1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2009 Bruce Simpson. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote 16 * products derived from this software without specific prior written 17 * permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * IPv6 multicast socket, group, and socket option processing module. 34 * Normative references: RFC 2292, RFC 3492, RFC 3542, RFC 3678, RFC 3810. 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_inet6.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/ktr.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/protosw.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/sysctl.h> 52 #include <sys/priv.h> 53 #include <sys/taskqueue.h> 54 #include <sys/tree.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <net/route/nhop.h> 61 #include <net/vnet.h> 62 63 #include <netinet/in.h> 64 #include <netinet/udp.h> 65 #include <netinet/in_var.h> 66 #include <netinet/ip_var.h> 67 #include <netinet/udp_var.h> 68 #include <netinet6/in6_fib.h> 69 #include <netinet6/in6_var.h> 70 #include <netinet/ip6.h> 71 #include <netinet/icmp6.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet/in_pcb.h> 74 #include <netinet/tcp_var.h> 75 #include <netinet6/nd6.h> 76 #include <netinet6/mld6_var.h> 77 #include <netinet6/scope6_var.h> 78 79 #ifndef KTR_MLD 80 #define KTR_MLD KTR_INET6 81 #endif 82 83 #ifndef __SOCKUNION_DECLARED 84 union sockunion { 85 struct sockaddr_storage ss; 86 struct sockaddr sa; 87 struct sockaddr_dl sdl; 88 struct sockaddr_in6 sin6; 89 }; 90 typedef union sockunion sockunion_t; 91 #define __SOCKUNION_DECLARED 92 #endif /* __SOCKUNION_DECLARED */ 93 94 static MALLOC_DEFINE(M_IN6MFILTER, "in6_mfilter", 95 "IPv6 multicast PCB-layer source filter"); 96 MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "IPv6 multicast group"); 97 static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "IPv6 multicast options"); 98 static MALLOC_DEFINE(M_IP6MSOURCE, "ip6_msource", 99 "IPv6 multicast MLD-layer source filter"); 100 101 RB_GENERATE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp); 102 103 /* 104 * Locking: 105 * - Lock order is: Giant, IN6_MULTI_LOCK, INP_WLOCK, 106 * IN6_MULTI_LIST_LOCK, MLD_LOCK, IF_ADDR_LOCK. 107 * - The IF_ADDR_LOCK is implicitly taken by in6m_lookup() earlier, however 108 * it can be taken by code in net/if.c also. 109 * - ip6_moptions and in6_mfilter are covered by the INP_WLOCK. 110 * 111 * struct in6_multi is covered by IN6_MULTI_LOCK. There isn't strictly 112 * any need for in6_multi itself to be virtualized -- it is bound to an ifp 113 * anyway no matter what happens. 114 */ 115 struct mtx in6_multi_list_mtx; 116 MTX_SYSINIT(in6_multi_mtx, &in6_multi_list_mtx, "in6_multi_list_mtx", MTX_DEF); 117 118 struct mtx in6_multi_free_mtx; 119 MTX_SYSINIT(in6_multi_free_mtx, &in6_multi_free_mtx, "in6_multi_free_mtx", MTX_DEF); 120 121 struct sx in6_multi_sx; 122 SX_SYSINIT(in6_multi_sx, &in6_multi_sx, "in6_multi_sx"); 123 124 static void im6f_commit(struct in6_mfilter *); 125 static int im6f_get_source(struct in6_mfilter *imf, 126 const struct sockaddr_in6 *psin, 127 struct in6_msource **); 128 static struct in6_msource * 129 im6f_graft(struct in6_mfilter *, const uint8_t, 130 const struct sockaddr_in6 *); 131 static void im6f_leave(struct in6_mfilter *); 132 static int im6f_prune(struct in6_mfilter *, const struct sockaddr_in6 *); 133 static void im6f_purge(struct in6_mfilter *); 134 static void im6f_rollback(struct in6_mfilter *); 135 static void im6f_reap(struct in6_mfilter *); 136 static struct in6_mfilter * 137 im6o_match_group(const struct ip6_moptions *, 138 const struct ifnet *, const struct sockaddr *); 139 static struct in6_msource * 140 im6o_match_source(struct in6_mfilter *, const struct sockaddr *); 141 static void im6s_merge(struct ip6_msource *ims, 142 const struct in6_msource *lims, const int rollback); 143 static int in6_getmulti(struct ifnet *, const struct in6_addr *, 144 struct in6_multi **); 145 static int in6_joingroup_locked(struct ifnet *, const struct in6_addr *, 146 struct in6_mfilter *, struct in6_multi **, int); 147 static int in6m_get_source(struct in6_multi *inm, 148 const struct in6_addr *addr, const int noalloc, 149 struct ip6_msource **pims); 150 #ifdef KTR 151 static int in6m_is_ifp_detached(const struct in6_multi *); 152 #endif 153 static int in6m_merge(struct in6_multi *, /*const*/ struct in6_mfilter *); 154 static void in6m_purge(struct in6_multi *); 155 static void in6m_reap(struct in6_multi *); 156 static struct ip6_moptions * 157 in6p_findmoptions(struct inpcb *); 158 static int in6p_get_source_filters(struct inpcb *, struct sockopt *); 159 static int in6p_join_group(struct inpcb *, struct sockopt *); 160 static int in6p_leave_group(struct inpcb *, struct sockopt *); 161 static struct ifnet * 162 in6p_lookup_mcast_ifp(const struct inpcb *, 163 const struct sockaddr_in6 *); 164 static int in6p_block_unblock_source(struct inpcb *, struct sockopt *); 165 static int in6p_set_multicast_if(struct inpcb *, struct sockopt *); 166 static int in6p_set_source_filters(struct inpcb *, struct sockopt *); 167 static int sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS); 168 169 SYSCTL_DECL(_net_inet6_ip6); /* XXX Not in any common header. */ 170 171 static SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, mcast, 172 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 173 "IPv6 multicast"); 174 175 static u_long in6_mcast_maxgrpsrc = IPV6_MAX_GROUP_SRC_FILTER; 176 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxgrpsrc, 177 CTLFLAG_RWTUN, &in6_mcast_maxgrpsrc, 0, 178 "Max source filters per group"); 179 180 static u_long in6_mcast_maxsocksrc = IPV6_MAX_SOCK_SRC_FILTER; 181 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxsocksrc, 182 CTLFLAG_RWTUN, &in6_mcast_maxsocksrc, 0, 183 "Max source filters per socket"); 184 185 /* TODO Virtualize this switch. */ 186 int in6_mcast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 187 SYSCTL_INT(_net_inet6_ip6_mcast, OID_AUTO, loop, CTLFLAG_RWTUN, 188 &in6_mcast_loop, 0, "Loopback multicast datagrams by default"); 189 190 static SYSCTL_NODE(_net_inet6_ip6_mcast, OID_AUTO, filters, 191 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip6_mcast_filters, 192 "Per-interface stack-wide source filters"); 193 194 #ifdef KTR 195 /* 196 * Inline function which wraps assertions for a valid ifp. 197 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp 198 * is detached. 199 */ 200 static int __inline 201 in6m_is_ifp_detached(const struct in6_multi *inm) 202 { 203 struct ifnet *ifp; 204 205 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 206 ifp = inm->in6m_ifma->ifma_ifp; 207 if (ifp != NULL) { 208 /* 209 * Sanity check that network-layer notion of ifp is the 210 * same as that of link-layer. 211 */ 212 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 213 } 214 215 return (ifp == NULL); 216 } 217 #endif 218 219 /* 220 * Initialize an in6_mfilter structure to a known state at t0, t1 221 * with an empty source filter list. 222 */ 223 static __inline void 224 im6f_init(struct in6_mfilter *imf, const int st0, const int st1) 225 { 226 memset(imf, 0, sizeof(struct in6_mfilter)); 227 RB_INIT(&imf->im6f_sources); 228 imf->im6f_st[0] = st0; 229 imf->im6f_st[1] = st1; 230 } 231 232 struct in6_mfilter * 233 ip6_mfilter_alloc(const int mflags, const int st0, const int st1) 234 { 235 struct in6_mfilter *imf; 236 237 imf = malloc(sizeof(*imf), M_IN6MFILTER, mflags); 238 239 if (imf != NULL) 240 im6f_init(imf, st0, st1); 241 242 return (imf); 243 } 244 245 void 246 ip6_mfilter_free(struct in6_mfilter *imf) 247 { 248 249 im6f_purge(imf); 250 free(imf, M_IN6MFILTER); 251 } 252 253 /* 254 * Find an IPv6 multicast group entry for this ip6_moptions instance 255 * which matches the specified group, and optionally an interface. 256 * Return its index into the array, or -1 if not found. 257 */ 258 static struct in6_mfilter * 259 im6o_match_group(const struct ip6_moptions *imo, const struct ifnet *ifp, 260 const struct sockaddr *group) 261 { 262 const struct sockaddr_in6 *gsin6; 263 struct in6_mfilter *imf; 264 struct in6_multi *inm; 265 266 gsin6 = (const struct sockaddr_in6 *)group; 267 268 IP6_MFILTER_FOREACH(imf, &imo->im6o_head) { 269 inm = imf->im6f_in6m; 270 if (inm == NULL) 271 continue; 272 if ((ifp == NULL || (inm->in6m_ifp == ifp)) && 273 IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, 274 &gsin6->sin6_addr)) { 275 break; 276 } 277 } 278 return (imf); 279 } 280 281 /* 282 * Find an IPv6 multicast source entry for this imo which matches 283 * the given group index for this socket, and source address. 284 * 285 * XXX TODO: The scope ID, if present in src, is stripped before 286 * any comparison. We SHOULD enforce scope/zone checks where the source 287 * filter entry has a link scope. 288 * 289 * NOTE: This does not check if the entry is in-mode, merely if 290 * it exists, which may not be the desired behaviour. 291 */ 292 static struct in6_msource * 293 im6o_match_source(struct in6_mfilter *imf, const struct sockaddr *src) 294 { 295 struct ip6_msource find; 296 struct ip6_msource *ims; 297 const sockunion_t *psa; 298 299 KASSERT(src->sa_family == AF_INET6, ("%s: !AF_INET6", __func__)); 300 301 psa = (const sockunion_t *)src; 302 find.im6s_addr = psa->sin6.sin6_addr; 303 in6_clearscope(&find.im6s_addr); /* XXX */ 304 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 305 306 return ((struct in6_msource *)ims); 307 } 308 309 /* 310 * Perform filtering for multicast datagrams on a socket by group and source. 311 * 312 * Returns 0 if a datagram should be allowed through, or various error codes 313 * if the socket was not a member of the group, or the source was muted, etc. 314 */ 315 int 316 im6o_mc_filter(const struct ip6_moptions *imo, const struct ifnet *ifp, 317 const struct sockaddr *group, const struct sockaddr *src) 318 { 319 struct in6_mfilter *imf; 320 struct in6_msource *ims; 321 int mode; 322 323 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 324 325 imf = im6o_match_group(imo, ifp, group); 326 if (imf == NULL) 327 return (MCAST_NOTGMEMBER); 328 329 /* 330 * Check if the source was included in an (S,G) join. 331 * Allow reception on exclusive memberships by default, 332 * reject reception on inclusive memberships by default. 333 * Exclude source only if an in-mode exclude filter exists. 334 * Include source only if an in-mode include filter exists. 335 * NOTE: We are comparing group state here at MLD t1 (now) 336 * with socket-layer t0 (since last downcall). 337 */ 338 mode = imf->im6f_st[1]; 339 ims = im6o_match_source(imf, src); 340 341 if ((ims == NULL && mode == MCAST_INCLUDE) || 342 (ims != NULL && ims->im6sl_st[0] != mode)) 343 return (MCAST_NOTSMEMBER); 344 345 return (MCAST_PASS); 346 } 347 348 /* 349 * Find and return a reference to an in6_multi record for (ifp, group), 350 * and bump its reference count. 351 * If one does not exist, try to allocate it, and update link-layer multicast 352 * filters on ifp to listen for group. 353 * Assumes the IN6_MULTI lock is held across the call. 354 * Return 0 if successful, otherwise return an appropriate error code. 355 */ 356 static int 357 in6_getmulti(struct ifnet *ifp, const struct in6_addr *group, 358 struct in6_multi **pinm) 359 { 360 struct epoch_tracker et; 361 struct sockaddr_in6 gsin6; 362 struct ifmultiaddr *ifma; 363 struct in6_multi *inm; 364 int error; 365 366 error = 0; 367 368 /* 369 * XXX: Accesses to ifma_protospec must be covered by IF_ADDR_LOCK; 370 * if_addmulti() takes this mutex itself, so we must drop and 371 * re-acquire around the call. 372 */ 373 IN6_MULTI_LOCK_ASSERT(); 374 IN6_MULTI_LIST_LOCK(); 375 IF_ADDR_WLOCK(ifp); 376 NET_EPOCH_ENTER(et); 377 /* 378 * Does ifp support IPv6 multicasts? 379 */ 380 if (ifp->if_afdata[AF_INET6] == NULL) 381 error = ENODEV; 382 else 383 inm = in6m_lookup_locked(ifp, group); 384 NET_EPOCH_EXIT(et); 385 386 if (error != 0) 387 goto out_locked; 388 389 if (inm != NULL) { 390 /* 391 * If we already joined this group, just bump the 392 * refcount and return it. 393 */ 394 KASSERT(inm->in6m_refcount >= 1, 395 ("%s: bad refcount %d", __func__, inm->in6m_refcount)); 396 in6m_acquire_locked(inm); 397 *pinm = inm; 398 goto out_locked; 399 } 400 401 memset(&gsin6, 0, sizeof(gsin6)); 402 gsin6.sin6_family = AF_INET6; 403 gsin6.sin6_len = sizeof(struct sockaddr_in6); 404 gsin6.sin6_addr = *group; 405 406 /* 407 * Check if a link-layer group is already associated 408 * with this network-layer group on the given ifnet. 409 */ 410 IN6_MULTI_LIST_UNLOCK(); 411 IF_ADDR_WUNLOCK(ifp); 412 error = if_addmulti(ifp, (struct sockaddr *)&gsin6, &ifma); 413 if (error != 0) 414 return (error); 415 IN6_MULTI_LIST_LOCK(); 416 IF_ADDR_WLOCK(ifp); 417 418 /* 419 * If something other than netinet6 is occupying the link-layer 420 * group, print a meaningful error message and back out of 421 * the allocation. 422 * Otherwise, bump the refcount on the existing network-layer 423 * group association and return it. 424 */ 425 if (ifma->ifma_protospec != NULL) { 426 inm = (struct in6_multi *)ifma->ifma_protospec; 427 #ifdef INVARIANTS 428 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", 429 __func__)); 430 KASSERT(ifma->ifma_addr->sa_family == AF_INET6, 431 ("%s: ifma not AF_INET6", __func__)); 432 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); 433 if (inm->in6m_ifma != ifma || inm->in6m_ifp != ifp || 434 !IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, group)) 435 panic("%s: ifma %p is inconsistent with %p (%p)", 436 __func__, ifma, inm, group); 437 #endif 438 in6m_acquire_locked(inm); 439 *pinm = inm; 440 goto out_locked; 441 } 442 443 IF_ADDR_WLOCK_ASSERT(ifp); 444 445 /* 446 * A new in6_multi record is needed; allocate and initialize it. 447 * We DO NOT perform an MLD join as the in6_ layer may need to 448 * push an initial source list down to MLD to support SSM. 449 * 450 * The initial source filter state is INCLUDE, {} as per the RFC. 451 * Pending state-changes per group are subject to a bounds check. 452 */ 453 inm = malloc(sizeof(*inm), M_IP6MADDR, M_NOWAIT | M_ZERO); 454 if (inm == NULL) { 455 IN6_MULTI_LIST_UNLOCK(); 456 IF_ADDR_WUNLOCK(ifp); 457 if_delmulti_ifma(ifma); 458 return (ENOMEM); 459 } 460 inm->in6m_addr = *group; 461 inm->in6m_ifp = ifp; 462 inm->in6m_mli = MLD_IFINFO(ifp); 463 inm->in6m_ifma = ifma; 464 inm->in6m_refcount = 1; 465 inm->in6m_state = MLD_NOT_MEMBER; 466 mbufq_init(&inm->in6m_scq, MLD_MAX_STATE_CHANGES); 467 468 inm->in6m_st[0].iss_fmode = MCAST_UNDEFINED; 469 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 470 RB_INIT(&inm->in6m_srcs); 471 472 ifma->ifma_protospec = inm; 473 *pinm = inm; 474 475 out_locked: 476 IN6_MULTI_LIST_UNLOCK(); 477 IF_ADDR_WUNLOCK(ifp); 478 return (error); 479 } 480 481 /* 482 * Drop a reference to an in6_multi record. 483 * 484 * If the refcount drops to 0, free the in6_multi record and 485 * delete the underlying link-layer membership. 486 */ 487 static void 488 in6m_release(struct in6_multi *inm) 489 { 490 struct ifmultiaddr *ifma; 491 struct ifnet *ifp; 492 493 CTR2(KTR_MLD, "%s: refcount is %d", __func__, inm->in6m_refcount); 494 495 MPASS(inm->in6m_refcount == 0); 496 CTR2(KTR_MLD, "%s: freeing inm %p", __func__, inm); 497 498 ifma = inm->in6m_ifma; 499 ifp = inm->in6m_ifp; 500 MPASS(ifma->ifma_llifma == NULL); 501 502 /* XXX this access is not covered by IF_ADDR_LOCK */ 503 CTR2(KTR_MLD, "%s: purging ifma %p", __func__, ifma); 504 KASSERT(ifma->ifma_protospec == NULL, 505 ("%s: ifma_protospec != NULL", __func__)); 506 if (ifp == NULL) 507 ifp = ifma->ifma_ifp; 508 509 if (ifp != NULL) { 510 CURVNET_SET(ifp->if_vnet); 511 in6m_purge(inm); 512 free(inm, M_IP6MADDR); 513 if_delmulti_ifma_flags(ifma, 1); 514 CURVNET_RESTORE(); 515 if_rele(ifp); 516 } else { 517 in6m_purge(inm); 518 free(inm, M_IP6MADDR); 519 if_delmulti_ifma_flags(ifma, 1); 520 } 521 } 522 523 /* 524 * Interface detach can happen in a taskqueue thread context, so we must use a 525 * dedicated thread to avoid deadlocks when draining in6m_release tasks. 526 */ 527 TASKQUEUE_DEFINE_THREAD(in6m_free); 528 static struct in6_multi_head in6m_free_list = SLIST_HEAD_INITIALIZER(); 529 static void in6m_release_task(void *arg __unused, int pending __unused); 530 static struct task in6m_free_task = TASK_INITIALIZER(0, in6m_release_task, NULL); 531 532 void 533 in6m_release_list_deferred(struct in6_multi_head *inmh) 534 { 535 if (SLIST_EMPTY(inmh)) 536 return; 537 mtx_lock(&in6_multi_free_mtx); 538 SLIST_CONCAT(&in6m_free_list, inmh, in6_multi, in6m_nrele); 539 mtx_unlock(&in6_multi_free_mtx); 540 taskqueue_enqueue(taskqueue_in6m_free, &in6m_free_task); 541 } 542 543 void 544 in6m_release_wait(void *arg __unused) 545 { 546 547 /* 548 * Make sure all pending multicast addresses are freed before 549 * the VNET or network device is destroyed: 550 */ 551 taskqueue_drain_all(taskqueue_in6m_free); 552 } 553 #ifdef VIMAGE 554 /* XXX-BZ FIXME, see D24914. */ 555 VNET_SYSUNINIT(in6m_release_wait, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, in6m_release_wait, NULL); 556 #endif 557 558 void 559 in6m_disconnect_locked(struct in6_multi_head *inmh, struct in6_multi *inm) 560 { 561 struct ifnet *ifp; 562 struct ifaddr *ifa; 563 struct in6_ifaddr *ifa6; 564 struct in6_multi_mship *imm, *imm_tmp; 565 struct ifmultiaddr *ifma, *ll_ifma; 566 567 IN6_MULTI_LIST_LOCK_ASSERT(); 568 569 ifp = inm->in6m_ifp; 570 if (ifp == NULL) 571 return; /* already called */ 572 573 inm->in6m_ifp = NULL; 574 IF_ADDR_WLOCK_ASSERT(ifp); 575 ifma = inm->in6m_ifma; 576 if (ifma == NULL) 577 return; 578 579 if_ref(ifp); 580 if (ifma->ifma_flags & IFMA_F_ENQUEUED) { 581 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 582 ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 583 } 584 MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname); 585 if ((ll_ifma = ifma->ifma_llifma) != NULL) { 586 MPASS(ifma != ll_ifma); 587 ifma->ifma_llifma = NULL; 588 MPASS(ll_ifma->ifma_llifma == NULL); 589 MPASS(ll_ifma->ifma_ifp == ifp); 590 if (--ll_ifma->ifma_refcount == 0) { 591 if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) { 592 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link); 593 ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 594 } 595 MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname); 596 if_freemulti(ll_ifma); 597 } 598 } 599 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 600 if (ifa->ifa_addr->sa_family != AF_INET6) 601 continue; 602 ifa6 = (void *)ifa; 603 LIST_FOREACH_SAFE(imm, &ifa6->ia6_memberships, 604 i6mm_chain, imm_tmp) { 605 if (inm == imm->i6mm_maddr) { 606 LIST_REMOVE(imm, i6mm_chain); 607 free(imm, M_IP6MADDR); 608 in6m_rele_locked(inmh, inm); 609 } 610 } 611 } 612 } 613 614 static void 615 in6m_release_task(void *arg __unused, int pending __unused) 616 { 617 struct in6_multi_head in6m_free_tmp; 618 struct in6_multi *inm, *tinm; 619 620 SLIST_INIT(&in6m_free_tmp); 621 mtx_lock(&in6_multi_free_mtx); 622 SLIST_CONCAT(&in6m_free_tmp, &in6m_free_list, in6_multi, in6m_nrele); 623 mtx_unlock(&in6_multi_free_mtx); 624 IN6_MULTI_LOCK(); 625 SLIST_FOREACH_SAFE(inm, &in6m_free_tmp, in6m_nrele, tinm) { 626 SLIST_REMOVE_HEAD(&in6m_free_tmp, in6m_nrele); 627 in6m_release(inm); 628 } 629 IN6_MULTI_UNLOCK(); 630 } 631 632 /* 633 * Clear recorded source entries for a group. 634 * Used by the MLD code. Caller must hold the IN6_MULTI lock. 635 * FIXME: Should reap. 636 */ 637 void 638 in6m_clear_recorded(struct in6_multi *inm) 639 { 640 struct ip6_msource *ims; 641 642 IN6_MULTI_LIST_LOCK_ASSERT(); 643 644 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 645 if (ims->im6s_stp) { 646 ims->im6s_stp = 0; 647 --inm->in6m_st[1].iss_rec; 648 } 649 } 650 KASSERT(inm->in6m_st[1].iss_rec == 0, 651 ("%s: iss_rec %d not 0", __func__, inm->in6m_st[1].iss_rec)); 652 } 653 654 /* 655 * Record a source as pending for a Source-Group MLDv2 query. 656 * This lives here as it modifies the shared tree. 657 * 658 * inm is the group descriptor. 659 * naddr is the address of the source to record in network-byte order. 660 * 661 * If the net.inet6.mld.sgalloc sysctl is non-zero, we will 662 * lazy-allocate a source node in response to an SG query. 663 * Otherwise, no allocation is performed. This saves some memory 664 * with the trade-off that the source will not be reported to the 665 * router if joined in the window between the query response and 666 * the group actually being joined on the local host. 667 * 668 * VIMAGE: XXX: Currently the mld_sgalloc feature has been removed. 669 * This turns off the allocation of a recorded source entry if 670 * the group has not been joined. 671 * 672 * Return 0 if the source didn't exist or was already marked as recorded. 673 * Return 1 if the source was marked as recorded by this function. 674 * Return <0 if any error occurred (negated errno code). 675 */ 676 int 677 in6m_record_source(struct in6_multi *inm, const struct in6_addr *addr) 678 { 679 struct ip6_msource find; 680 struct ip6_msource *ims, *nims; 681 682 IN6_MULTI_LIST_LOCK_ASSERT(); 683 684 find.im6s_addr = *addr; 685 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 686 if (ims && ims->im6s_stp) 687 return (0); 688 if (ims == NULL) { 689 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 690 return (-ENOSPC); 691 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 692 M_NOWAIT | M_ZERO); 693 if (nims == NULL) 694 return (-ENOMEM); 695 nims->im6s_addr = find.im6s_addr; 696 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 697 ++inm->in6m_nsrc; 698 ims = nims; 699 } 700 701 /* 702 * Mark the source as recorded and update the recorded 703 * source count. 704 */ 705 ++ims->im6s_stp; 706 ++inm->in6m_st[1].iss_rec; 707 708 return (1); 709 } 710 711 /* 712 * Return a pointer to an in6_msource owned by an in6_mfilter, 713 * given its source address. 714 * Lazy-allocate if needed. If this is a new entry its filter state is 715 * undefined at t0. 716 * 717 * imf is the filter set being modified. 718 * addr is the source address. 719 * 720 * SMPng: May be called with locks held; malloc must not block. 721 */ 722 static int 723 im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin, 724 struct in6_msource **plims) 725 { 726 struct ip6_msource find; 727 struct ip6_msource *ims, *nims; 728 struct in6_msource *lims; 729 int error; 730 731 error = 0; 732 ims = NULL; 733 lims = NULL; 734 735 find.im6s_addr = psin->sin6_addr; 736 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 737 lims = (struct in6_msource *)ims; 738 if (lims == NULL) { 739 if (imf->im6f_nsrc == in6_mcast_maxsocksrc) 740 return (ENOSPC); 741 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 742 M_NOWAIT | M_ZERO); 743 if (nims == NULL) 744 return (ENOMEM); 745 lims = (struct in6_msource *)nims; 746 lims->im6s_addr = find.im6s_addr; 747 lims->im6sl_st[0] = MCAST_UNDEFINED; 748 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 749 ++imf->im6f_nsrc; 750 } 751 752 *plims = lims; 753 754 return (error); 755 } 756 757 /* 758 * Graft a source entry into an existing socket-layer filter set, 759 * maintaining any required invariants and checking allocations. 760 * 761 * The source is marked as being in the new filter mode at t1. 762 * 763 * Return the pointer to the new node, otherwise return NULL. 764 */ 765 static struct in6_msource * 766 im6f_graft(struct in6_mfilter *imf, const uint8_t st1, 767 const struct sockaddr_in6 *psin) 768 { 769 struct ip6_msource *nims; 770 struct in6_msource *lims; 771 772 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 773 M_NOWAIT | M_ZERO); 774 if (nims == NULL) 775 return (NULL); 776 lims = (struct in6_msource *)nims; 777 lims->im6s_addr = psin->sin6_addr; 778 lims->im6sl_st[0] = MCAST_UNDEFINED; 779 lims->im6sl_st[1] = st1; 780 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 781 ++imf->im6f_nsrc; 782 783 return (lims); 784 } 785 786 /* 787 * Prune a source entry from an existing socket-layer filter set, 788 * maintaining any required invariants and checking allocations. 789 * 790 * The source is marked as being left at t1, it is not freed. 791 * 792 * Return 0 if no error occurred, otherwise return an errno value. 793 */ 794 static int 795 im6f_prune(struct in6_mfilter *imf, const struct sockaddr_in6 *psin) 796 { 797 struct ip6_msource find; 798 struct ip6_msource *ims; 799 struct in6_msource *lims; 800 801 find.im6s_addr = psin->sin6_addr; 802 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 803 if (ims == NULL) 804 return (ENOENT); 805 lims = (struct in6_msource *)ims; 806 lims->im6sl_st[1] = MCAST_UNDEFINED; 807 return (0); 808 } 809 810 /* 811 * Revert socket-layer filter set deltas at t1 to t0 state. 812 */ 813 static void 814 im6f_rollback(struct in6_mfilter *imf) 815 { 816 struct ip6_msource *ims, *tims; 817 struct in6_msource *lims; 818 819 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 820 lims = (struct in6_msource *)ims; 821 if (lims->im6sl_st[0] == lims->im6sl_st[1]) { 822 /* no change at t1 */ 823 continue; 824 } else if (lims->im6sl_st[0] != MCAST_UNDEFINED) { 825 /* revert change to existing source at t1 */ 826 lims->im6sl_st[1] = lims->im6sl_st[0]; 827 } else { 828 /* revert source added t1 */ 829 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 830 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 831 free(ims, M_IN6MFILTER); 832 imf->im6f_nsrc--; 833 } 834 } 835 imf->im6f_st[1] = imf->im6f_st[0]; 836 } 837 838 /* 839 * Mark socket-layer filter set as INCLUDE {} at t1. 840 */ 841 static void 842 im6f_leave(struct in6_mfilter *imf) 843 { 844 struct ip6_msource *ims; 845 struct in6_msource *lims; 846 847 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 848 lims = (struct in6_msource *)ims; 849 lims->im6sl_st[1] = MCAST_UNDEFINED; 850 } 851 imf->im6f_st[1] = MCAST_INCLUDE; 852 } 853 854 /* 855 * Mark socket-layer filter set deltas as committed. 856 */ 857 static void 858 im6f_commit(struct in6_mfilter *imf) 859 { 860 struct ip6_msource *ims; 861 struct in6_msource *lims; 862 863 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 864 lims = (struct in6_msource *)ims; 865 lims->im6sl_st[0] = lims->im6sl_st[1]; 866 } 867 imf->im6f_st[0] = imf->im6f_st[1]; 868 } 869 870 /* 871 * Reap unreferenced sources from socket-layer filter set. 872 */ 873 static void 874 im6f_reap(struct in6_mfilter *imf) 875 { 876 struct ip6_msource *ims, *tims; 877 struct in6_msource *lims; 878 879 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 880 lims = (struct in6_msource *)ims; 881 if ((lims->im6sl_st[0] == MCAST_UNDEFINED) && 882 (lims->im6sl_st[1] == MCAST_UNDEFINED)) { 883 CTR2(KTR_MLD, "%s: free lims %p", __func__, ims); 884 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 885 free(ims, M_IN6MFILTER); 886 imf->im6f_nsrc--; 887 } 888 } 889 } 890 891 /* 892 * Purge socket-layer filter set. 893 */ 894 static void 895 im6f_purge(struct in6_mfilter *imf) 896 { 897 struct ip6_msource *ims, *tims; 898 899 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 900 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 901 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 902 free(ims, M_IN6MFILTER); 903 imf->im6f_nsrc--; 904 } 905 imf->im6f_st[0] = imf->im6f_st[1] = MCAST_UNDEFINED; 906 KASSERT(RB_EMPTY(&imf->im6f_sources), 907 ("%s: im6f_sources not empty", __func__)); 908 } 909 910 /* 911 * Look up a source filter entry for a multicast group. 912 * 913 * inm is the group descriptor to work with. 914 * addr is the IPv6 address to look up. 915 * noalloc may be non-zero to suppress allocation of sources. 916 * *pims will be set to the address of the retrieved or allocated source. 917 * 918 * SMPng: NOTE: may be called with locks held. 919 * Return 0 if successful, otherwise return a non-zero error code. 920 */ 921 static int 922 in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr, 923 const int noalloc, struct ip6_msource **pims) 924 { 925 struct ip6_msource find; 926 struct ip6_msource *ims, *nims; 927 #ifdef KTR 928 char ip6tbuf[INET6_ADDRSTRLEN]; 929 #endif 930 931 find.im6s_addr = *addr; 932 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 933 if (ims == NULL && !noalloc) { 934 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 935 return (ENOSPC); 936 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 937 M_NOWAIT | M_ZERO); 938 if (nims == NULL) 939 return (ENOMEM); 940 nims->im6s_addr = *addr; 941 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 942 ++inm->in6m_nsrc; 943 ims = nims; 944 CTR3(KTR_MLD, "%s: allocated %s as %p", __func__, 945 ip6_sprintf(ip6tbuf, addr), ims); 946 } 947 948 *pims = ims; 949 return (0); 950 } 951 952 /* 953 * Merge socket-layer source into MLD-layer source. 954 * If rollback is non-zero, perform the inverse of the merge. 955 */ 956 static void 957 im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims, 958 const int rollback) 959 { 960 int n = rollback ? -1 : 1; 961 #ifdef KTR 962 char ip6tbuf[INET6_ADDRSTRLEN]; 963 964 ip6_sprintf(ip6tbuf, &lims->im6s_addr); 965 #endif 966 967 if (lims->im6sl_st[0] == MCAST_EXCLUDE) { 968 CTR3(KTR_MLD, "%s: t1 ex -= %d on %s", __func__, n, ip6tbuf); 969 ims->im6s_st[1].ex -= n; 970 } else if (lims->im6sl_st[0] == MCAST_INCLUDE) { 971 CTR3(KTR_MLD, "%s: t1 in -= %d on %s", __func__, n, ip6tbuf); 972 ims->im6s_st[1].in -= n; 973 } 974 975 if (lims->im6sl_st[1] == MCAST_EXCLUDE) { 976 CTR3(KTR_MLD, "%s: t1 ex += %d on %s", __func__, n, ip6tbuf); 977 ims->im6s_st[1].ex += n; 978 } else if (lims->im6sl_st[1] == MCAST_INCLUDE) { 979 CTR3(KTR_MLD, "%s: t1 in += %d on %s", __func__, n, ip6tbuf); 980 ims->im6s_st[1].in += n; 981 } 982 } 983 984 /* 985 * Atomically update the global in6_multi state, when a membership's 986 * filter list is being updated in any way. 987 * 988 * imf is the per-inpcb-membership group filter pointer. 989 * A fake imf may be passed for in-kernel consumers. 990 * 991 * XXX This is a candidate for a set-symmetric-difference style loop 992 * which would eliminate the repeated lookup from root of ims nodes, 993 * as they share the same key space. 994 * 995 * If any error occurred this function will back out of refcounts 996 * and return a non-zero value. 997 */ 998 static int 999 in6m_merge(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1000 { 1001 struct ip6_msource *ims, *nims; 1002 struct in6_msource *lims; 1003 int schanged, error; 1004 int nsrc0, nsrc1; 1005 1006 schanged = 0; 1007 error = 0; 1008 nsrc1 = nsrc0 = 0; 1009 IN6_MULTI_LIST_LOCK_ASSERT(); 1010 1011 /* 1012 * Update the source filters first, as this may fail. 1013 * Maintain count of in-mode filters at t0, t1. These are 1014 * used to work out if we transition into ASM mode or not. 1015 * Maintain a count of source filters whose state was 1016 * actually modified by this operation. 1017 */ 1018 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 1019 lims = (struct in6_msource *)ims; 1020 if (lims->im6sl_st[0] == imf->im6f_st[0]) nsrc0++; 1021 if (lims->im6sl_st[1] == imf->im6f_st[1]) nsrc1++; 1022 if (lims->im6sl_st[0] == lims->im6sl_st[1]) continue; 1023 error = in6m_get_source(inm, &lims->im6s_addr, 0, &nims); 1024 ++schanged; 1025 if (error) 1026 break; 1027 im6s_merge(nims, lims, 0); 1028 } 1029 if (error) { 1030 struct ip6_msource *bims; 1031 1032 RB_FOREACH_REVERSE_FROM(ims, ip6_msource_tree, nims) { 1033 lims = (struct in6_msource *)ims; 1034 if (lims->im6sl_st[0] == lims->im6sl_st[1]) 1035 continue; 1036 (void)in6m_get_source(inm, &lims->im6s_addr, 1, &bims); 1037 if (bims == NULL) 1038 continue; 1039 im6s_merge(bims, lims, 1); 1040 } 1041 goto out_reap; 1042 } 1043 1044 CTR3(KTR_MLD, "%s: imf filters in-mode: %d at t0, %d at t1", 1045 __func__, nsrc0, nsrc1); 1046 1047 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ 1048 if (imf->im6f_st[0] == imf->im6f_st[1] && 1049 imf->im6f_st[1] == MCAST_INCLUDE) { 1050 if (nsrc1 == 0) { 1051 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 1052 --inm->in6m_st[1].iss_in; 1053 } 1054 } 1055 1056 /* Handle filter mode transition on socket. */ 1057 if (imf->im6f_st[0] != imf->im6f_st[1]) { 1058 CTR3(KTR_MLD, "%s: imf transition %d to %d", 1059 __func__, imf->im6f_st[0], imf->im6f_st[1]); 1060 1061 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 1062 CTR1(KTR_MLD, "%s: --ex on inm at t1", __func__); 1063 --inm->in6m_st[1].iss_ex; 1064 } else if (imf->im6f_st[0] == MCAST_INCLUDE) { 1065 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 1066 --inm->in6m_st[1].iss_in; 1067 } 1068 1069 if (imf->im6f_st[1] == MCAST_EXCLUDE) { 1070 CTR1(KTR_MLD, "%s: ex++ on inm at t1", __func__); 1071 inm->in6m_st[1].iss_ex++; 1072 } else if (imf->im6f_st[1] == MCAST_INCLUDE && nsrc1 > 0) { 1073 CTR1(KTR_MLD, "%s: in++ on inm at t1", __func__); 1074 inm->in6m_st[1].iss_in++; 1075 } 1076 } 1077 1078 /* 1079 * Track inm filter state in terms of listener counts. 1080 * If there are any exclusive listeners, stack-wide 1081 * membership is exclusive. 1082 * Otherwise, if only inclusive listeners, stack-wide is inclusive. 1083 * If no listeners remain, state is undefined at t1, 1084 * and the MLD lifecycle for this group should finish. 1085 */ 1086 if (inm->in6m_st[1].iss_ex > 0) { 1087 CTR1(KTR_MLD, "%s: transition to EX", __func__); 1088 inm->in6m_st[1].iss_fmode = MCAST_EXCLUDE; 1089 } else if (inm->in6m_st[1].iss_in > 0) { 1090 CTR1(KTR_MLD, "%s: transition to IN", __func__); 1091 inm->in6m_st[1].iss_fmode = MCAST_INCLUDE; 1092 } else { 1093 CTR1(KTR_MLD, "%s: transition to UNDEF", __func__); 1094 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 1095 } 1096 1097 /* Decrement ASM listener count on transition out of ASM mode. */ 1098 if (imf->im6f_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { 1099 if ((imf->im6f_st[1] != MCAST_EXCLUDE) || 1100 (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) { 1101 CTR1(KTR_MLD, "%s: --asm on inm at t1", __func__); 1102 --inm->in6m_st[1].iss_asm; 1103 } 1104 } 1105 1106 /* Increment ASM listener count on transition to ASM mode. */ 1107 if (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { 1108 CTR1(KTR_MLD, "%s: asm++ on inm at t1", __func__); 1109 inm->in6m_st[1].iss_asm++; 1110 } 1111 1112 CTR3(KTR_MLD, "%s: merged imf %p to inm %p", __func__, imf, inm); 1113 in6m_print(inm); 1114 1115 out_reap: 1116 if (schanged > 0) { 1117 CTR1(KTR_MLD, "%s: sources changed; reaping", __func__); 1118 in6m_reap(inm); 1119 } 1120 return (error); 1121 } 1122 1123 /* 1124 * Mark an in6_multi's filter set deltas as committed. 1125 * Called by MLD after a state change has been enqueued. 1126 */ 1127 void 1128 in6m_commit(struct in6_multi *inm) 1129 { 1130 struct ip6_msource *ims; 1131 1132 CTR2(KTR_MLD, "%s: commit inm %p", __func__, inm); 1133 CTR1(KTR_MLD, "%s: pre commit:", __func__); 1134 in6m_print(inm); 1135 1136 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 1137 ims->im6s_st[0] = ims->im6s_st[1]; 1138 } 1139 inm->in6m_st[0] = inm->in6m_st[1]; 1140 } 1141 1142 /* 1143 * Reap unreferenced nodes from an in6_multi's filter set. 1144 */ 1145 static void 1146 in6m_reap(struct in6_multi *inm) 1147 { 1148 struct ip6_msource *ims, *tims; 1149 1150 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1151 if (ims->im6s_st[0].ex > 0 || ims->im6s_st[0].in > 0 || 1152 ims->im6s_st[1].ex > 0 || ims->im6s_st[1].in > 0 || 1153 ims->im6s_stp != 0) 1154 continue; 1155 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1156 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1157 free(ims, M_IP6MSOURCE); 1158 inm->in6m_nsrc--; 1159 } 1160 } 1161 1162 /* 1163 * Purge all source nodes from an in6_multi's filter set. 1164 */ 1165 static void 1166 in6m_purge(struct in6_multi *inm) 1167 { 1168 struct ip6_msource *ims, *tims; 1169 1170 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1171 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1172 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1173 free(ims, M_IP6MSOURCE); 1174 inm->in6m_nsrc--; 1175 } 1176 /* Free state-change requests that might be queued. */ 1177 mbufq_drain(&inm->in6m_scq); 1178 } 1179 1180 /* 1181 * Join a multicast address w/o sources. 1182 * KAME compatibility entry point. 1183 * 1184 * SMPng: Assume no mc locks held by caller. 1185 */ 1186 int 1187 in6_joingroup(struct ifnet *ifp, const struct in6_addr *mcaddr, 1188 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1189 const int delay) 1190 { 1191 int error; 1192 1193 IN6_MULTI_LOCK(); 1194 error = in6_joingroup_locked(ifp, mcaddr, NULL, pinm, delay); 1195 IN6_MULTI_UNLOCK(); 1196 return (error); 1197 } 1198 1199 /* 1200 * Join a multicast group; real entry point. 1201 * 1202 * Only preserves atomicity at inm level. 1203 * NOTE: imf argument cannot be const due to sys/tree.h limitations. 1204 * 1205 * If the MLD downcall fails, the group is not joined, and an error 1206 * code is returned. 1207 */ 1208 static int 1209 in6_joingroup_locked(struct ifnet *ifp, const struct in6_addr *mcaddr, 1210 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1211 const int delay) 1212 { 1213 struct in6_multi_head inmh; 1214 struct in6_mfilter timf; 1215 struct in6_multi *inm; 1216 struct ifmultiaddr *ifma; 1217 int error; 1218 #ifdef KTR 1219 char ip6tbuf[INET6_ADDRSTRLEN]; 1220 #endif 1221 1222 /* 1223 * Sanity: Check scope zone ID was set for ifp, if and 1224 * only if group is scoped to an interface. 1225 */ 1226 KASSERT(IN6_IS_ADDR_MULTICAST(mcaddr), 1227 ("%s: not a multicast address", __func__)); 1228 if (IN6_IS_ADDR_MC_LINKLOCAL(mcaddr) || 1229 IN6_IS_ADDR_MC_INTFACELOCAL(mcaddr)) { 1230 KASSERT(mcaddr->s6_addr16[1] != 0, 1231 ("%s: scope zone ID not set", __func__)); 1232 } 1233 1234 IN6_MULTI_LOCK_ASSERT(); 1235 IN6_MULTI_LIST_UNLOCK_ASSERT(); 1236 1237 CTR4(KTR_MLD, "%s: join %s on %p(%s))", __func__, 1238 ip6_sprintf(ip6tbuf, mcaddr), ifp, if_name(ifp)); 1239 1240 error = 0; 1241 inm = NULL; 1242 1243 /* 1244 * If no imf was specified (i.e. kernel consumer), 1245 * fake one up and assume it is an ASM join. 1246 */ 1247 if (imf == NULL) { 1248 im6f_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); 1249 imf = &timf; 1250 } 1251 error = in6_getmulti(ifp, mcaddr, &inm); 1252 if (error) { 1253 CTR1(KTR_MLD, "%s: in6_getmulti() failure", __func__); 1254 return (error); 1255 } 1256 1257 IN6_MULTI_LIST_LOCK(); 1258 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1259 error = in6m_merge(inm, imf); 1260 if (error) { 1261 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1262 goto out_in6m_release; 1263 } 1264 1265 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1266 error = mld_change_state(inm, delay); 1267 if (error) { 1268 CTR1(KTR_MLD, "%s: failed to update source", __func__); 1269 goto out_in6m_release; 1270 } 1271 1272 out_in6m_release: 1273 SLIST_INIT(&inmh); 1274 if (error) { 1275 struct epoch_tracker et; 1276 1277 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1278 IF_ADDR_WLOCK(ifp); 1279 NET_EPOCH_ENTER(et); 1280 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1281 if (ifma->ifma_protospec == inm) { 1282 ifma->ifma_protospec = NULL; 1283 break; 1284 } 1285 } 1286 in6m_disconnect_locked(&inmh, inm); 1287 in6m_rele_locked(&inmh, inm); 1288 NET_EPOCH_EXIT(et); 1289 IF_ADDR_WUNLOCK(ifp); 1290 } else { 1291 *pinm = inm; 1292 } 1293 IN6_MULTI_LIST_UNLOCK(); 1294 in6m_release_list_deferred(&inmh); 1295 return (error); 1296 } 1297 1298 /* 1299 * Leave a multicast group; unlocked entry point. 1300 */ 1301 int 1302 in6_leavegroup(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1303 { 1304 int error; 1305 1306 IN6_MULTI_LOCK(); 1307 error = in6_leavegroup_locked(inm, imf); 1308 IN6_MULTI_UNLOCK(); 1309 return (error); 1310 } 1311 1312 /* 1313 * Leave a multicast group; real entry point. 1314 * All source filters will be expunged. 1315 * 1316 * Only preserves atomicity at inm level. 1317 * 1318 * Holding the write lock for the INP which contains imf 1319 * is highly advisable. We can't assert for it as imf does not 1320 * contain a back-pointer to the owning inp. 1321 * 1322 * Note: This is not the same as in6m_release(*) as this function also 1323 * makes a state change downcall into MLD. 1324 */ 1325 int 1326 in6_leavegroup_locked(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1327 { 1328 struct in6_multi_head inmh; 1329 struct in6_mfilter timf; 1330 struct ifnet *ifp; 1331 int error; 1332 #ifdef KTR 1333 char ip6tbuf[INET6_ADDRSTRLEN]; 1334 #endif 1335 1336 error = 0; 1337 1338 IN6_MULTI_LOCK_ASSERT(); 1339 1340 CTR5(KTR_MLD, "%s: leave inm %p, %s/%s, imf %p", __func__, 1341 inm, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1342 (in6m_is_ifp_detached(inm) ? "null" : if_name(inm->in6m_ifp)), 1343 imf); 1344 1345 /* 1346 * If no imf was specified (i.e. kernel consumer), 1347 * fake one up and assume it is an ASM join. 1348 */ 1349 if (imf == NULL) { 1350 im6f_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); 1351 imf = &timf; 1352 } 1353 1354 /* 1355 * Begin state merge transaction at MLD layer. 1356 * 1357 * As this particular invocation should not cause any memory 1358 * to be allocated, and there is no opportunity to roll back 1359 * the transaction, it MUST NOT fail. 1360 */ 1361 1362 ifp = inm->in6m_ifp; 1363 IN6_MULTI_LIST_LOCK(); 1364 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1365 error = in6m_merge(inm, imf); 1366 KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); 1367 1368 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1369 error = 0; 1370 if (ifp) 1371 error = mld_change_state(inm, 0); 1372 if (error) 1373 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1374 1375 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1376 if (ifp) 1377 IF_ADDR_WLOCK(ifp); 1378 1379 SLIST_INIT(&inmh); 1380 if (inm->in6m_refcount == 1) 1381 in6m_disconnect_locked(&inmh, inm); 1382 in6m_rele_locked(&inmh, inm); 1383 if (ifp) 1384 IF_ADDR_WUNLOCK(ifp); 1385 IN6_MULTI_LIST_UNLOCK(); 1386 in6m_release_list_deferred(&inmh); 1387 return (error); 1388 } 1389 1390 /* 1391 * Block or unblock an ASM multicast source on an inpcb. 1392 * This implements the delta-based API described in RFC 3678. 1393 * 1394 * The delta-based API applies only to exclusive-mode memberships. 1395 * An MLD downcall will be performed. 1396 * 1397 * SMPng: NOTE: Must take Giant as a join may create a new ifma. 1398 * 1399 * Return 0 if successful, otherwise return an appropriate error code. 1400 */ 1401 static int 1402 in6p_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) 1403 { 1404 struct group_source_req gsr; 1405 struct epoch_tracker et; 1406 sockunion_t *gsa, *ssa; 1407 struct ifnet *ifp; 1408 struct in6_mfilter *imf; 1409 struct ip6_moptions *imo; 1410 struct in6_msource *ims; 1411 struct in6_multi *inm; 1412 uint16_t fmode; 1413 int error, doblock; 1414 #ifdef KTR 1415 char ip6tbuf[INET6_ADDRSTRLEN]; 1416 #endif 1417 1418 ifp = NULL; 1419 error = 0; 1420 doblock = 0; 1421 1422 memset(&gsr, 0, sizeof(struct group_source_req)); 1423 gsa = (sockunion_t *)&gsr.gsr_group; 1424 ssa = (sockunion_t *)&gsr.gsr_source; 1425 1426 switch (sopt->sopt_name) { 1427 case MCAST_BLOCK_SOURCE: 1428 case MCAST_UNBLOCK_SOURCE: 1429 error = sooptcopyin(sopt, &gsr, 1430 sizeof(struct group_source_req), 1431 sizeof(struct group_source_req)); 1432 if (error) 1433 return (error); 1434 1435 if (gsa->sin6.sin6_family != AF_INET6 || 1436 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1437 return (EINVAL); 1438 1439 if (ssa->sin6.sin6_family != AF_INET6 || 1440 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1441 return (EINVAL); 1442 1443 /* 1444 * XXXGL: this function should use ifnet_byindex_ref, or 1445 * expand the epoch section all the way to where we put 1446 * the reference. 1447 */ 1448 NET_EPOCH_ENTER(et); 1449 ifp = ifnet_byindex(gsr.gsr_interface); 1450 NET_EPOCH_EXIT(et); 1451 if (ifp == NULL) 1452 return (EADDRNOTAVAIL); 1453 1454 if (sopt->sopt_name == MCAST_BLOCK_SOURCE) 1455 doblock = 1; 1456 break; 1457 1458 default: 1459 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 1460 __func__, sopt->sopt_name); 1461 return (EOPNOTSUPP); 1462 break; 1463 } 1464 1465 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1466 return (EINVAL); 1467 1468 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1469 1470 /* 1471 * Check if we are actually a member of this group. 1472 */ 1473 imo = in6p_findmoptions(inp); 1474 imf = im6o_match_group(imo, ifp, &gsa->sa); 1475 if (imf == NULL) { 1476 error = EADDRNOTAVAIL; 1477 goto out_in6p_locked; 1478 } 1479 inm = imf->im6f_in6m; 1480 1481 /* 1482 * Attempting to use the delta-based API on an 1483 * non exclusive-mode membership is an error. 1484 */ 1485 fmode = imf->im6f_st[0]; 1486 if (fmode != MCAST_EXCLUDE) { 1487 error = EINVAL; 1488 goto out_in6p_locked; 1489 } 1490 1491 /* 1492 * Deal with error cases up-front: 1493 * Asked to block, but already blocked; or 1494 * Asked to unblock, but nothing to unblock. 1495 * If adding a new block entry, allocate it. 1496 */ 1497 ims = im6o_match_source(imf, &ssa->sa); 1498 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { 1499 CTR3(KTR_MLD, "%s: source %s %spresent", __func__, 1500 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 1501 doblock ? "" : "not "); 1502 error = EADDRNOTAVAIL; 1503 goto out_in6p_locked; 1504 } 1505 1506 INP_WLOCK_ASSERT(inp); 1507 1508 /* 1509 * Begin state merge transaction at socket layer. 1510 */ 1511 if (doblock) { 1512 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 1513 ims = im6f_graft(imf, fmode, &ssa->sin6); 1514 if (ims == NULL) 1515 error = ENOMEM; 1516 } else { 1517 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 1518 error = im6f_prune(imf, &ssa->sin6); 1519 } 1520 1521 if (error) { 1522 CTR1(KTR_MLD, "%s: merge imf state failed", __func__); 1523 goto out_im6f_rollback; 1524 } 1525 1526 /* 1527 * Begin state merge transaction at MLD layer. 1528 */ 1529 IN6_MULTI_LIST_LOCK(); 1530 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1531 error = in6m_merge(inm, imf); 1532 if (error) 1533 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1534 else { 1535 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1536 error = mld_change_state(inm, 0); 1537 if (error) 1538 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1539 } 1540 1541 IN6_MULTI_LIST_UNLOCK(); 1542 1543 out_im6f_rollback: 1544 if (error) 1545 im6f_rollback(imf); 1546 else 1547 im6f_commit(imf); 1548 1549 im6f_reap(imf); 1550 1551 out_in6p_locked: 1552 INP_WUNLOCK(inp); 1553 return (error); 1554 } 1555 1556 /* 1557 * Given an inpcb, return its multicast options structure pointer. Accepts 1558 * an unlocked inpcb pointer, but will return it locked. May sleep. 1559 * 1560 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 1561 * SMPng: NOTE: Returns with the INP write lock held. 1562 */ 1563 static struct ip6_moptions * 1564 in6p_findmoptions(struct inpcb *inp) 1565 { 1566 struct ip6_moptions *imo; 1567 1568 INP_WLOCK(inp); 1569 if (inp->in6p_moptions != NULL) 1570 return (inp->in6p_moptions); 1571 1572 INP_WUNLOCK(inp); 1573 1574 imo = malloc(sizeof(*imo), M_IP6MOPTS, M_WAITOK); 1575 1576 imo->im6o_multicast_ifp = NULL; 1577 imo->im6o_multicast_hlim = V_ip6_defmcasthlim; 1578 imo->im6o_multicast_loop = in6_mcast_loop; 1579 STAILQ_INIT(&imo->im6o_head); 1580 1581 INP_WLOCK(inp); 1582 if (inp->in6p_moptions != NULL) { 1583 free(imo, M_IP6MOPTS); 1584 return (inp->in6p_moptions); 1585 } 1586 inp->in6p_moptions = imo; 1587 return (imo); 1588 } 1589 1590 /* 1591 * Discard the IPv6 multicast options (and source filters). 1592 * 1593 * SMPng: NOTE: assumes INP write lock is held. 1594 * 1595 * XXX can all be safely deferred to epoch_call 1596 * 1597 */ 1598 1599 static void 1600 inp_gcmoptions(struct ip6_moptions *imo) 1601 { 1602 struct in6_mfilter *imf; 1603 struct in6_multi *inm; 1604 struct ifnet *ifp; 1605 1606 while ((imf = ip6_mfilter_first(&imo->im6o_head)) != NULL) { 1607 ip6_mfilter_remove(&imo->im6o_head, imf); 1608 1609 im6f_leave(imf); 1610 if ((inm = imf->im6f_in6m) != NULL) { 1611 if ((ifp = inm->in6m_ifp) != NULL) { 1612 CURVNET_SET(ifp->if_vnet); 1613 (void)in6_leavegroup(inm, imf); 1614 CURVNET_RESTORE(); 1615 } else { 1616 (void)in6_leavegroup(inm, imf); 1617 } 1618 } 1619 ip6_mfilter_free(imf); 1620 } 1621 free(imo, M_IP6MOPTS); 1622 } 1623 1624 void 1625 ip6_freemoptions(struct ip6_moptions *imo) 1626 { 1627 if (imo == NULL) 1628 return; 1629 inp_gcmoptions(imo); 1630 } 1631 1632 /* 1633 * Atomically get source filters on a socket for an IPv6 multicast group. 1634 * Called with INP lock held; returns with lock released. 1635 */ 1636 static int 1637 in6p_get_source_filters(struct inpcb *inp, struct sockopt *sopt) 1638 { 1639 struct epoch_tracker et; 1640 struct __msfilterreq msfr; 1641 sockunion_t *gsa; 1642 struct ifnet *ifp; 1643 struct ip6_moptions *imo; 1644 struct in6_mfilter *imf; 1645 struct ip6_msource *ims; 1646 struct in6_msource *lims; 1647 struct sockaddr_in6 *psin; 1648 struct sockaddr_storage *ptss; 1649 struct sockaddr_storage *tss; 1650 int error; 1651 size_t nsrcs, ncsrcs; 1652 1653 INP_WLOCK_ASSERT(inp); 1654 1655 imo = inp->in6p_moptions; 1656 KASSERT(imo != NULL, ("%s: null ip6_moptions", __func__)); 1657 1658 INP_WUNLOCK(inp); 1659 1660 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 1661 sizeof(struct __msfilterreq)); 1662 if (error) 1663 return (error); 1664 1665 if (msfr.msfr_group.ss_family != AF_INET6 || 1666 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 1667 return (EINVAL); 1668 1669 gsa = (sockunion_t *)&msfr.msfr_group; 1670 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1671 return (EINVAL); 1672 1673 /* 1674 * XXXGL: this function should use ifnet_byindex_ref, or expand the 1675 * epoch section all the way to where the interface is referenced. 1676 */ 1677 NET_EPOCH_ENTER(et); 1678 ifp = ifnet_byindex(msfr.msfr_ifindex); 1679 NET_EPOCH_EXIT(et); 1680 if (ifp == NULL) 1681 return (EADDRNOTAVAIL); 1682 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1683 1684 INP_WLOCK(inp); 1685 1686 /* 1687 * Lookup group on the socket. 1688 */ 1689 imf = im6o_match_group(imo, ifp, &gsa->sa); 1690 if (imf == NULL) { 1691 INP_WUNLOCK(inp); 1692 return (EADDRNOTAVAIL); 1693 } 1694 1695 /* 1696 * Ignore memberships which are in limbo. 1697 */ 1698 if (imf->im6f_st[1] == MCAST_UNDEFINED) { 1699 INP_WUNLOCK(inp); 1700 return (EAGAIN); 1701 } 1702 msfr.msfr_fmode = imf->im6f_st[1]; 1703 1704 /* 1705 * If the user specified a buffer, copy out the source filter 1706 * entries to userland gracefully. 1707 * We only copy out the number of entries which userland 1708 * has asked for, but we always tell userland how big the 1709 * buffer really needs to be. 1710 */ 1711 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 1712 msfr.msfr_nsrcs = in6_mcast_maxsocksrc; 1713 tss = NULL; 1714 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { 1715 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 1716 M_TEMP, M_NOWAIT | M_ZERO); 1717 if (tss == NULL) { 1718 INP_WUNLOCK(inp); 1719 return (ENOBUFS); 1720 } 1721 } 1722 1723 /* 1724 * Count number of sources in-mode at t0. 1725 * If buffer space exists and remains, copy out source entries. 1726 */ 1727 nsrcs = msfr.msfr_nsrcs; 1728 ncsrcs = 0; 1729 ptss = tss; 1730 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 1731 lims = (struct in6_msource *)ims; 1732 if (lims->im6sl_st[0] == MCAST_UNDEFINED || 1733 lims->im6sl_st[0] != imf->im6f_st[0]) 1734 continue; 1735 ++ncsrcs; 1736 if (tss != NULL && nsrcs > 0) { 1737 psin = (struct sockaddr_in6 *)ptss; 1738 psin->sin6_family = AF_INET6; 1739 psin->sin6_len = sizeof(struct sockaddr_in6); 1740 psin->sin6_addr = lims->im6s_addr; 1741 psin->sin6_port = 0; 1742 --nsrcs; 1743 ++ptss; 1744 } 1745 } 1746 1747 INP_WUNLOCK(inp); 1748 1749 if (tss != NULL) { 1750 error = copyout(tss, msfr.msfr_srcs, 1751 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 1752 free(tss, M_TEMP); 1753 if (error) 1754 return (error); 1755 } 1756 1757 msfr.msfr_nsrcs = ncsrcs; 1758 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); 1759 1760 return (error); 1761 } 1762 1763 /* 1764 * Return the IP multicast options in response to user getsockopt(). 1765 */ 1766 int 1767 ip6_getmoptions(struct inpcb *inp, struct sockopt *sopt) 1768 { 1769 struct ip6_moptions *im6o; 1770 int error; 1771 u_int optval; 1772 1773 INP_WLOCK(inp); 1774 im6o = inp->in6p_moptions; 1775 /* If socket is neither of type SOCK_RAW or SOCK_DGRAM, reject it. */ 1776 if (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 1777 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM) { 1778 INP_WUNLOCK(inp); 1779 return (EOPNOTSUPP); 1780 } 1781 1782 error = 0; 1783 switch (sopt->sopt_name) { 1784 case IPV6_MULTICAST_IF: 1785 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) { 1786 optval = 0; 1787 } else { 1788 optval = im6o->im6o_multicast_ifp->if_index; 1789 } 1790 INP_WUNLOCK(inp); 1791 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1792 break; 1793 1794 case IPV6_MULTICAST_HOPS: 1795 if (im6o == NULL) 1796 optval = V_ip6_defmcasthlim; 1797 else 1798 optval = im6o->im6o_multicast_hlim; 1799 INP_WUNLOCK(inp); 1800 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1801 break; 1802 1803 case IPV6_MULTICAST_LOOP: 1804 if (im6o == NULL) 1805 optval = in6_mcast_loop; /* XXX VIMAGE */ 1806 else 1807 optval = im6o->im6o_multicast_loop; 1808 INP_WUNLOCK(inp); 1809 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1810 break; 1811 1812 case IPV6_MSFILTER: 1813 if (im6o == NULL) { 1814 error = EADDRNOTAVAIL; 1815 INP_WUNLOCK(inp); 1816 } else { 1817 error = in6p_get_source_filters(inp, sopt); 1818 } 1819 break; 1820 1821 default: 1822 INP_WUNLOCK(inp); 1823 error = ENOPROTOOPT; 1824 break; 1825 } 1826 1827 INP_UNLOCK_ASSERT(inp); 1828 1829 return (error); 1830 } 1831 1832 /* 1833 * Look up the ifnet to use for a multicast group membership, 1834 * given the address of an IPv6 group. 1835 * 1836 * This routine exists to support legacy IPv6 multicast applications. 1837 * 1838 * Use the socket's current FIB number for any required FIB lookup. Look up the 1839 * group address in the unicast FIB, and use its ifp; usually, this points to 1840 * the default next-hop. If the FIB lookup fails, return NULL. 1841 * 1842 * FUTURE: Support multiple forwarding tables for IPv6. 1843 * 1844 * Returns NULL if no ifp could be found. 1845 */ 1846 static struct ifnet * 1847 in6p_lookup_mcast_ifp(const struct inpcb *inp, const struct sockaddr_in6 *gsin6) 1848 { 1849 struct nhop_object *nh; 1850 struct in6_addr dst; 1851 uint32_t scopeid; 1852 uint32_t fibnum; 1853 1854 KASSERT(gsin6->sin6_family == AF_INET6, 1855 ("%s: not AF_INET6 group", __func__)); 1856 1857 in6_splitscope(&gsin6->sin6_addr, &dst, &scopeid); 1858 fibnum = inp->inp_inc.inc_fibnum; 1859 nh = fib6_lookup(fibnum, &dst, scopeid, 0, 0); 1860 1861 return (nh ? nh->nh_ifp : NULL); 1862 } 1863 1864 /* 1865 * Join an IPv6 multicast group, possibly with a source. 1866 * 1867 * FIXME: The KAME use of the unspecified address (::) 1868 * to join *all* multicast groups is currently unsupported. 1869 * 1870 * XXXGL: this function multiple times uses ifnet_byindex() without 1871 * proper protection - staying in epoch, or putting reference on ifnet. 1872 */ 1873 static int 1874 in6p_join_group(struct inpcb *inp, struct sockopt *sopt) 1875 { 1876 struct in6_multi_head inmh; 1877 struct group_source_req gsr; 1878 struct epoch_tracker et; 1879 sockunion_t *gsa, *ssa; 1880 struct ifnet *ifp; 1881 struct in6_mfilter *imf; 1882 struct ip6_moptions *imo; 1883 struct in6_multi *inm; 1884 struct in6_msource *lims; 1885 int error, is_new; 1886 1887 SLIST_INIT(&inmh); 1888 ifp = NULL; 1889 lims = NULL; 1890 error = 0; 1891 1892 memset(&gsr, 0, sizeof(struct group_source_req)); 1893 gsa = (sockunion_t *)&gsr.gsr_group; 1894 gsa->ss.ss_family = AF_UNSPEC; 1895 ssa = (sockunion_t *)&gsr.gsr_source; 1896 ssa->ss.ss_family = AF_UNSPEC; 1897 1898 /* 1899 * Chew everything into struct group_source_req. 1900 * Overwrite the port field if present, as the sockaddr 1901 * being copied in may be matched with a binary comparison. 1902 * Ignore passed-in scope ID. 1903 */ 1904 switch (sopt->sopt_name) { 1905 case IPV6_JOIN_GROUP: { 1906 struct ipv6_mreq mreq; 1907 1908 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 1909 sizeof(struct ipv6_mreq)); 1910 if (error) 1911 return (error); 1912 1913 gsa->sin6.sin6_family = AF_INET6; 1914 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 1915 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 1916 1917 if (mreq.ipv6mr_interface == 0) { 1918 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 1919 } else { 1920 NET_EPOCH_ENTER(et); 1921 ifp = ifnet_byindex(mreq.ipv6mr_interface); 1922 NET_EPOCH_EXIT(et); 1923 if (ifp == NULL) 1924 return (EADDRNOTAVAIL); 1925 } 1926 CTR3(KTR_MLD, "%s: ipv6mr_interface = %d, ifp = %p", 1927 __func__, mreq.ipv6mr_interface, ifp); 1928 } break; 1929 1930 case MCAST_JOIN_GROUP: 1931 case MCAST_JOIN_SOURCE_GROUP: 1932 if (sopt->sopt_name == MCAST_JOIN_GROUP) { 1933 error = sooptcopyin(sopt, &gsr, 1934 sizeof(struct group_req), 1935 sizeof(struct group_req)); 1936 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1937 error = sooptcopyin(sopt, &gsr, 1938 sizeof(struct group_source_req), 1939 sizeof(struct group_source_req)); 1940 } 1941 if (error) 1942 return (error); 1943 1944 if (gsa->sin6.sin6_family != AF_INET6 || 1945 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1946 return (EINVAL); 1947 1948 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1949 if (ssa->sin6.sin6_family != AF_INET6 || 1950 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1951 return (EINVAL); 1952 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 1953 return (EINVAL); 1954 /* 1955 * TODO: Validate embedded scope ID in source 1956 * list entry against passed-in ifp, if and only 1957 * if source list filter entry is iface or node local. 1958 */ 1959 in6_clearscope(&ssa->sin6.sin6_addr); 1960 ssa->sin6.sin6_port = 0; 1961 ssa->sin6.sin6_scope_id = 0; 1962 } 1963 NET_EPOCH_ENTER(et); 1964 ifp = ifnet_byindex(gsr.gsr_interface); 1965 NET_EPOCH_EXIT(et); 1966 if (ifp == NULL) 1967 return (EADDRNOTAVAIL); 1968 break; 1969 1970 default: 1971 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 1972 __func__, sopt->sopt_name); 1973 return (EOPNOTSUPP); 1974 break; 1975 } 1976 1977 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1978 return (EINVAL); 1979 1980 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) 1981 return (EADDRNOTAVAIL); 1982 1983 gsa->sin6.sin6_port = 0; 1984 gsa->sin6.sin6_scope_id = 0; 1985 1986 /* 1987 * Always set the scope zone ID on memberships created from userland. 1988 * Use the passed-in ifp to do this. 1989 * XXX The in6_setscope() return value is meaningless. 1990 * XXX SCOPE6_LOCK() is taken by in6_setscope(). 1991 */ 1992 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1993 1994 IN6_MULTI_LOCK(); 1995 1996 /* 1997 * Find the membership in the membership list. 1998 */ 1999 imo = in6p_findmoptions(inp); 2000 imf = im6o_match_group(imo, ifp, &gsa->sa); 2001 if (imf == NULL) { 2002 is_new = 1; 2003 inm = NULL; 2004 2005 if (ip6_mfilter_count(&imo->im6o_head) >= IPV6_MAX_MEMBERSHIPS) { 2006 error = ENOMEM; 2007 goto out_in6p_locked; 2008 } 2009 } else { 2010 is_new = 0; 2011 inm = imf->im6f_in6m; 2012 2013 if (ssa->ss.ss_family != AF_UNSPEC) { 2014 /* 2015 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership 2016 * is an error. On an existing inclusive membership, 2017 * it just adds the source to the filter list. 2018 */ 2019 if (imf->im6f_st[1] != MCAST_INCLUDE) { 2020 error = EINVAL; 2021 goto out_in6p_locked; 2022 } 2023 /* 2024 * Throw out duplicates. 2025 * 2026 * XXX FIXME: This makes a naive assumption that 2027 * even if entries exist for *ssa in this imf, 2028 * they will be rejected as dupes, even if they 2029 * are not valid in the current mode (in-mode). 2030 * 2031 * in6_msource is transactioned just as for anything 2032 * else in SSM -- but note naive use of in6m_graft() 2033 * below for allocating new filter entries. 2034 * 2035 * This is only an issue if someone mixes the 2036 * full-state SSM API with the delta-based API, 2037 * which is discouraged in the relevant RFCs. 2038 */ 2039 lims = im6o_match_source(imf, &ssa->sa); 2040 if (lims != NULL /*&& 2041 lims->im6sl_st[1] == MCAST_INCLUDE*/) { 2042 error = EADDRNOTAVAIL; 2043 goto out_in6p_locked; 2044 } 2045 } else { 2046 /* 2047 * MCAST_JOIN_GROUP alone, on any existing membership, 2048 * is rejected, to stop the same inpcb tying up 2049 * multiple refs to the in_multi. 2050 * On an existing inclusive membership, this is also 2051 * an error; if you want to change filter mode, 2052 * you must use the userland API setsourcefilter(). 2053 * XXX We don't reject this for imf in UNDEFINED 2054 * state at t1, because allocation of a filter 2055 * is atomic with allocation of a membership. 2056 */ 2057 error = EADDRINUSE; 2058 goto out_in6p_locked; 2059 } 2060 } 2061 2062 /* 2063 * Begin state merge transaction at socket layer. 2064 */ 2065 INP_WLOCK_ASSERT(inp); 2066 2067 /* 2068 * Graft new source into filter list for this inpcb's 2069 * membership of the group. The in6_multi may not have 2070 * been allocated yet if this is a new membership, however, 2071 * the in_mfilter slot will be allocated and must be initialized. 2072 * 2073 * Note: Grafting of exclusive mode filters doesn't happen 2074 * in this path. 2075 * XXX: Should check for non-NULL lims (node exists but may 2076 * not be in-mode) for interop with full-state API. 2077 */ 2078 if (ssa->ss.ss_family != AF_UNSPEC) { 2079 /* Membership starts in IN mode */ 2080 if (is_new) { 2081 CTR1(KTR_MLD, "%s: new join w/source", __func__); 2082 imf = ip6_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_INCLUDE); 2083 if (imf == NULL) { 2084 error = ENOMEM; 2085 goto out_in6p_locked; 2086 } 2087 } else { 2088 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 2089 } 2090 lims = im6f_graft(imf, MCAST_INCLUDE, &ssa->sin6); 2091 if (lims == NULL) { 2092 CTR1(KTR_MLD, "%s: merge imf state failed", 2093 __func__); 2094 error = ENOMEM; 2095 goto out_in6p_locked; 2096 } 2097 } else { 2098 /* No address specified; Membership starts in EX mode */ 2099 if (is_new) { 2100 CTR1(KTR_MLD, "%s: new join w/o source", __func__); 2101 imf = ip6_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_EXCLUDE); 2102 if (imf == NULL) { 2103 error = ENOMEM; 2104 goto out_in6p_locked; 2105 } 2106 } 2107 } 2108 2109 /* 2110 * Begin state merge transaction at MLD layer. 2111 */ 2112 if (is_new) { 2113 in_pcbref(inp); 2114 INP_WUNLOCK(inp); 2115 2116 error = in6_joingroup_locked(ifp, &gsa->sin6.sin6_addr, imf, 2117 &imf->im6f_in6m, 0); 2118 2119 INP_WLOCK(inp); 2120 if (in_pcbrele_wlocked(inp)) { 2121 error = ENXIO; 2122 goto out_in6p_unlocked; 2123 } 2124 if (error) { 2125 goto out_in6p_locked; 2126 } 2127 /* 2128 * NOTE: Refcount from in6_joingroup_locked() 2129 * is protecting membership. 2130 */ 2131 ip6_mfilter_insert(&imo->im6o_head, imf); 2132 } else { 2133 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2134 IN6_MULTI_LIST_LOCK(); 2135 error = in6m_merge(inm, imf); 2136 if (error) { 2137 CTR1(KTR_MLD, "%s: failed to merge inm state", 2138 __func__); 2139 IN6_MULTI_LIST_UNLOCK(); 2140 im6f_rollback(imf); 2141 im6f_reap(imf); 2142 goto out_in6p_locked; 2143 } 2144 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2145 error = mld_change_state(inm, 0); 2146 IN6_MULTI_LIST_UNLOCK(); 2147 2148 if (error) { 2149 CTR1(KTR_MLD, "%s: failed mld downcall", 2150 __func__); 2151 im6f_rollback(imf); 2152 im6f_reap(imf); 2153 goto out_in6p_locked; 2154 } 2155 } 2156 2157 im6f_commit(imf); 2158 imf = NULL; 2159 2160 out_in6p_locked: 2161 INP_WUNLOCK(inp); 2162 out_in6p_unlocked: 2163 IN6_MULTI_UNLOCK(); 2164 2165 if (is_new && imf) { 2166 if (imf->im6f_in6m != NULL) { 2167 struct in6_multi_head inmh; 2168 2169 SLIST_INIT(&inmh); 2170 SLIST_INSERT_HEAD(&inmh, imf->im6f_in6m, in6m_defer); 2171 in6m_release_list_deferred(&inmh); 2172 } 2173 ip6_mfilter_free(imf); 2174 } 2175 return (error); 2176 } 2177 2178 /* 2179 * Leave an IPv6 multicast group on an inpcb, possibly with a source. 2180 */ 2181 static int 2182 in6p_leave_group(struct inpcb *inp, struct sockopt *sopt) 2183 { 2184 struct ipv6_mreq mreq; 2185 struct group_source_req gsr; 2186 struct epoch_tracker et; 2187 sockunion_t *gsa, *ssa; 2188 struct ifnet *ifp; 2189 struct in6_mfilter *imf; 2190 struct ip6_moptions *imo; 2191 struct in6_msource *ims; 2192 struct in6_multi *inm; 2193 uint32_t ifindex; 2194 int error; 2195 bool is_final; 2196 #ifdef KTR 2197 char ip6tbuf[INET6_ADDRSTRLEN]; 2198 #endif 2199 2200 ifp = NULL; 2201 ifindex = 0; 2202 error = 0; 2203 is_final = true; 2204 2205 memset(&gsr, 0, sizeof(struct group_source_req)); 2206 gsa = (sockunion_t *)&gsr.gsr_group; 2207 gsa->ss.ss_family = AF_UNSPEC; 2208 ssa = (sockunion_t *)&gsr.gsr_source; 2209 ssa->ss.ss_family = AF_UNSPEC; 2210 2211 /* 2212 * Chew everything passed in up into a struct group_source_req 2213 * as that is easier to process. 2214 * Note: Any embedded scope ID in the multicast group passed 2215 * in by userland is ignored, the interface index is the recommended 2216 * mechanism to specify an interface; see below. 2217 */ 2218 switch (sopt->sopt_name) { 2219 case IPV6_LEAVE_GROUP: 2220 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 2221 sizeof(struct ipv6_mreq)); 2222 if (error) 2223 return (error); 2224 gsa->sin6.sin6_family = AF_INET6; 2225 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 2226 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 2227 gsa->sin6.sin6_port = 0; 2228 gsa->sin6.sin6_scope_id = 0; 2229 ifindex = mreq.ipv6mr_interface; 2230 break; 2231 2232 case MCAST_LEAVE_GROUP: 2233 case MCAST_LEAVE_SOURCE_GROUP: 2234 if (sopt->sopt_name == MCAST_LEAVE_GROUP) { 2235 error = sooptcopyin(sopt, &gsr, 2236 sizeof(struct group_req), 2237 sizeof(struct group_req)); 2238 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2239 error = sooptcopyin(sopt, &gsr, 2240 sizeof(struct group_source_req), 2241 sizeof(struct group_source_req)); 2242 } 2243 if (error) 2244 return (error); 2245 2246 if (gsa->sin6.sin6_family != AF_INET6 || 2247 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2248 return (EINVAL); 2249 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2250 if (ssa->sin6.sin6_family != AF_INET6 || 2251 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2252 return (EINVAL); 2253 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 2254 return (EINVAL); 2255 /* 2256 * TODO: Validate embedded scope ID in source 2257 * list entry against passed-in ifp, if and only 2258 * if source list filter entry is iface or node local. 2259 */ 2260 in6_clearscope(&ssa->sin6.sin6_addr); 2261 } 2262 gsa->sin6.sin6_port = 0; 2263 gsa->sin6.sin6_scope_id = 0; 2264 ifindex = gsr.gsr_interface; 2265 break; 2266 2267 default: 2268 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 2269 __func__, sopt->sopt_name); 2270 return (EOPNOTSUPP); 2271 break; 2272 } 2273 2274 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2275 return (EINVAL); 2276 2277 /* 2278 * Validate interface index if provided. If no interface index 2279 * was provided separately, attempt to look the membership up 2280 * from the default scope as a last resort to disambiguate 2281 * the membership we are being asked to leave. 2282 * XXX SCOPE6 lock potentially taken here. 2283 */ 2284 if (ifindex != 0) { 2285 NET_EPOCH_ENTER(et); 2286 ifp = ifnet_byindex(ifindex); 2287 NET_EPOCH_EXIT(et); /* XXXGL: unsafe ifp */ 2288 if (ifp == NULL) 2289 return (EADDRNOTAVAIL); 2290 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2291 } else { 2292 error = sa6_embedscope(&gsa->sin6, V_ip6_use_defzone); 2293 if (error) 2294 return (EADDRNOTAVAIL); 2295 /* 2296 * Some badly behaved applications don't pass an ifindex 2297 * or a scope ID, which is an API violation. In this case, 2298 * perform a lookup as per a v6 join. 2299 * 2300 * XXX For now, stomp on zone ID for the corner case. 2301 * This is not the 'KAME way', but we need to see the ifp 2302 * directly until such time as this implementation is 2303 * refactored, assuming the scope IDs are the way to go. 2304 */ 2305 ifindex = ntohs(gsa->sin6.sin6_addr.s6_addr16[1]); 2306 if (ifindex == 0) { 2307 CTR2(KTR_MLD, "%s: warning: no ifindex, looking up " 2308 "ifp for group %s.", __func__, 2309 ip6_sprintf(ip6tbuf, &gsa->sin6.sin6_addr)); 2310 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 2311 } else { 2312 NET_EPOCH_ENTER(et); 2313 ifp = ifnet_byindex(ifindex); 2314 NET_EPOCH_EXIT(et); /* XXXGL: unsafe ifp */ 2315 } 2316 if (ifp == NULL) 2317 return (EADDRNOTAVAIL); 2318 } 2319 2320 CTR2(KTR_MLD, "%s: ifp = %p", __func__, ifp); 2321 KASSERT(ifp != NULL, ("%s: ifp did not resolve", __func__)); 2322 2323 IN6_MULTI_LOCK(); 2324 2325 /* 2326 * Find the membership in the membership list. 2327 */ 2328 imo = in6p_findmoptions(inp); 2329 imf = im6o_match_group(imo, ifp, &gsa->sa); 2330 if (imf == NULL) { 2331 error = EADDRNOTAVAIL; 2332 goto out_in6p_locked; 2333 } 2334 inm = imf->im6f_in6m; 2335 2336 if (ssa->ss.ss_family != AF_UNSPEC) 2337 is_final = false; 2338 2339 /* 2340 * Begin state merge transaction at socket layer. 2341 */ 2342 INP_WLOCK_ASSERT(inp); 2343 2344 /* 2345 * If we were instructed only to leave a given source, do so. 2346 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. 2347 */ 2348 if (is_final) { 2349 ip6_mfilter_remove(&imo->im6o_head, imf); 2350 im6f_leave(imf); 2351 2352 /* 2353 * Give up the multicast address record to which 2354 * the membership points. 2355 */ 2356 (void)in6_leavegroup_locked(inm, imf); 2357 } else { 2358 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 2359 error = EADDRNOTAVAIL; 2360 goto out_in6p_locked; 2361 } 2362 ims = im6o_match_source(imf, &ssa->sa); 2363 if (ims == NULL) { 2364 CTR3(KTR_MLD, "%s: source %p %spresent", __func__, 2365 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 2366 "not "); 2367 error = EADDRNOTAVAIL; 2368 goto out_in6p_locked; 2369 } 2370 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 2371 error = im6f_prune(imf, &ssa->sin6); 2372 if (error) { 2373 CTR1(KTR_MLD, "%s: merge imf state failed", 2374 __func__); 2375 goto out_in6p_locked; 2376 } 2377 } 2378 2379 /* 2380 * Begin state merge transaction at MLD layer. 2381 */ 2382 if (!is_final) { 2383 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2384 IN6_MULTI_LIST_LOCK(); 2385 error = in6m_merge(inm, imf); 2386 if (error) { 2387 CTR1(KTR_MLD, "%s: failed to merge inm state", 2388 __func__); 2389 IN6_MULTI_LIST_UNLOCK(); 2390 im6f_rollback(imf); 2391 im6f_reap(imf); 2392 goto out_in6p_locked; 2393 } 2394 2395 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2396 error = mld_change_state(inm, 0); 2397 IN6_MULTI_LIST_UNLOCK(); 2398 if (error) { 2399 CTR1(KTR_MLD, "%s: failed mld downcall", 2400 __func__); 2401 im6f_rollback(imf); 2402 im6f_reap(imf); 2403 goto out_in6p_locked; 2404 } 2405 } 2406 2407 im6f_commit(imf); 2408 im6f_reap(imf); 2409 2410 out_in6p_locked: 2411 INP_WUNLOCK(inp); 2412 2413 if (is_final && imf) 2414 ip6_mfilter_free(imf); 2415 2416 IN6_MULTI_UNLOCK(); 2417 return (error); 2418 } 2419 2420 /* 2421 * Select the interface for transmitting IPv6 multicast datagrams. 2422 * 2423 * Either an instance of struct in6_addr or an instance of struct ipv6_mreqn 2424 * may be passed to this socket option. An address of in6addr_any or an 2425 * interface index of 0 is used to remove a previous selection. 2426 * When no interface is selected, one is chosen for every send. 2427 */ 2428 static int 2429 in6p_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) 2430 { 2431 struct epoch_tracker et; 2432 struct ifnet *ifp; 2433 struct ip6_moptions *imo; 2434 u_int ifindex; 2435 int error; 2436 2437 if (sopt->sopt_valsize != sizeof(u_int)) 2438 return (EINVAL); 2439 2440 error = sooptcopyin(sopt, &ifindex, sizeof(u_int), sizeof(u_int)); 2441 if (error) 2442 return (error); 2443 NET_EPOCH_ENTER(et); 2444 if (ifindex == 0) 2445 ifp = NULL; 2446 else { 2447 ifp = ifnet_byindex(ifindex); 2448 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2449 NET_EPOCH_EXIT(et); 2450 return (EADDRNOTAVAIL); 2451 } 2452 } 2453 NET_EPOCH_EXIT(et); /* XXXGL: unsafe ifp */ 2454 imo = in6p_findmoptions(inp); 2455 imo->im6o_multicast_ifp = ifp; 2456 INP_WUNLOCK(inp); 2457 2458 return (0); 2459 } 2460 2461 /* 2462 * Atomically set source filters on a socket for an IPv6 multicast group. 2463 * 2464 * XXXGL: unsafely exits epoch with ifnet pointer 2465 */ 2466 static int 2467 in6p_set_source_filters(struct inpcb *inp, struct sockopt *sopt) 2468 { 2469 struct __msfilterreq msfr; 2470 struct epoch_tracker et; 2471 sockunion_t *gsa; 2472 struct ifnet *ifp; 2473 struct in6_mfilter *imf; 2474 struct ip6_moptions *imo; 2475 struct in6_multi *inm; 2476 int error; 2477 2478 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 2479 sizeof(struct __msfilterreq)); 2480 if (error) 2481 return (error); 2482 2483 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 2484 return (ENOBUFS); 2485 2486 if (msfr.msfr_fmode != MCAST_EXCLUDE && 2487 msfr.msfr_fmode != MCAST_INCLUDE) 2488 return (EINVAL); 2489 2490 if (msfr.msfr_group.ss_family != AF_INET6 || 2491 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 2492 return (EINVAL); 2493 2494 gsa = (sockunion_t *)&msfr.msfr_group; 2495 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2496 return (EINVAL); 2497 2498 gsa->sin6.sin6_port = 0; /* ignore port */ 2499 2500 NET_EPOCH_ENTER(et); 2501 ifp = ifnet_byindex(msfr.msfr_ifindex); 2502 NET_EPOCH_EXIT(et); 2503 if (ifp == NULL) 2504 return (EADDRNOTAVAIL); 2505 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2506 2507 /* 2508 * Take the INP write lock. 2509 * Check if this socket is a member of this group. 2510 */ 2511 imo = in6p_findmoptions(inp); 2512 imf = im6o_match_group(imo, ifp, &gsa->sa); 2513 if (imf == NULL) { 2514 error = EADDRNOTAVAIL; 2515 goto out_in6p_locked; 2516 } 2517 inm = imf->im6f_in6m; 2518 2519 /* 2520 * Begin state merge transaction at socket layer. 2521 */ 2522 INP_WLOCK_ASSERT(inp); 2523 2524 imf->im6f_st[1] = msfr.msfr_fmode; 2525 2526 /* 2527 * Apply any new source filters, if present. 2528 * Make a copy of the user-space source vector so 2529 * that we may copy them with a single copyin. This 2530 * allows us to deal with page faults up-front. 2531 */ 2532 if (msfr.msfr_nsrcs > 0) { 2533 struct in6_msource *lims; 2534 struct sockaddr_in6 *psin; 2535 struct sockaddr_storage *kss, *pkss; 2536 int i; 2537 2538 INP_WUNLOCK(inp); 2539 2540 CTR2(KTR_MLD, "%s: loading %lu source list entries", 2541 __func__, (unsigned long)msfr.msfr_nsrcs); 2542 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 2543 M_TEMP, M_WAITOK); 2544 error = copyin(msfr.msfr_srcs, kss, 2545 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 2546 if (error) { 2547 free(kss, M_TEMP); 2548 return (error); 2549 } 2550 2551 INP_WLOCK(inp); 2552 2553 /* 2554 * Mark all source filters as UNDEFINED at t1. 2555 * Restore new group filter mode, as im6f_leave() 2556 * will set it to INCLUDE. 2557 */ 2558 im6f_leave(imf); 2559 imf->im6f_st[1] = msfr.msfr_fmode; 2560 2561 /* 2562 * Update socket layer filters at t1, lazy-allocating 2563 * new entries. This saves a bunch of memory at the 2564 * cost of one RB_FIND() per source entry; duplicate 2565 * entries in the msfr_nsrcs vector are ignored. 2566 * If we encounter an error, rollback transaction. 2567 * 2568 * XXX This too could be replaced with a set-symmetric 2569 * difference like loop to avoid walking from root 2570 * every time, as the key space is common. 2571 */ 2572 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { 2573 psin = (struct sockaddr_in6 *)pkss; 2574 if (psin->sin6_family != AF_INET6) { 2575 error = EAFNOSUPPORT; 2576 break; 2577 } 2578 if (psin->sin6_len != sizeof(struct sockaddr_in6)) { 2579 error = EINVAL; 2580 break; 2581 } 2582 if (IN6_IS_ADDR_MULTICAST(&psin->sin6_addr)) { 2583 error = EINVAL; 2584 break; 2585 } 2586 /* 2587 * TODO: Validate embedded scope ID in source 2588 * list entry against passed-in ifp, if and only 2589 * if source list filter entry is iface or node local. 2590 */ 2591 in6_clearscope(&psin->sin6_addr); 2592 error = im6f_get_source(imf, psin, &lims); 2593 if (error) 2594 break; 2595 lims->im6sl_st[1] = imf->im6f_st[1]; 2596 } 2597 free(kss, M_TEMP); 2598 } 2599 2600 if (error) 2601 goto out_im6f_rollback; 2602 2603 INP_WLOCK_ASSERT(inp); 2604 IN6_MULTI_LIST_LOCK(); 2605 2606 /* 2607 * Begin state merge transaction at MLD layer. 2608 */ 2609 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2610 error = in6m_merge(inm, imf); 2611 if (error) 2612 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 2613 else { 2614 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2615 error = mld_change_state(inm, 0); 2616 if (error) 2617 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 2618 } 2619 2620 IN6_MULTI_LIST_UNLOCK(); 2621 2622 out_im6f_rollback: 2623 if (error) 2624 im6f_rollback(imf); 2625 else 2626 im6f_commit(imf); 2627 2628 im6f_reap(imf); 2629 2630 out_in6p_locked: 2631 INP_WUNLOCK(inp); 2632 return (error); 2633 } 2634 2635 /* 2636 * Set the IP multicast options in response to user setsockopt(). 2637 * 2638 * Many of the socket options handled in this function duplicate the 2639 * functionality of socket options in the regular unicast API. However, 2640 * it is not possible to merge the duplicate code, because the idempotence 2641 * of the IPv6 multicast part of the BSD Sockets API must be preserved; 2642 * the effects of these options must be treated as separate and distinct. 2643 * 2644 * SMPng: XXX: Unlocked read of inp_socket believed OK. 2645 */ 2646 int 2647 ip6_setmoptions(struct inpcb *inp, struct sockopt *sopt) 2648 { 2649 struct ip6_moptions *im6o; 2650 int error; 2651 2652 error = 0; 2653 2654 /* If socket is neither of type SOCK_RAW or SOCK_DGRAM, reject it. */ 2655 if (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 2656 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM) 2657 return (EOPNOTSUPP); 2658 2659 switch (sopt->sopt_name) { 2660 case IPV6_MULTICAST_IF: 2661 error = in6p_set_multicast_if(inp, sopt); 2662 break; 2663 2664 case IPV6_MULTICAST_HOPS: { 2665 int hlim; 2666 2667 if (sopt->sopt_valsize != sizeof(int)) { 2668 error = EINVAL; 2669 break; 2670 } 2671 error = sooptcopyin(sopt, &hlim, sizeof(hlim), sizeof(int)); 2672 if (error) 2673 break; 2674 if (hlim < -1 || hlim > 255) { 2675 error = EINVAL; 2676 break; 2677 } else if (hlim == -1) { 2678 hlim = V_ip6_defmcasthlim; 2679 } 2680 im6o = in6p_findmoptions(inp); 2681 im6o->im6o_multicast_hlim = hlim; 2682 INP_WUNLOCK(inp); 2683 break; 2684 } 2685 2686 case IPV6_MULTICAST_LOOP: { 2687 u_int loop; 2688 2689 /* 2690 * Set the loopback flag for outgoing multicast packets. 2691 * Must be zero or one. 2692 */ 2693 if (sopt->sopt_valsize != sizeof(u_int)) { 2694 error = EINVAL; 2695 break; 2696 } 2697 error = sooptcopyin(sopt, &loop, sizeof(u_int), sizeof(u_int)); 2698 if (error) 2699 break; 2700 if (loop > 1) { 2701 error = EINVAL; 2702 break; 2703 } 2704 im6o = in6p_findmoptions(inp); 2705 im6o->im6o_multicast_loop = loop; 2706 INP_WUNLOCK(inp); 2707 break; 2708 } 2709 2710 case IPV6_JOIN_GROUP: 2711 case MCAST_JOIN_GROUP: 2712 case MCAST_JOIN_SOURCE_GROUP: 2713 error = in6p_join_group(inp, sopt); 2714 break; 2715 2716 case IPV6_LEAVE_GROUP: 2717 case MCAST_LEAVE_GROUP: 2718 case MCAST_LEAVE_SOURCE_GROUP: 2719 error = in6p_leave_group(inp, sopt); 2720 break; 2721 2722 case MCAST_BLOCK_SOURCE: 2723 case MCAST_UNBLOCK_SOURCE: 2724 error = in6p_block_unblock_source(inp, sopt); 2725 break; 2726 2727 case IPV6_MSFILTER: 2728 error = in6p_set_source_filters(inp, sopt); 2729 break; 2730 2731 default: 2732 error = EOPNOTSUPP; 2733 break; 2734 } 2735 2736 INP_UNLOCK_ASSERT(inp); 2737 2738 return (error); 2739 } 2740 2741 /* 2742 * Expose MLD's multicast filter mode and source list(s) to userland, 2743 * keyed by (ifindex, group). 2744 * The filter mode is written out as a uint32_t, followed by 2745 * 0..n of struct in6_addr. 2746 * For use by ifmcstat(8). 2747 * SMPng: NOTE: unlocked read of ifindex space. 2748 */ 2749 static int 2750 sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS) 2751 { 2752 struct in6_addr mcaddr; 2753 struct in6_addr src; 2754 struct epoch_tracker et; 2755 struct ifnet *ifp; 2756 struct ifmultiaddr *ifma; 2757 struct in6_multi *inm; 2758 struct ip6_msource *ims; 2759 int *name; 2760 int retval; 2761 u_int namelen; 2762 uint32_t fmode, ifindex; 2763 #ifdef KTR 2764 char ip6tbuf[INET6_ADDRSTRLEN]; 2765 #endif 2766 2767 name = (int *)arg1; 2768 namelen = arg2; 2769 2770 if (req->newptr != NULL) 2771 return (EPERM); 2772 2773 /* int: ifindex + 4 * 32 bits of IPv6 address */ 2774 if (namelen != 5) 2775 return (EINVAL); 2776 2777 memcpy(&mcaddr, &name[1], sizeof(struct in6_addr)); 2778 if (!IN6_IS_ADDR_MULTICAST(&mcaddr)) { 2779 CTR2(KTR_MLD, "%s: group %s is not multicast", 2780 __func__, ip6_sprintf(ip6tbuf, &mcaddr)); 2781 return (EINVAL); 2782 } 2783 2784 ifindex = name[0]; 2785 NET_EPOCH_ENTER(et); 2786 ifp = ifnet_byindex(ifindex); 2787 if (ifp == NULL) { 2788 NET_EPOCH_EXIT(et); 2789 CTR2(KTR_MLD, "%s: no ifp for ifindex %u", 2790 __func__, ifindex); 2791 return (ENOENT); 2792 } 2793 /* 2794 * Internal MLD lookups require that scope/zone ID is set. 2795 */ 2796 (void)in6_setscope(&mcaddr, ifp, NULL); 2797 2798 retval = sysctl_wire_old_buffer(req, 2799 sizeof(uint32_t) + (in6_mcast_maxgrpsrc * sizeof(struct in6_addr))); 2800 if (retval) { 2801 NET_EPOCH_EXIT(et); 2802 return (retval); 2803 } 2804 2805 IN6_MULTI_LOCK(); 2806 IN6_MULTI_LIST_LOCK(); 2807 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2808 inm = in6m_ifmultiaddr_get_inm(ifma); 2809 if (inm == NULL) 2810 continue; 2811 if (!IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, &mcaddr)) 2812 continue; 2813 fmode = inm->in6m_st[1].iss_fmode; 2814 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); 2815 if (retval != 0) 2816 break; 2817 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 2818 CTR2(KTR_MLD, "%s: visit node %p", __func__, ims); 2819 /* 2820 * Only copy-out sources which are in-mode. 2821 */ 2822 if (fmode != im6s_get_mode(inm, ims, 1)) { 2823 CTR1(KTR_MLD, "%s: skip non-in-mode", 2824 __func__); 2825 continue; 2826 } 2827 src = ims->im6s_addr; 2828 retval = SYSCTL_OUT(req, &src, 2829 sizeof(struct in6_addr)); 2830 if (retval != 0) 2831 break; 2832 } 2833 } 2834 IN6_MULTI_LIST_UNLOCK(); 2835 IN6_MULTI_UNLOCK(); 2836 NET_EPOCH_EXIT(et); 2837 2838 return (retval); 2839 } 2840 2841 #ifdef KTR 2842 2843 static const char *in6m_modestrs[] = { "un", "in", "ex" }; 2844 2845 static const char * 2846 in6m_mode_str(const int mode) 2847 { 2848 2849 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) 2850 return (in6m_modestrs[mode]); 2851 return ("??"); 2852 } 2853 2854 static const char *in6m_statestrs[] = { 2855 "not-member", 2856 "silent", 2857 "idle", 2858 "lazy", 2859 "sleeping", 2860 "awakening", 2861 "query-pending", 2862 "sg-query-pending", 2863 "leaving" 2864 }; 2865 2866 static const char * 2867 in6m_state_str(const int state) 2868 { 2869 2870 if (state >= MLD_NOT_MEMBER && state <= MLD_LEAVING_MEMBER) 2871 return (in6m_statestrs[state]); 2872 return ("??"); 2873 } 2874 2875 /* 2876 * Dump an in6_multi structure to the console. 2877 */ 2878 void 2879 in6m_print(const struct in6_multi *inm) 2880 { 2881 int t; 2882 char ip6tbuf[INET6_ADDRSTRLEN]; 2883 2884 if ((ktr_mask & KTR_MLD) == 0) 2885 return; 2886 2887 printf("%s: --- begin in6m %p ---\n", __func__, inm); 2888 printf("addr %s ifp %p(%s) ifma %p\n", 2889 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2890 inm->in6m_ifp, 2891 if_name(inm->in6m_ifp), 2892 inm->in6m_ifma); 2893 printf("timer %u state %s refcount %u scq.len %u\n", 2894 inm->in6m_timer, 2895 in6m_state_str(inm->in6m_state), 2896 inm->in6m_refcount, 2897 mbufq_len(&inm->in6m_scq)); 2898 printf("mli %p nsrc %lu sctimer %u scrv %u\n", 2899 inm->in6m_mli, 2900 inm->in6m_nsrc, 2901 inm->in6m_sctimer, 2902 inm->in6m_scrv); 2903 for (t = 0; t < 2; t++) { 2904 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, 2905 in6m_mode_str(inm->in6m_st[t].iss_fmode), 2906 inm->in6m_st[t].iss_asm, 2907 inm->in6m_st[t].iss_ex, 2908 inm->in6m_st[t].iss_in, 2909 inm->in6m_st[t].iss_rec); 2910 } 2911 printf("%s: --- end in6m %p ---\n", __func__, inm); 2912 } 2913 2914 #else /* !KTR */ 2915 2916 void 2917 in6m_print(const struct in6_multi *inm) 2918 { 2919 2920 } 2921 2922 #endif /* KTR */ 2923