1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2009 Bruce Simpson. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote 16 * products derived from this software without specific prior written 17 * permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * IPv6 multicast socket, group, and socket option processing module. 34 * Normative references: RFC 2292, RFC 3492, RFC 3542, RFC 3678, RFC 3810. 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_inet6.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/gtaskqueue.h> 45 #include <sys/kernel.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/protosw.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/sysctl.h> 52 #include <sys/priv.h> 53 #include <sys/ktr.h> 54 #include <sys/tree.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <net/vnet.h> 61 62 63 #include <netinet/in.h> 64 #include <netinet/udp.h> 65 #include <netinet/in_var.h> 66 #include <netinet/ip_var.h> 67 #include <netinet/udp_var.h> 68 #include <netinet6/in6_fib.h> 69 #include <netinet6/in6_var.h> 70 #include <netinet/ip6.h> 71 #include <netinet/icmp6.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet/in_pcb.h> 74 #include <netinet/tcp_var.h> 75 #include <netinet6/nd6.h> 76 #include <netinet6/mld6_var.h> 77 #include <netinet6/scope6_var.h> 78 79 #ifndef KTR_MLD 80 #define KTR_MLD KTR_INET6 81 #endif 82 83 #ifndef __SOCKUNION_DECLARED 84 union sockunion { 85 struct sockaddr_storage ss; 86 struct sockaddr sa; 87 struct sockaddr_dl sdl; 88 struct sockaddr_in6 sin6; 89 }; 90 typedef union sockunion sockunion_t; 91 #define __SOCKUNION_DECLARED 92 #endif /* __SOCKUNION_DECLARED */ 93 94 static MALLOC_DEFINE(M_IN6MFILTER, "in6_mfilter", 95 "IPv6 multicast PCB-layer source filter"); 96 MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "IPv6 multicast group"); 97 static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "IPv6 multicast options"); 98 static MALLOC_DEFINE(M_IP6MSOURCE, "ip6_msource", 99 "IPv6 multicast MLD-layer source filter"); 100 101 RB_GENERATE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp); 102 103 /* 104 * Locking: 105 * - Lock order is: Giant, INP_WLOCK, IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 106 * - The IF_ADDR_LOCK is implicitly taken by in6m_lookup() earlier, however 107 * it can be taken by code in net/if.c also. 108 * - ip6_moptions and in6_mfilter are covered by the INP_WLOCK. 109 * 110 * struct in6_multi is covered by IN6_MULTI_LOCK. There isn't strictly 111 * any need for in6_multi itself to be virtualized -- it is bound to an ifp 112 * anyway no matter what happens. 113 */ 114 struct mtx in6_multi_list_mtx; 115 MTX_SYSINIT(in6_multi_mtx, &in6_multi_list_mtx, "in6_multi_list_mtx", MTX_DEF); 116 117 struct mtx in6_multi_free_mtx; 118 MTX_SYSINIT(in6_multi_free_mtx, &in6_multi_free_mtx, "in6_multi_free_mtx", MTX_DEF); 119 120 struct sx in6_multi_sx; 121 SX_SYSINIT(in6_multi_sx, &in6_multi_sx, "in6_multi_sx"); 122 123 124 125 static void im6f_commit(struct in6_mfilter *); 126 static int im6f_get_source(struct in6_mfilter *imf, 127 const struct sockaddr_in6 *psin, 128 struct in6_msource **); 129 static struct in6_msource * 130 im6f_graft(struct in6_mfilter *, const uint8_t, 131 const struct sockaddr_in6 *); 132 static void im6f_leave(struct in6_mfilter *); 133 static int im6f_prune(struct in6_mfilter *, const struct sockaddr_in6 *); 134 static void im6f_purge(struct in6_mfilter *); 135 static void im6f_rollback(struct in6_mfilter *); 136 static void im6f_reap(struct in6_mfilter *); 137 static int im6o_grow(struct ip6_moptions *); 138 static size_t im6o_match_group(const struct ip6_moptions *, 139 const struct ifnet *, const struct sockaddr *); 140 static struct in6_msource * 141 im6o_match_source(const struct ip6_moptions *, const size_t, 142 const struct sockaddr *); 143 static void im6s_merge(struct ip6_msource *ims, 144 const struct in6_msource *lims, const int rollback); 145 static int in6_getmulti(struct ifnet *, const struct in6_addr *, 146 struct in6_multi **); 147 static int in6m_get_source(struct in6_multi *inm, 148 const struct in6_addr *addr, const int noalloc, 149 struct ip6_msource **pims); 150 #ifdef KTR 151 static int in6m_is_ifp_detached(const struct in6_multi *); 152 #endif 153 static int in6m_merge(struct in6_multi *, /*const*/ struct in6_mfilter *); 154 static void in6m_purge(struct in6_multi *); 155 static void in6m_reap(struct in6_multi *); 156 static struct ip6_moptions * 157 in6p_findmoptions(struct inpcb *); 158 static int in6p_get_source_filters(struct inpcb *, struct sockopt *); 159 static int in6p_join_group(struct inpcb *, struct sockopt *); 160 static int in6p_leave_group(struct inpcb *, struct sockopt *); 161 static struct ifnet * 162 in6p_lookup_mcast_ifp(const struct inpcb *, 163 const struct sockaddr_in6 *); 164 static int in6p_block_unblock_source(struct inpcb *, struct sockopt *); 165 static int in6p_set_multicast_if(struct inpcb *, struct sockopt *); 166 static int in6p_set_source_filters(struct inpcb *, struct sockopt *); 167 static int sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS); 168 169 SYSCTL_DECL(_net_inet6_ip6); /* XXX Not in any common header. */ 170 171 static SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, mcast, CTLFLAG_RW, 0, 172 "IPv6 multicast"); 173 174 static u_long in6_mcast_maxgrpsrc = IPV6_MAX_GROUP_SRC_FILTER; 175 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxgrpsrc, 176 CTLFLAG_RWTUN, &in6_mcast_maxgrpsrc, 0, 177 "Max source filters per group"); 178 179 static u_long in6_mcast_maxsocksrc = IPV6_MAX_SOCK_SRC_FILTER; 180 SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxsocksrc, 181 CTLFLAG_RWTUN, &in6_mcast_maxsocksrc, 0, 182 "Max source filters per socket"); 183 184 /* TODO Virtualize this switch. */ 185 int in6_mcast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 186 SYSCTL_INT(_net_inet6_ip6_mcast, OID_AUTO, loop, CTLFLAG_RWTUN, 187 &in6_mcast_loop, 0, "Loopback multicast datagrams by default"); 188 189 static SYSCTL_NODE(_net_inet6_ip6_mcast, OID_AUTO, filters, 190 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip6_mcast_filters, 191 "Per-interface stack-wide source filters"); 192 193 int ifma6_restart = 0; 194 #ifdef KTR 195 /* 196 * Inline function which wraps assertions for a valid ifp. 197 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp 198 * is detached. 199 */ 200 static int __inline 201 in6m_is_ifp_detached(const struct in6_multi *inm) 202 { 203 struct ifnet *ifp; 204 205 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 206 ifp = inm->in6m_ifma->ifma_ifp; 207 if (ifp != NULL) { 208 /* 209 * Sanity check that network-layer notion of ifp is the 210 * same as that of link-layer. 211 */ 212 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 213 } 214 215 return (ifp == NULL); 216 } 217 #endif 218 219 /* 220 * Initialize an in6_mfilter structure to a known state at t0, t1 221 * with an empty source filter list. 222 */ 223 static __inline void 224 im6f_init(struct in6_mfilter *imf, const int st0, const int st1) 225 { 226 memset(imf, 0, sizeof(struct in6_mfilter)); 227 RB_INIT(&imf->im6f_sources); 228 imf->im6f_st[0] = st0; 229 imf->im6f_st[1] = st1; 230 } 231 232 /* 233 * Resize the ip6_moptions vector to the next power-of-two minus 1. 234 * May be called with locks held; do not sleep. 235 */ 236 static int 237 im6o_grow(struct ip6_moptions *imo) 238 { 239 struct in6_multi **nmships; 240 struct in6_multi **omships; 241 struct in6_mfilter *nmfilters; 242 struct in6_mfilter *omfilters; 243 size_t idx; 244 size_t newmax; 245 size_t oldmax; 246 247 nmships = NULL; 248 nmfilters = NULL; 249 omships = imo->im6o_membership; 250 omfilters = imo->im6o_mfilters; 251 oldmax = imo->im6o_max_memberships; 252 newmax = ((oldmax + 1) * 2) - 1; 253 254 if (newmax <= IPV6_MAX_MEMBERSHIPS) { 255 nmships = (struct in6_multi **)realloc(omships, 256 sizeof(struct in6_multi *) * newmax, M_IP6MOPTS, M_NOWAIT); 257 nmfilters = (struct in6_mfilter *)realloc(omfilters, 258 sizeof(struct in6_mfilter) * newmax, M_IN6MFILTER, 259 M_NOWAIT); 260 if (nmships != NULL && nmfilters != NULL) { 261 /* Initialize newly allocated source filter heads. */ 262 for (idx = oldmax; idx < newmax; idx++) { 263 im6f_init(&nmfilters[idx], MCAST_UNDEFINED, 264 MCAST_EXCLUDE); 265 } 266 imo->im6o_max_memberships = newmax; 267 imo->im6o_membership = nmships; 268 imo->im6o_mfilters = nmfilters; 269 } 270 } 271 272 if (nmships == NULL || nmfilters == NULL) { 273 if (nmships != NULL) 274 free(nmships, M_IP6MOPTS); 275 if (nmfilters != NULL) 276 free(nmfilters, M_IN6MFILTER); 277 return (ETOOMANYREFS); 278 } 279 280 return (0); 281 } 282 283 /* 284 * Find an IPv6 multicast group entry for this ip6_moptions instance 285 * which matches the specified group, and optionally an interface. 286 * Return its index into the array, or -1 if not found. 287 */ 288 static size_t 289 im6o_match_group(const struct ip6_moptions *imo, const struct ifnet *ifp, 290 const struct sockaddr *group) 291 { 292 const struct sockaddr_in6 *gsin6; 293 struct in6_multi **pinm; 294 int idx; 295 int nmships; 296 297 gsin6 = (const struct sockaddr_in6 *)group; 298 299 /* The im6o_membership array may be lazy allocated. */ 300 if (imo->im6o_membership == NULL || imo->im6o_num_memberships == 0) 301 return (-1); 302 303 nmships = imo->im6o_num_memberships; 304 pinm = &imo->im6o_membership[0]; 305 for (idx = 0; idx < nmships; idx++, pinm++) { 306 if (*pinm == NULL) 307 continue; 308 if ((ifp == NULL || ((*pinm)->in6m_ifp == ifp)) && 309 IN6_ARE_ADDR_EQUAL(&(*pinm)->in6m_addr, 310 &gsin6->sin6_addr)) { 311 break; 312 } 313 } 314 if (idx >= nmships) 315 idx = -1; 316 317 return (idx); 318 } 319 320 /* 321 * Find an IPv6 multicast source entry for this imo which matches 322 * the given group index for this socket, and source address. 323 * 324 * XXX TODO: The scope ID, if present in src, is stripped before 325 * any comparison. We SHOULD enforce scope/zone checks where the source 326 * filter entry has a link scope. 327 * 328 * NOTE: This does not check if the entry is in-mode, merely if 329 * it exists, which may not be the desired behaviour. 330 */ 331 static struct in6_msource * 332 im6o_match_source(const struct ip6_moptions *imo, const size_t gidx, 333 const struct sockaddr *src) 334 { 335 struct ip6_msource find; 336 struct in6_mfilter *imf; 337 struct ip6_msource *ims; 338 const sockunion_t *psa; 339 340 KASSERT(src->sa_family == AF_INET6, ("%s: !AF_INET6", __func__)); 341 KASSERT(gidx != -1 && gidx < imo->im6o_num_memberships, 342 ("%s: invalid index %d\n", __func__, (int)gidx)); 343 344 /* The im6o_mfilters array may be lazy allocated. */ 345 if (imo->im6o_mfilters == NULL) 346 return (NULL); 347 imf = &imo->im6o_mfilters[gidx]; 348 349 psa = (const sockunion_t *)src; 350 find.im6s_addr = psa->sin6.sin6_addr; 351 in6_clearscope(&find.im6s_addr); /* XXX */ 352 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 353 354 return ((struct in6_msource *)ims); 355 } 356 357 /* 358 * Perform filtering for multicast datagrams on a socket by group and source. 359 * 360 * Returns 0 if a datagram should be allowed through, or various error codes 361 * if the socket was not a member of the group, or the source was muted, etc. 362 */ 363 int 364 im6o_mc_filter(const struct ip6_moptions *imo, const struct ifnet *ifp, 365 const struct sockaddr *group, const struct sockaddr *src) 366 { 367 size_t gidx; 368 struct in6_msource *ims; 369 int mode; 370 371 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 372 373 gidx = im6o_match_group(imo, ifp, group); 374 if (gidx == -1) 375 return (MCAST_NOTGMEMBER); 376 377 /* 378 * Check if the source was included in an (S,G) join. 379 * Allow reception on exclusive memberships by default, 380 * reject reception on inclusive memberships by default. 381 * Exclude source only if an in-mode exclude filter exists. 382 * Include source only if an in-mode include filter exists. 383 * NOTE: We are comparing group state here at MLD t1 (now) 384 * with socket-layer t0 (since last downcall). 385 */ 386 mode = imo->im6o_mfilters[gidx].im6f_st[1]; 387 ims = im6o_match_source(imo, gidx, src); 388 389 if ((ims == NULL && mode == MCAST_INCLUDE) || 390 (ims != NULL && ims->im6sl_st[0] != mode)) 391 return (MCAST_NOTSMEMBER); 392 393 return (MCAST_PASS); 394 } 395 396 /* 397 * Find and return a reference to an in6_multi record for (ifp, group), 398 * and bump its reference count. 399 * If one does not exist, try to allocate it, and update link-layer multicast 400 * filters on ifp to listen for group. 401 * Assumes the IN6_MULTI lock is held across the call. 402 * Return 0 if successful, otherwise return an appropriate error code. 403 */ 404 static int 405 in6_getmulti(struct ifnet *ifp, const struct in6_addr *group, 406 struct in6_multi **pinm) 407 { 408 struct sockaddr_in6 gsin6; 409 struct ifmultiaddr *ifma; 410 struct in6_multi *inm; 411 int error; 412 413 error = 0; 414 415 /* 416 * XXX: Accesses to ifma_protospec must be covered by IF_ADDR_LOCK; 417 * if_addmulti() takes this mutex itself, so we must drop and 418 * re-acquire around the call. 419 */ 420 IN6_MULTI_LOCK_ASSERT(); 421 IN6_MULTI_LIST_LOCK(); 422 IF_ADDR_WLOCK(ifp); 423 inm = in6m_lookup_locked(ifp, group); 424 if (inm != NULL) { 425 /* 426 * If we already joined this group, just bump the 427 * refcount and return it. 428 */ 429 KASSERT(inm->in6m_refcount >= 1, 430 ("%s: bad refcount %d", __func__, inm->in6m_refcount)); 431 in6m_acquire_locked(inm); 432 *pinm = inm; 433 goto out_locked; 434 } 435 436 memset(&gsin6, 0, sizeof(gsin6)); 437 gsin6.sin6_family = AF_INET6; 438 gsin6.sin6_len = sizeof(struct sockaddr_in6); 439 gsin6.sin6_addr = *group; 440 441 /* 442 * Check if a link-layer group is already associated 443 * with this network-layer group on the given ifnet. 444 */ 445 IN6_MULTI_LIST_UNLOCK(); 446 IF_ADDR_WUNLOCK(ifp); 447 error = if_addmulti(ifp, (struct sockaddr *)&gsin6, &ifma); 448 if (error != 0) 449 return (error); 450 IN6_MULTI_LIST_LOCK(); 451 IF_ADDR_WLOCK(ifp); 452 453 /* 454 * If something other than netinet6 is occupying the link-layer 455 * group, print a meaningful error message and back out of 456 * the allocation. 457 * Otherwise, bump the refcount on the existing network-layer 458 * group association and return it. 459 */ 460 if (ifma->ifma_protospec != NULL) { 461 inm = (struct in6_multi *)ifma->ifma_protospec; 462 #ifdef INVARIANTS 463 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", 464 __func__)); 465 KASSERT(ifma->ifma_addr->sa_family == AF_INET6, 466 ("%s: ifma not AF_INET6", __func__)); 467 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); 468 if (inm->in6m_ifma != ifma || inm->in6m_ifp != ifp || 469 !IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, group)) 470 panic("%s: ifma %p is inconsistent with %p (%p)", 471 __func__, ifma, inm, group); 472 #endif 473 in6m_acquire_locked(inm); 474 *pinm = inm; 475 goto out_locked; 476 } 477 478 IF_ADDR_WLOCK_ASSERT(ifp); 479 480 /* 481 * A new in6_multi record is needed; allocate and initialize it. 482 * We DO NOT perform an MLD join as the in6_ layer may need to 483 * push an initial source list down to MLD to support SSM. 484 * 485 * The initial source filter state is INCLUDE, {} as per the RFC. 486 * Pending state-changes per group are subject to a bounds check. 487 */ 488 inm = malloc(sizeof(*inm), M_IP6MADDR, M_NOWAIT | M_ZERO); 489 if (inm == NULL) { 490 IN6_MULTI_LIST_UNLOCK(); 491 IF_ADDR_WUNLOCK(ifp); 492 if_delmulti_ifma(ifma); 493 return (ENOMEM); 494 } 495 inm->in6m_addr = *group; 496 inm->in6m_ifp = ifp; 497 inm->in6m_mli = MLD_IFINFO(ifp); 498 inm->in6m_ifma = ifma; 499 inm->in6m_refcount = 1; 500 inm->in6m_state = MLD_NOT_MEMBER; 501 mbufq_init(&inm->in6m_scq, MLD_MAX_STATE_CHANGES); 502 503 inm->in6m_st[0].iss_fmode = MCAST_UNDEFINED; 504 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 505 RB_INIT(&inm->in6m_srcs); 506 507 ifma->ifma_protospec = inm; 508 *pinm = inm; 509 510 out_locked: 511 IN6_MULTI_LIST_UNLOCK(); 512 IF_ADDR_WUNLOCK(ifp); 513 return (error); 514 } 515 516 /* 517 * Drop a reference to an in6_multi record. 518 * 519 * If the refcount drops to 0, free the in6_multi record and 520 * delete the underlying link-layer membership. 521 */ 522 static void 523 in6m_release(struct in6_multi *inm) 524 { 525 struct ifmultiaddr *ifma; 526 struct ifnet *ifp; 527 528 CTR2(KTR_MLD, "%s: refcount is %d", __func__, inm->in6m_refcount); 529 530 MPASS(inm->in6m_refcount == 0); 531 CTR2(KTR_MLD, "%s: freeing inm %p", __func__, inm); 532 533 ifma = inm->in6m_ifma; 534 ifp = inm->in6m_ifp; 535 MPASS(ifma->ifma_llifma == NULL); 536 537 /* XXX this access is not covered by IF_ADDR_LOCK */ 538 CTR2(KTR_MLD, "%s: purging ifma %p", __func__, ifma); 539 KASSERT(ifma->ifma_protospec == NULL, 540 ("%s: ifma_protospec != NULL", __func__)); 541 542 if (ifp) 543 CURVNET_SET(ifp->if_vnet); 544 in6m_purge(inm); 545 free(inm, M_IP6MADDR); 546 547 if_delmulti_ifma_flags(ifma, 1); 548 if (ifp) { 549 CURVNET_RESTORE(); 550 if_rele(ifp); 551 } 552 } 553 554 static struct grouptask free_gtask; 555 static struct in6_multi_head in6m_free_list; 556 static void in6m_release_task(void *arg __unused); 557 static void in6m_init(void) 558 { 559 SLIST_INIT(&in6m_free_list); 560 taskqgroup_config_gtask_init(NULL, &free_gtask, in6m_release_task, "in6m release task"); 561 } 562 563 SYSINIT(in6m_init, SI_SUB_SMP + 1, SI_ORDER_FIRST, 564 in6m_init, NULL); 565 566 567 void 568 in6m_release_list_deferred(struct in6_multi_head *inmh) 569 { 570 if (SLIST_EMPTY(inmh)) 571 return; 572 mtx_lock(&in6_multi_free_mtx); 573 SLIST_CONCAT(&in6m_free_list, inmh, in6_multi, in6m_nrele); 574 mtx_unlock(&in6_multi_free_mtx); 575 GROUPTASK_ENQUEUE(&free_gtask); 576 } 577 578 void 579 in6m_disconnect(struct in6_multi *inm) 580 { 581 struct ifnet *ifp; 582 struct ifaddr *ifa; 583 struct in6_ifaddr *ifa6; 584 struct in6_multi_mship *imm, *imm_tmp; 585 struct ifmultiaddr *ifma, *ll_ifma; 586 587 ifp = inm->in6m_ifp; 588 IF_ADDR_WLOCK_ASSERT(ifp); 589 ifma = inm->in6m_ifma; 590 591 if_ref(ifp); 592 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 593 MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname); 594 if ((ll_ifma = ifma->ifma_llifma) != NULL) { 595 MPASS(ifma != ll_ifma); 596 ifma->ifma_llifma = NULL; 597 MPASS(ll_ifma->ifma_llifma == NULL); 598 MPASS(ll_ifma->ifma_ifp == ifp); 599 if (--ll_ifma->ifma_refcount == 0) { 600 ifma6_restart = true; 601 TAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifma_link); 602 MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname); 603 if_freemulti(ll_ifma); 604 } 605 } 606 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 607 if (ifa->ifa_addr->sa_family != AF_INET6) 608 continue; 609 ifa6 = (void *)ifa; 610 LIST_FOREACH_SAFE(imm, &ifa6->ia6_memberships, 611 i6mm_chain, imm_tmp) { 612 if (inm == imm->i6mm_maddr) { 613 LIST_REMOVE(imm, i6mm_chain); 614 free(imm, M_IP6MADDR); 615 } 616 } 617 } 618 } 619 620 void 621 in6m_release_deferred(struct in6_multi *inm) 622 { 623 struct in6_multi_head tmp; 624 625 IN6_MULTI_LIST_LOCK_ASSERT(); 626 KASSERT(inm->in6m_refcount > 0, ("refcount == %d inm: %p", inm->in6m_refcount, inm)); 627 if (--inm->in6m_refcount == 0) { 628 in6m_disconnect(inm); 629 SLIST_INIT(&tmp); 630 inm->in6m_ifma->ifma_protospec = NULL; 631 MPASS(inm->in6m_ifma->ifma_llifma == NULL); 632 SLIST_INSERT_HEAD(&tmp, inm, in6m_nrele); 633 in6m_release_list_deferred(&tmp); 634 } 635 } 636 637 static void 638 in6m_release_task(void *arg __unused) 639 { 640 struct in6_multi_head in6m_free_tmp; 641 struct in6_multi *inm, *tinm; 642 643 SLIST_INIT(&in6m_free_tmp); 644 mtx_lock(&in6_multi_free_mtx); 645 SLIST_CONCAT(&in6m_free_tmp, &in6m_free_list, in6_multi, in6m_nrele); 646 mtx_unlock(&in6_multi_free_mtx); 647 IN6_MULTI_LOCK(); 648 SLIST_FOREACH_SAFE(inm, &in6m_free_tmp, in6m_nrele, tinm) { 649 SLIST_REMOVE_HEAD(&in6m_free_tmp, in6m_nrele); 650 in6m_release(inm); 651 } 652 IN6_MULTI_UNLOCK(); 653 } 654 655 /* 656 * Clear recorded source entries for a group. 657 * Used by the MLD code. Caller must hold the IN6_MULTI lock. 658 * FIXME: Should reap. 659 */ 660 void 661 in6m_clear_recorded(struct in6_multi *inm) 662 { 663 struct ip6_msource *ims; 664 665 IN6_MULTI_LIST_LOCK_ASSERT(); 666 667 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 668 if (ims->im6s_stp) { 669 ims->im6s_stp = 0; 670 --inm->in6m_st[1].iss_rec; 671 } 672 } 673 KASSERT(inm->in6m_st[1].iss_rec == 0, 674 ("%s: iss_rec %d not 0", __func__, inm->in6m_st[1].iss_rec)); 675 } 676 677 /* 678 * Record a source as pending for a Source-Group MLDv2 query. 679 * This lives here as it modifies the shared tree. 680 * 681 * inm is the group descriptor. 682 * naddr is the address of the source to record in network-byte order. 683 * 684 * If the net.inet6.mld.sgalloc sysctl is non-zero, we will 685 * lazy-allocate a source node in response to an SG query. 686 * Otherwise, no allocation is performed. This saves some memory 687 * with the trade-off that the source will not be reported to the 688 * router if joined in the window between the query response and 689 * the group actually being joined on the local host. 690 * 691 * VIMAGE: XXX: Currently the mld_sgalloc feature has been removed. 692 * This turns off the allocation of a recorded source entry if 693 * the group has not been joined. 694 * 695 * Return 0 if the source didn't exist or was already marked as recorded. 696 * Return 1 if the source was marked as recorded by this function. 697 * Return <0 if any error occurred (negated errno code). 698 */ 699 int 700 in6m_record_source(struct in6_multi *inm, const struct in6_addr *addr) 701 { 702 struct ip6_msource find; 703 struct ip6_msource *ims, *nims; 704 705 IN6_MULTI_LIST_LOCK_ASSERT(); 706 707 find.im6s_addr = *addr; 708 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 709 if (ims && ims->im6s_stp) 710 return (0); 711 if (ims == NULL) { 712 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 713 return (-ENOSPC); 714 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 715 M_NOWAIT | M_ZERO); 716 if (nims == NULL) 717 return (-ENOMEM); 718 nims->im6s_addr = find.im6s_addr; 719 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 720 ++inm->in6m_nsrc; 721 ims = nims; 722 } 723 724 /* 725 * Mark the source as recorded and update the recorded 726 * source count. 727 */ 728 ++ims->im6s_stp; 729 ++inm->in6m_st[1].iss_rec; 730 731 return (1); 732 } 733 734 /* 735 * Return a pointer to an in6_msource owned by an in6_mfilter, 736 * given its source address. 737 * Lazy-allocate if needed. If this is a new entry its filter state is 738 * undefined at t0. 739 * 740 * imf is the filter set being modified. 741 * addr is the source address. 742 * 743 * SMPng: May be called with locks held; malloc must not block. 744 */ 745 static int 746 im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin, 747 struct in6_msource **plims) 748 { 749 struct ip6_msource find; 750 struct ip6_msource *ims, *nims; 751 struct in6_msource *lims; 752 int error; 753 754 error = 0; 755 ims = NULL; 756 lims = NULL; 757 758 find.im6s_addr = psin->sin6_addr; 759 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 760 lims = (struct in6_msource *)ims; 761 if (lims == NULL) { 762 if (imf->im6f_nsrc == in6_mcast_maxsocksrc) 763 return (ENOSPC); 764 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 765 M_NOWAIT | M_ZERO); 766 if (nims == NULL) 767 return (ENOMEM); 768 lims = (struct in6_msource *)nims; 769 lims->im6s_addr = find.im6s_addr; 770 lims->im6sl_st[0] = MCAST_UNDEFINED; 771 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 772 ++imf->im6f_nsrc; 773 } 774 775 *plims = lims; 776 777 return (error); 778 } 779 780 /* 781 * Graft a source entry into an existing socket-layer filter set, 782 * maintaining any required invariants and checking allocations. 783 * 784 * The source is marked as being in the new filter mode at t1. 785 * 786 * Return the pointer to the new node, otherwise return NULL. 787 */ 788 static struct in6_msource * 789 im6f_graft(struct in6_mfilter *imf, const uint8_t st1, 790 const struct sockaddr_in6 *psin) 791 { 792 struct ip6_msource *nims; 793 struct in6_msource *lims; 794 795 nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, 796 M_NOWAIT | M_ZERO); 797 if (nims == NULL) 798 return (NULL); 799 lims = (struct in6_msource *)nims; 800 lims->im6s_addr = psin->sin6_addr; 801 lims->im6sl_st[0] = MCAST_UNDEFINED; 802 lims->im6sl_st[1] = st1; 803 RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); 804 ++imf->im6f_nsrc; 805 806 return (lims); 807 } 808 809 /* 810 * Prune a source entry from an existing socket-layer filter set, 811 * maintaining any required invariants and checking allocations. 812 * 813 * The source is marked as being left at t1, it is not freed. 814 * 815 * Return 0 if no error occurred, otherwise return an errno value. 816 */ 817 static int 818 im6f_prune(struct in6_mfilter *imf, const struct sockaddr_in6 *psin) 819 { 820 struct ip6_msource find; 821 struct ip6_msource *ims; 822 struct in6_msource *lims; 823 824 find.im6s_addr = psin->sin6_addr; 825 ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); 826 if (ims == NULL) 827 return (ENOENT); 828 lims = (struct in6_msource *)ims; 829 lims->im6sl_st[1] = MCAST_UNDEFINED; 830 return (0); 831 } 832 833 /* 834 * Revert socket-layer filter set deltas at t1 to t0 state. 835 */ 836 static void 837 im6f_rollback(struct in6_mfilter *imf) 838 { 839 struct ip6_msource *ims, *tims; 840 struct in6_msource *lims; 841 842 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 843 lims = (struct in6_msource *)ims; 844 if (lims->im6sl_st[0] == lims->im6sl_st[1]) { 845 /* no change at t1 */ 846 continue; 847 } else if (lims->im6sl_st[0] != MCAST_UNDEFINED) { 848 /* revert change to existing source at t1 */ 849 lims->im6sl_st[1] = lims->im6sl_st[0]; 850 } else { 851 /* revert source added t1 */ 852 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 853 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 854 free(ims, M_IN6MFILTER); 855 imf->im6f_nsrc--; 856 } 857 } 858 imf->im6f_st[1] = imf->im6f_st[0]; 859 } 860 861 /* 862 * Mark socket-layer filter set as INCLUDE {} at t1. 863 */ 864 static void 865 im6f_leave(struct in6_mfilter *imf) 866 { 867 struct ip6_msource *ims; 868 struct in6_msource *lims; 869 870 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 871 lims = (struct in6_msource *)ims; 872 lims->im6sl_st[1] = MCAST_UNDEFINED; 873 } 874 imf->im6f_st[1] = MCAST_INCLUDE; 875 } 876 877 /* 878 * Mark socket-layer filter set deltas as committed. 879 */ 880 static void 881 im6f_commit(struct in6_mfilter *imf) 882 { 883 struct ip6_msource *ims; 884 struct in6_msource *lims; 885 886 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 887 lims = (struct in6_msource *)ims; 888 lims->im6sl_st[0] = lims->im6sl_st[1]; 889 } 890 imf->im6f_st[0] = imf->im6f_st[1]; 891 } 892 893 /* 894 * Reap unreferenced sources from socket-layer filter set. 895 */ 896 static void 897 im6f_reap(struct in6_mfilter *imf) 898 { 899 struct ip6_msource *ims, *tims; 900 struct in6_msource *lims; 901 902 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 903 lims = (struct in6_msource *)ims; 904 if ((lims->im6sl_st[0] == MCAST_UNDEFINED) && 905 (lims->im6sl_st[1] == MCAST_UNDEFINED)) { 906 CTR2(KTR_MLD, "%s: free lims %p", __func__, ims); 907 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 908 free(ims, M_IN6MFILTER); 909 imf->im6f_nsrc--; 910 } 911 } 912 } 913 914 /* 915 * Purge socket-layer filter set. 916 */ 917 static void 918 im6f_purge(struct in6_mfilter *imf) 919 { 920 struct ip6_msource *ims, *tims; 921 922 RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { 923 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 924 RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); 925 free(ims, M_IN6MFILTER); 926 imf->im6f_nsrc--; 927 } 928 imf->im6f_st[0] = imf->im6f_st[1] = MCAST_UNDEFINED; 929 KASSERT(RB_EMPTY(&imf->im6f_sources), 930 ("%s: im6f_sources not empty", __func__)); 931 } 932 933 /* 934 * Look up a source filter entry for a multicast group. 935 * 936 * inm is the group descriptor to work with. 937 * addr is the IPv6 address to look up. 938 * noalloc may be non-zero to suppress allocation of sources. 939 * *pims will be set to the address of the retrieved or allocated source. 940 * 941 * SMPng: NOTE: may be called with locks held. 942 * Return 0 if successful, otherwise return a non-zero error code. 943 */ 944 static int 945 in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr, 946 const int noalloc, struct ip6_msource **pims) 947 { 948 struct ip6_msource find; 949 struct ip6_msource *ims, *nims; 950 #ifdef KTR 951 char ip6tbuf[INET6_ADDRSTRLEN]; 952 #endif 953 954 find.im6s_addr = *addr; 955 ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); 956 if (ims == NULL && !noalloc) { 957 if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) 958 return (ENOSPC); 959 nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, 960 M_NOWAIT | M_ZERO); 961 if (nims == NULL) 962 return (ENOMEM); 963 nims->im6s_addr = *addr; 964 RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); 965 ++inm->in6m_nsrc; 966 ims = nims; 967 CTR3(KTR_MLD, "%s: allocated %s as %p", __func__, 968 ip6_sprintf(ip6tbuf, addr), ims); 969 } 970 971 *pims = ims; 972 return (0); 973 } 974 975 /* 976 * Merge socket-layer source into MLD-layer source. 977 * If rollback is non-zero, perform the inverse of the merge. 978 */ 979 static void 980 im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims, 981 const int rollback) 982 { 983 int n = rollback ? -1 : 1; 984 #ifdef KTR 985 char ip6tbuf[INET6_ADDRSTRLEN]; 986 987 ip6_sprintf(ip6tbuf, &lims->im6s_addr); 988 #endif 989 990 if (lims->im6sl_st[0] == MCAST_EXCLUDE) { 991 CTR3(KTR_MLD, "%s: t1 ex -= %d on %s", __func__, n, ip6tbuf); 992 ims->im6s_st[1].ex -= n; 993 } else if (lims->im6sl_st[0] == MCAST_INCLUDE) { 994 CTR3(KTR_MLD, "%s: t1 in -= %d on %s", __func__, n, ip6tbuf); 995 ims->im6s_st[1].in -= n; 996 } 997 998 if (lims->im6sl_st[1] == MCAST_EXCLUDE) { 999 CTR3(KTR_MLD, "%s: t1 ex += %d on %s", __func__, n, ip6tbuf); 1000 ims->im6s_st[1].ex += n; 1001 } else if (lims->im6sl_st[1] == MCAST_INCLUDE) { 1002 CTR3(KTR_MLD, "%s: t1 in += %d on %s", __func__, n, ip6tbuf); 1003 ims->im6s_st[1].in += n; 1004 } 1005 } 1006 1007 /* 1008 * Atomically update the global in6_multi state, when a membership's 1009 * filter list is being updated in any way. 1010 * 1011 * imf is the per-inpcb-membership group filter pointer. 1012 * A fake imf may be passed for in-kernel consumers. 1013 * 1014 * XXX This is a candidate for a set-symmetric-difference style loop 1015 * which would eliminate the repeated lookup from root of ims nodes, 1016 * as they share the same key space. 1017 * 1018 * If any error occurred this function will back out of refcounts 1019 * and return a non-zero value. 1020 */ 1021 static int 1022 in6m_merge(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1023 { 1024 struct ip6_msource *ims, *nims; 1025 struct in6_msource *lims; 1026 int schanged, error; 1027 int nsrc0, nsrc1; 1028 1029 schanged = 0; 1030 error = 0; 1031 nsrc1 = nsrc0 = 0; 1032 IN6_MULTI_LIST_LOCK_ASSERT(); 1033 1034 /* 1035 * Update the source filters first, as this may fail. 1036 * Maintain count of in-mode filters at t0, t1. These are 1037 * used to work out if we transition into ASM mode or not. 1038 * Maintain a count of source filters whose state was 1039 * actually modified by this operation. 1040 */ 1041 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 1042 lims = (struct in6_msource *)ims; 1043 if (lims->im6sl_st[0] == imf->im6f_st[0]) nsrc0++; 1044 if (lims->im6sl_st[1] == imf->im6f_st[1]) nsrc1++; 1045 if (lims->im6sl_st[0] == lims->im6sl_st[1]) continue; 1046 error = in6m_get_source(inm, &lims->im6s_addr, 0, &nims); 1047 ++schanged; 1048 if (error) 1049 break; 1050 im6s_merge(nims, lims, 0); 1051 } 1052 if (error) { 1053 struct ip6_msource *bims; 1054 1055 RB_FOREACH_REVERSE_FROM(ims, ip6_msource_tree, nims) { 1056 lims = (struct in6_msource *)ims; 1057 if (lims->im6sl_st[0] == lims->im6sl_st[1]) 1058 continue; 1059 (void)in6m_get_source(inm, &lims->im6s_addr, 1, &bims); 1060 if (bims == NULL) 1061 continue; 1062 im6s_merge(bims, lims, 1); 1063 } 1064 goto out_reap; 1065 } 1066 1067 CTR3(KTR_MLD, "%s: imf filters in-mode: %d at t0, %d at t1", 1068 __func__, nsrc0, nsrc1); 1069 1070 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ 1071 if (imf->im6f_st[0] == imf->im6f_st[1] && 1072 imf->im6f_st[1] == MCAST_INCLUDE) { 1073 if (nsrc1 == 0) { 1074 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 1075 --inm->in6m_st[1].iss_in; 1076 } 1077 } 1078 1079 /* Handle filter mode transition on socket. */ 1080 if (imf->im6f_st[0] != imf->im6f_st[1]) { 1081 CTR3(KTR_MLD, "%s: imf transition %d to %d", 1082 __func__, imf->im6f_st[0], imf->im6f_st[1]); 1083 1084 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 1085 CTR1(KTR_MLD, "%s: --ex on inm at t1", __func__); 1086 --inm->in6m_st[1].iss_ex; 1087 } else if (imf->im6f_st[0] == MCAST_INCLUDE) { 1088 CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); 1089 --inm->in6m_st[1].iss_in; 1090 } 1091 1092 if (imf->im6f_st[1] == MCAST_EXCLUDE) { 1093 CTR1(KTR_MLD, "%s: ex++ on inm at t1", __func__); 1094 inm->in6m_st[1].iss_ex++; 1095 } else if (imf->im6f_st[1] == MCAST_INCLUDE && nsrc1 > 0) { 1096 CTR1(KTR_MLD, "%s: in++ on inm at t1", __func__); 1097 inm->in6m_st[1].iss_in++; 1098 } 1099 } 1100 1101 /* 1102 * Track inm filter state in terms of listener counts. 1103 * If there are any exclusive listeners, stack-wide 1104 * membership is exclusive. 1105 * Otherwise, if only inclusive listeners, stack-wide is inclusive. 1106 * If no listeners remain, state is undefined at t1, 1107 * and the MLD lifecycle for this group should finish. 1108 */ 1109 if (inm->in6m_st[1].iss_ex > 0) { 1110 CTR1(KTR_MLD, "%s: transition to EX", __func__); 1111 inm->in6m_st[1].iss_fmode = MCAST_EXCLUDE; 1112 } else if (inm->in6m_st[1].iss_in > 0) { 1113 CTR1(KTR_MLD, "%s: transition to IN", __func__); 1114 inm->in6m_st[1].iss_fmode = MCAST_INCLUDE; 1115 } else { 1116 CTR1(KTR_MLD, "%s: transition to UNDEF", __func__); 1117 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 1118 } 1119 1120 /* Decrement ASM listener count on transition out of ASM mode. */ 1121 if (imf->im6f_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { 1122 if ((imf->im6f_st[1] != MCAST_EXCLUDE) || 1123 (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) { 1124 CTR1(KTR_MLD, "%s: --asm on inm at t1", __func__); 1125 --inm->in6m_st[1].iss_asm; 1126 } 1127 } 1128 1129 /* Increment ASM listener count on transition to ASM mode. */ 1130 if (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { 1131 CTR1(KTR_MLD, "%s: asm++ on inm at t1", __func__); 1132 inm->in6m_st[1].iss_asm++; 1133 } 1134 1135 CTR3(KTR_MLD, "%s: merged imf %p to inm %p", __func__, imf, inm); 1136 in6m_print(inm); 1137 1138 out_reap: 1139 if (schanged > 0) { 1140 CTR1(KTR_MLD, "%s: sources changed; reaping", __func__); 1141 in6m_reap(inm); 1142 } 1143 return (error); 1144 } 1145 1146 /* 1147 * Mark an in6_multi's filter set deltas as committed. 1148 * Called by MLD after a state change has been enqueued. 1149 */ 1150 void 1151 in6m_commit(struct in6_multi *inm) 1152 { 1153 struct ip6_msource *ims; 1154 1155 CTR2(KTR_MLD, "%s: commit inm %p", __func__, inm); 1156 CTR1(KTR_MLD, "%s: pre commit:", __func__); 1157 in6m_print(inm); 1158 1159 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 1160 ims->im6s_st[0] = ims->im6s_st[1]; 1161 } 1162 inm->in6m_st[0] = inm->in6m_st[1]; 1163 } 1164 1165 /* 1166 * Reap unreferenced nodes from an in6_multi's filter set. 1167 */ 1168 static void 1169 in6m_reap(struct in6_multi *inm) 1170 { 1171 struct ip6_msource *ims, *tims; 1172 1173 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1174 if (ims->im6s_st[0].ex > 0 || ims->im6s_st[0].in > 0 || 1175 ims->im6s_st[1].ex > 0 || ims->im6s_st[1].in > 0 || 1176 ims->im6s_stp != 0) 1177 continue; 1178 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1179 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1180 free(ims, M_IP6MSOURCE); 1181 inm->in6m_nsrc--; 1182 } 1183 } 1184 1185 /* 1186 * Purge all source nodes from an in6_multi's filter set. 1187 */ 1188 static void 1189 in6m_purge(struct in6_multi *inm) 1190 { 1191 struct ip6_msource *ims, *tims; 1192 1193 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { 1194 CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); 1195 RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); 1196 free(ims, M_IP6MSOURCE); 1197 inm->in6m_nsrc--; 1198 } 1199 /* Free state-change requests that might be queued. */ 1200 mbufq_drain(&inm->in6m_scq); 1201 } 1202 1203 /* 1204 * Join a multicast address w/o sources. 1205 * KAME compatibility entry point. 1206 * 1207 * SMPng: Assume no mc locks held by caller. 1208 */ 1209 int 1210 in6_joingroup(struct ifnet *ifp, const struct in6_addr *mcaddr, 1211 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1212 const int delay) 1213 { 1214 int error; 1215 1216 IN6_MULTI_LOCK(); 1217 error = in6_joingroup_locked(ifp, mcaddr, NULL, pinm, delay); 1218 IN6_MULTI_UNLOCK(); 1219 return (error); 1220 } 1221 1222 /* 1223 * Join a multicast group; real entry point. 1224 * 1225 * Only preserves atomicity at inm level. 1226 * NOTE: imf argument cannot be const due to sys/tree.h limitations. 1227 * 1228 * If the MLD downcall fails, the group is not joined, and an error 1229 * code is returned. 1230 */ 1231 int 1232 in6_joingroup_locked(struct ifnet *ifp, const struct in6_addr *mcaddr, 1233 /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, 1234 const int delay) 1235 { 1236 struct in6_mfilter timf; 1237 struct in6_multi *inm; 1238 struct ifmultiaddr *ifma; 1239 int error; 1240 #ifdef KTR 1241 char ip6tbuf[INET6_ADDRSTRLEN]; 1242 #endif 1243 1244 #ifdef INVARIANTS 1245 /* 1246 * Sanity: Check scope zone ID was set for ifp, if and 1247 * only if group is scoped to an interface. 1248 */ 1249 KASSERT(IN6_IS_ADDR_MULTICAST(mcaddr), 1250 ("%s: not a multicast address", __func__)); 1251 if (IN6_IS_ADDR_MC_LINKLOCAL(mcaddr) || 1252 IN6_IS_ADDR_MC_INTFACELOCAL(mcaddr)) { 1253 KASSERT(mcaddr->s6_addr16[1] != 0, 1254 ("%s: scope zone ID not set", __func__)); 1255 } 1256 #endif 1257 1258 IN6_MULTI_LOCK_ASSERT(); 1259 IN6_MULTI_LIST_UNLOCK_ASSERT(); 1260 1261 CTR4(KTR_MLD, "%s: join %s on %p(%s))", __func__, 1262 ip6_sprintf(ip6tbuf, mcaddr), ifp, if_name(ifp)); 1263 1264 error = 0; 1265 inm = NULL; 1266 1267 /* 1268 * If no imf was specified (i.e. kernel consumer), 1269 * fake one up and assume it is an ASM join. 1270 */ 1271 if (imf == NULL) { 1272 im6f_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); 1273 imf = &timf; 1274 } 1275 error = in6_getmulti(ifp, mcaddr, &inm); 1276 if (error) { 1277 CTR1(KTR_MLD, "%s: in6_getmulti() failure", __func__); 1278 return (error); 1279 } 1280 1281 IN6_MULTI_LIST_LOCK(); 1282 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1283 error = in6m_merge(inm, imf); 1284 if (error) { 1285 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1286 goto out_in6m_release; 1287 } 1288 1289 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1290 error = mld_change_state(inm, delay); 1291 if (error) { 1292 CTR1(KTR_MLD, "%s: failed to update source", __func__); 1293 goto out_in6m_release; 1294 } 1295 1296 out_in6m_release: 1297 if (error) { 1298 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1299 IF_ADDR_RLOCK(ifp); 1300 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1301 if (ifma->ifma_protospec == inm) { 1302 ifma->ifma_protospec = NULL; 1303 break; 1304 } 1305 } 1306 in6m_release_deferred(inm); 1307 IF_ADDR_RUNLOCK(ifp); 1308 } else { 1309 *pinm = inm; 1310 } 1311 IN6_MULTI_LIST_UNLOCK(); 1312 return (error); 1313 } 1314 1315 /* 1316 * Leave a multicast group; unlocked entry point. 1317 */ 1318 int 1319 in6_leavegroup(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1320 { 1321 int error; 1322 1323 IN6_MULTI_LOCK(); 1324 error = in6_leavegroup_locked(inm, imf); 1325 IN6_MULTI_UNLOCK(); 1326 return (error); 1327 } 1328 1329 /* 1330 * Leave a multicast group; real entry point. 1331 * All source filters will be expunged. 1332 * 1333 * Only preserves atomicity at inm level. 1334 * 1335 * Holding the write lock for the INP which contains imf 1336 * is highly advisable. We can't assert for it as imf does not 1337 * contain a back-pointer to the owning inp. 1338 * 1339 * Note: This is not the same as in6m_release(*) as this function also 1340 * makes a state change downcall into MLD. 1341 */ 1342 int 1343 in6_leavegroup_locked(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) 1344 { 1345 struct in6_mfilter timf; 1346 struct ifnet *ifp; 1347 int error; 1348 #ifdef KTR 1349 char ip6tbuf[INET6_ADDRSTRLEN]; 1350 #endif 1351 1352 error = 0; 1353 1354 IN6_MULTI_LOCK_ASSERT(); 1355 1356 CTR5(KTR_MLD, "%s: leave inm %p, %s/%s, imf %p", __func__, 1357 inm, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1358 (in6m_is_ifp_detached(inm) ? "null" : if_name(inm->in6m_ifp)), 1359 imf); 1360 1361 /* 1362 * If no imf was specified (i.e. kernel consumer), 1363 * fake one up and assume it is an ASM join. 1364 */ 1365 if (imf == NULL) { 1366 im6f_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); 1367 imf = &timf; 1368 } 1369 1370 /* 1371 * Begin state merge transaction at MLD layer. 1372 * 1373 * As this particular invocation should not cause any memory 1374 * to be allocated, and there is no opportunity to roll back 1375 * the transaction, it MUST NOT fail. 1376 */ 1377 1378 ifp = inm->in6m_ifp; 1379 IN6_MULTI_LIST_LOCK(); 1380 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1381 error = in6m_merge(inm, imf); 1382 KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); 1383 1384 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1385 error = mld_change_state(inm, 0); 1386 if (error) 1387 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1388 1389 CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); 1390 if (ifp) 1391 IF_ADDR_WLOCK(ifp); 1392 in6m_release_deferred(inm); 1393 if (ifp) 1394 IF_ADDR_WUNLOCK(ifp); 1395 IN6_MULTI_LIST_UNLOCK(); 1396 1397 return (error); 1398 } 1399 1400 1401 /* 1402 * Block or unblock an ASM multicast source on an inpcb. 1403 * This implements the delta-based API described in RFC 3678. 1404 * 1405 * The delta-based API applies only to exclusive-mode memberships. 1406 * An MLD downcall will be performed. 1407 * 1408 * SMPng: NOTE: Must take Giant as a join may create a new ifma. 1409 * 1410 * Return 0 if successful, otherwise return an appropriate error code. 1411 */ 1412 static int 1413 in6p_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) 1414 { 1415 struct group_source_req gsr; 1416 sockunion_t *gsa, *ssa; 1417 struct ifnet *ifp; 1418 struct in6_mfilter *imf; 1419 struct ip6_moptions *imo; 1420 struct in6_msource *ims; 1421 struct in6_multi *inm; 1422 size_t idx; 1423 uint16_t fmode; 1424 int error, doblock; 1425 #ifdef KTR 1426 char ip6tbuf[INET6_ADDRSTRLEN]; 1427 #endif 1428 1429 ifp = NULL; 1430 error = 0; 1431 doblock = 0; 1432 1433 memset(&gsr, 0, sizeof(struct group_source_req)); 1434 gsa = (sockunion_t *)&gsr.gsr_group; 1435 ssa = (sockunion_t *)&gsr.gsr_source; 1436 1437 switch (sopt->sopt_name) { 1438 case MCAST_BLOCK_SOURCE: 1439 case MCAST_UNBLOCK_SOURCE: 1440 error = sooptcopyin(sopt, &gsr, 1441 sizeof(struct group_source_req), 1442 sizeof(struct group_source_req)); 1443 if (error) 1444 return (error); 1445 1446 if (gsa->sin6.sin6_family != AF_INET6 || 1447 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1448 return (EINVAL); 1449 1450 if (ssa->sin6.sin6_family != AF_INET6 || 1451 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1452 return (EINVAL); 1453 1454 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1455 return (EADDRNOTAVAIL); 1456 1457 ifp = ifnet_byindex(gsr.gsr_interface); 1458 1459 if (sopt->sopt_name == MCAST_BLOCK_SOURCE) 1460 doblock = 1; 1461 break; 1462 1463 default: 1464 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 1465 __func__, sopt->sopt_name); 1466 return (EOPNOTSUPP); 1467 break; 1468 } 1469 1470 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1471 return (EINVAL); 1472 1473 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1474 1475 /* 1476 * Check if we are actually a member of this group. 1477 */ 1478 imo = in6p_findmoptions(inp); 1479 idx = im6o_match_group(imo, ifp, &gsa->sa); 1480 if (idx == -1 || imo->im6o_mfilters == NULL) { 1481 error = EADDRNOTAVAIL; 1482 goto out_in6p_locked; 1483 } 1484 1485 KASSERT(imo->im6o_mfilters != NULL, 1486 ("%s: im6o_mfilters not allocated", __func__)); 1487 imf = &imo->im6o_mfilters[idx]; 1488 inm = imo->im6o_membership[idx]; 1489 1490 /* 1491 * Attempting to use the delta-based API on an 1492 * non exclusive-mode membership is an error. 1493 */ 1494 fmode = imf->im6f_st[0]; 1495 if (fmode != MCAST_EXCLUDE) { 1496 error = EINVAL; 1497 goto out_in6p_locked; 1498 } 1499 1500 /* 1501 * Deal with error cases up-front: 1502 * Asked to block, but already blocked; or 1503 * Asked to unblock, but nothing to unblock. 1504 * If adding a new block entry, allocate it. 1505 */ 1506 ims = im6o_match_source(imo, idx, &ssa->sa); 1507 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { 1508 CTR3(KTR_MLD, "%s: source %s %spresent", __func__, 1509 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 1510 doblock ? "" : "not "); 1511 error = EADDRNOTAVAIL; 1512 goto out_in6p_locked; 1513 } 1514 1515 INP_WLOCK_ASSERT(inp); 1516 1517 /* 1518 * Begin state merge transaction at socket layer. 1519 */ 1520 if (doblock) { 1521 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 1522 ims = im6f_graft(imf, fmode, &ssa->sin6); 1523 if (ims == NULL) 1524 error = ENOMEM; 1525 } else { 1526 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 1527 error = im6f_prune(imf, &ssa->sin6); 1528 } 1529 1530 if (error) { 1531 CTR1(KTR_MLD, "%s: merge imf state failed", __func__); 1532 goto out_im6f_rollback; 1533 } 1534 1535 /* 1536 * Begin state merge transaction at MLD layer. 1537 */ 1538 IN6_MULTI_LIST_LOCK(); 1539 CTR1(KTR_MLD, "%s: merge inm state", __func__); 1540 error = in6m_merge(inm, imf); 1541 if (error) 1542 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 1543 else { 1544 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 1545 error = mld_change_state(inm, 0); 1546 if (error) 1547 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 1548 } 1549 1550 IN6_MULTI_LIST_UNLOCK(); 1551 1552 out_im6f_rollback: 1553 if (error) 1554 im6f_rollback(imf); 1555 else 1556 im6f_commit(imf); 1557 1558 im6f_reap(imf); 1559 1560 out_in6p_locked: 1561 INP_WUNLOCK(inp); 1562 return (error); 1563 } 1564 1565 /* 1566 * Given an inpcb, return its multicast options structure pointer. Accepts 1567 * an unlocked inpcb pointer, but will return it locked. May sleep. 1568 * 1569 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 1570 * SMPng: NOTE: Returns with the INP write lock held. 1571 */ 1572 static struct ip6_moptions * 1573 in6p_findmoptions(struct inpcb *inp) 1574 { 1575 struct ip6_moptions *imo; 1576 struct in6_multi **immp; 1577 struct in6_mfilter *imfp; 1578 size_t idx; 1579 1580 INP_WLOCK(inp); 1581 if (inp->in6p_moptions != NULL) 1582 return (inp->in6p_moptions); 1583 1584 INP_WUNLOCK(inp); 1585 1586 imo = malloc(sizeof(*imo), M_IP6MOPTS, M_WAITOK); 1587 immp = malloc(sizeof(*immp) * IPV6_MIN_MEMBERSHIPS, M_IP6MOPTS, 1588 M_WAITOK | M_ZERO); 1589 imfp = malloc(sizeof(struct in6_mfilter) * IPV6_MIN_MEMBERSHIPS, 1590 M_IN6MFILTER, M_WAITOK); 1591 1592 imo->im6o_multicast_ifp = NULL; 1593 imo->im6o_multicast_hlim = V_ip6_defmcasthlim; 1594 imo->im6o_multicast_loop = in6_mcast_loop; 1595 imo->im6o_num_memberships = 0; 1596 imo->im6o_max_memberships = IPV6_MIN_MEMBERSHIPS; 1597 imo->im6o_membership = immp; 1598 1599 /* Initialize per-group source filters. */ 1600 for (idx = 0; idx < IPV6_MIN_MEMBERSHIPS; idx++) 1601 im6f_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE); 1602 imo->im6o_mfilters = imfp; 1603 1604 INP_WLOCK(inp); 1605 if (inp->in6p_moptions != NULL) { 1606 free(imfp, M_IN6MFILTER); 1607 free(immp, M_IP6MOPTS); 1608 free(imo, M_IP6MOPTS); 1609 return (inp->in6p_moptions); 1610 } 1611 inp->in6p_moptions = imo; 1612 return (imo); 1613 } 1614 1615 /* 1616 * Discard the IPv6 multicast options (and source filters). 1617 * 1618 * SMPng: NOTE: assumes INP write lock is held. 1619 */ 1620 void 1621 ip6_freemoptions(struct ip6_moptions *imo, struct inpcbinfo *pcbinfo) 1622 { 1623 struct in6_mfilter *imf; 1624 size_t idx, nmships; 1625 int wlock; 1626 1627 if (imo == NULL) 1628 return; 1629 INP_INFO_LOCK_ASSERT(pcbinfo); 1630 wlock = INP_INFO_WLOCKED(pcbinfo); 1631 if (wlock) 1632 INP_INFO_WUNLOCK(pcbinfo); 1633 else 1634 INP_INFO_RUNLOCK(pcbinfo); 1635 1636 nmships = imo->im6o_num_memberships; 1637 for (idx = 0; idx < nmships; ++idx) { 1638 imf = imo->im6o_mfilters ? &imo->im6o_mfilters[idx] : NULL; 1639 if (imf) 1640 im6f_leave(imf); 1641 /* XXX this will thrash the lock(s) */ 1642 (void)in6_leavegroup(imo->im6o_membership[idx], imf); 1643 if (imf) 1644 im6f_purge(imf); 1645 } 1646 1647 if (imo->im6o_mfilters) 1648 free(imo->im6o_mfilters, M_IN6MFILTER); 1649 free(imo->im6o_membership, M_IP6MOPTS); 1650 free(imo, M_IP6MOPTS); 1651 if (wlock) 1652 INP_INFO_WLOCK(pcbinfo); 1653 else 1654 INP_INFO_RLOCK(pcbinfo); 1655 } 1656 1657 /* 1658 * Atomically get source filters on a socket for an IPv6 multicast group. 1659 * Called with INP lock held; returns with lock released. 1660 */ 1661 static int 1662 in6p_get_source_filters(struct inpcb *inp, struct sockopt *sopt) 1663 { 1664 struct __msfilterreq msfr; 1665 sockunion_t *gsa; 1666 struct ifnet *ifp; 1667 struct ip6_moptions *imo; 1668 struct in6_mfilter *imf; 1669 struct ip6_msource *ims; 1670 struct in6_msource *lims; 1671 struct sockaddr_in6 *psin; 1672 struct sockaddr_storage *ptss; 1673 struct sockaddr_storage *tss; 1674 int error; 1675 size_t idx, nsrcs, ncsrcs; 1676 1677 INP_WLOCK_ASSERT(inp); 1678 1679 imo = inp->in6p_moptions; 1680 KASSERT(imo != NULL, ("%s: null ip6_moptions", __func__)); 1681 1682 INP_WUNLOCK(inp); 1683 1684 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 1685 sizeof(struct __msfilterreq)); 1686 if (error) 1687 return (error); 1688 1689 if (msfr.msfr_group.ss_family != AF_INET6 || 1690 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 1691 return (EINVAL); 1692 1693 gsa = (sockunion_t *)&msfr.msfr_group; 1694 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 1695 return (EINVAL); 1696 1697 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 1698 return (EADDRNOTAVAIL); 1699 ifp = ifnet_byindex(msfr.msfr_ifindex); 1700 if (ifp == NULL) 1701 return (EADDRNOTAVAIL); 1702 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 1703 1704 INP_WLOCK(inp); 1705 1706 /* 1707 * Lookup group on the socket. 1708 */ 1709 idx = im6o_match_group(imo, ifp, &gsa->sa); 1710 if (idx == -1 || imo->im6o_mfilters == NULL) { 1711 INP_WUNLOCK(inp); 1712 return (EADDRNOTAVAIL); 1713 } 1714 imf = &imo->im6o_mfilters[idx]; 1715 1716 /* 1717 * Ignore memberships which are in limbo. 1718 */ 1719 if (imf->im6f_st[1] == MCAST_UNDEFINED) { 1720 INP_WUNLOCK(inp); 1721 return (EAGAIN); 1722 } 1723 msfr.msfr_fmode = imf->im6f_st[1]; 1724 1725 /* 1726 * If the user specified a buffer, copy out the source filter 1727 * entries to userland gracefully. 1728 * We only copy out the number of entries which userland 1729 * has asked for, but we always tell userland how big the 1730 * buffer really needs to be. 1731 */ 1732 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 1733 msfr.msfr_nsrcs = in6_mcast_maxsocksrc; 1734 tss = NULL; 1735 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { 1736 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 1737 M_TEMP, M_NOWAIT | M_ZERO); 1738 if (tss == NULL) { 1739 INP_WUNLOCK(inp); 1740 return (ENOBUFS); 1741 } 1742 } 1743 1744 /* 1745 * Count number of sources in-mode at t0. 1746 * If buffer space exists and remains, copy out source entries. 1747 */ 1748 nsrcs = msfr.msfr_nsrcs; 1749 ncsrcs = 0; 1750 ptss = tss; 1751 RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { 1752 lims = (struct in6_msource *)ims; 1753 if (lims->im6sl_st[0] == MCAST_UNDEFINED || 1754 lims->im6sl_st[0] != imf->im6f_st[0]) 1755 continue; 1756 ++ncsrcs; 1757 if (tss != NULL && nsrcs > 0) { 1758 psin = (struct sockaddr_in6 *)ptss; 1759 psin->sin6_family = AF_INET6; 1760 psin->sin6_len = sizeof(struct sockaddr_in6); 1761 psin->sin6_addr = lims->im6s_addr; 1762 psin->sin6_port = 0; 1763 --nsrcs; 1764 ++ptss; 1765 } 1766 } 1767 1768 INP_WUNLOCK(inp); 1769 1770 if (tss != NULL) { 1771 error = copyout(tss, msfr.msfr_srcs, 1772 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 1773 free(tss, M_TEMP); 1774 if (error) 1775 return (error); 1776 } 1777 1778 msfr.msfr_nsrcs = ncsrcs; 1779 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); 1780 1781 return (error); 1782 } 1783 1784 /* 1785 * Return the IP multicast options in response to user getsockopt(). 1786 */ 1787 int 1788 ip6_getmoptions(struct inpcb *inp, struct sockopt *sopt) 1789 { 1790 struct ip6_moptions *im6o; 1791 int error; 1792 u_int optval; 1793 1794 INP_WLOCK(inp); 1795 im6o = inp->in6p_moptions; 1796 /* 1797 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 1798 * or is a divert socket, reject it. 1799 */ 1800 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 1801 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 1802 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { 1803 INP_WUNLOCK(inp); 1804 return (EOPNOTSUPP); 1805 } 1806 1807 error = 0; 1808 switch (sopt->sopt_name) { 1809 case IPV6_MULTICAST_IF: 1810 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) { 1811 optval = 0; 1812 } else { 1813 optval = im6o->im6o_multicast_ifp->if_index; 1814 } 1815 INP_WUNLOCK(inp); 1816 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1817 break; 1818 1819 case IPV6_MULTICAST_HOPS: 1820 if (im6o == NULL) 1821 optval = V_ip6_defmcasthlim; 1822 else 1823 optval = im6o->im6o_multicast_hlim; 1824 INP_WUNLOCK(inp); 1825 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1826 break; 1827 1828 case IPV6_MULTICAST_LOOP: 1829 if (im6o == NULL) 1830 optval = in6_mcast_loop; /* XXX VIMAGE */ 1831 else 1832 optval = im6o->im6o_multicast_loop; 1833 INP_WUNLOCK(inp); 1834 error = sooptcopyout(sopt, &optval, sizeof(u_int)); 1835 break; 1836 1837 case IPV6_MSFILTER: 1838 if (im6o == NULL) { 1839 error = EADDRNOTAVAIL; 1840 INP_WUNLOCK(inp); 1841 } else { 1842 error = in6p_get_source_filters(inp, sopt); 1843 } 1844 break; 1845 1846 default: 1847 INP_WUNLOCK(inp); 1848 error = ENOPROTOOPT; 1849 break; 1850 } 1851 1852 INP_UNLOCK_ASSERT(inp); 1853 1854 return (error); 1855 } 1856 1857 /* 1858 * Look up the ifnet to use for a multicast group membership, 1859 * given the address of an IPv6 group. 1860 * 1861 * This routine exists to support legacy IPv6 multicast applications. 1862 * 1863 * If inp is non-NULL, use this socket's current FIB number for any 1864 * required FIB lookup. Look up the group address in the unicast FIB, 1865 * and use its ifp; usually, this points to the default next-hop. 1866 * If the FIB lookup fails, return NULL. 1867 * 1868 * FUTURE: Support multiple forwarding tables for IPv6. 1869 * 1870 * Returns NULL if no ifp could be found. 1871 */ 1872 static struct ifnet * 1873 in6p_lookup_mcast_ifp(const struct inpcb *in6p, 1874 const struct sockaddr_in6 *gsin6) 1875 { 1876 struct nhop6_basic nh6; 1877 struct in6_addr dst; 1878 uint32_t scopeid; 1879 uint32_t fibnum; 1880 1881 KASSERT(in6p->inp_vflag & INP_IPV6, 1882 ("%s: not INP_IPV6 inpcb", __func__)); 1883 KASSERT(gsin6->sin6_family == AF_INET6, 1884 ("%s: not AF_INET6 group", __func__)); 1885 1886 in6_splitscope(&gsin6->sin6_addr, &dst, &scopeid); 1887 fibnum = in6p ? in6p->inp_inc.inc_fibnum : RT_DEFAULT_FIB; 1888 if (fib6_lookup_nh_basic(fibnum, &dst, scopeid, 0, 0, &nh6) != 0) 1889 return (NULL); 1890 1891 return (nh6.nh_ifp); 1892 } 1893 1894 /* 1895 * Join an IPv6 multicast group, possibly with a source. 1896 * 1897 * FIXME: The KAME use of the unspecified address (::) 1898 * to join *all* multicast groups is currently unsupported. 1899 */ 1900 static int 1901 in6p_join_group(struct inpcb *inp, struct sockopt *sopt) 1902 { 1903 struct group_source_req gsr; 1904 sockunion_t *gsa, *ssa; 1905 struct ifnet *ifp; 1906 struct in6_mfilter *imf; 1907 struct ip6_moptions *imo; 1908 struct in6_multi *inm; 1909 struct in6_msource *lims; 1910 size_t idx; 1911 int error, is_new; 1912 1913 ifp = NULL; 1914 imf = NULL; 1915 lims = NULL; 1916 error = 0; 1917 is_new = 0; 1918 1919 memset(&gsr, 0, sizeof(struct group_source_req)); 1920 gsa = (sockunion_t *)&gsr.gsr_group; 1921 gsa->ss.ss_family = AF_UNSPEC; 1922 ssa = (sockunion_t *)&gsr.gsr_source; 1923 ssa->ss.ss_family = AF_UNSPEC; 1924 1925 /* 1926 * Chew everything into struct group_source_req. 1927 * Overwrite the port field if present, as the sockaddr 1928 * being copied in may be matched with a binary comparison. 1929 * Ignore passed-in scope ID. 1930 */ 1931 switch (sopt->sopt_name) { 1932 case IPV6_JOIN_GROUP: { 1933 struct ipv6_mreq mreq; 1934 1935 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 1936 sizeof(struct ipv6_mreq)); 1937 if (error) 1938 return (error); 1939 1940 gsa->sin6.sin6_family = AF_INET6; 1941 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 1942 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 1943 1944 if (mreq.ipv6mr_interface == 0) { 1945 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 1946 } else { 1947 if (V_if_index < mreq.ipv6mr_interface) 1948 return (EADDRNOTAVAIL); 1949 ifp = ifnet_byindex(mreq.ipv6mr_interface); 1950 } 1951 CTR3(KTR_MLD, "%s: ipv6mr_interface = %d, ifp = %p", 1952 __func__, mreq.ipv6mr_interface, ifp); 1953 } break; 1954 1955 case MCAST_JOIN_GROUP: 1956 case MCAST_JOIN_SOURCE_GROUP: 1957 if (sopt->sopt_name == MCAST_JOIN_GROUP) { 1958 error = sooptcopyin(sopt, &gsr, 1959 sizeof(struct group_req), 1960 sizeof(struct group_req)); 1961 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1962 error = sooptcopyin(sopt, &gsr, 1963 sizeof(struct group_source_req), 1964 sizeof(struct group_source_req)); 1965 } 1966 if (error) 1967 return (error); 1968 1969 if (gsa->sin6.sin6_family != AF_INET6 || 1970 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1971 return (EINVAL); 1972 1973 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { 1974 if (ssa->sin6.sin6_family != AF_INET6 || 1975 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 1976 return (EINVAL); 1977 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 1978 return (EINVAL); 1979 /* 1980 * TODO: Validate embedded scope ID in source 1981 * list entry against passed-in ifp, if and only 1982 * if source list filter entry is iface or node local. 1983 */ 1984 in6_clearscope(&ssa->sin6.sin6_addr); 1985 ssa->sin6.sin6_port = 0; 1986 ssa->sin6.sin6_scope_id = 0; 1987 } 1988 1989 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) 1990 return (EADDRNOTAVAIL); 1991 ifp = ifnet_byindex(gsr.gsr_interface); 1992 break; 1993 1994 default: 1995 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 1996 __func__, sopt->sopt_name); 1997 return (EOPNOTSUPP); 1998 break; 1999 } 2000 2001 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2002 return (EINVAL); 2003 2004 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) 2005 return (EADDRNOTAVAIL); 2006 2007 gsa->sin6.sin6_port = 0; 2008 gsa->sin6.sin6_scope_id = 0; 2009 2010 /* 2011 * Always set the scope zone ID on memberships created from userland. 2012 * Use the passed-in ifp to do this. 2013 * XXX The in6_setscope() return value is meaningless. 2014 * XXX SCOPE6_LOCK() is taken by in6_setscope(). 2015 */ 2016 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2017 2018 imo = in6p_findmoptions(inp); 2019 idx = im6o_match_group(imo, ifp, &gsa->sa); 2020 if (idx == -1) { 2021 is_new = 1; 2022 } else { 2023 inm = imo->im6o_membership[idx]; 2024 imf = &imo->im6o_mfilters[idx]; 2025 if (ssa->ss.ss_family != AF_UNSPEC) { 2026 /* 2027 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership 2028 * is an error. On an existing inclusive membership, 2029 * it just adds the source to the filter list. 2030 */ 2031 if (imf->im6f_st[1] != MCAST_INCLUDE) { 2032 error = EINVAL; 2033 goto out_in6p_locked; 2034 } 2035 /* 2036 * Throw out duplicates. 2037 * 2038 * XXX FIXME: This makes a naive assumption that 2039 * even if entries exist for *ssa in this imf, 2040 * they will be rejected as dupes, even if they 2041 * are not valid in the current mode (in-mode). 2042 * 2043 * in6_msource is transactioned just as for anything 2044 * else in SSM -- but note naive use of in6m_graft() 2045 * below for allocating new filter entries. 2046 * 2047 * This is only an issue if someone mixes the 2048 * full-state SSM API with the delta-based API, 2049 * which is discouraged in the relevant RFCs. 2050 */ 2051 lims = im6o_match_source(imo, idx, &ssa->sa); 2052 if (lims != NULL /*&& 2053 lims->im6sl_st[1] == MCAST_INCLUDE*/) { 2054 error = EADDRNOTAVAIL; 2055 goto out_in6p_locked; 2056 } 2057 } else { 2058 /* 2059 * MCAST_JOIN_GROUP alone, on any existing membership, 2060 * is rejected, to stop the same inpcb tying up 2061 * multiple refs to the in_multi. 2062 * On an existing inclusive membership, this is also 2063 * an error; if you want to change filter mode, 2064 * you must use the userland API setsourcefilter(). 2065 * XXX We don't reject this for imf in UNDEFINED 2066 * state at t1, because allocation of a filter 2067 * is atomic with allocation of a membership. 2068 */ 2069 error = EINVAL; 2070 goto out_in6p_locked; 2071 } 2072 } 2073 2074 /* 2075 * Begin state merge transaction at socket layer. 2076 */ 2077 INP_WLOCK_ASSERT(inp); 2078 2079 if (is_new) { 2080 if (imo->im6o_num_memberships == imo->im6o_max_memberships) { 2081 error = im6o_grow(imo); 2082 if (error) 2083 goto out_in6p_locked; 2084 } 2085 /* 2086 * Allocate the new slot upfront so we can deal with 2087 * grafting the new source filter in same code path 2088 * as for join-source on existing membership. 2089 */ 2090 idx = imo->im6o_num_memberships; 2091 imo->im6o_membership[idx] = NULL; 2092 imo->im6o_num_memberships++; 2093 KASSERT(imo->im6o_mfilters != NULL, 2094 ("%s: im6f_mfilters vector was not allocated", __func__)); 2095 imf = &imo->im6o_mfilters[idx]; 2096 KASSERT(RB_EMPTY(&imf->im6f_sources), 2097 ("%s: im6f_sources not empty", __func__)); 2098 } 2099 2100 /* 2101 * Graft new source into filter list for this inpcb's 2102 * membership of the group. The in6_multi may not have 2103 * been allocated yet if this is a new membership, however, 2104 * the in_mfilter slot will be allocated and must be initialized. 2105 * 2106 * Note: Grafting of exclusive mode filters doesn't happen 2107 * in this path. 2108 * XXX: Should check for non-NULL lims (node exists but may 2109 * not be in-mode) for interop with full-state API. 2110 */ 2111 if (ssa->ss.ss_family != AF_UNSPEC) { 2112 /* Membership starts in IN mode */ 2113 if (is_new) { 2114 CTR1(KTR_MLD, "%s: new join w/source", __func__); 2115 im6f_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE); 2116 } else { 2117 CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); 2118 } 2119 lims = im6f_graft(imf, MCAST_INCLUDE, &ssa->sin6); 2120 if (lims == NULL) { 2121 CTR1(KTR_MLD, "%s: merge imf state failed", 2122 __func__); 2123 error = ENOMEM; 2124 goto out_im6o_free; 2125 } 2126 } else { 2127 /* No address specified; Membership starts in EX mode */ 2128 if (is_new) { 2129 CTR1(KTR_MLD, "%s: new join w/o source", __func__); 2130 im6f_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE); 2131 } 2132 } 2133 2134 /* 2135 * Begin state merge transaction at MLD layer. 2136 */ 2137 in_pcbref(inp); 2138 INP_WUNLOCK(inp); 2139 IN6_MULTI_LOCK(); 2140 2141 if (is_new) { 2142 error = in6_joingroup_locked(ifp, &gsa->sin6.sin6_addr, imf, 2143 &inm, 0); 2144 if (error) { 2145 IN6_MULTI_UNLOCK(); 2146 goto out_im6o_free; 2147 } 2148 imo->im6o_membership[idx] = inm; 2149 } else { 2150 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2151 IN6_MULTI_LIST_LOCK(); 2152 error = in6m_merge(inm, imf); 2153 if (error) 2154 CTR1(KTR_MLD, "%s: failed to merge inm state", 2155 __func__); 2156 else { 2157 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2158 error = mld_change_state(inm, 0); 2159 if (error) 2160 CTR1(KTR_MLD, "%s: failed mld downcall", 2161 __func__); 2162 } 2163 IN6_MULTI_LIST_UNLOCK(); 2164 } 2165 2166 IN6_MULTI_UNLOCK(); 2167 INP_WLOCK(inp); 2168 if (in_pcbrele_wlocked(inp)) 2169 return (ENXIO); 2170 if (error) { 2171 im6f_rollback(imf); 2172 if (is_new) 2173 im6f_purge(imf); 2174 else 2175 im6f_reap(imf); 2176 } else { 2177 im6f_commit(imf); 2178 } 2179 2180 out_im6o_free: 2181 if (error && is_new) { 2182 imo->im6o_membership[idx] = NULL; 2183 --imo->im6o_num_memberships; 2184 } 2185 2186 out_in6p_locked: 2187 INP_WUNLOCK(inp); 2188 return (error); 2189 } 2190 2191 /* 2192 * Leave an IPv6 multicast group on an inpcb, possibly with a source. 2193 */ 2194 static int 2195 in6p_leave_group(struct inpcb *inp, struct sockopt *sopt) 2196 { 2197 struct ipv6_mreq mreq; 2198 struct group_source_req gsr; 2199 sockunion_t *gsa, *ssa; 2200 struct ifnet *ifp; 2201 struct in6_mfilter *imf; 2202 struct ip6_moptions *imo; 2203 struct in6_msource *ims; 2204 struct in6_multi *inm; 2205 uint32_t ifindex; 2206 size_t idx; 2207 int error, is_final; 2208 #ifdef KTR 2209 char ip6tbuf[INET6_ADDRSTRLEN]; 2210 #endif 2211 2212 ifp = NULL; 2213 ifindex = 0; 2214 error = 0; 2215 is_final = 1; 2216 2217 memset(&gsr, 0, sizeof(struct group_source_req)); 2218 gsa = (sockunion_t *)&gsr.gsr_group; 2219 gsa->ss.ss_family = AF_UNSPEC; 2220 ssa = (sockunion_t *)&gsr.gsr_source; 2221 ssa->ss.ss_family = AF_UNSPEC; 2222 2223 /* 2224 * Chew everything passed in up into a struct group_source_req 2225 * as that is easier to process. 2226 * Note: Any embedded scope ID in the multicast group passed 2227 * in by userland is ignored, the interface index is the recommended 2228 * mechanism to specify an interface; see below. 2229 */ 2230 switch (sopt->sopt_name) { 2231 case IPV6_LEAVE_GROUP: 2232 error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), 2233 sizeof(struct ipv6_mreq)); 2234 if (error) 2235 return (error); 2236 gsa->sin6.sin6_family = AF_INET6; 2237 gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); 2238 gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; 2239 gsa->sin6.sin6_port = 0; 2240 gsa->sin6.sin6_scope_id = 0; 2241 ifindex = mreq.ipv6mr_interface; 2242 break; 2243 2244 case MCAST_LEAVE_GROUP: 2245 case MCAST_LEAVE_SOURCE_GROUP: 2246 if (sopt->sopt_name == MCAST_LEAVE_GROUP) { 2247 error = sooptcopyin(sopt, &gsr, 2248 sizeof(struct group_req), 2249 sizeof(struct group_req)); 2250 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2251 error = sooptcopyin(sopt, &gsr, 2252 sizeof(struct group_source_req), 2253 sizeof(struct group_source_req)); 2254 } 2255 if (error) 2256 return (error); 2257 2258 if (gsa->sin6.sin6_family != AF_INET6 || 2259 gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2260 return (EINVAL); 2261 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { 2262 if (ssa->sin6.sin6_family != AF_INET6 || 2263 ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) 2264 return (EINVAL); 2265 if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) 2266 return (EINVAL); 2267 /* 2268 * TODO: Validate embedded scope ID in source 2269 * list entry against passed-in ifp, if and only 2270 * if source list filter entry is iface or node local. 2271 */ 2272 in6_clearscope(&ssa->sin6.sin6_addr); 2273 } 2274 gsa->sin6.sin6_port = 0; 2275 gsa->sin6.sin6_scope_id = 0; 2276 ifindex = gsr.gsr_interface; 2277 break; 2278 2279 default: 2280 CTR2(KTR_MLD, "%s: unknown sopt_name %d", 2281 __func__, sopt->sopt_name); 2282 return (EOPNOTSUPP); 2283 break; 2284 } 2285 2286 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2287 return (EINVAL); 2288 2289 /* 2290 * Validate interface index if provided. If no interface index 2291 * was provided separately, attempt to look the membership up 2292 * from the default scope as a last resort to disambiguate 2293 * the membership we are being asked to leave. 2294 * XXX SCOPE6 lock potentially taken here. 2295 */ 2296 if (ifindex != 0) { 2297 if (V_if_index < ifindex) 2298 return (EADDRNOTAVAIL); 2299 ifp = ifnet_byindex(ifindex); 2300 if (ifp == NULL) 2301 return (EADDRNOTAVAIL); 2302 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2303 } else { 2304 error = sa6_embedscope(&gsa->sin6, V_ip6_use_defzone); 2305 if (error) 2306 return (EADDRNOTAVAIL); 2307 /* 2308 * Some badly behaved applications don't pass an ifindex 2309 * or a scope ID, which is an API violation. In this case, 2310 * perform a lookup as per a v6 join. 2311 * 2312 * XXX For now, stomp on zone ID for the corner case. 2313 * This is not the 'KAME way', but we need to see the ifp 2314 * directly until such time as this implementation is 2315 * refactored, assuming the scope IDs are the way to go. 2316 */ 2317 ifindex = ntohs(gsa->sin6.sin6_addr.s6_addr16[1]); 2318 if (ifindex == 0) { 2319 CTR2(KTR_MLD, "%s: warning: no ifindex, looking up " 2320 "ifp for group %s.", __func__, 2321 ip6_sprintf(ip6tbuf, &gsa->sin6.sin6_addr)); 2322 ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); 2323 } else { 2324 ifp = ifnet_byindex(ifindex); 2325 } 2326 if (ifp == NULL) 2327 return (EADDRNOTAVAIL); 2328 } 2329 2330 CTR2(KTR_MLD, "%s: ifp = %p", __func__, ifp); 2331 KASSERT(ifp != NULL, ("%s: ifp did not resolve", __func__)); 2332 2333 /* 2334 * Find the membership in the membership array. 2335 */ 2336 imo = in6p_findmoptions(inp); 2337 idx = im6o_match_group(imo, ifp, &gsa->sa); 2338 if (idx == -1) { 2339 error = EADDRNOTAVAIL; 2340 goto out_in6p_locked; 2341 } 2342 inm = imo->im6o_membership[idx]; 2343 imf = &imo->im6o_mfilters[idx]; 2344 2345 if (ssa->ss.ss_family != AF_UNSPEC) 2346 is_final = 0; 2347 2348 /* 2349 * Begin state merge transaction at socket layer. 2350 */ 2351 INP_WLOCK_ASSERT(inp); 2352 2353 /* 2354 * If we were instructed only to leave a given source, do so. 2355 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. 2356 */ 2357 if (is_final) { 2358 im6f_leave(imf); 2359 } else { 2360 if (imf->im6f_st[0] == MCAST_EXCLUDE) { 2361 error = EADDRNOTAVAIL; 2362 goto out_in6p_locked; 2363 } 2364 ims = im6o_match_source(imo, idx, &ssa->sa); 2365 if (ims == NULL) { 2366 CTR3(KTR_MLD, "%s: source %p %spresent", __func__, 2367 ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), 2368 "not "); 2369 error = EADDRNOTAVAIL; 2370 goto out_in6p_locked; 2371 } 2372 CTR2(KTR_MLD, "%s: %s source", __func__, "block"); 2373 error = im6f_prune(imf, &ssa->sin6); 2374 if (error) { 2375 CTR1(KTR_MLD, "%s: merge imf state failed", 2376 __func__); 2377 goto out_in6p_locked; 2378 } 2379 } 2380 2381 /* 2382 * Begin state merge transaction at MLD layer. 2383 */ 2384 IN6_MULTI_LOCK(); 2385 2386 if (is_final) { 2387 /* 2388 * Give up the multicast address record to which 2389 * the membership points. 2390 */ 2391 (void)in6_leavegroup_locked(inm, imf); 2392 } else { 2393 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2394 IN6_MULTI_LIST_LOCK(); 2395 error = in6m_merge(inm, imf); 2396 if (error) 2397 CTR1(KTR_MLD, "%s: failed to merge inm state", 2398 __func__); 2399 else { 2400 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2401 error = mld_change_state(inm, 0); 2402 if (error) 2403 CTR1(KTR_MLD, "%s: failed mld downcall", 2404 __func__); 2405 } 2406 IN6_MULTI_LIST_UNLOCK(); 2407 } 2408 2409 IN6_MULTI_UNLOCK(); 2410 2411 if (error) 2412 im6f_rollback(imf); 2413 else 2414 im6f_commit(imf); 2415 2416 im6f_reap(imf); 2417 2418 if (is_final) { 2419 /* Remove the gap in the membership array. */ 2420 for (++idx; idx < imo->im6o_num_memberships; ++idx) { 2421 imo->im6o_membership[idx-1] = imo->im6o_membership[idx]; 2422 imo->im6o_mfilters[idx-1] = imo->im6o_mfilters[idx]; 2423 } 2424 imo->im6o_num_memberships--; 2425 } 2426 2427 out_in6p_locked: 2428 INP_WUNLOCK(inp); 2429 return (error); 2430 } 2431 2432 /* 2433 * Select the interface for transmitting IPv6 multicast datagrams. 2434 * 2435 * Either an instance of struct in6_addr or an instance of struct ipv6_mreqn 2436 * may be passed to this socket option. An address of in6addr_any or an 2437 * interface index of 0 is used to remove a previous selection. 2438 * When no interface is selected, one is chosen for every send. 2439 */ 2440 static int 2441 in6p_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) 2442 { 2443 struct ifnet *ifp; 2444 struct ip6_moptions *imo; 2445 u_int ifindex; 2446 int error; 2447 2448 if (sopt->sopt_valsize != sizeof(u_int)) 2449 return (EINVAL); 2450 2451 error = sooptcopyin(sopt, &ifindex, sizeof(u_int), sizeof(u_int)); 2452 if (error) 2453 return (error); 2454 if (V_if_index < ifindex) 2455 return (EINVAL); 2456 if (ifindex == 0) 2457 ifp = NULL; 2458 else { 2459 ifp = ifnet_byindex(ifindex); 2460 if (ifp == NULL) 2461 return (EINVAL); 2462 if ((ifp->if_flags & IFF_MULTICAST) == 0) 2463 return (EADDRNOTAVAIL); 2464 } 2465 imo = in6p_findmoptions(inp); 2466 imo->im6o_multicast_ifp = ifp; 2467 INP_WUNLOCK(inp); 2468 2469 return (0); 2470 } 2471 2472 /* 2473 * Atomically set source filters on a socket for an IPv6 multicast group. 2474 * 2475 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. 2476 */ 2477 static int 2478 in6p_set_source_filters(struct inpcb *inp, struct sockopt *sopt) 2479 { 2480 struct __msfilterreq msfr; 2481 sockunion_t *gsa; 2482 struct ifnet *ifp; 2483 struct in6_mfilter *imf; 2484 struct ip6_moptions *imo; 2485 struct in6_multi *inm; 2486 size_t idx; 2487 int error; 2488 2489 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), 2490 sizeof(struct __msfilterreq)); 2491 if (error) 2492 return (error); 2493 2494 if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) 2495 return (ENOBUFS); 2496 2497 if (msfr.msfr_fmode != MCAST_EXCLUDE && 2498 msfr.msfr_fmode != MCAST_INCLUDE) 2499 return (EINVAL); 2500 2501 if (msfr.msfr_group.ss_family != AF_INET6 || 2502 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) 2503 return (EINVAL); 2504 2505 gsa = (sockunion_t *)&msfr.msfr_group; 2506 if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) 2507 return (EINVAL); 2508 2509 gsa->sin6.sin6_port = 0; /* ignore port */ 2510 2511 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) 2512 return (EADDRNOTAVAIL); 2513 ifp = ifnet_byindex(msfr.msfr_ifindex); 2514 if (ifp == NULL) 2515 return (EADDRNOTAVAIL); 2516 (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); 2517 2518 /* 2519 * Take the INP write lock. 2520 * Check if this socket is a member of this group. 2521 */ 2522 imo = in6p_findmoptions(inp); 2523 idx = im6o_match_group(imo, ifp, &gsa->sa); 2524 if (idx == -1 || imo->im6o_mfilters == NULL) { 2525 error = EADDRNOTAVAIL; 2526 goto out_in6p_locked; 2527 } 2528 inm = imo->im6o_membership[idx]; 2529 imf = &imo->im6o_mfilters[idx]; 2530 2531 /* 2532 * Begin state merge transaction at socket layer. 2533 */ 2534 INP_WLOCK_ASSERT(inp); 2535 2536 imf->im6f_st[1] = msfr.msfr_fmode; 2537 2538 /* 2539 * Apply any new source filters, if present. 2540 * Make a copy of the user-space source vector so 2541 * that we may copy them with a single copyin. This 2542 * allows us to deal with page faults up-front. 2543 */ 2544 if (msfr.msfr_nsrcs > 0) { 2545 struct in6_msource *lims; 2546 struct sockaddr_in6 *psin; 2547 struct sockaddr_storage *kss, *pkss; 2548 int i; 2549 2550 INP_WUNLOCK(inp); 2551 2552 CTR2(KTR_MLD, "%s: loading %lu source list entries", 2553 __func__, (unsigned long)msfr.msfr_nsrcs); 2554 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, 2555 M_TEMP, M_WAITOK); 2556 error = copyin(msfr.msfr_srcs, kss, 2557 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); 2558 if (error) { 2559 free(kss, M_TEMP); 2560 return (error); 2561 } 2562 2563 INP_WLOCK(inp); 2564 2565 /* 2566 * Mark all source filters as UNDEFINED at t1. 2567 * Restore new group filter mode, as im6f_leave() 2568 * will set it to INCLUDE. 2569 */ 2570 im6f_leave(imf); 2571 imf->im6f_st[1] = msfr.msfr_fmode; 2572 2573 /* 2574 * Update socket layer filters at t1, lazy-allocating 2575 * new entries. This saves a bunch of memory at the 2576 * cost of one RB_FIND() per source entry; duplicate 2577 * entries in the msfr_nsrcs vector are ignored. 2578 * If we encounter an error, rollback transaction. 2579 * 2580 * XXX This too could be replaced with a set-symmetric 2581 * difference like loop to avoid walking from root 2582 * every time, as the key space is common. 2583 */ 2584 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { 2585 psin = (struct sockaddr_in6 *)pkss; 2586 if (psin->sin6_family != AF_INET6) { 2587 error = EAFNOSUPPORT; 2588 break; 2589 } 2590 if (psin->sin6_len != sizeof(struct sockaddr_in6)) { 2591 error = EINVAL; 2592 break; 2593 } 2594 if (IN6_IS_ADDR_MULTICAST(&psin->sin6_addr)) { 2595 error = EINVAL; 2596 break; 2597 } 2598 /* 2599 * TODO: Validate embedded scope ID in source 2600 * list entry against passed-in ifp, if and only 2601 * if source list filter entry is iface or node local. 2602 */ 2603 in6_clearscope(&psin->sin6_addr); 2604 error = im6f_get_source(imf, psin, &lims); 2605 if (error) 2606 break; 2607 lims->im6sl_st[1] = imf->im6f_st[1]; 2608 } 2609 free(kss, M_TEMP); 2610 } 2611 2612 if (error) 2613 goto out_im6f_rollback; 2614 2615 INP_WLOCK_ASSERT(inp); 2616 IN6_MULTI_LIST_LOCK(); 2617 2618 /* 2619 * Begin state merge transaction at MLD layer. 2620 */ 2621 CTR1(KTR_MLD, "%s: merge inm state", __func__); 2622 error = in6m_merge(inm, imf); 2623 if (error) 2624 CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); 2625 else { 2626 CTR1(KTR_MLD, "%s: doing mld downcall", __func__); 2627 error = mld_change_state(inm, 0); 2628 if (error) 2629 CTR1(KTR_MLD, "%s: failed mld downcall", __func__); 2630 } 2631 2632 IN6_MULTI_LIST_UNLOCK(); 2633 2634 out_im6f_rollback: 2635 if (error) 2636 im6f_rollback(imf); 2637 else 2638 im6f_commit(imf); 2639 2640 im6f_reap(imf); 2641 2642 out_in6p_locked: 2643 INP_WUNLOCK(inp); 2644 return (error); 2645 } 2646 2647 /* 2648 * Set the IP multicast options in response to user setsockopt(). 2649 * 2650 * Many of the socket options handled in this function duplicate the 2651 * functionality of socket options in the regular unicast API. However, 2652 * it is not possible to merge the duplicate code, because the idempotence 2653 * of the IPv6 multicast part of the BSD Sockets API must be preserved; 2654 * the effects of these options must be treated as separate and distinct. 2655 * 2656 * SMPng: XXX: Unlocked read of inp_socket believed OK. 2657 */ 2658 int 2659 ip6_setmoptions(struct inpcb *inp, struct sockopt *sopt) 2660 { 2661 struct ip6_moptions *im6o; 2662 int error; 2663 2664 error = 0; 2665 2666 /* 2667 * If socket is neither of type SOCK_RAW or SOCK_DGRAM, 2668 * or is a divert socket, reject it. 2669 */ 2670 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || 2671 (inp->inp_socket->so_proto->pr_type != SOCK_RAW && 2672 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) 2673 return (EOPNOTSUPP); 2674 2675 switch (sopt->sopt_name) { 2676 case IPV6_MULTICAST_IF: 2677 error = in6p_set_multicast_if(inp, sopt); 2678 break; 2679 2680 case IPV6_MULTICAST_HOPS: { 2681 int hlim; 2682 2683 if (sopt->sopt_valsize != sizeof(int)) { 2684 error = EINVAL; 2685 break; 2686 } 2687 error = sooptcopyin(sopt, &hlim, sizeof(hlim), sizeof(int)); 2688 if (error) 2689 break; 2690 if (hlim < -1 || hlim > 255) { 2691 error = EINVAL; 2692 break; 2693 } else if (hlim == -1) { 2694 hlim = V_ip6_defmcasthlim; 2695 } 2696 im6o = in6p_findmoptions(inp); 2697 im6o->im6o_multicast_hlim = hlim; 2698 INP_WUNLOCK(inp); 2699 break; 2700 } 2701 2702 case IPV6_MULTICAST_LOOP: { 2703 u_int loop; 2704 2705 /* 2706 * Set the loopback flag for outgoing multicast packets. 2707 * Must be zero or one. 2708 */ 2709 if (sopt->sopt_valsize != sizeof(u_int)) { 2710 error = EINVAL; 2711 break; 2712 } 2713 error = sooptcopyin(sopt, &loop, sizeof(u_int), sizeof(u_int)); 2714 if (error) 2715 break; 2716 if (loop > 1) { 2717 error = EINVAL; 2718 break; 2719 } 2720 im6o = in6p_findmoptions(inp); 2721 im6o->im6o_multicast_loop = loop; 2722 INP_WUNLOCK(inp); 2723 break; 2724 } 2725 2726 case IPV6_JOIN_GROUP: 2727 case MCAST_JOIN_GROUP: 2728 case MCAST_JOIN_SOURCE_GROUP: 2729 error = in6p_join_group(inp, sopt); 2730 break; 2731 2732 case IPV6_LEAVE_GROUP: 2733 case MCAST_LEAVE_GROUP: 2734 case MCAST_LEAVE_SOURCE_GROUP: 2735 error = in6p_leave_group(inp, sopt); 2736 break; 2737 2738 case MCAST_BLOCK_SOURCE: 2739 case MCAST_UNBLOCK_SOURCE: 2740 error = in6p_block_unblock_source(inp, sopt); 2741 break; 2742 2743 case IPV6_MSFILTER: 2744 error = in6p_set_source_filters(inp, sopt); 2745 break; 2746 2747 default: 2748 error = EOPNOTSUPP; 2749 break; 2750 } 2751 2752 INP_UNLOCK_ASSERT(inp); 2753 2754 return (error); 2755 } 2756 2757 /* 2758 * Expose MLD's multicast filter mode and source list(s) to userland, 2759 * keyed by (ifindex, group). 2760 * The filter mode is written out as a uint32_t, followed by 2761 * 0..n of struct in6_addr. 2762 * For use by ifmcstat(8). 2763 * SMPng: NOTE: unlocked read of ifindex space. 2764 */ 2765 static int 2766 sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS) 2767 { 2768 struct in6_addr mcaddr; 2769 struct in6_addr src; 2770 struct ifnet *ifp; 2771 struct ifmultiaddr *ifma; 2772 struct in6_multi *inm; 2773 struct ip6_msource *ims; 2774 int *name; 2775 int retval; 2776 u_int namelen; 2777 uint32_t fmode, ifindex; 2778 #ifdef KTR 2779 char ip6tbuf[INET6_ADDRSTRLEN]; 2780 #endif 2781 2782 name = (int *)arg1; 2783 namelen = arg2; 2784 2785 if (req->newptr != NULL) 2786 return (EPERM); 2787 2788 /* int: ifindex + 4 * 32 bits of IPv6 address */ 2789 if (namelen != 5) 2790 return (EINVAL); 2791 2792 ifindex = name[0]; 2793 if (ifindex <= 0 || ifindex > V_if_index) { 2794 CTR2(KTR_MLD, "%s: ifindex %u out of range", 2795 __func__, ifindex); 2796 return (ENOENT); 2797 } 2798 2799 memcpy(&mcaddr, &name[1], sizeof(struct in6_addr)); 2800 if (!IN6_IS_ADDR_MULTICAST(&mcaddr)) { 2801 CTR2(KTR_MLD, "%s: group %s is not multicast", 2802 __func__, ip6_sprintf(ip6tbuf, &mcaddr)); 2803 return (EINVAL); 2804 } 2805 2806 ifp = ifnet_byindex(ifindex); 2807 if (ifp == NULL) { 2808 CTR2(KTR_MLD, "%s: no ifp for ifindex %u", 2809 __func__, ifindex); 2810 return (ENOENT); 2811 } 2812 /* 2813 * Internal MLD lookups require that scope/zone ID is set. 2814 */ 2815 (void)in6_setscope(&mcaddr, ifp, NULL); 2816 2817 retval = sysctl_wire_old_buffer(req, 2818 sizeof(uint32_t) + (in6_mcast_maxgrpsrc * sizeof(struct in6_addr))); 2819 if (retval) 2820 return (retval); 2821 2822 IN6_MULTI_LOCK(); 2823 IN6_MULTI_LIST_LOCK(); 2824 IF_ADDR_RLOCK(ifp); 2825 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2826 if (ifma->ifma_addr->sa_family != AF_INET6 || 2827 ifma->ifma_protospec == NULL) 2828 continue; 2829 inm = (struct in6_multi *)ifma->ifma_protospec; 2830 if (!IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, &mcaddr)) 2831 continue; 2832 fmode = inm->in6m_st[1].iss_fmode; 2833 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); 2834 if (retval != 0) 2835 break; 2836 RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { 2837 CTR2(KTR_MLD, "%s: visit node %p", __func__, ims); 2838 /* 2839 * Only copy-out sources which are in-mode. 2840 */ 2841 if (fmode != im6s_get_mode(inm, ims, 1)) { 2842 CTR1(KTR_MLD, "%s: skip non-in-mode", 2843 __func__); 2844 continue; 2845 } 2846 src = ims->im6s_addr; 2847 retval = SYSCTL_OUT(req, &src, 2848 sizeof(struct in6_addr)); 2849 if (retval != 0) 2850 break; 2851 } 2852 } 2853 IF_ADDR_RUNLOCK(ifp); 2854 2855 IN6_MULTI_LIST_UNLOCK(); 2856 IN6_MULTI_UNLOCK(); 2857 2858 return (retval); 2859 } 2860 2861 #ifdef KTR 2862 2863 static const char *in6m_modestrs[] = { "un", "in", "ex" }; 2864 2865 static const char * 2866 in6m_mode_str(const int mode) 2867 { 2868 2869 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) 2870 return (in6m_modestrs[mode]); 2871 return ("??"); 2872 } 2873 2874 static const char *in6m_statestrs[] = { 2875 "not-member", 2876 "silent", 2877 "idle", 2878 "lazy", 2879 "sleeping", 2880 "awakening", 2881 "query-pending", 2882 "sg-query-pending", 2883 "leaving" 2884 }; 2885 2886 static const char * 2887 in6m_state_str(const int state) 2888 { 2889 2890 if (state >= MLD_NOT_MEMBER && state <= MLD_LEAVING_MEMBER) 2891 return (in6m_statestrs[state]); 2892 return ("??"); 2893 } 2894 2895 /* 2896 * Dump an in6_multi structure to the console. 2897 */ 2898 void 2899 in6m_print(const struct in6_multi *inm) 2900 { 2901 int t; 2902 char ip6tbuf[INET6_ADDRSTRLEN]; 2903 2904 if ((ktr_mask & KTR_MLD) == 0) 2905 return; 2906 2907 printf("%s: --- begin in6m %p ---\n", __func__, inm); 2908 printf("addr %s ifp %p(%s) ifma %p\n", 2909 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2910 inm->in6m_ifp, 2911 if_name(inm->in6m_ifp), 2912 inm->in6m_ifma); 2913 printf("timer %u state %s refcount %u scq.len %u\n", 2914 inm->in6m_timer, 2915 in6m_state_str(inm->in6m_state), 2916 inm->in6m_refcount, 2917 mbufq_len(&inm->in6m_scq)); 2918 printf("mli %p nsrc %lu sctimer %u scrv %u\n", 2919 inm->in6m_mli, 2920 inm->in6m_nsrc, 2921 inm->in6m_sctimer, 2922 inm->in6m_scrv); 2923 for (t = 0; t < 2; t++) { 2924 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, 2925 in6m_mode_str(inm->in6m_st[t].iss_fmode), 2926 inm->in6m_st[t].iss_asm, 2927 inm->in6m_st[t].iss_ex, 2928 inm->in6m_st[t].iss_in, 2929 inm->in6m_st[t].iss_rec); 2930 } 2931 printf("%s: --- end in6m %p ---\n", __func__, inm); 2932 } 2933 2934 #else /* !KTR */ 2935 2936 void 2937 in6m_print(const struct in6_multi *inm) 2938 { 2939 2940 } 2941 2942 #endif /* KTR */ 2943