1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2009 Bruce Simpson. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote 16 * products derived from this software without specific prior written 17 * permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * IPv6 multicast socket, group, and socket option processing module. 34 * Normative references: RFC 2292, RFC 3492, RFC 3542, RFC 3678, RFC 3810. 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_inet6.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/gtaskqueue.h> 45 #include <sys/kernel.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/protosw.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/sysctl.h> 52 #include <sys/priv.h> 53 #include <sys/ktr.h> 54 #include <sys/tree.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <net/vnet.h> 61 62 63 #include <netinet/in.h> 64 #include <netinet/udp.h> 65 #include <netinet/in_var.h> 66 #include <netinet/ip_var.h> 67 #include <netinet/udp_var.h> 68 #include <netinet6/in6_fib.h> 69 #include <netinet6/in6_var.h> 70 #include <netinet/ip6.h> 71 #include <netinet/icmp6.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet/in_pcb.h> 74 #include <netinet/tcp_var.h> 75 #include <netinet6/nd6.h> 76 #include <netinet6/mld6_var.h> 77 #include <netinet6/scope6_var.h> 78 79 #ifndef KTR_MLD 80 #define KTR_MLD KTR_INET6 81 #endif 82 83 #ifndef __SOCKUNION_DECLARED 84 union sockunion { 85 struct sockaddr_storage ss; 86 struct sockaddr sa; 87 struct sockaddr_dl sdl; 88 struct sockaddr_in6 sin6; 89 }; 90 typedef union sockunion sockunion_t; 91 #define __SOCKUNION_DECLARED 92 #endif /* __SOCKUNION_DECLARED */ 93 94 static MALLOC_DEFINE(M_IN6MFILTER, "in6_mfilter", 95 "IPv6 multicast PCB-layer source filter"); 96 MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "IPv6 multicast group"); 97 static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "IPv6 multicast options"); 98 static MALLOC_DEFINE(M_IP6MSOURCE, "ip6_msource", 99 "IPv6 multicast MLD-layer source filter"); 100 101 RB_GENERATE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp); 102 103 /* 104 * Locking: 105 * - Lock order is: Giant, INP_WLOCK, IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 106 * - The IF_ADDR_LOCK is implicitly taken by in6m_lookup() earlier, however 107 * it can be taken by code in net/if.c also. 108 * - ip6_moptions and in6_mfilter are covered by the INP_WLOCK. 109 * 110 * struct in6_multi is covered by IN6_MULTI_LOCK. There isn't strictly 111 * any need for in6_multi itself to be virtualized -- it is bound to an ifp 112 * anyway no matter what happens. 113 */ 114 struct mtx in6_multi_list_mtx; 115 MTX_SYSINIT(in6_multi_mtx, &in6_multi_list_mtx, "in6_multi_list_mtx", MTX_DEF); 116 117 struct mtx in6_multi_free_mtx; 118 MTX_SYSINIT(in6_multi_free_mtx, &in6_multi_free_mtx, "in6_multi_free_mtx", MTX_DEF); 119 120 struct sx in6_multi_sx; 121 SX_SYSINIT(in6_multi_sx, &in6_multi_sx, "in6_multi_sx"); 122 123 124 125 static void im6f_commit(struct in6_mfilter *); 126 static int im6f_get_source(struct in6_mfilter *imf, 127 const struct sockaddr_in6 *psin, 128 struct in6_msource **); 129 static struct in6_msource * 130 im6f_graft(struct in6_mfilter *, const uint8_t, 131 const struct sockaddr_in6 *); 132 static void im6f_leave(struct in6_mfilter *); 133 static int im6f_prune(struct in6_mfilter *, const struct sockaddr_in6 *); 134 static void im6f_purge(struct in6_mfilter *); 135 static void im6f_rollback(struct in6_mfilter *); 136 static void im6f_reap(struct in6_mfilter *); 137 static int im6o_grow(struct ip6_moptions *); 138 static size_t im6o_match_group(const struct ip6_moptions *, 139 const struct ifnet *, const struct sockaddr *); 140 static struct in6_msource * 141 im6o_match_source(const struct ip6_moptions *, const size_t, 142 const struct sockaddr *); 143 static void im6s_merge(struct ip6_msource *ims, 144 const struct in6_msource *lims, const int rollback); 145 static int in6_getmulti(struct ifnet *, const struct in6_addr *, 146 struct in6_multi **); 147 static int in6m_get_source(struct in6_multi *inm, 148 const struct in6_addr *addr, const int noalloc, 149 struct ip6_msource **pims); 150 #ifdef KTR 151 static int in6m_is_ifp_detached(const struct in6_multi *); 152 #endif 153 static int in6m_merge(struct in6_multi *, /*const*/ struct in6_mfilter *); 154 static void in6m_purge(struct in6_multi *); 155 static void in6m_reap(struct in6_multi *); 156 static struct ip6_moptions * 157 in6p_findmoptions(struct inpcb *); 158 static int in6p_get_source_filters(struct inpcb *, struct sockopt *); 159 static int in6p_join_group(struct inpcb *, struct sockopt *); 160 static int in6p_leave_group(struct inpcb *, struct sockopt *); 161 static struct ifnet * 162 in6p_lookup_mcast_ifp(const struct inpcb *, 163 const struct sockaddr_in6 *); 164 static int in6p_block_unblock_source(struct inpcb *, struct sockopt *); 165 static int in6p_set_multicast_if(struct inpcb *, struct sockopt *); 166 static int in6p_set_source_filters(struct inpcb *, struct sockopt *); 167 static int sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS); 168 169 SYSCTL_DECL(_net_inet6_ip6); /* XXX Not in any common header. */ 170 171 static SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, mcast, CTLFLAG_RW, 0, 172 "IPv6 multicast"); 173 174 static u_long in6_mcast_maxgrpsrc = IPV6_MAX_GROUP_SRC_FILTER; 175 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxgrpsrc, 176 CTLFLAG_RWTUN, &in6_mcast_maxgrpsrc, 0, 177 "Max source filters per group"); 178 179 static u_long in6_mcast_maxsocksrc = IPV6_MAX_SOCK_SRC_FILTER; 180 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxsocksrc, 181 CTLFLAG_RWTUN, &in6_mcast_maxsocksrc, 0, 182 "Max source filters per socket"); 183 184 /* TODO Virtualize this switch. */ 185 int in6_mcast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 186 SYSCTL_INT(_net_inet6_ip6_mcast, OID_AUTO, loop, CTLFLAG_RWTUN, 187 &in6_mcast_loop, 0, "Loopback multicast datagrams by default"); 188 189 static SYSCTL_NODE(_net_inet6_ip6_mcast, OID_AUTO, filters, 190 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip6_mcast_filters, 191 "Per-interface stack-wide source filters"); 192 193 int ifma6_restart = 0; 194 #ifdef KTR 195 /* 196 * Inline function which wraps assertions for a valid ifp. 197 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp 198 * is detached. 199 */ 200 static int __inline 201 in6m_is_ifp_detached(const struct in6_multi *inm) 202 { 203 struct ifnet *ifp; 204 205 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 206 ifp = inm->in6m_ifma->ifma_ifp; 207 if (ifp != NULL) { 208 /* 209 * Sanity check that network-layer notion of ifp is the 210 * same as that of link-layer. 211 */ 212 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 213 } 214 215 return (ifp == NULL); 216 } 217 #endif 218 219 /* 220 * Initialize an in6_mfilter structure to a known state at t0, t1 221 * with an empty source filter list. 222 */ 223 static __inline void 224 im6f_init(struct in6_mfilter *imf, const int st0, const int st1) 225 { 226 memset(imf, 0, sizeof(struct in6_mfilter)); 227 RB_INIT(&imf->im6f_sources); 228 imf->im6f_st[0] = st0; 229 imf->im6f_st[1] = st1; 230 } 231 232 /* 233 * Resize the ip6_moptions vector to the next power-of-two minus 1. 234 * May be called with locks held; do not sleep. 235 */ 236 static int 237 im6o_grow(struct ip6_moptions *imo) 238 { 239 struct in6_multi **nmships; 240 struct in6_multi **omships; 241 struct in6_mfilter *nmfilters; 242 struct in6_mfilter *omfilters; 243 size_t idx; 244 size_t newmax; 245 size_t oldmax; 246 247 nmships = NULL; 248 nmfilters = NULL; 249 omships = imo->im6o_membership; 250 omfilters = imo->im6o_mfilters; 251 oldmax = imo->im6o_max_memberships; 252 newmax = ((oldmax + 1) * 2) - 1; 253 254 if (newmax <= IPV6_MAX_MEMBERSHIPS) { 255 nmships = (struct in6_multi **)realloc(omships, 256 sizeof(struct in6_multi *) * newmax, M_IP6MOPTS, M_NOWAIT); 257 nmfilters = (struct in6_mfilter *)realloc(omfilters, 258 sizeof(struct in6_mfilter) * newmax, M_IN6MFILTER, 259 M_NOWAIT); 260 if (nmships != NULL && nmfilters != NULL) { 261 /* Initialize newly allocated source filter heads. */ 262 for (idx = oldmax; idx < newmax; idx++) { 263 im6f_init(&nmfilters[idx], MCAST_UNDEFINED, 264 MCAST_EXCLUDE); 265 } 266 imo->im6o_max_memberships = newmax; 267 imo->im6o_membership = nmships; 268 imo->im6o_mfilters = nmfilters; 269 } 270 } 271 272 if (nmships == NULL || nmfilters == NULL) { 273 if (nmships != NULL) 274 free(nmships, M_IP6MOPTS); 275 if (nmfilters != NULL) 276 free(nmfilters, M_IN6MFILTER); 277 return (ETOOMANYREFS); 278 } 279 280 return (0); 281 } 282 283 /* 284 * Find an IPv6 multicast group entry for this ip6_moptions instance 285 * which matches the specified group, and optionally an interface. 286 * Return its index into the array, or -1 if not found. 287 */ 288 static size_t 289 im6o_match_group(const struct ip6_moptions *imo, const struct ifnet *ifp, 290 const struct sockaddr *group) 291 { 292 const struct sockaddr_in6 *gsin6; 293 struct in6_multi **pinm; 294 int idx; 295 int nmships; 296 297 gsin6 = (const struct sockaddr_in6 *)group; 298 299 /* The im6o_membership array may be lazy allocated. */ 300 if (imo->im6o_membership == NULL || imo->im6o_num_memberships == 0) 301 return (-1); 302 303 nmships = imo->im6o_num_memberships; 304 pinm = &imo->im6o_membership[0]; 305 for (idx = 0; idx < nmships; idx++, pinm++) { 306 if (*pinm == NULL) 307 continue; 308 if ((ifp == NULL || ((*pinm)->in6m_ifp == ifp)) && 309 IN6_ARE_ADDR_EQUAL(&(*pinm)->in6m_addr, 310 &gsin6->sin6_addr)) { 311 break; 312 } 313 } 314 if (idx >= nmships) 315 idx = -1; 316 317 return (idx); 318 } 319 320 /* 321 * Find an IPv6 multicast source entry for this imo which matches 322 * the given group index for this socket, and source address. 323 * 324 * XXX TODO: The scope ID, if present in src, is stripped before 325 * any comparison. We SHOULD enforce scope/zone checks where the source 326 * filter entry has a link scope. 327 * 328 * NOTE: This does not check if the entry is in-mode, merely if 329 * it exists, which may not be the desired behaviour. 330 */ 331 static struct in6_msource * 332 im6o_match_source(const struct ip6_moptions *imo, const size_t gidx, 333 const struct sockaddr *src) 334 { 335 struct ip6_msource find; 336 struct in6_mfilter *imf; 337 struct ip6_msource *ims; 338 const sockunion_t *psa; 339 340 KASSERT(src->sa_family == AF_INET6, ("%s: !AF_INET6", __func__)); 341 KASSERT(gidx != -1 && gidx < imo->im6o_num_memberships, 342 ("%s: invalid index %d\n", __func__, (int)gidx)); 343 344 /* The im6o_mfilters array may be lazy allocated. */ 345 if (imo->im6o_mfilters == NULL) 346 return (NULL); 347 imf = &imo->im6o_mfilters[gidx]; 348 349 psa = (const sockunion_t *)src; 350 find.im6s_addr = psa->sin6.sin6_addr; 351 in6_clearscope(&find.im6s_addr); /* XXX */ 352 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 353 354 return ((struct in6_msource *)ims); 355 } 356 357 /* 358 * Perform filtering for multicast datagrams on a socket by group and source. 359 * 360 * Returns 0 if a datagram should be allowed through, or various error codes 361 * if the socket was not a member of the group, or the source was muted, etc. 362 */ 363 int 364 im6o_mc_filter(const struct ip6_moptions *imo, const struct ifnet *ifp, 365 const struct sockaddr *group, const struct sockaddr *src) 366 { 367 size_t gidx; 368 struct in6_msource *ims; 369 int mode; 370 371 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 372 373 gidx = im6o_match_group(imo, ifp, group); 374 if (gidx == -1) 375 return (MCAST_NOTGMEMBER); 376 377 /* 378 * Check if the source was included in an (S,G) join. 379 * Allow reception on exclusive memberships by default, 380 * reject reception on inclusive memberships by default. 381 * Exclude source only if an in-mode exclude filter exists. 382 * Include source only if an in-mode include filter exists. 383 * NOTE: We are comparing group state here at MLD t1 (now) 384 * with socket-layer t0 (since last downcall). 385 */ 386 mode = imo->im6o_mfilters[gidx].im6f_st[1]; 387 ims = im6o_match_source(imo, gidx, src); 388 389 if ((ims == NULL && mode == MCAST_INCLUDE) || 390 (ims != NULL && ims->im6sl_st[0] != mode)) 391 return (MCAST_NOTSMEMBER); 392 393 return (MCAST_PASS); 394 } 395 396 /* 397 * Find and return a reference to an in6_multi record for (ifp, group), 398 * and bump its reference count. 399 * If one does not exist, try to allocate it, and update link-layer multicast 400 * filters on ifp to listen for group. 401 * Assumes the IN6_MULTI lock is held across the call. 402 * Return 0 if successful, otherwise return an appropriate error code. 403 */ 404 static int 405 in6_getmulti(struct ifnet *ifp, const struct in6_addr *group, 406 struct in6_multi **pinm) 407 { 408 struct sockaddr_in6 gsin6; 409 struct ifmultiaddr *ifma; 410 struct in6_multi *inm; 411 int error; 412 413 error = 0; 414 415 /* 416 * XXX: Accesses to ifma_protospec must be covered by IF_ADDR_LOCK; 417 * if_addmulti() takes this mutex itself, so we must drop and 418 * re-acquire around the call. 419 */ 420 IN6_MULTI_LOCK_ASSERT(); 421 IN6_MULTI_LIST_LOCK(); 422 IF_ADDR_WLOCK(ifp); 423 inm = in6m_lookup_locked(ifp, group); 424 if (inm != NULL) { 425 /* 426 * If we already joined this group, just bump the 427 * refcount and return it. 428 */ 429 KASSERT(inm->in6m_refcount >= 1, 430 ("%s: bad refcount %d", __func__, inm->in6m_refcount)); 431 in6m_acquire_locked(inm); 432 *pinm = inm; 433 goto out_locked; 434 } 435 436 memset(&gsin6, 0, sizeof(gsin6)); 437 gsin6.sin6_family = AF_INET6; 438 gsin6.sin6_len = sizeof(struct sockaddr_in6); 439 gsin6.sin6_addr = *group; 440 441 /* 442 * Check if a link-layer group is already associated 443 * with this network-layer group on the given ifnet. 444 */ 445 IN6_MULTI_LIST_UNLOCK(); 446 IF_ADDR_WUNLOCK(ifp); 447 error = if_addmulti(ifp, (struct sockaddr *)&gsin6, &ifma); 448 if (error != 0) 449 return (error); 450 IN6_MULTI_LIST_LOCK(); 451 IF_ADDR_WLOCK(ifp); 452 453 /* 454 * If something other than netinet6 is occupying the link-layer 455 * group, print a meaningful error message and back out of 456 * the allocation. 457 * Otherwise, bump the refcount on the existing network-layer 458 * group association and return it. 459 */ 460 if (ifma->ifma_protospec != NULL) { 461 inm = (struct in6_multi *)ifma->ifma_protospec; 462 #ifdef INVARIANTS 463 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", 464 __func__)); 465 KASSERT(ifma->ifma_addr->sa_family == AF_INET6, 466 ("%s: ifma not AF_INET6", __func__)); 467 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); 468 if (inm->in6m_ifma != ifma || inm->in6m_ifp != ifp || 469 !IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, group)) 470 panic("%s: ifma %p is inconsistent with %p (%p)", 471 __func__, ifma, inm, group); 472 #endif 473 in6m_acquire_locked(inm); 474 *pinm = inm; 475 goto out_locked; 476 } 477 478 IF_ADDR_WLOCK_ASSERT(ifp); 479 480 /* 481 * A new in6_multi record is needed; allocate and initialize it. 482 * We DO NOT perform an MLD join as the in6_ layer may need to 483 * push an initial source list down to MLD to support SSM. 484 * 485 * The initial source filter state is INCLUDE, {} as per the RFC. 486 * Pending state-changes per group are subject to a bounds check. 487 */ 488 inm = malloc(sizeof(*inm), M_IP6MADDR, M_NOWAIT | M_ZERO); 489 if (inm == NULL) { 490 IN6_MULTI_LIST_UNLOCK(); 491 IF_ADDR_WUNLOCK(ifp); 492 if_delmulti_ifma(ifma); 493 return (ENOMEM); 494 } 495 inm->in6m_addr = *group; 496 inm->in6m_ifp = ifp; 497 inm->in6m_mli = MLD_IFINFO(ifp); 498 inm->in6m_ifma = ifma; 499 inm->in6m_refcount = 1; 500 inm->in6m_state = MLD_NOT_MEMBER; 501 mbufq_init(&inm->in6m_scq, MLD_MAX_STATE_CHANGES); 502 503 inm->in6m_st[0].iss_fmode = MCAST_UNDEFINED; 504 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 505 RB_INIT(&inm->in6m_srcs); 506 507 ifma->ifma_protospec = inm; 508 *pinm = inm; 509 510 out_locked: 511 IN6_MULTI_LIST_UNLOCK(); 512 IF_ADDR_WUNLOCK(ifp); 513 return (error); 514 } 515 516 /* 517 * Drop a reference to an in6_multi record. 518 * 519 * If the refcount drops to 0, free the in6_multi record and 520 * delete the underlying link-layer membership. 521 */ 522 static void 523 in6m_release(struct in6_multi *inm) 524 { 525 struct ifmultiaddr *ifma; 526 struct ifnet *ifp; 527 528 CTR2(KTR_MLD, "%s: refcount is %d", __func__, inm->in6m_refcount); 529 530 MPASS(inm->in6m_refcount == 0); 531 CTR2(KTR_MLD, "%s: freeing inm %p", __func__, inm); 532 533 ifma = inm->in6m_ifma; 534 ifp = inm->in6m_ifp; 535 MPASS(ifma->ifma_llifma == NULL); 536 537 /* XXX this access is not covered by IF_ADDR_LOCK */ 538 CTR2(KTR_MLD, "%s: purging ifma %p", __func__, ifma); 539 KASSERT(ifma->ifma_protospec == NULL, 540 ("%s: ifma_protospec != NULL", __func__)); 541 542 if (ifp) 543 CURVNET_SET(ifp->if_vnet); 544 in6m_purge(inm); 545 free(inm, M_IP6MADDR); 546 547 if_delmulti_ifma_flags(ifma, 1); 548 if (ifp) { 549 CURVNET_RESTORE(); 550 if_rele(ifp); 551 } 552 } 553 554 static struct grouptask free_gtask; 555 static struct in6_multi_head in6m_free_list; 556 static void in6m_release_task(void *arg __unused); 557 static void in6m_init(void) 558 { 559 SLIST_INIT(&in6m_free_list); 560 taskqgroup_config_gtask_init(NULL, &free_gtask, in6m_release_task, "in6m release task"); 561 } 562 563 SYSINIT(in6m_init, SI_SUB_SMP + 1, SI_ORDER_FIRST, 564 in6m_init, NULL); 565 566 567 void 568 in6m_release_list_deferred(struct in6_multi_head *inmh) 569 { 570 if (SLIST_EMPTY(inmh)) 571 return; 572 mtx_lock(&in6_multi_free_mtx); 573 SLIST_CONCAT(&in6m_free_list, inmh, in6_multi, in6m_nrele); 574 mtx_unlock(&in6_multi_free_mtx); 575 GROUPTASK_ENQUEUE(&free_gtask); 576 } 577 578 void 579 in6m_disconnect(struct in6_multi *inm) 580 { 581 struct ifnet *ifp; 582 struct ifaddr *ifa; 583 struct in6_ifaddr *ifa6; 584 struct in6_multi_mship *imm; 585 struct ifmultiaddr *ifma, *ll_ifma; 586 587 ifp = inm->in6m_ifp; 588 IF_ADDR_WLOCK_ASSERT(ifp); 589 ifma = inm->in6m_ifma; 590 591 if_ref(ifp); 592 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 593 MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname); 594 if ((ll_ifma = ifma->ifma_llifma) != NULL) { 595 MPASS(ifma != ll_ifma); 596 ifma->ifma_llifma = NULL; 597 MPASS(ll_ifma->ifma_llifma == NULL); 598 MPASS(ll_ifma->ifma_ifp == ifp); 599 if (--ll_ifma->ifma_refcount == 0) { 600 ifma6_restart = true; 601 TAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifma_link); 602 MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname); 603 if_freemulti(ll_ifma); 604 } 605 } 606 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 607 if (ifa->ifa_addr->sa_family != AF_INET6) 608 continue; 609 ifa6 = (void *)ifa; 610 LIST_FOREACH(imm, &ifa6->ia6_memberships, i6mm_chain) { 611 if (inm == imm->i6mm_maddr) { 612 LIST_REMOVE(imm, i6mm_chain); 613 free(imm, M_IP6MADDR); 614 } 615 } 616 } 617 } 618 619 void 620 in6m_release_deferred(struct in6_multi *inm) 621 { 622 struct in6_multi_head tmp; 623 624 IN6_MULTI_LIST_LOCK_ASSERT(); 625 KASSERT(inm->in6m_refcount > 0, ("refcount == %d inm: %p", inm->in6m_refcount, inm)); 626 if (--inm->in6m_refcount == 0) { 627 in6m_disconnect(inm); 628 SLIST_INIT(&tmp); 629 inm->in6m_ifma->ifma_protospec = NULL; 630 MPASS(inm->in6m_ifma->ifma_llifma == NULL); 631 SLIST_INSERT_HEAD(&tmp, inm, in6m_nrele); 632 in6m_release_list_deferred(&tmp); 633 } 634 } 635 636 static void 637 in6m_release_task(void *arg __unused) 638 { 639 struct in6_multi_head in6m_free_tmp; 640 struct in6_multi *inm, *tinm; 641 642 SLIST_INIT(&in6m_free_tmp); 643 mtx_lock(&in6_multi_free_mtx); 644 SLIST_CONCAT(&in6m_free_tmp, &in6m_free_list, in6_multi, in6m_nrele); 645 mtx_unlock(&in6_multi_free_mtx); 646 IN6_MULTI_LOCK(); 647 SLIST_FOREACH_SAFE(inm, &in6m_free_tmp, in6m_nrele, tinm) { 648 SLIST_REMOVE_HEAD(&in6m_free_tmp, in6m_nrele); 649 in6m_release(inm); 650 } 651 IN6_MULTI_UNLOCK(); 652 } 653 654 /* 655 * Clear recorded source entries for a group. 656 * Used by the MLD code. Caller must hold the IN6_MULTI lock. 657 * FIXME: Should reap. 658 */ 659 void 660 in6m_clear_recorded(struct in6_multi *inm) 661 { 662 struct ip6_msource *ims; 663 664 IN6_MULTI_LIST_LOCK_ASSERT(); 665 666 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 667 if (ims->im6s_stp) { 668 ims->im6s_stp = 0; 669 --inm->in6m_st[1].iss_rec; 670 } 671 } 672 KASSERT(inm->in6m_st[1].iss_rec == 0, 673 ("%s: iss_rec %d not 0", __func__, inm->in6m_st[1].iss_rec)); 674 } 675 676 /* 677 * Record a source as pending for a Source-Group MLDv2 query. 678 * This lives here as it modifies the shared tree. 679 * 680 * inm is the group descriptor. 681 * naddr is the address of the source to record in network-byte order. 682 * 683 * If the net.inet6.mld.sgalloc sysctl is non-zero, we will 684 * lazy-allocate a source node in response to an SG query. 685 * Otherwise, no allocation is performed. This saves some memory 686 * with the trade-off that the source will not be reported to the 687 * router if joined in the window between the query response and 688 * the group actually being joined on the local host. 689 * 690 * VIMAGE: XXX: Currently the mld_sgalloc feature has been removed. 691 * This turns off the allocation of a recorded source entry if 692 * the group has not been joined. 693 * 694 * Return 0 if the source didn't exist or was already marked as recorded. 695 * Return 1 if the source was marked as recorded by this function. 696 * Return <0 if any error occurred (negated errno code). 697 */ 698 int 699 in6m_record_source(struct in6_multi *inm, const struct in6_addr *addr) 700 { 701 struct ip6_msource find; 702 struct ip6_msource *ims, *nims; 703 704 IN6_MULTI_LIST_LOCK_ASSERT(); 705 706 find.im6s_addr = *addr; 707 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 708 if (ims && ims->im6s_stp) 709 return (0); 710 if (ims == NULL) { 711 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 712 return (-ENOSPC); 713 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 714 M_NOWAIT | M_ZERO); 715 if (nims == NULL) 716 return (-ENOMEM); 717 nims->im6s_addr = find.im6s_addr; 718 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 719 ++inm->in6m_nsrc; 720 ims = nims; 721 } 722 723 /* 724 * Mark the source as recorded and update the recorded 725 * source count. 726 */ 727 ++ims->im6s_stp; 728 ++inm->in6m_st[1].iss_rec; 729 730 return (1); 731 } 732 733 /* 734 * Return a pointer to an in6_msource owned by an in6_mfilter, 735 * given its source address. 736 * Lazy-allocate if needed. If this is a new entry its filter state is 737 * undefined at t0. 738 * 739 * imf is the filter set being modified. 740 * addr is the source address. 741 * 742 * SMPng: May be called with locks held; malloc must not block. 743 */ 744 static int 745 im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin, 746 struct in6_msource **plims) 747 { 748 struct ip6_msource find; 749 struct ip6_msource *ims, *nims; 750 struct in6_msource *lims; 751 int error; 752 753 error = 0; 754 ims = NULL; 755 lims = NULL; 756 757 find.im6s_addr = psin->sin6_addr; 758 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 759 lims = (struct in6_msource *)ims; 760 if (lims == NULL) { 761 if (imf->im6f_nsrc == in6_mcast_maxsocksrc) 762 return (ENOSPC); 763 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 764 M_NOWAIT | M_ZERO); 765 if (nims == NULL) 766 return (ENOMEM); 767 lims = (struct in6_msource *)nims; 768 lims->im6s_addr = find.im6s_addr; 769 lims->im6sl_st[0] = MCAST_UNDEFINED; 770 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 771 ++imf->im6f_nsrc; 772 } 773 774 *plims = lims; 775 776 return (error); 777 } 778 779 /* 780 * Graft a source entry into an existing socket-layer filter set, 781 * maintaining any required invariants and checking allocations. 782 * 783 * The source is marked as being in the new filter mode at t1. 784 * 785 * Return the pointer to the new node, otherwise return NULL. 786 */ 787 static struct in6_msource * 788 im6f_graft(struct in6_mfilter *imf, const uint8_t st1, 789 const struct sockaddr_in6 *psin) 790 { 791 struct ip6_msource *nims; 792 struct in6_msource *lims; 793 794 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 795 M_NOWAIT | M_ZERO); 796 if (nims == NULL) 797 return (NULL); 798 lims = (struct in6_msource *)nims; 799 lims->im6s_addr = psin->sin6_addr; 800 lims->im6sl_st[0] = MCAST_UNDEFINED; 801 lims->im6sl_st[1] = st1; 802 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 803 ++imf->im6f_nsrc; 804 805 return (lims); 806 } 807 808 /* 809 * Prune a source entry from an existing socket-layer filter set, 810 * maintaining any required invariants and checking allocations. 811 * 812 * The source is marked as being left at t1, it is not freed. 813 * 814 * Return 0 if no error occurred, otherwise return an errno value. 815 */ 816 static int 817 im6f_prune(struct in6_mfilter *imf, const struct sockaddr_in6 *psin) 818 { 819 struct ip6_msource find; 820 struct ip6_msource *ims; 821 struct in6_msource *lims; 822 823 find.im6s_addr = psin->sin6_addr; 824 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 825 if (ims == NULL) 826 return (ENOENT); 827 lims = (struct in6_msource *)ims; 828 lims->im6sl_st[1] = MCAST_UNDEFINED; 829 return (0); 830 } 831 832 /* 833 * Revert socket-layer filter set deltas at t1 to t0 state. 834 */ 835 static void 836 im6f_rollback(struct in6_mfilter *imf) 837 { 838 struct ip6_msource *ims, *tims; 839 struct in6_msource *lims; 840 841 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 842 lims = (struct in6_msource *)ims; 843 if (lims->im6sl_st[0] == lims->im6sl_st[1]) { 844 /* no change at t1 */ 845 continue; 846 } else if (lims->im6sl_st[0] != MCAST_UNDEFINED) { 847 /* revert change to existing source at t1 */ 848 lims->im6sl_st[1] = lims->im6sl_st[0]; 849 } else { 850 /* revert source added t1 */ 851 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 852 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 853 free(ims, M_IN6MFILTER); 854 imf->im6f_nsrc--; 855 } 856 } 857 imf->im6f_st[1] = imf->im6f_st[0]; 858 } 859 860 /* 861 * Mark socket-layer filter set as INCLUDE {} at t1. 862 */ 863 static void 864 im6f_leave(struct in6_mfilter *imf) 865 { 866 struct ip6_msource *ims; 867 struct in6_msource *lims; 868 869 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 870 lims = (struct in6_msource *)ims; 871 lims->im6sl_st[1] = MCAST_UNDEFINED; 872 } 873 imf->im6f_st[1] = MCAST_INCLUDE; 874 } 875 876 /* 877 * Mark socket-layer filter set deltas as committed. 878 */ 879 static void 880 im6f_commit(struct in6_mfilter *imf) 881 { 882 struct ip6_msource *ims; 883 struct in6_msource *lims; 884 885 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 886 lims = (struct in6_msource *)ims; 887 lims->im6sl_st[0] = lims->im6sl_st[1]; 888 } 889 imf->im6f_st[0] = imf->im6f_st[1]; 890 } 891 892 /* 893 * Reap unreferenced sources from socket-layer filter set. 894 */ 895 static void 896 im6f_reap(struct in6_mfilter *imf) 897 { 898 struct ip6_msource *ims, *tims; 899 struct in6_msource *lims; 900 901 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 902 lims = (struct in6_msource *)ims; 903 if ((lims->im6sl_st[0] == MCAST_UNDEFINED) && 904 (lims->im6sl_st[1] == MCAST_UNDEFINED)) { 905 CTR2(KTR_MLD, "%s: free lims %p", __func__, ims); 906 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 907 free(ims, M_IN6MFILTER); 908 imf->im6f_nsrc--; 909 } 910 } 911 } 912 913 /* 914 * Purge socket-layer filter set. 915 */ 916 static void 917 im6f_purge(struct in6_mfilter *imf) 918 { 919 struct ip6_msource *ims, *tims; 920 921 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 922 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 923 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 924 free(ims, M_IN6MFILTER); 925 imf->im6f_nsrc--; 926 } 927 imf->im6f_st[0] = imf->im6f_st[1] = MCAST_UNDEFINED; 928 KASSERT(RB_EMPTY(&imf->im6f_sources), 929 ("%s: im6f_sources not empty", __func__)); 930 } 931 932 /* 933 * Look up a source filter entry for a multicast group. 934 * 935 * inm is the group descriptor to work with. 936 * addr is the IPv6 address to look up. 937 * noalloc may be non-zero to suppress allocation of sources. 938 * *pims will be set to the address of the retrieved or allocated source. 939 * 940 * SMPng: NOTE: may be called with locks held. 941 * Return 0 if successful, otherwise return a non-zero error code. 942 */ 943 static int 944 in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr, 945 const int noalloc, struct ip6_msource **pims) 946 { 947 struct ip6_msource find; 948 struct ip6_msource *ims, *nims; 949 #ifdef KTR 950 char ip6tbuf[INET6_ADDRSTRLEN]; 951 #endif 952 953 find.im6s_addr = *addr; 954 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 955 if (ims == NULL && !noalloc) { 956 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 957 return (ENOSPC); 958 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 959 M_NOWAIT | M_ZERO); 960 if (nims == NULL) 961 return (ENOMEM); 962 nims->im6s_addr = *addr; 963 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 964 ++inm->in6m_nsrc; 965 ims = nims; 966 CTR3(KTR_MLD, "%s: allocated %s as %p", __func__, 967 ip6_sprintf(ip6tbuf, addr), ims); 968 } 969 970 *pims = ims; 971 return (0); 972 } 973 974 /* 975 * Merge socket-layer source into MLD-layer source. 976 * If rollback is non-zero, perform the inverse of the merge. 977 */ 978 static void 979 im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims, 980 const int rollback) 981 { 982 int n = rollback ? -1 : 1; 983 #ifdef KTR 984 char ip6tbuf[INET6_ADDRSTRLEN]; 985 986 ip6_sprintf(ip6tbuf, &lims->im6s_addr); 987 #endif 988 989 if (lims->im6sl_st[0] == MCAST_EXCLUDE) { 990 CTR3(KTR_MLD, "%s: t1 ex -= %d on %s", __func__, n, ip6tbuf); 991 ims->im6s_st[1].ex -= n; 992 } else if (lims->im6sl_st[0] == MCAST_INCLUDE) { 993 CTR3(KTR_MLD, "%s: t1 in -= %d on %s", __func__, n, ip6tbuf); 994 ims->im6s_st[1].in -= n; 995 } 996 997 if (lims->im6sl_st[1] == MCAST_EXCLUDE) { 998 CTR3(KTR_MLD, "%s: t1 ex += %d on %s", __func__, n, ip6tbuf); 999 ims->im6s_st[1].ex += n; 1000 } else if (lims->im6sl_st[1] == MCAST_INCLUDE) { 1001 CTR3(KTR_MLD, "%s: t1 in += %d on %s", __func__, n, ip6tbuf); 1002 ims->im6s_st[1].in += n; 1003 } 1004 } 1005 1006 /* 1007 * Atomically update the global in6_multi state, when a membership's 1008 * filter list is being updated in any way. 1009 * 1010 * imf is the per-inpcb-membership group filter pointer. 1011 * A fake imf may be passed for in-kernel consumers. 1012 * 1013 * XXX This is a candidate for a set-symmetric-difference style loop 1014 * which would eliminate the repeated lookup from root of ims nodes, 1015 * as they share the same key space. 1016 * 1017 * If any error occurred this function will back out of refcounts 1018 * and return a non-zero value. 1019 */ 1020 static int 1021 in6m_merge(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1022 { 1023 struct ip6_msource *ims, *nims; 1024 struct in6_msource *lims; 1025 int schanged, error; 1026 int nsrc0, nsrc1; 1027 1028 schanged = 0; 1029 error = 0; 1030 nsrc1 = nsrc0 = 0; 1031 IN6_MULTI_LIST_LOCK_ASSERT(); 1032 1033 /* 1034 * Update the source filters first, as this may fail. 1035 * Maintain count of in-mode filters at t0, t1. These are 1036 * used to work out if we transition into ASM mode or not. 1037 * Maintain a count of source filters whose state was 1038 * actually modified by this operation. 1039 */ 1040 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 1041 lims = (struct in6_msource *)ims; 1042 if (lims->im6sl_st[0] == imf->im6f_st[0]) nsrc0++; 1043 if (lims->im6sl_st[1] == imf->im6f_st[1]) nsrc1++; 1044 if (lims->im6sl_st[0] == lims->im6sl_st[1]) continue; 1045 error = in6m_get_source(inm, &lims->im6s_addr, 0, &nims); 1046 ++schanged; 1047 if (error) 1048 break; 1049 im6s_merge(nims, lims, 0); 1050 } 1051 if (error) { 1052 struct ip6_msource *bims; 1053 1054 RB_FOREACH_REVERSE_FROM(ims, ip6_msource_tree, nims) { 1055 lims = (struct in6_msource *)ims; 1056 if (lims->im6sl_st[0] == lims->im6sl_st[1]) 1057 continue; 1058 (void)in6m_get_source(inm, &lims->im6s_addr, 1, &bims); 1059 if (bims == NULL) 1060 continue; 1061 im6s_merge(bims, lims, 1); 1062 } 1063 goto out_reap; 1064 } 1065 1066 CTR3(KTR_MLD, "%s: imf filters in-mode: %d at t0, %d at t1", 1067 __func__, nsrc0, nsrc1); 1068 1069 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ 1070 if (imf->im6f_st[0] == imf->im6f_st[1] && 1071 imf->im6f_st[1] == MCAST_INCLUDE) { 1072 if (nsrc1 == 0) { 1073 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 1074 --inm->in6m_st[1].iss_in; 1075 } 1076 } 1077 1078 /* Handle filter mode transition on socket. */ 1079 if (imf->im6f_st[0] != imf->im6f_st[1]) { 1080 CTR3(KTR_MLD, "%s: imf transition %d to %d", 1081 __func__, imf->im6f_st[0], imf->im6f_st[1]); 1082 1083 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 1084 CTR1(KTR_MLD, "%s: --ex on inm at t1", __func__); 1085 --inm->in6m_st[1].iss_ex; 1086 } else if (imf->im6f_st[0] == MCAST_INCLUDE) { 1087 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 1088 --inm->in6m_st[1].iss_in; 1089 } 1090 1091 if (imf->im6f_st[1] == MCAST_EXCLUDE) { 1092 CTR1(KTR_MLD, "%s: ex++ on inm at t1", __func__); 1093 inm->in6m_st[1].iss_ex++; 1094 } else if (imf->im6f_st[1] == MCAST_INCLUDE && nsrc1 > 0) { 1095 CTR1(KTR_MLD, "%s: in++ on inm at t1", __func__); 1096 inm->in6m_st[1].iss_in++; 1097 } 1098 } 1099 1100 /* 1101 * Track inm filter state in terms of listener counts. 1102 * If there are any exclusive listeners, stack-wide 1103 * membership is exclusive. 1104 * Otherwise, if only inclusive listeners, stack-wide is inclusive. 1105 * If no listeners remain, state is undefined at t1, 1106 * and the MLD lifecycle for this group should finish. 1107 */ 1108 if (inm->in6m_st[1].iss_ex > 0) { 1109 CTR1(KTR_MLD, "%s: transition to EX", __func__); 1110 inm->in6m_st[1].iss_fmode = MCAST_EXCLUDE; 1111 } else if (inm->in6m_st[1].iss_in > 0) { 1112 CTR1(KTR_MLD, "%s: transition to IN", __func__); 1113 inm->in6m_st[1].iss_fmode = MCAST_INCLUDE; 1114 } else { 1115 CTR1(KTR_MLD, "%s: transition to UNDEF", __func__); 1116 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 1117 } 1118 1119 /* Decrement ASM listener count on transition out of ASM mode. */ 1120 if (imf->im6f_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { 1121 if ((imf->im6f_st[1] != MCAST_EXCLUDE) || 1122 (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) { 1123 CTR1(KTR_MLD, "%s: --asm on inm at t1", __func__); 1124 --inm->in6m_st[1].iss_asm; 1125 } 1126 } 1127 1128 /* Increment ASM listener count on transition to ASM mode. */ 1129 if (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { 1130 CTR1(KTR_MLD, "%s: asm++ on inm at t1", __func__); 1131 inm->in6m_st[1].iss_asm++; 1132 } 1133 1134 CTR3(KTR_MLD, "%s: merged imf %p to inm %p", __func__, imf, inm); 1135 in6m_print(inm); 1136 1137 out_reap: 1138 if (schanged > 0) { 1139 CTR1(KTR_MLD, "%s: sources changed; reaping", __func__); 1140 in6m_reap(inm); 1141 } 1142 return (error); 1143 } 1144 1145 /* 1146 * Mark an in6_multi's filter set deltas as committed. 1147 * Called by MLD after a state change has been enqueued. 1148 */ 1149 void 1150 in6m_commit(struct in6_multi *inm) 1151 { 1152 struct ip6_msource *ims; 1153 1154 CTR2(KTR_MLD, "%s: commit inm %p", __func__, inm); 1155 CTR1(KTR_MLD, "%s: pre commit:", __func__); 1156 in6m_print(inm); 1157 1158 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 1159 ims->im6s_st[0] = ims->im6s_st[1]; 1160 } 1161 inm->in6m_st[0] = inm->in6m_st[1]; 1162 } 1163 1164 /* 1165 * Reap unreferenced nodes from an in6_multi's filter set. 1166 */ 1167 static void 1168 in6m_reap(struct in6_multi *inm) 1169 { 1170 struct ip6_msource *ims, *tims; 1171 1172 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1173 if (ims->im6s_st[0].ex > 0 || ims->im6s_st[0].in > 0 || 1174 ims->im6s_st[1].ex > 0 || ims->im6s_st[1].in > 0 || 1175 ims->im6s_stp != 0) 1176 continue; 1177 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1178 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1179 free(ims, M_IP6MSOURCE); 1180 inm->in6m_nsrc--; 1181 } 1182 } 1183 1184 /* 1185 * Purge all source nodes from an in6_multi's filter set. 1186 */ 1187 static void 1188 in6m_purge(struct in6_multi *inm) 1189 { 1190 struct ip6_msource *ims, *tims; 1191 1192 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1193 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1194 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1195 free(ims, M_IP6MSOURCE); 1196 inm->in6m_nsrc--; 1197 } 1198 /* Free state-change requests that might be queued. */ 1199 mbufq_drain(&inm->in6m_scq); 1200 } 1201 1202 /* 1203 * Join a multicast address w/o sources. 1204 * KAME compatibility entry point. 1205 * 1206 * SMPng: Assume no mc locks held by caller. 1207 */ 1208 int 1209 in6_joingroup(struct ifnet *ifp, const struct in6_addr *mcaddr, 1210 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1211 const int delay) 1212 { 1213 int error; 1214 1215 IN6_MULTI_LOCK(); 1216 error = in6_joingroup_locked(ifp, mcaddr, NULL, pinm, delay); 1217 IN6_MULTI_UNLOCK(); 1218 return (error); 1219 } 1220 1221 /* 1222 * Join a multicast group; real entry point. 1223 * 1224 * Only preserves atomicity at inm level. 1225 * NOTE: imf argument cannot be const due to sys/tree.h limitations. 1226 * 1227 * If the MLD downcall fails, the group is not joined, and an error 1228 * code is returned. 1229 */ 1230 int 1231 in6_joingroup_locked(struct ifnet *ifp, const struct in6_addr *mcaddr, 1232 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1233 const int delay) 1234 { 1235 struct in6_mfilter timf; 1236 struct in6_multi *inm; 1237 struct ifmultiaddr *ifma; 1238 int error; 1239 #ifdef KTR 1240 char ip6tbuf[INET6_ADDRSTRLEN]; 1241 #endif 1242 1243 #ifdef INVARIANTS 1244 /* 1245 * Sanity: Check scope zone ID was set for ifp, if and 1246 * only if group is scoped to an interface. 1247 */ 1248 KASSERT(IN6_IS_ADDR_MULTICAST(mcaddr), 1249 ("%s: not a multicast address", __func__)); 1250 if (IN6_IS_ADDR_MC_LINKLOCAL(mcaddr) || 1251 IN6_IS_ADDR_MC_INTFACELOCAL(mcaddr)) { 1252 KASSERT(mcaddr->s6_addr16[1] != 0, 1253 ("%s: scope zone ID not set", __func__)); 1254 } 1255 #endif 1256 1257 IN6_MULTI_LOCK_ASSERT(); 1258 IN6_MULTI_LIST_UNLOCK_ASSERT(); 1259 1260 CTR4(KTR_MLD, "%s: join %s on %p(%s))", __func__, 1261 ip6_sprintf(ip6tbuf, mcaddr), ifp, if_name(ifp)); 1262 1263 error = 0; 1264 inm = NULL; 1265 1266 /* 1267 * If no imf was specified (i.e. kernel consumer), 1268 * fake one up and assume it is an ASM join. 1269 */ 1270 if (imf == NULL) { 1271 im6f_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); 1272 imf = &timf; 1273 } 1274 error = in6_getmulti(ifp, mcaddr, &inm); 1275 if (error) { 1276 CTR1(KTR_MLD, "%s: in6_getmulti() failure", __func__); 1277 return (error); 1278 } 1279 1280 IN6_MULTI_LIST_LOCK(); 1281 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1282 error = in6m_merge(inm, imf); 1283 if (error) { 1284 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1285 goto out_in6m_release; 1286 } 1287 1288 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1289 error = mld_change_state(inm, delay); 1290 if (error) { 1291 CTR1(KTR_MLD, "%s: failed to update source", __func__); 1292 goto out_in6m_release; 1293 } 1294 1295 out_in6m_release: 1296 if (error) { 1297 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1298 IF_ADDR_RLOCK(ifp); 1299 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1300 if (ifma->ifma_protospec == inm) { 1301 ifma->ifma_protospec = NULL; 1302 break; 1303 } 1304 } 1305 in6m_release_deferred(inm); 1306 IF_ADDR_RUNLOCK(ifp); 1307 } else { 1308 *pinm = inm; 1309 } 1310 IN6_MULTI_LIST_UNLOCK(); 1311 return (error); 1312 } 1313 1314 /* 1315 * Leave a multicast group; unlocked entry point. 1316 */ 1317 int 1318 in6_leavegroup(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1319 { 1320 int error; 1321 1322 IN6_MULTI_LOCK(); 1323 error = in6_leavegroup_locked(inm, imf); 1324 IN6_MULTI_UNLOCK(); 1325 return (error); 1326 } 1327 1328 /* 1329 * Leave a multicast group; real entry point. 1330 * All source filters will be expunged. 1331 * 1332 * Only preserves atomicity at inm level. 1333 * 1334 * Holding the write lock for the INP which contains imf 1335 * is highly advisable. We can't assert for it as imf does not 1336 * contain a back-pointer to the owning inp. 1337 * 1338 * Note: This is not the same as in6m_release(*) as this function also 1339 * makes a state change downcall into MLD. 1340 */ 1341 int 1342 in6_leavegroup_locked(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1343 { 1344 struct in6_mfilter timf; 1345 struct ifnet *ifp; 1346 int error; 1347 #ifdef KTR 1348 char ip6tbuf[INET6_ADDRSTRLEN]; 1349 #endif 1350 1351 error = 0; 1352 1353 IN6_MULTI_LOCK_ASSERT(); 1354 1355 CTR5(KTR_MLD, "%s: leave inm %p, %s/%s, imf %p", __func__, 1356 inm, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1357 (in6m_is_ifp_detached(inm) ? "null" : if_name(inm->in6m_ifp)), 1358 imf); 1359 1360 /* 1361 * If no imf was specified (i.e. kernel consumer), 1362 * fake one up and assume it is an ASM join. 1363 */ 1364 if (imf == NULL) { 1365 im6f_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); 1366 imf = &timf; 1367 } 1368 1369 /* 1370 * Begin state merge transaction at MLD layer. 1371 * 1372 * As this particular invocation should not cause any memory 1373 * to be allocated, and there is no opportunity to roll back 1374 * the transaction, it MUST NOT fail. 1375 */ 1376 1377 ifp = inm->in6m_ifp; 1378 IN6_MULTI_LIST_LOCK(); 1379 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1380 error = in6m_merge(inm, imf); 1381 KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); 1382 1383 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1384 error = mld_change_state(inm, 0); 1385 if (error) 1386 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1387 1388 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1389 if (ifp) 1390 IF_ADDR_WLOCK(ifp); 1391 in6m_release_deferred(inm); 1392 if (ifp) 1393 IF_ADDR_WUNLOCK(ifp); 1394 IN6_MULTI_LIST_UNLOCK(); 1395 1396 return (error); 1397 } 1398 1399 1400 /* 1401 * Block or unblock an ASM multicast source on an inpcb. 1402 * This implements the delta-based API described in RFC 3678. 1403 * 1404 * The delta-based API applies only to exclusive-mode memberships. 1405 * An MLD downcall will be performed. 1406 * 1407 * SMPng: NOTE: Must take Giant as a join may create a new ifma. 1408 * 1409 * Return 0 if successful, otherwise return an appropriate error code. 1410 */ 1411 static int 1412 in6p_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) 1413 { 1414 struct group_source_req gsr; 1415 sockunion_t *gsa, *ssa; 1416 struct ifnet *ifp; 1417 struct in6_mfilter *imf; 1418 struct ip6_moptions *imo; 1419 struct in6_msource *ims; 1420 struct in6_multi *inm; 1421 size_t idx; 1422 uint16_t fmode; 1423 int error, doblock; 1424 #ifdef KTR 1425 char ip6tbuf[INET6_ADDRSTRLEN]; 1426 #endif 1427 1428 ifp = NULL; 1429 error = 0; 1430 doblock = 0; 1431 1432 memset(&gsr, 0, sizeof(struct group_source_req)); 1433 gsa = (sockunion_t *)&gsr.gsr_group; 1434 ssa = (sockunion_t *)&gsr.gsr_source; 1435 1436 switch (sopt->sopt_name) { 1437 case MCAST_BLOCK_SOURCE: 1438 case MCAST_UNBLOCK_SOURCE: 1439 error = sooptcopyin(sopt, &gsr, 1440 sizeof(struct group_source_req), 1441 sizeof(struct group_source_req)); 1442 if (error) 1443 return (error); 1444 1445 if (gsa->sin6.sin6_family != AF_INET6 || 1446 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1447 return (EINVAL); 1448 1449 if (ssa->sin6.sin6_family != AF_INET6 || 1450 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1451 return (EINVAL); 1452 1453 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1454 return (EADDRNOTAVAIL); 1455 1456 ifp = ifnet_byindex(gsr.gsr_interface); 1457 1458 if (sopt->sopt_name == MCAST_BLOCK_SOURCE) 1459 doblock = 1; 1460 break; 1461 1462 default: 1463 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 1464 __func__, sopt->sopt_name); 1465 return (EOPNOTSUPP); 1466 break; 1467 } 1468 1469 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1470 return (EINVAL); 1471 1472 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1473 1474 /* 1475 * Check if we are actually a member of this group. 1476 */ 1477 imo = in6p_findmoptions(inp); 1478 idx = im6o_match_group(imo, ifp, &gsa->sa); 1479 if (idx == -1 || imo->im6o_mfilters == NULL) { 1480 error = EADDRNOTAVAIL; 1481 goto out_in6p_locked; 1482 } 1483 1484 KASSERT(imo->im6o_mfilters != NULL, 1485 ("%s: im6o_mfilters not allocated", __func__)); 1486 imf = &imo->im6o_mfilters[idx]; 1487 inm = imo->im6o_membership[idx]; 1488 1489 /* 1490 * Attempting to use the delta-based API on an 1491 * non exclusive-mode membership is an error. 1492 */ 1493 fmode = imf->im6f_st[0]; 1494 if (fmode != MCAST_EXCLUDE) { 1495 error = EINVAL; 1496 goto out_in6p_locked; 1497 } 1498 1499 /* 1500 * Deal with error cases up-front: 1501 * Asked to block, but already blocked; or 1502 * Asked to unblock, but nothing to unblock. 1503 * If adding a new block entry, allocate it. 1504 */ 1505 ims = im6o_match_source(imo, idx, &ssa->sa); 1506 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { 1507 CTR3(KTR_MLD, "%s: source %s %spresent", __func__, 1508 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 1509 doblock ? "" : "not "); 1510 error = EADDRNOTAVAIL; 1511 goto out_in6p_locked; 1512 } 1513 1514 INP_WLOCK_ASSERT(inp); 1515 1516 /* 1517 * Begin state merge transaction at socket layer. 1518 */ 1519 if (doblock) { 1520 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 1521 ims = im6f_graft(imf, fmode, &ssa->sin6); 1522 if (ims == NULL) 1523 error = ENOMEM; 1524 } else { 1525 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 1526 error = im6f_prune(imf, &ssa->sin6); 1527 } 1528 1529 if (error) { 1530 CTR1(KTR_MLD, "%s: merge imf state failed", __func__); 1531 goto out_im6f_rollback; 1532 } 1533 1534 /* 1535 * Begin state merge transaction at MLD layer. 1536 */ 1537 IN6_MULTI_LIST_LOCK(); 1538 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1539 error = in6m_merge(inm, imf); 1540 if (error) 1541 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1542 else { 1543 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1544 error = mld_change_state(inm, 0); 1545 if (error) 1546 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1547 } 1548 1549 IN6_MULTI_LIST_UNLOCK(); 1550 1551 out_im6f_rollback: 1552 if (error) 1553 im6f_rollback(imf); 1554 else 1555 im6f_commit(imf); 1556 1557 im6f_reap(imf); 1558 1559 out_in6p_locked: 1560 INP_WUNLOCK(inp); 1561 return (error); 1562 } 1563 1564 /* 1565 * Given an inpcb, return its multicast options structure pointer. Accepts 1566 * an unlocked inpcb pointer, but will return it locked. May sleep. 1567 * 1568 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 1569 * SMPng: NOTE: Returns with the INP write lock held. 1570 */ 1571 static struct ip6_moptions * 1572 in6p_findmoptions(struct inpcb *inp) 1573 { 1574 struct ip6_moptions *imo; 1575 struct in6_multi **immp; 1576 struct in6_mfilter *imfp; 1577 size_t idx; 1578 1579 INP_WLOCK(inp); 1580 if (inp->in6p_moptions != NULL) 1581 return (inp->in6p_moptions); 1582 1583 INP_WUNLOCK(inp); 1584 1585 imo = malloc(sizeof(*imo), M_IP6MOPTS, M_WAITOK); 1586 immp = malloc(sizeof(*immp) * IPV6_MIN_MEMBERSHIPS, M_IP6MOPTS, 1587 M_WAITOK | M_ZERO); 1588 imfp = malloc(sizeof(struct in6_mfilter) * IPV6_MIN_MEMBERSHIPS, 1589 M_IN6MFILTER, M_WAITOK); 1590 1591 imo->im6o_multicast_ifp = NULL; 1592 imo->im6o_multicast_hlim = V_ip6_defmcasthlim; 1593 imo->im6o_multicast_loop = in6_mcast_loop; 1594 imo->im6o_num_memberships = 0; 1595 imo->im6o_max_memberships = IPV6_MIN_MEMBERSHIPS; 1596 imo->im6o_membership = immp; 1597 1598 /* Initialize per-group source filters. */ 1599 for (idx = 0; idx < IPV6_MIN_MEMBERSHIPS; idx++) 1600 im6f_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); 1601 imo->im6o_mfilters = imfp; 1602 1603 INP_WLOCK(inp); 1604 if (inp->in6p_moptions != NULL) { 1605 free(imfp, M_IN6MFILTER); 1606 free(immp, M_IP6MOPTS); 1607 free(imo, M_IP6MOPTS); 1608 return (inp->in6p_moptions); 1609 } 1610 inp->in6p_moptions = imo; 1611 return (imo); 1612 } 1613 1614 /* 1615 * Discard the IPv6 multicast options (and source filters). 1616 * 1617 * SMPng: NOTE: assumes INP write lock is held. 1618 */ 1619 void 1620 ip6_freemoptions(struct ip6_moptions *imo, struct inpcbinfo *pcbinfo) 1621 { 1622 struct in6_mfilter *imf; 1623 size_t idx, nmships; 1624 int wlock; 1625 1626 if (imo == NULL) 1627 return; 1628 INP_INFO_LOCK_ASSERT(pcbinfo); 1629 wlock = INP_INFO_WLOCKED(pcbinfo); 1630 if (wlock) 1631 INP_INFO_WUNLOCK(pcbinfo); 1632 else 1633 INP_INFO_RUNLOCK(pcbinfo); 1634 1635 nmships = imo->im6o_num_memberships; 1636 for (idx = 0; idx < nmships; ++idx) { 1637 imf = imo->im6o_mfilters ? &imo->im6o_mfilters[idx] : NULL; 1638 if (imf) 1639 im6f_leave(imf); 1640 /* XXX this will thrash the lock(s) */ 1641 (void)in6_leavegroup(imo->im6o_membership[idx], imf); 1642 if (imf) 1643 im6f_purge(imf); 1644 } 1645 1646 if (imo->im6o_mfilters) 1647 free(imo->im6o_mfilters, M_IN6MFILTER); 1648 free(imo->im6o_membership, M_IP6MOPTS); 1649 free(imo, M_IP6MOPTS); 1650 if (wlock) 1651 INP_INFO_WLOCK(pcbinfo); 1652 else 1653 INP_INFO_RLOCK(pcbinfo); 1654 } 1655 1656 /* 1657 * Atomically get source filters on a socket for an IPv6 multicast group. 1658 * Called with INP lock held; returns with lock released. 1659 */ 1660 static int 1661 in6p_get_source_filters(struct inpcb *inp, struct sockopt *sopt) 1662 { 1663 struct __msfilterreq msfr; 1664 sockunion_t *gsa; 1665 struct ifnet *ifp; 1666 struct ip6_moptions *imo; 1667 struct in6_mfilter *imf; 1668 struct ip6_msource *ims; 1669 struct in6_msource *lims; 1670 struct sockaddr_in6 *psin; 1671 struct sockaddr_storage *ptss; 1672 struct sockaddr_storage *tss; 1673 int error; 1674 size_t idx, nsrcs, ncsrcs; 1675 1676 INP_WLOCK_ASSERT(inp); 1677 1678 imo = inp->in6p_moptions; 1679 KASSERT(imo != NULL, ("%s: null ip6_moptions", __func__)); 1680 1681 INP_WUNLOCK(inp); 1682 1683 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 1684 sizeof(struct __msfilterreq)); 1685 if (error) 1686 return (error); 1687 1688 if (msfr.msfr_group.ss_family != AF_INET6 || 1689 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 1690 return (EINVAL); 1691 1692 gsa = (sockunion_t *)&msfr.msfr_group; 1693 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1694 return (EINVAL); 1695 1696 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 1697 return (EADDRNOTAVAIL); 1698 ifp = ifnet_byindex(msfr.msfr_ifindex); 1699 if (ifp == NULL) 1700 return (EADDRNOTAVAIL); 1701 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1702 1703 INP_WLOCK(inp); 1704 1705 /* 1706 * Lookup group on the socket. 1707 */ 1708 idx = im6o_match_group(imo, ifp, &gsa->sa); 1709 if (idx == -1 || imo->im6o_mfilters == NULL) { 1710 INP_WUNLOCK(inp); 1711 return (EADDRNOTAVAIL); 1712 } 1713 imf = &imo->im6o_mfilters[idx]; 1714 1715 /* 1716 * Ignore memberships which are in limbo. 1717 */ 1718 if (imf->im6f_st[1] == MCAST_UNDEFINED) { 1719 INP_WUNLOCK(inp); 1720 return (EAGAIN); 1721 } 1722 msfr.msfr_fmode = imf->im6f_st[1]; 1723 1724 /* 1725 * If the user specified a buffer, copy out the source filter 1726 * entries to userland gracefully. 1727 * We only copy out the number of entries which userland 1728 * has asked for, but we always tell userland how big the 1729 * buffer really needs to be. 1730 */ 1731 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 1732 msfr.msfr_nsrcs = in6_mcast_maxsocksrc; 1733 tss = NULL; 1734 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { 1735 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 1736 M_TEMP, M_NOWAIT | M_ZERO); 1737 if (tss == NULL) { 1738 INP_WUNLOCK(inp); 1739 return (ENOBUFS); 1740 } 1741 } 1742 1743 /* 1744 * Count number of sources in-mode at t0. 1745 * If buffer space exists and remains, copy out source entries. 1746 */ 1747 nsrcs = msfr.msfr_nsrcs; 1748 ncsrcs = 0; 1749 ptss = tss; 1750 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 1751 lims = (struct in6_msource *)ims; 1752 if (lims->im6sl_st[0] == MCAST_UNDEFINED || 1753 lims->im6sl_st[0] != imf->im6f_st[0]) 1754 continue; 1755 ++ncsrcs; 1756 if (tss != NULL && nsrcs > 0) { 1757 psin = (struct sockaddr_in6 *)ptss; 1758 psin->sin6_family = AF_INET6; 1759 psin->sin6_len = sizeof(struct sockaddr_in6); 1760 psin->sin6_addr = lims->im6s_addr; 1761 psin->sin6_port = 0; 1762 --nsrcs; 1763 ++ptss; 1764 } 1765 } 1766 1767 INP_WUNLOCK(inp); 1768 1769 if (tss != NULL) { 1770 error = copyout(tss, msfr.msfr_srcs, 1771 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 1772 free(tss, M_TEMP); 1773 if (error) 1774 return (error); 1775 } 1776 1777 msfr.msfr_nsrcs = ncsrcs; 1778 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); 1779 1780 return (error); 1781 } 1782 1783 /* 1784 * Return the IP multicast options in response to user getsockopt(). 1785 */ 1786 int 1787 ip6_getmoptions(struct inpcb *inp, struct sockopt *sopt) 1788 { 1789 struct ip6_moptions *im6o; 1790 int error; 1791 u_int optval; 1792 1793 INP_WLOCK(inp); 1794 im6o = inp->in6p_moptions; 1795 /* 1796 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 1797 * or is a divert socket, reject it. 1798 */ 1799 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 1800 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 1801 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { 1802 INP_WUNLOCK(inp); 1803 return (EOPNOTSUPP); 1804 } 1805 1806 error = 0; 1807 switch (sopt->sopt_name) { 1808 case IPV6_MULTICAST_IF: 1809 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) { 1810 optval = 0; 1811 } else { 1812 optval = im6o->im6o_multicast_ifp->if_index; 1813 } 1814 INP_WUNLOCK(inp); 1815 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1816 break; 1817 1818 case IPV6_MULTICAST_HOPS: 1819 if (im6o == NULL) 1820 optval = V_ip6_defmcasthlim; 1821 else 1822 optval = im6o->im6o_multicast_hlim; 1823 INP_WUNLOCK(inp); 1824 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1825 break; 1826 1827 case IPV6_MULTICAST_LOOP: 1828 if (im6o == NULL) 1829 optval = in6_mcast_loop; /* XXX VIMAGE */ 1830 else 1831 optval = im6o->im6o_multicast_loop; 1832 INP_WUNLOCK(inp); 1833 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1834 break; 1835 1836 case IPV6_MSFILTER: 1837 if (im6o == NULL) { 1838 error = EADDRNOTAVAIL; 1839 INP_WUNLOCK(inp); 1840 } else { 1841 error = in6p_get_source_filters(inp, sopt); 1842 } 1843 break; 1844 1845 default: 1846 INP_WUNLOCK(inp); 1847 error = ENOPROTOOPT; 1848 break; 1849 } 1850 1851 INP_UNLOCK_ASSERT(inp); 1852 1853 return (error); 1854 } 1855 1856 /* 1857 * Look up the ifnet to use for a multicast group membership, 1858 * given the address of an IPv6 group. 1859 * 1860 * This routine exists to support legacy IPv6 multicast applications. 1861 * 1862 * If inp is non-NULL, use this socket's current FIB number for any 1863 * required FIB lookup. Look up the group address in the unicast FIB, 1864 * and use its ifp; usually, this points to the default next-hop. 1865 * If the FIB lookup fails, return NULL. 1866 * 1867 * FUTURE: Support multiple forwarding tables for IPv6. 1868 * 1869 * Returns NULL if no ifp could be found. 1870 */ 1871 static struct ifnet * 1872 in6p_lookup_mcast_ifp(const struct inpcb *in6p, 1873 const struct sockaddr_in6 *gsin6) 1874 { 1875 struct nhop6_basic nh6; 1876 struct in6_addr dst; 1877 uint32_t scopeid; 1878 uint32_t fibnum; 1879 1880 KASSERT(in6p->inp_vflag & INP_IPV6, 1881 ("%s: not INP_IPV6 inpcb", __func__)); 1882 KASSERT(gsin6->sin6_family == AF_INET6, 1883 ("%s: not AF_INET6 group", __func__)); 1884 1885 in6_splitscope(&gsin6->sin6_addr, &dst, &scopeid); 1886 fibnum = in6p ? in6p->inp_inc.inc_fibnum : RT_DEFAULT_FIB; 1887 if (fib6_lookup_nh_basic(fibnum, &dst, scopeid, 0, 0, &nh6) != 0) 1888 return (NULL); 1889 1890 return (nh6.nh_ifp); 1891 } 1892 1893 /* 1894 * Join an IPv6 multicast group, possibly with a source. 1895 * 1896 * FIXME: The KAME use of the unspecified address (::) 1897 * to join *all* multicast groups is currently unsupported. 1898 */ 1899 static int 1900 in6p_join_group(struct inpcb *inp, struct sockopt *sopt) 1901 { 1902 struct group_source_req gsr; 1903 sockunion_t *gsa, *ssa; 1904 struct ifnet *ifp; 1905 struct in6_mfilter *imf; 1906 struct ip6_moptions *imo; 1907 struct in6_multi *inm; 1908 struct in6_msource *lims; 1909 size_t idx; 1910 int error, is_new; 1911 1912 ifp = NULL; 1913 imf = NULL; 1914 lims = NULL; 1915 error = 0; 1916 is_new = 0; 1917 1918 memset(&gsr, 0, sizeof(struct group_source_req)); 1919 gsa = (sockunion_t *)&gsr.gsr_group; 1920 gsa->ss.ss_family = AF_UNSPEC; 1921 ssa = (sockunion_t *)&gsr.gsr_source; 1922 ssa->ss.ss_family = AF_UNSPEC; 1923 1924 /* 1925 * Chew everything into struct group_source_req. 1926 * Overwrite the port field if present, as the sockaddr 1927 * being copied in may be matched with a binary comparison. 1928 * Ignore passed-in scope ID. 1929 */ 1930 switch (sopt->sopt_name) { 1931 case IPV6_JOIN_GROUP: { 1932 struct ipv6_mreq mreq; 1933 1934 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 1935 sizeof(struct ipv6_mreq)); 1936 if (error) 1937 return (error); 1938 1939 gsa->sin6.sin6_family = AF_INET6; 1940 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 1941 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 1942 1943 if (mreq.ipv6mr_interface == 0) { 1944 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 1945 } else { 1946 if (V_if_index < mreq.ipv6mr_interface) 1947 return (EADDRNOTAVAIL); 1948 ifp = ifnet_byindex(mreq.ipv6mr_interface); 1949 } 1950 CTR3(KTR_MLD, "%s: ipv6mr_interface = %d, ifp = %p", 1951 __func__, mreq.ipv6mr_interface, ifp); 1952 } break; 1953 1954 case MCAST_JOIN_GROUP: 1955 case MCAST_JOIN_SOURCE_GROUP: 1956 if (sopt->sopt_name == MCAST_JOIN_GROUP) { 1957 error = sooptcopyin(sopt, &gsr, 1958 sizeof(struct group_req), 1959 sizeof(struct group_req)); 1960 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1961 error = sooptcopyin(sopt, &gsr, 1962 sizeof(struct group_source_req), 1963 sizeof(struct group_source_req)); 1964 } 1965 if (error) 1966 return (error); 1967 1968 if (gsa->sin6.sin6_family != AF_INET6 || 1969 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1970 return (EINVAL); 1971 1972 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1973 if (ssa->sin6.sin6_family != AF_INET6 || 1974 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1975 return (EINVAL); 1976 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 1977 return (EINVAL); 1978 /* 1979 * TODO: Validate embedded scope ID in source 1980 * list entry against passed-in ifp, if and only 1981 * if source list filter entry is iface or node local. 1982 */ 1983 in6_clearscope(&ssa->sin6.sin6_addr); 1984 ssa->sin6.sin6_port = 0; 1985 ssa->sin6.sin6_scope_id = 0; 1986 } 1987 1988 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1989 return (EADDRNOTAVAIL); 1990 ifp = ifnet_byindex(gsr.gsr_interface); 1991 break; 1992 1993 default: 1994 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 1995 __func__, sopt->sopt_name); 1996 return (EOPNOTSUPP); 1997 break; 1998 } 1999 2000 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2001 return (EINVAL); 2002 2003 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) 2004 return (EADDRNOTAVAIL); 2005 2006 gsa->sin6.sin6_port = 0; 2007 gsa->sin6.sin6_scope_id = 0; 2008 2009 /* 2010 * Always set the scope zone ID on memberships created from userland. 2011 * Use the passed-in ifp to do this. 2012 * XXX The in6_setscope() return value is meaningless. 2013 * XXX SCOPE6_LOCK() is taken by in6_setscope(). 2014 */ 2015 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2016 2017 imo = in6p_findmoptions(inp); 2018 idx = im6o_match_group(imo, ifp, &gsa->sa); 2019 if (idx == -1) { 2020 is_new = 1; 2021 } else { 2022 inm = imo->im6o_membership[idx]; 2023 imf = &imo->im6o_mfilters[idx]; 2024 if (ssa->ss.ss_family != AF_UNSPEC) { 2025 /* 2026 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership 2027 * is an error. On an existing inclusive membership, 2028 * it just adds the source to the filter list. 2029 */ 2030 if (imf->im6f_st[1] != MCAST_INCLUDE) { 2031 error = EINVAL; 2032 goto out_in6p_locked; 2033 } 2034 /* 2035 * Throw out duplicates. 2036 * 2037 * XXX FIXME: This makes a naive assumption that 2038 * even if entries exist for *ssa in this imf, 2039 * they will be rejected as dupes, even if they 2040 * are not valid in the current mode (in-mode). 2041 * 2042 * in6_msource is transactioned just as for anything 2043 * else in SSM -- but note naive use of in6m_graft() 2044 * below for allocating new filter entries. 2045 * 2046 * This is only an issue if someone mixes the 2047 * full-state SSM API with the delta-based API, 2048 * which is discouraged in the relevant RFCs. 2049 */ 2050 lims = im6o_match_source(imo, idx, &ssa->sa); 2051 if (lims != NULL /*&& 2052 lims->im6sl_st[1] == MCAST_INCLUDE*/) { 2053 error = EADDRNOTAVAIL; 2054 goto out_in6p_locked; 2055 } 2056 } else { 2057 /* 2058 * MCAST_JOIN_GROUP alone, on any existing membership, 2059 * is rejected, to stop the same inpcb tying up 2060 * multiple refs to the in_multi. 2061 * On an existing inclusive membership, this is also 2062 * an error; if you want to change filter mode, 2063 * you must use the userland API setsourcefilter(). 2064 * XXX We don't reject this for imf in UNDEFINED 2065 * state at t1, because allocation of a filter 2066 * is atomic with allocation of a membership. 2067 */ 2068 error = EINVAL; 2069 goto out_in6p_locked; 2070 } 2071 } 2072 2073 /* 2074 * Begin state merge transaction at socket layer. 2075 */ 2076 INP_WLOCK_ASSERT(inp); 2077 2078 if (is_new) { 2079 if (imo->im6o_num_memberships == imo->im6o_max_memberships) { 2080 error = im6o_grow(imo); 2081 if (error) 2082 goto out_in6p_locked; 2083 } 2084 /* 2085 * Allocate the new slot upfront so we can deal with 2086 * grafting the new source filter in same code path 2087 * as for join-source on existing membership. 2088 */ 2089 idx = imo->im6o_num_memberships; 2090 imo->im6o_membership[idx] = NULL; 2091 imo->im6o_num_memberships++; 2092 KASSERT(imo->im6o_mfilters != NULL, 2093 ("%s: im6f_mfilters vector was not allocated", __func__)); 2094 imf = &imo->im6o_mfilters[idx]; 2095 KASSERT(RB_EMPTY(&imf->im6f_sources), 2096 ("%s: im6f_sources not empty", __func__)); 2097 } 2098 2099 /* 2100 * Graft new source into filter list for this inpcb's 2101 * membership of the group. The in6_multi may not have 2102 * been allocated yet if this is a new membership, however, 2103 * the in_mfilter slot will be allocated and must be initialized. 2104 * 2105 * Note: Grafting of exclusive mode filters doesn't happen 2106 * in this path. 2107 * XXX: Should check for non-NULL lims (node exists but may 2108 * not be in-mode) for interop with full-state API. 2109 */ 2110 if (ssa->ss.ss_family != AF_UNSPEC) { 2111 /* Membership starts in IN mode */ 2112 if (is_new) { 2113 CTR1(KTR_MLD, "%s: new join w/source", __func__); 2114 im6f_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE); 2115 } else { 2116 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 2117 } 2118 lims = im6f_graft(imf, MCAST_INCLUDE, &ssa->sin6); 2119 if (lims == NULL) { 2120 CTR1(KTR_MLD, "%s: merge imf state failed", 2121 __func__); 2122 error = ENOMEM; 2123 goto out_im6o_free; 2124 } 2125 } else { 2126 /* No address specified; Membership starts in EX mode */ 2127 if (is_new) { 2128 CTR1(KTR_MLD, "%s: new join w/o source", __func__); 2129 im6f_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE); 2130 } 2131 } 2132 2133 /* 2134 * Begin state merge transaction at MLD layer. 2135 */ 2136 in_pcbref(inp); 2137 INP_WUNLOCK(inp); 2138 IN6_MULTI_LOCK(); 2139 2140 if (is_new) { 2141 error = in6_joingroup_locked(ifp, &gsa->sin6.sin6_addr, imf, 2142 &inm, 0); 2143 if (error) { 2144 IN6_MULTI_UNLOCK(); 2145 goto out_im6o_free; 2146 } 2147 imo->im6o_membership[idx] = inm; 2148 } else { 2149 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2150 IN6_MULTI_LIST_LOCK(); 2151 error = in6m_merge(inm, imf); 2152 if (error) 2153 CTR1(KTR_MLD, "%s: failed to merge inm state", 2154 __func__); 2155 else { 2156 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2157 error = mld_change_state(inm, 0); 2158 if (error) 2159 CTR1(KTR_MLD, "%s: failed mld downcall", 2160 __func__); 2161 } 2162 IN6_MULTI_LIST_UNLOCK(); 2163 } 2164 2165 IN6_MULTI_UNLOCK(); 2166 INP_WLOCK(inp); 2167 if (in_pcbrele_wlocked(inp)) 2168 return (ENXIO); 2169 if (error) { 2170 im6f_rollback(imf); 2171 if (is_new) 2172 im6f_purge(imf); 2173 else 2174 im6f_reap(imf); 2175 } else { 2176 im6f_commit(imf); 2177 } 2178 2179 out_im6o_free: 2180 if (error && is_new) { 2181 imo->im6o_membership[idx] = NULL; 2182 --imo->im6o_num_memberships; 2183 } 2184 2185 out_in6p_locked: 2186 INP_WUNLOCK(inp); 2187 return (error); 2188 } 2189 2190 /* 2191 * Leave an IPv6 multicast group on an inpcb, possibly with a source. 2192 */ 2193 static int 2194 in6p_leave_group(struct inpcb *inp, struct sockopt *sopt) 2195 { 2196 struct ipv6_mreq mreq; 2197 struct group_source_req gsr; 2198 sockunion_t *gsa, *ssa; 2199 struct ifnet *ifp; 2200 struct in6_mfilter *imf; 2201 struct ip6_moptions *imo; 2202 struct in6_msource *ims; 2203 struct in6_multi *inm; 2204 uint32_t ifindex; 2205 size_t idx; 2206 int error, is_final; 2207 #ifdef KTR 2208 char ip6tbuf[INET6_ADDRSTRLEN]; 2209 #endif 2210 2211 ifp = NULL; 2212 ifindex = 0; 2213 error = 0; 2214 is_final = 1; 2215 2216 memset(&gsr, 0, sizeof(struct group_source_req)); 2217 gsa = (sockunion_t *)&gsr.gsr_group; 2218 gsa->ss.ss_family = AF_UNSPEC; 2219 ssa = (sockunion_t *)&gsr.gsr_source; 2220 ssa->ss.ss_family = AF_UNSPEC; 2221 2222 /* 2223 * Chew everything passed in up into a struct group_source_req 2224 * as that is easier to process. 2225 * Note: Any embedded scope ID in the multicast group passed 2226 * in by userland is ignored, the interface index is the recommended 2227 * mechanism to specify an interface; see below. 2228 */ 2229 switch (sopt->sopt_name) { 2230 case IPV6_LEAVE_GROUP: 2231 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 2232 sizeof(struct ipv6_mreq)); 2233 if (error) 2234 return (error); 2235 gsa->sin6.sin6_family = AF_INET6; 2236 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 2237 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 2238 gsa->sin6.sin6_port = 0; 2239 gsa->sin6.sin6_scope_id = 0; 2240 ifindex = mreq.ipv6mr_interface; 2241 break; 2242 2243 case MCAST_LEAVE_GROUP: 2244 case MCAST_LEAVE_SOURCE_GROUP: 2245 if (sopt->sopt_name == MCAST_LEAVE_GROUP) { 2246 error = sooptcopyin(sopt, &gsr, 2247 sizeof(struct group_req), 2248 sizeof(struct group_req)); 2249 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2250 error = sooptcopyin(sopt, &gsr, 2251 sizeof(struct group_source_req), 2252 sizeof(struct group_source_req)); 2253 } 2254 if (error) 2255 return (error); 2256 2257 if (gsa->sin6.sin6_family != AF_INET6 || 2258 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2259 return (EINVAL); 2260 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2261 if (ssa->sin6.sin6_family != AF_INET6 || 2262 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2263 return (EINVAL); 2264 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 2265 return (EINVAL); 2266 /* 2267 * TODO: Validate embedded scope ID in source 2268 * list entry against passed-in ifp, if and only 2269 * if source list filter entry is iface or node local. 2270 */ 2271 in6_clearscope(&ssa->sin6.sin6_addr); 2272 } 2273 gsa->sin6.sin6_port = 0; 2274 gsa->sin6.sin6_scope_id = 0; 2275 ifindex = gsr.gsr_interface; 2276 break; 2277 2278 default: 2279 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 2280 __func__, sopt->sopt_name); 2281 return (EOPNOTSUPP); 2282 break; 2283 } 2284 2285 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2286 return (EINVAL); 2287 2288 /* 2289 * Validate interface index if provided. If no interface index 2290 * was provided separately, attempt to look the membership up 2291 * from the default scope as a last resort to disambiguate 2292 * the membership we are being asked to leave. 2293 * XXX SCOPE6 lock potentially taken here. 2294 */ 2295 if (ifindex != 0) { 2296 if (V_if_index < ifindex) 2297 return (EADDRNOTAVAIL); 2298 ifp = ifnet_byindex(ifindex); 2299 if (ifp == NULL) 2300 return (EADDRNOTAVAIL); 2301 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2302 } else { 2303 error = sa6_embedscope(&gsa->sin6, V_ip6_use_defzone); 2304 if (error) 2305 return (EADDRNOTAVAIL); 2306 /* 2307 * Some badly behaved applications don't pass an ifindex 2308 * or a scope ID, which is an API violation. In this case, 2309 * perform a lookup as per a v6 join. 2310 * 2311 * XXX For now, stomp on zone ID for the corner case. 2312 * This is not the 'KAME way', but we need to see the ifp 2313 * directly until such time as this implementation is 2314 * refactored, assuming the scope IDs are the way to go. 2315 */ 2316 ifindex = ntohs(gsa->sin6.sin6_addr.s6_addr16[1]); 2317 if (ifindex == 0) { 2318 CTR2(KTR_MLD, "%s: warning: no ifindex, looking up " 2319 "ifp for group %s.", __func__, 2320 ip6_sprintf(ip6tbuf, &gsa->sin6.sin6_addr)); 2321 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 2322 } else { 2323 ifp = ifnet_byindex(ifindex); 2324 } 2325 if (ifp == NULL) 2326 return (EADDRNOTAVAIL); 2327 } 2328 2329 CTR2(KTR_MLD, "%s: ifp = %p", __func__, ifp); 2330 KASSERT(ifp != NULL, ("%s: ifp did not resolve", __func__)); 2331 2332 /* 2333 * Find the membership in the membership array. 2334 */ 2335 imo = in6p_findmoptions(inp); 2336 idx = im6o_match_group(imo, ifp, &gsa->sa); 2337 if (idx == -1) { 2338 error = EADDRNOTAVAIL; 2339 goto out_in6p_locked; 2340 } 2341 inm = imo->im6o_membership[idx]; 2342 imf = &imo->im6o_mfilters[idx]; 2343 2344 if (ssa->ss.ss_family != AF_UNSPEC) 2345 is_final = 0; 2346 2347 /* 2348 * Begin state merge transaction at socket layer. 2349 */ 2350 INP_WLOCK_ASSERT(inp); 2351 2352 /* 2353 * If we were instructed only to leave a given source, do so. 2354 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. 2355 */ 2356 if (is_final) { 2357 im6f_leave(imf); 2358 } else { 2359 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 2360 error = EADDRNOTAVAIL; 2361 goto out_in6p_locked; 2362 } 2363 ims = im6o_match_source(imo, idx, &ssa->sa); 2364 if (ims == NULL) { 2365 CTR3(KTR_MLD, "%s: source %p %spresent", __func__, 2366 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 2367 "not "); 2368 error = EADDRNOTAVAIL; 2369 goto out_in6p_locked; 2370 } 2371 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 2372 error = im6f_prune(imf, &ssa->sin6); 2373 if (error) { 2374 CTR1(KTR_MLD, "%s: merge imf state failed", 2375 __func__); 2376 goto out_in6p_locked; 2377 } 2378 } 2379 2380 /* 2381 * Begin state merge transaction at MLD layer. 2382 */ 2383 IN6_MULTI_LOCK(); 2384 2385 if (is_final) { 2386 /* 2387 * Give up the multicast address record to which 2388 * the membership points. 2389 */ 2390 (void)in6_leavegroup_locked(inm, imf); 2391 } else { 2392 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2393 IN6_MULTI_LIST_LOCK(); 2394 error = in6m_merge(inm, imf); 2395 if (error) 2396 CTR1(KTR_MLD, "%s: failed to merge inm state", 2397 __func__); 2398 else { 2399 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2400 error = mld_change_state(inm, 0); 2401 if (error) 2402 CTR1(KTR_MLD, "%s: failed mld downcall", 2403 __func__); 2404 } 2405 IN6_MULTI_LIST_UNLOCK(); 2406 } 2407 2408 IN6_MULTI_UNLOCK(); 2409 2410 if (error) 2411 im6f_rollback(imf); 2412 else 2413 im6f_commit(imf); 2414 2415 im6f_reap(imf); 2416 2417 if (is_final) { 2418 /* Remove the gap in the membership array. */ 2419 for (++idx; idx < imo->im6o_num_memberships; ++idx) { 2420 imo->im6o_membership[idx-1] = imo->im6o_membership[idx]; 2421 imo->im6o_mfilters[idx-1] = imo->im6o_mfilters[idx]; 2422 } 2423 imo->im6o_num_memberships--; 2424 } 2425 2426 out_in6p_locked: 2427 INP_WUNLOCK(inp); 2428 return (error); 2429 } 2430 2431 /* 2432 * Select the interface for transmitting IPv6 multicast datagrams. 2433 * 2434 * Either an instance of struct in6_addr or an instance of struct ipv6_mreqn 2435 * may be passed to this socket option. An address of in6addr_any or an 2436 * interface index of 0 is used to remove a previous selection. 2437 * When no interface is selected, one is chosen for every send. 2438 */ 2439 static int 2440 in6p_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) 2441 { 2442 struct ifnet *ifp; 2443 struct ip6_moptions *imo; 2444 u_int ifindex; 2445 int error; 2446 2447 if (sopt->sopt_valsize != sizeof(u_int)) 2448 return (EINVAL); 2449 2450 error = sooptcopyin(sopt, &ifindex, sizeof(u_int), sizeof(u_int)); 2451 if (error) 2452 return (error); 2453 if (V_if_index < ifindex) 2454 return (EINVAL); 2455 if (ifindex == 0) 2456 ifp = NULL; 2457 else { 2458 ifp = ifnet_byindex(ifindex); 2459 if (ifp == NULL) 2460 return (EINVAL); 2461 if ((ifp->if_flags & IFF_MULTICAST) == 0) 2462 return (EADDRNOTAVAIL); 2463 } 2464 imo = in6p_findmoptions(inp); 2465 imo->im6o_multicast_ifp = ifp; 2466 INP_WUNLOCK(inp); 2467 2468 return (0); 2469 } 2470 2471 /* 2472 * Atomically set source filters on a socket for an IPv6 multicast group. 2473 * 2474 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 2475 */ 2476 static int 2477 in6p_set_source_filters(struct inpcb *inp, struct sockopt *sopt) 2478 { 2479 struct __msfilterreq msfr; 2480 sockunion_t *gsa; 2481 struct ifnet *ifp; 2482 struct in6_mfilter *imf; 2483 struct ip6_moptions *imo; 2484 struct in6_multi *inm; 2485 size_t idx; 2486 int error; 2487 2488 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 2489 sizeof(struct __msfilterreq)); 2490 if (error) 2491 return (error); 2492 2493 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 2494 return (ENOBUFS); 2495 2496 if (msfr.msfr_fmode != MCAST_EXCLUDE && 2497 msfr.msfr_fmode != MCAST_INCLUDE) 2498 return (EINVAL); 2499 2500 if (msfr.msfr_group.ss_family != AF_INET6 || 2501 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 2502 return (EINVAL); 2503 2504 gsa = (sockunion_t *)&msfr.msfr_group; 2505 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2506 return (EINVAL); 2507 2508 gsa->sin6.sin6_port = 0; /* ignore port */ 2509 2510 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 2511 return (EADDRNOTAVAIL); 2512 ifp = ifnet_byindex(msfr.msfr_ifindex); 2513 if (ifp == NULL) 2514 return (EADDRNOTAVAIL); 2515 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2516 2517 /* 2518 * Take the INP write lock. 2519 * Check if this socket is a member of this group. 2520 */ 2521 imo = in6p_findmoptions(inp); 2522 idx = im6o_match_group(imo, ifp, &gsa->sa); 2523 if (idx == -1 || imo->im6o_mfilters == NULL) { 2524 error = EADDRNOTAVAIL; 2525 goto out_in6p_locked; 2526 } 2527 inm = imo->im6o_membership[idx]; 2528 imf = &imo->im6o_mfilters[idx]; 2529 2530 /* 2531 * Begin state merge transaction at socket layer. 2532 */ 2533 INP_WLOCK_ASSERT(inp); 2534 2535 imf->im6f_st[1] = msfr.msfr_fmode; 2536 2537 /* 2538 * Apply any new source filters, if present. 2539 * Make a copy of the user-space source vector so 2540 * that we may copy them with a single copyin. This 2541 * allows us to deal with page faults up-front. 2542 */ 2543 if (msfr.msfr_nsrcs > 0) { 2544 struct in6_msource *lims; 2545 struct sockaddr_in6 *psin; 2546 struct sockaddr_storage *kss, *pkss; 2547 int i; 2548 2549 INP_WUNLOCK(inp); 2550 2551 CTR2(KTR_MLD, "%s: loading %lu source list entries", 2552 __func__, (unsigned long)msfr.msfr_nsrcs); 2553 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 2554 M_TEMP, M_WAITOK); 2555 error = copyin(msfr.msfr_srcs, kss, 2556 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 2557 if (error) { 2558 free(kss, M_TEMP); 2559 return (error); 2560 } 2561 2562 INP_WLOCK(inp); 2563 2564 /* 2565 * Mark all source filters as UNDEFINED at t1. 2566 * Restore new group filter mode, as im6f_leave() 2567 * will set it to INCLUDE. 2568 */ 2569 im6f_leave(imf); 2570 imf->im6f_st[1] = msfr.msfr_fmode; 2571 2572 /* 2573 * Update socket layer filters at t1, lazy-allocating 2574 * new entries. This saves a bunch of memory at the 2575 * cost of one RB_FIND() per source entry; duplicate 2576 * entries in the msfr_nsrcs vector are ignored. 2577 * If we encounter an error, rollback transaction. 2578 * 2579 * XXX This too could be replaced with a set-symmetric 2580 * difference like loop to avoid walking from root 2581 * every time, as the key space is common. 2582 */ 2583 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { 2584 psin = (struct sockaddr_in6 *)pkss; 2585 if (psin->sin6_family != AF_INET6) { 2586 error = EAFNOSUPPORT; 2587 break; 2588 } 2589 if (psin->sin6_len != sizeof(struct sockaddr_in6)) { 2590 error = EINVAL; 2591 break; 2592 } 2593 if (IN6_IS_ADDR_MULTICAST(&psin->sin6_addr)) { 2594 error = EINVAL; 2595 break; 2596 } 2597 /* 2598 * TODO: Validate embedded scope ID in source 2599 * list entry against passed-in ifp, if and only 2600 * if source list filter entry is iface or node local. 2601 */ 2602 in6_clearscope(&psin->sin6_addr); 2603 error = im6f_get_source(imf, psin, &lims); 2604 if (error) 2605 break; 2606 lims->im6sl_st[1] = imf->im6f_st[1]; 2607 } 2608 free(kss, M_TEMP); 2609 } 2610 2611 if (error) 2612 goto out_im6f_rollback; 2613 2614 INP_WLOCK_ASSERT(inp); 2615 IN6_MULTI_LIST_LOCK(); 2616 2617 /* 2618 * Begin state merge transaction at MLD layer. 2619 */ 2620 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2621 error = in6m_merge(inm, imf); 2622 if (error) 2623 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 2624 else { 2625 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2626 error = mld_change_state(inm, 0); 2627 if (error) 2628 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 2629 } 2630 2631 IN6_MULTI_LIST_UNLOCK(); 2632 2633 out_im6f_rollback: 2634 if (error) 2635 im6f_rollback(imf); 2636 else 2637 im6f_commit(imf); 2638 2639 im6f_reap(imf); 2640 2641 out_in6p_locked: 2642 INP_WUNLOCK(inp); 2643 return (error); 2644 } 2645 2646 /* 2647 * Set the IP multicast options in response to user setsockopt(). 2648 * 2649 * Many of the socket options handled in this function duplicate the 2650 * functionality of socket options in the regular unicast API. However, 2651 * it is not possible to merge the duplicate code, because the idempotence 2652 * of the IPv6 multicast part of the BSD Sockets API must be preserved; 2653 * the effects of these options must be treated as separate and distinct. 2654 * 2655 * SMPng: XXX: Unlocked read of inp_socket believed OK. 2656 */ 2657 int 2658 ip6_setmoptions(struct inpcb *inp, struct sockopt *sopt) 2659 { 2660 struct ip6_moptions *im6o; 2661 int error; 2662 2663 error = 0; 2664 2665 /* 2666 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 2667 * or is a divert socket, reject it. 2668 */ 2669 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 2670 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 2671 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) 2672 return (EOPNOTSUPP); 2673 2674 switch (sopt->sopt_name) { 2675 case IPV6_MULTICAST_IF: 2676 error = in6p_set_multicast_if(inp, sopt); 2677 break; 2678 2679 case IPV6_MULTICAST_HOPS: { 2680 int hlim; 2681 2682 if (sopt->sopt_valsize != sizeof(int)) { 2683 error = EINVAL; 2684 break; 2685 } 2686 error = sooptcopyin(sopt, &hlim, sizeof(hlim), sizeof(int)); 2687 if (error) 2688 break; 2689 if (hlim < -1 || hlim > 255) { 2690 error = EINVAL; 2691 break; 2692 } else if (hlim == -1) { 2693 hlim = V_ip6_defmcasthlim; 2694 } 2695 im6o = in6p_findmoptions(inp); 2696 im6o->im6o_multicast_hlim = hlim; 2697 INP_WUNLOCK(inp); 2698 break; 2699 } 2700 2701 case IPV6_MULTICAST_LOOP: { 2702 u_int loop; 2703 2704 /* 2705 * Set the loopback flag for outgoing multicast packets. 2706 * Must be zero or one. 2707 */ 2708 if (sopt->sopt_valsize != sizeof(u_int)) { 2709 error = EINVAL; 2710 break; 2711 } 2712 error = sooptcopyin(sopt, &loop, sizeof(u_int), sizeof(u_int)); 2713 if (error) 2714 break; 2715 if (loop > 1) { 2716 error = EINVAL; 2717 break; 2718 } 2719 im6o = in6p_findmoptions(inp); 2720 im6o->im6o_multicast_loop = loop; 2721 INP_WUNLOCK(inp); 2722 break; 2723 } 2724 2725 case IPV6_JOIN_GROUP: 2726 case MCAST_JOIN_GROUP: 2727 case MCAST_JOIN_SOURCE_GROUP: 2728 error = in6p_join_group(inp, sopt); 2729 break; 2730 2731 case IPV6_LEAVE_GROUP: 2732 case MCAST_LEAVE_GROUP: 2733 case MCAST_LEAVE_SOURCE_GROUP: 2734 error = in6p_leave_group(inp, sopt); 2735 break; 2736 2737 case MCAST_BLOCK_SOURCE: 2738 case MCAST_UNBLOCK_SOURCE: 2739 error = in6p_block_unblock_source(inp, sopt); 2740 break; 2741 2742 case IPV6_MSFILTER: 2743 error = in6p_set_source_filters(inp, sopt); 2744 break; 2745 2746 default: 2747 error = EOPNOTSUPP; 2748 break; 2749 } 2750 2751 INP_UNLOCK_ASSERT(inp); 2752 2753 return (error); 2754 } 2755 2756 /* 2757 * Expose MLD's multicast filter mode and source list(s) to userland, 2758 * keyed by (ifindex, group). 2759 * The filter mode is written out as a uint32_t, followed by 2760 * 0..n of struct in6_addr. 2761 * For use by ifmcstat(8). 2762 * SMPng: NOTE: unlocked read of ifindex space. 2763 */ 2764 static int 2765 sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS) 2766 { 2767 struct in6_addr mcaddr; 2768 struct in6_addr src; 2769 struct ifnet *ifp; 2770 struct ifmultiaddr *ifma; 2771 struct in6_multi *inm; 2772 struct ip6_msource *ims; 2773 int *name; 2774 int retval; 2775 u_int namelen; 2776 uint32_t fmode, ifindex; 2777 #ifdef KTR 2778 char ip6tbuf[INET6_ADDRSTRLEN]; 2779 #endif 2780 2781 name = (int *)arg1; 2782 namelen = arg2; 2783 2784 if (req->newptr != NULL) 2785 return (EPERM); 2786 2787 /* int: ifindex + 4 * 32 bits of IPv6 address */ 2788 if (namelen != 5) 2789 return (EINVAL); 2790 2791 ifindex = name[0]; 2792 if (ifindex <= 0 || ifindex > V_if_index) { 2793 CTR2(KTR_MLD, "%s: ifindex %u out of range", 2794 __func__, ifindex); 2795 return (ENOENT); 2796 } 2797 2798 memcpy(&mcaddr, &name[1], sizeof(struct in6_addr)); 2799 if (!IN6_IS_ADDR_MULTICAST(&mcaddr)) { 2800 CTR2(KTR_MLD, "%s: group %s is not multicast", 2801 __func__, ip6_sprintf(ip6tbuf, &mcaddr)); 2802 return (EINVAL); 2803 } 2804 2805 ifp = ifnet_byindex(ifindex); 2806 if (ifp == NULL) { 2807 CTR2(KTR_MLD, "%s: no ifp for ifindex %u", 2808 __func__, ifindex); 2809 return (ENOENT); 2810 } 2811 /* 2812 * Internal MLD lookups require that scope/zone ID is set. 2813 */ 2814 (void)in6_setscope(&mcaddr, ifp, NULL); 2815 2816 retval = sysctl_wire_old_buffer(req, 2817 sizeof(uint32_t) + (in6_mcast_maxgrpsrc * sizeof(struct in6_addr))); 2818 if (retval) 2819 return (retval); 2820 2821 IN6_MULTI_LOCK(); 2822 IN6_MULTI_LIST_LOCK(); 2823 IF_ADDR_RLOCK(ifp); 2824 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2825 if (ifma->ifma_addr->sa_family != AF_INET6 || 2826 ifma->ifma_protospec == NULL) 2827 continue; 2828 inm = (struct in6_multi *)ifma->ifma_protospec; 2829 if (!IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, &mcaddr)) 2830 continue; 2831 fmode = inm->in6m_st[1].iss_fmode; 2832 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); 2833 if (retval != 0) 2834 break; 2835 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 2836 CTR2(KTR_MLD, "%s: visit node %p", __func__, ims); 2837 /* 2838 * Only copy-out sources which are in-mode. 2839 */ 2840 if (fmode != im6s_get_mode(inm, ims, 1)) { 2841 CTR1(KTR_MLD, "%s: skip non-in-mode", 2842 __func__); 2843 continue; 2844 } 2845 src = ims->im6s_addr; 2846 retval = SYSCTL_OUT(req, &src, 2847 sizeof(struct in6_addr)); 2848 if (retval != 0) 2849 break; 2850 } 2851 } 2852 IF_ADDR_RUNLOCK(ifp); 2853 2854 IN6_MULTI_LIST_UNLOCK(); 2855 IN6_MULTI_UNLOCK(); 2856 2857 return (retval); 2858 } 2859 2860 #ifdef KTR 2861 2862 static const char *in6m_modestrs[] = { "un", "in", "ex" }; 2863 2864 static const char * 2865 in6m_mode_str(const int mode) 2866 { 2867 2868 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) 2869 return (in6m_modestrs[mode]); 2870 return ("??"); 2871 } 2872 2873 static const char *in6m_statestrs[] = { 2874 "not-member", 2875 "silent", 2876 "idle", 2877 "lazy", 2878 "sleeping", 2879 "awakening", 2880 "query-pending", 2881 "sg-query-pending", 2882 "leaving" 2883 }; 2884 2885 static const char * 2886 in6m_state_str(const int state) 2887 { 2888 2889 if (state >= MLD_NOT_MEMBER && state <= MLD_LEAVING_MEMBER) 2890 return (in6m_statestrs[state]); 2891 return ("??"); 2892 } 2893 2894 /* 2895 * Dump an in6_multi structure to the console. 2896 */ 2897 void 2898 in6m_print(const struct in6_multi *inm) 2899 { 2900 int t; 2901 char ip6tbuf[INET6_ADDRSTRLEN]; 2902 2903 if ((ktr_mask & KTR_MLD) == 0) 2904 return; 2905 2906 printf("%s: --- begin in6m %p ---\n", __func__, inm); 2907 printf("addr %s ifp %p(%s) ifma %p\n", 2908 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2909 inm->in6m_ifp, 2910 if_name(inm->in6m_ifp), 2911 inm->in6m_ifma); 2912 printf("timer %u state %s refcount %u scq.len %u\n", 2913 inm->in6m_timer, 2914 in6m_state_str(inm->in6m_state), 2915 inm->in6m_refcount, 2916 mbufq_len(&inm->in6m_scq)); 2917 printf("mli %p nsrc %lu sctimer %u scrv %u\n", 2918 inm->in6m_mli, 2919 inm->in6m_nsrc, 2920 inm->in6m_sctimer, 2921 inm->in6m_scrv); 2922 for (t = 0; t < 2; t++) { 2923 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, 2924 in6m_mode_str(inm->in6m_st[t].iss_fmode), 2925 inm->in6m_st[t].iss_asm, 2926 inm->in6m_st[t].iss_ex, 2927 inm->in6m_st[t].iss_in, 2928 inm->in6m_st[t].iss_rec); 2929 } 2930 printf("%s: --- end in6m %p ---\n", __func__, inm); 2931 } 2932 2933 #else /* !KTR */ 2934 2935 void 2936 in6m_print(const struct in6_multi *inm) 2937 { 2938 2939 } 2940 2941 #endif /* KTR */ 2942