1 /* 2 * Copyright (c) 2009 Bruce Simpson. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. The name of the author may not be used to endorse or promote 14 * products derived from this software without specific prior written 15 * permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * IPv6 multicast socket, group, and socket option processing module. 32 * Normative references: RFC 2292, RFC 3492, RFC 3542, RFC 3678, RFC 3810. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include "opt_inet6.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/protosw.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/protosw.h> 49 #include <sys/sysctl.h> 50 #include <sys/priv.h> 51 #include <sys/ktr.h> 52 #include <sys/tree.h> 53 54 #include <net/if.h> 55 #include <net/if_var.h> 56 #include <net/if_dl.h> 57 #include <net/route.h> 58 #include <net/vnet.h> 59 60 #include <netinet/in.h> 61 #include <netinet/in_var.h> 62 #include <netinet6/in6_var.h> 63 #include <netinet/ip6.h> 64 #include <netinet/icmp6.h> 65 #include <netinet6/ip6_var.h> 66 #include <netinet/in_pcb.h> 67 #include <netinet/tcp_var.h> 68 #include <netinet6/nd6.h> 69 #include <netinet6/mld6_var.h> 70 #include <netinet6/scope6_var.h> 71 72 #ifndef KTR_MLD 73 #define KTR_MLD KTR_INET6 74 #endif 75 76 #ifndef __SOCKUNION_DECLARED 77 union sockunion { 78 struct sockaddr_storage ss; 79 struct sockaddr sa; 80 struct sockaddr_dl sdl; 81 struct sockaddr_in6 sin6; 82 }; 83 typedef union sockunion sockunion_t; 84 #define __SOCKUNION_DECLARED 85 #endif /* __SOCKUNION_DECLARED */ 86 87 static MALLOC_DEFINE(M_IN6MFILTER, "in6_mfilter", 88 "IPv6 multicast PCB-layer source filter"); 89 static MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "IPv6 multicast group"); 90 static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "IPv6 multicast options"); 91 static MALLOC_DEFINE(M_IP6MSOURCE, "ip6_msource", 92 "IPv6 multicast MLD-layer source filter"); 93 94 RB_GENERATE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp); 95 96 /* 97 * Locking: 98 * - Lock order is: Giant, INP_WLOCK, IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 99 * - The IF_ADDR_LOCK is implicitly taken by in6m_lookup() earlier, however 100 * it can be taken by code in net/if.c also. 101 * - ip6_moptions and in6_mfilter are covered by the INP_WLOCK. 102 * 103 * struct in6_multi is covered by IN6_MULTI_LOCK. There isn't strictly 104 * any need for in6_multi itself to be virtualized -- it is bound to an ifp 105 * anyway no matter what happens. 106 */ 107 struct mtx in6_multi_mtx; 108 MTX_SYSINIT(in6_multi_mtx, &in6_multi_mtx, "in6_multi_mtx", MTX_DEF); 109 110 static void im6f_commit(struct in6_mfilter *); 111 static int im6f_get_source(struct in6_mfilter *imf, 112 const struct sockaddr_in6 *psin, 113 struct in6_msource **); 114 static struct in6_msource * 115 im6f_graft(struct in6_mfilter *, const uint8_t, 116 const struct sockaddr_in6 *); 117 static void im6f_leave(struct in6_mfilter *); 118 static int im6f_prune(struct in6_mfilter *, const struct sockaddr_in6 *); 119 static void im6f_purge(struct in6_mfilter *); 120 static void im6f_rollback(struct in6_mfilter *); 121 static void im6f_reap(struct in6_mfilter *); 122 static int im6o_grow(struct ip6_moptions *); 123 static size_t im6o_match_group(const struct ip6_moptions *, 124 const struct ifnet *, const struct sockaddr *); 125 static struct in6_msource * 126 im6o_match_source(const struct ip6_moptions *, const size_t, 127 const struct sockaddr *); 128 static void im6s_merge(struct ip6_msource *ims, 129 const struct in6_msource *lims, const int rollback); 130 static int in6_mc_get(struct ifnet *, const struct in6_addr *, 131 struct in6_multi **); 132 static int in6m_get_source(struct in6_multi *inm, 133 const struct in6_addr *addr, const int noalloc, 134 struct ip6_msource **pims); 135 #ifdef KTR 136 static int in6m_is_ifp_detached(const struct in6_multi *); 137 #endif 138 static int in6m_merge(struct in6_multi *, /*const*/ struct in6_mfilter *); 139 static void in6m_purge(struct in6_multi *); 140 static void in6m_reap(struct in6_multi *); 141 static struct ip6_moptions * 142 in6p_findmoptions(struct inpcb *); 143 static int in6p_get_source_filters(struct inpcb *, struct sockopt *); 144 static int in6p_join_group(struct inpcb *, struct sockopt *); 145 static int in6p_leave_group(struct inpcb *, struct sockopt *); 146 static struct ifnet * 147 in6p_lookup_mcast_ifp(const struct inpcb *, 148 const struct sockaddr_in6 *); 149 static int in6p_block_unblock_source(struct inpcb *, struct sockopt *); 150 static int in6p_set_multicast_if(struct inpcb *, struct sockopt *); 151 static int in6p_set_source_filters(struct inpcb *, struct sockopt *); 152 static int sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS); 153 154 SYSCTL_DECL(_net_inet6_ip6); /* XXX Not in any common header. */ 155 156 static SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, mcast, CTLFLAG_RW, 0, 157 "IPv6 multicast"); 158 159 static u_long in6_mcast_maxgrpsrc = IPV6_MAX_GROUP_SRC_FILTER; 160 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxgrpsrc, 161 CTLFLAG_RW | CTLFLAG_TUN, &in6_mcast_maxgrpsrc, 0, 162 "Max source filters per group"); 163 TUNABLE_ULONG("net.inet6.ip6.mcast.maxgrpsrc", &in6_mcast_maxgrpsrc); 164 165 static u_long in6_mcast_maxsocksrc = IPV6_MAX_SOCK_SRC_FILTER; 166 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxsocksrc, 167 CTLFLAG_RW | CTLFLAG_TUN, &in6_mcast_maxsocksrc, 0, 168 "Max source filters per socket"); 169 TUNABLE_ULONG("net.inet6.ip6.mcast.maxsocksrc", &in6_mcast_maxsocksrc); 170 171 /* TODO Virtualize this switch. */ 172 int in6_mcast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 173 SYSCTL_INT(_net_inet6_ip6_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_TUN, 174 &in6_mcast_loop, 0, "Loopback multicast datagrams by default"); 175 TUNABLE_INT("net.inet6.ip6.mcast.loop", &in6_mcast_loop); 176 177 static SYSCTL_NODE(_net_inet6_ip6_mcast, OID_AUTO, filters, 178 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip6_mcast_filters, 179 "Per-interface stack-wide source filters"); 180 181 #ifdef KTR 182 /* 183 * Inline function which wraps assertions for a valid ifp. 184 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp 185 * is detached. 186 */ 187 static int __inline 188 in6m_is_ifp_detached(const struct in6_multi *inm) 189 { 190 struct ifnet *ifp; 191 192 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 193 ifp = inm->in6m_ifma->ifma_ifp; 194 if (ifp != NULL) { 195 /* 196 * Sanity check that network-layer notion of ifp is the 197 * same as that of link-layer. 198 */ 199 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 200 } 201 202 return (ifp == NULL); 203 } 204 #endif 205 206 /* 207 * Initialize an in6_mfilter structure to a known state at t0, t1 208 * with an empty source filter list. 209 */ 210 static __inline void 211 im6f_init(struct in6_mfilter *imf, const int st0, const int st1) 212 { 213 memset(imf, 0, sizeof(struct in6_mfilter)); 214 RB_INIT(&imf->im6f_sources); 215 imf->im6f_st[0] = st0; 216 imf->im6f_st[1] = st1; 217 } 218 219 /* 220 * Resize the ip6_moptions vector to the next power-of-two minus 1. 221 * May be called with locks held; do not sleep. 222 */ 223 static int 224 im6o_grow(struct ip6_moptions *imo) 225 { 226 struct in6_multi **nmships; 227 struct in6_multi **omships; 228 struct in6_mfilter *nmfilters; 229 struct in6_mfilter *omfilters; 230 size_t idx; 231 size_t newmax; 232 size_t oldmax; 233 234 nmships = NULL; 235 nmfilters = NULL; 236 omships = imo->im6o_membership; 237 omfilters = imo->im6o_mfilters; 238 oldmax = imo->im6o_max_memberships; 239 newmax = ((oldmax + 1) * 2) - 1; 240 241 if (newmax <= IPV6_MAX_MEMBERSHIPS) { 242 nmships = (struct in6_multi **)realloc(omships, 243 sizeof(struct in6_multi *) * newmax, M_IP6MOPTS, M_NOWAIT); 244 nmfilters = (struct in6_mfilter *)realloc(omfilters, 245 sizeof(struct in6_mfilter) * newmax, M_IN6MFILTER, 246 M_NOWAIT); 247 if (nmships != NULL && nmfilters != NULL) { 248 /* Initialize newly allocated source filter heads. */ 249 for (idx = oldmax; idx < newmax; idx++) { 250 im6f_init(&nmfilters[idx], MCAST_UNDEFINED, 251 MCAST_EXCLUDE); 252 } 253 imo->im6o_max_memberships = newmax; 254 imo->im6o_membership = nmships; 255 imo->im6o_mfilters = nmfilters; 256 } 257 } 258 259 if (nmships == NULL || nmfilters == NULL) { 260 if (nmships != NULL) 261 free(nmships, M_IP6MOPTS); 262 if (nmfilters != NULL) 263 free(nmfilters, M_IN6MFILTER); 264 return (ETOOMANYREFS); 265 } 266 267 return (0); 268 } 269 270 /* 271 * Find an IPv6 multicast group entry for this ip6_moptions instance 272 * which matches the specified group, and optionally an interface. 273 * Return its index into the array, or -1 if not found. 274 */ 275 static size_t 276 im6o_match_group(const struct ip6_moptions *imo, const struct ifnet *ifp, 277 const struct sockaddr *group) 278 { 279 const struct sockaddr_in6 *gsin6; 280 struct in6_multi **pinm; 281 int idx; 282 int nmships; 283 284 gsin6 = (const struct sockaddr_in6 *)group; 285 286 /* The im6o_membership array may be lazy allocated. */ 287 if (imo->im6o_membership == NULL || imo->im6o_num_memberships == 0) 288 return (-1); 289 290 nmships = imo->im6o_num_memberships; 291 pinm = &imo->im6o_membership[0]; 292 for (idx = 0; idx < nmships; idx++, pinm++) { 293 if (*pinm == NULL) 294 continue; 295 if ((ifp == NULL || ((*pinm)->in6m_ifp == ifp)) && 296 IN6_ARE_ADDR_EQUAL(&(*pinm)->in6m_addr, 297 &gsin6->sin6_addr)) { 298 break; 299 } 300 } 301 if (idx >= nmships) 302 idx = -1; 303 304 return (idx); 305 } 306 307 /* 308 * Find an IPv6 multicast source entry for this imo which matches 309 * the given group index for this socket, and source address. 310 * 311 * XXX TODO: The scope ID, if present in src, is stripped before 312 * any comparison. We SHOULD enforce scope/zone checks where the source 313 * filter entry has a link scope. 314 * 315 * NOTE: This does not check if the entry is in-mode, merely if 316 * it exists, which may not be the desired behaviour. 317 */ 318 static struct in6_msource * 319 im6o_match_source(const struct ip6_moptions *imo, const size_t gidx, 320 const struct sockaddr *src) 321 { 322 struct ip6_msource find; 323 struct in6_mfilter *imf; 324 struct ip6_msource *ims; 325 const sockunion_t *psa; 326 327 KASSERT(src->sa_family == AF_INET6, ("%s: !AF_INET6", __func__)); 328 KASSERT(gidx != -1 && gidx < imo->im6o_num_memberships, 329 ("%s: invalid index %d\n", __func__, (int)gidx)); 330 331 /* The im6o_mfilters array may be lazy allocated. */ 332 if (imo->im6o_mfilters == NULL) 333 return (NULL); 334 imf = &imo->im6o_mfilters[gidx]; 335 336 psa = (const sockunion_t *)src; 337 find.im6s_addr = psa->sin6.sin6_addr; 338 in6_clearscope(&find.im6s_addr); /* XXX */ 339 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 340 341 return ((struct in6_msource *)ims); 342 } 343 344 /* 345 * Perform filtering for multicast datagrams on a socket by group and source. 346 * 347 * Returns 0 if a datagram should be allowed through, or various error codes 348 * if the socket was not a member of the group, or the source was muted, etc. 349 */ 350 int 351 im6o_mc_filter(const struct ip6_moptions *imo, const struct ifnet *ifp, 352 const struct sockaddr *group, const struct sockaddr *src) 353 { 354 size_t gidx; 355 struct in6_msource *ims; 356 int mode; 357 358 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 359 360 gidx = im6o_match_group(imo, ifp, group); 361 if (gidx == -1) 362 return (MCAST_NOTGMEMBER); 363 364 /* 365 * Check if the source was included in an (S,G) join. 366 * Allow reception on exclusive memberships by default, 367 * reject reception on inclusive memberships by default. 368 * Exclude source only if an in-mode exclude filter exists. 369 * Include source only if an in-mode include filter exists. 370 * NOTE: We are comparing group state here at MLD t1 (now) 371 * with socket-layer t0 (since last downcall). 372 */ 373 mode = imo->im6o_mfilters[gidx].im6f_st[1]; 374 ims = im6o_match_source(imo, gidx, src); 375 376 if ((ims == NULL && mode == MCAST_INCLUDE) || 377 (ims != NULL && ims->im6sl_st[0] != mode)) 378 return (MCAST_NOTSMEMBER); 379 380 return (MCAST_PASS); 381 } 382 383 /* 384 * Find and return a reference to an in6_multi record for (ifp, group), 385 * and bump its reference count. 386 * If one does not exist, try to allocate it, and update link-layer multicast 387 * filters on ifp to listen for group. 388 * Assumes the IN6_MULTI lock is held across the call. 389 * Return 0 if successful, otherwise return an appropriate error code. 390 */ 391 static int 392 in6_mc_get(struct ifnet *ifp, const struct in6_addr *group, 393 struct in6_multi **pinm) 394 { 395 struct sockaddr_in6 gsin6; 396 struct ifmultiaddr *ifma; 397 struct in6_multi *inm; 398 int error; 399 400 error = 0; 401 402 /* 403 * XXX: Accesses to ifma_protospec must be covered by IF_ADDR_LOCK; 404 * if_addmulti() takes this mutex itself, so we must drop and 405 * re-acquire around the call. 406 */ 407 IN6_MULTI_LOCK_ASSERT(); 408 IF_ADDR_WLOCK(ifp); 409 410 inm = in6m_lookup_locked(ifp, group); 411 if (inm != NULL) { 412 /* 413 * If we already joined this group, just bump the 414 * refcount and return it. 415 */ 416 KASSERT(inm->in6m_refcount >= 1, 417 ("%s: bad refcount %d", __func__, inm->in6m_refcount)); 418 ++inm->in6m_refcount; 419 *pinm = inm; 420 goto out_locked; 421 } 422 423 memset(&gsin6, 0, sizeof(gsin6)); 424 gsin6.sin6_family = AF_INET6; 425 gsin6.sin6_len = sizeof(struct sockaddr_in6); 426 gsin6.sin6_addr = *group; 427 428 /* 429 * Check if a link-layer group is already associated 430 * with this network-layer group on the given ifnet. 431 */ 432 IF_ADDR_WUNLOCK(ifp); 433 error = if_addmulti(ifp, (struct sockaddr *)&gsin6, &ifma); 434 if (error != 0) 435 return (error); 436 IF_ADDR_WLOCK(ifp); 437 438 /* 439 * If something other than netinet6 is occupying the link-layer 440 * group, print a meaningful error message and back out of 441 * the allocation. 442 * Otherwise, bump the refcount on the existing network-layer 443 * group association and return it. 444 */ 445 if (ifma->ifma_protospec != NULL) { 446 inm = (struct in6_multi *)ifma->ifma_protospec; 447 #ifdef INVARIANTS 448 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", 449 __func__)); 450 KASSERT(ifma->ifma_addr->sa_family == AF_INET6, 451 ("%s: ifma not AF_INET6", __func__)); 452 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); 453 if (inm->in6m_ifma != ifma || inm->in6m_ifp != ifp || 454 !IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, group)) 455 panic("%s: ifma %p is inconsistent with %p (%p)", 456 __func__, ifma, inm, group); 457 #endif 458 ++inm->in6m_refcount; 459 *pinm = inm; 460 goto out_locked; 461 } 462 463 IF_ADDR_WLOCK_ASSERT(ifp); 464 465 /* 466 * A new in6_multi record is needed; allocate and initialize it. 467 * We DO NOT perform an MLD join as the in6_ layer may need to 468 * push an initial source list down to MLD to support SSM. 469 * 470 * The initial source filter state is INCLUDE, {} as per the RFC. 471 * Pending state-changes per group are subject to a bounds check. 472 */ 473 inm = malloc(sizeof(*inm), M_IP6MADDR, M_NOWAIT | M_ZERO); 474 if (inm == NULL) { 475 if_delmulti_ifma(ifma); 476 error = ENOMEM; 477 goto out_locked; 478 } 479 inm->in6m_addr = *group; 480 inm->in6m_ifp = ifp; 481 inm->in6m_mli = MLD_IFINFO(ifp); 482 inm->in6m_ifma = ifma; 483 inm->in6m_refcount = 1; 484 inm->in6m_state = MLD_NOT_MEMBER; 485 IFQ_SET_MAXLEN(&inm->in6m_scq, MLD_MAX_STATE_CHANGES); 486 487 inm->in6m_st[0].iss_fmode = MCAST_UNDEFINED; 488 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 489 RB_INIT(&inm->in6m_srcs); 490 491 ifma->ifma_protospec = inm; 492 *pinm = inm; 493 494 out_locked: 495 IF_ADDR_WUNLOCK(ifp); 496 return (error); 497 } 498 499 /* 500 * Drop a reference to an in6_multi record. 501 * 502 * If the refcount drops to 0, free the in6_multi record and 503 * delete the underlying link-layer membership. 504 */ 505 void 506 in6m_release_locked(struct in6_multi *inm) 507 { 508 struct ifmultiaddr *ifma; 509 510 IN6_MULTI_LOCK_ASSERT(); 511 512 CTR2(KTR_MLD, "%s: refcount is %d", __func__, inm->in6m_refcount); 513 514 if (--inm->in6m_refcount > 0) { 515 CTR2(KTR_MLD, "%s: refcount is now %d", __func__, 516 inm->in6m_refcount); 517 return; 518 } 519 520 CTR2(KTR_MLD, "%s: freeing inm %p", __func__, inm); 521 522 ifma = inm->in6m_ifma; 523 524 /* XXX this access is not covered by IF_ADDR_LOCK */ 525 CTR2(KTR_MLD, "%s: purging ifma %p", __func__, ifma); 526 KASSERT(ifma->ifma_protospec == inm, 527 ("%s: ifma_protospec != inm", __func__)); 528 ifma->ifma_protospec = NULL; 529 530 in6m_purge(inm); 531 532 free(inm, M_IP6MADDR); 533 534 if_delmulti_ifma(ifma); 535 } 536 537 /* 538 * Clear recorded source entries for a group. 539 * Used by the MLD code. Caller must hold the IN6_MULTI lock. 540 * FIXME: Should reap. 541 */ 542 void 543 in6m_clear_recorded(struct in6_multi *inm) 544 { 545 struct ip6_msource *ims; 546 547 IN6_MULTI_LOCK_ASSERT(); 548 549 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 550 if (ims->im6s_stp) { 551 ims->im6s_stp = 0; 552 --inm->in6m_st[1].iss_rec; 553 } 554 } 555 KASSERT(inm->in6m_st[1].iss_rec == 0, 556 ("%s: iss_rec %d not 0", __func__, inm->in6m_st[1].iss_rec)); 557 } 558 559 /* 560 * Record a source as pending for a Source-Group MLDv2 query. 561 * This lives here as it modifies the shared tree. 562 * 563 * inm is the group descriptor. 564 * naddr is the address of the source to record in network-byte order. 565 * 566 * If the net.inet6.mld.sgalloc sysctl is non-zero, we will 567 * lazy-allocate a source node in response to an SG query. 568 * Otherwise, no allocation is performed. This saves some memory 569 * with the trade-off that the source will not be reported to the 570 * router if joined in the window between the query response and 571 * the group actually being joined on the local host. 572 * 573 * VIMAGE: XXX: Currently the mld_sgalloc feature has been removed. 574 * This turns off the allocation of a recorded source entry if 575 * the group has not been joined. 576 * 577 * Return 0 if the source didn't exist or was already marked as recorded. 578 * Return 1 if the source was marked as recorded by this function. 579 * Return <0 if any error occured (negated errno code). 580 */ 581 int 582 in6m_record_source(struct in6_multi *inm, const struct in6_addr *addr) 583 { 584 struct ip6_msource find; 585 struct ip6_msource *ims, *nims; 586 587 IN6_MULTI_LOCK_ASSERT(); 588 589 find.im6s_addr = *addr; 590 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 591 if (ims && ims->im6s_stp) 592 return (0); 593 if (ims == NULL) { 594 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 595 return (-ENOSPC); 596 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 597 M_NOWAIT | M_ZERO); 598 if (nims == NULL) 599 return (-ENOMEM); 600 nims->im6s_addr = find.im6s_addr; 601 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 602 ++inm->in6m_nsrc; 603 ims = nims; 604 } 605 606 /* 607 * Mark the source as recorded and update the recorded 608 * source count. 609 */ 610 ++ims->im6s_stp; 611 ++inm->in6m_st[1].iss_rec; 612 613 return (1); 614 } 615 616 /* 617 * Return a pointer to an in6_msource owned by an in6_mfilter, 618 * given its source address. 619 * Lazy-allocate if needed. If this is a new entry its filter state is 620 * undefined at t0. 621 * 622 * imf is the filter set being modified. 623 * addr is the source address. 624 * 625 * SMPng: May be called with locks held; malloc must not block. 626 */ 627 static int 628 im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin, 629 struct in6_msource **plims) 630 { 631 struct ip6_msource find; 632 struct ip6_msource *ims, *nims; 633 struct in6_msource *lims; 634 int error; 635 636 error = 0; 637 ims = NULL; 638 lims = NULL; 639 640 find.im6s_addr = psin->sin6_addr; 641 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 642 lims = (struct in6_msource *)ims; 643 if (lims == NULL) { 644 if (imf->im6f_nsrc == in6_mcast_maxsocksrc) 645 return (ENOSPC); 646 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 647 M_NOWAIT | M_ZERO); 648 if (nims == NULL) 649 return (ENOMEM); 650 lims = (struct in6_msource *)nims; 651 lims->im6s_addr = find.im6s_addr; 652 lims->im6sl_st[0] = MCAST_UNDEFINED; 653 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 654 ++imf->im6f_nsrc; 655 } 656 657 *plims = lims; 658 659 return (error); 660 } 661 662 /* 663 * Graft a source entry into an existing socket-layer filter set, 664 * maintaining any required invariants and checking allocations. 665 * 666 * The source is marked as being in the new filter mode at t1. 667 * 668 * Return the pointer to the new node, otherwise return NULL. 669 */ 670 static struct in6_msource * 671 im6f_graft(struct in6_mfilter *imf, const uint8_t st1, 672 const struct sockaddr_in6 *psin) 673 { 674 struct ip6_msource *nims; 675 struct in6_msource *lims; 676 677 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 678 M_NOWAIT | M_ZERO); 679 if (nims == NULL) 680 return (NULL); 681 lims = (struct in6_msource *)nims; 682 lims->im6s_addr = psin->sin6_addr; 683 lims->im6sl_st[0] = MCAST_UNDEFINED; 684 lims->im6sl_st[1] = st1; 685 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 686 ++imf->im6f_nsrc; 687 688 return (lims); 689 } 690 691 /* 692 * Prune a source entry from an existing socket-layer filter set, 693 * maintaining any required invariants and checking allocations. 694 * 695 * The source is marked as being left at t1, it is not freed. 696 * 697 * Return 0 if no error occurred, otherwise return an errno value. 698 */ 699 static int 700 im6f_prune(struct in6_mfilter *imf, const struct sockaddr_in6 *psin) 701 { 702 struct ip6_msource find; 703 struct ip6_msource *ims; 704 struct in6_msource *lims; 705 706 find.im6s_addr = psin->sin6_addr; 707 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 708 if (ims == NULL) 709 return (ENOENT); 710 lims = (struct in6_msource *)ims; 711 lims->im6sl_st[1] = MCAST_UNDEFINED; 712 return (0); 713 } 714 715 /* 716 * Revert socket-layer filter set deltas at t1 to t0 state. 717 */ 718 static void 719 im6f_rollback(struct in6_mfilter *imf) 720 { 721 struct ip6_msource *ims, *tims; 722 struct in6_msource *lims; 723 724 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 725 lims = (struct in6_msource *)ims; 726 if (lims->im6sl_st[0] == lims->im6sl_st[1]) { 727 /* no change at t1 */ 728 continue; 729 } else if (lims->im6sl_st[0] != MCAST_UNDEFINED) { 730 /* revert change to existing source at t1 */ 731 lims->im6sl_st[1] = lims->im6sl_st[0]; 732 } else { 733 /* revert source added t1 */ 734 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 735 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 736 free(ims, M_IN6MFILTER); 737 imf->im6f_nsrc--; 738 } 739 } 740 imf->im6f_st[1] = imf->im6f_st[0]; 741 } 742 743 /* 744 * Mark socket-layer filter set as INCLUDE {} at t1. 745 */ 746 static void 747 im6f_leave(struct in6_mfilter *imf) 748 { 749 struct ip6_msource *ims; 750 struct in6_msource *lims; 751 752 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 753 lims = (struct in6_msource *)ims; 754 lims->im6sl_st[1] = MCAST_UNDEFINED; 755 } 756 imf->im6f_st[1] = MCAST_INCLUDE; 757 } 758 759 /* 760 * Mark socket-layer filter set deltas as committed. 761 */ 762 static void 763 im6f_commit(struct in6_mfilter *imf) 764 { 765 struct ip6_msource *ims; 766 struct in6_msource *lims; 767 768 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 769 lims = (struct in6_msource *)ims; 770 lims->im6sl_st[0] = lims->im6sl_st[1]; 771 } 772 imf->im6f_st[0] = imf->im6f_st[1]; 773 } 774 775 /* 776 * Reap unreferenced sources from socket-layer filter set. 777 */ 778 static void 779 im6f_reap(struct in6_mfilter *imf) 780 { 781 struct ip6_msource *ims, *tims; 782 struct in6_msource *lims; 783 784 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 785 lims = (struct in6_msource *)ims; 786 if ((lims->im6sl_st[0] == MCAST_UNDEFINED) && 787 (lims->im6sl_st[1] == MCAST_UNDEFINED)) { 788 CTR2(KTR_MLD, "%s: free lims %p", __func__, ims); 789 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 790 free(ims, M_IN6MFILTER); 791 imf->im6f_nsrc--; 792 } 793 } 794 } 795 796 /* 797 * Purge socket-layer filter set. 798 */ 799 static void 800 im6f_purge(struct in6_mfilter *imf) 801 { 802 struct ip6_msource *ims, *tims; 803 804 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 805 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 806 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 807 free(ims, M_IN6MFILTER); 808 imf->im6f_nsrc--; 809 } 810 imf->im6f_st[0] = imf->im6f_st[1] = MCAST_UNDEFINED; 811 KASSERT(RB_EMPTY(&imf->im6f_sources), 812 ("%s: im6f_sources not empty", __func__)); 813 } 814 815 /* 816 * Look up a source filter entry for a multicast group. 817 * 818 * inm is the group descriptor to work with. 819 * addr is the IPv6 address to look up. 820 * noalloc may be non-zero to suppress allocation of sources. 821 * *pims will be set to the address of the retrieved or allocated source. 822 * 823 * SMPng: NOTE: may be called with locks held. 824 * Return 0 if successful, otherwise return a non-zero error code. 825 */ 826 static int 827 in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr, 828 const int noalloc, struct ip6_msource **pims) 829 { 830 struct ip6_msource find; 831 struct ip6_msource *ims, *nims; 832 #ifdef KTR 833 char ip6tbuf[INET6_ADDRSTRLEN]; 834 #endif 835 836 find.im6s_addr = *addr; 837 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 838 if (ims == NULL && !noalloc) { 839 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 840 return (ENOSPC); 841 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 842 M_NOWAIT | M_ZERO); 843 if (nims == NULL) 844 return (ENOMEM); 845 nims->im6s_addr = *addr; 846 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 847 ++inm->in6m_nsrc; 848 ims = nims; 849 CTR3(KTR_MLD, "%s: allocated %s as %p", __func__, 850 ip6_sprintf(ip6tbuf, addr), ims); 851 } 852 853 *pims = ims; 854 return (0); 855 } 856 857 /* 858 * Merge socket-layer source into MLD-layer source. 859 * If rollback is non-zero, perform the inverse of the merge. 860 */ 861 static void 862 im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims, 863 const int rollback) 864 { 865 int n = rollback ? -1 : 1; 866 #ifdef KTR 867 char ip6tbuf[INET6_ADDRSTRLEN]; 868 869 ip6_sprintf(ip6tbuf, &lims->im6s_addr); 870 #endif 871 872 if (lims->im6sl_st[0] == MCAST_EXCLUDE) { 873 CTR3(KTR_MLD, "%s: t1 ex -= %d on %s", __func__, n, ip6tbuf); 874 ims->im6s_st[1].ex -= n; 875 } else if (lims->im6sl_st[0] == MCAST_INCLUDE) { 876 CTR3(KTR_MLD, "%s: t1 in -= %d on %s", __func__, n, ip6tbuf); 877 ims->im6s_st[1].in -= n; 878 } 879 880 if (lims->im6sl_st[1] == MCAST_EXCLUDE) { 881 CTR3(KTR_MLD, "%s: t1 ex += %d on %s", __func__, n, ip6tbuf); 882 ims->im6s_st[1].ex += n; 883 } else if (lims->im6sl_st[1] == MCAST_INCLUDE) { 884 CTR3(KTR_MLD, "%s: t1 in += %d on %s", __func__, n, ip6tbuf); 885 ims->im6s_st[1].in += n; 886 } 887 } 888 889 /* 890 * Atomically update the global in6_multi state, when a membership's 891 * filter list is being updated in any way. 892 * 893 * imf is the per-inpcb-membership group filter pointer. 894 * A fake imf may be passed for in-kernel consumers. 895 * 896 * XXX This is a candidate for a set-symmetric-difference style loop 897 * which would eliminate the repeated lookup from root of ims nodes, 898 * as they share the same key space. 899 * 900 * If any error occurred this function will back out of refcounts 901 * and return a non-zero value. 902 */ 903 static int 904 in6m_merge(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 905 { 906 struct ip6_msource *ims, *nims; 907 struct in6_msource *lims; 908 int schanged, error; 909 int nsrc0, nsrc1; 910 911 schanged = 0; 912 error = 0; 913 nsrc1 = nsrc0 = 0; 914 915 /* 916 * Update the source filters first, as this may fail. 917 * Maintain count of in-mode filters at t0, t1. These are 918 * used to work out if we transition into ASM mode or not. 919 * Maintain a count of source filters whose state was 920 * actually modified by this operation. 921 */ 922 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 923 lims = (struct in6_msource *)ims; 924 if (lims->im6sl_st[0] == imf->im6f_st[0]) nsrc0++; 925 if (lims->im6sl_st[1] == imf->im6f_st[1]) nsrc1++; 926 if (lims->im6sl_st[0] == lims->im6sl_st[1]) continue; 927 error = in6m_get_source(inm, &lims->im6s_addr, 0, &nims); 928 ++schanged; 929 if (error) 930 break; 931 im6s_merge(nims, lims, 0); 932 } 933 if (error) { 934 struct ip6_msource *bims; 935 936 RB_FOREACH_REVERSE_FROM(ims, ip6_msource_tree, nims) { 937 lims = (struct in6_msource *)ims; 938 if (lims->im6sl_st[0] == lims->im6sl_st[1]) 939 continue; 940 (void)in6m_get_source(inm, &lims->im6s_addr, 1, &bims); 941 if (bims == NULL) 942 continue; 943 im6s_merge(bims, lims, 1); 944 } 945 goto out_reap; 946 } 947 948 CTR3(KTR_MLD, "%s: imf filters in-mode: %d at t0, %d at t1", 949 __func__, nsrc0, nsrc1); 950 951 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ 952 if (imf->im6f_st[0] == imf->im6f_st[1] && 953 imf->im6f_st[1] == MCAST_INCLUDE) { 954 if (nsrc1 == 0) { 955 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 956 --inm->in6m_st[1].iss_in; 957 } 958 } 959 960 /* Handle filter mode transition on socket. */ 961 if (imf->im6f_st[0] != imf->im6f_st[1]) { 962 CTR3(KTR_MLD, "%s: imf transition %d to %d", 963 __func__, imf->im6f_st[0], imf->im6f_st[1]); 964 965 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 966 CTR1(KTR_MLD, "%s: --ex on inm at t1", __func__); 967 --inm->in6m_st[1].iss_ex; 968 } else if (imf->im6f_st[0] == MCAST_INCLUDE) { 969 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 970 --inm->in6m_st[1].iss_in; 971 } 972 973 if (imf->im6f_st[1] == MCAST_EXCLUDE) { 974 CTR1(KTR_MLD, "%s: ex++ on inm at t1", __func__); 975 inm->in6m_st[1].iss_ex++; 976 } else if (imf->im6f_st[1] == MCAST_INCLUDE && nsrc1 > 0) { 977 CTR1(KTR_MLD, "%s: in++ on inm at t1", __func__); 978 inm->in6m_st[1].iss_in++; 979 } 980 } 981 982 /* 983 * Track inm filter state in terms of listener counts. 984 * If there are any exclusive listeners, stack-wide 985 * membership is exclusive. 986 * Otherwise, if only inclusive listeners, stack-wide is inclusive. 987 * If no listeners remain, state is undefined at t1, 988 * and the MLD lifecycle for this group should finish. 989 */ 990 if (inm->in6m_st[1].iss_ex > 0) { 991 CTR1(KTR_MLD, "%s: transition to EX", __func__); 992 inm->in6m_st[1].iss_fmode = MCAST_EXCLUDE; 993 } else if (inm->in6m_st[1].iss_in > 0) { 994 CTR1(KTR_MLD, "%s: transition to IN", __func__); 995 inm->in6m_st[1].iss_fmode = MCAST_INCLUDE; 996 } else { 997 CTR1(KTR_MLD, "%s: transition to UNDEF", __func__); 998 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 999 } 1000 1001 /* Decrement ASM listener count on transition out of ASM mode. */ 1002 if (imf->im6f_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { 1003 if ((imf->im6f_st[1] != MCAST_EXCLUDE) || 1004 (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) 1005 CTR1(KTR_MLD, "%s: --asm on inm at t1", __func__); 1006 --inm->in6m_st[1].iss_asm; 1007 } 1008 1009 /* Increment ASM listener count on transition to ASM mode. */ 1010 if (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { 1011 CTR1(KTR_MLD, "%s: asm++ on inm at t1", __func__); 1012 inm->in6m_st[1].iss_asm++; 1013 } 1014 1015 CTR3(KTR_MLD, "%s: merged imf %p to inm %p", __func__, imf, inm); 1016 in6m_print(inm); 1017 1018 out_reap: 1019 if (schanged > 0) { 1020 CTR1(KTR_MLD, "%s: sources changed; reaping", __func__); 1021 in6m_reap(inm); 1022 } 1023 return (error); 1024 } 1025 1026 /* 1027 * Mark an in6_multi's filter set deltas as committed. 1028 * Called by MLD after a state change has been enqueued. 1029 */ 1030 void 1031 in6m_commit(struct in6_multi *inm) 1032 { 1033 struct ip6_msource *ims; 1034 1035 CTR2(KTR_MLD, "%s: commit inm %p", __func__, inm); 1036 CTR1(KTR_MLD, "%s: pre commit:", __func__); 1037 in6m_print(inm); 1038 1039 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 1040 ims->im6s_st[0] = ims->im6s_st[1]; 1041 } 1042 inm->in6m_st[0] = inm->in6m_st[1]; 1043 } 1044 1045 /* 1046 * Reap unreferenced nodes from an in6_multi's filter set. 1047 */ 1048 static void 1049 in6m_reap(struct in6_multi *inm) 1050 { 1051 struct ip6_msource *ims, *tims; 1052 1053 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1054 if (ims->im6s_st[0].ex > 0 || ims->im6s_st[0].in > 0 || 1055 ims->im6s_st[1].ex > 0 || ims->im6s_st[1].in > 0 || 1056 ims->im6s_stp != 0) 1057 continue; 1058 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1059 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1060 free(ims, M_IP6MSOURCE); 1061 inm->in6m_nsrc--; 1062 } 1063 } 1064 1065 /* 1066 * Purge all source nodes from an in6_multi's filter set. 1067 */ 1068 static void 1069 in6m_purge(struct in6_multi *inm) 1070 { 1071 struct ip6_msource *ims, *tims; 1072 1073 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1074 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1075 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1076 free(ims, M_IP6MSOURCE); 1077 inm->in6m_nsrc--; 1078 } 1079 } 1080 1081 /* 1082 * Join a multicast address w/o sources. 1083 * KAME compatibility entry point. 1084 * 1085 * SMPng: Assume no mc locks held by caller. 1086 */ 1087 struct in6_multi_mship * 1088 in6_joingroup(struct ifnet *ifp, struct in6_addr *mcaddr, 1089 int *errorp, int delay) 1090 { 1091 struct in6_multi_mship *imm; 1092 int error; 1093 1094 imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT); 1095 if (imm == NULL) { 1096 *errorp = ENOBUFS; 1097 return (NULL); 1098 } 1099 1100 delay = (delay * PR_FASTHZ) / hz; 1101 1102 error = in6_mc_join(ifp, mcaddr, NULL, &imm->i6mm_maddr, delay); 1103 if (error) { 1104 *errorp = error; 1105 free(imm, M_IP6MADDR); 1106 return (NULL); 1107 } 1108 1109 return (imm); 1110 } 1111 1112 /* 1113 * Leave a multicast address w/o sources. 1114 * KAME compatibility entry point. 1115 * 1116 * SMPng: Assume no mc locks held by caller. 1117 */ 1118 int 1119 in6_leavegroup(struct in6_multi_mship *imm) 1120 { 1121 1122 if (imm->i6mm_maddr != NULL) 1123 in6_mc_leave(imm->i6mm_maddr, NULL); 1124 free(imm, M_IP6MADDR); 1125 return 0; 1126 } 1127 1128 /* 1129 * Join a multicast group; unlocked entry point. 1130 * 1131 * SMPng: XXX: in6_mc_join() is called from in6_control() when upper 1132 * locks are not held. Fortunately, ifp is unlikely to have been detached 1133 * at this point, so we assume it's OK to recurse. 1134 */ 1135 int 1136 in6_mc_join(struct ifnet *ifp, const struct in6_addr *mcaddr, 1137 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1138 const int delay) 1139 { 1140 int error; 1141 1142 IN6_MULTI_LOCK(); 1143 error = in6_mc_join_locked(ifp, mcaddr, imf, pinm, delay); 1144 IN6_MULTI_UNLOCK(); 1145 1146 return (error); 1147 } 1148 1149 /* 1150 * Join a multicast group; real entry point. 1151 * 1152 * Only preserves atomicity at inm level. 1153 * NOTE: imf argument cannot be const due to sys/tree.h limitations. 1154 * 1155 * If the MLD downcall fails, the group is not joined, and an error 1156 * code is returned. 1157 */ 1158 int 1159 in6_mc_join_locked(struct ifnet *ifp, const struct in6_addr *mcaddr, 1160 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1161 const int delay) 1162 { 1163 struct in6_mfilter timf; 1164 struct in6_multi *inm; 1165 int error; 1166 #ifdef KTR 1167 char ip6tbuf[INET6_ADDRSTRLEN]; 1168 #endif 1169 1170 #ifdef INVARIANTS 1171 /* 1172 * Sanity: Check scope zone ID was set for ifp, if and 1173 * only if group is scoped to an interface. 1174 */ 1175 KASSERT(IN6_IS_ADDR_MULTICAST(mcaddr), 1176 ("%s: not a multicast address", __func__)); 1177 if (IN6_IS_ADDR_MC_LINKLOCAL(mcaddr) || 1178 IN6_IS_ADDR_MC_INTFACELOCAL(mcaddr)) { 1179 KASSERT(mcaddr->s6_addr16[1] != 0, 1180 ("%s: scope zone ID not set", __func__)); 1181 } 1182 #endif 1183 1184 IN6_MULTI_LOCK_ASSERT(); 1185 1186 CTR4(KTR_MLD, "%s: join %s on %p(%s))", __func__, 1187 ip6_sprintf(ip6tbuf, mcaddr), ifp, if_name(ifp)); 1188 1189 error = 0; 1190 inm = NULL; 1191 1192 /* 1193 * If no imf was specified (i.e. kernel consumer), 1194 * fake one up and assume it is an ASM join. 1195 */ 1196 if (imf == NULL) { 1197 im6f_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); 1198 imf = &timf; 1199 } 1200 1201 error = in6_mc_get(ifp, mcaddr, &inm); 1202 if (error) { 1203 CTR1(KTR_MLD, "%s: in6_mc_get() failure", __func__); 1204 return (error); 1205 } 1206 1207 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1208 error = in6m_merge(inm, imf); 1209 if (error) { 1210 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1211 goto out_in6m_release; 1212 } 1213 1214 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1215 error = mld_change_state(inm, delay); 1216 if (error) { 1217 CTR1(KTR_MLD, "%s: failed to update source", __func__); 1218 goto out_in6m_release; 1219 } 1220 1221 out_in6m_release: 1222 if (error) { 1223 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1224 in6m_release_locked(inm); 1225 } else { 1226 *pinm = inm; 1227 } 1228 1229 return (error); 1230 } 1231 1232 /* 1233 * Leave a multicast group; unlocked entry point. 1234 */ 1235 int 1236 in6_mc_leave(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1237 { 1238 struct ifnet *ifp; 1239 int error; 1240 1241 ifp = inm->in6m_ifp; 1242 1243 IN6_MULTI_LOCK(); 1244 error = in6_mc_leave_locked(inm, imf); 1245 IN6_MULTI_UNLOCK(); 1246 1247 return (error); 1248 } 1249 1250 /* 1251 * Leave a multicast group; real entry point. 1252 * All source filters will be expunged. 1253 * 1254 * Only preserves atomicity at inm level. 1255 * 1256 * Holding the write lock for the INP which contains imf 1257 * is highly advisable. We can't assert for it as imf does not 1258 * contain a back-pointer to the owning inp. 1259 * 1260 * Note: This is not the same as in6m_release(*) as this function also 1261 * makes a state change downcall into MLD. 1262 */ 1263 int 1264 in6_mc_leave_locked(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1265 { 1266 struct in6_mfilter timf; 1267 int error; 1268 #ifdef KTR 1269 char ip6tbuf[INET6_ADDRSTRLEN]; 1270 #endif 1271 1272 error = 0; 1273 1274 IN6_MULTI_LOCK_ASSERT(); 1275 1276 CTR5(KTR_MLD, "%s: leave inm %p, %s/%s, imf %p", __func__, 1277 inm, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1278 (in6m_is_ifp_detached(inm) ? "null" : if_name(inm->in6m_ifp)), 1279 imf); 1280 1281 /* 1282 * If no imf was specified (i.e. kernel consumer), 1283 * fake one up and assume it is an ASM join. 1284 */ 1285 if (imf == NULL) { 1286 im6f_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); 1287 imf = &timf; 1288 } 1289 1290 /* 1291 * Begin state merge transaction at MLD layer. 1292 * 1293 * As this particular invocation should not cause any memory 1294 * to be allocated, and there is no opportunity to roll back 1295 * the transaction, it MUST NOT fail. 1296 */ 1297 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1298 error = in6m_merge(inm, imf); 1299 KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); 1300 1301 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1302 error = mld_change_state(inm, 0); 1303 if (error) 1304 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1305 1306 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1307 in6m_release_locked(inm); 1308 1309 return (error); 1310 } 1311 1312 /* 1313 * Block or unblock an ASM multicast source on an inpcb. 1314 * This implements the delta-based API described in RFC 3678. 1315 * 1316 * The delta-based API applies only to exclusive-mode memberships. 1317 * An MLD downcall will be performed. 1318 * 1319 * SMPng: NOTE: Must take Giant as a join may create a new ifma. 1320 * 1321 * Return 0 if successful, otherwise return an appropriate error code. 1322 */ 1323 static int 1324 in6p_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) 1325 { 1326 struct group_source_req gsr; 1327 sockunion_t *gsa, *ssa; 1328 struct ifnet *ifp; 1329 struct in6_mfilter *imf; 1330 struct ip6_moptions *imo; 1331 struct in6_msource *ims; 1332 struct in6_multi *inm; 1333 size_t idx; 1334 uint16_t fmode; 1335 int error, doblock; 1336 #ifdef KTR 1337 char ip6tbuf[INET6_ADDRSTRLEN]; 1338 #endif 1339 1340 ifp = NULL; 1341 error = 0; 1342 doblock = 0; 1343 1344 memset(&gsr, 0, sizeof(struct group_source_req)); 1345 gsa = (sockunion_t *)&gsr.gsr_group; 1346 ssa = (sockunion_t *)&gsr.gsr_source; 1347 1348 switch (sopt->sopt_name) { 1349 case MCAST_BLOCK_SOURCE: 1350 case MCAST_UNBLOCK_SOURCE: 1351 error = sooptcopyin(sopt, &gsr, 1352 sizeof(struct group_source_req), 1353 sizeof(struct group_source_req)); 1354 if (error) 1355 return (error); 1356 1357 if (gsa->sin6.sin6_family != AF_INET6 || 1358 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1359 return (EINVAL); 1360 1361 if (ssa->sin6.sin6_family != AF_INET6 || 1362 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1363 return (EINVAL); 1364 1365 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1366 return (EADDRNOTAVAIL); 1367 1368 ifp = ifnet_byindex(gsr.gsr_interface); 1369 1370 if (sopt->sopt_name == MCAST_BLOCK_SOURCE) 1371 doblock = 1; 1372 break; 1373 1374 default: 1375 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 1376 __func__, sopt->sopt_name); 1377 return (EOPNOTSUPP); 1378 break; 1379 } 1380 1381 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1382 return (EINVAL); 1383 1384 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1385 1386 /* 1387 * Check if we are actually a member of this group. 1388 */ 1389 imo = in6p_findmoptions(inp); 1390 idx = im6o_match_group(imo, ifp, &gsa->sa); 1391 if (idx == -1 || imo->im6o_mfilters == NULL) { 1392 error = EADDRNOTAVAIL; 1393 goto out_in6p_locked; 1394 } 1395 1396 KASSERT(imo->im6o_mfilters != NULL, 1397 ("%s: im6o_mfilters not allocated", __func__)); 1398 imf = &imo->im6o_mfilters[idx]; 1399 inm = imo->im6o_membership[idx]; 1400 1401 /* 1402 * Attempting to use the delta-based API on an 1403 * non exclusive-mode membership is an error. 1404 */ 1405 fmode = imf->im6f_st[0]; 1406 if (fmode != MCAST_EXCLUDE) { 1407 error = EINVAL; 1408 goto out_in6p_locked; 1409 } 1410 1411 /* 1412 * Deal with error cases up-front: 1413 * Asked to block, but already blocked; or 1414 * Asked to unblock, but nothing to unblock. 1415 * If adding a new block entry, allocate it. 1416 */ 1417 ims = im6o_match_source(imo, idx, &ssa->sa); 1418 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { 1419 CTR3(KTR_MLD, "%s: source %s %spresent", __func__, 1420 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 1421 doblock ? "" : "not "); 1422 error = EADDRNOTAVAIL; 1423 goto out_in6p_locked; 1424 } 1425 1426 INP_WLOCK_ASSERT(inp); 1427 1428 /* 1429 * Begin state merge transaction at socket layer. 1430 */ 1431 if (doblock) { 1432 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 1433 ims = im6f_graft(imf, fmode, &ssa->sin6); 1434 if (ims == NULL) 1435 error = ENOMEM; 1436 } else { 1437 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 1438 error = im6f_prune(imf, &ssa->sin6); 1439 } 1440 1441 if (error) { 1442 CTR1(KTR_MLD, "%s: merge imf state failed", __func__); 1443 goto out_im6f_rollback; 1444 } 1445 1446 /* 1447 * Begin state merge transaction at MLD layer. 1448 */ 1449 IN6_MULTI_LOCK(); 1450 1451 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1452 error = in6m_merge(inm, imf); 1453 if (error) { 1454 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1455 goto out_im6f_rollback; 1456 } 1457 1458 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1459 error = mld_change_state(inm, 0); 1460 if (error) 1461 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1462 1463 IN6_MULTI_UNLOCK(); 1464 1465 out_im6f_rollback: 1466 if (error) 1467 im6f_rollback(imf); 1468 else 1469 im6f_commit(imf); 1470 1471 im6f_reap(imf); 1472 1473 out_in6p_locked: 1474 INP_WUNLOCK(inp); 1475 return (error); 1476 } 1477 1478 /* 1479 * Given an inpcb, return its multicast options structure pointer. Accepts 1480 * an unlocked inpcb pointer, but will return it locked. May sleep. 1481 * 1482 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 1483 * SMPng: NOTE: Returns with the INP write lock held. 1484 */ 1485 static struct ip6_moptions * 1486 in6p_findmoptions(struct inpcb *inp) 1487 { 1488 struct ip6_moptions *imo; 1489 struct in6_multi **immp; 1490 struct in6_mfilter *imfp; 1491 size_t idx; 1492 1493 INP_WLOCK(inp); 1494 if (inp->in6p_moptions != NULL) 1495 return (inp->in6p_moptions); 1496 1497 INP_WUNLOCK(inp); 1498 1499 imo = malloc(sizeof(*imo), M_IP6MOPTS, M_WAITOK); 1500 immp = malloc(sizeof(*immp) * IPV6_MIN_MEMBERSHIPS, M_IP6MOPTS, 1501 M_WAITOK | M_ZERO); 1502 imfp = malloc(sizeof(struct in6_mfilter) * IPV6_MIN_MEMBERSHIPS, 1503 M_IN6MFILTER, M_WAITOK); 1504 1505 imo->im6o_multicast_ifp = NULL; 1506 imo->im6o_multicast_hlim = V_ip6_defmcasthlim; 1507 imo->im6o_multicast_loop = in6_mcast_loop; 1508 imo->im6o_num_memberships = 0; 1509 imo->im6o_max_memberships = IPV6_MIN_MEMBERSHIPS; 1510 imo->im6o_membership = immp; 1511 1512 /* Initialize per-group source filters. */ 1513 for (idx = 0; idx < IPV6_MIN_MEMBERSHIPS; idx++) 1514 im6f_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); 1515 imo->im6o_mfilters = imfp; 1516 1517 INP_WLOCK(inp); 1518 if (inp->in6p_moptions != NULL) { 1519 free(imfp, M_IN6MFILTER); 1520 free(immp, M_IP6MOPTS); 1521 free(imo, M_IP6MOPTS); 1522 return (inp->in6p_moptions); 1523 } 1524 inp->in6p_moptions = imo; 1525 return (imo); 1526 } 1527 1528 /* 1529 * Discard the IPv6 multicast options (and source filters). 1530 * 1531 * SMPng: NOTE: assumes INP write lock is held. 1532 */ 1533 void 1534 ip6_freemoptions(struct ip6_moptions *imo) 1535 { 1536 struct in6_mfilter *imf; 1537 size_t idx, nmships; 1538 1539 KASSERT(imo != NULL, ("%s: ip6_moptions is NULL", __func__)); 1540 1541 nmships = imo->im6o_num_memberships; 1542 for (idx = 0; idx < nmships; ++idx) { 1543 imf = imo->im6o_mfilters ? &imo->im6o_mfilters[idx] : NULL; 1544 if (imf) 1545 im6f_leave(imf); 1546 /* XXX this will thrash the lock(s) */ 1547 (void)in6_mc_leave(imo->im6o_membership[idx], imf); 1548 if (imf) 1549 im6f_purge(imf); 1550 } 1551 1552 if (imo->im6o_mfilters) 1553 free(imo->im6o_mfilters, M_IN6MFILTER); 1554 free(imo->im6o_membership, M_IP6MOPTS); 1555 free(imo, M_IP6MOPTS); 1556 } 1557 1558 /* 1559 * Atomically get source filters on a socket for an IPv6 multicast group. 1560 * Called with INP lock held; returns with lock released. 1561 */ 1562 static int 1563 in6p_get_source_filters(struct inpcb *inp, struct sockopt *sopt) 1564 { 1565 struct __msfilterreq msfr; 1566 sockunion_t *gsa; 1567 struct ifnet *ifp; 1568 struct ip6_moptions *imo; 1569 struct in6_mfilter *imf; 1570 struct ip6_msource *ims; 1571 struct in6_msource *lims; 1572 struct sockaddr_in6 *psin; 1573 struct sockaddr_storage *ptss; 1574 struct sockaddr_storage *tss; 1575 int error; 1576 size_t idx, nsrcs, ncsrcs; 1577 1578 INP_WLOCK_ASSERT(inp); 1579 1580 imo = inp->in6p_moptions; 1581 KASSERT(imo != NULL, ("%s: null ip6_moptions", __func__)); 1582 1583 INP_WUNLOCK(inp); 1584 1585 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 1586 sizeof(struct __msfilterreq)); 1587 if (error) 1588 return (error); 1589 1590 if (msfr.msfr_group.ss_family != AF_INET6 || 1591 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 1592 return (EINVAL); 1593 1594 gsa = (sockunion_t *)&msfr.msfr_group; 1595 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1596 return (EINVAL); 1597 1598 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 1599 return (EADDRNOTAVAIL); 1600 ifp = ifnet_byindex(msfr.msfr_ifindex); 1601 if (ifp == NULL) 1602 return (EADDRNOTAVAIL); 1603 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1604 1605 INP_WLOCK(inp); 1606 1607 /* 1608 * Lookup group on the socket. 1609 */ 1610 idx = im6o_match_group(imo, ifp, &gsa->sa); 1611 if (idx == -1 || imo->im6o_mfilters == NULL) { 1612 INP_WUNLOCK(inp); 1613 return (EADDRNOTAVAIL); 1614 } 1615 imf = &imo->im6o_mfilters[idx]; 1616 1617 /* 1618 * Ignore memberships which are in limbo. 1619 */ 1620 if (imf->im6f_st[1] == MCAST_UNDEFINED) { 1621 INP_WUNLOCK(inp); 1622 return (EAGAIN); 1623 } 1624 msfr.msfr_fmode = imf->im6f_st[1]; 1625 1626 /* 1627 * If the user specified a buffer, copy out the source filter 1628 * entries to userland gracefully. 1629 * We only copy out the number of entries which userland 1630 * has asked for, but we always tell userland how big the 1631 * buffer really needs to be. 1632 */ 1633 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 1634 msfr.msfr_nsrcs = in6_mcast_maxsocksrc; 1635 tss = NULL; 1636 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { 1637 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 1638 M_TEMP, M_NOWAIT | M_ZERO); 1639 if (tss == NULL) { 1640 INP_WUNLOCK(inp); 1641 return (ENOBUFS); 1642 } 1643 } 1644 1645 /* 1646 * Count number of sources in-mode at t0. 1647 * If buffer space exists and remains, copy out source entries. 1648 */ 1649 nsrcs = msfr.msfr_nsrcs; 1650 ncsrcs = 0; 1651 ptss = tss; 1652 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 1653 lims = (struct in6_msource *)ims; 1654 if (lims->im6sl_st[0] == MCAST_UNDEFINED || 1655 lims->im6sl_st[0] != imf->im6f_st[0]) 1656 continue; 1657 ++ncsrcs; 1658 if (tss != NULL && nsrcs > 0) { 1659 psin = (struct sockaddr_in6 *)ptss; 1660 psin->sin6_family = AF_INET6; 1661 psin->sin6_len = sizeof(struct sockaddr_in6); 1662 psin->sin6_addr = lims->im6s_addr; 1663 psin->sin6_port = 0; 1664 --nsrcs; 1665 ++ptss; 1666 } 1667 } 1668 1669 INP_WUNLOCK(inp); 1670 1671 if (tss != NULL) { 1672 error = copyout(tss, msfr.msfr_srcs, 1673 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 1674 free(tss, M_TEMP); 1675 if (error) 1676 return (error); 1677 } 1678 1679 msfr.msfr_nsrcs = ncsrcs; 1680 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); 1681 1682 return (error); 1683 } 1684 1685 /* 1686 * Return the IP multicast options in response to user getsockopt(). 1687 */ 1688 int 1689 ip6_getmoptions(struct inpcb *inp, struct sockopt *sopt) 1690 { 1691 struct ip6_moptions *im6o; 1692 int error; 1693 u_int optval; 1694 1695 INP_WLOCK(inp); 1696 im6o = inp->in6p_moptions; 1697 /* 1698 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 1699 * or is a divert socket, reject it. 1700 */ 1701 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 1702 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 1703 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { 1704 INP_WUNLOCK(inp); 1705 return (EOPNOTSUPP); 1706 } 1707 1708 error = 0; 1709 switch (sopt->sopt_name) { 1710 case IPV6_MULTICAST_IF: 1711 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) { 1712 optval = 0; 1713 } else { 1714 optval = im6o->im6o_multicast_ifp->if_index; 1715 } 1716 INP_WUNLOCK(inp); 1717 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1718 break; 1719 1720 case IPV6_MULTICAST_HOPS: 1721 if (im6o == NULL) 1722 optval = V_ip6_defmcasthlim; 1723 else 1724 optval = im6o->im6o_multicast_hlim; 1725 INP_WUNLOCK(inp); 1726 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1727 break; 1728 1729 case IPV6_MULTICAST_LOOP: 1730 if (im6o == NULL) 1731 optval = in6_mcast_loop; /* XXX VIMAGE */ 1732 else 1733 optval = im6o->im6o_multicast_loop; 1734 INP_WUNLOCK(inp); 1735 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1736 break; 1737 1738 case IPV6_MSFILTER: 1739 if (im6o == NULL) { 1740 error = EADDRNOTAVAIL; 1741 INP_WUNLOCK(inp); 1742 } else { 1743 error = in6p_get_source_filters(inp, sopt); 1744 } 1745 break; 1746 1747 default: 1748 INP_WUNLOCK(inp); 1749 error = ENOPROTOOPT; 1750 break; 1751 } 1752 1753 INP_UNLOCK_ASSERT(inp); 1754 1755 return (error); 1756 } 1757 1758 /* 1759 * Look up the ifnet to use for a multicast group membership, 1760 * given the address of an IPv6 group. 1761 * 1762 * This routine exists to support legacy IPv6 multicast applications. 1763 * 1764 * If inp is non-NULL, use this socket's current FIB number for any 1765 * required FIB lookup. Look up the group address in the unicast FIB, 1766 * and use its ifp; usually, this points to the default next-hop. 1767 * If the FIB lookup fails, return NULL. 1768 * 1769 * FUTURE: Support multiple forwarding tables for IPv6. 1770 * 1771 * Returns NULL if no ifp could be found. 1772 */ 1773 static struct ifnet * 1774 in6p_lookup_mcast_ifp(const struct inpcb *in6p, 1775 const struct sockaddr_in6 *gsin6) 1776 { 1777 struct route_in6 ro6; 1778 struct ifnet *ifp; 1779 1780 KASSERT(in6p->inp_vflag & INP_IPV6, 1781 ("%s: not INP_IPV6 inpcb", __func__)); 1782 KASSERT(gsin6->sin6_family == AF_INET6, 1783 ("%s: not AF_INET6 group", __func__)); 1784 KASSERT(IN6_IS_ADDR_MULTICAST(&gsin6->sin6_addr), 1785 ("%s: not multicast", __func__)); 1786 1787 ifp = NULL; 1788 memset(&ro6, 0, sizeof(struct route_in6)); 1789 memcpy(&ro6.ro_dst, gsin6, sizeof(struct sockaddr_in6)); 1790 rtalloc_ign_fib((struct route *)&ro6, 0, 1791 in6p ? in6p->inp_inc.inc_fibnum : RT_DEFAULT_FIB); 1792 if (ro6.ro_rt != NULL) { 1793 ifp = ro6.ro_rt->rt_ifp; 1794 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 1795 RTFREE(ro6.ro_rt); 1796 } 1797 1798 return (ifp); 1799 } 1800 1801 /* 1802 * Join an IPv6 multicast group, possibly with a source. 1803 * 1804 * FIXME: The KAME use of the unspecified address (::) 1805 * to join *all* multicast groups is currently unsupported. 1806 */ 1807 static int 1808 in6p_join_group(struct inpcb *inp, struct sockopt *sopt) 1809 { 1810 struct group_source_req gsr; 1811 sockunion_t *gsa, *ssa; 1812 struct ifnet *ifp; 1813 struct in6_mfilter *imf; 1814 struct ip6_moptions *imo; 1815 struct in6_multi *inm; 1816 struct in6_msource *lims; 1817 size_t idx; 1818 int error, is_new; 1819 1820 ifp = NULL; 1821 imf = NULL; 1822 lims = NULL; 1823 error = 0; 1824 is_new = 0; 1825 1826 memset(&gsr, 0, sizeof(struct group_source_req)); 1827 gsa = (sockunion_t *)&gsr.gsr_group; 1828 gsa->ss.ss_family = AF_UNSPEC; 1829 ssa = (sockunion_t *)&gsr.gsr_source; 1830 ssa->ss.ss_family = AF_UNSPEC; 1831 1832 /* 1833 * Chew everything into struct group_source_req. 1834 * Overwrite the port field if present, as the sockaddr 1835 * being copied in may be matched with a binary comparison. 1836 * Ignore passed-in scope ID. 1837 */ 1838 switch (sopt->sopt_name) { 1839 case IPV6_JOIN_GROUP: { 1840 struct ipv6_mreq mreq; 1841 1842 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 1843 sizeof(struct ipv6_mreq)); 1844 if (error) 1845 return (error); 1846 1847 gsa->sin6.sin6_family = AF_INET6; 1848 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 1849 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 1850 1851 if (mreq.ipv6mr_interface == 0) { 1852 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 1853 } else { 1854 if (V_if_index < mreq.ipv6mr_interface) 1855 return (EADDRNOTAVAIL); 1856 ifp = ifnet_byindex(mreq.ipv6mr_interface); 1857 } 1858 CTR3(KTR_MLD, "%s: ipv6mr_interface = %d, ifp = %p", 1859 __func__, mreq.ipv6mr_interface, ifp); 1860 } break; 1861 1862 case MCAST_JOIN_GROUP: 1863 case MCAST_JOIN_SOURCE_GROUP: 1864 if (sopt->sopt_name == MCAST_JOIN_GROUP) { 1865 error = sooptcopyin(sopt, &gsr, 1866 sizeof(struct group_req), 1867 sizeof(struct group_req)); 1868 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1869 error = sooptcopyin(sopt, &gsr, 1870 sizeof(struct group_source_req), 1871 sizeof(struct group_source_req)); 1872 } 1873 if (error) 1874 return (error); 1875 1876 if (gsa->sin6.sin6_family != AF_INET6 || 1877 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1878 return (EINVAL); 1879 1880 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1881 if (ssa->sin6.sin6_family != AF_INET6 || 1882 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1883 return (EINVAL); 1884 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 1885 return (EINVAL); 1886 /* 1887 * TODO: Validate embedded scope ID in source 1888 * list entry against passed-in ifp, if and only 1889 * if source list filter entry is iface or node local. 1890 */ 1891 in6_clearscope(&ssa->sin6.sin6_addr); 1892 ssa->sin6.sin6_port = 0; 1893 ssa->sin6.sin6_scope_id = 0; 1894 } 1895 1896 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1897 return (EADDRNOTAVAIL); 1898 ifp = ifnet_byindex(gsr.gsr_interface); 1899 break; 1900 1901 default: 1902 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 1903 __func__, sopt->sopt_name); 1904 return (EOPNOTSUPP); 1905 break; 1906 } 1907 1908 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1909 return (EINVAL); 1910 1911 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) 1912 return (EADDRNOTAVAIL); 1913 1914 gsa->sin6.sin6_port = 0; 1915 gsa->sin6.sin6_scope_id = 0; 1916 1917 /* 1918 * Always set the scope zone ID on memberships created from userland. 1919 * Use the passed-in ifp to do this. 1920 * XXX The in6_setscope() return value is meaningless. 1921 * XXX SCOPE6_LOCK() is taken by in6_setscope(). 1922 */ 1923 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1924 1925 imo = in6p_findmoptions(inp); 1926 idx = im6o_match_group(imo, ifp, &gsa->sa); 1927 if (idx == -1) { 1928 is_new = 1; 1929 } else { 1930 inm = imo->im6o_membership[idx]; 1931 imf = &imo->im6o_mfilters[idx]; 1932 if (ssa->ss.ss_family != AF_UNSPEC) { 1933 /* 1934 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership 1935 * is an error. On an existing inclusive membership, 1936 * it just adds the source to the filter list. 1937 */ 1938 if (imf->im6f_st[1] != MCAST_INCLUDE) { 1939 error = EINVAL; 1940 goto out_in6p_locked; 1941 } 1942 /* 1943 * Throw out duplicates. 1944 * 1945 * XXX FIXME: This makes a naive assumption that 1946 * even if entries exist for *ssa in this imf, 1947 * they will be rejected as dupes, even if they 1948 * are not valid in the current mode (in-mode). 1949 * 1950 * in6_msource is transactioned just as for anything 1951 * else in SSM -- but note naive use of in6m_graft() 1952 * below for allocating new filter entries. 1953 * 1954 * This is only an issue if someone mixes the 1955 * full-state SSM API with the delta-based API, 1956 * which is discouraged in the relevant RFCs. 1957 */ 1958 lims = im6o_match_source(imo, idx, &ssa->sa); 1959 if (lims != NULL /*&& 1960 lims->im6sl_st[1] == MCAST_INCLUDE*/) { 1961 error = EADDRNOTAVAIL; 1962 goto out_in6p_locked; 1963 } 1964 } else { 1965 /* 1966 * MCAST_JOIN_GROUP alone, on any existing membership, 1967 * is rejected, to stop the same inpcb tying up 1968 * multiple refs to the in_multi. 1969 * On an existing inclusive membership, this is also 1970 * an error; if you want to change filter mode, 1971 * you must use the userland API setsourcefilter(). 1972 * XXX We don't reject this for imf in UNDEFINED 1973 * state at t1, because allocation of a filter 1974 * is atomic with allocation of a membership. 1975 */ 1976 error = EINVAL; 1977 goto out_in6p_locked; 1978 } 1979 } 1980 1981 /* 1982 * Begin state merge transaction at socket layer. 1983 */ 1984 INP_WLOCK_ASSERT(inp); 1985 1986 if (is_new) { 1987 if (imo->im6o_num_memberships == imo->im6o_max_memberships) { 1988 error = im6o_grow(imo); 1989 if (error) 1990 goto out_in6p_locked; 1991 } 1992 /* 1993 * Allocate the new slot upfront so we can deal with 1994 * grafting the new source filter in same code path 1995 * as for join-source on existing membership. 1996 */ 1997 idx = imo->im6o_num_memberships; 1998 imo->im6o_membership[idx] = NULL; 1999 imo->im6o_num_memberships++; 2000 KASSERT(imo->im6o_mfilters != NULL, 2001 ("%s: im6f_mfilters vector was not allocated", __func__)); 2002 imf = &imo->im6o_mfilters[idx]; 2003 KASSERT(RB_EMPTY(&imf->im6f_sources), 2004 ("%s: im6f_sources not empty", __func__)); 2005 } 2006 2007 /* 2008 * Graft new source into filter list for this inpcb's 2009 * membership of the group. The in6_multi may not have 2010 * been allocated yet if this is a new membership, however, 2011 * the in_mfilter slot will be allocated and must be initialized. 2012 * 2013 * Note: Grafting of exclusive mode filters doesn't happen 2014 * in this path. 2015 * XXX: Should check for non-NULL lims (node exists but may 2016 * not be in-mode) for interop with full-state API. 2017 */ 2018 if (ssa->ss.ss_family != AF_UNSPEC) { 2019 /* Membership starts in IN mode */ 2020 if (is_new) { 2021 CTR1(KTR_MLD, "%s: new join w/source", __func__); 2022 im6f_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE); 2023 } else { 2024 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 2025 } 2026 lims = im6f_graft(imf, MCAST_INCLUDE, &ssa->sin6); 2027 if (lims == NULL) { 2028 CTR1(KTR_MLD, "%s: merge imf state failed", 2029 __func__); 2030 error = ENOMEM; 2031 goto out_im6o_free; 2032 } 2033 } else { 2034 /* No address specified; Membership starts in EX mode */ 2035 if (is_new) { 2036 CTR1(KTR_MLD, "%s: new join w/o source", __func__); 2037 im6f_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE); 2038 } 2039 } 2040 2041 /* 2042 * Begin state merge transaction at MLD layer. 2043 */ 2044 IN6_MULTI_LOCK(); 2045 2046 if (is_new) { 2047 error = in6_mc_join_locked(ifp, &gsa->sin6.sin6_addr, imf, 2048 &inm, 0); 2049 if (error) 2050 goto out_im6o_free; 2051 imo->im6o_membership[idx] = inm; 2052 } else { 2053 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2054 error = in6m_merge(inm, imf); 2055 if (error) { 2056 CTR1(KTR_MLD, "%s: failed to merge inm state", 2057 __func__); 2058 goto out_im6f_rollback; 2059 } 2060 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2061 error = mld_change_state(inm, 0); 2062 if (error) { 2063 CTR1(KTR_MLD, "%s: failed mld downcall", 2064 __func__); 2065 goto out_im6f_rollback; 2066 } 2067 } 2068 2069 IN6_MULTI_UNLOCK(); 2070 2071 out_im6f_rollback: 2072 INP_WLOCK_ASSERT(inp); 2073 if (error) { 2074 im6f_rollback(imf); 2075 if (is_new) 2076 im6f_purge(imf); 2077 else 2078 im6f_reap(imf); 2079 } else { 2080 im6f_commit(imf); 2081 } 2082 2083 out_im6o_free: 2084 if (error && is_new) { 2085 imo->im6o_membership[idx] = NULL; 2086 --imo->im6o_num_memberships; 2087 } 2088 2089 out_in6p_locked: 2090 INP_WUNLOCK(inp); 2091 return (error); 2092 } 2093 2094 /* 2095 * Leave an IPv6 multicast group on an inpcb, possibly with a source. 2096 */ 2097 static int 2098 in6p_leave_group(struct inpcb *inp, struct sockopt *sopt) 2099 { 2100 struct ipv6_mreq mreq; 2101 struct group_source_req gsr; 2102 sockunion_t *gsa, *ssa; 2103 struct ifnet *ifp; 2104 struct in6_mfilter *imf; 2105 struct ip6_moptions *imo; 2106 struct in6_msource *ims; 2107 struct in6_multi *inm; 2108 uint32_t ifindex; 2109 size_t idx; 2110 int error, is_final; 2111 #ifdef KTR 2112 char ip6tbuf[INET6_ADDRSTRLEN]; 2113 #endif 2114 2115 ifp = NULL; 2116 ifindex = 0; 2117 error = 0; 2118 is_final = 1; 2119 2120 memset(&gsr, 0, sizeof(struct group_source_req)); 2121 gsa = (sockunion_t *)&gsr.gsr_group; 2122 gsa->ss.ss_family = AF_UNSPEC; 2123 ssa = (sockunion_t *)&gsr.gsr_source; 2124 ssa->ss.ss_family = AF_UNSPEC; 2125 2126 /* 2127 * Chew everything passed in up into a struct group_source_req 2128 * as that is easier to process. 2129 * Note: Any embedded scope ID in the multicast group passed 2130 * in by userland is ignored, the interface index is the recommended 2131 * mechanism to specify an interface; see below. 2132 */ 2133 switch (sopt->sopt_name) { 2134 case IPV6_LEAVE_GROUP: 2135 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 2136 sizeof(struct ipv6_mreq)); 2137 if (error) 2138 return (error); 2139 gsa->sin6.sin6_family = AF_INET6; 2140 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 2141 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 2142 gsa->sin6.sin6_port = 0; 2143 gsa->sin6.sin6_scope_id = 0; 2144 ifindex = mreq.ipv6mr_interface; 2145 break; 2146 2147 case MCAST_LEAVE_GROUP: 2148 case MCAST_LEAVE_SOURCE_GROUP: 2149 if (sopt->sopt_name == MCAST_LEAVE_GROUP) { 2150 error = sooptcopyin(sopt, &gsr, 2151 sizeof(struct group_req), 2152 sizeof(struct group_req)); 2153 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2154 error = sooptcopyin(sopt, &gsr, 2155 sizeof(struct group_source_req), 2156 sizeof(struct group_source_req)); 2157 } 2158 if (error) 2159 return (error); 2160 2161 if (gsa->sin6.sin6_family != AF_INET6 || 2162 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2163 return (EINVAL); 2164 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2165 if (ssa->sin6.sin6_family != AF_INET6 || 2166 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2167 return (EINVAL); 2168 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 2169 return (EINVAL); 2170 /* 2171 * TODO: Validate embedded scope ID in source 2172 * list entry against passed-in ifp, if and only 2173 * if source list filter entry is iface or node local. 2174 */ 2175 in6_clearscope(&ssa->sin6.sin6_addr); 2176 } 2177 gsa->sin6.sin6_port = 0; 2178 gsa->sin6.sin6_scope_id = 0; 2179 ifindex = gsr.gsr_interface; 2180 break; 2181 2182 default: 2183 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 2184 __func__, sopt->sopt_name); 2185 return (EOPNOTSUPP); 2186 break; 2187 } 2188 2189 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2190 return (EINVAL); 2191 2192 /* 2193 * Validate interface index if provided. If no interface index 2194 * was provided separately, attempt to look the membership up 2195 * from the default scope as a last resort to disambiguate 2196 * the membership we are being asked to leave. 2197 * XXX SCOPE6 lock potentially taken here. 2198 */ 2199 if (ifindex != 0) { 2200 if (V_if_index < ifindex) 2201 return (EADDRNOTAVAIL); 2202 ifp = ifnet_byindex(ifindex); 2203 if (ifp == NULL) 2204 return (EADDRNOTAVAIL); 2205 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2206 } else { 2207 error = sa6_embedscope(&gsa->sin6, V_ip6_use_defzone); 2208 if (error) 2209 return (EADDRNOTAVAIL); 2210 /* 2211 * Some badly behaved applications don't pass an ifindex 2212 * or a scope ID, which is an API violation. In this case, 2213 * perform a lookup as per a v6 join. 2214 * 2215 * XXX For now, stomp on zone ID for the corner case. 2216 * This is not the 'KAME way', but we need to see the ifp 2217 * directly until such time as this implementation is 2218 * refactored, assuming the scope IDs are the way to go. 2219 */ 2220 ifindex = ntohs(gsa->sin6.sin6_addr.s6_addr16[1]); 2221 if (ifindex == 0) { 2222 CTR2(KTR_MLD, "%s: warning: no ifindex, looking up " 2223 "ifp for group %s.", __func__, 2224 ip6_sprintf(ip6tbuf, &gsa->sin6.sin6_addr)); 2225 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 2226 } else { 2227 ifp = ifnet_byindex(ifindex); 2228 } 2229 if (ifp == NULL) 2230 return (EADDRNOTAVAIL); 2231 } 2232 2233 CTR2(KTR_MLD, "%s: ifp = %p", __func__, ifp); 2234 KASSERT(ifp != NULL, ("%s: ifp did not resolve", __func__)); 2235 2236 /* 2237 * Find the membership in the membership array. 2238 */ 2239 imo = in6p_findmoptions(inp); 2240 idx = im6o_match_group(imo, ifp, &gsa->sa); 2241 if (idx == -1) { 2242 error = EADDRNOTAVAIL; 2243 goto out_in6p_locked; 2244 } 2245 inm = imo->im6o_membership[idx]; 2246 imf = &imo->im6o_mfilters[idx]; 2247 2248 if (ssa->ss.ss_family != AF_UNSPEC) 2249 is_final = 0; 2250 2251 /* 2252 * Begin state merge transaction at socket layer. 2253 */ 2254 INP_WLOCK_ASSERT(inp); 2255 2256 /* 2257 * If we were instructed only to leave a given source, do so. 2258 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. 2259 */ 2260 if (is_final) { 2261 im6f_leave(imf); 2262 } else { 2263 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 2264 error = EADDRNOTAVAIL; 2265 goto out_in6p_locked; 2266 } 2267 ims = im6o_match_source(imo, idx, &ssa->sa); 2268 if (ims == NULL) { 2269 CTR3(KTR_MLD, "%s: source %p %spresent", __func__, 2270 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 2271 "not "); 2272 error = EADDRNOTAVAIL; 2273 goto out_in6p_locked; 2274 } 2275 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 2276 error = im6f_prune(imf, &ssa->sin6); 2277 if (error) { 2278 CTR1(KTR_MLD, "%s: merge imf state failed", 2279 __func__); 2280 goto out_in6p_locked; 2281 } 2282 } 2283 2284 /* 2285 * Begin state merge transaction at MLD layer. 2286 */ 2287 IN6_MULTI_LOCK(); 2288 2289 if (is_final) { 2290 /* 2291 * Give up the multicast address record to which 2292 * the membership points. 2293 */ 2294 (void)in6_mc_leave_locked(inm, imf); 2295 } else { 2296 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2297 error = in6m_merge(inm, imf); 2298 if (error) { 2299 CTR1(KTR_MLD, "%s: failed to merge inm state", 2300 __func__); 2301 goto out_im6f_rollback; 2302 } 2303 2304 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2305 error = mld_change_state(inm, 0); 2306 if (error) { 2307 CTR1(KTR_MLD, "%s: failed mld downcall", 2308 __func__); 2309 } 2310 } 2311 2312 IN6_MULTI_UNLOCK(); 2313 2314 out_im6f_rollback: 2315 if (error) 2316 im6f_rollback(imf); 2317 else 2318 im6f_commit(imf); 2319 2320 im6f_reap(imf); 2321 2322 if (is_final) { 2323 /* Remove the gap in the membership array. */ 2324 for (++idx; idx < imo->im6o_num_memberships; ++idx) { 2325 imo->im6o_membership[idx-1] = imo->im6o_membership[idx]; 2326 imo->im6o_mfilters[idx-1] = imo->im6o_mfilters[idx]; 2327 } 2328 imo->im6o_num_memberships--; 2329 } 2330 2331 out_in6p_locked: 2332 INP_WUNLOCK(inp); 2333 return (error); 2334 } 2335 2336 /* 2337 * Select the interface for transmitting IPv6 multicast datagrams. 2338 * 2339 * Either an instance of struct in6_addr or an instance of struct ipv6_mreqn 2340 * may be passed to this socket option. An address of in6addr_any or an 2341 * interface index of 0 is used to remove a previous selection. 2342 * When no interface is selected, one is chosen for every send. 2343 */ 2344 static int 2345 in6p_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) 2346 { 2347 struct ifnet *ifp; 2348 struct ip6_moptions *imo; 2349 u_int ifindex; 2350 int error; 2351 2352 if (sopt->sopt_valsize != sizeof(u_int)) 2353 return (EINVAL); 2354 2355 error = sooptcopyin(sopt, &ifindex, sizeof(u_int), sizeof(u_int)); 2356 if (error) 2357 return (error); 2358 if (V_if_index < ifindex) 2359 return (EINVAL); 2360 2361 ifp = ifnet_byindex(ifindex); 2362 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) 2363 return (EADDRNOTAVAIL); 2364 2365 imo = in6p_findmoptions(inp); 2366 imo->im6o_multicast_ifp = ifp; 2367 INP_WUNLOCK(inp); 2368 2369 return (0); 2370 } 2371 2372 /* 2373 * Atomically set source filters on a socket for an IPv6 multicast group. 2374 * 2375 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 2376 */ 2377 static int 2378 in6p_set_source_filters(struct inpcb *inp, struct sockopt *sopt) 2379 { 2380 struct __msfilterreq msfr; 2381 sockunion_t *gsa; 2382 struct ifnet *ifp; 2383 struct in6_mfilter *imf; 2384 struct ip6_moptions *imo; 2385 struct in6_multi *inm; 2386 size_t idx; 2387 int error; 2388 2389 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 2390 sizeof(struct __msfilterreq)); 2391 if (error) 2392 return (error); 2393 2394 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 2395 return (ENOBUFS); 2396 2397 if (msfr.msfr_fmode != MCAST_EXCLUDE && 2398 msfr.msfr_fmode != MCAST_INCLUDE) 2399 return (EINVAL); 2400 2401 if (msfr.msfr_group.ss_family != AF_INET6 || 2402 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 2403 return (EINVAL); 2404 2405 gsa = (sockunion_t *)&msfr.msfr_group; 2406 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2407 return (EINVAL); 2408 2409 gsa->sin6.sin6_port = 0; /* ignore port */ 2410 2411 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 2412 return (EADDRNOTAVAIL); 2413 ifp = ifnet_byindex(msfr.msfr_ifindex); 2414 if (ifp == NULL) 2415 return (EADDRNOTAVAIL); 2416 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2417 2418 /* 2419 * Take the INP write lock. 2420 * Check if this socket is a member of this group. 2421 */ 2422 imo = in6p_findmoptions(inp); 2423 idx = im6o_match_group(imo, ifp, &gsa->sa); 2424 if (idx == -1 || imo->im6o_mfilters == NULL) { 2425 error = EADDRNOTAVAIL; 2426 goto out_in6p_locked; 2427 } 2428 inm = imo->im6o_membership[idx]; 2429 imf = &imo->im6o_mfilters[idx]; 2430 2431 /* 2432 * Begin state merge transaction at socket layer. 2433 */ 2434 INP_WLOCK_ASSERT(inp); 2435 2436 imf->im6f_st[1] = msfr.msfr_fmode; 2437 2438 /* 2439 * Apply any new source filters, if present. 2440 * Make a copy of the user-space source vector so 2441 * that we may copy them with a single copyin. This 2442 * allows us to deal with page faults up-front. 2443 */ 2444 if (msfr.msfr_nsrcs > 0) { 2445 struct in6_msource *lims; 2446 struct sockaddr_in6 *psin; 2447 struct sockaddr_storage *kss, *pkss; 2448 int i; 2449 2450 INP_WUNLOCK(inp); 2451 2452 CTR2(KTR_MLD, "%s: loading %lu source list entries", 2453 __func__, (unsigned long)msfr.msfr_nsrcs); 2454 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 2455 M_TEMP, M_WAITOK); 2456 error = copyin(msfr.msfr_srcs, kss, 2457 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 2458 if (error) { 2459 free(kss, M_TEMP); 2460 return (error); 2461 } 2462 2463 INP_WLOCK(inp); 2464 2465 /* 2466 * Mark all source filters as UNDEFINED at t1. 2467 * Restore new group filter mode, as im6f_leave() 2468 * will set it to INCLUDE. 2469 */ 2470 im6f_leave(imf); 2471 imf->im6f_st[1] = msfr.msfr_fmode; 2472 2473 /* 2474 * Update socket layer filters at t1, lazy-allocating 2475 * new entries. This saves a bunch of memory at the 2476 * cost of one RB_FIND() per source entry; duplicate 2477 * entries in the msfr_nsrcs vector are ignored. 2478 * If we encounter an error, rollback transaction. 2479 * 2480 * XXX This too could be replaced with a set-symmetric 2481 * difference like loop to avoid walking from root 2482 * every time, as the key space is common. 2483 */ 2484 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { 2485 psin = (struct sockaddr_in6 *)pkss; 2486 if (psin->sin6_family != AF_INET6) { 2487 error = EAFNOSUPPORT; 2488 break; 2489 } 2490 if (psin->sin6_len != sizeof(struct sockaddr_in6)) { 2491 error = EINVAL; 2492 break; 2493 } 2494 if (IN6_IS_ADDR_MULTICAST(&psin->sin6_addr)) { 2495 error = EINVAL; 2496 break; 2497 } 2498 /* 2499 * TODO: Validate embedded scope ID in source 2500 * list entry against passed-in ifp, if and only 2501 * if source list filter entry is iface or node local. 2502 */ 2503 in6_clearscope(&psin->sin6_addr); 2504 error = im6f_get_source(imf, psin, &lims); 2505 if (error) 2506 break; 2507 lims->im6sl_st[1] = imf->im6f_st[1]; 2508 } 2509 free(kss, M_TEMP); 2510 } 2511 2512 if (error) 2513 goto out_im6f_rollback; 2514 2515 INP_WLOCK_ASSERT(inp); 2516 IN6_MULTI_LOCK(); 2517 2518 /* 2519 * Begin state merge transaction at MLD layer. 2520 */ 2521 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2522 error = in6m_merge(inm, imf); 2523 if (error) { 2524 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 2525 goto out_im6f_rollback; 2526 } 2527 2528 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2529 error = mld_change_state(inm, 0); 2530 if (error) 2531 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 2532 2533 IN6_MULTI_UNLOCK(); 2534 2535 out_im6f_rollback: 2536 if (error) 2537 im6f_rollback(imf); 2538 else 2539 im6f_commit(imf); 2540 2541 im6f_reap(imf); 2542 2543 out_in6p_locked: 2544 INP_WUNLOCK(inp); 2545 return (error); 2546 } 2547 2548 /* 2549 * Set the IP multicast options in response to user setsockopt(). 2550 * 2551 * Many of the socket options handled in this function duplicate the 2552 * functionality of socket options in the regular unicast API. However, 2553 * it is not possible to merge the duplicate code, because the idempotence 2554 * of the IPv6 multicast part of the BSD Sockets API must be preserved; 2555 * the effects of these options must be treated as separate and distinct. 2556 * 2557 * SMPng: XXX: Unlocked read of inp_socket believed OK. 2558 */ 2559 int 2560 ip6_setmoptions(struct inpcb *inp, struct sockopt *sopt) 2561 { 2562 struct ip6_moptions *im6o; 2563 int error; 2564 2565 error = 0; 2566 2567 /* 2568 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 2569 * or is a divert socket, reject it. 2570 */ 2571 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 2572 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 2573 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) 2574 return (EOPNOTSUPP); 2575 2576 switch (sopt->sopt_name) { 2577 case IPV6_MULTICAST_IF: 2578 error = in6p_set_multicast_if(inp, sopt); 2579 break; 2580 2581 case IPV6_MULTICAST_HOPS: { 2582 int hlim; 2583 2584 if (sopt->sopt_valsize != sizeof(int)) { 2585 error = EINVAL; 2586 break; 2587 } 2588 error = sooptcopyin(sopt, &hlim, sizeof(hlim), sizeof(int)); 2589 if (error) 2590 break; 2591 if (hlim < -1 || hlim > 255) { 2592 error = EINVAL; 2593 break; 2594 } else if (hlim == -1) { 2595 hlim = V_ip6_defmcasthlim; 2596 } 2597 im6o = in6p_findmoptions(inp); 2598 im6o->im6o_multicast_hlim = hlim; 2599 INP_WUNLOCK(inp); 2600 break; 2601 } 2602 2603 case IPV6_MULTICAST_LOOP: { 2604 u_int loop; 2605 2606 /* 2607 * Set the loopback flag for outgoing multicast packets. 2608 * Must be zero or one. 2609 */ 2610 if (sopt->sopt_valsize != sizeof(u_int)) { 2611 error = EINVAL; 2612 break; 2613 } 2614 error = sooptcopyin(sopt, &loop, sizeof(u_int), sizeof(u_int)); 2615 if (error) 2616 break; 2617 if (loop > 1) { 2618 error = EINVAL; 2619 break; 2620 } 2621 im6o = in6p_findmoptions(inp); 2622 im6o->im6o_multicast_loop = loop; 2623 INP_WUNLOCK(inp); 2624 break; 2625 } 2626 2627 case IPV6_JOIN_GROUP: 2628 case MCAST_JOIN_GROUP: 2629 case MCAST_JOIN_SOURCE_GROUP: 2630 error = in6p_join_group(inp, sopt); 2631 break; 2632 2633 case IPV6_LEAVE_GROUP: 2634 case MCAST_LEAVE_GROUP: 2635 case MCAST_LEAVE_SOURCE_GROUP: 2636 error = in6p_leave_group(inp, sopt); 2637 break; 2638 2639 case MCAST_BLOCK_SOURCE: 2640 case MCAST_UNBLOCK_SOURCE: 2641 error = in6p_block_unblock_source(inp, sopt); 2642 break; 2643 2644 case IPV6_MSFILTER: 2645 error = in6p_set_source_filters(inp, sopt); 2646 break; 2647 2648 default: 2649 error = EOPNOTSUPP; 2650 break; 2651 } 2652 2653 INP_UNLOCK_ASSERT(inp); 2654 2655 return (error); 2656 } 2657 2658 /* 2659 * Expose MLD's multicast filter mode and source list(s) to userland, 2660 * keyed by (ifindex, group). 2661 * The filter mode is written out as a uint32_t, followed by 2662 * 0..n of struct in6_addr. 2663 * For use by ifmcstat(8). 2664 * SMPng: NOTE: unlocked read of ifindex space. 2665 */ 2666 static int 2667 sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS) 2668 { 2669 struct in6_addr mcaddr; 2670 struct in6_addr src; 2671 struct ifnet *ifp; 2672 struct ifmultiaddr *ifma; 2673 struct in6_multi *inm; 2674 struct ip6_msource *ims; 2675 int *name; 2676 int retval; 2677 u_int namelen; 2678 uint32_t fmode, ifindex; 2679 #ifdef KTR 2680 char ip6tbuf[INET6_ADDRSTRLEN]; 2681 #endif 2682 2683 name = (int *)arg1; 2684 namelen = arg2; 2685 2686 if (req->newptr != NULL) 2687 return (EPERM); 2688 2689 /* int: ifindex + 4 * 32 bits of IPv6 address */ 2690 if (namelen != 5) 2691 return (EINVAL); 2692 2693 ifindex = name[0]; 2694 if (ifindex <= 0 || ifindex > V_if_index) { 2695 CTR2(KTR_MLD, "%s: ifindex %u out of range", 2696 __func__, ifindex); 2697 return (ENOENT); 2698 } 2699 2700 memcpy(&mcaddr, &name[1], sizeof(struct in6_addr)); 2701 if (!IN6_IS_ADDR_MULTICAST(&mcaddr)) { 2702 CTR2(KTR_MLD, "%s: group %s is not multicast", 2703 __func__, ip6_sprintf(ip6tbuf, &mcaddr)); 2704 return (EINVAL); 2705 } 2706 2707 ifp = ifnet_byindex(ifindex); 2708 if (ifp == NULL) { 2709 CTR2(KTR_MLD, "%s: no ifp for ifindex %u", 2710 __func__, ifindex); 2711 return (ENOENT); 2712 } 2713 /* 2714 * Internal MLD lookups require that scope/zone ID is set. 2715 */ 2716 (void)in6_setscope(&mcaddr, ifp, NULL); 2717 2718 retval = sysctl_wire_old_buffer(req, 2719 sizeof(uint32_t) + (in6_mcast_maxgrpsrc * sizeof(struct in6_addr))); 2720 if (retval) 2721 return (retval); 2722 2723 IN6_MULTI_LOCK(); 2724 2725 IF_ADDR_RLOCK(ifp); 2726 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2727 if (ifma->ifma_addr->sa_family != AF_INET6 || 2728 ifma->ifma_protospec == NULL) 2729 continue; 2730 inm = (struct in6_multi *)ifma->ifma_protospec; 2731 if (!IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, &mcaddr)) 2732 continue; 2733 fmode = inm->in6m_st[1].iss_fmode; 2734 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); 2735 if (retval != 0) 2736 break; 2737 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 2738 CTR2(KTR_MLD, "%s: visit node %p", __func__, ims); 2739 /* 2740 * Only copy-out sources which are in-mode. 2741 */ 2742 if (fmode != im6s_get_mode(inm, ims, 1)) { 2743 CTR1(KTR_MLD, "%s: skip non-in-mode", 2744 __func__); 2745 continue; 2746 } 2747 src = ims->im6s_addr; 2748 retval = SYSCTL_OUT(req, &src, 2749 sizeof(struct in6_addr)); 2750 if (retval != 0) 2751 break; 2752 } 2753 } 2754 IF_ADDR_RUNLOCK(ifp); 2755 2756 IN6_MULTI_UNLOCK(); 2757 2758 return (retval); 2759 } 2760 2761 #ifdef KTR 2762 2763 static const char *in6m_modestrs[] = { "un", "in", "ex" }; 2764 2765 static const char * 2766 in6m_mode_str(const int mode) 2767 { 2768 2769 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) 2770 return (in6m_modestrs[mode]); 2771 return ("??"); 2772 } 2773 2774 static const char *in6m_statestrs[] = { 2775 "not-member", 2776 "silent", 2777 "idle", 2778 "lazy", 2779 "sleeping", 2780 "awakening", 2781 "query-pending", 2782 "sg-query-pending", 2783 "leaving" 2784 }; 2785 2786 static const char * 2787 in6m_state_str(const int state) 2788 { 2789 2790 if (state >= MLD_NOT_MEMBER && state <= MLD_LEAVING_MEMBER) 2791 return (in6m_statestrs[state]); 2792 return ("??"); 2793 } 2794 2795 /* 2796 * Dump an in6_multi structure to the console. 2797 */ 2798 void 2799 in6m_print(const struct in6_multi *inm) 2800 { 2801 int t; 2802 char ip6tbuf[INET6_ADDRSTRLEN]; 2803 2804 if ((ktr_mask & KTR_MLD) == 0) 2805 return; 2806 2807 printf("%s: --- begin in6m %p ---\n", __func__, inm); 2808 printf("addr %s ifp %p(%s) ifma %p\n", 2809 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2810 inm->in6m_ifp, 2811 if_name(inm->in6m_ifp), 2812 inm->in6m_ifma); 2813 printf("timer %u state %s refcount %u scq.len %u\n", 2814 inm->in6m_timer, 2815 in6m_state_str(inm->in6m_state), 2816 inm->in6m_refcount, 2817 inm->in6m_scq.ifq_len); 2818 printf("mli %p nsrc %lu sctimer %u scrv %u\n", 2819 inm->in6m_mli, 2820 inm->in6m_nsrc, 2821 inm->in6m_sctimer, 2822 inm->in6m_scrv); 2823 for (t = 0; t < 2; t++) { 2824 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, 2825 in6m_mode_str(inm->in6m_st[t].iss_fmode), 2826 inm->in6m_st[t].iss_asm, 2827 inm->in6m_st[t].iss_ex, 2828 inm->in6m_st[t].iss_in, 2829 inm->in6m_st[t].iss_rec); 2830 } 2831 printf("%s: --- end in6m %p ---\n", __func__, inm); 2832 } 2833 2834 #else /* !KTR */ 2835 2836 void 2837 in6m_print(const struct in6_multi *inm) 2838 { 2839 2840 } 2841 2842 #endif /* KTR */ 2843