imm == NULL) { 1091 *errorp = ENOBUFS; 1092 return (NULL); 1093 } 1094 1095 delay = (delay * PR_FASTHZ) / hz; 1096 1097 error = in6_mc_join(ifp, mcaddr, NULL, &imm->i6mm_maddr, delay); 1098 if (error) { 1099 *errorp = error; 1100 free(imm, M_IP6MADDR); 1101 return (NULL); 1102 } 1103 1104 return (imm); 1105 } 1106 1107 /* 1108 * Leave a multicast address w/o sources. 1109 * KAME compatibility entry point. 1110 * 1111 * SMPng: Assume no mc locks held by caller. 1112 */ 1113 int 1114 in6_leavegroup(struct in6_multi_mship *imm) 1115 { 1116 1117 if (imm->i6mm_maddr != NULL) 1118 in6_mc_leave(imm->i6mm_maddr, NULL); 1119 free(imm, M_IP6MADDR); 1120 return 0; 1121 } 1122 1123 /* 1124 * Join a multicast group; unlocked entry point. 1125 * 1126 * SMPng: XXX: in6_mc_join() is called from in6_control() when upper 1127 * locks are not held. Fortunately, ifp is unlikely to have been detached 1128 * at this point, so we assume it's OK to recurse. 1129 */ 1130 int 1131 in6_mc_join(struct ifnet *ifp, const struct in6_addr *mcaddr, 1132 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1133 const int delay) 1134 { 1135 int error; 1136 1137 IN6_MULTI_LOCK(); 1138 error = in6_mc_join_locked(ifp, mcaddr, imf, pinm, delay); 1139 IN6_MULTI_UNLOCK(); 1140 1141 return (error); 1142 } 1143 1144 /* 1145 * Join a multicast group; real entry point. 1146 * 1147 * Only preserves atomicity at inm level. 1148 * NOTE: imf argument cannot be const due to sys/tree.h limitations. 1149 * 1150 * If the MLD downcall fails, the group is not joined, and an error 1151 * code is returned. 1152 */ 1153 int 1154 in6_mc_join_locked(struct ifnet *ifp, const struct in6_addr *mcaddr, 1155 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1156 const int delay) 1157 { 1158 struct in6_mfilter timf; 1159 struct in6_multi *inm; 1160 int error; 1161 #ifdef KTR 1162 char ip6tbuf[INET6_ADDRSTRLEN]; 1163 #endif 1164 1165 #ifdef INVARIANTS 1166 /* 1167 * Sanity: Check scope zone ID was set for ifp, if and 1168 * only if group is scoped to an interface. 1169 */ 1170 KASSERT(IN6_IS_ADDR_MULTICAST(mcaddr), 1171 ("%s: not a multicast address", __func__)); 1172 if (IN6_IS_ADDR_MC_LINKLOCAL(mcaddr) || 1173 IN6_IS_ADDR_MC_INTFACELOCAL(mcaddr)) { 1174 KASSERT(mcaddr->s6_addr16[1] != 0, 1175 ("%s: scope zone ID not set", __func__)); 1176 } 1177 #endif 1178 1179 IN6_MULTI_LOCK_ASSERT(); 1180 1181 CTR4(KTR_MLD, "%s: join %s on %p(%s))", __func__, 1182 ip6_sprintf(ip6tbuf, mcaddr), ifp, ifp->if_xname); 1183 1184 error = 0; 1185 inm = NULL; 1186 1187 /* 1188 * If no imf was specified (i.e. kernel consumer), 1189 * fake one up and assume it is an ASM join. 1190 */ 1191 if (imf == NULL) { 1192 im6f_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); 1193 imf = &timf; 1194 } 1195 1196 error = in6_mc_get(ifp, mcaddr, &inm); 1197 if (error) { 1198 CTR1(KTR_MLD, "%s: in6_mc_get() failure", __func__); 1199 return (error); 1200 } 1201 1202 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1203 error = in6m_merge(inm, imf); 1204 if (error) { 1205 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1206 goto out_in6m_release; 1207 } 1208 1209 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1210 error = mld_change_state(inm, delay); 1211 if (error) { 1212 CTR1(KTR_MLD, "%s: failed to update source", __func__); 1213 goto out_in6m_release; 1214 } 1215 1216 out_in6m_release: 1217 if (error) { 1218 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1219 in6m_release_locked(inm); 1220 } else { 1221 *pinm = inm; 1222 } 1223 1224 return (error); 1225 } 1226 1227 /* 1228 * Leave a multicast group; unlocked entry point. 1229 */ 1230 int 1231 in6_mc_leave(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1232 { 1233 struct ifnet *ifp; 1234 int error; 1235 1236 ifp = inm->in6m_ifp; 1237 1238 IN6_MULTI_LOCK(); 1239 error = in6_mc_leave_locked(inm, imf); 1240 IN6_MULTI_UNLOCK(); 1241 1242 return (error); 1243 } 1244 1245 /* 1246 * Leave a multicast group; real entry point. 1247 * All source filters will be expunged. 1248 * 1249 * Only preserves atomicity at inm level. 1250 * 1251 * Holding the write lock for the INP which contains imf 1252 * is highly advisable. We can't assert for it as imf does not 1253 * contain a back-pointer to the owning inp. 1254 * 1255 * Note: This is not the same as in6m_release(*) as this function also 1256 * makes a state change downcall into MLD. 1257 */ 1258 int 1259 in6_mc_leave_locked(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1260 { 1261 struct in6_mfilter timf; 1262 int error; 1263 #ifdef KTR 1264 char ip6tbuf[INET6_ADDRSTRLEN]; 1265 #endif 1266 1267 error = 0; 1268 1269 IN6_MULTI_LOCK_ASSERT(); 1270 1271 CTR5(KTR_MLD, "%s: leave inm %p, %s/%s, imf %p", __func__, 1272 inm, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1273 (in6m_is_ifp_detached(inm) ? "null" : inm->in6m_ifp->if_xname), 1274 imf); 1275 1276 /* 1277 * If no imf was specified (i.e. kernel consumer), 1278 * fake one up and assume it is an ASM join. 1279 */ 1280 if (imf == NULL) { 1281 im6f_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); 1282 imf = &timf; 1283 } 1284 1285 /* 1286 * Begin state merge transaction at MLD layer. 1287 * 1288 * As this particular invocation should not cause any memory 1289 * to be allocated, and there is no opportunity to roll back 1290 * the transaction, it MUST NOT fail. 1291 */ 1292 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1293 error = in6m_merge(inm, imf); 1294 KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); 1295 1296 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1297 error = mld_change_state(inm, 0); 1298 if (error) 1299 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1300 1301 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1302 in6m_release_locked(inm); 1303 1304 return (error); 1305 } 1306 1307 /* 1308 * Block or unblock an ASM multicast source on an inpcb. 1309 * This implements the delta-based API described in RFC 3678. 1310 * 1311 * The delta-based API applies only to exclusive-mode memberships. 1312 * An MLD downcall will be performed. 1313 * 1314 * SMPng: NOTE: Must take Giant as a join may create a new ifma. 1315 * 1316 * Return 0 if successful, otherwise return an appropriate error code. 1317 */ 1318 static int 1319 in6p_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) 1320 { 1321 struct group_source_req gsr; 1322 sockunion_t *gsa, *ssa; 1323 struct ifnet *ifp; 1324 struct in6_mfilter *imf; 1325 struct ip6_moptions *imo; 1326 struct in6_msource *ims; 1327 struct in6_multi *inm; 1328 size_t idx; 1329 uint16_t fmode; 1330 int error, doblock; 1331 #ifdef KTR 1332 char ip6tbuf[INET6_ADDRSTRLEN]; 1333 #endif 1334 1335 ifp = NULL; 1336 error = 0; 1337 doblock = 0; 1338 1339 memset(&gsr, 0, sizeof(struct group_source_req)); 1340 gsa = (sockunion_t *)&gsr.gsr_group; 1341 ssa = (sockunion_t *)&gsr.gsr_source; 1342 1343 switch (sopt->sopt_name) { 1344 case MCAST_BLOCK_SOURCE: 1345 case MCAST_UNBLOCK_SOURCE: 1346 error = sooptcopyin(sopt, &gsr, 1347 sizeof(struct group_source_req), 1348 sizeof(struct group_source_req)); 1349 if (error) 1350 return (error); 1351 1352 if (gsa->sin6.sin6_family != AF_INET6 || 1353 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1354 return (EINVAL); 1355 1356 if (ssa->sin6.sin6_family != AF_INET6 || 1357 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1358 return (EINVAL); 1359 1360 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1361 return (EADDRNOTAVAIL); 1362 1363 ifp = ifnet_byindex(gsr.gsr_interface); 1364 1365 if (sopt->sopt_name == MCAST_BLOCK_SOURCE) 1366 doblock = 1; 1367 break; 1368 1369 default: 1370 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 1371 __func__, sopt->sopt_name); 1372 return (EOPNOTSUPP); 1373 break; 1374 } 1375 1376 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1377 return (EINVAL); 1378 1379 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1380 1381 /* 1382 * Check if we are actually a member of this group. 1383 */ 1384 imo = in6p_findmoptions(inp); 1385 idx = im6o_match_group(imo, ifp, &gsa->sa); 1386 if (idx == -1 || imo->im6o_mfilters == NULL) { 1387 error = EADDRNOTAVAIL; 1388 goto out_in6p_locked; 1389 } 1390 1391 KASSERT(imo->im6o_mfilters != NULL, 1392 ("%s: im6o_mfilters not allocated", __func__)); 1393 imf = &imo->im6o_mfilters[idx]; 1394 inm = imo->im6o_membership[idx]; 1395 1396 /* 1397 * Attempting to use the delta-based API on an 1398 * non exclusive-mode membership is an error. 1399 */ 1400 fmode = imf->im6f_st[0]; 1401 if (fmode != MCAST_EXCLUDE) { 1402 error = EINVAL; 1403 goto out_in6p_locked; 1404 } 1405 1406 /* 1407 * Deal with error cases up-front: 1408 * Asked to block, but already blocked; or 1409 * Asked to unblock, but nothing to unblock. 1410 * If adding a new block entry, allocate it. 1411 */ 1412 ims = im6o_match_source(imo, idx, &ssa->sa); 1413 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { 1414 CTR3(KTR_MLD, "%s: source %s %spresent", __func__, 1415 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 1416 doblock ? "" : "not "); 1417 error = EADDRNOTAVAIL; 1418 goto out_in6p_locked; 1419 } 1420 1421 INP_WLOCK_ASSERT(inp); 1422 1423 /* 1424 * Begin state merge transaction at socket layer. 1425 */ 1426 if (doblock) { 1427 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 1428 ims = im6f_graft(imf, fmode, &ssa->sin6); 1429 if (ims == NULL) 1430 error = ENOMEM; 1431 } else { 1432 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 1433 error = im6f_prune(imf, &ssa->sin6); 1434 } 1435 1436 if (error) { 1437 CTR1(KTR_MLD, "%s: merge imf state failed", __func__); 1438 goto out_im6f_rollback; 1439 } 1440 1441 /* 1442 * Begin state merge transaction at MLD layer. 1443 */ 1444 IN6_MULTI_LOCK(); 1445 1446 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1447 error = in6m_merge(inm, imf); 1448 if (error) { 1449 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1450 goto out_im6f_rollback; 1451 } 1452 1453 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1454 error = mld_change_state(inm, 0); 1455 if (error) 1456 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1457 1458 IN6_MULTI_UNLOCK(); 1459 1460 out_im6f_rollback: 1461 if (error) 1462 im6f_rollback(imf); 1463 else 1464 im6f_commit(imf); 1465 1466 im6f_reap(imf); 1467 1468 out_in6p_locked: 1469 INP_WUNLOCK(inp); 1470 return (error); 1471 } 1472 1473 /* 1474 * Given an inpcb, return its multicast options structure pointer. Accepts 1475 * an unlocked inpcb pointer, but will return it locked. May sleep. 1476 * 1477 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 1478 * SMPng: NOTE: Returns with the INP write lock held. 1479 */ 1480 static struct ip6_moptions * 1481 in6p_findmoptions(struct inpcb *inp) 1482 { 1483 struct ip6_moptions *imo; 1484 struct in6_multi **immp; 1485 struct in6_mfilter *imfp; 1486 size_t idx; 1487 1488 INP_WLOCK(inp); 1489 if (inp->in6p_moptions != NULL) 1490 return (inp->in6p_moptions); 1491 1492 INP_WUNLOCK(inp); 1493 1494 imo = malloc(sizeof(*imo), M_IP6MOPTS, M_WAITOK); 1495 immp = malloc(sizeof(*immp) * IPV6_MIN_MEMBERSHIPS, M_IP6MOPTS, 1496 M_WAITOK | M_ZERO); 1497 imfp = malloc(sizeof(struct in6_mfilter) * IPV6_MIN_MEMBERSHIPS, 1498 M_IN6MFILTER, M_WAITOK); 1499 1500 imo->im6o_multicast_ifp = NULL; 1501 imo->im6o_multicast_hlim = V_ip6_defmcasthlim; 1502 imo->im6o_multicast_loop = in6_mcast_loop; 1503 imo->im6o_num_memberships = 0; 1504 imo->im6o_max_memberships = IPV6_MIN_MEMBERSHIPS; 1505 imo->im6o_membership = immp; 1506 1507 /* Initialize per-group source filters. */ 1508 for (idx = 0; idx < IPV6_MIN_MEMBERSHIPS; idx++) 1509 im6f_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); 1510 imo->im6o_mfilters = imfp; 1511 1512 INP_WLOCK(inp); 1513 if (inp->in6p_moptions != NULL) { 1514 free(imfp, M_IN6MFILTER); 1515 free(immp, M_IP6MOPTS); 1516 free(imo, M_IP6MOPTS); 1517 return (inp->in6p_moptions); 1518 } 1519 inp->in6p_moptions = imo; 1520 return (imo); 1521 } 1522 1523 /* 1524 * Discard the IPv6 multicast options (and source filters). 1525 * 1526 * SMPng: NOTE: assumes INP write lock is held. 1527 */ 1528 void 1529 ip6_freemoptions(struct ip6_moptions *imo) 1530 { 1531 struct in6_mfilter *imf; 1532 size_t idx, nmships; 1533 1534 KASSERT(imo != NULL, ("%s: ip6_moptions is NULL", __func__)); 1535 1536 nmships = imo->im6o_num_memberships; 1537 for (idx = 0; idx < nmships; ++idx) { 1538 imf = imo->im6o_mfilters ? &imo->im6o_mfilters[idx] : NULL; 1539 if (imf) 1540 im6f_leave(imf); 1541 /* XXX this will thrash the lock(s) */ 1542 (void)in6_mc_leave(imo->im6o_membership[idx], imf); 1543 if (imf) 1544 im6f_purge(imf); 1545 } 1546 1547 if (imo->im6o_mfilters) 1548 free(imo->im6o_mfilters, M_IN6MFILTER); 1549 free(imo->im6o_membership, M_IP6MOPTS); 1550 free(imo, M_IP6MOPTS); 1551 } 1552 1553 /* 1554 * Atomically get source filters on a socket for an IPv6 multicast group. 1555 * Called with INP lock held; returns with lock released. 1556 */ 1557 static int 1558 in6p_get_source_filters(struct inpcb *inp, struct sockopt *sopt) 1559 { 1560 struct __msfilterreq msfr; 1561 sockunion_t *gsa; 1562 struct ifnet *ifp; 1563 struct ip6_moptions *imo; 1564 struct in6_mfilter *imf; 1565 struct ip6_msource *ims; 1566 struct in6_msource *lims; 1567 struct sockaddr_in6 *psin; 1568 struct sockaddr_storage *ptss; 1569 struct sockaddr_storage *tss; 1570 int error; 1571 size_t idx, nsrcs, ncsrcs; 1572 1573 INP_WLOCK_ASSERT(inp); 1574 1575 imo = inp->in6p_moptions; 1576 KASSERT(imo != NULL, ("%s: null ip6_moptions", __func__)); 1577 1578 INP_WUNLOCK(inp); 1579 1580 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 1581 sizeof(struct __msfilterreq)); 1582 if (error) 1583 return (error); 1584 1585 if (msfr.msfr_group.ss_family != AF_INET6 || 1586 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 1587 return (EINVAL); 1588 1589 gsa = (sockunion_t *)&msfr.msfr_group; 1590 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1591 return (EINVAL); 1592 1593 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 1594 return (EADDRNOTAVAIL); 1595 ifp = ifnet_byindex(msfr.msfr_ifindex); 1596 if (ifp == NULL) 1597 return (EADDRNOTAVAIL); 1598 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1599 1600 INP_WLOCK(inp); 1601 1602 /* 1603 * Lookup group on the socket. 1604 */ 1605 idx = im6o_match_group(imo, ifp, &gsa->sa); 1606 if (idx == -1 || imo->im6o_mfilters == NULL) { 1607 INP_WUNLOCK(inp); 1608 return (EADDRNOTAVAIL); 1609 } 1610 imf = &imo->im6o_mfilters[idx]; 1611 1612 /* 1613 * Ignore memberships which are in limbo. 1614 */ 1615 if (imf->im6f_st[1] == MCAST_UNDEFINED) { 1616 INP_WUNLOCK(inp); 1617 return (EAGAIN); 1618 } 1619 msfr.msfr_fmode = imf->im6f_st[1]; 1620 1621 /* 1622 * If the user specified a buffer, copy out the source filter 1623 * entries to userland gracefully. 1624 * We only copy out the number of entries which userland 1625 * has asked for, but we always tell userland how big the 1626 * buffer really needs to be. 1627 */ 1628 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 1629 msfr.msfr_nsrcs = in6_mcast_maxsocksrc; 1630 tss = NULL; 1631 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { 1632 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 1633 M_TEMP, M_NOWAIT | M_ZERO); 1634 if (tss == NULL) { 1635 INP_WUNLOCK(inp); 1636 return (ENOBUFS); 1637 } 1638 } 1639 1640 /* 1641 * Count number of sources in-mode at t0. 1642 * If buffer space exists and remains, copy out source entries. 1643 */ 1644 nsrcs = msfr.msfr_nsrcs; 1645 ncsrcs = 0; 1646 ptss = tss; 1647 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 1648 lims = (struct in6_msource *)ims; 1649 if (lims->im6sl_st[0] == MCAST_UNDEFINED || 1650 lims->im6sl_st[0] != imf->im6f_st[0]) 1651 continue; 1652 ++ncsrcs; 1653 if (tss != NULL && nsrcs > 0) { 1654 psin = (struct sockaddr_in6 *)ptss; 1655 psin->sin6_family = AF_INET6; 1656 psin->sin6_len = sizeof(struct sockaddr_in6); 1657 psin->sin6_addr = lims->im6s_addr; 1658 psin->sin6_port = 0; 1659 --nsrcs; 1660 ++ptss; 1661 } 1662 } 1663 1664 INP_WUNLOCK(inp); 1665 1666 if (tss != NULL) { 1667 error = copyout(tss, msfr.msfr_srcs, 1668 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 1669 free(tss, M_TEMP); 1670 if (error) 1671 return (error); 1672 } 1673 1674 msfr.msfr_nsrcs = ncsrcs; 1675 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); 1676 1677 return (error); 1678 } 1679 1680 /* 1681 * Return the IP multicast options in response to user getsockopt(). 1682 */ 1683 int 1684 ip6_getmoptions(struct inpcb *inp, struct sockopt *sopt) 1685 { 1686 struct ip6_moptions *im6o; 1687 int error; 1688 u_int optval; 1689 1690 INP_WLOCK(inp); 1691 im6o = inp->in6p_moptions; 1692 /* 1693 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 1694 * or is a divert socket, reject it. 1695 */ 1696 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 1697 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 1698 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { 1699 INP_WUNLOCK(inp); 1700 return (EOPNOTSUPP); 1701 } 1702 1703 error = 0; 1704 switch (sopt->sopt_name) { 1705 case IPV6_MULTICAST_IF: 1706 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) { 1707 optval = 0; 1708 } else { 1709 optval = im6o->im6o_multicast_ifp->if_index; 1710 } 1711 INP_WUNLOCK(inp); 1712 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1713 break; 1714 1715 case IPV6_MULTICAST_HOPS: 1716 if (im6o == NULL) 1717 optval = V_ip6_defmcasthlim; 1718 else 1719 optval = im6o->im6o_multicast_hlim; 1720 INP_WUNLOCK(inp); 1721 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1722 break; 1723 1724 case IPV6_MULTICAST_LOOP: 1725 if (im6o == NULL) 1726 optval = in6_mcast_loop; /* XXX VIMAGE */ 1727 else 1728 optval = im6o->im6o_multicast_loop; 1729 INP_WUNLOCK(inp); 1730 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1731 break; 1732 1733 case IPV6_MSFILTER: 1734 if (im6o == NULL) { 1735 error = EADDRNOTAVAIL; 1736 INP_WUNLOCK(inp); 1737 } else { 1738 error = in6p_get_source_filters(inp, sopt); 1739 } 1740 break; 1741 1742 default: 1743 INP_WUNLOCK(inp); 1744 error = ENOPROTOOPT; 1745 break; 1746 } 1747 1748 INP_UNLOCK_ASSERT(inp); 1749 1750 return (error); 1751 } 1752 1753 /* 1754 * Look up the ifnet to use for a multicast group membership, 1755 * given the address of an IPv6 group. 1756 * 1757 * This routine exists to support legacy IPv6 multicast applications. 1758 * 1759 * If inp is non-NULL, use this socket's current FIB number for any 1760 * required FIB lookup. Look up the group address in the unicast FIB, 1761 * and use its ifp; usually, this points to the default next-hop. 1762 * If the FIB lookup fails, return NULL. 1763 * 1764 * FUTURE: Support multiple forwarding tables for IPv6. 1765 * 1766 * Returns NULL if no ifp could be found. 1767 */ 1768 static struct ifnet * 1769 in6p_lookup_mcast_ifp(const struct inpcb *in6p, 1770 const struct sockaddr_in6 *gsin6) 1771 { 1772 struct route_in6 ro6; 1773 struct ifnet *ifp; 1774 1775 KASSERT(in6p->inp_vflag & INP_IPV6, 1776 ("%s: not INP_IPV6 inpcb", __func__)); 1777 KASSERT(gsin6->sin6_family == AF_INET6, 1778 ("%s: not AF_INET6 group", __func__)); 1779 KASSERT(IN6_IS_ADDR_MULTICAST(&gsin6->sin6_addr), 1780 ("%s: not multicast", __func__)); 1781 1782 ifp = NULL; 1783 memset(&ro6, 0, sizeof(struct route_in6)); 1784 memcpy(&ro6.ro_dst, gsin6, sizeof(struct sockaddr_in6)); 1785 rtalloc_ign_fib((struct route *)&ro6, 0, 1786 in6p ? in6p->inp_inc.inc_fibnum : RT_DEFAULT_FIB); 1787 if (ro6.ro_rt != NULL) { 1788 ifp = ro6.ro_rt->rt_ifp; 1789 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 1790 RTFREE(ro6.ro_rt); 1791 } 1792 1793 return (ifp); 1794 } 1795 1796 /* 1797 * Join an IPv6 multicast group, possibly with a source. 1798 * 1799 * FIXME: The KAME use of the unspecified address (::) 1800 * to join *all* multicast groups is currently unsupported. 1801 */ 1802 static int 1803 in6p_join_group(struct inpcb *inp, struct sockopt *sopt) 1804 { 1805 struct group_source_req gsr; 1806 sockunion_t *gsa, *ssa; 1807 struct ifnet *ifp; 1808 struct in6_mfilter *imf; 1809 struct ip6_moptions *imo; 1810 struct in6_multi *inm; 1811 struct in6_msource *lims; 1812 size_t idx; 1813 int error, is_new; 1814 1815 ifp = NULL; 1816 imf = NULL; 1817 lims = NULL; 1818 error = 0; 1819 is_new = 0; 1820 1821 memset(&gsr, 0, sizeof(struct group_source_req)); 1822 gsa = (sockunion_t *)&gsr.gsr_group; 1823 gsa->ss.ss_family = AF_UNSPEC; 1824 ssa = (sockunion_t *)&gsr.gsr_source; 1825 ssa->ss.ss_family = AF_UNSPEC; 1826 1827 /* 1828 * Chew everything into struct group_source_req. 1829 * Overwrite the port field if present, as the sockaddr 1830 * being copied in may be matched with a binary comparison. 1831 * Ignore passed-in scope ID. 1832 */ 1833 switch (sopt->sopt_name) { 1834 case IPV6_JOIN_GROUP: { 1835 struct ipv6_mreq mreq; 1836 1837 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 1838 sizeof(struct ipv6_mreq)); 1839 if (error) 1840 return (error); 1841 1842 gsa->sin6.sin6_family = AF_INET6; 1843 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 1844 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 1845 1846 if (mreq.ipv6mr_interface == 0) { 1847 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 1848 } else { 1849 if (mreq.ipv6mr_interface < 0 || 1850 V_if_index < mreq.ipv6mr_interface) 1851 return (EADDRNOTAVAIL); 1852 ifp = ifnet_byindex(mreq.ipv6mr_interface); 1853 } 1854 CTR3(KTR_MLD, "%s: ipv6mr_interface = %d, ifp = %p", 1855 __func__, mreq.ipv6mr_interface, ifp); 1856 } break; 1857 1858 case MCAST_JOIN_GROUP: 1859 case MCAST_JOIN_SOURCE_GROUP: 1860 if (sopt->sopt_name == MCAST_JOIN_GROUP) { 1861 error = sooptcopyin(sopt, &gsr, 1862 sizeof(struct group_req), 1863 sizeof(struct group_req)); 1864 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1865 error = sooptcopyin(sopt, &gsr, 1866 sizeof(struct group_source_req), 1867 sizeof(struct group_source_req)); 1868 } 1869 if (error) 1870 return (error); 1871 1872 if (gsa->sin6.sin6_family != AF_INET6 || 1873 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1874 return (EINVAL); 1875 1876 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1877 if (ssa->sin6.sin6_family != AF_INET6 || 1878 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1879 return (EINVAL); 1880 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 1881 return (EINVAL); 1882 /* 1883 * TODO: Validate embedded scope ID in source 1884 * list entry against passed-in ifp, if and only 1885 * if source list filter entry is iface or node local. 1886 */ 1887 in6_clearscope(&ssa->sin6.sin6_addr); 1888 ssa->sin6.sin6_port = 0; 1889 ssa->sin6.sin6_scope_id = 0; 1890 } 1891 1892 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1893 return (EADDRNOTAVAIL); 1894 ifp = ifnet_byindex(gsr.gsr_interface); 1895 break; 1896 1897 default: 1898 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 1899 __func__, sopt->sopt_name); 1900 return (EOPNOTSUPP); 1901 break; 1902 } 1903 1904 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1905 return (EINVAL); 1906 1907 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) 1908 return (EADDRNOTAVAIL); 1909 1910 gsa->sin6.sin6_port = 0; 1911 gsa->sin6.sin6_scope_id = 0; 1912 1913 /* 1914 * Always set the scope zone ID on memberships created from userland. 1915 * Use the passed-in ifp to do this. 1916 * XXX The in6_setscope() return value is meaningless. 1917 * XXX SCOPE6_LOCK() is taken by in6_setscope(). 1918 */ 1919 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1920 1921 imo = in6p_findmoptions(inp); 1922 idx = im6o_match_group(imo, ifp, &gsa->sa); 1923 if (idx == -1) { 1924 is_new = 1; 1925 } else { 1926 inm = imo->im6o_membership[idx]; 1927 imf = &imo->im6o_mfilters[idx]; 1928 if (ssa->ss.ss_family != AF_UNSPEC) { 1929 /* 1930 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership 1931 * is an error. On an existing inclusive membership, 1932 * it just adds the source to the filter list. 1933 */ 1934 if (imf->im6f_st[1] != MCAST_INCLUDE) { 1935 error = EINVAL; 1936 goto out_in6p_locked; 1937 } 1938 /* 1939 * Throw out duplicates. 1940 * 1941 * XXX FIXME: This makes a naive assumption that 1942 * even if entries exist for *ssa in this imf, 1943 * they will be rejected as dupes, even if they 1944 * are not valid in the current mode (in-mode). 1945 * 1946 * in6_msource is transactioned just as for anything 1947 * else in SSM -- but note naive use of in6m_graft() 1948 * below for allocating new filter entries. 1949 * 1950 * This is only an issue if someone mixes the 1951 * full-state SSM API with the delta-based API, 1952 * which is discouraged in the relevant RFCs. 1953 */ 1954 lims = im6o_match_source(imo, idx, &ssa->sa); 1955 if (lims != NULL /*&& 1956 lims->im6sl_st[1] == MCAST_INCLUDE*/) { 1957 error = EADDRNOTAVAIL; 1958 goto out_in6p_locked; 1959 } 1960 } else { 1961 /* 1962 * MCAST_JOIN_GROUP alone, on any existing membership, 1963 * is rejected, to stop the same inpcb tying up 1964 * multiple refs to the in_multi. 1965 * On an existing inclusive membership, this is also 1966 * an error; if you want to change filter mode, 1967 * you must use the userland API setsourcefilter(). 1968 * XXX We don't reject this for imf in UNDEFINED 1969 * state at t1, because allocation of a filter 1970 * is atomic with allocation of a membership. 1971 */ 1972 error = EINVAL; 1973 goto out_in6p_locked; 1974 } 1975 } 1976 1977 /* 1978 * Begin state merge transaction at socket layer. 1979 */ 1980 INP_WLOCK_ASSERT(inp); 1981 1982 if (is_new) { 1983 if (imo->im6o_num_memberships == imo->im6o_max_memberships) { 1984 error = im6o_grow(imo); 1985 if (error) 1986 goto out_in6p_locked; 1987 } 1988 /* 1989 * Allocate the new slot upfront so we can deal with 1990 * grafting the new source filter in same code path 1991 * as for join-source on existing membership. 1992 */ 1993 idx = imo->im6o_num_memberships; 1994 imo->im6o_membership[idx] = NULL; 1995 imo->im6o_num_memberships++; 1996 KASSERT(imo->im6o_mfilters != NULL, 1997 ("%s: im6f_mfilters vector was not allocated", __func__)); 1998 imf = &imo->im6o_mfilters[idx]; 1999 KASSERT(RB_EMPTY(&imf->im6f_sources), 2000 ("%s: im6f_sources not empty", __func__)); 2001 } 2002 2003 /* 2004 * Graft new source into filter list for this inpcb's 2005 * membership of the group. The in6_multi may not have 2006 * been allocated yet if this is a new membership, however, 2007 * the in_mfilter slot will be allocated and must be initialized. 2008 * 2009 * Note: Grafting of exclusive mode filters doesn't happen 2010 * in this path. 2011 * XXX: Should check for non-NULL lims (node exists but may 2012 * not be in-mode) for interop with full-state API. 2013 */ 2014 if (ssa->ss.ss_family != AF_UNSPEC) { 2015 /* Membership starts in IN mode */ 2016 if (is_new) { 2017 CTR1(KTR_MLD, "%s: new join w/source", __func__); 2018 im6f_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE); 2019 } else { 2020 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 2021 } 2022 lims = im6f_graft(imf, MCAST_INCLUDE, &ssa->sin6); 2023 if (lims == NULL) { 2024 CTR1(KTR_MLD, "%s: merge imf state failed", 2025 __func__); 2026 error = ENOMEM; 2027 goto out_im6o_free; 2028 } 2029 } else { 2030 /* No address specified; Membership starts in EX mode */ 2031 if (is_new) { 2032 CTR1(KTR_MLD, "%s: new join w/o source", __func__); 2033 im6f_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE); 2034 } 2035 } 2036 2037 /* 2038 * Begin state merge transaction at MLD layer. 2039 */ 2040 IN6_MULTI_LOCK(); 2041 2042 if (is_new) { 2043 error = in6_mc_join_locked(ifp, &gsa->sin6.sin6_addr, imf, 2044 &inm, 0); 2045 if (error) 2046 goto out_im6o_free; 2047 imo->im6o_membership[idx] = inm; 2048 } else { 2049 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2050 error = in6m_merge(inm, imf); 2051 if (error) { 2052 CTR1(KTR_MLD, "%s: failed to merge inm state", 2053 __func__); 2054 goto out_im6f_rollback; 2055 } 2056 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2057 error = mld_change_state(inm, 0); 2058 if (error) { 2059 CTR1(KTR_MLD, "%s: failed mld downcall", 2060 __func__); 2061 goto out_im6f_rollback; 2062 } 2063 } 2064 2065 IN6_MULTI_UNLOCK(); 2066 2067 out_im6f_rollback: 2068 INP_WLOCK_ASSERT(inp); 2069 if (error) { 2070 im6f_rollback(imf); 2071 if (is_new) 2072 im6f_purge(imf); 2073 else 2074 im6f_reap(imf); 2075 } else { 2076 im6f_commit(imf); 2077 } 2078 2079 out_im6o_free: 2080 if (error && is_new) { 2081 imo->im6o_membership[idx] = NULL; 2082 --imo->im6o_num_memberships; 2083 } 2084 2085 out_in6p_locked: 2086 INP_WUNLOCK(inp); 2087 return (error); 2088 } 2089 2090 /* 2091 * Leave an IPv6 multicast group on an inpcb, possibly with a source. 2092 */ 2093 static int 2094 in6p_leave_group(struct inpcb *inp, struct sockopt *sopt) 2095 { 2096 struct ipv6_mreq mreq; 2097 struct group_source_req gsr; 2098 sockunion_t *gsa, *ssa; 2099 struct ifnet *ifp; 2100 struct in6_mfilter *imf; 2101 struct ip6_moptions *imo; 2102 struct in6_msource *ims; 2103 struct in6_multi *inm; 2104 uint32_t ifindex; 2105 size_t idx; 2106 int error, is_final; 2107 #ifdef KTR 2108 char ip6tbuf[INET6_ADDRSTRLEN]; 2109 #endif 2110 2111 ifp = NULL; 2112 ifindex = 0; 2113 error = 0; 2114 is_final = 1; 2115 2116 memset(&gsr, 0, sizeof(struct group_source_req)); 2117 gsa = (sockunion_t *)&gsr.gsr_group; 2118 gsa->ss.ss_family = AF_UNSPEC; 2119 ssa = (sockunion_t *)&gsr.gsr_source; 2120 ssa->ss.ss_family = AF_UNSPEC; 2121 2122 /* 2123 * Chew everything passed in up into a struct group_source_req 2124 * as that is easier to process. 2125 * Note: Any embedded scope ID in the multicast group passed 2126 * in by userland is ignored, the interface index is the recommended 2127 * mechanism to specify an interface; see below. 2128 */ 2129 switch (sopt->sopt_name) { 2130 case IPV6_LEAVE_GROUP: 2131 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 2132 sizeof(struct ipv6_mreq)); 2133 if (error) 2134 return (error); 2135 gsa->sin6.sin6_family = AF_INET6; 2136 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 2137 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 2138 gsa->sin6.sin6_port = 0; 2139 gsa->sin6.sin6_scope_id = 0; 2140 ifindex = mreq.ipv6mr_interface; 2141 break; 2142 2143 case MCAST_LEAVE_GROUP: 2144 case MCAST_LEAVE_SOURCE_GROUP: 2145 if (sopt->sopt_name == MCAST_LEAVE_GROUP) { 2146 error = sooptcopyin(sopt, &gsr, 2147 sizeof(struct group_req), 2148 sizeof(struct group_req)); 2149 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2150 error = sooptcopyin(sopt, &gsr, 2151 sizeof(struct group_source_req), 2152 sizeof(struct group_source_req)); 2153 } 2154 if (error) 2155 return (error); 2156 2157 if (gsa->sin6.sin6_family != AF_INET6 || 2158 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2159 return (EINVAL); 2160 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2161 if (ssa->sin6.sin6_family != AF_INET6 || 2162 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2163 return (EINVAL); 2164 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 2165 return (EINVAL); 2166 /* 2167 * TODO: Validate embedded scope ID in source 2168 * list entry against passed-in ifp, if and only 2169 * if source list filter entry is iface or node local. 2170 */ 2171 in6_clearscope(&ssa->sin6.sin6_addr); 2172 } 2173 gsa->sin6.sin6_port = 0; 2174 gsa->sin6.sin6_scope_id = 0; 2175 ifindex = gsr.gsr_interface; 2176 break; 2177 2178 default: 2179 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 2180 __func__, sopt->sopt_name); 2181 return (EOPNOTSUPP); 2182 break; 2183 } 2184 2185 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2186 return (EINVAL); 2187 2188 /* 2189 * Validate interface index if provided. If no interface index 2190 * was provided separately, attempt to look the membership up 2191 * from the default scope as a last resort to disambiguate 2192 * the membership we are being asked to leave. 2193 * XXX SCOPE6 lock potentially taken here. 2194 */ 2195 if (ifindex != 0) { 2196 if (ifindex < 0 || V_if_index < ifindex) 2197 return (EADDRNOTAVAIL); 2198 ifp = ifnet_byindex(ifindex); 2199 if (ifp == NULL) 2200 return (EADDRNOTAVAIL); 2201 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2202 } else { 2203 error = sa6_embedscope(&gsa->sin6, V_ip6_use_defzone); 2204 if (error) 2205 return (EADDRNOTAVAIL); 2206 /* 2207 * Some badly behaved applications don't pass an ifindex 2208 * or a scope ID, which is an API violation. In this case, 2209 * perform a lookup as per a v6 join. 2210 * 2211 * XXX For now, stomp on zone ID for the corner case. 2212 * This is not the 'KAME way', but we need to see the ifp 2213 * directly until such time as this implementation is 2214 * refactored, assuming the scope IDs are the way to go. 2215 */ 2216 ifindex = ntohs(gsa->sin6.sin6_addr.s6_addr16[1]); 2217 if (ifindex == 0) { 2218 CTR2(KTR_MLD, "%s: warning: no ifindex, looking up " 2219 "ifp for group %s.", __func__, 2220 ip6_sprintf(ip6tbuf, &gsa->sin6.sin6_addr)); 2221 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 2222 } else { 2223 ifp = ifnet_byindex(ifindex); 2224 } 2225 if (ifp == NULL) 2226 return (EADDRNOTAVAIL); 2227 } 2228 2229 CTR2(KTR_MLD, "%s: ifp = %p", __func__, ifp); 2230 KASSERT(ifp != NULL, ("%s: ifp did not resolve", __func__)); 2231 2232 /* 2233 * Find the membership in the membership array. 2234 */ 2235 imo = in6p_findmoptions(inp); 2236 idx = im6o_match_group(imo, ifp, &gsa->sa); 2237 if (idx == -1) { 2238 error = EADDRNOTAVAIL; 2239 goto out_in6p_locked; 2240 } 2241 inm = imo->im6o_membership[idx]; 2242 imf = &imo->im6o_mfilters[idx]; 2243 2244 if (ssa->ss.ss_family != AF_UNSPEC) 2245 is_final = 0; 2246 2247 /* 2248 * Begin state merge transaction at socket layer. 2249 */ 2250 INP_WLOCK_ASSERT(inp); 2251 2252 /* 2253 * If we were instructed only to leave a given source, do so. 2254 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. 2255 */ 2256 if (is_final) { 2257 im6f_leave(imf); 2258 } else { 2259 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 2260 error = EADDRNOTAVAIL; 2261 goto out_in6p_locked; 2262 } 2263 ims = im6o_match_source(imo, idx, &ssa->sa); 2264 if (ims == NULL) { 2265 CTR3(KTR_MLD, "%s: source %p %spresent", __func__, 2266 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 2267 "not "); 2268 error = EADDRNOTAVAIL; 2269 goto out_in6p_locked; 2270 } 2271 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 2272 error = im6f_prune(imf, &ssa->sin6); 2273 if (error) { 2274 CTR1(KTR_MLD, "%s: merge imf state failed", 2275 __func__); 2276 goto out_in6p_locked; 2277 } 2278 } 2279 2280 /* 2281 * Begin state merge transaction at MLD layer. 2282 */ 2283 IN6_MULTI_LOCK(); 2284 2285 if (is_final) { 2286 /* 2287 * Give up the multicast address record to which 2288 * the membership points. 2289 */ 2290 (void)in6_mc_leave_locked(inm, imf); 2291 } else { 2292 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2293 error = in6m_merge(inm, imf); 2294 if (error) { 2295 CTR1(KTR_MLD, "%s: failed to merge inm state", 2296 __func__); 2297 goto out_im6f_rollback; 2298 } 2299 2300 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2301 error = mld_change_state(inm, 0); 2302 if (error) { 2303 CTR1(KTR_MLD, "%s: failed mld downcall", 2304 __func__); 2305 } 2306 } 2307 2308 IN6_MULTI_UNLOCK(); 2309 2310 out_im6f_rollback: 2311 if (error) 2312 im6f_rollback(imf); 2313 else 2314 im6f_commit(imf); 2315 2316 im6f_reap(imf); 2317 2318 if (is_final) { 2319 /* Remove the gap in the membership array. */ 2320 for (++idx; idx < imo->im6o_num_memberships; ++idx) { 2321 imo->im6o_membership[idx-1] = imo->im6o_membership[idx]; 2322 imo->im6o_mfilters[idx-1] = imo->im6o_mfilters[idx]; 2323 } 2324 imo->im6o_num_memberships--; 2325 } 2326 2327 out_in6p_locked: 2328 INP_WUNLOCK(inp); 2329 return (error); 2330 } 2331 2332 /* 2333 * Select the interface for transmitting IPv6 multicast datagrams. 2334 * 2335 * Either an instance of struct in6_addr or an instance of struct ipv6_mreqn 2336 * may be passed to this socket option. An address of in6addr_any or an 2337 * interface index of 0 is used to remove a previous selection. 2338 * When no interface is selected, one is chosen for every send. 2339 */ 2340 static int 2341 in6p_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) 2342 { 2343 struct ifnet *ifp; 2344 struct ip6_moptions *imo; 2345 u_int ifindex; 2346 int error; 2347 2348 if (sopt->sopt_valsize != sizeof(u_int)) 2349 return (EINVAL); 2350 2351 error = sooptcopyin(sopt, &ifindex, sizeof(u_int), sizeof(u_int)); 2352 if (error) 2353 return (error); 2354 if (ifindex < 0 || V_if_index < ifindex) 2355 return (EINVAL); 2356 2357 ifp = ifnet_byindex(ifindex); 2358 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) 2359 return (EADDRNOTAVAIL); 2360 2361 imo = in6p_findmoptions(inp); 2362 imo->im6o_multicast_ifp = ifp; 2363 INP_WUNLOCK(inp); 2364 2365 return (0); 2366 } 2367 2368 /* 2369 * Atomically set source filters on a socket for an IPv6 multicast group. 2370 * 2371 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 2372 */ 2373 static int 2374 in6p_set_source_filters(struct inpcb *inp, struct sockopt *sopt) 2375 { 2376 struct __msfilterreq msfr; 2377 sockunion_t *gsa; 2378 struct ifnet *ifp; 2379 struct in6_mfilter *imf; 2380 struct ip6_moptions *imo; 2381 struct in6_multi *inm; 2382 size_t idx; 2383 int error; 2384 2385 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 2386 sizeof(struct __msfilterreq)); 2387 if (error) 2388 return (error); 2389 2390 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 2391 return (ENOBUFS); 2392 2393 if (msfr.msfr_fmode != MCAST_EXCLUDE && 2394 msfr.msfr_fmode != MCAST_INCLUDE) 2395 return (EINVAL); 2396 2397 if (msfr.msfr_group.ss_family != AF_INET6 || 2398 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 2399 return (EINVAL); 2400 2401 gsa = (sockunion_t *)&msfr.msfr_group; 2402 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2403 return (EINVAL); 2404 2405 gsa->sin6.sin6_port = 0; /* ignore port */ 2406 2407 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 2408 return (EADDRNOTAVAIL); 2409 ifp = ifnet_byindex(msfr.msfr_ifindex); 2410 if (ifp == NULL) 2411 return (EADDRNOTAVAIL); 2412 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2413 2414 /* 2415 * Take the INP write lock. 2416 * Check if this socket is a member of this group. 2417 */ 2418 imo = in6p_findmoptions(inp); 2419 idx = im6o_match_group(imo, ifp, &gsa->sa); 2420 if (idx == -1 || imo->im6o_mfilters == NULL) { 2421 error = EADDRNOTAVAIL; 2422 goto out_in6p_locked; 2423 } 2424 inm = imo->im6o_membership[idx]; 2425 imf = &imo->im6o_mfilters[idx]; 2426 2427 /* 2428 * Begin state merge transaction at socket layer. 2429 */ 2430 INP_WLOCK_ASSERT(inp); 2431 2432 imf->im6f_st[1] = msfr.msfr_fmode; 2433 2434 /* 2435 * Apply any new source filters, if present. 2436 * Make a copy of the user-space source vector so 2437 * that we may copy them with a single copyin. This 2438 * allows us to deal with page faults up-front. 2439 */ 2440 if (msfr.msfr_nsrcs > 0) { 2441 struct in6_msource *lims; 2442 struct sockaddr_in6 *psin; 2443 struct sockaddr_storage *kss, *pkss; 2444 int i; 2445 2446 INP_WUNLOCK(inp); 2447 2448 CTR2(KTR_MLD, "%s: loading %lu source list entries", 2449 __func__, (unsigned long)msfr.msfr_nsrcs); 2450 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 2451 M_TEMP, M_WAITOK); 2452 error = copyin(msfr.msfr_srcs, kss, 2453 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 2454 if (error) { 2455 free(kss, M_TEMP); 2456 return (error); 2457 } 2458 2459 INP_WLOCK(inp); 2460 2461 /* 2462 * Mark all source filters as UNDEFINED at t1. 2463 * Restore new group filter mode, as im6f_leave() 2464 * will set it to INCLUDE. 2465 */ 2466 im6f_leave(imf); 2467 imf->im6f_st[1] = msfr.msfr_fmode; 2468 2469 /* 2470 * Update socket layer filters at t1, lazy-allocating 2471 * new entries. This saves a bunch of memory at the 2472 * cost of one RB_FIND() per source entry; duplicate 2473 * entries in the msfr_nsrcs vector are ignored. 2474 * If we encounter an error, rollback transaction. 2475 * 2476 * XXX This too could be replaced with a set-symmetric 2477 * difference like loop to avoid walking from root 2478 * every time, as the key space is common. 2479 */ 2480 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { 2481 psin = (struct sockaddr_in6 *)pkss; 2482 if (psin->sin6_family != AF_INET6) { 2483 error = EAFNOSUPPORT; 2484 break; 2485 } 2486 if (psin->sin6_len != sizeof(struct sockaddr_in6)) { 2487 error = EINVAL; 2488 break; 2489 } 2490 if (IN6_IS_ADDR_MULTICAST(&psin->sin6_addr)) { 2491 error = EINVAL; 2492 break; 2493 } 2494 /* 2495 * TODO: Validate embedded scope ID in source 2496 * list entry against passed-in ifp, if and only 2497 * if source list filter entry is iface or node local. 2498 */ 2499 in6_clearscope(&psin->sin6_addr); 2500 error = im6f_get_source(imf, psin, &lims); 2501 if (error) 2502 break; 2503 lims->im6sl_st[1] = imf->im6f_st[1]; 2504 } 2505 free(kss, M_TEMP); 2506 } 2507 2508 if (error) 2509 goto out_im6f_rollback; 2510 2511 INP_WLOCK_ASSERT(inp); 2512 IN6_MULTI_LOCK(); 2513 2514 /* 2515 * Begin state merge transaction at MLD layer. 2516 */ 2517 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2518 error = in6m_merge(inm, imf); 2519 if (error) { 2520 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 2521 goto out_im6f_rollback; 2522 } 2523 2524 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2525 error = mld_change_state(inm, 0); 2526 if (error) 2527 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 2528 2529 IN6_MULTI_UNLOCK(); 2530 2531 out_im6f_rollback: 2532 if (error) 2533 im6f_rollback(imf); 2534 else 2535 im6f_commit(imf); 2536 2537 im6f_reap(imf); 2538 2539 out_in6p_locked: 2540 INP_WUNLOCK(inp); 2541 return (error); 2542 } 2543 2544 /* 2545 * Set the IP multicast options in response to user setsockopt(). 2546 * 2547 * Many of the socket options handled in this function duplicate the 2548 * functionality of socket options in the regular unicast API. However, 2549 * it is not possible to merge the duplicate code, because the idempotence 2550 * of the IPv6 multicast part of the BSD Sockets API must be preserved; 2551 * the effects of these options must be treated as separate and distinct. 2552 * 2553 * SMPng: XXX: Unlocked read of inp_socket believed OK. 2554 */ 2555 int 2556 ip6_setmoptions(struct inpcb *inp, struct sockopt *sopt) 2557 { 2558 struct ip6_moptions *im6o; 2559 int error; 2560 2561 error = 0; 2562 2563 /* 2564 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 2565 * or is a divert socket, reject it. 2566 */ 2567 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 2568 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 2569 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) 2570 return (EOPNOTSUPP); 2571 2572 switch (sopt->sopt_name) { 2573 case IPV6_MULTICAST_IF: 2574 error = in6p_set_multicast_if(inp, sopt); 2575 break; 2576 2577 case IPV6_MULTICAST_HOPS: { 2578 int hlim; 2579 2580 if (sopt->sopt_valsize != sizeof(int)) { 2581 error = EINVAL; 2582 break; 2583 } 2584 error = sooptcopyin(sopt, &hlim, sizeof(hlim), sizeof(int)); 2585 if (error) 2586 break; 2587 if (hlim < -1 || hlim > 255) { 2588 error = EINVAL; 2589 break; 2590 } else if (hlim == -1) { 2591 hlim = V_ip6_defmcasthlim; 2592 } 2593 im6o = in6p_findmoptions(inp); 2594 im6o->im6o_multicast_hlim = hlim; 2595 INP_WUNLOCK(inp); 2596 break; 2597 } 2598 2599 case IPV6_MULTICAST_LOOP: { 2600 u_int loop; 2601 2602 /* 2603 * Set the loopback flag for outgoing multicast packets. 2604 * Must be zero or one. 2605 */ 2606 if (sopt->sopt_valsize != sizeof(u_int)) { 2607 error = EINVAL; 2608 break; 2609 } 2610 error = sooptcopyin(sopt, &loop, sizeof(u_int), sizeof(u_int)); 2611 if (error) 2612 break; 2613 if (loop > 1) { 2614 error = EINVAL; 2615 break; 2616 } 2617 im6o = in6p_findmoptions(inp); 2618 im6o->im6o_multicast_loop = loop; 2619 INP_WUNLOCK(inp); 2620 break; 2621 } 2622 2623 case IPV6_JOIN_GROUP: 2624 case MCAST_JOIN_GROUP: 2625 case MCAST_JOIN_SOURCE_GROUP: 2626 error = in6p_join_group(inp, sopt); 2627 break; 2628 2629 case IPV6_LEAVE_GROUP: 2630 case MCAST_LEAVE_GROUP: 2631 case MCAST_LEAVE_SOURCE_GROUP: 2632 error = in6p_leave_group(inp, sopt); 2633 break; 2634 2635 case MCAST_BLOCK_SOURCE: 2636 case MCAST_UNBLOCK_SOURCE: 2637 error = in6p_block_unblock_source(inp, sopt); 2638 break; 2639 2640 case IPV6_MSFILTER: 2641 error = in6p_set_source_filters(inp, sopt); 2642 break; 2643 2644 default: 2645 error = EOPNOTSUPP; 2646 break; 2647 } 2648 2649 INP_UNLOCK_ASSERT(inp); 2650 2651 return (error); 2652 } 2653 2654 /* 2655 * Expose MLD's multicast filter mode and source list(s) to userland, 2656 * keyed by (ifindex, group). 2657 * The filter mode is written out as a uint32_t, followed by 2658 * 0..n of struct in6_addr. 2659 * For use by ifmcstat(8). 2660 * SMPng: NOTE: unlocked read of ifindex space. 2661 */ 2662 static int 2663 sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS) 2664 { 2665 struct in6_addr mcaddr; 2666 struct in6_addr src; 2667 struct ifnet *ifp; 2668 struct ifmultiaddr *ifma; 2669 struct in6_multi *inm; 2670 struct ip6_msource *ims; 2671 int *name; 2672 int retval; 2673 u_int namelen; 2674 uint32_t fmode, ifindex; 2675 #ifdef KTR 2676 char ip6tbuf[INET6_ADDRSTRLEN]; 2677 #endif 2678 2679 name = (int *)arg1; 2680 namelen = arg2; 2681 2682 if (req->newptr != NULL) 2683 return (EPERM); 2684 2685 /* int: ifindex + 4 * 32 bits of IPv6 address */ 2686 if (namelen != 5) 2687 return (EINVAL); 2688 2689 ifindex = name[0]; 2690 if (ifindex <= 0 || ifindex > V_if_index) { 2691 CTR2(KTR_MLD, "%s: ifindex %u out of range", 2692 __func__, ifindex); 2693 return (ENOENT); 2694 } 2695 2696 memcpy(&mcaddr, &name[1], sizeof(struct in6_addr)); 2697 if (!IN6_IS_ADDR_MULTICAST(&mcaddr)) { 2698 CTR2(KTR_MLD, "%s: group %s is not multicast", 2699 __func__, ip6_sprintf(ip6tbuf, &mcaddr)); 2700 return (EINVAL); 2701 } 2702 2703 ifp = ifnet_byindex(ifindex); 2704 if (ifp == NULL) { 2705 CTR2(KTR_MLD, "%s: no ifp for ifindex %u", 2706 __func__, ifindex); 2707 return (ENOENT); 2708 } 2709 /* 2710 * Internal MLD lookups require that scope/zone ID is set. 2711 */ 2712 (void)in6_setscope(&mcaddr, ifp, NULL); 2713 2714 retval = sysctl_wire_old_buffer(req, 2715 sizeof(uint32_t) + (in6_mcast_maxgrpsrc * sizeof(struct in6_addr))); 2716 if (retval) 2717 return (retval); 2718 2719 IN6_MULTI_LOCK(); 2720 2721 IF_ADDR_RLOCK(ifp); 2722 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2723 if (ifma->ifma_addr->sa_family != AF_INET6 || 2724 ifma->ifma_protospec == NULL) 2725 continue; 2726 inm = (struct in6_multi *)ifma->ifma_protospec; 2727 if (!IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, &mcaddr)) 2728 continue; 2729 fmode = inm->in6m_st[1].iss_fmode; 2730 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); 2731 if (retval != 0) 2732 break; 2733 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 2734 CTR2(KTR_MLD, "%s: visit node %p", __func__, ims); 2735 /* 2736 * Only copy-out sources which are in-mode. 2737 */ 2738 if (fmode != im6s_get_mode(inm, ims, 1)) { 2739 CTR1(KTR_MLD, "%s: skip non-in-mode", 2740 __func__); 2741 continue; 2742 } 2743 src = ims->im6s_addr; 2744 retval = SYSCTL_OUT(req, &src, 2745 sizeof(struct in6_addr)); 2746 if (retval != 0) 2747 break; 2748 } 2749 } 2750 IF_ADDR_RUNLOCK(ifp); 2751 2752 IN6_MULTI_UNLOCK(); 2753 2754 return (retval); 2755 } 2756 2757 #ifdef KTR 2758 2759 static const char *in6m_modestrs[] = { "un", "in", "ex" }; 2760 2761 static const char * 2762 in6m_mode_str(const int mode) 2763 { 2764 2765 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) 2766 return (in6m_modestrs[mode]); 2767 return ("??"); 2768 } 2769 2770 static const char *in6m_statestrs[] = { 2771 "not-member", 2772 "silent", 2773 "idle", 2774 "lazy", 2775 "sleeping", 2776 "awakening", 2777 "query-pending", 2778 "sg-query-pending", 2779 "leaving" 2780 }; 2781 2782 static const char * 2783 in6m_state_str(const int state) 2784 { 2785 2786 if (state >= MLD_NOT_MEMBER && state <= MLD_LEAVING_MEMBER) 2787 return (in6m_statestrs[state]); 2788 return ("??"); 2789 } 2790 2791 /* 2792 * Dump an in6_multi structure to the console. 2793 */ 2794 void 2795 in6m_print(const struct in6_multi *inm) 2796 { 2797 int t; 2798 char ip6tbuf[INET6_ADDRSTRLEN]; 2799 2800 if ((ktr_mask & KTR_MLD) == 0) 2801 return; 2802 2803 printf("%s: --- begin in6m %p ---\n", __func__, inm); 2804 printf("addr %s ifp %p(%s) ifma %p\n", 2805 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2806 inm->in6m_ifp, 2807 inm->in6m_ifp->if_xname, 2808 inm->in6m_ifma); 2809 printf("timer %u state %s refcount %u scq.len %u\n", 2810 inm->in6m_timer, 2811 in6m_state_str(inm->in6m_state), 2812 inm->in6m_refcount, 2813 inm->in6m_scq.ifq_len); 2814 printf("mli %p nsrc %lu sctimer %u scrv %u\n", 2815 inm->in6m_mli, 2816 inm->in6m_nsrc, 2817 inm->in6m_sctimer, 2818 inm->in6m_scrv); 2819 for (t = 0; t < 2; t++) { 2820 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, 2821 in6m_mode_str(inm->in6m_st[t].iss_fmode), 2822 inm->in6m_st[t].iss_asm, 2823 inm->in6m_st[t].iss_ex, 2824 inm->in6m_st[t].iss_in, 2825 inm->in6m_st[t].iss_rec); 2826 } 2827 printf("%s: --- end in6m %p ---\n", __func__, inm); 2828 } 2829 2830 #else /* !KTR */ 2831 2832 void 2833 in6m_print(const struct in6_multi *inm) 2834 { 2835 2836 } 2837 2838 #endif /* KTR */ 2839