1 /* 2 * Copyright (c) 2009 Bruce Simpson. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. The name of the author may not be used to endorse or promote 14 * products derived from this software without specific prior written 15 * permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * IPv6 multicast socket, group, and socket option processing module. 32 * Normative references: RFC 2292, RFC 3492, RFC 3542, RFC 3678, RFC 3810. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include "opt_inet6.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/protosw.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/protosw.h> 49 #include <sys/sysctl.h> 50 #include <sys/priv.h> 51 #include <sys/ktr.h> 52 #include <sys/tree.h> 53 54 #include <net/if.h> 55 #include <net/if_var.h> 56 #include <net/if_dl.h> 57 #include <net/route.h> 58 #include <net/vnet.h> 59 60 #include <netinet/in.h> 61 #include <netinet/in_var.h> 62 #include <netinet6/in6_var.h> 63 #include <netinet/ip6.h> 64 #include <netinet/icmp6.h> 65 #include <netinet6/ip6_var.h> 66 #include <netinet/in_pcb.h> 67 #include <netinet/tcp_var.h> 68 #include <netinet6/nd6.h> 69 #include <netinet6/mld6_var.h> 70 #include <netinet6/scope6_var.h> 71 72 #ifndef KTR_MLD 73 #define KTR_MLD KTR_INET6 74 #endif 75 76 #ifndef __SOCKUNION_DECLARED 77 union sockunion { 78 struct sockaddr_storage ss; 79 struct sockaddr sa; 80 struct sockaddr_dl sdl; 81 struct sockaddr_in6 sin6; 82 }; 83 typedef union sockunion sockunion_t; 84 #define __SOCKUNION_DECLARED 85 #endif /* __SOCKUNION_DECLARED */ 86 87 static MALLOC_DEFINE(M_IN6MFILTER, "in6_mfilter", 88 "IPv6 multicast PCB-layer source filter"); 89 static MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "IPv6 multicast group"); 90 static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "IPv6 multicast options"); 91 static MALLOC_DEFINE(M_IP6MSOURCE, "ip6_msource", 92 "IPv6 multicast MLD-layer source filter"); 93 94 RB_GENERATE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp); 95 96 /* 97 * Locking: 98 * - Lock order is: Giant, INP_WLOCK, IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 99 * - The IF_ADDR_LOCK is implicitly taken by in6m_lookup() earlier, however 100 * it can be taken by code in net/if.c also. 101 * - ip6_moptions and in6_mfilter are covered by the INP_WLOCK. 102 * 103 * struct in6_multi is covered by IN6_MULTI_LOCK. There isn't strictly 104 * any need for in6_multi itself to be virtualized -- it is bound to an ifp 105 * anyway no matter what happens. 106 */ 107 struct mtx in6_multi_mtx; 108 MTX_SYSINIT(in6_multi_mtx, &in6_multi_mtx, "in6_multi_mtx", MTX_DEF); 109 110 static void im6f_commit(struct in6_mfilter *); 111 static int im6f_get_source(struct in6_mfilter *imf, 112 const struct sockaddr_in6 *psin, 113 struct in6_msource **); 114 static struct in6_msource * 115 im6f_graft(struct in6_mfilter *, const uint8_t, 116 const struct sockaddr_in6 *); 117 static void im6f_leave(struct in6_mfilter *); 118 static int im6f_prune(struct in6_mfilter *, const struct sockaddr_in6 *); 119 static void im6f_purge(struct in6_mfilter *); 120 static void im6f_rollback(struct in6_mfilter *); 121 static void im6f_reap(struct in6_mfilter *); 122 static int im6o_grow(struct ip6_moptions *); 123 static size_t im6o_match_group(const struct ip6_moptions *, 124 const struct ifnet *, const struct sockaddr *); 125 static struct in6_msource * 126 im6o_match_source(const struct ip6_moptions *, const size_t, 127 const struct sockaddr *); 128 static void im6s_merge(struct ip6_msource *ims, 129 const struct in6_msource *lims, const int rollback); 130 static int in6_mc_get(struct ifnet *, const struct in6_addr *, 131 struct in6_multi **); 132 static int in6m_get_source(struct in6_multi *inm, 133 const struct in6_addr *addr, const int noalloc, 134 struct ip6_msource **pims); 135 #ifdef KTR 136 static int in6m_is_ifp_detached(const struct in6_multi *); 137 #endif 138 static int in6m_merge(struct in6_multi *, /*const*/ struct in6_mfilter *); 139 static void in6m_purge(struct in6_multi *); 140 static void in6m_reap(struct in6_multi *); 141 static struct ip6_moptions * 142 in6p_findmoptions(struct inpcb *); 143 static int in6p_get_source_filters(struct inpcb *, struct sockopt *); 144 static int in6p_join_group(struct inpcb *, struct sockopt *); 145 static int in6p_leave_group(struct inpcb *, struct sockopt *); 146 static struct ifnet * 147 in6p_lookup_mcast_ifp(const struct inpcb *, 148 const struct sockaddr_in6 *); 149 static int in6p_block_unblock_source(struct inpcb *, struct sockopt *); 150 static int in6p_set_multicast_if(struct inpcb *, struct sockopt *); 151 static int in6p_set_source_filters(struct inpcb *, struct sockopt *); 152 static int sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS); 153 154 SYSCTL_DECL(_net_inet6_ip6); /* XXX Not in any common header. */ 155 156 static SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, mcast, CTLFLAG_RW, 0, 157 "IPv6 multicast"); 158 159 static u_long in6_mcast_maxgrpsrc = IPV6_MAX_GROUP_SRC_FILTER; 160 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxgrpsrc, 161 CTLFLAG_RWTUN, &in6_mcast_maxgrpsrc, 0, 162 "Max source filters per group"); 163 164 static u_long in6_mcast_maxsocksrc = IPV6_MAX_SOCK_SRC_FILTER; 165 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxsocksrc, 166 CTLFLAG_RWTUN, &in6_mcast_maxsocksrc, 0, 167 "Max source filters per socket"); 168 169 /* TODO Virtualize this switch. */ 170 int in6_mcast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 171 SYSCTL_INT(_net_inet6_ip6_mcast, OID_AUTO, loop, CTLFLAG_RWTUN, 172 &in6_mcast_loop, 0, "Loopback multicast datagrams by default"); 173 174 static SYSCTL_NODE(_net_inet6_ip6_mcast, OID_AUTO, filters, 175 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip6_mcast_filters, 176 "Per-interface stack-wide source filters"); 177 178 #ifdef KTR 179 /* 180 * Inline function which wraps assertions for a valid ifp. 181 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp 182 * is detached. 183 */ 184 static int __inline 185 in6m_is_ifp_detached(const struct in6_multi *inm) 186 { 187 struct ifnet *ifp; 188 189 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 190 ifp = inm->in6m_ifma->ifma_ifp; 191 if (ifp != NULL) { 192 /* 193 * Sanity check that network-layer notion of ifp is the 194 * same as that of link-layer. 195 */ 196 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 197 } 198 199 return (ifp == NULL); 200 } 201 #endif 202 203 /* 204 * Initialize an in6_mfilter structure to a known state at t0, t1 205 * with an empty source filter list. 206 */ 207 static __inline void 208 im6f_init(struct in6_mfilter *imf, const int st0, const int st1) 209 { 210 memset(imf, 0, sizeof(struct in6_mfilter)); 211 RB_INIT(&imf->im6f_sources); 212 imf->im6f_st[0] = st0; 213 imf->im6f_st[1] = st1; 214 } 215 216 /* 217 * Resize the ip6_moptions vector to the next power-of-two minus 1. 218 * May be called with locks held; do not sleep. 219 */ 220 static int 221 im6o_grow(struct ip6_moptions *imo) 222 { 223 struct in6_multi **nmships; 224 struct in6_multi **omships; 225 struct in6_mfilter *nmfilters; 226 struct in6_mfilter *omfilters; 227 size_t idx; 228 size_t newmax; 229 size_t oldmax; 230 231 nmships = NULL; 232 nmfilters = NULL; 233 omships = imo->im6o_membership; 234 omfilters = imo->im6o_mfilters; 235 oldmax = imo->im6o_max_memberships; 236 newmax = ((oldmax + 1) * 2) - 1; 237 238 if (newmax <= IPV6_MAX_MEMBERSHIPS) { 239 nmships = (struct in6_multi **)realloc(omships, 240 sizeof(struct in6_multi *) * newmax, M_IP6MOPTS, M_NOWAIT); 241 nmfilters = (struct in6_mfilter *)realloc(omfilters, 242 sizeof(struct in6_mfilter) * newmax, M_IN6MFILTER, 243 M_NOWAIT); 244 if (nmships != NULL && nmfilters != NULL) { 245 /* Initialize newly allocated source filter heads. */ 246 for (idx = oldmax; idx < newmax; idx++) { 247 im6f_init(&nmfilters[idx], MCAST_UNDEFINED, 248 MCAST_EXCLUDE); 249 } 250 imo->im6o_max_memberships = newmax; 251 imo->im6o_membership = nmships; 252 imo->im6o_mfilters = nmfilters; 253 } 254 } 255 256 if (nmships == NULL || nmfilters == NULL) { 257 if (nmships != NULL) 258 free(nmships, M_IP6MOPTS); 259 if (nmfilters != NULL) 260 free(nmfilters, M_IN6MFILTER); 261 return (ETOOMANYREFS); 262 } 263 264 return (0); 265 } 266 267 /* 268 * Find an IPv6 multicast group entry for this ip6_moptions instance 269 * which matches the specified group, and optionally an interface. 270 * Return its index into the array, or -1 if not found. 271 */ 272 static size_t 273 im6o_match_group(const struct ip6_moptions *imo, const struct ifnet *ifp, 274 const struct sockaddr *group) 275 { 276 const struct sockaddr_in6 *gsin6; 277 struct in6_multi **pinm; 278 int idx; 279 int nmships; 280 281 gsin6 = (const struct sockaddr_in6 *)group; 282 283 /* The im6o_membership array may be lazy allocated. */ 284 if (imo->im6o_membership == NULL || imo->im6o_num_memberships == 0) 285 return (-1); 286 287 nmships = imo->im6o_num_memberships; 288 pinm = &imo->im6o_membership[0]; 289 for (idx = 0; idx < nmships; idx++, pinm++) { 290 if (*pinm == NULL) 291 continue; 292 if ((ifp == NULL || ((*pinm)->in6m_ifp == ifp)) && 293 IN6_ARE_ADDR_EQUAL(&(*pinm)->in6m_addr, 294 &gsin6->sin6_addr)) { 295 break; 296 } 297 } 298 if (idx >= nmships) 299 idx = -1; 300 301 return (idx); 302 } 303 304 /* 305 * Find an IPv6 multicast source entry for this imo which matches 306 * the given group index for this socket, and source address. 307 * 308 * XXX TODO: The scope ID, if present in src, is stripped before 309 * any comparison. We SHOULD enforce scope/zone checks where the source 310 * filter entry has a link scope. 311 * 312 * NOTE: This does not check if the entry is in-mode, merely if 313 * it exists, which may not be the desired behaviour. 314 */ 315 static struct in6_msource * 316 im6o_match_source(const struct ip6_moptions *imo, const size_t gidx, 317 const struct sockaddr *src) 318 { 319 struct ip6_msource find; 320 struct in6_mfilter *imf; 321 struct ip6_msource *ims; 322 const sockunion_t *psa; 323 324 KASSERT(src->sa_family == AF_INET6, ("%s: !AF_INET6", __func__)); 325 KASSERT(gidx != -1 && gidx < imo->im6o_num_memberships, 326 ("%s: invalid index %d\n", __func__, (int)gidx)); 327 328 /* The im6o_mfilters array may be lazy allocated. */ 329 if (imo->im6o_mfilters == NULL) 330 return (NULL); 331 imf = &imo->im6o_mfilters[gidx]; 332 333 psa = (const sockunion_t *)src; 334 find.im6s_addr = psa->sin6.sin6_addr; 335 in6_clearscope(&find.im6s_addr); /* XXX */ 336 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 337 338 return ((struct in6_msource *)ims); 339 } 340 341 /* 342 * Perform filtering for multicast datagrams on a socket by group and source. 343 * 344 * Returns 0 if a datagram should be allowed through, or various error codes 345 * if the socket was not a member of the group, or the source was muted, etc. 346 */ 347 int 348 im6o_mc_filter(const struct ip6_moptions *imo, const struct ifnet *ifp, 349 const struct sockaddr *group, const struct sockaddr *src) 350 { 351 size_t gidx; 352 struct in6_msource *ims; 353 int mode; 354 355 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 356 357 gidx = im6o_match_group(imo, ifp, group); 358 if (gidx == -1) 359 return (MCAST_NOTGMEMBER); 360 361 /* 362 * Check if the source was included in an (S,G) join. 363 * Allow reception on exclusive memberships by default, 364 * reject reception on inclusive memberships by default. 365 * Exclude source only if an in-mode exclude filter exists. 366 * Include source only if an in-mode include filter exists. 367 * NOTE: We are comparing group state here at MLD t1 (now) 368 * with socket-layer t0 (since last downcall). 369 */ 370 mode = imo->im6o_mfilters[gidx].im6f_st[1]; 371 ims = im6o_match_source(imo, gidx, src); 372 373 if ((ims == NULL && mode == MCAST_INCLUDE) || 374 (ims != NULL && ims->im6sl_st[0] != mode)) 375 return (MCAST_NOTSMEMBER); 376 377 return (MCAST_PASS); 378 } 379 380 /* 381 * Find and return a reference to an in6_multi record for (ifp, group), 382 * and bump its reference count. 383 * If one does not exist, try to allocate it, and update link-layer multicast 384 * filters on ifp to listen for group. 385 * Assumes the IN6_MULTI lock is held across the call. 386 * Return 0 if successful, otherwise return an appropriate error code. 387 */ 388 static int 389 in6_mc_get(struct ifnet *ifp, const struct in6_addr *group, 390 struct in6_multi **pinm) 391 { 392 struct sockaddr_in6 gsin6; 393 struct ifmultiaddr *ifma; 394 struct in6_multi *inm; 395 int error; 396 397 error = 0; 398 399 /* 400 * XXX: Accesses to ifma_protospec must be covered by IF_ADDR_LOCK; 401 * if_addmulti() takes this mutex itself, so we must drop and 402 * re-acquire around the call. 403 */ 404 IN6_MULTI_LOCK_ASSERT(); 405 IF_ADDR_WLOCK(ifp); 406 407 inm = in6m_lookup_locked(ifp, group); 408 if (inm != NULL) { 409 /* 410 * If we already joined this group, just bump the 411 * refcount and return it. 412 */ 413 KASSERT(inm->in6m_refcount >= 1, 414 ("%s: bad refcount %d", __func__, inm->in6m_refcount)); 415 ++inm->in6m_refcount; 416 *pinm = inm; 417 goto out_locked; 418 } 419 420 memset(&gsin6, 0, sizeof(gsin6)); 421 gsin6.sin6_family = AF_INET6; 422 gsin6.sin6_len = sizeof(struct sockaddr_in6); 423 gsin6.sin6_addr = *group; 424 425 /* 426 * Check if a link-layer group is already associated 427 * with this network-layer group on the given ifnet. 428 */ 429 IF_ADDR_WUNLOCK(ifp); 430 error = if_addmulti(ifp, (struct sockaddr *)&gsin6, &ifma); 431 if (error != 0) 432 return (error); 433 IF_ADDR_WLOCK(ifp); 434 435 /* 436 * If something other than netinet6 is occupying the link-layer 437 * group, print a meaningful error message and back out of 438 * the allocation. 439 * Otherwise, bump the refcount on the existing network-layer 440 * group association and return it. 441 */ 442 if (ifma->ifma_protospec != NULL) { 443 inm = (struct in6_multi *)ifma->ifma_protospec; 444 #ifdef INVARIANTS 445 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", 446 __func__)); 447 KASSERT(ifma->ifma_addr->sa_family == AF_INET6, 448 ("%s: ifma not AF_INET6", __func__)); 449 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); 450 if (inm->in6m_ifma != ifma || inm->in6m_ifp != ifp || 451 !IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, group)) 452 panic("%s: ifma %p is inconsistent with %p (%p)", 453 __func__, ifma, inm, group); 454 #endif 455 ++inm->in6m_refcount; 456 *pinm = inm; 457 goto out_locked; 458 } 459 460 IF_ADDR_WLOCK_ASSERT(ifp); 461 462 /* 463 * A new in6_multi record is needed; allocate and initialize it. 464 * We DO NOT perform an MLD join as the in6_ layer may need to 465 * push an initial source list down to MLD to support SSM. 466 * 467 * The initial source filter state is INCLUDE, {} as per the RFC. 468 * Pending state-changes per group are subject to a bounds check. 469 */ 470 inm = malloc(sizeof(*inm), M_IP6MADDR, M_NOWAIT | M_ZERO); 471 if (inm == NULL) { 472 if_delmulti_ifma(ifma); 473 error = ENOMEM; 474 goto out_locked; 475 } 476 inm->in6m_addr = *group; 477 inm->in6m_ifp = ifp; 478 inm->in6m_mli = MLD_IFINFO(ifp); 479 inm->in6m_ifma = ifma; 480 inm->in6m_refcount = 1; 481 inm->in6m_state = MLD_NOT_MEMBER; 482 mbufq_init(&inm->in6m_scq, MLD_MAX_STATE_CHANGES); 483 484 inm->in6m_st[0].iss_fmode = MCAST_UNDEFINED; 485 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 486 RB_INIT(&inm->in6m_srcs); 487 488 ifma->ifma_protospec = inm; 489 *pinm = inm; 490 491 out_locked: 492 IF_ADDR_WUNLOCK(ifp); 493 return (error); 494 } 495 496 /* 497 * Drop a reference to an in6_multi record. 498 * 499 * If the refcount drops to 0, free the in6_multi record and 500 * delete the underlying link-layer membership. 501 */ 502 void 503 in6m_release_locked(struct in6_multi *inm) 504 { 505 struct ifmultiaddr *ifma; 506 507 IN6_MULTI_LOCK_ASSERT(); 508 509 CTR2(KTR_MLD, "%s: refcount is %d", __func__, inm->in6m_refcount); 510 511 if (--inm->in6m_refcount > 0) { 512 CTR2(KTR_MLD, "%s: refcount is now %d", __func__, 513 inm->in6m_refcount); 514 return; 515 } 516 517 CTR2(KTR_MLD, "%s: freeing inm %p", __func__, inm); 518 519 ifma = inm->in6m_ifma; 520 521 /* XXX this access is not covered by IF_ADDR_LOCK */ 522 CTR2(KTR_MLD, "%s: purging ifma %p", __func__, ifma); 523 KASSERT(ifma->ifma_protospec == inm, 524 ("%s: ifma_protospec != inm", __func__)); 525 ifma->ifma_protospec = NULL; 526 527 in6m_purge(inm); 528 529 free(inm, M_IP6MADDR); 530 531 if_delmulti_ifma(ifma); 532 } 533 534 /* 535 * Clear recorded source entries for a group. 536 * Used by the MLD code. Caller must hold the IN6_MULTI lock. 537 * FIXME: Should reap. 538 */ 539 void 540 in6m_clear_recorded(struct in6_multi *inm) 541 { 542 struct ip6_msource *ims; 543 544 IN6_MULTI_LOCK_ASSERT(); 545 546 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 547 if (ims->im6s_stp) { 548 ims->im6s_stp = 0; 549 --inm->in6m_st[1].iss_rec; 550 } 551 } 552 KASSERT(inm->in6m_st[1].iss_rec == 0, 553 ("%s: iss_rec %d not 0", __func__, inm->in6m_st[1].iss_rec)); 554 } 555 556 /* 557 * Record a source as pending for a Source-Group MLDv2 query. 558 * This lives here as it modifies the shared tree. 559 * 560 * inm is the group descriptor. 561 * naddr is the address of the source to record in network-byte order. 562 * 563 * If the net.inet6.mld.sgalloc sysctl is non-zero, we will 564 * lazy-allocate a source node in response to an SG query. 565 * Otherwise, no allocation is performed. This saves some memory 566 * with the trade-off that the source will not be reported to the 567 * router if joined in the window between the query response and 568 * the group actually being joined on the local host. 569 * 570 * VIMAGE: XXX: Currently the mld_sgalloc feature has been removed. 571 * This turns off the allocation of a recorded source entry if 572 * the group has not been joined. 573 * 574 * Return 0 if the source didn't exist or was already marked as recorded. 575 * Return 1 if the source was marked as recorded by this function. 576 * Return <0 if any error occured (negated errno code). 577 */ 578 int 579 in6m_record_source(struct in6_multi *inm, const struct in6_addr *addr) 580 { 581 struct ip6_msource find; 582 struct ip6_msource *ims, *nims; 583 584 IN6_MULTI_LOCK_ASSERT(); 585 586 find.im6s_addr = *addr; 587 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 588 if (ims && ims->im6s_stp) 589 return (0); 590 if (ims == NULL) { 591 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 592 return (-ENOSPC); 593 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 594 M_NOWAIT | M_ZERO); 595 if (nims == NULL) 596 return (-ENOMEM); 597 nims->im6s_addr = find.im6s_addr; 598 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 599 ++inm->in6m_nsrc; 600 ims = nims; 601 } 602 603 /* 604 * Mark the source as recorded and update the recorded 605 * source count. 606 */ 607 ++ims->im6s_stp; 608 ++inm->in6m_st[1].iss_rec; 609 610 return (1); 611 } 612 613 /* 614 * Return a pointer to an in6_msource owned by an in6_mfilter, 615 * given its source address. 616 * Lazy-allocate if needed. If this is a new entry its filter state is 617 * undefined at t0. 618 * 619 * imf is the filter set being modified. 620 * addr is the source address. 621 * 622 * SMPng: May be called with locks held; malloc must not block. 623 */ 624 static int 625 im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin, 626 struct in6_msource **plims) 627 { 628 struct ip6_msource find; 629 struct ip6_msource *ims, *nims; 630 struct in6_msource *lims; 631 int error; 632 633 error = 0; 634 ims = NULL; 635 lims = NULL; 636 637 find.im6s_addr = psin->sin6_addr; 638 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 639 lims = (struct in6_msource *)ims; 640 if (lims == NULL) { 641 if (imf->im6f_nsrc == in6_mcast_maxsocksrc) 642 return (ENOSPC); 643 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 644 M_NOWAIT | M_ZERO); 645 if (nims == NULL) 646 return (ENOMEM); 647 lims = (struct in6_msource *)nims; 648 lims->im6s_addr = find.im6s_addr; 649 lims->im6sl_st[0] = MCAST_UNDEFINED; 650 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 651 ++imf->im6f_nsrc; 652 } 653 654 *plims = lims; 655 656 return (error); 657 } 658 659 /* 660 * Graft a source entry into an existing socket-layer filter set, 661 * maintaining any required invariants and checking allocations. 662 * 663 * The source is marked as being in the new filter mode at t1. 664 * 665 * Return the pointer to the new node, otherwise return NULL. 666 */ 667 static struct in6_msource * 668 im6f_graft(struct in6_mfilter *imf, const uint8_t st1, 669 const struct sockaddr_in6 *psin) 670 { 671 struct ip6_msource *nims; 672 struct in6_msource *lims; 673 674 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 675 M_NOWAIT | M_ZERO); 676 if (nims == NULL) 677 return (NULL); 678 lims = (struct in6_msource *)nims; 679 lims->im6s_addr = psin->sin6_addr; 680 lims->im6sl_st[0] = MCAST_UNDEFINED; 681 lims->im6sl_st[1] = st1; 682 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 683 ++imf->im6f_nsrc; 684 685 return (lims); 686 } 687 688 /* 689 * Prune a source entry from an existing socket-layer filter set, 690 * maintaining any required invariants and checking allocations. 691 * 692 * The source is marked as being left at t1, it is not freed. 693 * 694 * Return 0 if no error occurred, otherwise return an errno value. 695 */ 696 static int 697 im6f_prune(struct in6_mfilter *imf, const struct sockaddr_in6 *psin) 698 { 699 struct ip6_msource find; 700 struct ip6_msource *ims; 701 struct in6_msource *lims; 702 703 find.im6s_addr = psin->sin6_addr; 704 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 705 if (ims == NULL) 706 return (ENOENT); 707 lims = (struct in6_msource *)ims; 708 lims->im6sl_st[1] = MCAST_UNDEFINED; 709 return (0); 710 } 711 712 /* 713 * Revert socket-layer filter set deltas at t1 to t0 state. 714 */ 715 static void 716 im6f_rollback(struct in6_mfilter *imf) 717 { 718 struct ip6_msource *ims, *tims; 719 struct in6_msource *lims; 720 721 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 722 lims = (struct in6_msource *)ims; 723 if (lims->im6sl_st[0] == lims->im6sl_st[1]) { 724 /* no change at t1 */ 725 continue; 726 } else if (lims->im6sl_st[0] != MCAST_UNDEFINED) { 727 /* revert change to existing source at t1 */ 728 lims->im6sl_st[1] = lims->im6sl_st[0]; 729 } else { 730 /* revert source added t1 */ 731 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 732 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 733 free(ims, M_IN6MFILTER); 734 imf->im6f_nsrc--; 735 } 736 } 737 imf->im6f_st[1] = imf->im6f_st[0]; 738 } 739 740 /* 741 * Mark socket-layer filter set as INCLUDE {} at t1. 742 */ 743 static void 744 im6f_leave(struct in6_mfilter *imf) 745 { 746 struct ip6_msource *ims; 747 struct in6_msource *lims; 748 749 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 750 lims = (struct in6_msource *)ims; 751 lims->im6sl_st[1] = MCAST_UNDEFINED; 752 } 753 imf->im6f_st[1] = MCAST_INCLUDE; 754 } 755 756 /* 757 * Mark socket-layer filter set deltas as committed. 758 */ 759 static void 760 im6f_commit(struct in6_mfilter *imf) 761 { 762 struct ip6_msource *ims; 763 struct in6_msource *lims; 764 765 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 766 lims = (struct in6_msource *)ims; 767 lims->im6sl_st[0] = lims->im6sl_st[1]; 768 } 769 imf->im6f_st[0] = imf->im6f_st[1]; 770 } 771 772 /* 773 * Reap unreferenced sources from socket-layer filter set. 774 */ 775 static void 776 im6f_reap(struct in6_mfilter *imf) 777 { 778 struct ip6_msource *ims, *tims; 779 struct in6_msource *lims; 780 781 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 782 lims = (struct in6_msource *)ims; 783 if ((lims->im6sl_st[0] == MCAST_UNDEFINED) && 784 (lims->im6sl_st[1] == MCAST_UNDEFINED)) { 785 CTR2(KTR_MLD, "%s: free lims %p", __func__, ims); 786 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 787 free(ims, M_IN6MFILTER); 788 imf->im6f_nsrc--; 789 } 790 } 791 } 792 793 /* 794 * Purge socket-layer filter set. 795 */ 796 static void 797 im6f_purge(struct in6_mfilter *imf) 798 { 799 struct ip6_msource *ims, *tims; 800 801 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 802 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 803 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 804 free(ims, M_IN6MFILTER); 805 imf->im6f_nsrc--; 806 } 807 imf->im6f_st[0] = imf->im6f_st[1] = MCAST_UNDEFINED; 808 KASSERT(RB_EMPTY(&imf->im6f_sources), 809 ("%s: im6f_sources not empty", __func__)); 810 } 811 812 /* 813 * Look up a source filter entry for a multicast group. 814 * 815 * inm is the group descriptor to work with. 816 * addr is the IPv6 address to look up. 817 * noalloc may be non-zero to suppress allocation of sources. 818 * *pims will be set to the address of the retrieved or allocated source. 819 * 820 * SMPng: NOTE: may be called with locks held. 821 * Return 0 if successful, otherwise return a non-zero error code. 822 */ 823 static int 824 in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr, 825 const int noalloc, struct ip6_msource **pims) 826 { 827 struct ip6_msource find; 828 struct ip6_msource *ims, *nims; 829 #ifdef KTR 830 char ip6tbuf[INET6_ADDRSTRLEN]; 831 #endif 832 833 find.im6s_addr = *addr; 834 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 835 if (ims == NULL && !noalloc) { 836 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 837 return (ENOSPC); 838 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 839 M_NOWAIT | M_ZERO); 840 if (nims == NULL) 841 return (ENOMEM); 842 nims->im6s_addr = *addr; 843 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 844 ++inm->in6m_nsrc; 845 ims = nims; 846 CTR3(KTR_MLD, "%s: allocated %s as %p", __func__, 847 ip6_sprintf(ip6tbuf, addr), ims); 848 } 849 850 *pims = ims; 851 return (0); 852 } 853 854 /* 855 * Merge socket-layer source into MLD-layer source. 856 * If rollback is non-zero, perform the inverse of the merge. 857 */ 858 static void 859 im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims, 860 const int rollback) 861 { 862 int n = rollback ? -1 : 1; 863 #ifdef KTR 864 char ip6tbuf[INET6_ADDRSTRLEN]; 865 866 ip6_sprintf(ip6tbuf, &lims->im6s_addr); 867 #endif 868 869 if (lims->im6sl_st[0] == MCAST_EXCLUDE) { 870 CTR3(KTR_MLD, "%s: t1 ex -= %d on %s", __func__, n, ip6tbuf); 871 ims->im6s_st[1].ex -= n; 872 } else if (lims->im6sl_st[0] == MCAST_INCLUDE) { 873 CTR3(KTR_MLD, "%s: t1 in -= %d on %s", __func__, n, ip6tbuf); 874 ims->im6s_st[1].in -= n; 875 } 876 877 if (lims->im6sl_st[1] == MCAST_EXCLUDE) { 878 CTR3(KTR_MLD, "%s: t1 ex += %d on %s", __func__, n, ip6tbuf); 879 ims->im6s_st[1].ex += n; 880 } else if (lims->im6sl_st[1] == MCAST_INCLUDE) { 881 CTR3(KTR_MLD, "%s: t1 in += %d on %s", __func__, n, ip6tbuf); 882 ims->im6s_st[1].in += n; 883 } 884 } 885 886 /* 887 * Atomically update the global in6_multi state, when a membership's 888 * filter list is being updated in any way. 889 * 890 * imf is the per-inpcb-membership group filter pointer. 891 * A fake imf may be passed for in-kernel consumers. 892 * 893 * XXX This is a candidate for a set-symmetric-difference style loop 894 * which would eliminate the repeated lookup from root of ims nodes, 895 * as they share the same key space. 896 * 897 * If any error occurred this function will back out of refcounts 898 * and return a non-zero value. 899 */ 900 static int 901 in6m_merge(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 902 { 903 struct ip6_msource *ims, *nims; 904 struct in6_msource *lims; 905 int schanged, error; 906 int nsrc0, nsrc1; 907 908 schanged = 0; 909 error = 0; 910 nsrc1 = nsrc0 = 0; 911 912 /* 913 * Update the source filters first, as this may fail. 914 * Maintain count of in-mode filters at t0, t1. These are 915 * used to work out if we transition into ASM mode or not. 916 * Maintain a count of source filters whose state was 917 * actually modified by this operation. 918 */ 919 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 920 lims = (struct in6_msource *)ims; 921 if (lims->im6sl_st[0] == imf->im6f_st[0]) nsrc0++; 922 if (lims->im6sl_st[1] == imf->im6f_st[1]) nsrc1++; 923 if (lims->im6sl_st[0] == lims->im6sl_st[1]) continue; 924 error = in6m_get_source(inm, &lims->im6s_addr, 0, &nims); 925 ++schanged; 926 if (error) 927 break; 928 im6s_merge(nims, lims, 0); 929 } 930 if (error) { 931 struct ip6_msource *bims; 932 933 RB_FOREACH_REVERSE_FROM(ims, ip6_msource_tree, nims) { 934 lims = (struct in6_msource *)ims; 935 if (lims->im6sl_st[0] == lims->im6sl_st[1]) 936 continue; 937 (void)in6m_get_source(inm, &lims->im6s_addr, 1, &bims); 938 if (bims == NULL) 939 continue; 940 im6s_merge(bims, lims, 1); 941 } 942 goto out_reap; 943 } 944 945 CTR3(KTR_MLD, "%s: imf filters in-mode: %d at t0, %d at t1", 946 __func__, nsrc0, nsrc1); 947 948 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ 949 if (imf->im6f_st[0] == imf->im6f_st[1] && 950 imf->im6f_st[1] == MCAST_INCLUDE) { 951 if (nsrc1 == 0) { 952 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 953 --inm->in6m_st[1].iss_in; 954 } 955 } 956 957 /* Handle filter mode transition on socket. */ 958 if (imf->im6f_st[0] != imf->im6f_st[1]) { 959 CTR3(KTR_MLD, "%s: imf transition %d to %d", 960 __func__, imf->im6f_st[0], imf->im6f_st[1]); 961 962 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 963 CTR1(KTR_MLD, "%s: --ex on inm at t1", __func__); 964 --inm->in6m_st[1].iss_ex; 965 } else if (imf->im6f_st[0] == MCAST_INCLUDE) { 966 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 967 --inm->in6m_st[1].iss_in; 968 } 969 970 if (imf->im6f_st[1] == MCAST_EXCLUDE) { 971 CTR1(KTR_MLD, "%s: ex++ on inm at t1", __func__); 972 inm->in6m_st[1].iss_ex++; 973 } else if (imf->im6f_st[1] == MCAST_INCLUDE && nsrc1 > 0) { 974 CTR1(KTR_MLD, "%s: in++ on inm at t1", __func__); 975 inm->in6m_st[1].iss_in++; 976 } 977 } 978 979 /* 980 * Track inm filter state in terms of listener counts. 981 * If there are any exclusive listeners, stack-wide 982 * membership is exclusive. 983 * Otherwise, if only inclusive listeners, stack-wide is inclusive. 984 * If no listeners remain, state is undefined at t1, 985 * and the MLD lifecycle for this group should finish. 986 */ 987 if (inm->in6m_st[1].iss_ex > 0) { 988 CTR1(KTR_MLD, "%s: transition to EX", __func__); 989 inm->in6m_st[1].iss_fmode = MCAST_EXCLUDE; 990 } else if (inm->in6m_st[1].iss_in > 0) { 991 CTR1(KTR_MLD, "%s: transition to IN", __func__); 992 inm->in6m_st[1].iss_fmode = MCAST_INCLUDE; 993 } else { 994 CTR1(KTR_MLD, "%s: transition to UNDEF", __func__); 995 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 996 } 997 998 /* Decrement ASM listener count on transition out of ASM mode. */ 999 if (imf->im6f_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { 1000 if ((imf->im6f_st[1] != MCAST_EXCLUDE) || 1001 (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) 1002 CTR1(KTR_MLD, "%s: --asm on inm at t1", __func__); 1003 --inm->in6m_st[1].iss_asm; 1004 } 1005 1006 /* Increment ASM listener count on transition to ASM mode. */ 1007 if (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { 1008 CTR1(KTR_MLD, "%s: asm++ on inm at t1", __func__); 1009 inm->in6m_st[1].iss_asm++; 1010 } 1011 1012 CTR3(KTR_MLD, "%s: merged imf %p to inm %p", __func__, imf, inm); 1013 in6m_print(inm); 1014 1015 out_reap: 1016 if (schanged > 0) { 1017 CTR1(KTR_MLD, "%s: sources changed; reaping", __func__); 1018 in6m_reap(inm); 1019 } 1020 return (error); 1021 } 1022 1023 /* 1024 * Mark an in6_multi's filter set deltas as committed. 1025 * Called by MLD after a state change has been enqueued. 1026 */ 1027 void 1028 in6m_commit(struct in6_multi *inm) 1029 { 1030 struct ip6_msource *ims; 1031 1032 CTR2(KTR_MLD, "%s: commit inm %p", __func__, inm); 1033 CTR1(KTR_MLD, "%s: pre commit:", __func__); 1034 in6m_print(inm); 1035 1036 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 1037 ims->im6s_st[0] = ims->im6s_st[1]; 1038 } 1039 inm->in6m_st[0] = inm->in6m_st[1]; 1040 } 1041 1042 /* 1043 * Reap unreferenced nodes from an in6_multi's filter set. 1044 */ 1045 static void 1046 in6m_reap(struct in6_multi *inm) 1047 { 1048 struct ip6_msource *ims, *tims; 1049 1050 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1051 if (ims->im6s_st[0].ex > 0 || ims->im6s_st[0].in > 0 || 1052 ims->im6s_st[1].ex > 0 || ims->im6s_st[1].in > 0 || 1053 ims->im6s_stp != 0) 1054 continue; 1055 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1056 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1057 free(ims, M_IP6MSOURCE); 1058 inm->in6m_nsrc--; 1059 } 1060 } 1061 1062 /* 1063 * Purge all source nodes from an in6_multi's filter set. 1064 */ 1065 static void 1066 in6m_purge(struct in6_multi *inm) 1067 { 1068 struct ip6_msource *ims, *tims; 1069 1070 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1071 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1072 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1073 free(ims, M_IP6MSOURCE); 1074 inm->in6m_nsrc--; 1075 } 1076 /* Free state-change requests that might be queued. */ 1077 mbufq_drain(&inm->in6m_scq); 1078 } 1079 1080 /* 1081 * Join a multicast address w/o sources. 1082 * KAME compatibility entry point. 1083 * 1084 * SMPng: Assume no mc locks held by caller. 1085 */ 1086 struct in6_multi_mship * 1087 in6_joingroup(struct ifnet *ifp, struct in6_addr *mcaddr, 1088 int *errorp, int delay) 1089 { 1090 struct in6_multi_mship *imm; 1091 int error; 1092 1093 imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT); 1094 if (imm == NULL) { 1095 *errorp = ENOBUFS; 1096 return (NULL); 1097 } 1098 1099 delay = (delay * PR_FASTHZ) / hz; 1100 1101 error = in6_mc_join(ifp, mcaddr, NULL, &imm->i6mm_maddr, delay); 1102 if (error) { 1103 *errorp = error; 1104 free(imm, M_IP6MADDR); 1105 return (NULL); 1106 } 1107 1108 return (imm); 1109 } 1110 1111 /* 1112 * Leave a multicast address w/o sources. 1113 * KAME compatibility entry point. 1114 * 1115 * SMPng: Assume no mc locks held by caller. 1116 */ 1117 int 1118 in6_leavegroup(struct in6_multi_mship *imm) 1119 { 1120 1121 if (imm->i6mm_maddr != NULL) 1122 in6_mc_leave(imm->i6mm_maddr, NULL); 1123 free(imm, M_IP6MADDR); 1124 return 0; 1125 } 1126 1127 /* 1128 * Join a multicast group; unlocked entry point. 1129 * 1130 * SMPng: XXX: in6_mc_join() is called from in6_control() when upper 1131 * locks are not held. Fortunately, ifp is unlikely to have been detached 1132 * at this point, so we assume it's OK to recurse. 1133 */ 1134 int 1135 in6_mc_join(struct ifnet *ifp, const struct in6_addr *mcaddr, 1136 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1137 const int delay) 1138 { 1139 int error; 1140 1141 IN6_MULTI_LOCK(); 1142 error = in6_mc_join_locked(ifp, mcaddr, imf, pinm, delay); 1143 IN6_MULTI_UNLOCK(); 1144 1145 return (error); 1146 } 1147 1148 /* 1149 * Join a multicast group; real entry point. 1150 * 1151 * Only preserves atomicity at inm level. 1152 * NOTE: imf argument cannot be const due to sys/tree.h limitations. 1153 * 1154 * If the MLD downcall fails, the group is not joined, and an error 1155 * code is returned. 1156 */ 1157 int 1158 in6_mc_join_locked(struct ifnet *ifp, const struct in6_addr *mcaddr, 1159 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1160 const int delay) 1161 { 1162 struct in6_mfilter timf; 1163 struct in6_multi *inm; 1164 int error; 1165 #ifdef KTR 1166 char ip6tbuf[INET6_ADDRSTRLEN]; 1167 #endif 1168 1169 #ifdef INVARIANTS 1170 /* 1171 * Sanity: Check scope zone ID was set for ifp, if and 1172 * only if group is scoped to an interface. 1173 */ 1174 KASSERT(IN6_IS_ADDR_MULTICAST(mcaddr), 1175 ("%s: not a multicast address", __func__)); 1176 if (IN6_IS_ADDR_MC_LINKLOCAL(mcaddr) || 1177 IN6_IS_ADDR_MC_INTFACELOCAL(mcaddr)) { 1178 KASSERT(mcaddr->s6_addr16[1] != 0, 1179 ("%s: scope zone ID not set", __func__)); 1180 } 1181 #endif 1182 1183 IN6_MULTI_LOCK_ASSERT(); 1184 1185 CTR4(KTR_MLD, "%s: join %s on %p(%s))", __func__, 1186 ip6_sprintf(ip6tbuf, mcaddr), ifp, if_name(ifp)); 1187 1188 error = 0; 1189 inm = NULL; 1190 1191 /* 1192 * If no imf was specified (i.e. kernel consumer), 1193 * fake one up and assume it is an ASM join. 1194 */ 1195 if (imf == NULL) { 1196 im6f_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); 1197 imf = &timf; 1198 } 1199 1200 error = in6_mc_get(ifp, mcaddr, &inm); 1201 if (error) { 1202 CTR1(KTR_MLD, "%s: in6_mc_get() failure", __func__); 1203 return (error); 1204 } 1205 1206 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1207 error = in6m_merge(inm, imf); 1208 if (error) { 1209 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1210 goto out_in6m_release; 1211 } 1212 1213 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1214 error = mld_change_state(inm, delay); 1215 if (error) { 1216 CTR1(KTR_MLD, "%s: failed to update source", __func__); 1217 goto out_in6m_release; 1218 } 1219 1220 out_in6m_release: 1221 if (error) { 1222 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1223 in6m_release_locked(inm); 1224 } else { 1225 *pinm = inm; 1226 } 1227 1228 return (error); 1229 } 1230 1231 /* 1232 * Leave a multicast group; unlocked entry point. 1233 */ 1234 int 1235 in6_mc_leave(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1236 { 1237 struct ifnet *ifp; 1238 int error; 1239 1240 ifp = inm->in6m_ifp; 1241 1242 IN6_MULTI_LOCK(); 1243 error = in6_mc_leave_locked(inm, imf); 1244 IN6_MULTI_UNLOCK(); 1245 1246 return (error); 1247 } 1248 1249 /* 1250 * Leave a multicast group; real entry point. 1251 * All source filters will be expunged. 1252 * 1253 * Only preserves atomicity at inm level. 1254 * 1255 * Holding the write lock for the INP which contains imf 1256 * is highly advisable. We can't assert for it as imf does not 1257 * contain a back-pointer to the owning inp. 1258 * 1259 * Note: This is not the same as in6m_release(*) as this function also 1260 * makes a state change downcall into MLD. 1261 */ 1262 int 1263 in6_mc_leave_locked(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1264 { 1265 struct in6_mfilter timf; 1266 int error; 1267 #ifdef KTR 1268 char ip6tbuf[INET6_ADDRSTRLEN]; 1269 #endif 1270 1271 error = 0; 1272 1273 IN6_MULTI_LOCK_ASSERT(); 1274 1275 CTR5(KTR_MLD, "%s: leave inm %p, %s/%s, imf %p", __func__, 1276 inm, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1277 (in6m_is_ifp_detached(inm) ? "null" : if_name(inm->in6m_ifp)), 1278 imf); 1279 1280 /* 1281 * If no imf was specified (i.e. kernel consumer), 1282 * fake one up and assume it is an ASM join. 1283 */ 1284 if (imf == NULL) { 1285 im6f_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); 1286 imf = &timf; 1287 } 1288 1289 /* 1290 * Begin state merge transaction at MLD layer. 1291 * 1292 * As this particular invocation should not cause any memory 1293 * to be allocated, and there is no opportunity to roll back 1294 * the transaction, it MUST NOT fail. 1295 */ 1296 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1297 error = in6m_merge(inm, imf); 1298 KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); 1299 1300 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1301 error = mld_change_state(inm, 0); 1302 if (error) 1303 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1304 1305 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1306 in6m_release_locked(inm); 1307 1308 return (error); 1309 } 1310 1311 /* 1312 * Block or unblock an ASM multicast source on an inpcb. 1313 * This implements the delta-based API described in RFC 3678. 1314 * 1315 * The delta-based API applies only to exclusive-mode memberships. 1316 * An MLD downcall will be performed. 1317 * 1318 * SMPng: NOTE: Must take Giant as a join may create a new ifma. 1319 * 1320 * Return 0 if successful, otherwise return an appropriate error code. 1321 */ 1322 static int 1323 in6p_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) 1324 { 1325 struct group_source_req gsr; 1326 sockunion_t *gsa, *ssa; 1327 struct ifnet *ifp; 1328 struct in6_mfilter *imf; 1329 struct ip6_moptions *imo; 1330 struct in6_msource *ims; 1331 struct in6_multi *inm; 1332 size_t idx; 1333 uint16_t fmode; 1334 int error, doblock; 1335 #ifdef KTR 1336 char ip6tbuf[INET6_ADDRSTRLEN]; 1337 #endif 1338 1339 ifp = NULL; 1340 error = 0; 1341 doblock = 0; 1342 1343 memset(&gsr, 0, sizeof(struct group_source_req)); 1344 gsa = (sockunion_t *)&gsr.gsr_group; 1345 ssa = (sockunion_t *)&gsr.gsr_source; 1346 1347 switch (sopt->sopt_name) { 1348 case MCAST_BLOCK_SOURCE: 1349 case MCAST_UNBLOCK_SOURCE: 1350 error = sooptcopyin(sopt, &gsr, 1351 sizeof(struct group_source_req), 1352 sizeof(struct group_source_req)); 1353 if (error) 1354 return (error); 1355 1356 if (gsa->sin6.sin6_family != AF_INET6 || 1357 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1358 return (EINVAL); 1359 1360 if (ssa->sin6.sin6_family != AF_INET6 || 1361 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1362 return (EINVAL); 1363 1364 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1365 return (EADDRNOTAVAIL); 1366 1367 ifp = ifnet_byindex(gsr.gsr_interface); 1368 1369 if (sopt->sopt_name == MCAST_BLOCK_SOURCE) 1370 doblock = 1; 1371 break; 1372 1373 default: 1374 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 1375 __func__, sopt->sopt_name); 1376 return (EOPNOTSUPP); 1377 break; 1378 } 1379 1380 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1381 return (EINVAL); 1382 1383 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1384 1385 /* 1386 * Check if we are actually a member of this group. 1387 */ 1388 imo = in6p_findmoptions(inp); 1389 idx = im6o_match_group(imo, ifp, &gsa->sa); 1390 if (idx == -1 || imo->im6o_mfilters == NULL) { 1391 error = EADDRNOTAVAIL; 1392 goto out_in6p_locked; 1393 } 1394 1395 KASSERT(imo->im6o_mfilters != NULL, 1396 ("%s: im6o_mfilters not allocated", __func__)); 1397 imf = &imo->im6o_mfilters[idx]; 1398 inm = imo->im6o_membership[idx]; 1399 1400 /* 1401 * Attempting to use the delta-based API on an 1402 * non exclusive-mode membership is an error. 1403 */ 1404 fmode = imf->im6f_st[0]; 1405 if (fmode != MCAST_EXCLUDE) { 1406 error = EINVAL; 1407 goto out_in6p_locked; 1408 } 1409 1410 /* 1411 * Deal with error cases up-front: 1412 * Asked to block, but already blocked; or 1413 * Asked to unblock, but nothing to unblock. 1414 * If adding a new block entry, allocate it. 1415 */ 1416 ims = im6o_match_source(imo, idx, &ssa->sa); 1417 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { 1418 CTR3(KTR_MLD, "%s: source %s %spresent", __func__, 1419 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 1420 doblock ? "" : "not "); 1421 error = EADDRNOTAVAIL; 1422 goto out_in6p_locked; 1423 } 1424 1425 INP_WLOCK_ASSERT(inp); 1426 1427 /* 1428 * Begin state merge transaction at socket layer. 1429 */ 1430 if (doblock) { 1431 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 1432 ims = im6f_graft(imf, fmode, &ssa->sin6); 1433 if (ims == NULL) 1434 error = ENOMEM; 1435 } else { 1436 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 1437 error = im6f_prune(imf, &ssa->sin6); 1438 } 1439 1440 if (error) { 1441 CTR1(KTR_MLD, "%s: merge imf state failed", __func__); 1442 goto out_im6f_rollback; 1443 } 1444 1445 /* 1446 * Begin state merge transaction at MLD layer. 1447 */ 1448 IN6_MULTI_LOCK(); 1449 1450 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1451 error = in6m_merge(inm, imf); 1452 if (error) 1453 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1454 else { 1455 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1456 error = mld_change_state(inm, 0); 1457 if (error) 1458 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1459 } 1460 1461 IN6_MULTI_UNLOCK(); 1462 1463 out_im6f_rollback: 1464 if (error) 1465 im6f_rollback(imf); 1466 else 1467 im6f_commit(imf); 1468 1469 im6f_reap(imf); 1470 1471 out_in6p_locked: 1472 INP_WUNLOCK(inp); 1473 return (error); 1474 } 1475 1476 /* 1477 * Given an inpcb, return its multicast options structure pointer. Accepts 1478 * an unlocked inpcb pointer, but will return it locked. May sleep. 1479 * 1480 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 1481 * SMPng: NOTE: Returns with the INP write lock held. 1482 */ 1483 static struct ip6_moptions * 1484 in6p_findmoptions(struct inpcb *inp) 1485 { 1486 struct ip6_moptions *imo; 1487 struct in6_multi **immp; 1488 struct in6_mfilter *imfp; 1489 size_t idx; 1490 1491 INP_WLOCK(inp); 1492 if (inp->in6p_moptions != NULL) 1493 return (inp->in6p_moptions); 1494 1495 INP_WUNLOCK(inp); 1496 1497 imo = malloc(sizeof(*imo), M_IP6MOPTS, M_WAITOK); 1498 immp = malloc(sizeof(*immp) * IPV6_MIN_MEMBERSHIPS, M_IP6MOPTS, 1499 M_WAITOK | M_ZERO); 1500 imfp = malloc(sizeof(struct in6_mfilter) * IPV6_MIN_MEMBERSHIPS, 1501 M_IN6MFILTER, M_WAITOK); 1502 1503 imo->im6o_multicast_ifp = NULL; 1504 imo->im6o_multicast_hlim = V_ip6_defmcasthlim; 1505 imo->im6o_multicast_loop = in6_mcast_loop; 1506 imo->im6o_num_memberships = 0; 1507 imo->im6o_max_memberships = IPV6_MIN_MEMBERSHIPS; 1508 imo->im6o_membership = immp; 1509 1510 /* Initialize per-group source filters. */ 1511 for (idx = 0; idx < IPV6_MIN_MEMBERSHIPS; idx++) 1512 im6f_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); 1513 imo->im6o_mfilters = imfp; 1514 1515 INP_WLOCK(inp); 1516 if (inp->in6p_moptions != NULL) { 1517 free(imfp, M_IN6MFILTER); 1518 free(immp, M_IP6MOPTS); 1519 free(imo, M_IP6MOPTS); 1520 return (inp->in6p_moptions); 1521 } 1522 inp->in6p_moptions = imo; 1523 return (imo); 1524 } 1525 1526 /* 1527 * Discard the IPv6 multicast options (and source filters). 1528 * 1529 * SMPng: NOTE: assumes INP write lock is held. 1530 */ 1531 void 1532 ip6_freemoptions(struct ip6_moptions *imo) 1533 { 1534 struct in6_mfilter *imf; 1535 size_t idx, nmships; 1536 1537 KASSERT(imo != NULL, ("%s: ip6_moptions is NULL", __func__)); 1538 1539 nmships = imo->im6o_num_memberships; 1540 for (idx = 0; idx < nmships; ++idx) { 1541 imf = imo->im6o_mfilters ? &imo->im6o_mfilters[idx] : NULL; 1542 if (imf) 1543 im6f_leave(imf); 1544 /* XXX this will thrash the lock(s) */ 1545 (void)in6_mc_leave(imo->im6o_membership[idx], imf); 1546 if (imf) 1547 im6f_purge(imf); 1548 } 1549 1550 if (imo->im6o_mfilters) 1551 free(imo->im6o_mfilters, M_IN6MFILTER); 1552 free(imo->im6o_membership, M_IP6MOPTS); 1553 free(imo, M_IP6MOPTS); 1554 } 1555 1556 /* 1557 * Atomically get source filters on a socket for an IPv6 multicast group. 1558 * Called with INP lock held; returns with lock released. 1559 */ 1560 static int 1561 in6p_get_source_filters(struct inpcb *inp, struct sockopt *sopt) 1562 { 1563 struct __msfilterreq msfr; 1564 sockunion_t *gsa; 1565 struct ifnet *ifp; 1566 struct ip6_moptions *imo; 1567 struct in6_mfilter *imf; 1568 struct ip6_msource *ims; 1569 struct in6_msource *lims; 1570 struct sockaddr_in6 *psin; 1571 struct sockaddr_storage *ptss; 1572 struct sockaddr_storage *tss; 1573 int error; 1574 size_t idx, nsrcs, ncsrcs; 1575 1576 INP_WLOCK_ASSERT(inp); 1577 1578 imo = inp->in6p_moptions; 1579 KASSERT(imo != NULL, ("%s: null ip6_moptions", __func__)); 1580 1581 INP_WUNLOCK(inp); 1582 1583 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 1584 sizeof(struct __msfilterreq)); 1585 if (error) 1586 return (error); 1587 1588 if (msfr.msfr_group.ss_family != AF_INET6 || 1589 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 1590 return (EINVAL); 1591 1592 gsa = (sockunion_t *)&msfr.msfr_group; 1593 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1594 return (EINVAL); 1595 1596 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 1597 return (EADDRNOTAVAIL); 1598 ifp = ifnet_byindex(msfr.msfr_ifindex); 1599 if (ifp == NULL) 1600 return (EADDRNOTAVAIL); 1601 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1602 1603 INP_WLOCK(inp); 1604 1605 /* 1606 * Lookup group on the socket. 1607 */ 1608 idx = im6o_match_group(imo, ifp, &gsa->sa); 1609 if (idx == -1 || imo->im6o_mfilters == NULL) { 1610 INP_WUNLOCK(inp); 1611 return (EADDRNOTAVAIL); 1612 } 1613 imf = &imo->im6o_mfilters[idx]; 1614 1615 /* 1616 * Ignore memberships which are in limbo. 1617 */ 1618 if (imf->im6f_st[1] == MCAST_UNDEFINED) { 1619 INP_WUNLOCK(inp); 1620 return (EAGAIN); 1621 } 1622 msfr.msfr_fmode = imf->im6f_st[1]; 1623 1624 /* 1625 * If the user specified a buffer, copy out the source filter 1626 * entries to userland gracefully. 1627 * We only copy out the number of entries which userland 1628 * has asked for, but we always tell userland how big the 1629 * buffer really needs to be. 1630 */ 1631 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 1632 msfr.msfr_nsrcs = in6_mcast_maxsocksrc; 1633 tss = NULL; 1634 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { 1635 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 1636 M_TEMP, M_NOWAIT | M_ZERO); 1637 if (tss == NULL) { 1638 INP_WUNLOCK(inp); 1639 return (ENOBUFS); 1640 } 1641 } 1642 1643 /* 1644 * Count number of sources in-mode at t0. 1645 * If buffer space exists and remains, copy out source entries. 1646 */ 1647 nsrcs = msfr.msfr_nsrcs; 1648 ncsrcs = 0; 1649 ptss = tss; 1650 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 1651 lims = (struct in6_msource *)ims; 1652 if (lims->im6sl_st[0] == MCAST_UNDEFINED || 1653 lims->im6sl_st[0] != imf->im6f_st[0]) 1654 continue; 1655 ++ncsrcs; 1656 if (tss != NULL && nsrcs > 0) { 1657 psin = (struct sockaddr_in6 *)ptss; 1658 psin->sin6_family = AF_INET6; 1659 psin->sin6_len = sizeof(struct sockaddr_in6); 1660 psin->sin6_addr = lims->im6s_addr; 1661 psin->sin6_port = 0; 1662 --nsrcs; 1663 ++ptss; 1664 } 1665 } 1666 1667 INP_WUNLOCK(inp); 1668 1669 if (tss != NULL) { 1670 error = copyout(tss, msfr.msfr_srcs, 1671 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 1672 free(tss, M_TEMP); 1673 if (error) 1674 return (error); 1675 } 1676 1677 msfr.msfr_nsrcs = ncsrcs; 1678 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); 1679 1680 return (error); 1681 } 1682 1683 /* 1684 * Return the IP multicast options in response to user getsockopt(). 1685 */ 1686 int 1687 ip6_getmoptions(struct inpcb *inp, struct sockopt *sopt) 1688 { 1689 struct ip6_moptions *im6o; 1690 int error; 1691 u_int optval; 1692 1693 INP_WLOCK(inp); 1694 im6o = inp->in6p_moptions; 1695 /* 1696 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 1697 * or is a divert socket, reject it. 1698 */ 1699 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 1700 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 1701 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { 1702 INP_WUNLOCK(inp); 1703 return (EOPNOTSUPP); 1704 } 1705 1706 error = 0; 1707 switch (sopt->sopt_name) { 1708 case IPV6_MULTICAST_IF: 1709 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) { 1710 optval = 0; 1711 } else { 1712 optval = im6o->im6o_multicast_ifp->if_index; 1713 } 1714 INP_WUNLOCK(inp); 1715 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1716 break; 1717 1718 case IPV6_MULTICAST_HOPS: 1719 if (im6o == NULL) 1720 optval = V_ip6_defmcasthlim; 1721 else 1722 optval = im6o->im6o_multicast_hlim; 1723 INP_WUNLOCK(inp); 1724 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1725 break; 1726 1727 case IPV6_MULTICAST_LOOP: 1728 if (im6o == NULL) 1729 optval = in6_mcast_loop; /* XXX VIMAGE */ 1730 else 1731 optval = im6o->im6o_multicast_loop; 1732 INP_WUNLOCK(inp); 1733 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1734 break; 1735 1736 case IPV6_MSFILTER: 1737 if (im6o == NULL) { 1738 error = EADDRNOTAVAIL; 1739 INP_WUNLOCK(inp); 1740 } else { 1741 error = in6p_get_source_filters(inp, sopt); 1742 } 1743 break; 1744 1745 default: 1746 INP_WUNLOCK(inp); 1747 error = ENOPROTOOPT; 1748 break; 1749 } 1750 1751 INP_UNLOCK_ASSERT(inp); 1752 1753 return (error); 1754 } 1755 1756 /* 1757 * Look up the ifnet to use for a multicast group membership, 1758 * given the address of an IPv6 group. 1759 * 1760 * This routine exists to support legacy IPv6 multicast applications. 1761 * 1762 * If inp is non-NULL, use this socket's current FIB number for any 1763 * required FIB lookup. Look up the group address in the unicast FIB, 1764 * and use its ifp; usually, this points to the default next-hop. 1765 * If the FIB lookup fails, return NULL. 1766 * 1767 * FUTURE: Support multiple forwarding tables for IPv6. 1768 * 1769 * Returns NULL if no ifp could be found. 1770 */ 1771 static struct ifnet * 1772 in6p_lookup_mcast_ifp(const struct inpcb *in6p, 1773 const struct sockaddr_in6 *gsin6) 1774 { 1775 struct route_in6 ro6; 1776 struct ifnet *ifp; 1777 1778 KASSERT(in6p->inp_vflag & INP_IPV6, 1779 ("%s: not INP_IPV6 inpcb", __func__)); 1780 KASSERT(gsin6->sin6_family == AF_INET6, 1781 ("%s: not AF_INET6 group", __func__)); 1782 1783 ifp = NULL; 1784 memset(&ro6, 0, sizeof(struct route_in6)); 1785 memcpy(&ro6.ro_dst, gsin6, sizeof(struct sockaddr_in6)); 1786 rtalloc_ign_fib((struct route *)&ro6, 0, 1787 in6p ? in6p->inp_inc.inc_fibnum : RT_DEFAULT_FIB); 1788 if (ro6.ro_rt != NULL) { 1789 ifp = ro6.ro_rt->rt_ifp; 1790 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 1791 RTFREE(ro6.ro_rt); 1792 } 1793 1794 return (ifp); 1795 } 1796 1797 /* 1798 * Join an IPv6 multicast group, possibly with a source. 1799 * 1800 * FIXME: The KAME use of the unspecified address (::) 1801 * to join *all* multicast groups is currently unsupported. 1802 */ 1803 static int 1804 in6p_join_group(struct inpcb *inp, struct sockopt *sopt) 1805 { 1806 struct group_source_req gsr; 1807 sockunion_t *gsa, *ssa; 1808 struct ifnet *ifp; 1809 struct in6_mfilter *imf; 1810 struct ip6_moptions *imo; 1811 struct in6_multi *inm; 1812 struct in6_msource *lims; 1813 size_t idx; 1814 int error, is_new; 1815 1816 ifp = NULL; 1817 imf = NULL; 1818 lims = NULL; 1819 error = 0; 1820 is_new = 0; 1821 1822 memset(&gsr, 0, sizeof(struct group_source_req)); 1823 gsa = (sockunion_t *)&gsr.gsr_group; 1824 gsa->ss.ss_family = AF_UNSPEC; 1825 ssa = (sockunion_t *)&gsr.gsr_source; 1826 ssa->ss.ss_family = AF_UNSPEC; 1827 1828 /* 1829 * Chew everything into struct group_source_req. 1830 * Overwrite the port field if present, as the sockaddr 1831 * being copied in may be matched with a binary comparison. 1832 * Ignore passed-in scope ID. 1833 */ 1834 switch (sopt->sopt_name) { 1835 case IPV6_JOIN_GROUP: { 1836 struct ipv6_mreq mreq; 1837 1838 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 1839 sizeof(struct ipv6_mreq)); 1840 if (error) 1841 return (error); 1842 1843 gsa->sin6.sin6_family = AF_INET6; 1844 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 1845 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 1846 1847 if (mreq.ipv6mr_interface == 0) { 1848 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 1849 } else { 1850 if (V_if_index < mreq.ipv6mr_interface) 1851 return (EADDRNOTAVAIL); 1852 ifp = ifnet_byindex(mreq.ipv6mr_interface); 1853 } 1854 CTR3(KTR_MLD, "%s: ipv6mr_interface = %d, ifp = %p", 1855 __func__, mreq.ipv6mr_interface, ifp); 1856 } break; 1857 1858 case MCAST_JOIN_GROUP: 1859 case MCAST_JOIN_SOURCE_GROUP: 1860 if (sopt->sopt_name == MCAST_JOIN_GROUP) { 1861 error = sooptcopyin(sopt, &gsr, 1862 sizeof(struct group_req), 1863 sizeof(struct group_req)); 1864 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1865 error = sooptcopyin(sopt, &gsr, 1866 sizeof(struct group_source_req), 1867 sizeof(struct group_source_req)); 1868 } 1869 if (error) 1870 return (error); 1871 1872 if (gsa->sin6.sin6_family != AF_INET6 || 1873 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1874 return (EINVAL); 1875 1876 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1877 if (ssa->sin6.sin6_family != AF_INET6 || 1878 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1879 return (EINVAL); 1880 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 1881 return (EINVAL); 1882 /* 1883 * TODO: Validate embedded scope ID in source 1884 * list entry against passed-in ifp, if and only 1885 * if source list filter entry is iface or node local. 1886 */ 1887 in6_clearscope(&ssa->sin6.sin6_addr); 1888 ssa->sin6.sin6_port = 0; 1889 ssa->sin6.sin6_scope_id = 0; 1890 } 1891 1892 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1893 return (EADDRNOTAVAIL); 1894 ifp = ifnet_byindex(gsr.gsr_interface); 1895 break; 1896 1897 default: 1898 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 1899 __func__, sopt->sopt_name); 1900 return (EOPNOTSUPP); 1901 break; 1902 } 1903 1904 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1905 return (EINVAL); 1906 1907 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) 1908 return (EADDRNOTAVAIL); 1909 1910 gsa->sin6.sin6_port = 0; 1911 gsa->sin6.sin6_scope_id = 0; 1912 1913 /* 1914 * Always set the scope zone ID on memberships created from userland. 1915 * Use the passed-in ifp to do this. 1916 * XXX The in6_setscope() return value is meaningless. 1917 * XXX SCOPE6_LOCK() is taken by in6_setscope(). 1918 */ 1919 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1920 1921 imo = in6p_findmoptions(inp); 1922 idx = im6o_match_group(imo, ifp, &gsa->sa); 1923 if (idx == -1) { 1924 is_new = 1; 1925 } else { 1926 inm = imo->im6o_membership[idx]; 1927 imf = &imo->im6o_mfilters[idx]; 1928 if (ssa->ss.ss_family != AF_UNSPEC) { 1929 /* 1930 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership 1931 * is an error. On an existing inclusive membership, 1932 * it just adds the source to the filter list. 1933 */ 1934 if (imf->im6f_st[1] != MCAST_INCLUDE) { 1935 error = EINVAL; 1936 goto out_in6p_locked; 1937 } 1938 /* 1939 * Throw out duplicates. 1940 * 1941 * XXX FIXME: This makes a naive assumption that 1942 * even if entries exist for *ssa in this imf, 1943 * they will be rejected as dupes, even if they 1944 * are not valid in the current mode (in-mode). 1945 * 1946 * in6_msource is transactioned just as for anything 1947 * else in SSM -- but note naive use of in6m_graft() 1948 * below for allocating new filter entries. 1949 * 1950 * This is only an issue if someone mixes the 1951 * full-state SSM API with the delta-based API, 1952 * which is discouraged in the relevant RFCs. 1953 */ 1954 lims = im6o_match_source(imo, idx, &ssa->sa); 1955 if (lims != NULL /*&& 1956 lims->im6sl_st[1] == MCAST_INCLUDE*/) { 1957 error = EADDRNOTAVAIL; 1958 goto out_in6p_locked; 1959 } 1960 } else { 1961 /* 1962 * MCAST_JOIN_GROUP alone, on any existing membership, 1963 * is rejected, to stop the same inpcb tying up 1964 * multiple refs to the in_multi. 1965 * On an existing inclusive membership, this is also 1966 * an error; if you want to change filter mode, 1967 * you must use the userland API setsourcefilter(). 1968 * XXX We don't reject this for imf in UNDEFINED 1969 * state at t1, because allocation of a filter 1970 * is atomic with allocation of a membership. 1971 */ 1972 error = EINVAL; 1973 goto out_in6p_locked; 1974 } 1975 } 1976 1977 /* 1978 * Begin state merge transaction at socket layer. 1979 */ 1980 INP_WLOCK_ASSERT(inp); 1981 1982 if (is_new) { 1983 if (imo->im6o_num_memberships == imo->im6o_max_memberships) { 1984 error = im6o_grow(imo); 1985 if (error) 1986 goto out_in6p_locked; 1987 } 1988 /* 1989 * Allocate the new slot upfront so we can deal with 1990 * grafting the new source filter in same code path 1991 * as for join-source on existing membership. 1992 */ 1993 idx = imo->im6o_num_memberships; 1994 imo->im6o_membership[idx] = NULL; 1995 imo->im6o_num_memberships++; 1996 KASSERT(imo->im6o_mfilters != NULL, 1997 ("%s: im6f_mfilters vector was not allocated", __func__)); 1998 imf = &imo->im6o_mfilters[idx]; 1999 KASSERT(RB_EMPTY(&imf->im6f_sources), 2000 ("%s: im6f_sources not empty", __func__)); 2001 } 2002 2003 /* 2004 * Graft new source into filter list for this inpcb's 2005 * membership of the group. The in6_multi may not have 2006 * been allocated yet if this is a new membership, however, 2007 * the in_mfilter slot will be allocated and must be initialized. 2008 * 2009 * Note: Grafting of exclusive mode filters doesn't happen 2010 * in this path. 2011 * XXX: Should check for non-NULL lims (node exists but may 2012 * not be in-mode) for interop with full-state API. 2013 */ 2014 if (ssa->ss.ss_family != AF_UNSPEC) { 2015 /* Membership starts in IN mode */ 2016 if (is_new) { 2017 CTR1(KTR_MLD, "%s: new join w/source", __func__); 2018 im6f_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE); 2019 } else { 2020 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 2021 } 2022 lims = im6f_graft(imf, MCAST_INCLUDE, &ssa->sin6); 2023 if (lims == NULL) { 2024 CTR1(KTR_MLD, "%s: merge imf state failed", 2025 __func__); 2026 error = ENOMEM; 2027 goto out_im6o_free; 2028 } 2029 } else { 2030 /* No address specified; Membership starts in EX mode */ 2031 if (is_new) { 2032 CTR1(KTR_MLD, "%s: new join w/o source", __func__); 2033 im6f_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE); 2034 } 2035 } 2036 2037 /* 2038 * Begin state merge transaction at MLD layer. 2039 */ 2040 IN6_MULTI_LOCK(); 2041 2042 if (is_new) { 2043 error = in6_mc_join_locked(ifp, &gsa->sin6.sin6_addr, imf, 2044 &inm, 0); 2045 if (error) { 2046 IN6_MULTI_UNLOCK(); 2047 goto out_im6o_free; 2048 } 2049 imo->im6o_membership[idx] = inm; 2050 } else { 2051 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2052 error = in6m_merge(inm, imf); 2053 if (error) 2054 CTR1(KTR_MLD, "%s: failed to merge inm state", 2055 __func__); 2056 else { 2057 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2058 error = mld_change_state(inm, 0); 2059 if (error) 2060 CTR1(KTR_MLD, "%s: failed mld downcall", 2061 __func__); 2062 } 2063 } 2064 2065 IN6_MULTI_UNLOCK(); 2066 INP_WLOCK_ASSERT(inp); 2067 if (error) { 2068 im6f_rollback(imf); 2069 if (is_new) 2070 im6f_purge(imf); 2071 else 2072 im6f_reap(imf); 2073 } else { 2074 im6f_commit(imf); 2075 } 2076 2077 out_im6o_free: 2078 if (error && is_new) { 2079 imo->im6o_membership[idx] = NULL; 2080 --imo->im6o_num_memberships; 2081 } 2082 2083 out_in6p_locked: 2084 INP_WUNLOCK(inp); 2085 return (error); 2086 } 2087 2088 /* 2089 * Leave an IPv6 multicast group on an inpcb, possibly with a source. 2090 */ 2091 static int 2092 in6p_leave_group(struct inpcb *inp, struct sockopt *sopt) 2093 { 2094 struct ipv6_mreq mreq; 2095 struct group_source_req gsr; 2096 sockunion_t *gsa, *ssa; 2097 struct ifnet *ifp; 2098 struct in6_mfilter *imf; 2099 struct ip6_moptions *imo; 2100 struct in6_msource *ims; 2101 struct in6_multi *inm; 2102 uint32_t ifindex; 2103 size_t idx; 2104 int error, is_final; 2105 #ifdef KTR 2106 char ip6tbuf[INET6_ADDRSTRLEN]; 2107 #endif 2108 2109 ifp = NULL; 2110 ifindex = 0; 2111 error = 0; 2112 is_final = 1; 2113 2114 memset(&gsr, 0, sizeof(struct group_source_req)); 2115 gsa = (sockunion_t *)&gsr.gsr_group; 2116 gsa->ss.ss_family = AF_UNSPEC; 2117 ssa = (sockunion_t *)&gsr.gsr_source; 2118 ssa->ss.ss_family = AF_UNSPEC; 2119 2120 /* 2121 * Chew everything passed in up into a struct group_source_req 2122 * as that is easier to process. 2123 * Note: Any embedded scope ID in the multicast group passed 2124 * in by userland is ignored, the interface index is the recommended 2125 * mechanism to specify an interface; see below. 2126 */ 2127 switch (sopt->sopt_name) { 2128 case IPV6_LEAVE_GROUP: 2129 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 2130 sizeof(struct ipv6_mreq)); 2131 if (error) 2132 return (error); 2133 gsa->sin6.sin6_family = AF_INET6; 2134 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 2135 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 2136 gsa->sin6.sin6_port = 0; 2137 gsa->sin6.sin6_scope_id = 0; 2138 ifindex = mreq.ipv6mr_interface; 2139 break; 2140 2141 case MCAST_LEAVE_GROUP: 2142 case MCAST_LEAVE_SOURCE_GROUP: 2143 if (sopt->sopt_name == MCAST_LEAVE_GROUP) { 2144 error = sooptcopyin(sopt, &gsr, 2145 sizeof(struct group_req), 2146 sizeof(struct group_req)); 2147 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2148 error = sooptcopyin(sopt, &gsr, 2149 sizeof(struct group_source_req), 2150 sizeof(struct group_source_req)); 2151 } 2152 if (error) 2153 return (error); 2154 2155 if (gsa->sin6.sin6_family != AF_INET6 || 2156 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2157 return (EINVAL); 2158 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2159 if (ssa->sin6.sin6_family != AF_INET6 || 2160 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2161 return (EINVAL); 2162 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 2163 return (EINVAL); 2164 /* 2165 * TODO: Validate embedded scope ID in source 2166 * list entry against passed-in ifp, if and only 2167 * if source list filter entry is iface or node local. 2168 */ 2169 in6_clearscope(&ssa->sin6.sin6_addr); 2170 } 2171 gsa->sin6.sin6_port = 0; 2172 gsa->sin6.sin6_scope_id = 0; 2173 ifindex = gsr.gsr_interface; 2174 break; 2175 2176 default: 2177 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 2178 __func__, sopt->sopt_name); 2179 return (EOPNOTSUPP); 2180 break; 2181 } 2182 2183 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2184 return (EINVAL); 2185 2186 /* 2187 * Validate interface index if provided. If no interface index 2188 * was provided separately, attempt to look the membership up 2189 * from the default scope as a last resort to disambiguate 2190 * the membership we are being asked to leave. 2191 * XXX SCOPE6 lock potentially taken here. 2192 */ 2193 if (ifindex != 0) { 2194 if (V_if_index < ifindex) 2195 return (EADDRNOTAVAIL); 2196 ifp = ifnet_byindex(ifindex); 2197 if (ifp == NULL) 2198 return (EADDRNOTAVAIL); 2199 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2200 } else { 2201 error = sa6_embedscope(&gsa->sin6, V_ip6_use_defzone); 2202 if (error) 2203 return (EADDRNOTAVAIL); 2204 /* 2205 * Some badly behaved applications don't pass an ifindex 2206 * or a scope ID, which is an API violation. In this case, 2207 * perform a lookup as per a v6 join. 2208 * 2209 * XXX For now, stomp on zone ID for the corner case. 2210 * This is not the 'KAME way', but we need to see the ifp 2211 * directly until such time as this implementation is 2212 * refactored, assuming the scope IDs are the way to go. 2213 */ 2214 ifindex = ntohs(gsa->sin6.sin6_addr.s6_addr16[1]); 2215 if (ifindex == 0) { 2216 CTR2(KTR_MLD, "%s: warning: no ifindex, looking up " 2217 "ifp for group %s.", __func__, 2218 ip6_sprintf(ip6tbuf, &gsa->sin6.sin6_addr)); 2219 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 2220 } else { 2221 ifp = ifnet_byindex(ifindex); 2222 } 2223 if (ifp == NULL) 2224 return (EADDRNOTAVAIL); 2225 } 2226 2227 CTR2(KTR_MLD, "%s: ifp = %p", __func__, ifp); 2228 KASSERT(ifp != NULL, ("%s: ifp did not resolve", __func__)); 2229 2230 /* 2231 * Find the membership in the membership array. 2232 */ 2233 imo = in6p_findmoptions(inp); 2234 idx = im6o_match_group(imo, ifp, &gsa->sa); 2235 if (idx == -1) { 2236 error = EADDRNOTAVAIL; 2237 goto out_in6p_locked; 2238 } 2239 inm = imo->im6o_membership[idx]; 2240 imf = &imo->im6o_mfilters[idx]; 2241 2242 if (ssa->ss.ss_family != AF_UNSPEC) 2243 is_final = 0; 2244 2245 /* 2246 * Begin state merge transaction at socket layer. 2247 */ 2248 INP_WLOCK_ASSERT(inp); 2249 2250 /* 2251 * If we were instructed only to leave a given source, do so. 2252 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. 2253 */ 2254 if (is_final) { 2255 im6f_leave(imf); 2256 } else { 2257 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 2258 error = EADDRNOTAVAIL; 2259 goto out_in6p_locked; 2260 } 2261 ims = im6o_match_source(imo, idx, &ssa->sa); 2262 if (ims == NULL) { 2263 CTR3(KTR_MLD, "%s: source %p %spresent", __func__, 2264 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 2265 "not "); 2266 error = EADDRNOTAVAIL; 2267 goto out_in6p_locked; 2268 } 2269 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 2270 error = im6f_prune(imf, &ssa->sin6); 2271 if (error) { 2272 CTR1(KTR_MLD, "%s: merge imf state failed", 2273 __func__); 2274 goto out_in6p_locked; 2275 } 2276 } 2277 2278 /* 2279 * Begin state merge transaction at MLD layer. 2280 */ 2281 IN6_MULTI_LOCK(); 2282 2283 if (is_final) { 2284 /* 2285 * Give up the multicast address record to which 2286 * the membership points. 2287 */ 2288 (void)in6_mc_leave_locked(inm, imf); 2289 } else { 2290 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2291 error = in6m_merge(inm, imf); 2292 if (error) 2293 CTR1(KTR_MLD, "%s: failed to merge inm state", 2294 __func__); 2295 else { 2296 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2297 error = mld_change_state(inm, 0); 2298 if (error) 2299 CTR1(KTR_MLD, "%s: failed mld downcall", 2300 __func__); 2301 } 2302 } 2303 2304 IN6_MULTI_UNLOCK(); 2305 2306 if (error) 2307 im6f_rollback(imf); 2308 else 2309 im6f_commit(imf); 2310 2311 im6f_reap(imf); 2312 2313 if (is_final) { 2314 /* Remove the gap in the membership array. */ 2315 for (++idx; idx < imo->im6o_num_memberships; ++idx) { 2316 imo->im6o_membership[idx-1] = imo->im6o_membership[idx]; 2317 imo->im6o_mfilters[idx-1] = imo->im6o_mfilters[idx]; 2318 } 2319 imo->im6o_num_memberships--; 2320 } 2321 2322 out_in6p_locked: 2323 INP_WUNLOCK(inp); 2324 return (error); 2325 } 2326 2327 /* 2328 * Select the interface for transmitting IPv6 multicast datagrams. 2329 * 2330 * Either an instance of struct in6_addr or an instance of struct ipv6_mreqn 2331 * may be passed to this socket option. An address of in6addr_any or an 2332 * interface index of 0 is used to remove a previous selection. 2333 * When no interface is selected, one is chosen for every send. 2334 */ 2335 static int 2336 in6p_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) 2337 { 2338 struct ifnet *ifp; 2339 struct ip6_moptions *imo; 2340 u_int ifindex; 2341 int error; 2342 2343 if (sopt->sopt_valsize != sizeof(u_int)) 2344 return (EINVAL); 2345 2346 error = sooptcopyin(sopt, &ifindex, sizeof(u_int), sizeof(u_int)); 2347 if (error) 2348 return (error); 2349 if (V_if_index < ifindex) 2350 return (EINVAL); 2351 if (ifindex == 0) 2352 ifp = NULL; 2353 else { 2354 ifp = ifnet_byindex(ifindex); 2355 if (ifp == NULL) 2356 return (EINVAL); 2357 if ((ifp->if_flags & IFF_MULTICAST) == 0) 2358 return (EADDRNOTAVAIL); 2359 } 2360 imo = in6p_findmoptions(inp); 2361 imo->im6o_multicast_ifp = ifp; 2362 INP_WUNLOCK(inp); 2363 2364 return (0); 2365 } 2366 2367 /* 2368 * Atomically set source filters on a socket for an IPv6 multicast group. 2369 * 2370 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 2371 */ 2372 static int 2373 in6p_set_source_filters(struct inpcb *inp, struct sockopt *sopt) 2374 { 2375 struct __msfilterreq msfr; 2376 sockunion_t *gsa; 2377 struct ifnet *ifp; 2378 struct in6_mfilter *imf; 2379 struct ip6_moptions *imo; 2380 struct in6_multi *inm; 2381 size_t idx; 2382 int error; 2383 2384 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 2385 sizeof(struct __msfilterreq)); 2386 if (error) 2387 return (error); 2388 2389 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 2390 return (ENOBUFS); 2391 2392 if (msfr.msfr_fmode != MCAST_EXCLUDE && 2393 msfr.msfr_fmode != MCAST_INCLUDE) 2394 return (EINVAL); 2395 2396 if (msfr.msfr_group.ss_family != AF_INET6 || 2397 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 2398 return (EINVAL); 2399 2400 gsa = (sockunion_t *)&msfr.msfr_group; 2401 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2402 return (EINVAL); 2403 2404 gsa->sin6.sin6_port = 0; /* ignore port */ 2405 2406 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 2407 return (EADDRNOTAVAIL); 2408 ifp = ifnet_byindex(msfr.msfr_ifindex); 2409 if (ifp == NULL) 2410 return (EADDRNOTAVAIL); 2411 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2412 2413 /* 2414 * Take the INP write lock. 2415 * Check if this socket is a member of this group. 2416 */ 2417 imo = in6p_findmoptions(inp); 2418 idx = im6o_match_group(imo, ifp, &gsa->sa); 2419 if (idx == -1 || imo->im6o_mfilters == NULL) { 2420 error = EADDRNOTAVAIL; 2421 goto out_in6p_locked; 2422 } 2423 inm = imo->im6o_membership[idx]; 2424 imf = &imo->im6o_mfilters[idx]; 2425 2426 /* 2427 * Begin state merge transaction at socket layer. 2428 */ 2429 INP_WLOCK_ASSERT(inp); 2430 2431 imf->im6f_st[1] = msfr.msfr_fmode; 2432 2433 /* 2434 * Apply any new source filters, if present. 2435 * Make a copy of the user-space source vector so 2436 * that we may copy them with a single copyin. This 2437 * allows us to deal with page faults up-front. 2438 */ 2439 if (msfr.msfr_nsrcs > 0) { 2440 struct in6_msource *lims; 2441 struct sockaddr_in6 *psin; 2442 struct sockaddr_storage *kss, *pkss; 2443 int i; 2444 2445 INP_WUNLOCK(inp); 2446 2447 CTR2(KTR_MLD, "%s: loading %lu source list entries", 2448 __func__, (unsigned long)msfr.msfr_nsrcs); 2449 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 2450 M_TEMP, M_WAITOK); 2451 error = copyin(msfr.msfr_srcs, kss, 2452 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 2453 if (error) { 2454 free(kss, M_TEMP); 2455 return (error); 2456 } 2457 2458 INP_WLOCK(inp); 2459 2460 /* 2461 * Mark all source filters as UNDEFINED at t1. 2462 * Restore new group filter mode, as im6f_leave() 2463 * will set it to INCLUDE. 2464 */ 2465 im6f_leave(imf); 2466 imf->im6f_st[1] = msfr.msfr_fmode; 2467 2468 /* 2469 * Update socket layer filters at t1, lazy-allocating 2470 * new entries. This saves a bunch of memory at the 2471 * cost of one RB_FIND() per source entry; duplicate 2472 * entries in the msfr_nsrcs vector are ignored. 2473 * If we encounter an error, rollback transaction. 2474 * 2475 * XXX This too could be replaced with a set-symmetric 2476 * difference like loop to avoid walking from root 2477 * every time, as the key space is common. 2478 */ 2479 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { 2480 psin = (struct sockaddr_in6 *)pkss; 2481 if (psin->sin6_family != AF_INET6) { 2482 error = EAFNOSUPPORT; 2483 break; 2484 } 2485 if (psin->sin6_len != sizeof(struct sockaddr_in6)) { 2486 error = EINVAL; 2487 break; 2488 } 2489 if (IN6_IS_ADDR_MULTICAST(&psin->sin6_addr)) { 2490 error = EINVAL; 2491 break; 2492 } 2493 /* 2494 * TODO: Validate embedded scope ID in source 2495 * list entry against passed-in ifp, if and only 2496 * if source list filter entry is iface or node local. 2497 */ 2498 in6_clearscope(&psin->sin6_addr); 2499 error = im6f_get_source(imf, psin, &lims); 2500 if (error) 2501 break; 2502 lims->im6sl_st[1] = imf->im6f_st[1]; 2503 } 2504 free(kss, M_TEMP); 2505 } 2506 2507 if (error) 2508 goto out_im6f_rollback; 2509 2510 INP_WLOCK_ASSERT(inp); 2511 IN6_MULTI_LOCK(); 2512 2513 /* 2514 * Begin state merge transaction at MLD layer. 2515 */ 2516 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2517 error = in6m_merge(inm, imf); 2518 if (error) 2519 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 2520 else { 2521 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2522 error = mld_change_state(inm, 0); 2523 if (error) 2524 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 2525 } 2526 2527 IN6_MULTI_UNLOCK(); 2528 2529 out_im6f_rollback: 2530 if (error) 2531 im6f_rollback(imf); 2532 else 2533 im6f_commit(imf); 2534 2535 im6f_reap(imf); 2536 2537 out_in6p_locked: 2538 INP_WUNLOCK(inp); 2539 return (error); 2540 } 2541 2542 /* 2543 * Set the IP multicast options in response to user setsockopt(). 2544 * 2545 * Many of the socket options handled in this function duplicate the 2546 * functionality of socket options in the regular unicast API. However, 2547 * it is not possible to merge the duplicate code, because the idempotence 2548 * of the IPv6 multicast part of the BSD Sockets API must be preserved; 2549 * the effects of these options must be treated as separate and distinct. 2550 * 2551 * SMPng: XXX: Unlocked read of inp_socket believed OK. 2552 */ 2553 int 2554 ip6_setmoptions(struct inpcb *inp, struct sockopt *sopt) 2555 { 2556 struct ip6_moptions *im6o; 2557 int error; 2558 2559 error = 0; 2560 2561 /* 2562 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 2563 * or is a divert socket, reject it. 2564 */ 2565 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 2566 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 2567 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) 2568 return (EOPNOTSUPP); 2569 2570 switch (sopt->sopt_name) { 2571 case IPV6_MULTICAST_IF: 2572 error = in6p_set_multicast_if(inp, sopt); 2573 break; 2574 2575 case IPV6_MULTICAST_HOPS: { 2576 int hlim; 2577 2578 if (sopt->sopt_valsize != sizeof(int)) { 2579 error = EINVAL; 2580 break; 2581 } 2582 error = sooptcopyin(sopt, &hlim, sizeof(hlim), sizeof(int)); 2583 if (error) 2584 break; 2585 if (hlim < -1 || hlim > 255) { 2586 error = EINVAL; 2587 break; 2588 } else if (hlim == -1) { 2589 hlim = V_ip6_defmcasthlim; 2590 } 2591 im6o = in6p_findmoptions(inp); 2592 im6o->im6o_multicast_hlim = hlim; 2593 INP_WUNLOCK(inp); 2594 break; 2595 } 2596 2597 case IPV6_MULTICAST_LOOP: { 2598 u_int loop; 2599 2600 /* 2601 * Set the loopback flag for outgoing multicast packets. 2602 * Must be zero or one. 2603 */ 2604 if (sopt->sopt_valsize != sizeof(u_int)) { 2605 error = EINVAL; 2606 break; 2607 } 2608 error = sooptcopyin(sopt, &loop, sizeof(u_int), sizeof(u_int)); 2609 if (error) 2610 break; 2611 if (loop > 1) { 2612 error = EINVAL; 2613 break; 2614 } 2615 im6o = in6p_findmoptions(inp); 2616 im6o->im6o_multicast_loop = loop; 2617 INP_WUNLOCK(inp); 2618 break; 2619 } 2620 2621 case IPV6_JOIN_GROUP: 2622 case MCAST_JOIN_GROUP: 2623 case MCAST_JOIN_SOURCE_GROUP: 2624 error = in6p_join_group(inp, sopt); 2625 break; 2626 2627 case IPV6_LEAVE_GROUP: 2628 case MCAST_LEAVE_GROUP: 2629 case MCAST_LEAVE_SOURCE_GROUP: 2630 error = in6p_leave_group(inp, sopt); 2631 break; 2632 2633 case MCAST_BLOCK_SOURCE: 2634 case MCAST_UNBLOCK_SOURCE: 2635 error = in6p_block_unblock_source(inp, sopt); 2636 break; 2637 2638 case IPV6_MSFILTER: 2639 error = in6p_set_source_filters(inp, sopt); 2640 break; 2641 2642 default: 2643 error = EOPNOTSUPP; 2644 break; 2645 } 2646 2647 INP_UNLOCK_ASSERT(inp); 2648 2649 return (error); 2650 } 2651 2652 /* 2653 * Expose MLD's multicast filter mode and source list(s) to userland, 2654 * keyed by (ifindex, group). 2655 * The filter mode is written out as a uint32_t, followed by 2656 * 0..n of struct in6_addr. 2657 * For use by ifmcstat(8). 2658 * SMPng: NOTE: unlocked read of ifindex space. 2659 */ 2660 static int 2661 sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS) 2662 { 2663 struct in6_addr mcaddr; 2664 struct in6_addr src; 2665 struct ifnet *ifp; 2666 struct ifmultiaddr *ifma; 2667 struct in6_multi *inm; 2668 struct ip6_msource *ims; 2669 int *name; 2670 int retval; 2671 u_int namelen; 2672 uint32_t fmode, ifindex; 2673 #ifdef KTR 2674 char ip6tbuf[INET6_ADDRSTRLEN]; 2675 #endif 2676 2677 name = (int *)arg1; 2678 namelen = arg2; 2679 2680 if (req->newptr != NULL) 2681 return (EPERM); 2682 2683 /* int: ifindex + 4 * 32 bits of IPv6 address */ 2684 if (namelen != 5) 2685 return (EINVAL); 2686 2687 ifindex = name[0]; 2688 if (ifindex <= 0 || ifindex > V_if_index) { 2689 CTR2(KTR_MLD, "%s: ifindex %u out of range", 2690 __func__, ifindex); 2691 return (ENOENT); 2692 } 2693 2694 memcpy(&mcaddr, &name[1], sizeof(struct in6_addr)); 2695 if (!IN6_IS_ADDR_MULTICAST(&mcaddr)) { 2696 CTR2(KTR_MLD, "%s: group %s is not multicast", 2697 __func__, ip6_sprintf(ip6tbuf, &mcaddr)); 2698 return (EINVAL); 2699 } 2700 2701 ifp = ifnet_byindex(ifindex); 2702 if (ifp == NULL) { 2703 CTR2(KTR_MLD, "%s: no ifp for ifindex %u", 2704 __func__, ifindex); 2705 return (ENOENT); 2706 } 2707 /* 2708 * Internal MLD lookups require that scope/zone ID is set. 2709 */ 2710 (void)in6_setscope(&mcaddr, ifp, NULL); 2711 2712 retval = sysctl_wire_old_buffer(req, 2713 sizeof(uint32_t) + (in6_mcast_maxgrpsrc * sizeof(struct in6_addr))); 2714 if (retval) 2715 return (retval); 2716 2717 IN6_MULTI_LOCK(); 2718 2719 IF_ADDR_RLOCK(ifp); 2720 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2721 if (ifma->ifma_addr->sa_family != AF_INET6 || 2722 ifma->ifma_protospec == NULL) 2723 continue; 2724 inm = (struct in6_multi *)ifma->ifma_protospec; 2725 if (!IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, &mcaddr)) 2726 continue; 2727 fmode = inm->in6m_st[1].iss_fmode; 2728 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); 2729 if (retval != 0) 2730 break; 2731 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 2732 CTR2(KTR_MLD, "%s: visit node %p", __func__, ims); 2733 /* 2734 * Only copy-out sources which are in-mode. 2735 */ 2736 if (fmode != im6s_get_mode(inm, ims, 1)) { 2737 CTR1(KTR_MLD, "%s: skip non-in-mode", 2738 __func__); 2739 continue; 2740 } 2741 src = ims->im6s_addr; 2742 retval = SYSCTL_OUT(req, &src, 2743 sizeof(struct in6_addr)); 2744 if (retval != 0) 2745 break; 2746 } 2747 } 2748 IF_ADDR_RUNLOCK(ifp); 2749 2750 IN6_MULTI_UNLOCK(); 2751 2752 return (retval); 2753 } 2754 2755 #ifdef KTR 2756 2757 static const char *in6m_modestrs[] = { "un", "in", "ex" }; 2758 2759 static const char * 2760 in6m_mode_str(const int mode) 2761 { 2762 2763 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) 2764 return (in6m_modestrs[mode]); 2765 return ("??"); 2766 } 2767 2768 static const char *in6m_statestrs[] = { 2769 "not-member", 2770 "silent", 2771 "idle", 2772 "lazy", 2773 "sleeping", 2774 "awakening", 2775 "query-pending", 2776 "sg-query-pending", 2777 "leaving" 2778 }; 2779 2780 static const char * 2781 in6m_state_str(const int state) 2782 { 2783 2784 if (state >= MLD_NOT_MEMBER && state <= MLD_LEAVING_MEMBER) 2785 return (in6m_statestrs[state]); 2786 return ("??"); 2787 } 2788 2789 /* 2790 * Dump an in6_multi structure to the console. 2791 */ 2792 void 2793 in6m_print(const struct in6_multi *inm) 2794 { 2795 int t; 2796 char ip6tbuf[INET6_ADDRSTRLEN]; 2797 2798 if ((ktr_mask & KTR_MLD) == 0) 2799 return; 2800 2801 printf("%s: --- begin in6m %p ---\n", __func__, inm); 2802 printf("addr %s ifp %p(%s) ifma %p\n", 2803 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2804 inm->in6m_ifp, 2805 if_name(inm->in6m_ifp), 2806 inm->in6m_ifma); 2807 printf("timer %u state %s refcount %u scq.len %u\n", 2808 inm->in6m_timer, 2809 in6m_state_str(inm->in6m_state), 2810 inm->in6m_refcount, 2811 mbufq_len(&inm->in6m_scq)); 2812 printf("mli %p nsrc %lu sctimer %u scrv %u\n", 2813 inm->in6m_mli, 2814 inm->in6m_nsrc, 2815 inm->in6m_sctimer, 2816 inm->in6m_scrv); 2817 for (t = 0; t < 2; t++) { 2818 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, 2819 in6m_mode_str(inm->in6m_st[t].iss_fmode), 2820 inm->in6m_st[t].iss_asm, 2821 inm->in6m_st[t].iss_ex, 2822 inm->in6m_st[t].iss_in, 2823 inm->in6m_st[t].iss_rec); 2824 } 2825 printf("%s: --- end in6m %p ---\n", __func__, inm); 2826 } 2827 2828 #else /* !KTR */ 2829 2830 void 2831 in6m_print(const struct in6_multi *inm) 2832 { 2833 2834 } 2835 2836 #endif /* KTR */ 2837