1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2009 Bruce Simpson. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote 16 * products derived from this software without specific prior written 17 * permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * IPv6 multicast socket, group, and socket option processing module. 34 * Normative references: RFC 2292, RFC 3492, RFC 3542, RFC 3678, RFC 3810. 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_inet6.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/gtaskqueue.h> 45 #include <sys/kernel.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/protosw.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/sysctl.h> 52 #include <sys/priv.h> 53 #include <sys/ktr.h> 54 #include <sys/tree.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <net/vnet.h> 61 62 63 #include <netinet/in.h> 64 #include <netinet/udp.h> 65 #include <netinet/in_var.h> 66 #include <netinet/ip_var.h> 67 #include <netinet/udp_var.h> 68 #include <netinet6/in6_fib.h> 69 #include <netinet6/in6_var.h> 70 #include <netinet/ip6.h> 71 #include <netinet/icmp6.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet/in_pcb.h> 74 #include <netinet/tcp_var.h> 75 #include <netinet6/nd6.h> 76 #include <netinet6/mld6_var.h> 77 #include <netinet6/scope6_var.h> 78 79 #ifndef KTR_MLD 80 #define KTR_MLD KTR_INET6 81 #endif 82 83 #ifndef __SOCKUNION_DECLARED 84 union sockunion { 85 struct sockaddr_storage ss; 86 struct sockaddr sa; 87 struct sockaddr_dl sdl; 88 struct sockaddr_in6 sin6; 89 }; 90 typedef union sockunion sockunion_t; 91 #define __SOCKUNION_DECLARED 92 #endif /* __SOCKUNION_DECLARED */ 93 94 static MALLOC_DEFINE(M_IN6MFILTER, "in6_mfilter", 95 "IPv6 multicast PCB-layer source filter"); 96 MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "IPv6 multicast group"); 97 static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "IPv6 multicast options"); 98 static MALLOC_DEFINE(M_IP6MSOURCE, "ip6_msource", 99 "IPv6 multicast MLD-layer source filter"); 100 101 RB_GENERATE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp); 102 103 /* 104 * Locking: 105 * - Lock order is: Giant, INP_WLOCK, IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 106 * - The IF_ADDR_LOCK is implicitly taken by in6m_lookup() earlier, however 107 * it can be taken by code in net/if.c also. 108 * - ip6_moptions and in6_mfilter are covered by the INP_WLOCK. 109 * 110 * struct in6_multi is covered by IN6_MULTI_LOCK. There isn't strictly 111 * any need for in6_multi itself to be virtualized -- it is bound to an ifp 112 * anyway no matter what happens. 113 */ 114 struct mtx in6_multi_list_mtx; 115 MTX_SYSINIT(in6_multi_mtx, &in6_multi_list_mtx, "in6_multi_list_mtx", MTX_DEF); 116 117 struct mtx in6_multi_free_mtx; 118 MTX_SYSINIT(in6_multi_free_mtx, &in6_multi_free_mtx, "in6_multi_free_mtx", MTX_DEF); 119 120 struct sx in6_multi_sx; 121 SX_SYSINIT(in6_multi_sx, &in6_multi_sx, "in6_multi_sx"); 122 123 124 125 static void im6f_commit(struct in6_mfilter *); 126 static int im6f_get_source(struct in6_mfilter *imf, 127 const struct sockaddr_in6 *psin, 128 struct in6_msource **); 129 static struct in6_msource * 130 im6f_graft(struct in6_mfilter *, const uint8_t, 131 const struct sockaddr_in6 *); 132 static void im6f_leave(struct in6_mfilter *); 133 static int im6f_prune(struct in6_mfilter *, const struct sockaddr_in6 *); 134 static void im6f_purge(struct in6_mfilter *); 135 static void im6f_rollback(struct in6_mfilter *); 136 static void im6f_reap(struct in6_mfilter *); 137 static int im6o_grow(struct ip6_moptions *); 138 static size_t im6o_match_group(const struct ip6_moptions *, 139 const struct ifnet *, const struct sockaddr *); 140 static struct in6_msource * 141 im6o_match_source(const struct ip6_moptions *, const size_t, 142 const struct sockaddr *); 143 static void im6s_merge(struct ip6_msource *ims, 144 const struct in6_msource *lims, const int rollback); 145 static int in6_getmulti(struct ifnet *, const struct in6_addr *, 146 struct in6_multi **); 147 static int in6m_get_source(struct in6_multi *inm, 148 const struct in6_addr *addr, const int noalloc, 149 struct ip6_msource **pims); 150 #ifdef KTR 151 static int in6m_is_ifp_detached(const struct in6_multi *); 152 #endif 153 static int in6m_merge(struct in6_multi *, /*const*/ struct in6_mfilter *); 154 static void in6m_purge(struct in6_multi *); 155 static void in6m_reap(struct in6_multi *); 156 static struct ip6_moptions * 157 in6p_findmoptions(struct inpcb *); 158 static int in6p_get_source_filters(struct inpcb *, struct sockopt *); 159 static int in6p_join_group(struct inpcb *, struct sockopt *); 160 static int in6p_leave_group(struct inpcb *, struct sockopt *); 161 static struct ifnet * 162 in6p_lookup_mcast_ifp(const struct inpcb *, 163 const struct sockaddr_in6 *); 164 static int in6p_block_unblock_source(struct inpcb *, struct sockopt *); 165 static int in6p_set_multicast_if(struct inpcb *, struct sockopt *); 166 static int in6p_set_source_filters(struct inpcb *, struct sockopt *); 167 static int sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS); 168 169 SYSCTL_DECL(_net_inet6_ip6); /* XXX Not in any common header. */ 170 171 static SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, mcast, CTLFLAG_RW, 0, 172 "IPv6 multicast"); 173 174 static u_long in6_mcast_maxgrpsrc = IPV6_MAX_GROUP_SRC_FILTER; 175 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxgrpsrc, 176 CTLFLAG_RWTUN, &in6_mcast_maxgrpsrc, 0, 177 "Max source filters per group"); 178 179 static u_long in6_mcast_maxsocksrc = IPV6_MAX_SOCK_SRC_FILTER; 180 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxsocksrc, 181 CTLFLAG_RWTUN, &in6_mcast_maxsocksrc, 0, 182 "Max source filters per socket"); 183 184 /* TODO Virtualize this switch. */ 185 int in6_mcast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 186 SYSCTL_INT(_net_inet6_ip6_mcast, OID_AUTO, loop, CTLFLAG_RWTUN, 187 &in6_mcast_loop, 0, "Loopback multicast datagrams by default"); 188 189 static SYSCTL_NODE(_net_inet6_ip6_mcast, OID_AUTO, filters, 190 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip6_mcast_filters, 191 "Per-interface stack-wide source filters"); 192 193 int ifma6_restart = 0; 194 #ifdef KTR 195 /* 196 * Inline function which wraps assertions for a valid ifp. 197 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp 198 * is detached. 199 */ 200 static int __inline 201 in6m_is_ifp_detached(const struct in6_multi *inm) 202 { 203 struct ifnet *ifp; 204 205 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 206 ifp = inm->in6m_ifma->ifma_ifp; 207 if (ifp != NULL) { 208 /* 209 * Sanity check that network-layer notion of ifp is the 210 * same as that of link-layer. 211 */ 212 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 213 } 214 215 return (ifp == NULL); 216 } 217 #endif 218 219 /* 220 * Initialize an in6_mfilter structure to a known state at t0, t1 221 * with an empty source filter list. 222 */ 223 static __inline void 224 im6f_init(struct in6_mfilter *imf, const int st0, const int st1) 225 { 226 memset(imf, 0, sizeof(struct in6_mfilter)); 227 RB_INIT(&imf->im6f_sources); 228 imf->im6f_st[0] = st0; 229 imf->im6f_st[1] = st1; 230 } 231 232 /* 233 * Resize the ip6_moptions vector to the next power-of-two minus 1. 234 * May be called with locks held; do not sleep. 235 */ 236 static int 237 im6o_grow(struct ip6_moptions *imo) 238 { 239 struct in6_multi **nmships; 240 struct in6_multi **omships; 241 struct in6_mfilter *nmfilters; 242 struct in6_mfilter *omfilters; 243 size_t idx; 244 size_t newmax; 245 size_t oldmax; 246 247 nmships = NULL; 248 nmfilters = NULL; 249 omships = imo->im6o_membership; 250 omfilters = imo->im6o_mfilters; 251 oldmax = imo->im6o_max_memberships; 252 newmax = ((oldmax + 1) * 2) - 1; 253 254 if (newmax <= IPV6_MAX_MEMBERSHIPS) { 255 nmships = (struct in6_multi **)realloc(omships, 256 sizeof(struct in6_multi *) * newmax, M_IP6MOPTS, M_NOWAIT); 257 nmfilters = (struct in6_mfilter *)realloc(omfilters, 258 sizeof(struct in6_mfilter) * newmax, M_IN6MFILTER, 259 M_NOWAIT); 260 if (nmships != NULL && nmfilters != NULL) { 261 /* Initialize newly allocated source filter heads. */ 262 for (idx = oldmax; idx < newmax; idx++) { 263 im6f_init(&nmfilters[idx], MCAST_UNDEFINED, 264 MCAST_EXCLUDE); 265 } 266 imo->im6o_max_memberships = newmax; 267 imo->im6o_membership = nmships; 268 imo->im6o_mfilters = nmfilters; 269 } 270 } 271 272 if (nmships == NULL || nmfilters == NULL) { 273 if (nmships != NULL) 274 free(nmships, M_IP6MOPTS); 275 if (nmfilters != NULL) 276 free(nmfilters, M_IN6MFILTER); 277 return (ETOOMANYREFS); 278 } 279 280 return (0); 281 } 282 283 /* 284 * Find an IPv6 multicast group entry for this ip6_moptions instance 285 * which matches the specified group, and optionally an interface. 286 * Return its index into the array, or -1 if not found. 287 */ 288 static size_t 289 im6o_match_group(const struct ip6_moptions *imo, const struct ifnet *ifp, 290 const struct sockaddr *group) 291 { 292 const struct sockaddr_in6 *gsin6; 293 struct in6_multi **pinm; 294 int idx; 295 int nmships; 296 297 gsin6 = (const struct sockaddr_in6 *)group; 298 299 /* The im6o_membership array may be lazy allocated. */ 300 if (imo->im6o_membership == NULL || imo->im6o_num_memberships == 0) 301 return (-1); 302 303 nmships = imo->im6o_num_memberships; 304 pinm = &imo->im6o_membership[0]; 305 for (idx = 0; idx < nmships; idx++, pinm++) { 306 if (*pinm == NULL) 307 continue; 308 if ((ifp == NULL || ((*pinm)->in6m_ifp == ifp)) && 309 IN6_ARE_ADDR_EQUAL(&(*pinm)->in6m_addr, 310 &gsin6->sin6_addr)) { 311 break; 312 } 313 } 314 if (idx >= nmships) 315 idx = -1; 316 317 return (idx); 318 } 319 320 /* 321 * Find an IPv6 multicast source entry for this imo which matches 322 * the given group index for this socket, and source address. 323 * 324 * XXX TODO: The scope ID, if present in src, is stripped before 325 * any comparison. We SHOULD enforce scope/zone checks where the source 326 * filter entry has a link scope. 327 * 328 * NOTE: This does not check if the entry is in-mode, merely if 329 * it exists, which may not be the desired behaviour. 330 */ 331 static struct in6_msource * 332 im6o_match_source(const struct ip6_moptions *imo, const size_t gidx, 333 const struct sockaddr *src) 334 { 335 struct ip6_msource find; 336 struct in6_mfilter *imf; 337 struct ip6_msource *ims; 338 const sockunion_t *psa; 339 340 KASSERT(src->sa_family == AF_INET6, ("%s: !AF_INET6", __func__)); 341 KASSERT(gidx != -1 && gidx < imo->im6o_num_memberships, 342 ("%s: invalid index %d\n", __func__, (int)gidx)); 343 344 /* The im6o_mfilters array may be lazy allocated. */ 345 if (imo->im6o_mfilters == NULL) 346 return (NULL); 347 imf = &imo->im6o_mfilters[gidx]; 348 349 psa = (const sockunion_t *)src; 350 find.im6s_addr = psa->sin6.sin6_addr; 351 in6_clearscope(&find.im6s_addr); /* XXX */ 352 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 353 354 return ((struct in6_msource *)ims); 355 } 356 357 /* 358 * Perform filtering for multicast datagrams on a socket by group and source. 359 * 360 * Returns 0 if a datagram should be allowed through, or various error codes 361 * if the socket was not a member of the group, or the source was muted, etc. 362 */ 363 int 364 im6o_mc_filter(const struct ip6_moptions *imo, const struct ifnet *ifp, 365 const struct sockaddr *group, const struct sockaddr *src) 366 { 367 size_t gidx; 368 struct in6_msource *ims; 369 int mode; 370 371 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 372 373 gidx = im6o_match_group(imo, ifp, group); 374 if (gidx == -1) 375 return (MCAST_NOTGMEMBER); 376 377 /* 378 * Check if the source was included in an (S,G) join. 379 * Allow reception on exclusive memberships by default, 380 * reject reception on inclusive memberships by default. 381 * Exclude source only if an in-mode exclude filter exists. 382 * Include source only if an in-mode include filter exists. 383 * NOTE: We are comparing group state here at MLD t1 (now) 384 * with socket-layer t0 (since last downcall). 385 */ 386 mode = imo->im6o_mfilters[gidx].im6f_st[1]; 387 ims = im6o_match_source(imo, gidx, src); 388 389 if ((ims == NULL && mode == MCAST_INCLUDE) || 390 (ims != NULL && ims->im6sl_st[0] != mode)) 391 return (MCAST_NOTSMEMBER); 392 393 return (MCAST_PASS); 394 } 395 396 /* 397 * Find and return a reference to an in6_multi record for (ifp, group), 398 * and bump its reference count. 399 * If one does not exist, try to allocate it, and update link-layer multicast 400 * filters on ifp to listen for group. 401 * Assumes the IN6_MULTI lock is held across the call. 402 * Return 0 if successful, otherwise return an appropriate error code. 403 */ 404 static int 405 in6_getmulti(struct ifnet *ifp, const struct in6_addr *group, 406 struct in6_multi **pinm) 407 { 408 struct sockaddr_in6 gsin6; 409 struct ifmultiaddr *ifma; 410 struct in6_multi *inm; 411 int error; 412 413 error = 0; 414 415 /* 416 * XXX: Accesses to ifma_protospec must be covered by IF_ADDR_LOCK; 417 * if_addmulti() takes this mutex itself, so we must drop and 418 * re-acquire around the call. 419 */ 420 IN6_MULTI_LOCK_ASSERT(); 421 IN6_MULTI_LIST_LOCK(); 422 IF_ADDR_WLOCK(ifp); 423 inm = in6m_lookup_locked(ifp, group); 424 if (inm != NULL) { 425 /* 426 * If we already joined this group, just bump the 427 * refcount and return it. 428 */ 429 KASSERT(inm->in6m_refcount >= 1, 430 ("%s: bad refcount %d", __func__, inm->in6m_refcount)); 431 in6m_acquire_locked(inm); 432 *pinm = inm; 433 goto out_locked; 434 } 435 436 memset(&gsin6, 0, sizeof(gsin6)); 437 gsin6.sin6_family = AF_INET6; 438 gsin6.sin6_len = sizeof(struct sockaddr_in6); 439 gsin6.sin6_addr = *group; 440 441 /* 442 * Check if a link-layer group is already associated 443 * with this network-layer group on the given ifnet. 444 */ 445 IN6_MULTI_LIST_UNLOCK(); 446 IF_ADDR_WUNLOCK(ifp); 447 error = if_addmulti(ifp, (struct sockaddr *)&gsin6, &ifma); 448 if (error != 0) 449 return (error); 450 IN6_MULTI_LIST_LOCK(); 451 IF_ADDR_WLOCK(ifp); 452 453 /* 454 * If something other than netinet6 is occupying the link-layer 455 * group, print a meaningful error message and back out of 456 * the allocation. 457 * Otherwise, bump the refcount on the existing network-layer 458 * group association and return it. 459 */ 460 if (ifma->ifma_protospec != NULL) { 461 inm = (struct in6_multi *)ifma->ifma_protospec; 462 #ifdef INVARIANTS 463 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", 464 __func__)); 465 KASSERT(ifma->ifma_addr->sa_family == AF_INET6, 466 ("%s: ifma not AF_INET6", __func__)); 467 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); 468 if (inm->in6m_ifma != ifma || inm->in6m_ifp != ifp || 469 !IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, group)) 470 panic("%s: ifma %p is inconsistent with %p (%p)", 471 __func__, ifma, inm, group); 472 #endif 473 in6m_acquire_locked(inm); 474 *pinm = inm; 475 goto out_locked; 476 } 477 478 IF_ADDR_WLOCK_ASSERT(ifp); 479 480 /* 481 * A new in6_multi record is needed; allocate and initialize it. 482 * We DO NOT perform an MLD join as the in6_ layer may need to 483 * push an initial source list down to MLD to support SSM. 484 * 485 * The initial source filter state is INCLUDE, {} as per the RFC. 486 * Pending state-changes per group are subject to a bounds check. 487 */ 488 inm = malloc(sizeof(*inm), M_IP6MADDR, M_NOWAIT | M_ZERO); 489 if (inm == NULL) { 490 IN6_MULTI_LIST_UNLOCK(); 491 IF_ADDR_WUNLOCK(ifp); 492 if_delmulti_ifma(ifma); 493 return (ENOMEM); 494 } 495 inm->in6m_addr = *group; 496 inm->in6m_ifp = ifp; 497 inm->in6m_mli = MLD_IFINFO(ifp); 498 inm->in6m_ifma = ifma; 499 inm->in6m_refcount = 1; 500 inm->in6m_state = MLD_NOT_MEMBER; 501 mbufq_init(&inm->in6m_scq, MLD_MAX_STATE_CHANGES); 502 503 inm->in6m_st[0].iss_fmode = MCAST_UNDEFINED; 504 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 505 RB_INIT(&inm->in6m_srcs); 506 507 ifma->ifma_protospec = inm; 508 *pinm = inm; 509 510 out_locked: 511 IN6_MULTI_LIST_UNLOCK(); 512 IF_ADDR_WUNLOCK(ifp); 513 return (error); 514 } 515 516 /* 517 * Drop a reference to an in6_multi record. 518 * 519 * If the refcount drops to 0, free the in6_multi record and 520 * delete the underlying link-layer membership. 521 */ 522 static void 523 in6m_release(struct in6_multi *inm) 524 { 525 struct ifmultiaddr *ifma; 526 struct ifnet *ifp; 527 528 CTR2(KTR_MLD, "%s: refcount is %d", __func__, inm->in6m_refcount); 529 530 MPASS(inm->in6m_refcount == 0); 531 CTR2(KTR_MLD, "%s: freeing inm %p", __func__, inm); 532 533 ifma = inm->in6m_ifma; 534 ifp = inm->in6m_ifp; 535 MPASS(ifma->ifma_llifma == NULL); 536 537 /* XXX this access is not covered by IF_ADDR_LOCK */ 538 CTR2(KTR_MLD, "%s: purging ifma %p", __func__, ifma); 539 KASSERT(ifma->ifma_protospec == NULL, 540 ("%s: ifma_protospec != NULL", __func__)); 541 542 if (ifp != NULL) { 543 CURVNET_SET(ifp->if_vnet); 544 in6m_purge(inm); 545 free(inm, M_IP6MADDR); 546 if_delmulti_ifma_flags(ifma, 1); 547 CURVNET_RESTORE(); 548 if_rele(ifp); 549 } else { 550 in6m_purge(inm); 551 free(inm, M_IP6MADDR); 552 if_delmulti_ifma_flags(ifma, 1); 553 } 554 } 555 556 static struct grouptask free_gtask; 557 static struct in6_multi_head in6m_free_list; 558 static void in6m_release_task(void *arg __unused); 559 static void in6m_init(void) 560 { 561 SLIST_INIT(&in6m_free_list); 562 taskqgroup_config_gtask_init(NULL, &free_gtask, in6m_release_task, "in6m release task"); 563 } 564 565 SYSINIT(in6m_init, SI_SUB_SMP + 1, SI_ORDER_FIRST, 566 in6m_init, NULL); 567 568 569 void 570 in6m_release_list_deferred(struct in6_multi_head *inmh) 571 { 572 if (SLIST_EMPTY(inmh)) 573 return; 574 mtx_lock(&in6_multi_free_mtx); 575 SLIST_CONCAT(&in6m_free_list, inmh, in6_multi, in6m_nrele); 576 mtx_unlock(&in6_multi_free_mtx); 577 GROUPTASK_ENQUEUE(&free_gtask); 578 } 579 580 void 581 in6m_disconnect(struct in6_multi *inm) 582 { 583 struct ifnet *ifp; 584 struct ifaddr *ifa; 585 struct in6_ifaddr *ifa6; 586 struct in6_multi_mship *imm, *imm_tmp; 587 struct ifmultiaddr *ifma, *ll_ifma; 588 589 ifp = inm->in6m_ifp; 590 IF_ADDR_WLOCK_ASSERT(ifp); 591 ifma = inm->in6m_ifma; 592 593 if_ref(ifp); 594 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 595 MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname); 596 if ((ll_ifma = ifma->ifma_llifma) != NULL) { 597 MPASS(ifma != ll_ifma); 598 ifma->ifma_llifma = NULL; 599 MPASS(ll_ifma->ifma_llifma == NULL); 600 MPASS(ll_ifma->ifma_ifp == ifp); 601 if (--ll_ifma->ifma_refcount == 0) { 602 ifma6_restart = true; 603 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link); 604 MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname); 605 if_freemulti(ll_ifma); 606 } 607 } 608 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 609 if (ifa->ifa_addr->sa_family != AF_INET6) 610 continue; 611 ifa6 = (void *)ifa; 612 LIST_FOREACH_SAFE(imm, &ifa6->ia6_memberships, 613 i6mm_chain, imm_tmp) { 614 if (inm == imm->i6mm_maddr) { 615 LIST_REMOVE(imm, i6mm_chain); 616 free(imm, M_IP6MADDR); 617 } 618 } 619 } 620 } 621 622 void 623 in6m_release_deferred(struct in6_multi *inm) 624 { 625 struct in6_multi_head tmp; 626 627 IN6_MULTI_LIST_LOCK_ASSERT(); 628 KASSERT(inm->in6m_refcount > 0, ("refcount == %d inm: %p", inm->in6m_refcount, inm)); 629 if (--inm->in6m_refcount == 0) { 630 in6m_disconnect(inm); 631 SLIST_INIT(&tmp); 632 inm->in6m_ifma->ifma_protospec = NULL; 633 MPASS(inm->in6m_ifma->ifma_llifma == NULL); 634 SLIST_INSERT_HEAD(&tmp, inm, in6m_nrele); 635 in6m_release_list_deferred(&tmp); 636 } 637 } 638 639 static void 640 in6m_release_task(void *arg __unused) 641 { 642 struct in6_multi_head in6m_free_tmp; 643 struct in6_multi *inm, *tinm; 644 645 SLIST_INIT(&in6m_free_tmp); 646 mtx_lock(&in6_multi_free_mtx); 647 SLIST_CONCAT(&in6m_free_tmp, &in6m_free_list, in6_multi, in6m_nrele); 648 mtx_unlock(&in6_multi_free_mtx); 649 IN6_MULTI_LOCK(); 650 SLIST_FOREACH_SAFE(inm, &in6m_free_tmp, in6m_nrele, tinm) { 651 SLIST_REMOVE_HEAD(&in6m_free_tmp, in6m_nrele); 652 in6m_release(inm); 653 } 654 IN6_MULTI_UNLOCK(); 655 } 656 657 /* 658 * Clear recorded source entries for a group. 659 * Used by the MLD code. Caller must hold the IN6_MULTI lock. 660 * FIXME: Should reap. 661 */ 662 void 663 in6m_clear_recorded(struct in6_multi *inm) 664 { 665 struct ip6_msource *ims; 666 667 IN6_MULTI_LIST_LOCK_ASSERT(); 668 669 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 670 if (ims->im6s_stp) { 671 ims->im6s_stp = 0; 672 --inm->in6m_st[1].iss_rec; 673 } 674 } 675 KASSERT(inm->in6m_st[1].iss_rec == 0, 676 ("%s: iss_rec %d not 0", __func__, inm->in6m_st[1].iss_rec)); 677 } 678 679 /* 680 * Record a source as pending for a Source-Group MLDv2 query. 681 * This lives here as it modifies the shared tree. 682 * 683 * inm is the group descriptor. 684 * naddr is the address of the source to record in network-byte order. 685 * 686 * If the net.inet6.mld.sgalloc sysctl is non-zero, we will 687 * lazy-allocate a source node in response to an SG query. 688 * Otherwise, no allocation is performed. This saves some memory 689 * with the trade-off that the source will not be reported to the 690 * router if joined in the window between the query response and 691 * the group actually being joined on the local host. 692 * 693 * VIMAGE: XXX: Currently the mld_sgalloc feature has been removed. 694 * This turns off the allocation of a recorded source entry if 695 * the group has not been joined. 696 * 697 * Return 0 if the source didn't exist or was already marked as recorded. 698 * Return 1 if the source was marked as recorded by this function. 699 * Return <0 if any error occurred (negated errno code). 700 */ 701 int 702 in6m_record_source(struct in6_multi *inm, const struct in6_addr *addr) 703 { 704 struct ip6_msource find; 705 struct ip6_msource *ims, *nims; 706 707 IN6_MULTI_LIST_LOCK_ASSERT(); 708 709 find.im6s_addr = *addr; 710 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 711 if (ims && ims->im6s_stp) 712 return (0); 713 if (ims == NULL) { 714 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 715 return (-ENOSPC); 716 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 717 M_NOWAIT | M_ZERO); 718 if (nims == NULL) 719 return (-ENOMEM); 720 nims->im6s_addr = find.im6s_addr; 721 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 722 ++inm->in6m_nsrc; 723 ims = nims; 724 } 725 726 /* 727 * Mark the source as recorded and update the recorded 728 * source count. 729 */ 730 ++ims->im6s_stp; 731 ++inm->in6m_st[1].iss_rec; 732 733 return (1); 734 } 735 736 /* 737 * Return a pointer to an in6_msource owned by an in6_mfilter, 738 * given its source address. 739 * Lazy-allocate if needed. If this is a new entry its filter state is 740 * undefined at t0. 741 * 742 * imf is the filter set being modified. 743 * addr is the source address. 744 * 745 * SMPng: May be called with locks held; malloc must not block. 746 */ 747 static int 748 im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin, 749 struct in6_msource **plims) 750 { 751 struct ip6_msource find; 752 struct ip6_msource *ims, *nims; 753 struct in6_msource *lims; 754 int error; 755 756 error = 0; 757 ims = NULL; 758 lims = NULL; 759 760 find.im6s_addr = psin->sin6_addr; 761 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 762 lims = (struct in6_msource *)ims; 763 if (lims == NULL) { 764 if (imf->im6f_nsrc == in6_mcast_maxsocksrc) 765 return (ENOSPC); 766 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 767 M_NOWAIT | M_ZERO); 768 if (nims == NULL) 769 return (ENOMEM); 770 lims = (struct in6_msource *)nims; 771 lims->im6s_addr = find.im6s_addr; 772 lims->im6sl_st[0] = MCAST_UNDEFINED; 773 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 774 ++imf->im6f_nsrc; 775 } 776 777 *plims = lims; 778 779 return (error); 780 } 781 782 /* 783 * Graft a source entry into an existing socket-layer filter set, 784 * maintaining any required invariants and checking allocations. 785 * 786 * The source is marked as being in the new filter mode at t1. 787 * 788 * Return the pointer to the new node, otherwise return NULL. 789 */ 790 static struct in6_msource * 791 im6f_graft(struct in6_mfilter *imf, const uint8_t st1, 792 const struct sockaddr_in6 *psin) 793 { 794 struct ip6_msource *nims; 795 struct in6_msource *lims; 796 797 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 798 M_NOWAIT | M_ZERO); 799 if (nims == NULL) 800 return (NULL); 801 lims = (struct in6_msource *)nims; 802 lims->im6s_addr = psin->sin6_addr; 803 lims->im6sl_st[0] = MCAST_UNDEFINED; 804 lims->im6sl_st[1] = st1; 805 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 806 ++imf->im6f_nsrc; 807 808 return (lims); 809 } 810 811 /* 812 * Prune a source entry from an existing socket-layer filter set, 813 * maintaining any required invariants and checking allocations. 814 * 815 * The source is marked as being left at t1, it is not freed. 816 * 817 * Return 0 if no error occurred, otherwise return an errno value. 818 */ 819 static int 820 im6f_prune(struct in6_mfilter *imf, const struct sockaddr_in6 *psin) 821 { 822 struct ip6_msource find; 823 struct ip6_msource *ims; 824 struct in6_msource *lims; 825 826 find.im6s_addr = psin->sin6_addr; 827 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 828 if (ims == NULL) 829 return (ENOENT); 830 lims = (struct in6_msource *)ims; 831 lims->im6sl_st[1] = MCAST_UNDEFINED; 832 return (0); 833 } 834 835 /* 836 * Revert socket-layer filter set deltas at t1 to t0 state. 837 */ 838 static void 839 im6f_rollback(struct in6_mfilter *imf) 840 { 841 struct ip6_msource *ims, *tims; 842 struct in6_msource *lims; 843 844 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 845 lims = (struct in6_msource *)ims; 846 if (lims->im6sl_st[0] == lims->im6sl_st[1]) { 847 /* no change at t1 */ 848 continue; 849 } else if (lims->im6sl_st[0] != MCAST_UNDEFINED) { 850 /* revert change to existing source at t1 */ 851 lims->im6sl_st[1] = lims->im6sl_st[0]; 852 } else { 853 /* revert source added t1 */ 854 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 855 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 856 free(ims, M_IN6MFILTER); 857 imf->im6f_nsrc--; 858 } 859 } 860 imf->im6f_st[1] = imf->im6f_st[0]; 861 } 862 863 /* 864 * Mark socket-layer filter set as INCLUDE {} at t1. 865 */ 866 static void 867 im6f_leave(struct in6_mfilter *imf) 868 { 869 struct ip6_msource *ims; 870 struct in6_msource *lims; 871 872 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 873 lims = (struct in6_msource *)ims; 874 lims->im6sl_st[1] = MCAST_UNDEFINED; 875 } 876 imf->im6f_st[1] = MCAST_INCLUDE; 877 } 878 879 /* 880 * Mark socket-layer filter set deltas as committed. 881 */ 882 static void 883 im6f_commit(struct in6_mfilter *imf) 884 { 885 struct ip6_msource *ims; 886 struct in6_msource *lims; 887 888 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 889 lims = (struct in6_msource *)ims; 890 lims->im6sl_st[0] = lims->im6sl_st[1]; 891 } 892 imf->im6f_st[0] = imf->im6f_st[1]; 893 } 894 895 /* 896 * Reap unreferenced sources from socket-layer filter set. 897 */ 898 static void 899 im6f_reap(struct in6_mfilter *imf) 900 { 901 struct ip6_msource *ims, *tims; 902 struct in6_msource *lims; 903 904 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 905 lims = (struct in6_msource *)ims; 906 if ((lims->im6sl_st[0] == MCAST_UNDEFINED) && 907 (lims->im6sl_st[1] == MCAST_UNDEFINED)) { 908 CTR2(KTR_MLD, "%s: free lims %p", __func__, ims); 909 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 910 free(ims, M_IN6MFILTER); 911 imf->im6f_nsrc--; 912 } 913 } 914 } 915 916 /* 917 * Purge socket-layer filter set. 918 */ 919 static void 920 im6f_purge(struct in6_mfilter *imf) 921 { 922 struct ip6_msource *ims, *tims; 923 924 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 925 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 926 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 927 free(ims, M_IN6MFILTER); 928 imf->im6f_nsrc--; 929 } 930 imf->im6f_st[0] = imf->im6f_st[1] = MCAST_UNDEFINED; 931 KASSERT(RB_EMPTY(&imf->im6f_sources), 932 ("%s: im6f_sources not empty", __func__)); 933 } 934 935 /* 936 * Look up a source filter entry for a multicast group. 937 * 938 * inm is the group descriptor to work with. 939 * addr is the IPv6 address to look up. 940 * noalloc may be non-zero to suppress allocation of sources. 941 * *pims will be set to the address of the retrieved or allocated source. 942 * 943 * SMPng: NOTE: may be called with locks held. 944 * Return 0 if successful, otherwise return a non-zero error code. 945 */ 946 static int 947 in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr, 948 const int noalloc, struct ip6_msource **pims) 949 { 950 struct ip6_msource find; 951 struct ip6_msource *ims, *nims; 952 #ifdef KTR 953 char ip6tbuf[INET6_ADDRSTRLEN]; 954 #endif 955 956 find.im6s_addr = *addr; 957 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 958 if (ims == NULL && !noalloc) { 959 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 960 return (ENOSPC); 961 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 962 M_NOWAIT | M_ZERO); 963 if (nims == NULL) 964 return (ENOMEM); 965 nims->im6s_addr = *addr; 966 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 967 ++inm->in6m_nsrc; 968 ims = nims; 969 CTR3(KTR_MLD, "%s: allocated %s as %p", __func__, 970 ip6_sprintf(ip6tbuf, addr), ims); 971 } 972 973 *pims = ims; 974 return (0); 975 } 976 977 /* 978 * Merge socket-layer source into MLD-layer source. 979 * If rollback is non-zero, perform the inverse of the merge. 980 */ 981 static void 982 im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims, 983 const int rollback) 984 { 985 int n = rollback ? -1 : 1; 986 #ifdef KTR 987 char ip6tbuf[INET6_ADDRSTRLEN]; 988 989 ip6_sprintf(ip6tbuf, &lims->im6s_addr); 990 #endif 991 992 if (lims->im6sl_st[0] == MCAST_EXCLUDE) { 993 CTR3(KTR_MLD, "%s: t1 ex -= %d on %s", __func__, n, ip6tbuf); 994 ims->im6s_st[1].ex -= n; 995 } else if (lims->im6sl_st[0] == MCAST_INCLUDE) { 996 CTR3(KTR_MLD, "%s: t1 in -= %d on %s", __func__, n, ip6tbuf); 997 ims->im6s_st[1].in -= n; 998 } 999 1000 if (lims->im6sl_st[1] == MCAST_EXCLUDE) { 1001 CTR3(KTR_MLD, "%s: t1 ex += %d on %s", __func__, n, ip6tbuf); 1002 ims->im6s_st[1].ex += n; 1003 } else if (lims->im6sl_st[1] == MCAST_INCLUDE) { 1004 CTR3(KTR_MLD, "%s: t1 in += %d on %s", __func__, n, ip6tbuf); 1005 ims->im6s_st[1].in += n; 1006 } 1007 } 1008 1009 /* 1010 * Atomically update the global in6_multi state, when a membership's 1011 * filter list is being updated in any way. 1012 * 1013 * imf is the per-inpcb-membership group filter pointer. 1014 * A fake imf may be passed for in-kernel consumers. 1015 * 1016 * XXX This is a candidate for a set-symmetric-difference style loop 1017 * which would eliminate the repeated lookup from root of ims nodes, 1018 * as they share the same key space. 1019 * 1020 * If any error occurred this function will back out of refcounts 1021 * and return a non-zero value. 1022 */ 1023 static int 1024 in6m_merge(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1025 { 1026 struct ip6_msource *ims, *nims; 1027 struct in6_msource *lims; 1028 int schanged, error; 1029 int nsrc0, nsrc1; 1030 1031 schanged = 0; 1032 error = 0; 1033 nsrc1 = nsrc0 = 0; 1034 IN6_MULTI_LIST_LOCK_ASSERT(); 1035 1036 /* 1037 * Update the source filters first, as this may fail. 1038 * Maintain count of in-mode filters at t0, t1. These are 1039 * used to work out if we transition into ASM mode or not. 1040 * Maintain a count of source filters whose state was 1041 * actually modified by this operation. 1042 */ 1043 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 1044 lims = (struct in6_msource *)ims; 1045 if (lims->im6sl_st[0] == imf->im6f_st[0]) nsrc0++; 1046 if (lims->im6sl_st[1] == imf->im6f_st[1]) nsrc1++; 1047 if (lims->im6sl_st[0] == lims->im6sl_st[1]) continue; 1048 error = in6m_get_source(inm, &lims->im6s_addr, 0, &nims); 1049 ++schanged; 1050 if (error) 1051 break; 1052 im6s_merge(nims, lims, 0); 1053 } 1054 if (error) { 1055 struct ip6_msource *bims; 1056 1057 RB_FOREACH_REVERSE_FROM(ims, ip6_msource_tree, nims) { 1058 lims = (struct in6_msource *)ims; 1059 if (lims->im6sl_st[0] == lims->im6sl_st[1]) 1060 continue; 1061 (void)in6m_get_source(inm, &lims->im6s_addr, 1, &bims); 1062 if (bims == NULL) 1063 continue; 1064 im6s_merge(bims, lims, 1); 1065 } 1066 goto out_reap; 1067 } 1068 1069 CTR3(KTR_MLD, "%s: imf filters in-mode: %d at t0, %d at t1", 1070 __func__, nsrc0, nsrc1); 1071 1072 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ 1073 if (imf->im6f_st[0] == imf->im6f_st[1] && 1074 imf->im6f_st[1] == MCAST_INCLUDE) { 1075 if (nsrc1 == 0) { 1076 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 1077 --inm->in6m_st[1].iss_in; 1078 } 1079 } 1080 1081 /* Handle filter mode transition on socket. */ 1082 if (imf->im6f_st[0] != imf->im6f_st[1]) { 1083 CTR3(KTR_MLD, "%s: imf transition %d to %d", 1084 __func__, imf->im6f_st[0], imf->im6f_st[1]); 1085 1086 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 1087 CTR1(KTR_MLD, "%s: --ex on inm at t1", __func__); 1088 --inm->in6m_st[1].iss_ex; 1089 } else if (imf->im6f_st[0] == MCAST_INCLUDE) { 1090 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 1091 --inm->in6m_st[1].iss_in; 1092 } 1093 1094 if (imf->im6f_st[1] == MCAST_EXCLUDE) { 1095 CTR1(KTR_MLD, "%s: ex++ on inm at t1", __func__); 1096 inm->in6m_st[1].iss_ex++; 1097 } else if (imf->im6f_st[1] == MCAST_INCLUDE && nsrc1 > 0) { 1098 CTR1(KTR_MLD, "%s: in++ on inm at t1", __func__); 1099 inm->in6m_st[1].iss_in++; 1100 } 1101 } 1102 1103 /* 1104 * Track inm filter state in terms of listener counts. 1105 * If there are any exclusive listeners, stack-wide 1106 * membership is exclusive. 1107 * Otherwise, if only inclusive listeners, stack-wide is inclusive. 1108 * If no listeners remain, state is undefined at t1, 1109 * and the MLD lifecycle for this group should finish. 1110 */ 1111 if (inm->in6m_st[1].iss_ex > 0) { 1112 CTR1(KTR_MLD, "%s: transition to EX", __func__); 1113 inm->in6m_st[1].iss_fmode = MCAST_EXCLUDE; 1114 } else if (inm->in6m_st[1].iss_in > 0) { 1115 CTR1(KTR_MLD, "%s: transition to IN", __func__); 1116 inm->in6m_st[1].iss_fmode = MCAST_INCLUDE; 1117 } else { 1118 CTR1(KTR_MLD, "%s: transition to UNDEF", __func__); 1119 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 1120 } 1121 1122 /* Decrement ASM listener count on transition out of ASM mode. */ 1123 if (imf->im6f_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { 1124 if ((imf->im6f_st[1] != MCAST_EXCLUDE) || 1125 (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) { 1126 CTR1(KTR_MLD, "%s: --asm on inm at t1", __func__); 1127 --inm->in6m_st[1].iss_asm; 1128 } 1129 } 1130 1131 /* Increment ASM listener count on transition to ASM mode. */ 1132 if (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { 1133 CTR1(KTR_MLD, "%s: asm++ on inm at t1", __func__); 1134 inm->in6m_st[1].iss_asm++; 1135 } 1136 1137 CTR3(KTR_MLD, "%s: merged imf %p to inm %p", __func__, imf, inm); 1138 in6m_print(inm); 1139 1140 out_reap: 1141 if (schanged > 0) { 1142 CTR1(KTR_MLD, "%s: sources changed; reaping", __func__); 1143 in6m_reap(inm); 1144 } 1145 return (error); 1146 } 1147 1148 /* 1149 * Mark an in6_multi's filter set deltas as committed. 1150 * Called by MLD after a state change has been enqueued. 1151 */ 1152 void 1153 in6m_commit(struct in6_multi *inm) 1154 { 1155 struct ip6_msource *ims; 1156 1157 CTR2(KTR_MLD, "%s: commit inm %p", __func__, inm); 1158 CTR1(KTR_MLD, "%s: pre commit:", __func__); 1159 in6m_print(inm); 1160 1161 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 1162 ims->im6s_st[0] = ims->im6s_st[1]; 1163 } 1164 inm->in6m_st[0] = inm->in6m_st[1]; 1165 } 1166 1167 /* 1168 * Reap unreferenced nodes from an in6_multi's filter set. 1169 */ 1170 static void 1171 in6m_reap(struct in6_multi *inm) 1172 { 1173 struct ip6_msource *ims, *tims; 1174 1175 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1176 if (ims->im6s_st[0].ex > 0 || ims->im6s_st[0].in > 0 || 1177 ims->im6s_st[1].ex > 0 || ims->im6s_st[1].in > 0 || 1178 ims->im6s_stp != 0) 1179 continue; 1180 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1181 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1182 free(ims, M_IP6MSOURCE); 1183 inm->in6m_nsrc--; 1184 } 1185 } 1186 1187 /* 1188 * Purge all source nodes from an in6_multi's filter set. 1189 */ 1190 static void 1191 in6m_purge(struct in6_multi *inm) 1192 { 1193 struct ip6_msource *ims, *tims; 1194 1195 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1196 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1197 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1198 free(ims, M_IP6MSOURCE); 1199 inm->in6m_nsrc--; 1200 } 1201 /* Free state-change requests that might be queued. */ 1202 mbufq_drain(&inm->in6m_scq); 1203 } 1204 1205 /* 1206 * Join a multicast address w/o sources. 1207 * KAME compatibility entry point. 1208 * 1209 * SMPng: Assume no mc locks held by caller. 1210 */ 1211 int 1212 in6_joingroup(struct ifnet *ifp, const struct in6_addr *mcaddr, 1213 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1214 const int delay) 1215 { 1216 int error; 1217 1218 IN6_MULTI_LOCK(); 1219 error = in6_joingroup_locked(ifp, mcaddr, NULL, pinm, delay); 1220 IN6_MULTI_UNLOCK(); 1221 return (error); 1222 } 1223 1224 /* 1225 * Join a multicast group; real entry point. 1226 * 1227 * Only preserves atomicity at inm level. 1228 * NOTE: imf argument cannot be const due to sys/tree.h limitations. 1229 * 1230 * If the MLD downcall fails, the group is not joined, and an error 1231 * code is returned. 1232 */ 1233 int 1234 in6_joingroup_locked(struct ifnet *ifp, const struct in6_addr *mcaddr, 1235 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1236 const int delay) 1237 { 1238 struct in6_mfilter timf; 1239 struct in6_multi *inm; 1240 struct ifmultiaddr *ifma; 1241 int error; 1242 #ifdef KTR 1243 char ip6tbuf[INET6_ADDRSTRLEN]; 1244 #endif 1245 1246 #ifdef INVARIANTS 1247 /* 1248 * Sanity: Check scope zone ID was set for ifp, if and 1249 * only if group is scoped to an interface. 1250 */ 1251 KASSERT(IN6_IS_ADDR_MULTICAST(mcaddr), 1252 ("%s: not a multicast address", __func__)); 1253 if (IN6_IS_ADDR_MC_LINKLOCAL(mcaddr) || 1254 IN6_IS_ADDR_MC_INTFACELOCAL(mcaddr)) { 1255 KASSERT(mcaddr->s6_addr16[1] != 0, 1256 ("%s: scope zone ID not set", __func__)); 1257 } 1258 #endif 1259 1260 IN6_MULTI_LOCK_ASSERT(); 1261 IN6_MULTI_LIST_UNLOCK_ASSERT(); 1262 1263 CTR4(KTR_MLD, "%s: join %s on %p(%s))", __func__, 1264 ip6_sprintf(ip6tbuf, mcaddr), ifp, if_name(ifp)); 1265 1266 error = 0; 1267 inm = NULL; 1268 1269 /* 1270 * If no imf was specified (i.e. kernel consumer), 1271 * fake one up and assume it is an ASM join. 1272 */ 1273 if (imf == NULL) { 1274 im6f_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); 1275 imf = &timf; 1276 } 1277 error = in6_getmulti(ifp, mcaddr, &inm); 1278 if (error) { 1279 CTR1(KTR_MLD, "%s: in6_getmulti() failure", __func__); 1280 return (error); 1281 } 1282 1283 IN6_MULTI_LIST_LOCK(); 1284 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1285 error = in6m_merge(inm, imf); 1286 if (error) { 1287 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1288 goto out_in6m_release; 1289 } 1290 1291 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1292 error = mld_change_state(inm, delay); 1293 if (error) { 1294 CTR1(KTR_MLD, "%s: failed to update source", __func__); 1295 goto out_in6m_release; 1296 } 1297 1298 out_in6m_release: 1299 if (error) { 1300 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1301 IF_ADDR_RLOCK(ifp); 1302 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1303 if (ifma->ifma_protospec == inm) { 1304 ifma->ifma_protospec = NULL; 1305 break; 1306 } 1307 } 1308 in6m_release_deferred(inm); 1309 IF_ADDR_RUNLOCK(ifp); 1310 } else { 1311 *pinm = inm; 1312 } 1313 IN6_MULTI_LIST_UNLOCK(); 1314 return (error); 1315 } 1316 1317 /* 1318 * Leave a multicast group; unlocked entry point. 1319 */ 1320 int 1321 in6_leavegroup(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1322 { 1323 int error; 1324 1325 IN6_MULTI_LOCK(); 1326 error = in6_leavegroup_locked(inm, imf); 1327 IN6_MULTI_UNLOCK(); 1328 return (error); 1329 } 1330 1331 /* 1332 * Leave a multicast group; real entry point. 1333 * All source filters will be expunged. 1334 * 1335 * Only preserves atomicity at inm level. 1336 * 1337 * Holding the write lock for the INP which contains imf 1338 * is highly advisable. We can't assert for it as imf does not 1339 * contain a back-pointer to the owning inp. 1340 * 1341 * Note: This is not the same as in6m_release(*) as this function also 1342 * makes a state change downcall into MLD. 1343 */ 1344 int 1345 in6_leavegroup_locked(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1346 { 1347 struct in6_mfilter timf; 1348 struct ifnet *ifp; 1349 int error; 1350 #ifdef KTR 1351 char ip6tbuf[INET6_ADDRSTRLEN]; 1352 #endif 1353 1354 error = 0; 1355 1356 IN6_MULTI_LOCK_ASSERT(); 1357 1358 CTR5(KTR_MLD, "%s: leave inm %p, %s/%s, imf %p", __func__, 1359 inm, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1360 (in6m_is_ifp_detached(inm) ? "null" : if_name(inm->in6m_ifp)), 1361 imf); 1362 1363 /* 1364 * If no imf was specified (i.e. kernel consumer), 1365 * fake one up and assume it is an ASM join. 1366 */ 1367 if (imf == NULL) { 1368 im6f_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); 1369 imf = &timf; 1370 } 1371 1372 /* 1373 * Begin state merge transaction at MLD layer. 1374 * 1375 * As this particular invocation should not cause any memory 1376 * to be allocated, and there is no opportunity to roll back 1377 * the transaction, it MUST NOT fail. 1378 */ 1379 1380 ifp = inm->in6m_ifp; 1381 IN6_MULTI_LIST_LOCK(); 1382 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1383 error = in6m_merge(inm, imf); 1384 KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); 1385 1386 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1387 error = mld_change_state(inm, 0); 1388 if (error) 1389 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1390 1391 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1392 if (ifp) 1393 IF_ADDR_WLOCK(ifp); 1394 in6m_release_deferred(inm); 1395 if (ifp) 1396 IF_ADDR_WUNLOCK(ifp); 1397 IN6_MULTI_LIST_UNLOCK(); 1398 1399 return (error); 1400 } 1401 1402 1403 /* 1404 * Block or unblock an ASM multicast source on an inpcb. 1405 * This implements the delta-based API described in RFC 3678. 1406 * 1407 * The delta-based API applies only to exclusive-mode memberships. 1408 * An MLD downcall will be performed. 1409 * 1410 * SMPng: NOTE: Must take Giant as a join may create a new ifma. 1411 * 1412 * Return 0 if successful, otherwise return an appropriate error code. 1413 */ 1414 static int 1415 in6p_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) 1416 { 1417 struct group_source_req gsr; 1418 sockunion_t *gsa, *ssa; 1419 struct ifnet *ifp; 1420 struct in6_mfilter *imf; 1421 struct ip6_moptions *imo; 1422 struct in6_msource *ims; 1423 struct in6_multi *inm; 1424 size_t idx; 1425 uint16_t fmode; 1426 int error, doblock; 1427 #ifdef KTR 1428 char ip6tbuf[INET6_ADDRSTRLEN]; 1429 #endif 1430 1431 ifp = NULL; 1432 error = 0; 1433 doblock = 0; 1434 1435 memset(&gsr, 0, sizeof(struct group_source_req)); 1436 gsa = (sockunion_t *)&gsr.gsr_group; 1437 ssa = (sockunion_t *)&gsr.gsr_source; 1438 1439 switch (sopt->sopt_name) { 1440 case MCAST_BLOCK_SOURCE: 1441 case MCAST_UNBLOCK_SOURCE: 1442 error = sooptcopyin(sopt, &gsr, 1443 sizeof(struct group_source_req), 1444 sizeof(struct group_source_req)); 1445 if (error) 1446 return (error); 1447 1448 if (gsa->sin6.sin6_family != AF_INET6 || 1449 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1450 return (EINVAL); 1451 1452 if (ssa->sin6.sin6_family != AF_INET6 || 1453 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1454 return (EINVAL); 1455 1456 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1457 return (EADDRNOTAVAIL); 1458 1459 ifp = ifnet_byindex(gsr.gsr_interface); 1460 1461 if (sopt->sopt_name == MCAST_BLOCK_SOURCE) 1462 doblock = 1; 1463 break; 1464 1465 default: 1466 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 1467 __func__, sopt->sopt_name); 1468 return (EOPNOTSUPP); 1469 break; 1470 } 1471 1472 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1473 return (EINVAL); 1474 1475 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1476 1477 /* 1478 * Check if we are actually a member of this group. 1479 */ 1480 imo = in6p_findmoptions(inp); 1481 idx = im6o_match_group(imo, ifp, &gsa->sa); 1482 if (idx == -1 || imo->im6o_mfilters == NULL) { 1483 error = EADDRNOTAVAIL; 1484 goto out_in6p_locked; 1485 } 1486 1487 KASSERT(imo->im6o_mfilters != NULL, 1488 ("%s: im6o_mfilters not allocated", __func__)); 1489 imf = &imo->im6o_mfilters[idx]; 1490 inm = imo->im6o_membership[idx]; 1491 1492 /* 1493 * Attempting to use the delta-based API on an 1494 * non exclusive-mode membership is an error. 1495 */ 1496 fmode = imf->im6f_st[0]; 1497 if (fmode != MCAST_EXCLUDE) { 1498 error = EINVAL; 1499 goto out_in6p_locked; 1500 } 1501 1502 /* 1503 * Deal with error cases up-front: 1504 * Asked to block, but already blocked; or 1505 * Asked to unblock, but nothing to unblock. 1506 * If adding a new block entry, allocate it. 1507 */ 1508 ims = im6o_match_source(imo, idx, &ssa->sa); 1509 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { 1510 CTR3(KTR_MLD, "%s: source %s %spresent", __func__, 1511 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 1512 doblock ? "" : "not "); 1513 error = EADDRNOTAVAIL; 1514 goto out_in6p_locked; 1515 } 1516 1517 INP_WLOCK_ASSERT(inp); 1518 1519 /* 1520 * Begin state merge transaction at socket layer. 1521 */ 1522 if (doblock) { 1523 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 1524 ims = im6f_graft(imf, fmode, &ssa->sin6); 1525 if (ims == NULL) 1526 error = ENOMEM; 1527 } else { 1528 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 1529 error = im6f_prune(imf, &ssa->sin6); 1530 } 1531 1532 if (error) { 1533 CTR1(KTR_MLD, "%s: merge imf state failed", __func__); 1534 goto out_im6f_rollback; 1535 } 1536 1537 /* 1538 * Begin state merge transaction at MLD layer. 1539 */ 1540 IN6_MULTI_LIST_LOCK(); 1541 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1542 error = in6m_merge(inm, imf); 1543 if (error) 1544 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1545 else { 1546 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1547 error = mld_change_state(inm, 0); 1548 if (error) 1549 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1550 } 1551 1552 IN6_MULTI_LIST_UNLOCK(); 1553 1554 out_im6f_rollback: 1555 if (error) 1556 im6f_rollback(imf); 1557 else 1558 im6f_commit(imf); 1559 1560 im6f_reap(imf); 1561 1562 out_in6p_locked: 1563 INP_WUNLOCK(inp); 1564 return (error); 1565 } 1566 1567 /* 1568 * Given an inpcb, return its multicast options structure pointer. Accepts 1569 * an unlocked inpcb pointer, but will return it locked. May sleep. 1570 * 1571 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 1572 * SMPng: NOTE: Returns with the INP write lock held. 1573 */ 1574 static struct ip6_moptions * 1575 in6p_findmoptions(struct inpcb *inp) 1576 { 1577 struct ip6_moptions *imo; 1578 struct in6_multi **immp; 1579 struct in6_mfilter *imfp; 1580 size_t idx; 1581 1582 INP_WLOCK(inp); 1583 if (inp->in6p_moptions != NULL) 1584 return (inp->in6p_moptions); 1585 1586 INP_WUNLOCK(inp); 1587 1588 imo = malloc(sizeof(*imo), M_IP6MOPTS, M_WAITOK); 1589 immp = malloc(sizeof(*immp) * IPV6_MIN_MEMBERSHIPS, M_IP6MOPTS, 1590 M_WAITOK | M_ZERO); 1591 imfp = malloc(sizeof(struct in6_mfilter) * IPV6_MIN_MEMBERSHIPS, 1592 M_IN6MFILTER, M_WAITOK); 1593 1594 imo->im6o_multicast_ifp = NULL; 1595 imo->im6o_multicast_hlim = V_ip6_defmcasthlim; 1596 imo->im6o_multicast_loop = in6_mcast_loop; 1597 imo->im6o_num_memberships = 0; 1598 imo->im6o_max_memberships = IPV6_MIN_MEMBERSHIPS; 1599 imo->im6o_membership = immp; 1600 1601 /* Initialize per-group source filters. */ 1602 for (idx = 0; idx < IPV6_MIN_MEMBERSHIPS; idx++) 1603 im6f_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); 1604 imo->im6o_mfilters = imfp; 1605 1606 INP_WLOCK(inp); 1607 if (inp->in6p_moptions != NULL) { 1608 free(imfp, M_IN6MFILTER); 1609 free(immp, M_IP6MOPTS); 1610 free(imo, M_IP6MOPTS); 1611 return (inp->in6p_moptions); 1612 } 1613 inp->in6p_moptions = imo; 1614 return (imo); 1615 } 1616 1617 /* 1618 * Discard the IPv6 multicast options (and source filters). 1619 * 1620 * SMPng: NOTE: assumes INP write lock is held. 1621 * 1622 * XXX can all be safely deferred to epoch_call 1623 * 1624 */ 1625 1626 static void 1627 inp_gcmoptions(epoch_context_t ctx) 1628 { 1629 struct ip6_moptions *imo; 1630 struct in6_mfilter *imf; 1631 struct in6_multi *inm; 1632 struct ifnet *ifp; 1633 size_t idx, nmships; 1634 1635 imo = __containerof(ctx, struct ip6_moptions, imo6_epoch_ctx); 1636 1637 nmships = imo->im6o_num_memberships; 1638 for (idx = 0; idx < nmships; ++idx) { 1639 imf = imo->im6o_mfilters ? &imo->im6o_mfilters[idx] : NULL; 1640 if (imf) 1641 im6f_leave(imf); 1642 inm = imo->im6o_membership[idx]; 1643 ifp = inm->in6m_ifp; 1644 if (ifp != NULL) { 1645 CURVNET_SET(ifp->if_vnet); 1646 (void)in6_leavegroup(inm, imf); 1647 CURVNET_RESTORE(); 1648 } else { 1649 (void)in6_leavegroup(inm, imf); 1650 } 1651 if (imf) 1652 im6f_purge(imf); 1653 } 1654 1655 if (imo->im6o_mfilters) 1656 free(imo->im6o_mfilters, M_IN6MFILTER); 1657 free(imo->im6o_membership, M_IP6MOPTS); 1658 free(imo, M_IP6MOPTS); 1659 } 1660 1661 void 1662 ip6_freemoptions(struct ip6_moptions *imo) 1663 { 1664 if (imo == NULL) 1665 return; 1666 epoch_call(net_epoch_preempt, &imo->imo6_epoch_ctx, inp_gcmoptions); 1667 } 1668 1669 /* 1670 * Atomically get source filters on a socket for an IPv6 multicast group. 1671 * Called with INP lock held; returns with lock released. 1672 */ 1673 static int 1674 in6p_get_source_filters(struct inpcb *inp, struct sockopt *sopt) 1675 { 1676 struct __msfilterreq msfr; 1677 sockunion_t *gsa; 1678 struct ifnet *ifp; 1679 struct ip6_moptions *imo; 1680 struct in6_mfilter *imf; 1681 struct ip6_msource *ims; 1682 struct in6_msource *lims; 1683 struct sockaddr_in6 *psin; 1684 struct sockaddr_storage *ptss; 1685 struct sockaddr_storage *tss; 1686 int error; 1687 size_t idx, nsrcs, ncsrcs; 1688 1689 INP_WLOCK_ASSERT(inp); 1690 1691 imo = inp->in6p_moptions; 1692 KASSERT(imo != NULL, ("%s: null ip6_moptions", __func__)); 1693 1694 INP_WUNLOCK(inp); 1695 1696 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 1697 sizeof(struct __msfilterreq)); 1698 if (error) 1699 return (error); 1700 1701 if (msfr.msfr_group.ss_family != AF_INET6 || 1702 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 1703 return (EINVAL); 1704 1705 gsa = (sockunion_t *)&msfr.msfr_group; 1706 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1707 return (EINVAL); 1708 1709 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 1710 return (EADDRNOTAVAIL); 1711 ifp = ifnet_byindex(msfr.msfr_ifindex); 1712 if (ifp == NULL) 1713 return (EADDRNOTAVAIL); 1714 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1715 1716 INP_WLOCK(inp); 1717 1718 /* 1719 * Lookup group on the socket. 1720 */ 1721 idx = im6o_match_group(imo, ifp, &gsa->sa); 1722 if (idx == -1 || imo->im6o_mfilters == NULL) { 1723 INP_WUNLOCK(inp); 1724 return (EADDRNOTAVAIL); 1725 } 1726 imf = &imo->im6o_mfilters[idx]; 1727 1728 /* 1729 * Ignore memberships which are in limbo. 1730 */ 1731 if (imf->im6f_st[1] == MCAST_UNDEFINED) { 1732 INP_WUNLOCK(inp); 1733 return (EAGAIN); 1734 } 1735 msfr.msfr_fmode = imf->im6f_st[1]; 1736 1737 /* 1738 * If the user specified a buffer, copy out the source filter 1739 * entries to userland gracefully. 1740 * We only copy out the number of entries which userland 1741 * has asked for, but we always tell userland how big the 1742 * buffer really needs to be. 1743 */ 1744 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 1745 msfr.msfr_nsrcs = in6_mcast_maxsocksrc; 1746 tss = NULL; 1747 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { 1748 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 1749 M_TEMP, M_NOWAIT | M_ZERO); 1750 if (tss == NULL) { 1751 INP_WUNLOCK(inp); 1752 return (ENOBUFS); 1753 } 1754 } 1755 1756 /* 1757 * Count number of sources in-mode at t0. 1758 * If buffer space exists and remains, copy out source entries. 1759 */ 1760 nsrcs = msfr.msfr_nsrcs; 1761 ncsrcs = 0; 1762 ptss = tss; 1763 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 1764 lims = (struct in6_msource *)ims; 1765 if (lims->im6sl_st[0] == MCAST_UNDEFINED || 1766 lims->im6sl_st[0] != imf->im6f_st[0]) 1767 continue; 1768 ++ncsrcs; 1769 if (tss != NULL && nsrcs > 0) { 1770 psin = (struct sockaddr_in6 *)ptss; 1771 psin->sin6_family = AF_INET6; 1772 psin->sin6_len = sizeof(struct sockaddr_in6); 1773 psin->sin6_addr = lims->im6s_addr; 1774 psin->sin6_port = 0; 1775 --nsrcs; 1776 ++ptss; 1777 } 1778 } 1779 1780 INP_WUNLOCK(inp); 1781 1782 if (tss != NULL) { 1783 error = copyout(tss, msfr.msfr_srcs, 1784 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 1785 free(tss, M_TEMP); 1786 if (error) 1787 return (error); 1788 } 1789 1790 msfr.msfr_nsrcs = ncsrcs; 1791 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); 1792 1793 return (error); 1794 } 1795 1796 /* 1797 * Return the IP multicast options in response to user getsockopt(). 1798 */ 1799 int 1800 ip6_getmoptions(struct inpcb *inp, struct sockopt *sopt) 1801 { 1802 struct ip6_moptions *im6o; 1803 int error; 1804 u_int optval; 1805 1806 INP_WLOCK(inp); 1807 im6o = inp->in6p_moptions; 1808 /* 1809 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 1810 * or is a divert socket, reject it. 1811 */ 1812 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 1813 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 1814 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { 1815 INP_WUNLOCK(inp); 1816 return (EOPNOTSUPP); 1817 } 1818 1819 error = 0; 1820 switch (sopt->sopt_name) { 1821 case IPV6_MULTICAST_IF: 1822 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) { 1823 optval = 0; 1824 } else { 1825 optval = im6o->im6o_multicast_ifp->if_index; 1826 } 1827 INP_WUNLOCK(inp); 1828 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1829 break; 1830 1831 case IPV6_MULTICAST_HOPS: 1832 if (im6o == NULL) 1833 optval = V_ip6_defmcasthlim; 1834 else 1835 optval = im6o->im6o_multicast_hlim; 1836 INP_WUNLOCK(inp); 1837 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1838 break; 1839 1840 case IPV6_MULTICAST_LOOP: 1841 if (im6o == NULL) 1842 optval = in6_mcast_loop; /* XXX VIMAGE */ 1843 else 1844 optval = im6o->im6o_multicast_loop; 1845 INP_WUNLOCK(inp); 1846 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1847 break; 1848 1849 case IPV6_MSFILTER: 1850 if (im6o == NULL) { 1851 error = EADDRNOTAVAIL; 1852 INP_WUNLOCK(inp); 1853 } else { 1854 error = in6p_get_source_filters(inp, sopt); 1855 } 1856 break; 1857 1858 default: 1859 INP_WUNLOCK(inp); 1860 error = ENOPROTOOPT; 1861 break; 1862 } 1863 1864 INP_UNLOCK_ASSERT(inp); 1865 1866 return (error); 1867 } 1868 1869 /* 1870 * Look up the ifnet to use for a multicast group membership, 1871 * given the address of an IPv6 group. 1872 * 1873 * This routine exists to support legacy IPv6 multicast applications. 1874 * 1875 * If inp is non-NULL, use this socket's current FIB number for any 1876 * required FIB lookup. Look up the group address in the unicast FIB, 1877 * and use its ifp; usually, this points to the default next-hop. 1878 * If the FIB lookup fails, return NULL. 1879 * 1880 * FUTURE: Support multiple forwarding tables for IPv6. 1881 * 1882 * Returns NULL if no ifp could be found. 1883 */ 1884 static struct ifnet * 1885 in6p_lookup_mcast_ifp(const struct inpcb *in6p, 1886 const struct sockaddr_in6 *gsin6) 1887 { 1888 struct nhop6_basic nh6; 1889 struct in6_addr dst; 1890 uint32_t scopeid; 1891 uint32_t fibnum; 1892 1893 KASSERT(in6p->inp_vflag & INP_IPV6, 1894 ("%s: not INP_IPV6 inpcb", __func__)); 1895 KASSERT(gsin6->sin6_family == AF_INET6, 1896 ("%s: not AF_INET6 group", __func__)); 1897 1898 in6_splitscope(&gsin6->sin6_addr, &dst, &scopeid); 1899 fibnum = in6p ? in6p->inp_inc.inc_fibnum : RT_DEFAULT_FIB; 1900 if (fib6_lookup_nh_basic(fibnum, &dst, scopeid, 0, 0, &nh6) != 0) 1901 return (NULL); 1902 1903 return (nh6.nh_ifp); 1904 } 1905 1906 /* 1907 * Join an IPv6 multicast group, possibly with a source. 1908 * 1909 * FIXME: The KAME use of the unspecified address (::) 1910 * to join *all* multicast groups is currently unsupported. 1911 */ 1912 static int 1913 in6p_join_group(struct inpcb *inp, struct sockopt *sopt) 1914 { 1915 struct group_source_req gsr; 1916 sockunion_t *gsa, *ssa; 1917 struct ifnet *ifp; 1918 struct in6_mfilter *imf; 1919 struct ip6_moptions *imo; 1920 struct in6_multi *inm; 1921 struct in6_msource *lims; 1922 size_t idx; 1923 int error, is_new; 1924 1925 ifp = NULL; 1926 imf = NULL; 1927 lims = NULL; 1928 error = 0; 1929 is_new = 0; 1930 1931 memset(&gsr, 0, sizeof(struct group_source_req)); 1932 gsa = (sockunion_t *)&gsr.gsr_group; 1933 gsa->ss.ss_family = AF_UNSPEC; 1934 ssa = (sockunion_t *)&gsr.gsr_source; 1935 ssa->ss.ss_family = AF_UNSPEC; 1936 1937 /* 1938 * Chew everything into struct group_source_req. 1939 * Overwrite the port field if present, as the sockaddr 1940 * being copied in may be matched with a binary comparison. 1941 * Ignore passed-in scope ID. 1942 */ 1943 switch (sopt->sopt_name) { 1944 case IPV6_JOIN_GROUP: { 1945 struct ipv6_mreq mreq; 1946 1947 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 1948 sizeof(struct ipv6_mreq)); 1949 if (error) 1950 return (error); 1951 1952 gsa->sin6.sin6_family = AF_INET6; 1953 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 1954 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 1955 1956 if (mreq.ipv6mr_interface == 0) { 1957 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 1958 } else { 1959 if (V_if_index < mreq.ipv6mr_interface) 1960 return (EADDRNOTAVAIL); 1961 ifp = ifnet_byindex(mreq.ipv6mr_interface); 1962 } 1963 CTR3(KTR_MLD, "%s: ipv6mr_interface = %d, ifp = %p", 1964 __func__, mreq.ipv6mr_interface, ifp); 1965 } break; 1966 1967 case MCAST_JOIN_GROUP: 1968 case MCAST_JOIN_SOURCE_GROUP: 1969 if (sopt->sopt_name == MCAST_JOIN_GROUP) { 1970 error = sooptcopyin(sopt, &gsr, 1971 sizeof(struct group_req), 1972 sizeof(struct group_req)); 1973 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1974 error = sooptcopyin(sopt, &gsr, 1975 sizeof(struct group_source_req), 1976 sizeof(struct group_source_req)); 1977 } 1978 if (error) 1979 return (error); 1980 1981 if (gsa->sin6.sin6_family != AF_INET6 || 1982 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1983 return (EINVAL); 1984 1985 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1986 if (ssa->sin6.sin6_family != AF_INET6 || 1987 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1988 return (EINVAL); 1989 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 1990 return (EINVAL); 1991 /* 1992 * TODO: Validate embedded scope ID in source 1993 * list entry against passed-in ifp, if and only 1994 * if source list filter entry is iface or node local. 1995 */ 1996 in6_clearscope(&ssa->sin6.sin6_addr); 1997 ssa->sin6.sin6_port = 0; 1998 ssa->sin6.sin6_scope_id = 0; 1999 } 2000 2001 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 2002 return (EADDRNOTAVAIL); 2003 ifp = ifnet_byindex(gsr.gsr_interface); 2004 break; 2005 2006 default: 2007 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 2008 __func__, sopt->sopt_name); 2009 return (EOPNOTSUPP); 2010 break; 2011 } 2012 2013 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2014 return (EINVAL); 2015 2016 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) 2017 return (EADDRNOTAVAIL); 2018 2019 gsa->sin6.sin6_port = 0; 2020 gsa->sin6.sin6_scope_id = 0; 2021 2022 /* 2023 * Always set the scope zone ID on memberships created from userland. 2024 * Use the passed-in ifp to do this. 2025 * XXX The in6_setscope() return value is meaningless. 2026 * XXX SCOPE6_LOCK() is taken by in6_setscope(). 2027 */ 2028 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2029 2030 imo = in6p_findmoptions(inp); 2031 idx = im6o_match_group(imo, ifp, &gsa->sa); 2032 if (idx == -1) { 2033 is_new = 1; 2034 } else { 2035 inm = imo->im6o_membership[idx]; 2036 imf = &imo->im6o_mfilters[idx]; 2037 if (ssa->ss.ss_family != AF_UNSPEC) { 2038 /* 2039 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership 2040 * is an error. On an existing inclusive membership, 2041 * it just adds the source to the filter list. 2042 */ 2043 if (imf->im6f_st[1] != MCAST_INCLUDE) { 2044 error = EINVAL; 2045 goto out_in6p_locked; 2046 } 2047 /* 2048 * Throw out duplicates. 2049 * 2050 * XXX FIXME: This makes a naive assumption that 2051 * even if entries exist for *ssa in this imf, 2052 * they will be rejected as dupes, even if they 2053 * are not valid in the current mode (in-mode). 2054 * 2055 * in6_msource is transactioned just as for anything 2056 * else in SSM -- but note naive use of in6m_graft() 2057 * below for allocating new filter entries. 2058 * 2059 * This is only an issue if someone mixes the 2060 * full-state SSM API with the delta-based API, 2061 * which is discouraged in the relevant RFCs. 2062 */ 2063 lims = im6o_match_source(imo, idx, &ssa->sa); 2064 if (lims != NULL /*&& 2065 lims->im6sl_st[1] == MCAST_INCLUDE*/) { 2066 error = EADDRNOTAVAIL; 2067 goto out_in6p_locked; 2068 } 2069 } else { 2070 /* 2071 * MCAST_JOIN_GROUP alone, on any existing membership, 2072 * is rejected, to stop the same inpcb tying up 2073 * multiple refs to the in_multi. 2074 * On an existing inclusive membership, this is also 2075 * an error; if you want to change filter mode, 2076 * you must use the userland API setsourcefilter(). 2077 * XXX We don't reject this for imf in UNDEFINED 2078 * state at t1, because allocation of a filter 2079 * is atomic with allocation of a membership. 2080 */ 2081 error = EINVAL; 2082 goto out_in6p_locked; 2083 } 2084 } 2085 2086 /* 2087 * Begin state merge transaction at socket layer. 2088 */ 2089 INP_WLOCK_ASSERT(inp); 2090 2091 if (is_new) { 2092 if (imo->im6o_num_memberships == imo->im6o_max_memberships) { 2093 error = im6o_grow(imo); 2094 if (error) 2095 goto out_in6p_locked; 2096 } 2097 /* 2098 * Allocate the new slot upfront so we can deal with 2099 * grafting the new source filter in same code path 2100 * as for join-source on existing membership. 2101 */ 2102 idx = imo->im6o_num_memberships; 2103 imo->im6o_membership[idx] = NULL; 2104 imo->im6o_num_memberships++; 2105 KASSERT(imo->im6o_mfilters != NULL, 2106 ("%s: im6f_mfilters vector was not allocated", __func__)); 2107 imf = &imo->im6o_mfilters[idx]; 2108 KASSERT(RB_EMPTY(&imf->im6f_sources), 2109 ("%s: im6f_sources not empty", __func__)); 2110 } 2111 2112 /* 2113 * Graft new source into filter list for this inpcb's 2114 * membership of the group. The in6_multi may not have 2115 * been allocated yet if this is a new membership, however, 2116 * the in_mfilter slot will be allocated and must be initialized. 2117 * 2118 * Note: Grafting of exclusive mode filters doesn't happen 2119 * in this path. 2120 * XXX: Should check for non-NULL lims (node exists but may 2121 * not be in-mode) for interop with full-state API. 2122 */ 2123 if (ssa->ss.ss_family != AF_UNSPEC) { 2124 /* Membership starts in IN mode */ 2125 if (is_new) { 2126 CTR1(KTR_MLD, "%s: new join w/source", __func__); 2127 im6f_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE); 2128 } else { 2129 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 2130 } 2131 lims = im6f_graft(imf, MCAST_INCLUDE, &ssa->sin6); 2132 if (lims == NULL) { 2133 CTR1(KTR_MLD, "%s: merge imf state failed", 2134 __func__); 2135 error = ENOMEM; 2136 goto out_im6o_free; 2137 } 2138 } else { 2139 /* No address specified; Membership starts in EX mode */ 2140 if (is_new) { 2141 CTR1(KTR_MLD, "%s: new join w/o source", __func__); 2142 im6f_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE); 2143 } 2144 } 2145 2146 /* 2147 * Begin state merge transaction at MLD layer. 2148 */ 2149 in_pcbref(inp); 2150 INP_WUNLOCK(inp); 2151 IN6_MULTI_LOCK(); 2152 2153 if (is_new) { 2154 error = in6_joingroup_locked(ifp, &gsa->sin6.sin6_addr, imf, 2155 &inm, 0); 2156 if (error) { 2157 IN6_MULTI_UNLOCK(); 2158 goto out_im6o_free; 2159 } 2160 imo->im6o_membership[idx] = inm; 2161 } else { 2162 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2163 IN6_MULTI_LIST_LOCK(); 2164 error = in6m_merge(inm, imf); 2165 if (error) 2166 CTR1(KTR_MLD, "%s: failed to merge inm state", 2167 __func__); 2168 else { 2169 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2170 error = mld_change_state(inm, 0); 2171 if (error) 2172 CTR1(KTR_MLD, "%s: failed mld downcall", 2173 __func__); 2174 } 2175 IN6_MULTI_LIST_UNLOCK(); 2176 } 2177 2178 IN6_MULTI_UNLOCK(); 2179 INP_WLOCK(inp); 2180 if (in_pcbrele_wlocked(inp)) 2181 return (ENXIO); 2182 if (error) { 2183 im6f_rollback(imf); 2184 if (is_new) 2185 im6f_purge(imf); 2186 else 2187 im6f_reap(imf); 2188 } else { 2189 im6f_commit(imf); 2190 } 2191 2192 out_im6o_free: 2193 if (error && is_new) { 2194 imo->im6o_membership[idx] = NULL; 2195 --imo->im6o_num_memberships; 2196 } 2197 2198 out_in6p_locked: 2199 INP_WUNLOCK(inp); 2200 return (error); 2201 } 2202 2203 /* 2204 * Leave an IPv6 multicast group on an inpcb, possibly with a source. 2205 */ 2206 static int 2207 in6p_leave_group(struct inpcb *inp, struct sockopt *sopt) 2208 { 2209 struct ipv6_mreq mreq; 2210 struct group_source_req gsr; 2211 sockunion_t *gsa, *ssa; 2212 struct ifnet *ifp; 2213 struct in6_mfilter *imf; 2214 struct ip6_moptions *imo; 2215 struct in6_msource *ims; 2216 struct in6_multi *inm; 2217 uint32_t ifindex; 2218 size_t idx; 2219 int error, is_final; 2220 #ifdef KTR 2221 char ip6tbuf[INET6_ADDRSTRLEN]; 2222 #endif 2223 2224 ifp = NULL; 2225 ifindex = 0; 2226 error = 0; 2227 is_final = 1; 2228 2229 memset(&gsr, 0, sizeof(struct group_source_req)); 2230 gsa = (sockunion_t *)&gsr.gsr_group; 2231 gsa->ss.ss_family = AF_UNSPEC; 2232 ssa = (sockunion_t *)&gsr.gsr_source; 2233 ssa->ss.ss_family = AF_UNSPEC; 2234 2235 /* 2236 * Chew everything passed in up into a struct group_source_req 2237 * as that is easier to process. 2238 * Note: Any embedded scope ID in the multicast group passed 2239 * in by userland is ignored, the interface index is the recommended 2240 * mechanism to specify an interface; see below. 2241 */ 2242 switch (sopt->sopt_name) { 2243 case IPV6_LEAVE_GROUP: 2244 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 2245 sizeof(struct ipv6_mreq)); 2246 if (error) 2247 return (error); 2248 gsa->sin6.sin6_family = AF_INET6; 2249 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 2250 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 2251 gsa->sin6.sin6_port = 0; 2252 gsa->sin6.sin6_scope_id = 0; 2253 ifindex = mreq.ipv6mr_interface; 2254 break; 2255 2256 case MCAST_LEAVE_GROUP: 2257 case MCAST_LEAVE_SOURCE_GROUP: 2258 if (sopt->sopt_name == MCAST_LEAVE_GROUP) { 2259 error = sooptcopyin(sopt, &gsr, 2260 sizeof(struct group_req), 2261 sizeof(struct group_req)); 2262 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2263 error = sooptcopyin(sopt, &gsr, 2264 sizeof(struct group_source_req), 2265 sizeof(struct group_source_req)); 2266 } 2267 if (error) 2268 return (error); 2269 2270 if (gsa->sin6.sin6_family != AF_INET6 || 2271 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2272 return (EINVAL); 2273 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2274 if (ssa->sin6.sin6_family != AF_INET6 || 2275 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2276 return (EINVAL); 2277 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 2278 return (EINVAL); 2279 /* 2280 * TODO: Validate embedded scope ID in source 2281 * list entry against passed-in ifp, if and only 2282 * if source list filter entry is iface or node local. 2283 */ 2284 in6_clearscope(&ssa->sin6.sin6_addr); 2285 } 2286 gsa->sin6.sin6_port = 0; 2287 gsa->sin6.sin6_scope_id = 0; 2288 ifindex = gsr.gsr_interface; 2289 break; 2290 2291 default: 2292 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 2293 __func__, sopt->sopt_name); 2294 return (EOPNOTSUPP); 2295 break; 2296 } 2297 2298 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2299 return (EINVAL); 2300 2301 /* 2302 * Validate interface index if provided. If no interface index 2303 * was provided separately, attempt to look the membership up 2304 * from the default scope as a last resort to disambiguate 2305 * the membership we are being asked to leave. 2306 * XXX SCOPE6 lock potentially taken here. 2307 */ 2308 if (ifindex != 0) { 2309 if (V_if_index < ifindex) 2310 return (EADDRNOTAVAIL); 2311 ifp = ifnet_byindex(ifindex); 2312 if (ifp == NULL) 2313 return (EADDRNOTAVAIL); 2314 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2315 } else { 2316 error = sa6_embedscope(&gsa->sin6, V_ip6_use_defzone); 2317 if (error) 2318 return (EADDRNOTAVAIL); 2319 /* 2320 * Some badly behaved applications don't pass an ifindex 2321 * or a scope ID, which is an API violation. In this case, 2322 * perform a lookup as per a v6 join. 2323 * 2324 * XXX For now, stomp on zone ID for the corner case. 2325 * This is not the 'KAME way', but we need to see the ifp 2326 * directly until such time as this implementation is 2327 * refactored, assuming the scope IDs are the way to go. 2328 */ 2329 ifindex = ntohs(gsa->sin6.sin6_addr.s6_addr16[1]); 2330 if (ifindex == 0) { 2331 CTR2(KTR_MLD, "%s: warning: no ifindex, looking up " 2332 "ifp for group %s.", __func__, 2333 ip6_sprintf(ip6tbuf, &gsa->sin6.sin6_addr)); 2334 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 2335 } else { 2336 ifp = ifnet_byindex(ifindex); 2337 } 2338 if (ifp == NULL) 2339 return (EADDRNOTAVAIL); 2340 } 2341 2342 CTR2(KTR_MLD, "%s: ifp = %p", __func__, ifp); 2343 KASSERT(ifp != NULL, ("%s: ifp did not resolve", __func__)); 2344 2345 /* 2346 * Find the membership in the membership array. 2347 */ 2348 imo = in6p_findmoptions(inp); 2349 idx = im6o_match_group(imo, ifp, &gsa->sa); 2350 if (idx == -1) { 2351 error = EADDRNOTAVAIL; 2352 goto out_in6p_locked; 2353 } 2354 inm = imo->im6o_membership[idx]; 2355 imf = &imo->im6o_mfilters[idx]; 2356 2357 if (ssa->ss.ss_family != AF_UNSPEC) 2358 is_final = 0; 2359 2360 /* 2361 * Begin state merge transaction at socket layer. 2362 */ 2363 INP_WLOCK_ASSERT(inp); 2364 2365 /* 2366 * If we were instructed only to leave a given source, do so. 2367 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. 2368 */ 2369 if (is_final) { 2370 im6f_leave(imf); 2371 } else { 2372 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 2373 error = EADDRNOTAVAIL; 2374 goto out_in6p_locked; 2375 } 2376 ims = im6o_match_source(imo, idx, &ssa->sa); 2377 if (ims == NULL) { 2378 CTR3(KTR_MLD, "%s: source %p %spresent", __func__, 2379 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 2380 "not "); 2381 error = EADDRNOTAVAIL; 2382 goto out_in6p_locked; 2383 } 2384 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 2385 error = im6f_prune(imf, &ssa->sin6); 2386 if (error) { 2387 CTR1(KTR_MLD, "%s: merge imf state failed", 2388 __func__); 2389 goto out_in6p_locked; 2390 } 2391 } 2392 2393 /* 2394 * Begin state merge transaction at MLD layer. 2395 */ 2396 in_pcbref(inp); 2397 INP_WUNLOCK(inp); 2398 IN6_MULTI_LOCK(); 2399 2400 if (is_final) { 2401 /* 2402 * Give up the multicast address record to which 2403 * the membership points. 2404 */ 2405 (void)in6_leavegroup_locked(inm, imf); 2406 } else { 2407 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2408 IN6_MULTI_LIST_LOCK(); 2409 error = in6m_merge(inm, imf); 2410 if (error) 2411 CTR1(KTR_MLD, "%s: failed to merge inm state", 2412 __func__); 2413 else { 2414 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2415 error = mld_change_state(inm, 0); 2416 if (error) 2417 CTR1(KTR_MLD, "%s: failed mld downcall", 2418 __func__); 2419 } 2420 IN6_MULTI_LIST_UNLOCK(); 2421 } 2422 2423 IN6_MULTI_UNLOCK(); 2424 INP_WLOCK(inp); 2425 if (in_pcbrele_wlocked(inp)) 2426 return (ENXIO); 2427 2428 if (error) 2429 im6f_rollback(imf); 2430 else 2431 im6f_commit(imf); 2432 2433 im6f_reap(imf); 2434 2435 if (is_final) { 2436 /* Remove the gap in the membership array. */ 2437 for (++idx; idx < imo->im6o_num_memberships; ++idx) { 2438 imo->im6o_membership[idx-1] = imo->im6o_membership[idx]; 2439 imo->im6o_mfilters[idx-1] = imo->im6o_mfilters[idx]; 2440 } 2441 imo->im6o_num_memberships--; 2442 } 2443 2444 out_in6p_locked: 2445 INP_WUNLOCK(inp); 2446 return (error); 2447 } 2448 2449 /* 2450 * Select the interface for transmitting IPv6 multicast datagrams. 2451 * 2452 * Either an instance of struct in6_addr or an instance of struct ipv6_mreqn 2453 * may be passed to this socket option. An address of in6addr_any or an 2454 * interface index of 0 is used to remove a previous selection. 2455 * When no interface is selected, one is chosen for every send. 2456 */ 2457 static int 2458 in6p_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) 2459 { 2460 struct ifnet *ifp; 2461 struct ip6_moptions *imo; 2462 u_int ifindex; 2463 int error; 2464 2465 if (sopt->sopt_valsize != sizeof(u_int)) 2466 return (EINVAL); 2467 2468 error = sooptcopyin(sopt, &ifindex, sizeof(u_int), sizeof(u_int)); 2469 if (error) 2470 return (error); 2471 if (V_if_index < ifindex) 2472 return (EINVAL); 2473 if (ifindex == 0) 2474 ifp = NULL; 2475 else { 2476 ifp = ifnet_byindex(ifindex); 2477 if (ifp == NULL) 2478 return (EINVAL); 2479 if ((ifp->if_flags & IFF_MULTICAST) == 0) 2480 return (EADDRNOTAVAIL); 2481 } 2482 imo = in6p_findmoptions(inp); 2483 imo->im6o_multicast_ifp = ifp; 2484 INP_WUNLOCK(inp); 2485 2486 return (0); 2487 } 2488 2489 /* 2490 * Atomically set source filters on a socket for an IPv6 multicast group. 2491 * 2492 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 2493 */ 2494 static int 2495 in6p_set_source_filters(struct inpcb *inp, struct sockopt *sopt) 2496 { 2497 struct __msfilterreq msfr; 2498 sockunion_t *gsa; 2499 struct ifnet *ifp; 2500 struct in6_mfilter *imf; 2501 struct ip6_moptions *imo; 2502 struct in6_multi *inm; 2503 size_t idx; 2504 int error; 2505 2506 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 2507 sizeof(struct __msfilterreq)); 2508 if (error) 2509 return (error); 2510 2511 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 2512 return (ENOBUFS); 2513 2514 if (msfr.msfr_fmode != MCAST_EXCLUDE && 2515 msfr.msfr_fmode != MCAST_INCLUDE) 2516 return (EINVAL); 2517 2518 if (msfr.msfr_group.ss_family != AF_INET6 || 2519 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 2520 return (EINVAL); 2521 2522 gsa = (sockunion_t *)&msfr.msfr_group; 2523 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2524 return (EINVAL); 2525 2526 gsa->sin6.sin6_port = 0; /* ignore port */ 2527 2528 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 2529 return (EADDRNOTAVAIL); 2530 ifp = ifnet_byindex(msfr.msfr_ifindex); 2531 if (ifp == NULL) 2532 return (EADDRNOTAVAIL); 2533 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2534 2535 /* 2536 * Take the INP write lock. 2537 * Check if this socket is a member of this group. 2538 */ 2539 imo = in6p_findmoptions(inp); 2540 idx = im6o_match_group(imo, ifp, &gsa->sa); 2541 if (idx == -1 || imo->im6o_mfilters == NULL) { 2542 error = EADDRNOTAVAIL; 2543 goto out_in6p_locked; 2544 } 2545 inm = imo->im6o_membership[idx]; 2546 imf = &imo->im6o_mfilters[idx]; 2547 2548 /* 2549 * Begin state merge transaction at socket layer. 2550 */ 2551 INP_WLOCK_ASSERT(inp); 2552 2553 imf->im6f_st[1] = msfr.msfr_fmode; 2554 2555 /* 2556 * Apply any new source filters, if present. 2557 * Make a copy of the user-space source vector so 2558 * that we may copy them with a single copyin. This 2559 * allows us to deal with page faults up-front. 2560 */ 2561 if (msfr.msfr_nsrcs > 0) { 2562 struct in6_msource *lims; 2563 struct sockaddr_in6 *psin; 2564 struct sockaddr_storage *kss, *pkss; 2565 int i; 2566 2567 INP_WUNLOCK(inp); 2568 2569 CTR2(KTR_MLD, "%s: loading %lu source list entries", 2570 __func__, (unsigned long)msfr.msfr_nsrcs); 2571 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 2572 M_TEMP, M_WAITOK); 2573 error = copyin(msfr.msfr_srcs, kss, 2574 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 2575 if (error) { 2576 free(kss, M_TEMP); 2577 return (error); 2578 } 2579 2580 INP_WLOCK(inp); 2581 2582 /* 2583 * Mark all source filters as UNDEFINED at t1. 2584 * Restore new group filter mode, as im6f_leave() 2585 * will set it to INCLUDE. 2586 */ 2587 im6f_leave(imf); 2588 imf->im6f_st[1] = msfr.msfr_fmode; 2589 2590 /* 2591 * Update socket layer filters at t1, lazy-allocating 2592 * new entries. This saves a bunch of memory at the 2593 * cost of one RB_FIND() per source entry; duplicate 2594 * entries in the msfr_nsrcs vector are ignored. 2595 * If we encounter an error, rollback transaction. 2596 * 2597 * XXX This too could be replaced with a set-symmetric 2598 * difference like loop to avoid walking from root 2599 * every time, as the key space is common. 2600 */ 2601 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { 2602 psin = (struct sockaddr_in6 *)pkss; 2603 if (psin->sin6_family != AF_INET6) { 2604 error = EAFNOSUPPORT; 2605 break; 2606 } 2607 if (psin->sin6_len != sizeof(struct sockaddr_in6)) { 2608 error = EINVAL; 2609 break; 2610 } 2611 if (IN6_IS_ADDR_MULTICAST(&psin->sin6_addr)) { 2612 error = EINVAL; 2613 break; 2614 } 2615 /* 2616 * TODO: Validate embedded scope ID in source 2617 * list entry against passed-in ifp, if and only 2618 * if source list filter entry is iface or node local. 2619 */ 2620 in6_clearscope(&psin->sin6_addr); 2621 error = im6f_get_source(imf, psin, &lims); 2622 if (error) 2623 break; 2624 lims->im6sl_st[1] = imf->im6f_st[1]; 2625 } 2626 free(kss, M_TEMP); 2627 } 2628 2629 if (error) 2630 goto out_im6f_rollback; 2631 2632 INP_WLOCK_ASSERT(inp); 2633 IN6_MULTI_LIST_LOCK(); 2634 2635 /* 2636 * Begin state merge transaction at MLD layer. 2637 */ 2638 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2639 error = in6m_merge(inm, imf); 2640 if (error) 2641 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 2642 else { 2643 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2644 error = mld_change_state(inm, 0); 2645 if (error) 2646 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 2647 } 2648 2649 IN6_MULTI_LIST_UNLOCK(); 2650 2651 out_im6f_rollback: 2652 if (error) 2653 im6f_rollback(imf); 2654 else 2655 im6f_commit(imf); 2656 2657 im6f_reap(imf); 2658 2659 out_in6p_locked: 2660 INP_WUNLOCK(inp); 2661 return (error); 2662 } 2663 2664 /* 2665 * Set the IP multicast options in response to user setsockopt(). 2666 * 2667 * Many of the socket options handled in this function duplicate the 2668 * functionality of socket options in the regular unicast API. However, 2669 * it is not possible to merge the duplicate code, because the idempotence 2670 * of the IPv6 multicast part of the BSD Sockets API must be preserved; 2671 * the effects of these options must be treated as separate and distinct. 2672 * 2673 * SMPng: XXX: Unlocked read of inp_socket believed OK. 2674 */ 2675 int 2676 ip6_setmoptions(struct inpcb *inp, struct sockopt *sopt) 2677 { 2678 struct ip6_moptions *im6o; 2679 int error; 2680 2681 error = 0; 2682 2683 /* 2684 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 2685 * or is a divert socket, reject it. 2686 */ 2687 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 2688 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 2689 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) 2690 return (EOPNOTSUPP); 2691 2692 switch (sopt->sopt_name) { 2693 case IPV6_MULTICAST_IF: 2694 error = in6p_set_multicast_if(inp, sopt); 2695 break; 2696 2697 case IPV6_MULTICAST_HOPS: { 2698 int hlim; 2699 2700 if (sopt->sopt_valsize != sizeof(int)) { 2701 error = EINVAL; 2702 break; 2703 } 2704 error = sooptcopyin(sopt, &hlim, sizeof(hlim), sizeof(int)); 2705 if (error) 2706 break; 2707 if (hlim < -1 || hlim > 255) { 2708 error = EINVAL; 2709 break; 2710 } else if (hlim == -1) { 2711 hlim = V_ip6_defmcasthlim; 2712 } 2713 im6o = in6p_findmoptions(inp); 2714 im6o->im6o_multicast_hlim = hlim; 2715 INP_WUNLOCK(inp); 2716 break; 2717 } 2718 2719 case IPV6_MULTICAST_LOOP: { 2720 u_int loop; 2721 2722 /* 2723 * Set the loopback flag for outgoing multicast packets. 2724 * Must be zero or one. 2725 */ 2726 if (sopt->sopt_valsize != sizeof(u_int)) { 2727 error = EINVAL; 2728 break; 2729 } 2730 error = sooptcopyin(sopt, &loop, sizeof(u_int), sizeof(u_int)); 2731 if (error) 2732 break; 2733 if (loop > 1) { 2734 error = EINVAL; 2735 break; 2736 } 2737 im6o = in6p_findmoptions(inp); 2738 im6o->im6o_multicast_loop = loop; 2739 INP_WUNLOCK(inp); 2740 break; 2741 } 2742 2743 case IPV6_JOIN_GROUP: 2744 case MCAST_JOIN_GROUP: 2745 case MCAST_JOIN_SOURCE_GROUP: 2746 error = in6p_join_group(inp, sopt); 2747 break; 2748 2749 case IPV6_LEAVE_GROUP: 2750 case MCAST_LEAVE_GROUP: 2751 case MCAST_LEAVE_SOURCE_GROUP: 2752 error = in6p_leave_group(inp, sopt); 2753 break; 2754 2755 case MCAST_BLOCK_SOURCE: 2756 case MCAST_UNBLOCK_SOURCE: 2757 error = in6p_block_unblock_source(inp, sopt); 2758 break; 2759 2760 case IPV6_MSFILTER: 2761 error = in6p_set_source_filters(inp, sopt); 2762 break; 2763 2764 default: 2765 error = EOPNOTSUPP; 2766 break; 2767 } 2768 2769 INP_UNLOCK_ASSERT(inp); 2770 2771 return (error); 2772 } 2773 2774 /* 2775 * Expose MLD's multicast filter mode and source list(s) to userland, 2776 * keyed by (ifindex, group). 2777 * The filter mode is written out as a uint32_t, followed by 2778 * 0..n of struct in6_addr. 2779 * For use by ifmcstat(8). 2780 * SMPng: NOTE: unlocked read of ifindex space. 2781 */ 2782 static int 2783 sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS) 2784 { 2785 struct in6_addr mcaddr; 2786 struct in6_addr src; 2787 struct ifnet *ifp; 2788 struct ifmultiaddr *ifma; 2789 struct in6_multi *inm; 2790 struct ip6_msource *ims; 2791 int *name; 2792 int retval; 2793 u_int namelen; 2794 uint32_t fmode, ifindex; 2795 #ifdef KTR 2796 char ip6tbuf[INET6_ADDRSTRLEN]; 2797 #endif 2798 2799 name = (int *)arg1; 2800 namelen = arg2; 2801 2802 if (req->newptr != NULL) 2803 return (EPERM); 2804 2805 /* int: ifindex + 4 * 32 bits of IPv6 address */ 2806 if (namelen != 5) 2807 return (EINVAL); 2808 2809 ifindex = name[0]; 2810 if (ifindex <= 0 || ifindex > V_if_index) { 2811 CTR2(KTR_MLD, "%s: ifindex %u out of range", 2812 __func__, ifindex); 2813 return (ENOENT); 2814 } 2815 2816 memcpy(&mcaddr, &name[1], sizeof(struct in6_addr)); 2817 if (!IN6_IS_ADDR_MULTICAST(&mcaddr)) { 2818 CTR2(KTR_MLD, "%s: group %s is not multicast", 2819 __func__, ip6_sprintf(ip6tbuf, &mcaddr)); 2820 return (EINVAL); 2821 } 2822 2823 ifp = ifnet_byindex(ifindex); 2824 if (ifp == NULL) { 2825 CTR2(KTR_MLD, "%s: no ifp for ifindex %u", 2826 __func__, ifindex); 2827 return (ENOENT); 2828 } 2829 /* 2830 * Internal MLD lookups require that scope/zone ID is set. 2831 */ 2832 (void)in6_setscope(&mcaddr, ifp, NULL); 2833 2834 retval = sysctl_wire_old_buffer(req, 2835 sizeof(uint32_t) + (in6_mcast_maxgrpsrc * sizeof(struct in6_addr))); 2836 if (retval) 2837 return (retval); 2838 2839 IN6_MULTI_LOCK(); 2840 IN6_MULTI_LIST_LOCK(); 2841 IF_ADDR_RLOCK(ifp); 2842 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2843 if (ifma->ifma_addr->sa_family != AF_INET6 || 2844 ifma->ifma_protospec == NULL) 2845 continue; 2846 inm = (struct in6_multi *)ifma->ifma_protospec; 2847 if (!IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, &mcaddr)) 2848 continue; 2849 fmode = inm->in6m_st[1].iss_fmode; 2850 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); 2851 if (retval != 0) 2852 break; 2853 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 2854 CTR2(KTR_MLD, "%s: visit node %p", __func__, ims); 2855 /* 2856 * Only copy-out sources which are in-mode. 2857 */ 2858 if (fmode != im6s_get_mode(inm, ims, 1)) { 2859 CTR1(KTR_MLD, "%s: skip non-in-mode", 2860 __func__); 2861 continue; 2862 } 2863 src = ims->im6s_addr; 2864 retval = SYSCTL_OUT(req, &src, 2865 sizeof(struct in6_addr)); 2866 if (retval != 0) 2867 break; 2868 } 2869 } 2870 IF_ADDR_RUNLOCK(ifp); 2871 2872 IN6_MULTI_LIST_UNLOCK(); 2873 IN6_MULTI_UNLOCK(); 2874 2875 return (retval); 2876 } 2877 2878 #ifdef KTR 2879 2880 static const char *in6m_modestrs[] = { "un", "in", "ex" }; 2881 2882 static const char * 2883 in6m_mode_str(const int mode) 2884 { 2885 2886 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) 2887 return (in6m_modestrs[mode]); 2888 return ("??"); 2889 } 2890 2891 static const char *in6m_statestrs[] = { 2892 "not-member", 2893 "silent", 2894 "idle", 2895 "lazy", 2896 "sleeping", 2897 "awakening", 2898 "query-pending", 2899 "sg-query-pending", 2900 "leaving" 2901 }; 2902 2903 static const char * 2904 in6m_state_str(const int state) 2905 { 2906 2907 if (state >= MLD_NOT_MEMBER && state <= MLD_LEAVING_MEMBER) 2908 return (in6m_statestrs[state]); 2909 return ("??"); 2910 } 2911 2912 /* 2913 * Dump an in6_multi structure to the console. 2914 */ 2915 void 2916 in6m_print(const struct in6_multi *inm) 2917 { 2918 int t; 2919 char ip6tbuf[INET6_ADDRSTRLEN]; 2920 2921 if ((ktr_mask & KTR_MLD) == 0) 2922 return; 2923 2924 printf("%s: --- begin in6m %p ---\n", __func__, inm); 2925 printf("addr %s ifp %p(%s) ifma %p\n", 2926 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2927 inm->in6m_ifp, 2928 if_name(inm->in6m_ifp), 2929 inm->in6m_ifma); 2930 printf("timer %u state %s refcount %u scq.len %u\n", 2931 inm->in6m_timer, 2932 in6m_state_str(inm->in6m_state), 2933 inm->in6m_refcount, 2934 mbufq_len(&inm->in6m_scq)); 2935 printf("mli %p nsrc %lu sctimer %u scrv %u\n", 2936 inm->in6m_mli, 2937 inm->in6m_nsrc, 2938 inm->in6m_sctimer, 2939 inm->in6m_scrv); 2940 for (t = 0; t < 2; t++) { 2941 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, 2942 in6m_mode_str(inm->in6m_st[t].iss_fmode), 2943 inm->in6m_st[t].iss_asm, 2944 inm->in6m_st[t].iss_ex, 2945 inm->in6m_st[t].iss_in, 2946 inm->in6m_st[t].iss_rec); 2947 } 2948 printf("%s: --- end in6m %p ---\n", __func__, inm); 2949 } 2950 2951 #else /* !KTR */ 2952 2953 void 2954 in6m_print(const struct in6_multi *inm) 2955 { 2956 2957 } 2958 2959 #endif /* KTR */ 2960